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The density of wood is akey indicator of the carbon investment strategies of
trees, impacting productivity and carbon storage. Despite its importance,
the global variation in wood density and its environmental controls remain
poorly understood, preventing accurate predictions of global forest carbon
stocks. Here we analyse information from 1.1 million forest inventory plots
alongside wood density data from 10,703 tree species to create a spatially
explicitunderstanding of the global wood density distribution and its
drivers. Our findings reveal a pronounced latitudinal gradient, withwood in
tropical forests being up to 30% denser than that in boreal forests. In both
angiosperms and gymnosperms, hydrothermal conditions represented by
annual mean temperature and soil moisture emerged as the primary factors

influencing the variation in wood density globally. This indicates similar
environmental filters and evolutionary adaptations among distinct plant
groups, underscoring the essential role of abiotic factors in determining
wood density in forest ecosystems. Additionally, our study highlights the
prominent role of disturbance, such as human modification and firerisk,
ininfluencing wood density at more local scales. Factoring in the spatial
variation of wood density notably changes the estimates of forest carbon
stocks, leading to differences of up to 21% within biomes. Therefore, our
research contributes to a deeper understanding of terrestrial biomass
distribution and how environmental changes and disturbances impact

forest ecosystems.

Wood density, defined as the dry mass per fresh volume of wood, is a
fundamental functional trait which reflects the carbon investment of
trees. It is closely linked to the life history and functional attributes
of trees, including mechanical and physiological properties'. Wood
density playsacrucialrole in determining the competitive ability of tree
species and shapes the composition, structure and function of forest
ecosystems*”. These dynamics affect the rate of tree mortality® and
wood decomposition’, which are central to how ecosystems respond
toenvironmental changes. Furthermore, the strong link between wood
density and biomass production’ makes it a vital factor in quantifying

terrestrial carbon uptake and storage'® . Over one-third of the total
variationin aboveground biomass in tropical forests can be explained
by spatial differences in wood density"**. Yet, until now, we lack a spa-
tially continuous understanding of the variation in wood density in
angiosperms and gymnosperms that would be necessary for repre-
senting this information in global forest carbon storage estimates.
Inrecent decades, empirical and theoretical studies have identi-
fied a wide range of factors that shape global variation in tree wood
densities, including abiotic variation, biotic conditions, successional
stages and human disturbances*'*"*"*®, The evolution of wood density
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Fig.1| Observed wood densities across the global forest inventory plots
and within gymnosperms, angiosperms, forest types and biomes.

a-c, Wood density distribution of gymnosperm (a) and angiosperm (c) species
and influence of the proportion of angiosperms on CWD (b). The wood density
distribution in gymnospermous species is narrower and has a smaller mean
(-20% lower) than in angiospermous species. b, CWD increases with increasing
proportion of angiospermous species in forest communities. We included

8,249 taxa with information on angiosperms and gymnosperms comprising
8,036 angiosperms and 213 gymnosperms, each with wood density information
available at the species or genus level. d, Map of CWD observations for the

~1.1 million plots from the GFBi database. e,f, Box plots of observed CWD at the
forest type (e) or biome level (f). Box plot shows the median, interquartile range
and whiskers for data spread, excluding outliers.

is fundamentally shaped by the cost for wood construction and the
need for biomechanical and hydraulic safety>*?°. Denser wood offers
enhanced mechanical support and greater resistance to drought
conditionsin the xylembut this advantage may be offset by the higher
resource allocation required for wood production, resources that
could otherwise support growth or reproduction” . Consequently,
inecosystems with higher vapour pressure deficits, such aswarmand
dryforests, trees are likely to develop denser wood to maintain xylem
resistance againstimplosion and rupture?-*, In contrast, inwarmand
humid ecosystems with lower vapour pressure deficit, life history
strategies may lean towards rapid growth, characterized by reduced
carbon investment in wood, to maximize competitive ability**. In

colder regions, gymnosperms with low-density tracheids have acom-
petitive advantage over angiosperms. Tracheids of gymnospermtrees,
being narrower than the cavitation threshold of 30 pm, are capable
of functioning under water and freezing stress, which allows them
to resume transpiration early in the spring®**. Additionally, factors
such as reduced canopy height or a lower prevalence of pathogens™
in colder regions may reduce the need for high investment in wood
construction?. As a result, the balance between the investment of
trees in wood construction and their mechanical and physiological
safety is expected to lead to notable geographic variations in wood
density worldwide, affecting the structure, function and diversity
of ecosystems.

Nature Ecology & Evolution | Volume 8 | December 2024 | 2195-2212

2196


http://www.nature.com/natecolevol

Article

https://doi.org/10.1038/s41559-024-02564-9

Wood density also varies with the successional stage of forests*
and is influenced by disturbances from both natural processes and
human activities"**%¢, such as wildfires'”**°. For example, in parts
of the Amazon rainforest, wood density in secondary forests was
found to be 33% lower compared to predisturbance conditions*®*.
This reduction is attributed to the prevalence of early-successional
species with less dense wood in disturbed tropical wet and moist
forests'*173*374045 Conversely, in tropical dry forests, wood density
often increases postdisturbance as a result of the establishment of
more conservative, slow-growing species which are resistant to envi-
ronmental stresses”**~°. Thisimplies that forest wood density responds
unevenly to disturbances under different environmental conditions®-'.
Yet, such context-dependency remains untested at a global scale.
Understanding the global distribution of forest wood density and the
various influencing factors, including climate and ecosystem distur-
bances, is vital for predicting and managing the responses of forest
ecosystems to environmental shifts and for formulating effective
strategies to mitigate and adapt to climate change impacts.

Here we paired ~1.1 million ground-sourced forestinventory plots
(Fig.1d) from the global forest biodiversity initiative (GFBi) database™
with collated species-level wood density data>*~° to explore global
variation in wood density among both angiosperm and gymnosperm
trees. Using this large-scale observation approach, we tested compet-
ing hypotheses about the dominant factors driving wood density vari-
ation across global forests, including temperature, water availability,
species composition and disturbances. This approach allowed us to
test theoretical predictions of geographic variation and to create a
global model of wood density (Fig. 1 and Methods). We calculated
community-wide mean wood density (CWD) by weighting the wood
density of eachindividual observedin aforest plot by its basal area. To
exploreresponses to anthropogenic and natural disturbance gradients,
we integrated our observations with global information on human
disturbance® and fire frequency®. Finally, we estimated the total live
forestbiomass by integrating our CWD map with spatially explicit data
on live tree volume®**, root mass fraction® and biome-level biomass
expansion factors (Supplementary Table 1).

Spatial and phylogenetic wood density variation
Gymnosperm trees, which are dominant in boreal and high elevation
regions, had 20% lower wood density than angiosperms, with mean
densities 0of 0.47 + 0.07 g cm™and 0.59 + 0.14 g cm, respectively.
Accordingly, the CWDs of the global forests were positively related to
the proportion of angiosperms within a plot (Fig. 1b).

Our global CWD data reveal strong differences in wood density
across the major forest regions (‘Plot-level wood density metrics’in
Methods). Compared to boreal regions, which have a mean CWD of
0.46 +0.05 g cm™, the average CWDs in temperate (0.52 + 0.09 gcm™;
mean *s.d.), tropical (0.57 + 0.10 g cm™) and dryland (0.59 + 0.09
g cm™) regions were 13%, 24% and 28% higher, respectively (Fig. 1e
and Supplementary Table 2). At the biome level, tropical coniferous
and Mediterranean forests had the densest wood, each with a wood
density of 0.6 g cm™. The standard deviations are + 0.14 g cm ™ and
+0.09 g cm?, respectively. The lowest wood densities were observed
inboreal (0.46 + 0.05 g cm™) and temperate (0.49 + 0.07 g cm ) conif-
erous forests and flooded savanna (0.46 + 0.08 g cm™) regions, with
densities 23% to 32% lower than in tropical coniferous and Mediter-
ranean forests (Fig. 1f and Supplementary Table 3). There was also
considerable variation in CWD within biomes, which can rival the
amount of variation across biomes.

To examine how phylogenetic position affects wood density vari-
ation across different species, we used a dated phylogeny on 4,298
species in 189 families and 55 orders. We found a pronounced phylo-
geneticsignal, supporting niche conservatisminwood density among
these evolutionary distinct linages (Pagel’slambda = 0.92, P < 0.01and
Blomberg’s K=0.01, P< 0.01)°“". Similarly, ref. 68 reported alambda

value of 0.77 using wood density information from 2,261 species world-
wide. This evolutionary signal persists at the order level®, indicat-
ing that higher wood densities in the angiosperm orders Myrtales
(0.74 gcm™), Fabales (0.69 g cm™), Ericales (0.68 g cm™) and Fagales
(0.64 g cm™) and lower wood densities in the Pinales (0.45 g cm™),
Cupressales (0.50 g cm™), Araucariales (0.50 g cm™), Malvales
(0.50 g cm™), Rosales (0.53 g cm™) and Laurales (0.54 g cm ) are phy-
logenetically conserved over evolutionary time (Fig. 2).

Geospatial mapping

To map the geographic variation of wood density based oniits relation-
ship with environmental factors, we developed random-forest mod-
els using 62 global layers of climate, topography, soil, vegetation and
human activity (Supplementary Table 4). These models were applied to
alltree species (Fig. 3a), as well as separately to angiosperms (Fig. 3b)
and gymnosperms (Fig. 3¢). We observed spatial autocorrelation in
model residuals’ up to adistance of 50 km (Supplementary Fig.1). To
mitigate the effect of spatial autocorrelation and ensure the reliability
of our model predictions, we used a spatial bootstrapping procedure:
we created 200 bootstrapped training subsets, each with data points
at least 50 km apart (Methods). We then built individual models for
each subset. Our final model, with 62 predictors, achieved a global
average R* of 0.53 (tenfold cross-validation; Supplementary Fig. 2).
This model was used to map global wood density trends, revealing
lower densities at higher latitudes and elevations (Fig. 3). For example,
forests in Canada, Siberia, the Alps and the Qinghai-Tibetan plateau
showed low wood density (<0.5 g cm™), whereas high-density areas
(>0.6 gcm®) included warm, arid regions like the African Savannaand
Australian open forests.

To assess the predictive uncertainty of our models, we calculated
thebootstrapped coefficients of variation (standard deviation divided
by mean) for CWD values. These results showed high confidencein pre-
dictions across allmodels, with coefficients of variation <5% for all pixels
in existing forest areas (Supplementary Fig. 3). Furthermore, we dis-
tinguished between modelinterpolation (predictions within the envi-
ronmental range of the training data) and extrapolation (predictions
outside this range) using a principal component analysis (PCA)-based
approach. Our analysis indicated that >95% of the forested areas fell
within the environmental range of our training data in >95% of cases.
Most of the outliers were located in African savannaregions, probably
duetolower sampling density in these regions (Supplementary Fig. 4).

Drivers of global wood density variation
To assess the relative importance of climatic, soil, vegetation and dis-
turbance factorsindriving global CWD, we used partial regressionand
random-forest modelling (Fig. 4). We selected nine variables includ-
ing environmental factors and functional traits based on previous
research’, including mean annual temperature, soil moisture, soil
carbon-to-nitrogen (C:N) ratio (indicating nitrogen availability™), leaf
areaindex (LAl indicating growth and canopy light competition™), tree
diversity (speciesrichness), forest age, diameter at breast height (DBH),
human modification and fire frequency. Differences in the relative
occurrence of angiosperms versus gymnosperms were accounted for
byincludingthe plot-level angiosperm ratio as an additional predictor
(Fig.4a,b). Overall, this analysis revealed that mean annual temperature
is the most influential factor on CWD. Specifically, a1 °Cincreasein
temperature correlates withanaverage 0.5% increase in wood density
(Supplementary Table 5). This trend was consistent in separate analyses
of angiosperm and gymnosperm communities (Fig. 4c—f) and across
forest types and biomes (Fig. 4d,f). The effect of water availability,
nutrient resources and temperature on CWD is in alignment with the
study conducted by ref. 73, which used soil water-holding capacity, soil
basicity index and elevation as proxies for these factors.
Therelationships between other tested variables and CWD varied
considerably across forest types. High soil moisture correlated with
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Fig.2|Phylogenetic tree and wood density information of global tree
species. The phylogenetic tree was constructed using the R package
V.PhyloMaker, with wood density information available for 4,298 species (189
families from 55 orders). Wood density exhibits a strong phylogenetic signal
(Pagel’slambda =0.92, P< 0.01, Blomberg’s K = 0.01, P < 0.01). The colours of the
branches and the grey bars at the tips represent the wood density of each species.
Toidentify orders that have significantly different wood densities compared to

low CWD in tropical and temperate forests but led to higher CWD in
borealand dryland forests (Supplementary Fig. 5). Intropical regions,
LAl was positively correlated with CWD, whereas a negative correla-
tion was observed in temperate, boreal and dryland regions. The soil
C:Nratio generally correlated with slight decreases in CWD but an
inverse relationship was observed in boreal forests. Forest age, while
less influential on a global scale, displayed negative effects across all
foresttypes (Supplementary Fig. 5). This patternreflects the consistent
impacts of forest age in communities dominated by angiosperms and
gymnosperms (Fig. 4). Plot-level mean DBH, which may also reflect
forest age to some extent, had a minor impact on wood density glob-
ally (Fig. 4a).
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all other tree species, we conducted a two-tailed significance test by comparing
the order-level wood density with 999 randomized wood density values from
the entire phylogenetic tree. The coloured circle surrounding the phylogeny
represents different orders. The filled blue/red circles inside the phylogeny
indicate orders that show significantly (P < 0.05) lower (blue) or higher (red)
wood densities relative to all the species. Numbers inside the circles represent
the average wood density of the respective order.

Theimpact of major disturbances, specifically humanactivity and
fire frequency, on CWD was highly context-dependent. Our analysis
across all plots showed human modification as the third most impor-
tant factor affecting CWD (Fig. 4a) but its importance diminished in
gymnosperm-only communities (Fig. 4c,e). This suggests that human
activities indirectly influence CWD, primarily by altering the propor-
tion of coniferous and broadleaved trees. Fire frequency was the least
impactful factor among the nine variables (Fig. 4a). The limited global
effect of fires is probably due to their infrequent occurrence in for-
est worldwide, with 96% of global forests not experiencing fires in
the past 20 years®’. However, the long-term impacts of fires on forest
composition may be underestimated in our analysis, as their influence
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Fig.3 | Global maps of wood density. a,c,e, Wood density maps for all species
(a), angiosperms-only (c) and gymnosperms-only (e). a, The community-level
wood density map was derived from an ensemble approach, averaging the
global predictions from the 200 best random-forest models. ¢,e, Angiosperm-
only (c) and gymnosperm-only (e) wood density maps were derived from
ensemble averaging of the global predictions from the 100 best random-forest
models, respectively. b,d,f, Corresponding latitudinal trends in wood density
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ingrey. In the wood density maps for angiosperms (c) and gymnosperms (e),
we correspondingly excluded pixels where angiosperms and gymnosperms
constituted <5% of the entire community.

can extend beyond the 20 year period we considered. Additionally,
the intensity of fire, a crucial aspect of fire disturbance’™, was not cap-
tured in our frequency data, probably explaining why we did not find
astronger effect of fire frequency™.

To further explore how environmental variables modulate the
relationships between disturbance processes and CWD, we conducted
recursive partitioning analyses. These analyses show that in cold
regions (<10 °C), CWD increases with human disturbance, whereas
in warmer areas, it decreases (Supplementary Fig. 6a). Similarly, the
effect of fire frequency on CWD also varied with temperature: it slightly
reduces CWD in colder climates butincreases it in warmer ones (Sup-
plementary Fig. 6b). The relationships between disturbances and CWD

were also dependent on the proportion of angiosperms versus gym-
nosperms in a forest. These findings underscore the context-specific
nature of the effects of human disturbance and fire frequency on wood
density, influenced by factors such as temperature and forest taxo-
nomic composition.

Wood density and global biomass estimates

Toassesstheimpact of wood density variations on global forest biomass
estimates, we integrated our wood density map with the latest global
maps of live tree volume®’, root mass fraction® and biomass expansion
factors” (Fig. 5a and Supplementary Table 1). This analysis revealed a
total tree biomass of 374 GtC (Supplementary Fig. 7), of which 200 GtC
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cand e represents the relative contribution of each variable to CWD variation,
whereby we averaged the values of 100 bootstrapped random-forest models.
Bootstrapped partial regression coefficients for each variable (b,d f) were
calculated by averaging the partial regression coefficients from 100 multivariate
linear models. All variables were standardized to allow for direct effect size
comparison. In addition, we quantified the absolute effects of these covariates
using partial regression analysis, as detailed in Supplementary Table 5.

(53.3%) is stored intree stems, 93 GtC (24.9%) inbranches, foliage and
other aboveground living parts and 81 GtC (21.7%) belowground as
roots. This global estimate aligns well with previous estimates based
on remote sensing, ground-sourced models or harmonized ensem-
ble approaches®*’>”, estimating total tree biomass in the range of
354-445 GtC (Supplementary Fig. 7). However, our wood density-based
biomass estimations present spatial deviations compared to previous
studies, showing an agreement in spatial variation ranging from 45% to
93% with earlier research™**’*78 (Supplementary Fig. 7a). Our estimates

were most closely aligned (93%) with those from GlobBiomass®*, as both
used the same live tree volume data (Supplementary Fig. 7c).

To isolate the influence of wood density variation on global tree
biomass distribution, we compared our wood density-informed
biomass model with a model using a constant wood density value of
0.53 g cm™ (the global average). We found that the constant wood
density model estimated the global biomass to be about 4% lower
than the spatially explicit wood density model (359 GtC compared
to 374 GtC; Fig. 5b). However, significant differences emerged within
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Fig. 5| Comparison of global living tree biomass distribution using spatially
explicit wood density data versus a universal wood density value. a, The
global distribution of living tree biomass (in tonnes per hectare), derived by
integrating our wood density map with spatially explicit dataonliving tree
volume, root mass fraction and biomass expansion factors. b, Percentage
difference in estimated living tree biomass when comparing results derived using
the global wood density map (from a) with estimates using a single, universal

wood density value. The difference is calculated as the percentage change by
subtracting the spatially explicit estimate from the universal estimate and then
dividing by the spatially explicit estimate. Blue areas show regions where the
universal estimate is higher, and red/orange areas indicate where the spatial
estimate is higher. ¢, Percentage difference between the two biomass estimation
methods across biomes. Box plots show the median, interquartile range and
whiskers for data spread, excluding outliers.

various biomes (Fig. 5b), where the constant density model underes-
timated carbon stocks in specific biomes like tropical moist, tropical
dry, tropical savanna and Mediterranean forests by, on average, 12%,
17%,17% and 21%, respectively, and overestimated them in temperate
coniferous and boreal forests by 10% and 13%.

These findings underscore the critical role of spatially explicit
wood density estimatesin accurately predicting forest carbon stocks,

taking into account the variations across different regions and forest
types. Our detailed wood density map therefore allows foramoreaccu-
rate representation of the geographic variationintree carbon storage.

Discussion
Owing to high heterogeneity in wood density across forest types’”*°
and along successional stages, modelling the spatial variationin forest
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functional traits has remained a major research challenge'®”*%. Yet,
recentadvancementsinbigdataand remote sensing tools have begun
to provide detailed high-resolution information on environmental,
human disturbance and vegetation characteristics. In this study, we
integrated these features to model global variations in wood density
and identify the factors driving this variation.

Our analysis identifies temperature as the dominant driver of
global wood density variation, with a more than three times greater
effect than any other variable (Fig. 4a), highlighting temperature as
aselective pressure and filter of global wood density’. Other factors,
such as soil moisture, also affect wood densities but are more notice-
able atregional scales. Inaddition, meanannual temperatureis highly
correlated with evapotranspiration and potential evapotranspiration
(Pearson’s correlations around 0.9). Warmer climates thus often coin-
cide with significant water stress. These global-scale trends support
the hypothesis that the need for hydraulic safety drives high wood
densities in stressful environments>'*%,

The observed positive correlation between community-level wood
density and temperature®™ leads to distinct latitudinal and elevational
trends (Fig. 3a,b). While changes in gymnosperm versus angiosperm
species composition amplified these trends, the environmental factors
driving globalwood density variation were remarkably similar among
these distantly related groups (Fig. 3c,e). Temperature and water avail-
ability had a consistent effect on wood density across angiosperms
and gymnosperms (Fig. 4c,e), indicating similar wood anatomical
adaptations to environmental factors.

Our findings on the drivers of global forest wood density align with
ref. 81, which highlighted the importance of leaf habit, temperature
seasonality, cloud cover and annual precipitation. This study® calcu-
lated pixel-level average wood density by averaging individual tree-level
measurements within pixels. In contrast, we integrated forest inven-
torydatatorepresent CWD. Overall, our wood density estimates show
slightly greater variation across the globe. We estimate higher densities
thanref. 81inwarmtropical regions and lower densities in cold boreal
regions. Atthe biomelevel, our predictions are higher in denser wood
biomes and lower in regions with low wood density. Despite these dif-
ferences, both studies show similar patterns of wood density across
global forests, with higher wood densities at lower latitudes and lower
densities at higher latitudes. The overall R* between the two models is
0.58 (Supplementary Fig. 9). This consistency in global wood density
patterns and climate responses is crucial for enhancing our confidence
in predicting the impact of climate change on global forest biomass
distribution and shifts in forest composition.

The importance of balancing hydraulic safety and growth effi-
ciency hasbeenwell-documentedin tropical dry forests®’. Indeed, our
model predicts the highest wood densities for hot environments with
low water availability, such as the dryland regions of South America,
Africaand Australia. Conversely, in tropical moist forests, wood density
correlates more strongly with growth and mortality rates than with
resistance to cavitation. Thisis evidentin pioneer trees, which have low
wood density and high growth rates, whereas non-pioneer rainforest
trees tend to have higher wood density, largely due to their longevity
and competitive advantage, rather than drought stress*°. Overall, wood
density serves as amultifaceted proxy for environmental interactions
andresponses, as demonstrated by the divergent trends in community
wood density observed in dry versus wet tropical forests’.

Thenegative correlation between soil moisture and wood density
lends support to observations in previous local-scale analyses"****,
a trend that can largely be explained by the high abundance of
slow-growing species in dry environments”*°%% These species typi-
cally adopt a conservative resource-uptake strategy and exhibit high
water-use efficiency. Previous studies have indicated variability in the
relationship between wood density and water availability, with differ-
encesinthedirectionand magnitude depending ontheresearchscale
and species sampled*>**®s, Our global-scale sampling now shows that

dry forests have wood densities up to 31% higher than those found
in more humid regions®’ (Figs. 1e and 3). Nevertheless, we also find
regional differences in the effect of soil moisture (Supplementary
Fig.5).For example, a positive relationship between wood density and
water availability was found within boreal forests, while the opposite
was true for tropical and temperate regions. Such variationin the effect
of soil moisture may be driven by variation in functional properties
of species. For instance, water availability tends to be less limiting in
broadleaved trees thanin conifers because angiosperm vessels canbe
more efficient in water conduction than tracheids®.

Although biodiversity (species richness), forest age, DBH, LAI
and soil C:N ratio are important factors influencing local variation
in wood density, these effects were overwhelmed by the impacts of
temperature, soil moisture and angiosperm ratio at a global scale.
This may suggest that biotic interactions play a relatively smaller role
in shaping broad-scale variation in wood density, relative to abiotic
environmental factors. Within gymnosperms, we observed anegative
correlationbetween C:Nratio and wood density. This might reflect an
increased investment in xylem safety in nutrient-rich environments,
where the construction of tissues (carbon acquisition) is less of a limit-
ing factor”. Forest age had opposite effects on wood density variation
in communities dominated by angiosperms and gymnosperms. This
indicates divergent trajectoriesin wood density development during
the maturation of these two types of forests (Fig. 4b,c).

Therelationship between wood density and disturbance was highly
context-dependent, with regional contingencies being dependent on
the environmental background conditions of the region®!7>3741:45-4750,
While previous studies have emphasized the role of water availability™,
ourrecursive partitioning analyses suggest mean annual temperature as
the maindriver shaping the relationship between wood density and for-
estdisturbances, such as human disturbance and fire frequency (Sup-
plementary Fig. 6). This might be driven by regional differences inthe
relative trade-offbetween acquisitive and conservative resource-uptake
strategies™*® ¥, Intropical wet forests, seral communities on disturbed
forest margins are often dominated by short-lived, light-demanding
species which tend to have low wood densities*”, whilein tropical dry
forests, seral communities often consist of drought-resistant species
withdensewood” **. Controlled experiments and long-term field obser-
vations will be needed to further disentangle the context-dependent
responses of wood density to disturbances.

Our analysis highlights the strong role of species compositionin
shaping wood density variation">****¢, Owing to the strong phylo-
genetic signal in wood density, related species display similar wood
densities, even when growing under different environmental condi-
tions®*. For example, gymnosperm tree species have, on average, 20%
lower wood densities than angiosperm species (Fig. 2). The anatomical
differences between angiosperms and gymnosperms play a crucial
role in this disparity. Gymnosperms are characterized by thinner cell
walls and smaller pits, decreasing the risk of xylem cavitation at the
expense of hydraulic conductivity. In humid, hydraulically less stressful
environments, angiosperm trees with higher hydraulic conductivity
might thus tend to outcompete gymnosperm trees’. This may add to
the observed decreases inwood density from low to high latitudes (Fig.
3a) or from tropical to boreal forests (Fig. 3b)*. Interestingly, we find
consistent biogeographical trends inwood density for gymnosperms
and angiosperms, with temperature being the key regulator. This is
particularly evidentin the pronounced increase inwood density from
boreal to tropical forests within gymnosperm species (Fig. 3f). This
trend illustrates the strong selective pressures and filters of tempera-
ture on tree wood density patterns globally (Fig. 4a,b).

Conclusion

The integration of global ground-sourced forest inventory data with
wood density measurements allowed us to quantitatively assess the
environmental factors driving the wood density distribution onaglobal
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scale. Thisintegration hasresulted ina high-resolution global model,
providing critical information on the structure and biomass distri-
bution of the forests of the world. Our analysis identifies taxonomic
composition—particularly the distinction between angiosperms and
gymnosperms—as the primary biotic driver influencing global wood
density variations. Temperature, in conjunction with water availability,
emerges as the dominant abiotic factor that controls the global varia-
tion in wood density. This pattern is probably attributable to the role
of denser wood in enhancing competitive ability, hydraulic efficiency
and transpiration efficiency in warmer environments. We also observed
that community-level wood density responses to disturbances vary
across forest types, biomes and environmental conditions. By inte-
grating our wood density map with other key metrics such aslive tree
volume®®, biomass expansion factors and root mass fractions®, we
could benchmark existing forest biomass stocks, estimating a total
living biomass of 374 GtC. Our research also showed that biomass
estimates within biomes could vary by as much as 21%, depending on
whether the variability of wood density was considered or if wood den-
sity was assumed to be uniform worldwide. Our findings contribute to
animproved understanding of the structure and biomass distribution
inglobal forests and highlight the effects of human and environmental
disturbances on global forest communities and functional traits.

Methods

Data sources

Wood density is commonly measured as the ratio of the oven-dry
mass of awood sample to its green volume. Most wood density data
stem from wood core samples®’, while some are derived from fresh
volumes and dry weights of whole tree components®*®°, We compiled
wood density measurements of individual trees or aggregated to the
species level from several databases or publications. The majority
of observations came from the Global Wood Density Database by
refs. 1,57, encompassing a total of 16,468 records in 8,412 species and
the TRY database® withatotal of 46,668 records for 7,514 species. Addi-
tionally, 1,117 wood density records in 937 species came from ref. 53,
4,022 recordsin 872tree species fromref. 55, 618 recordsin 615 species
fromref. 56, 624 records in 250 species from ref. 60, 3,529 records in
179 tree species from ref. 54, 3,092 records in 58 species from ref. 58
and1,234 recordsin1,061species from published research articles by
searching for ‘wood density’ in Google Scholar (publications listed in
Supplementary Datal). After standardizing the taxonomic names using
the Taxonomic Name Resolution Service” (R package TNRS v.0.1.0) and
removing synonyms, we obtained 77,372 wood density observations
across 10,703 species and 2,026 genera (data are available at GitHub
https://github.com/LidongMo/GlobalWoodDensityProject).

To test the compatibility in wood density estimates among data-
bases, we conducted an analysis to quantify their similarity. By con-
structing a linear regression model based on common species pairs,
we calculated an R? value of 0.78, indicating high consistency among
all nine data sources and minimal bias introduced by different wood
density determination methods (Supplementary Figs. 8 and 10).

Phylogenetic and trait analysis

To test whether wood density is phylogenetically conserved, we com-
puted common phylogenetic metrics as well as random-effects models
including taxonomic information. We built a phylogenetic tree using
the R package V.PhyloMaker®®, with a total of 4,298 species (189 families
from 55 orders) with wood density information matching the speciesin
the phylogenetic database. To test for phylogenetic signalinwood den-
sity, we computed Pagel’s lambda and Blomberg’s K, using the phylosig
function in the R package phytools®. To further test for trait conserva-
tismatthe order level, we used the ph_aot function from the R package
phylocomr'®®. Order-level wood density values were calculated by aver-
aging across all descendent terminal taxa® and comparing the means
with 999 trait value randomizations across the tips of the full phylogeny

to obtain significance estimates'®. Only orders for which we had data

on at least 50 species were tested. We further quantified the extent of
within-species and within-genus variation in wood density by running
arandom-effects model on all 77,372 observations, including species
and genus asrandom effects and wood density as response variable. The
model showed that -81% of the individual variation in wood density is
explained by taxonomic information on family, genus and species levels,
with24% ofthe variation explained by family information, 30% by genus
information and an additional 27% explained by species information.

Generating species- and genus-level wood density information
To quantify wood density variation across the world’s forests, we
assigned species-level wood density values to individual tree obser-
vations from the GFBi. The GFBi database consists 0f 1,188,771 unique
forest census plots, containing data for all tree individuals with a
DBH > 5 cm. Each plot contains information on geospatial coordi-
nates (latitude and longitude in decimal degrees), individual-level
species binomial name and DBH, plot size (median plot size =25 m?)
and measurement year. For remeasured plots, we kept only the latest
observation year for our analysis. Across all plots, the mean observa-
tion year was 2003. To assess the impact of the temporal changes of
forest community on the community-level wood density, we applied
arandom-effects model to plots with time-series information. The
model, including wood density as dependent variables and plot and
year information as random effects, showed that variance in wood
density was predominantly (97.9%) attributable to differences across
plots, with only 0.2% due to variations across years.

Wethen used the binomial namesto assign species-level wood den-
sityinformation to theindividualsinthe GFBi database. As for the wood
density information, species binomials in the GFBi database were stand-
ardized using the TNRS”. For species with more than one wood density
record, we used the average of all available records. If no wood density
information was available at the specieslevel or if the GFBiindividual was
onlyidentified to the genuslevel, mean genus-level wood density values
were used instead. Because of the strong phylogenetic signal in wood
density values, these genus-level estimates introduce only little error
compared to species-level wood densities>'>**'??, In total, species-level
wood density data could be matched to 4,428 speciesincludedinthe GFBi
database, while genus-level data were matched to1,192 GFBigenera. We
excluded plotsrepresenting 0.4% of the total, where <75% of the individu-
als had wood density information at either the species or genus level.
Consequently, 1,183,070 plots were included in our geospatial analysis.

According to the GFBi inventory plots, the global average tree
diameters of angiosperms and gymnosperms were similar, at 21.9
and 21.8 cm, respectively, with 95% quantile ranges of 5.6-56.5 cm for
angiosperms and 6.4-56.4 cm for gymnosperms.

Plot-level wood density metrics

We allocated species-level wood density to each individual tree in the
GFBi plots and calculated the CWD. This approach is supported by
the phylogenetic conservatism of wood density (Fig. 2) and the small
impact ofindividual-level wood density variations on community-level
estimates”’. The average community-wide wood density for each plot
CWD was calculated as the wood density of all tree individuals weighted
by tree basal area:

i (WDiree X Byree)

CWD = -
Zi:1Btree

@

where WD, is the wood density of each tree and B,,.. is the basal area
ofeachtree.

The spatial modelling of community-wide wood density proper-
ties was performed at 30 arcsec (-1 km?) resolution and we therefore
aggregated CWD values within each 30 arcsec pixel by calculating the
mean, resultingin 506,630 pixel-level observations for the modelling.
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To quantify CWD within biomes and forest types, we used all obser-
vations in each biome or forest type. Biome and forest types were
classified using the WWF Biome map'®. Forests were divided into
the four broad categories (tropical, temperate, boreal and dryland),
with tropical regions including six biomes (tropical and subtropical
moist broadleaf forest, tropical and subtropical dry broadleaf forest,
tropical and subtropical coniferous forest, tropical and subtropical
grassland, savanna and shrubland, flooded grassland and savanna
and mangroves), temperate regions including four biomes (temper-
ate broadleaf and mixed forest, conifer forest, temperate grassland,
savannaand shrubland and montane grassland and shrubland), boreal
regions including two biomes (boreal forest/taiga and tundra) and
dryland including two biomes (Mediterranean forest, woodland and
scrub and desert and xeric shrubland).

Environmental and human disturbance covariates
We used 62 covariates, representing information on climate, topog-
raphy, soil, vegetation characteristics, fire frequency and human
disturbances, to test for the effects of environment and anthropo-
genic disturbance on the global variation in CWD and create spatially
explicit models which allow us to interpolate CWD across the globe.
All covariates were available as global layers at 30 arcsec resolution:
layers for 19 bioclimatic variables came from the CHELSA open cli-
mate database (www.chelsa-climate.org)'**; topographicinformation
(elevation, roughness, slope, profile curvature, northness, eastness
and topographic position index) from the EarthEnv database (www.
earthenv.org/topography)'®; cloud cover properties (annual mean,
interannual standard deviation and intra-annual standard deviation)
from the EarthEnv (www.earthenv.org/cloud) database and ref. 106;
depth to the water table from ref. 107; the annual mean of solar radia-
tion, wind speed and vapour pressure from the WorldClim database
(v.2)'%8; absolute depth to bedrock and soil texture (clay content, coarse
fragments, sand content, silt content and soil pH), averaged for soil
depths from 0 t0 100 cm below surface, from the soil grids database'®’;
soil moisture was down-scaled from 10 km resolution maps sourced
from GLDAS2.0 (ref. 110), ERAS (ref. 111) and MERRA2 (ref. 112), soil
nutrient information (cation exchange, C:N ratio and nitrogen) from
the WISE30sec database’ and soil grids'®’; normalized difference
vegetation index, enhanced vegetation index (upscaled from 250 m
resolution), FPAR, LAl (upscaled from 500 mresolution) and annual net
primary productivity from MODIS data™®™; aridity index and potential
evapotranspiration fromrefs.116,117; and current forest tree cover, tree
density, canopy heightand forest age from refs.118-121, respectively.
To represent human and natural disturbances in our model, we
used eight global layers that directly reflect anthropogenic distur-
bances: cultivated and managed vegetation and urban built-up'?,
agriculturalland use (cropland, grazing, pasture and rangeland trans-
formed to pixel-level percentages)'**'**, human modification, reflecting
the intensity of human activity® and natural disturbances of forests:
fire frequency®’. Human modification is the most comprehensive and
representative human activity variable integrating five major human
disturbance categories: human settlement, agriculture, transporta-
tion, mining and energy production and electrical infrastructure®. The
map of fire frequency was generated from yearly observations of fire
occurrence®, by calculating the proportion of years with fire in each
30 arcdegreeresolution pixel. All covariates were extracted via Google
Earth Engine'”. The eight disturbance variables were uniformly scaled
torepresentacontinuous gradient of humanactivity or fire frequency,
whereby values of 0 indicate no disturbances in the respective pixel
and values of 1indicate maximum disturbance.

Representation of training data

Toevaluate the extent of interpolation versus extrapolationin our mod-
els, that is, how well our training data represents the full multivariate
environmental covariate space, we performed a PCA-based approach

followingref.126. We projected the covariates composite into the same
space using the centring values, scaling values and eigenvectors from
the PCA ofthe training data. Then, we created convex hulls for each of
thebivariate combinations fromthe top principal components (which
collectively covered >90% of the sample space variation). We used 22
principal components with 231 combinations for all covariates. Using
the coordinates of these convex hulls, we classified whether each pixel
falls within or outside each of these convex hulls. This analysis revealed
that 95.2% of land pixels excluding Antarctica are covering at least 95%
oftheenvironmental conditions presentin our training datalocations
(Supplementary Fig. 4).

Geospatial modelling of global forest wood density properties
To train spatially explicit CWD models across the world’s forests, we
ran a series of random-forest machine learning models. The models
included 62 predictor variables representing climate, soil, topography,
vegetation, fire frequency and human disturbances. Parameter tuning
foreach modelwas performed through the grid search function of the
H20 R package'” toiteratively explore the results of a suite of machine
learning models trained on the 62 covariates.

To test for spatial autocorrelation of model residuals, we trained
ageneralized additive model (GAM) using the same 62 covariates and
then extracted Moran’s / values of the GAM residuals at spatial scales
of 0-1,000 km. This analysis revealed positive spatial autocorrelation
up to adistance of 50 km (Supplementary Fig.1). To minimize the influ-
ence of spatial autocorrelation in our random-forest model, we thus
applied a spatially buffer-zone-based bootstrapping procedure, sub-
sampling the training data during the grid search procedure to make
sure the distance between any two data plots is always >50 km. This
buffer-zone-based bootstrap subsampling was applied 200 times and,
for each subsample (-2,000 observations), weran 48 randomdiscrete
parameter sets covering the total grid space of 240 possible parameter
combinationsto performthe grid search. Model performance of each
model was assessed using the coefficient of determination'*® based
on tenfold cross-validation and, for each subsample, we retained the
model with the highest R

To create the final community wood density maps, we used an
ensemble approach, whereby we averaged the global predictions from
the 200 best random-forest models based on our bootstrapping proce-
dure. By taking the average prediction across multiple models, ensem-
ble methods minimize the influence of any single prediction, thereby
stabilizing variation and minimizing bias that can otherwise arise from
extrapolation or in-fit overfitting when using a single machine learning
model”. Moreover, by quantifying the variation across these ensem-
ble predictions, we can identify areas that have low consensus across
multiple models and which thus have higher uncertainty than would
otherwise be predicted by any single model. Toimplement this ensem-
ble approach, the mean predicted value across the 200 best-fitting
models was used as the final model prediction for each pixel and the
variation coefficient across these 200 models was used to characterize
intermodel consistency (paragraph on Supplementary Fig. 3).

Model consistency and uncertainty

Our ensemble approach allowed us to obtain spatially explicit esti-
mates of the uncertainty associated with our random-forest models
of global community-wide wood density. This was done by computing
the pixel-wise variation coefficient (standard deviation divided by
the mean) of the 200 bootstrapped models?® (Supplementary Fig. 3),
whereby the coefficient of variation represents the uncertainty of our
wood density estimates.

Geographic variation and drivers of community wood density
properties

Variable selection. To explore the effect magnitude and direction of
the main environmental drivers of CWD across the globe, we included
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variables of high ecological importance which have shown significant
relationships with wood density in previous studies®”#*%*3° and per-
formed hierarchical cluster analysis to remove highly similar variables.
We then tested for multicollinearity among the retained covariates,
by calculating variance inflation factors (VIFs) using the R package
HH 3.1-52 (ref.131). All VIFs of these selected variables were <5, indicat-
ing sufficientindependence among predictor variables. Mean annual
temperature, soil moisture, DBH, speciesrichness, soil C:Nratio, forest
age, canopy height, LAI, human modification and fire frequency were
selected for the final analysis. In addition, we included two biotic vari-
ables:angiospermratio and biodiversity. Specifically, the angiosperm
ratio represents the proportion of angiosperm individuals within the
plot, whichwe used to account for differences in CWD between angio-
sperms and gymnosperms (Fig. 1b). Biodiversity is represented by rich-
ness, calculated by scaling the observed number of species to the plot
size. We excluded precipitation from our analysis due toits strong col-
linearity with plant water availability on aglobal scale and the previously
established weak correlation between wood density and precipitation'.

Variable importance. To test the variable importance of the selected
covariates, we ran linear multivariate regression and random-forest
models. To control for the potential effects of spatial autocorrelation,
we ran a bootstrapping procedure, subsampling the full dataset 100
times, with each subsample randomly selecting one observation per
0.25 arc degree grid. For each subsample, we quantified the variable
importance of the nine selected variables based on mean decrease in
accuracy values fromrandom-forest models using the H20 R package'’.
The average values across the 100 submodels were then used to evaluate
theresults (Fig. 4). Similarly, for each subsample, we fitted a multivari-
ateregression model for the ten selected variables and calculated the
corresponding regression coefficients, whereby both response and
predictor variables were standardized to allow for direct effect size
comparison. We then aggregated the results by calculating the mean
regression coefficient and standard deviation across all submodels
(Fig.4). Furthermore, we ran the same models including only data for
angiosperms or gymnosperms (Fig. 4c—f). We also tested the effects of
the variables on CWD within forest types using partial linear regression
models (Supplementary Fig. 5). As for the global analyses, we controlled
for the effect of spatial autocorrelation by running abootstrapping pro-
cedure, subsampling the full dataset 100 times, with each subsample
randomly selecting one observation per 0.25 arc degree grid.

Context-dependency of human disturbance and fire
frequency effects

To explore the effects of human disturbances and fire frequency on
CWD under different environmental conditions, we ran recursive
partitioning analyses using the packages partykit'?and ggparty>. We
used a decision tree algorithm to explore the context-dependency of
the slope and intercept of a univariate linear model for the effect of
disturbance variables on community wood density properties, whereby
thetop four covariates based on arandom-forest model (Fig. 4a) were
evaluated as potential splitting points (Supplementary Fig. 6). The
minimum node size (minimum number of observations contained in
each terminal node) was set to 500 (-3% of the data) and the significance
level was setto 0.01.

Estimation of the living biomass in global forest

To generate aglobal map of aboveground tree biomass, we combined
our wood density map with an existing map of live tree volume®. The
live tree volume represents the total volume of all living trees with a
DBH >10 cm, measured over bark from ground or stump heightto a
top stem diameter of O cm (ref. 63).

n
TGB = )} CWDpyean X GSV x BEFs x ( )

; )
P 1-RMF
i=1

Total living tree biomass (TGB) was then calculated by multiply-
ing our CWD estimates with live tree volume (GSV)®. To match the
resolution of our wood density map, the GSV map was aggregated from
~100 mto-~1kmresolution. GSVrepresents the volume of all living trees
with a diameter greater than 10 cm at breast height, measured from
the ground or stump height to atop stem diameter of 0 cm, including
the bark. We then used biomass expansion factors (BEFs) from the
literature”"** (Supplementary Table 1) to convert stem biomass into
aboveground tree biomass, representing the biomass of tree stems,
branches, foliage, flowers and seeds®’. Root mass fraction (RMF) is the
relative proportion of plant biomass distributed to roots®.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data are available via Zenodo at https://doi.org/10.5281/zenodo.
13331493 (ref. 135).

Code availability
Code is available via GitHub at https://github.com/LidongMo/
GlobalWoodDensityProject.
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X X X
oo

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  Forest inventory plots data came from the Global Forest Biodiversity initiative (GFBi) database: https://www.gfbinitiative.org.
Wood density data came from Global Wood Density Database (Chave, J. et al. Towards a worldwide wood economics spectrum. Ecol. Lett. 12,
351-366 (2009).), TRY database (Kattge, J. et al. TRY plant trait database—enhanced coverage and open access. Glob. Chang. Biol. 26, 119-188
(2020)) and other sources( Schepaschenko, D. et al. A database of forest biomass structure for Eurasia. (2017); Falster, D. S. et al. BAAD: a
Biomass And Allometry Database for woody plants. (2015); Henry, M. et al. GlobAllomeTree: international platform for tree allometric
equations to support volume, biomass and carbon assessment. Iforest 6, 326—-330 (2013); Vieilledent, G. et al. New formula and conversion
factor to compute basic wood density of tree species using a global wood technology database. Am. J. Bot. 105, 1653-1661 (2018); Zhang, S.-
B., Slik, J. W. F., Zhang, J.-L. & Cao, K.-F. Spatial patterns of wood traits in China are controlled by phylogeny and the environment. Glob. Ecol.
Biogeogr. 20, 241-250 (2011)).

Data analysis Used R and Google earth engine for data analysis. The corresponding references are listed below:
R Core Team (2023). _R: A Language and Environment for Statistical Computing_. R Foundation for Statistical Computing,
Vienna, Austria. <https://www.R-project.org/>.
Gorelick, N., Hancher, M., Dixon, M., llyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis
for everyone. Remote Sensing of Environment.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or thi

rd party data, please ensure that the statement adheres to our policy

Data and code can be freely accessed from the GitHub link provided below, following the publication of the paper: https://github.com/LidongMo/

GlobalWoodDensityProject.

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender n/a

Reporting on race, ethnicity, or n/a

other socially relevant
groupings

Population characteristics
Recruitment

Ethics oversight

n/a
n/a

n/a

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below

|:| Life sciences

For a reference copy of the docume

that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

|:| Behavioural & social sciences Ecological, evolutionary & environmental sciences

nt with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description

Research sample

Sampling strategy

Data collection

Here, we paired ~1.1 million ground-sourced forest inventory plots from the GFBi database with collated species-level wood density
data to explore global variation in wood density among both angiosperm and gymnosperm trees. Using this large-scale observation
approach, we tested competing hypotheses about the dominant factors driving wood density variation across global forests,
including temperature, water availability, species composition and disturbances. This approach allowed us to test theoretical
predictions of geographic variation and to create a global model of wood density. We calculated community-wide mean wood
density by weighting the wood density of each individual observed in a forest plot by its basal area. To explore responses to
anthropogenic and natural disturbance gradients, we integrated our observations with global information on human disturbance and
fire frequency. Finally, we estimated the total live forest biomass by integrating our CWD map with spatially-explicit data on live tree
volume, root mass fraction, and biome-level biomass expansion factors.

Forest inventory plot data was downloaded from Global Forest Biodiversity initiative (GFBi) database: https://www.gfbinitiative.org
Wood density data came from Global Wood Density Database (Chave, J. et al. Towards a worldwide wood economics spectrum. Ecol.
Lett. 12, 351-366 (2009).), TRY database (Kattge, J. et al. TRY plant trait database—enhanced coverage and open access. Glob. Chang.
Biol. 26, 119-188 (2020)) and other sources( Schepaschenko, D. et al. A database of forest biomass structure for Eurasia. (2017);
Falster, D. S. et al. BAAD: a Biomass And Allometry Database for woody plants. (2015); Henry, M. et al. GlobAllomeTree: international
platform for tree allometric equations to support volume, biomass and carbon assessment. Iforest 6, 326—330 (2013); Vieilledent, G.
et al. New formula and conversion factor to compute basic wood density of tree species using a global wood technology database.
Am. J. Bot. 105, 1653—-1661 (2018); Zhang, S.-B., Slik, J. W. F., Zhang, J.-L. & Cao, K.-F. Spatial patterns of wood traits in China are
controlled by phylogeny and the environment. Glob. Ecol. Biogeogr. 20, 241-250 (2011)).

n/a
Forest inventory plot data was downloaded from Global Forest Biodiversity initiative (GFBi) database: https://www.gfbinitiative.org

Wood density data came from Global Wood Density Database (Chave, J. et al. Towards a worldwide wood economics spectrum. Ecol.
Lett. 12, 351-366 (2009).), TRY database (Kattge, J. et al. TRY plant trait database—enhanced coverage and open access. Glob. Chang.
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Biol. 26, 119-188 (2020)) and other sources( Schepaschenko, D. et al. A database of forest biomass structure for Eurasia. (2017);
Falster, D. S. et al. BAAD: a Biomass And Allometry Database for woody plants. (2015); Henry, M. et al. GlobAllomeTree: international
platform for tree allometric equations to support volume, biomass and carbon assessment. Iforest 6, 326—330 (2013); Vieilledent, G.
et al. New formula and conversion factor to compute basic wood density of tree species using a global wood technology database.
Am. J. Bot. 105, 1653—-1661 (2018); Zhang, S.-B., Slik, J. W. F., Zhang, J.-L. & Cao, K.-F. Spatial patterns of wood traits in China are
controlled by phylogeny and the environment. Glob. Ecol. Biogeogr. 20, 241-250 (2011)).

Timing and spatial scale  The estimates of wood density and environmental covariates are represented at approximately a 1km resolution.

Data exclusions n/a

Reproducibility Data and code can be freely accessed from the GitHub link provided below, following the publication of the paper: https://
github.com/LidongMo/GlobalWoodDensityProject.

Randomization n/a

Blinding n/a

Did the study involve field work? |:| Yes |Z| No

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies XI|[] chip-seq
Eukaryotic cell lines |Z |:| Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging

Animals and other organisms
Clinical data
Dual use research of concern

Plants

OIXXXXNXX &
XOOOOOO

Dual use research of concern

Policy information about dual use research of concern

Hazards

Could the accidental, deliberate or reckless misuse of agents or technologies generated in the work, or the application of information presented
in the manuscript, pose a threat to:

Yes
[] Public health

|:| National security
|:| Crops and/or livestock
|:| Ecosystems
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|:| Any other significant area
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Experiments of concern

Does the work involve any of these experiments of concern:
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Demonstrate how to render a vaccine ineffective

Confer resistance to therapeutically useful antibiotics or antiviral agents
Enhance the virulence of a pathogen or render a nonpathogen virulent
Increase transmissibility of a pathogen

Alter the host range of a pathogen

Enable evasion of diagnostic/detection modalities

Enable the weaponization of a biological agent or toxin
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Any other potentially harmful combination of experiments and agents
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Plants

Seed stocks n/a

Novel plant genotypes  n/a

Authentication n/a
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