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The global distribution and drivers of wood 
density and their impact on forest  
carbon stocks

The density of wood is a key indicator of the carbon investment strategies of 
trees, impacting productivity and carbon storage. Despite its importance, 
the global variation in wood density and its environmental controls remain 
poorly understood, preventing accurate predictions of global forest carbon 
stocks. Here we analyse information from 1.1 million forest inventory plots 
alongside wood density data from 10,703 tree species to create a spatially 
explicit understanding of the global wood density distribution and its 
drivers. Our findings reveal a pronounced latitudinal gradient, with wood in 
tropical forests being up to 30% denser than that in boreal forests. In both 
angiosperms and gymnosperms, hydrothermal conditions represented by 
annual mean temperature and soil moisture emerged as the primary factors 
influencing the variation in wood density globally. This indicates similar 
environmental filters and evolutionary adaptations among distinct plant 
groups, underscoring the essential role of abiotic factors in determining 
wood density in forest ecosystems. Additionally, our study highlights the 
prominent role of disturbance, such as human modification and fire risk, 
in influencing wood density at more local scales. Factoring in the spatial 
variation of wood density notably changes the estimates of forest carbon 
stocks, leading to differences of up to 21% within biomes. Therefore, our 
research contributes to a deeper understanding of terrestrial biomass 
distribution and how environmental changes and disturbances impact 
forest ecosystems.

Wood density, defined as the dry mass per fresh volume of wood, is a 
fundamental functional trait which reflects the carbon investment of 
trees. It is closely linked to the life history and functional attributes 
of trees, including mechanical and physiological properties1–3. Wood 
density plays a crucial role in determining the competitive ability of tree 
species and shapes the composition, structure and function of forest 
ecosystems4–7. These dynamics affect the rate of tree mortality8 and 
wood decomposition1, which are central to how ecosystems respond 
to environmental changes. Furthermore, the strong link between wood 
density and biomass production1,9 makes it a vital factor in quantifying 

terrestrial carbon uptake and storage10–13. Over one-third of the total 
variation in aboveground biomass in tropical forests can be explained 
by spatial differences in wood density1,14. Yet, until now, we lack a spa-
tially continuous understanding of the variation in wood density in 
angiosperms and gymnosperms that would be necessary for repre-
senting this information in global forest carbon storage estimates.

In recent decades, empirical and theoretical studies have identi-
fied a wide range of factors that shape global variation in tree wood 
densities, including abiotic variation, biotic conditions, successional 
stages and human disturbances1,9,10,15–18. The evolution of wood density 
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colder regions, gymnosperms with low-density tracheids have a com-
petitive advantage over angiosperms. Tracheids of gymnosperm trees, 
being narrower than the cavitation threshold of 30 μm, are capable 
of functioning under water and freezing stress, which allows them 
to resume transpiration early in the spring24,25. Additionally, factors 
such as reduced canopy height or a lower prevalence of pathogens26 
in colder regions may reduce the need for high investment in wood 
construction27. As a result, the balance between the investment of 
trees in wood construction and their mechanical and physiological 
safety is expected to lead to notable geographic variations in wood 
density worldwide, affecting the structure, function and diversity  
of ecosystems.

is fundamentally shaped by the cost for wood construction and the 
need for biomechanical and hydraulic safety2,19,20. Denser wood offers 
enhanced mechanical support and greater resistance to drought 
conditions in the xylem but this advantage may be offset by the higher 
resource allocation required for wood production, resources that 
could otherwise support growth or reproduction21–23. Consequently, 
in ecosystems with higher vapour pressure deficits, such as warm and 
dry forests, trees are likely to develop denser wood to maintain xylem 
resistance against implosion and rupture21,23. In contrast, in warm and 
humid ecosystems with lower vapour pressure deficit, life history 
strategies may lean towards rapid growth, characterized by reduced 
carbon investment in wood, to maximize competitive ability21,22. In 
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Fig. 1 | Observed wood densities across the global forest inventory plots  
and within gymnosperms, angiosperms, forest types and biomes.   
a–c, Wood density distribution of gymnosperm (a) and angiosperm (c) species 
and influence of the proportion of angiosperms on CWD (b). The wood density 
distribution in gymnospermous species is narrower and has a smaller mean 
(~20% lower) than in angiospermous species. b, CWD increases with increasing 
proportion of angiospermous species in forest communities. We included 

8,249 taxa with information on angiosperms and gymnosperms comprising 
8,036 angiosperms and 213 gymnosperms, each with wood density information 
available at the species or genus level. d, Map of CWD observations for the 
~1.1 million plots from the GFBi database. e,f, Box plots of observed CWD at the 
forest type (e) or biome level (f). Box plot shows the median, interquartile range 
and whiskers for data spread, excluding outliers.
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Wood density also varies with the successional stage of forests28 
and is influenced by disturbances from both natural processes and 
human activities1,29–36, such as wildfires17,37–39. For example, in parts 
of the Amazon rainforest, wood density in secondary forests was 
found to be 33% lower compared to predisturbance conditions40,41. 
This reduction is attributed to the prevalence of early-successional 
species with less dense wood in disturbed tropical wet and moist 
forests1,14,17,33,37,40–45. Conversely, in tropical dry forests, wood density 
often increases postdisturbance as a result of the establishment of 
more conservative, slow-growing species which are resistant to envi-
ronmental stresses9,46–50. This implies that forest wood density responds 
unevenly to disturbances under different environmental conditions33,51. 
Yet, such context-dependency remains untested at a global scale. 
Understanding the global distribution of forest wood density and the 
various influencing factors, including climate and ecosystem distur-
bances, is vital for predicting and managing the responses of forest 
ecosystems to environmental shifts and for formulating effective 
strategies to mitigate and adapt to climate change impacts.

Here we paired ~1.1 million ground-sourced forest inventory plots 
(Fig. 1d) from the global forest biodiversity initiative (GFBi) database52 
with collated species-level wood density data1,53–60 to explore global 
variation in wood density among both angiosperm and gymnosperm 
trees. Using this large-scale observation approach, we tested compet-
ing hypotheses about the dominant factors driving wood density vari-
ation across global forests, including temperature, water availability, 
species composition and disturbances. This approach allowed us to 
test theoretical predictions of geographic variation and to create a 
global model of wood density (Fig. 1 and Methods). We calculated 
community-wide mean wood density (CWD) by weighting the wood 
density of each individual observed in a forest plot by its basal area. To 
explore responses to anthropogenic and natural disturbance gradients, 
we integrated our observations with global information on human 
disturbance61 and fire frequency62. Finally, we estimated the total live 
forest biomass by integrating our CWD map with spatially explicit data 
on live tree volume63,64, root mass fraction65 and biome-level biomass 
expansion factors (Supplementary Table 1).

Spatial and phylogenetic wood density variation
Gymnosperm trees, which are dominant in boreal and high elevation 
regions, had 20% lower wood density than angiosperms, with mean 
densities of 0.47 ± 0.07 g cm−3 and 0.59 ± 0.14 g cm−3, respectively. 
Accordingly, the CWDs of the global forests were positively related to 
the proportion of angiosperms within a plot (Fig. 1b).

Our global CWD data reveal strong differences in wood density 
across the major forest regions (‘Plot-level wood density metrics’ in 
Methods). Compared to boreal regions, which have a mean CWD of 
0.46 ± 0.05 g cm−3, the average CWDs in temperate (0.52 ± 0.09 g cm−3; 
mean ± s.d.), tropical (0.57 ± 0.10 g cm−3) and dryland (0.59 ± 0.09 
g cm−3) regions were 13%, 24% and 28% higher, respectively (Fig. 1e 
and Supplementary Table 2). At the biome level, tropical coniferous 
and Mediterranean forests had the densest wood, each with a wood 
density of 0.6 g cm−3. The standard deviations are ± 0.14 g cm−3 and 
± 0.09 g cm−3, respectively. The lowest wood densities were observed 
in boreal (0.46 ± 0.05 g cm−3) and temperate (0.49 ± 0.07 g cm−3) conif-
erous forests and flooded savanna (0.46 ± 0.08 g cm−3) regions, with 
densities 23% to 32% lower than in tropical coniferous and Mediter-
ranean forests (Fig. 1f and Supplementary Table 3). There was also 
considerable variation in CWD within biomes, which can rival the 
amount of variation across biomes.

To examine how phylogenetic position affects wood density vari-
ation across different species, we used a dated phylogeny on 4,298 
species in 189 families and 55 orders. We found a pronounced phylo-
genetic signal, supporting niche conservatism in wood density among 
these evolutionary distinct linages (Pagel’s lambda = 0.92, P < 0.01 and 
Blomberg’s K = 0.01, P < 0.01)66,67. Similarly, ref. 68 reported a lambda 

value of 0.77 using wood density information from 2,261 species world-
wide. This evolutionary signal persists at the order level69, indicat-
ing that higher wood densities in the angiosperm orders Myrtales 
(0.74 g cm−3), Fabales (0.69 g cm−3), Ericales (0.68 g cm−3) and Fagales 
(0.64 g cm−3) and lower wood densities in the Pinales (0.45 g cm−3), 
Cupressales (0.50 g cm−3), Araucariales (0.50 g cm−3), Malvales 
(0.50 g cm−3), Rosales (0.53 g cm−3) and Laurales (0.54 g cm−3) are phy-
logenetically conserved over evolutionary time (Fig. 2).

Geospatial mapping
To map the geographic variation of wood density based on its relation-
ship with environmental factors, we developed random-forest mod-
els using 62 global layers of climate, topography, soil, vegetation and 
human activity (Supplementary Table 4). These models were applied to 
all tree species (Fig. 3a), as well as separately to angiosperms (Fig. 3b) 
and gymnosperms (Fig. 3c). We observed spatial autocorrelation in 
model residuals70 up to a distance of 50 km (Supplementary Fig. 1). To 
mitigate the effect of spatial autocorrelation and ensure the reliability 
of our model predictions, we used a spatial bootstrapping procedure: 
we created 200 bootstrapped training subsets, each with data points 
at least 50 km apart (Methods). We then built individual models for 
each subset. Our final model, with 62 predictors, achieved a global 
average R2 of 0.53 (tenfold cross-validation; Supplementary Fig. 2). 
This model was used to map global wood density trends, revealing 
lower densities at higher latitudes and elevations (Fig. 3). For example, 
forests in Canada, Siberia, the Alps and the Qinghai-Tibetan plateau 
showed low wood density (<0.5 g cm−3), whereas high-density areas 
(>0.6 g cm−3) included warm, arid regions like the African Savanna and 
Australian open forests.

To assess the predictive uncertainty of our models, we calculated 
the bootstrapped coefficients of variation (standard deviation divided 
by mean) for CWD values. These results showed high confidence in pre-
dictions across all models, with coefficients of variation <5% for all pixels 
in existing forest areas (Supplementary Fig. 3). Furthermore, we dis-
tinguished between model interpolation (predictions within the envi-
ronmental range of the training data) and extrapolation (predictions 
outside this range) using a principal component analysis (PCA)-based 
approach. Our analysis indicated that >95% of the forested areas fell 
within the environmental range of our training data in >95% of cases. 
Most of the outliers were located in African savanna regions, probably 
due to lower sampling density in these regions (Supplementary Fig. 4).

Drivers of global wood density variation
To assess the relative importance of climatic, soil, vegetation and dis-
turbance factors in driving global CWD, we used partial regression and 
random-forest modelling (Fig. 4). We selected nine variables includ-
ing environmental factors and functional traits based on previous 
research1, including mean annual temperature, soil moisture, soil 
carbon-to-nitrogen (C:N) ratio (indicating nitrogen availability71), leaf 
area index (LAI; indicating growth and canopy light competition72), tree 
diversity (species richness), forest age, diameter at breast height (DBH), 
human modification and fire frequency. Differences in the relative 
occurrence of angiosperms versus gymnosperms were accounted for 
by including the plot-level angiosperm ratio as an additional predictor 
(Fig. 4a,b). Overall, this analysis revealed that mean annual temperature 
is the most influential factor on CWD. Specifically, a 1 °C increase in 
temperature correlates with an average 0.5% increase in wood density 
(Supplementary Table 5). This trend was consistent in separate analyses 
of angiosperm and gymnosperm communities (Fig. 4c–f) and across 
forest types and biomes (Fig. 4d,f). The effect of water availability, 
nutrient resources and temperature on CWD is in alignment with the 
study conducted by ref. 73, which used soil water-holding capacity, soil 
basicity index and elevation as proxies for these factors.

The relationships between other tested variables and CWD varied 
considerably across forest types. High soil moisture correlated with 
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low CWD in tropical and temperate forests but led to higher CWD in 
boreal and dryland forests (Supplementary Fig. 5). In tropical regions, 
LAI was positively correlated with CWD, whereas a negative correla-
tion was observed in temperate, boreal and dryland regions. The soil 
C:N ratio generally correlated with slight decreases in CWD but an 
inverse relationship was observed in boreal forests. Forest age, while 
less influential on a global scale, displayed negative effects across all 
forest types (Supplementary Fig. 5). This pattern reflects the consistent 
impacts of forest age in communities dominated by angiosperms and 
gymnosperms (Fig. 4). Plot-level mean DBH, which may also reflect 
forest age to some extent, had a minor impact on wood density glob-
ally (Fig. 4a).

The impact of major disturbances, specifically human activity and 
fire frequency, on CWD was highly context-dependent. Our analysis 
across all plots showed human modification as the third most impor-
tant factor affecting CWD (Fig. 4a) but its importance diminished in 
gymnosperm-only communities (Fig. 4c,e). This suggests that human 
activities indirectly influence CWD, primarily by altering the propor-
tion of coniferous and broadleaved trees. Fire frequency was the least 
impactful factor among the nine variables (Fig. 4a). The limited global 
effect of fires is probably due to their infrequent occurrence in for-
est worldwide, with 96% of global forests not experiencing fires in 
the past 20 years62. However, the long-term impacts of fires on forest 
composition may be underestimated in our analysis, as their influence 
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can extend beyond the 20 year period we considered. Additionally, 
the intensity of fire, a crucial aspect of fire disturbance74, was not cap-
tured in our frequency data, probably explaining why we did not find 
a stronger effect of fire frequency74.

To further explore how environmental variables modulate the 
relationships between disturbance processes and CWD, we conducted 
recursive partitioning analyses. These analyses show that in cold 
regions (<10 °C), CWD increases with human disturbance, whereas 
in warmer areas, it decreases (Supplementary Fig. 6a). Similarly, the 
effect of fire frequency on CWD also varied with temperature: it slightly 
reduces CWD in colder climates but increases it in warmer ones (Sup-
plementary Fig. 6b). The relationships between disturbances and CWD 

were also dependent on the proportion of angiosperms versus gym-
nosperms in a forest. These findings underscore the context-specific 
nature of the effects of human disturbance and fire frequency on wood 
density, influenced by factors such as temperature and forest taxo-
nomic composition.

Wood density and global biomass estimates
To assess the impact of wood density variations on global forest biomass 
estimates, we integrated our wood density map with the latest global 
maps of live tree volume63, root mass fraction65 and biomass expansion 
factors75 (Fig. 5a and Supplementary Table 1). This analysis revealed a 
total tree biomass of 374 GtC (Supplementary Fig. 7), of which 200 GtC 
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Fig. 3 | Global maps of wood density.  a,c,e, Wood density maps for all species 
(a), angiosperms-only (c) and gymnosperms-only (e). a, The community-level 
wood density map was derived from an ensemble approach, averaging the 
global predictions from the 200 best random-forest models. c,e, Angiosperm-
only (c) and gymnosperm-only (e) wood density maps were derived from 
ensemble averaging of the global predictions from the 100 best random-forest 
models, respectively. b,d,f, Corresponding latitudinal trends in wood density 

aggregated for each 0.1 arc degree latitude: all species (b), angiosperms (d) and 
gymnosperms (f). Error ranges represent 1 s.d. either side of the mean. Maps 
are projected at 30 arcsec (~1 km2) resolution. Non-forested areas are displayed 
in grey. In the wood density maps for angiosperms (c) and gymnosperms (e), 
we correspondingly excluded pixels where angiosperms and gymnosperms 
constituted <5% of the entire community.
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(53.3%) is stored in tree stems, 93 GtC (24.9%) in branches, foliage and 
other aboveground living parts and 81 GtC (21.7%) belowground as 
roots. This global estimate aligns well with previous estimates based 
on remote sensing, ground-sourced models or harmonized ensem-
ble approaches63,76,77, estimating total tree biomass in the range of 
354–445 GtC (Supplementary Fig. 7). However, our wood density-based 
biomass estimations present spatial deviations compared to previous 
studies, showing an agreement in spatial variation ranging from 45% to 
93% with earlier research13,63,76–78 (Supplementary Fig. 7a). Our estimates 

were most closely aligned (93%) with those from GlobBiomass63, as both 
used the same live tree volume data (Supplementary Fig. 7c).

To isolate the influence of wood density variation on global tree 
biomass distribution, we compared our wood density-informed 
biomass model with a model using a constant wood density value of 
0.53 g cm−3 (the global average). We found that the constant wood 
density model estimated the global biomass to be about 4% lower 
than the spatially explicit wood density model (359 GtC compared 
to 374 GtC; Fig. 5b). However, significant differences emerged within 
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c and e represents the relative contribution of each variable to CWD variation, 
whereby we averaged the values of 100 bootstrapped random-forest models. 
Bootstrapped partial regression coefficients for each variable (b,d,f) were 
calculated by averaging the partial regression coefficients from 100 multivariate 
linear models. All variables were standardized to allow for direct effect size 
comparison. In addition, we quantified the absolute effects of these covariates 
using partial regression analysis, as detailed in Supplementary Table 5.
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various biomes (Fig. 5b), where the constant density model underes-
timated carbon stocks in specific biomes like tropical moist, tropical 
dry, tropical savanna and Mediterranean forests by, on average, 12%, 
17%, 17% and 21%, respectively, and overestimated them in temperate 
coniferous and boreal forests by 10% and 13%.

These findings underscore the critical role of spatially explicit 
wood density estimates in accurately predicting forest carbon stocks, 

taking into account the variations across different regions and forest 
types. Our detailed wood density map therefore allows for a more accu-
rate representation of the geographic variation in tree carbon storage.

Discussion
Owing to high heterogeneity in wood density across forest types79,80 
and along successional stages, modelling the spatial variation in forest 
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Fig. 5 | Comparison of global living tree biomass distribution using spatially 
explicit wood density data versus a universal wood density value. a, The 
global distribution of living tree biomass (in tonnes per hectare), derived by 
integrating our wood density map with spatially explicit data on living tree 
volume, root mass fraction and biomass expansion factors. b, Percentage 
difference in estimated living tree biomass when comparing results derived using 
the global wood density map (from a) with estimates using a single, universal 

wood density value. The difference is calculated as the percentage change by 
subtracting the spatially explicit estimate from the universal estimate and then 
dividing by the spatially explicit estimate. Blue areas show regions where the 
universal estimate is higher, and red/orange areas indicate where the spatial 
estimate is higher. c, Percentage difference between the two biomass estimation 
methods across biomes. Box plots show the median, interquartile range and 
whiskers for data spread, excluding outliers.

http://www.nature.com/natecolevol


Nature Ecology & Evolution | Volume 8 | December 2024 | 2195–2212 2202

Article https://doi.org/10.1038/s41559-024-02564-9

functional traits has remained a major research challenge16,79,80. Yet, 
recent advancements in big data and remote sensing tools have begun 
to provide detailed high-resolution information on environmental, 
human disturbance and vegetation characteristics. In this study, we 
integrated these features to model global variations in wood density 
and identify the factors driving this variation.

Our analysis identifies temperature as the dominant driver of 
global wood density variation, with a more than three times greater 
effect than any other variable (Fig. 4a), highlighting temperature as 
a selective pressure and filter of global wood density2. Other factors, 
such as soil moisture, also affect wood densities but are more notice-
able at regional scales. In addition, mean annual temperature is highly 
correlated with evapotranspiration and potential evapotranspiration 
(Pearson’s correlations around 0.9). Warmer climates thus often coin-
cide with significant water stress. These global-scale trends support 
the hypothesis that the need for hydraulic safety drives high wood 
densities in stressful environments2,19,20.

The observed positive correlation between community-level wood 
density and temperature2,10 leads to distinct latitudinal and elevational 
trends (Fig. 3a,b). While changes in gymnosperm versus angiosperm 
species composition amplified these trends, the environmental factors 
driving global wood density variation were remarkably similar among 
these distantly related groups (Fig. 3c,e). Temperature and water avail-
ability had a consistent effect on wood density across angiosperms 
and gymnosperms (Fig. 4c,e), indicating similar wood anatomical 
adaptations to environmental factors.

Our findings on the drivers of global forest wood density align with 
ref. 81, which highlighted the importance of leaf habit, temperature 
seasonality, cloud cover and annual precipitation. This study81 calcu-
lated pixel-level average wood density by averaging individual tree-level 
measurements within pixels. In contrast, we integrated forest inven-
tory data to represent CWD. Overall, our wood density estimates show 
slightly greater variation across the globe. We estimate higher densities 
than ref. 81 in warm tropical regions and lower densities in cold boreal 
regions. At the biome level, our predictions are higher in denser wood 
biomes and lower in regions with low wood density. Despite these dif-
ferences, both studies show similar patterns of wood density across 
global forests, with higher wood densities at lower latitudes and lower 
densities at higher latitudes. The overall R2 between the two models is 
0.58 (Supplementary Fig. 9). This consistency in global wood density 
patterns and climate responses is crucial for enhancing our confidence 
in predicting the impact of climate change on global forest biomass 
distribution and shifts in forest composition.

The importance of balancing hydraulic safety and growth effi-
ciency has been well-documented in tropical dry forests82. Indeed, our 
model predicts the highest wood densities for hot environments with 
low water availability, such as the dryland regions of South America, 
Africa and Australia. Conversely, in tropical moist forests, wood density 
correlates more strongly with growth and mortality rates than with 
resistance to cavitation. This is evident in pioneer trees, which have low 
wood density and high growth rates, whereas non-pioneer rainforest 
trees tend to have higher wood density, largely due to their longevity 
and competitive advantage, rather than drought stress80. Overall, wood 
density serves as a multifaceted proxy for environmental interactions 
and responses, as demonstrated by the divergent trends in community 
wood density observed in dry versus wet tropical forests9.

The negative correlation between soil moisture and wood density 
lends support to observations in previous local-scale analyses1,2,83,84, 
a trend that can largely be explained by the high abundance of 
slow-growing species in dry environments9,50,85–87. These species typi-
cally adopt a conservative resource-uptake strategy and exhibit high 
water-use efficiency. Previous studies have indicated variability in the 
relationship between wood density and water availability, with differ-
ences in the direction and magnitude depending on the research scale 
and species sampled2,84,88. Our global-scale sampling now shows that 

dry forests have wood densities up to 31% higher than those found 
in more humid regions89 (Figs. 1e and 3). Nevertheless, we also find 
regional differences in the effect of soil moisture (Supplementary 
Fig. 5). For example, a positive relationship between wood density and 
water availability was found within boreal forests, while the opposite 
was true for tropical and temperate regions. Such variation in the effect 
of soil moisture may be driven by variation in functional properties 
of species. For instance, water availability tends to be less limiting in 
broadleaved trees than in conifers because angiosperm vessels can be 
more efficient in water conduction than tracheids24.

Although biodiversity (species richness), forest age, DBH, LAI 
and soil C:N ratio are important factors influencing local variation 
in wood density, these effects were overwhelmed by the impacts of 
temperature, soil moisture and angiosperm ratio at a global scale. 
This may suggest that biotic interactions play a relatively smaller role 
in shaping broad-scale variation in wood density, relative to abiotic 
environmental factors. Within gymnosperms, we observed a negative 
correlation between C:N ratio and wood density. This might reflect an 
increased investment in xylem safety in nutrient-rich environments, 
where the construction of tissues (carbon acquisition) is less of a limit-
ing factor90. Forest age had opposite effects on wood density variation 
in communities dominated by angiosperms and gymnosperms. This 
indicates divergent trajectories in wood density development during 
the maturation of these two types of forests (Fig. 4b,c).

The relationship between wood density and disturbance was highly 
context-dependent, with regional contingencies being dependent on 
the environmental background conditions of the region9,17,33,37,41,45–47,50. 
While previous studies have emphasized the role of water availability51, 
our recursive partitioning analyses suggest mean annual temperature as 
the main driver shaping the relationship between wood density and for-
est disturbances, such as human disturbance and fire frequency (Sup-
plementary Fig. 6). This might be driven by regional differences in the 
relative trade-off between acquisitive and conservative resource-uptake 
strategies9,50,85–87. In tropical wet forests, seral communities on disturbed 
forest margins are often dominated by short-lived, light-demanding 
species which tend to have low wood densities41,91, while in tropical dry 
forests, seral communities often consist of drought-resistant species 
with dense wood91–93. Controlled experiments and long-term field obser-
vations will be needed to further disentangle the context-dependent 
responses of wood density to disturbances.

Our analysis highlights the strong role of species composition in 
shaping wood density variation1,2,84,94–96. Owing to the strong phylo-
genetic signal in wood density, related species display similar wood 
densities, even when growing under different environmental condi-
tions84. For example, gymnosperm tree species have, on average, 20% 
lower wood densities than angiosperm species (Fig. 2). The anatomical 
differences between angiosperms and gymnosperms play a crucial 
role in this disparity. Gymnosperms are characterized by thinner cell 
walls and smaller pits, decreasing the risk of xylem cavitation at the 
expense of hydraulic conductivity. In humid, hydraulically less stressful 
environments, angiosperm trees with higher hydraulic conductivity 
might thus tend to outcompete gymnosperm trees2. This may add to 
the observed decreases in wood density from low to high latitudes (Fig. 
3a) or from tropical to boreal forests (Fig. 3b)1,2. Interestingly, we find 
consistent biogeographical trends in wood density for gymnosperms 
and angiosperms, with temperature being the key regulator. This is 
particularly evident in the pronounced increase in wood density from 
boreal to tropical forests within gymnosperm species (Fig. 3f). This 
trend illustrates the strong selective pressures and filters of tempera-
ture on tree wood density patterns globally (Fig. 4a,b).

Conclusion
The integration of global ground-sourced forest inventory data with 
wood density measurements allowed us to quantitatively assess the 
environmental factors driving the wood density distribution on a global 
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scale. This integration has resulted in a high-resolution global model, 
providing critical information on the structure and biomass distri-
bution of the forests of the world. Our analysis identifies taxonomic 
composition—particularly the distinction between angiosperms and 
gymnosperms—as the primary biotic driver influencing global wood 
density variations. Temperature, in conjunction with water availability, 
emerges as the dominant abiotic factor that controls the global varia-
tion in wood density. This pattern is probably attributable to the role 
of denser wood in enhancing competitive ability, hydraulic efficiency 
and transpiration efficiency in warmer environments. We also observed 
that community-level wood density responses to disturbances vary 
across forest types, biomes and environmental conditions. By inte-
grating our wood density map with other key metrics such as live tree 
volume63, biomass expansion factors and root mass fractions65, we 
could benchmark existing forest biomass stocks, estimating a total 
living biomass of 374 GtC. Our research also showed that biomass 
estimates within biomes could vary by as much as 21%, depending on 
whether the variability of wood density was considered or if wood den-
sity was assumed to be uniform worldwide. Our findings contribute to 
an improved understanding of the structure and biomass distribution 
in global forests and highlight the effects of human and environmental 
disturbances on global forest communities and functional traits.

Methods
Data sources
Wood density is commonly measured as the ratio of the oven-dry 
mass of a wood sample to its green volume. Most wood density data 
stem from wood core samples59, while some are derived from fresh 
volumes and dry weights of whole tree components58,60. We compiled 
wood density measurements of individual trees or aggregated to the 
species level from several databases or publications. The majority 
of observations came from the Global Wood Density Database by  
refs. 1,57, encompassing a total of 16,468 records in 8,412 species and 
the TRY database59 with a total of 46,668 records for 7,514 species. Addi-
tionally, 1,117 wood density records in 937 species came from ref. 53,  
4,022 records in 872 tree species from ref. 55, 618 records in 615 species 
from ref. 56, 624 records in 250 species from ref. 60, 3,529 records in 
179 tree species from ref. 54, 3,092 records in 58 species from ref. 58 
and 1,234 records in 1,061 species from published research articles by 
searching for ‘wood density’ in Google Scholar (publications listed in 
Supplementary Data 1). After standardizing the taxonomic names using 
the Taxonomic Name Resolution Service97 (R package TNRS v.0.1.0) and 
removing synonyms, we obtained 77,372 wood density observations 
across 10,703 species and 2,026 genera (data are available at GitHub 
https://github.com/LidongMo/GlobalWoodDensityProject).

To test the compatibility in wood density estimates among data-
bases, we conducted an analysis to quantify their similarity. By con-
structing a linear regression model based on common species pairs, 
we calculated an R2 value of 0.78, indicating high consistency among 
all nine data sources and minimal bias introduced by different wood 
density determination methods (Supplementary Figs. 8 and 10).

Phylogenetic and trait analysis
To test whether wood density is phylogenetically conserved, we com-
puted common phylogenetic metrics as well as random-effects models 
including taxonomic information. We built a phylogenetic tree using 
the R package V.PhyloMaker98, with a total of 4,298 species (189 families 
from 55 orders) with wood density information matching the species in 
the phylogenetic database. To test for phylogenetic signal in wood den-
sity, we computed Pagel’s lambda and Blomberg’s K, using the phylosig 
function in the R package phytools99. To further test for trait conserva-
tism at the order level, we used the ph_aot function from the R package 
phylocomr100. Order-level wood density values were calculated by aver-
aging across all descendent terminal taxa69 and comparing the means 
with 999 trait value randomizations across the tips of the full phylogeny 

to obtain significance estimates101. Only orders for which we had data 
on at least 50 species were tested. We further quantified the extent of 
within-species and within-genus variation in wood density by running 
a random-effects model on all 77,372 observations, including species 
and genus as random effects and wood density as response variable. The 
model showed that ~81% of the individual variation in wood density is 
explained by taxonomic information on family, genus and species levels, 
with 24% of the variation explained by family information, 30% by genus 
information and an additional 27% explained by species information.

Generating species- and genus-level wood density information
To quantify wood density variation across the world’s forests, we 
assigned species-level wood density values to individual tree obser-
vations from the GFBi. The GFBi database consists of 1,188,771 unique 
forest census plots, containing data for all tree individuals with a 
DBH > 5 cm. Each plot contains information on geospatial coordi-
nates (latitude and longitude in decimal degrees), individual-level 
species binomial name and DBH, plot size (median plot size = 25 m2) 
and measurement year. For remeasured plots, we kept only the latest 
observation year for our analysis. Across all plots, the mean observa-
tion year was 2003. To assess the impact of the temporal changes of 
forest community on the community-level wood density, we applied 
a random-effects model to plots with time-series information. The 
model, including wood density as dependent variables and plot and 
year information as random effects, showed that variance in wood 
density was predominantly (97.9%) attributable to differences across 
plots, with only 0.2% due to variations across years.

We then used the binomial names to assign species-level wood den-
sity information to the individuals in the GFBi database. As for the wood 
density information, species binomials in the GFBi database were stand-
ardized using the TNRS97. For species with more than one wood density 
record, we used the average of all available records. If no wood density 
information was available at the species level or if the GFBi individual was 
only identified to the genus level, mean genus-level wood density values 
were used instead. Because of the strong phylogenetic signal in wood 
density values, these genus-level estimates introduce only little error 
compared to species-level wood densities2,10,96,102. In total, species-level 
wood density data could be matched to 4,428 species included in the GFBi 
database, while genus-level data were matched to 1,192 GFBi genera. We 
excluded plots representing 0.4% of the total, where <75% of the individu-
als had wood density information at either the species or genus level. 
Consequently, 1,183,070 plots were included in our geospatial analysis.

According to the GFBi inventory plots, the global average tree 
diameters of angiosperms and gymnosperms were similar, at 21.9 
and 21.8 cm, respectively, with 95% quantile ranges of 5.6–56.5 cm for 
angiosperms and 6.4–56.4 cm for gymnosperms.

Plot-level wood density metrics
We allocated species-level wood density to each individual tree in the 
GFBi plots and calculated the CWD. This approach is supported by 
the phylogenetic conservatism of wood density (Fig. 2) and the small 
impact of individual-level wood density variations on community-level 
estimates73. The average community-wide wood density for each plot 
CWD was calculated as the wood density of all tree individuals weighted 
by tree basal area:

CWD =
∑n

i=1(WDtree × Btree)
∑n

i=1Btree
(1)

where WDtree is the wood density of each tree and Btree is the basal area 
of each tree.

The spatial modelling of community-wide wood density proper-
ties was performed at 30 arcsec (~1 km2) resolution and we therefore 
aggregated CWD values within each 30 arcsec pixel by calculating the 
mean, resulting in 506,630 pixel-level observations for the modelling.
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To quantify CWD within biomes and forest types, we used all obser-
vations in each biome or forest type. Biome and forest types were 
classified using the WWF Biome map103. Forests were divided into 
the four broad categories (tropical, temperate, boreal and dryland), 
with tropical regions including six biomes (tropical and subtropical 
moist broadleaf forest, tropical and subtropical dry broadleaf forest, 
tropical and subtropical coniferous forest, tropical and subtropical 
grassland, savanna and shrubland, flooded grassland and savanna 
and mangroves), temperate regions including four biomes (temper-
ate broadleaf and mixed forest, conifer forest, temperate grassland, 
savanna and shrubland and montane grassland and shrubland), boreal 
regions including two biomes (boreal forest/taiga and tundra) and 
dryland including two biomes (Mediterranean forest, woodland and 
scrub and desert and xeric shrubland).

Environmental and human disturbance covariates
We used 62 covariates, representing information on climate, topog-
raphy, soil, vegetation characteristics, fire frequency and human 
disturbances, to test for the effects of environment and anthropo-
genic disturbance on the global variation in CWD and create spatially 
explicit models which allow us to interpolate CWD across the globe. 
All covariates were available as global layers at 30 arcsec resolution: 
layers for 19 bioclimatic variables came from the CHELSA open cli-
mate database (www.chelsa-climate.org)104; topographic information 
(elevation, roughness, slope, profile curvature, northness, eastness 
and topographic position index) from the EarthEnv database (www.
earthenv.org/topography)105; cloud cover properties (annual mean, 
interannual standard deviation and intra-annual standard deviation) 
from the EarthEnv (www.earthenv.org/cloud) database and ref. 106; 
depth to the water table from ref. 107; the annual mean of solar radia-
tion, wind speed and vapour pressure from the WorldClim database 
(v.2)108; absolute depth to bedrock and soil texture (clay content, coarse 
fragments, sand content, silt content and soil pH), averaged for soil 
depths from 0 to 100 cm below surface, from the soil grids database109; 
soil moisture was down-scaled from 10 km resolution maps sourced 
from GLDAS2.0 (ref. 110), ERA5 (ref. 111) and MERRA2 (ref. 112), soil 
nutrient information (cation exchange, C:N ratio and nitrogen) from 
the WISE30sec database71 and soil grids109; normalized difference 
vegetation index, enhanced vegetation index (upscaled from 250 m 
resolution), FPAR, LAI (upscaled from 500 m resolution) and annual net 
primary productivity from MODIS data113–115; aridity index and potential 
evapotranspiration from refs. 116,117; and current forest tree cover, tree 
density, canopy height and forest age from refs. 118–121, respectively.

To represent human and natural disturbances in our model, we 
used eight global layers that directly reflect anthropogenic distur-
bances: cultivated and managed vegetation and urban built-up122, 
agricultural land use (cropland, grazing, pasture and rangeland trans-
formed to pixel-level percentages)123,124, human modification, reflecting 
the intensity of human activity61 and natural disturbances of forests: 
fire frequency62. Human modification is the most comprehensive and 
representative human activity variable integrating five major human 
disturbance categories: human settlement, agriculture, transporta-
tion, mining and energy production and electrical infrastructure61. The 
map of fire frequency was generated from yearly observations of fire 
occurrence62, by calculating the proportion of years with fire in each 
30 arc degree resolution pixel. All covariates were extracted via Google 
Earth Engine125. The eight disturbance variables were uniformly scaled 
to represent a continuous gradient of human activity or fire frequency, 
whereby values of 0 indicate no disturbances in the respective pixel 
and values of 1 indicate maximum disturbance.

Representation of training data
To evaluate the extent of interpolation versus extrapolation in our mod-
els, that is, how well our training data represents the full multivariate 
environmental covariate space, we performed a PCA-based approach 

following ref. 126. We projected the covariates composite into the same 
space using the centring values, scaling values and eigenvectors from 
the PCA of the training data. Then, we created convex hulls for each of 
the bivariate combinations from the top principal components (which 
collectively covered >90% of the sample space variation). We used 22 
principal components with 231 combinations for all covariates. Using 
the coordinates of these convex hulls, we classified whether each pixel 
falls within or outside each of these convex hulls. This analysis revealed 
that 95.2% of land pixels excluding Antarctica are covering at least 95% 
of the environmental conditions present in our training data locations 
(Supplementary Fig. 4).

Geospatial modelling of global forest wood density properties
To train spatially explicit CWD models across the world’s forests, we 
ran a series of random-forest machine learning models. The models 
included 62 predictor variables representing climate, soil, topography, 
vegetation, fire frequency and human disturbances. Parameter tuning 
for each model was performed through the grid search function of the 
H2O R package127 to iteratively explore the results of a suite of machine 
learning models trained on the 62 covariates.

To test for spatial autocorrelation of model residuals, we trained 
a generalized additive model (GAM) using the same 62 covariates and 
then extracted Moran’s I values of the GAM residuals at spatial scales 
of 0–1,000 km. This analysis revealed positive spatial autocorrelation 
up to a distance of 50 km (Supplementary Fig. 1). To minimize the influ-
ence of spatial autocorrelation in our random-forest model, we thus 
applied a spatially buffer-zone-based bootstrapping procedure, sub-
sampling the training data during the grid search procedure to make 
sure the distance between any two data plots is always >50 km. This 
buffer-zone-based bootstrap subsampling was applied 200 times and, 
for each subsample (~2,000 observations), we ran 48 random discrete 
parameter sets covering the total grid space of 240 possible parameter 
combinations to perform the grid search. Model performance of each 
model was assessed using the coefficient of determination128 based 
on tenfold cross-validation and, for each subsample, we retained the 
model with the highest R2.

To create the final community wood density maps, we used an 
ensemble approach, whereby we averaged the global predictions from 
the 200 best random-forest models based on our bootstrapping proce-
dure. By taking the average prediction across multiple models, ensem-
ble methods minimize the influence of any single prediction, thereby 
stabilizing variation and minimizing bias that can otherwise arise from 
extrapolation or in-fit overfitting when using a single machine learning 
model129. Moreover, by quantifying the variation across these ensem-
ble predictions, we can identify areas that have low consensus across 
multiple models and which thus have higher uncertainty than would 
otherwise be predicted by any single model. To implement this ensem-
ble approach, the mean predicted value across the 200 best-fitting 
models was used as the final model prediction for each pixel and the 
variation coefficient across these 200 models was used to characterize 
intermodel consistency (paragraph on Supplementary Fig. 3).

Model consistency and uncertainty
Our ensemble approach allowed us to obtain spatially explicit esti-
mates of the uncertainty associated with our random-forest models 
of global community-wide wood density. This was done by computing 
the pixel-wise variation coefficient (standard deviation divided by 
the mean) of the 200 bootstrapped models126 (Supplementary Fig. 3), 
whereby the coefficient of variation represents the uncertainty of our 
wood density estimates.

Geographic variation and drivers of community wood density 
properties
Variable selection. To explore the effect magnitude and direction of 
the main environmental drivers of CWD across the globe, we included 
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variables of high ecological importance which have shown significant 
relationships with wood density in previous studies9,17,84,89,130 and per-
formed hierarchical cluster analysis to remove highly similar variables. 
We then tested for multicollinearity among the retained covariates, 
by calculating variance inflation factors (VIFs) using the R package 
HH 3.1-52 (ref. 131). All VIFs of these selected variables were <5, indicat-
ing sufficient independence among predictor variables. Mean annual 
temperature, soil moisture, DBH, species richness, soil C:N ratio, forest 
age, canopy height, LAI, human modification and fire frequency were 
selected for the final analysis. In addition, we included two biotic vari-
ables: angiosperm ratio and biodiversity. Specifically, the angiosperm 
ratio represents the proportion of angiosperm individuals within the 
plot, which we used to account for differences in CWD between angio-
sperms and gymnosperms (Fig. 1b). Biodiversity is represented by rich-
ness, calculated by scaling the observed number of species to the plot 
size. We excluded precipitation from our analysis due to its strong col-
linearity with plant water availability on a global scale and the previously 
established weak correlation between wood density and precipitation1.

Variable importance. To test the variable importance of the selected 
covariates, we ran linear multivariate regression and random-forest 
models. To control for the potential effects of spatial autocorrelation, 
we ran a bootstrapping procedure, subsampling the full dataset 100 
times, with each subsample randomly selecting one observation per 
0.25 arc degree grid. For each subsample, we quantified the variable 
importance of the nine selected variables based on mean decrease in 
accuracy values from random-forest models using the H2O R package127. 
The average values across the 100 submodels were then used to evaluate 
the results (Fig. 4). Similarly, for each subsample, we fitted a multivari-
ate regression model for the ten selected variables and calculated the 
corresponding regression coefficients, whereby both response and 
predictor variables were standardized to allow for direct effect size 
comparison. We then aggregated the results by calculating the mean 
regression coefficient and standard deviation across all submodels 
(Fig. 4). Furthermore, we ran the same models including only data for 
angiosperms or gymnosperms (Fig. 4c–f). We also tested the effects of 
the variables on CWD within forest types using partial linear regression 
models (Supplementary Fig. 5). As for the global analyses, we controlled 
for the effect of spatial autocorrelation by running a bootstrapping pro-
cedure, subsampling the full dataset 100 times, with each subsample 
randomly selecting one observation per 0.25 arc degree grid.

Context-dependency of human disturbance and fire 
frequency effects
To explore the effects of human disturbances and fire frequency on 
CWD under different environmental conditions, we ran recursive 
partitioning analyses using the packages partykit132 and ggparty133. We 
used a decision tree algorithm to explore the context-dependency of 
the slope and intercept of a univariate linear model for the effect of 
disturbance variables on community wood density properties, whereby 
the top four covariates based on a random-forest model (Fig. 4a) were 
evaluated as potential splitting points (Supplementary Fig. 6). The 
minimum node size (minimum number of observations contained in 
each terminal node) was set to 500 (~3% of the data) and the significance 
level was set to 0.01.

Estimation of the living biomass in global forest
To generate a global map of aboveground tree biomass, we combined 
our wood density map with an existing map of live tree volume63. The 
live tree volume represents the total volume of all living trees with a 
DBH >10 cm, measured over bark from ground or stump height to a 
top stem diameter of 0 cm (ref. 63).

TGB =
n
∑
i=1
CWDmean × GSV × BEFs × ( 1

1 − RMF ) (2)

Total living tree biomass (TGB) was then calculated by multiply-
ing our CWD estimates with live tree volume (GSV)63. To match the 
resolution of our wood density map, the GSV map was aggregated from 
~100 m to ~1 km resolution. GSV represents the volume of all living trees 
with a diameter greater than 10 cm at breast height, measured from 
the ground or stump height to a top stem diameter of 0 cm, including 
the bark. We then used biomass expansion factors (BEFs) from the 
literature75,134 (Supplementary Table 1) to convert stem biomass into 
aboveground tree biomass, representing the biomass of tree stems, 
branches, foliage, flowers and seeds63. Root mass fraction (RMF) is the 
relative proportion of plant biomass distributed to roots65.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Data are available via Zenodo at https://doi.org/10.5281/zenodo. 
13331493 (ref. 135).

Code availability
Code is available via GitHub at https://github.com/LidongMo/
GlobalWoodDensityProject.

References
1. Chave, J. et al. Towards a worldwide wood economics spectrum. 

Ecol. Lett. 12, 351–366 (2009).
2. Swenson, N. G. & Enquist, B. J. Ecological and evolutionary 

determinants of a key plant functional trait: wood density and its 
community-wide variation across latitude and elevation.  
Am. J. Bot. 94, 451–459 (2007).

3. Kraft, N. J. B., Metz, M. R., Condit, R. S. & Chave, J. The relationship 
between wood density and mortality in a global tropical forest 
data set. New Phytol. 188, 1124–1136 (2010).

4. Pérez-Ramos, I. M., Matías, L., Gómez-Aparicio, L. & Godoy, Ó. 
Functional traits and phenotypic plasticity modulate species 
coexistence across contrasting climatic conditions.  
Nat. Commun. 10, 2555 (2019).

5. Reich, P. B. et al. The evolution of plant functional variation: traits, 
spectra and strategies. Int. J. Plant Sci. 164, S143–S164 (2003).

6. Westoby, M. & Wright, I. J. Land-plant ecology on the basis of 
functional traits. Trends Ecol. Evol. 21, 261–268 (2006).

7. Bouchard, E. et al. Global patterns and environmental drivers of 
forest functional composition. Glob. Ecol. Biogeogr. 33, 303–324 
(2024).

8. Reis, S. M. et al. Climate and crown damage drive tree mortality  
in southern Amazonian edge forests. J. Ecol. 110, 876–888  
(2022).

9. Poorter, L. et al. Wet and dry tropical forests show opposite 
successional pathways in wood density but converge over time. 
Nat. Ecol. Evol. 3, 928–934 (2019).

10. Chave, J. et al. Regional and phylogenetic variation of wood 
density across 2456 neotropical tree species. Ecol. Appl. 16, 
2356–2367 (2006).

11. Saatchi, S. S. et al. Benchmark map of forest carbon stocks in 
tropical regions across three continents. Proc. Natl Acad. Sci. USA 
108, 9899–9904 (2011).

12. Thurner, M. et al. Carbon stock and density of northern boreal and 
temperate forests. Glob. Ecol. Biogeogr. 23, 297–310 (2014).

13. Santoro, M. et al. The global forest above-ground biomass pool 
for 2010 estimated from high-resolution satellite observations. 
Earth Syst. Sci. Data 13, 3927–3950 (2021).

14. Baker, T. R. et al. Variation in wood density determines spatial 
patterns inAmazonian forest biomass. Glob. Change Biol. 10, 
545–562 (2004).

http://www.nature.com/natecolevol
https://doi.org/10.5281/zenodo.13331493
https://doi.org/10.5281/zenodo.13331493
https://github.com/LidongMo/GlobalWoodDensityProject
https://github.com/LidongMo/GlobalWoodDensityProject


Nature Ecology & Evolution | Volume 8 | December 2024 | 2195–2212 2206

Article https://doi.org/10.1038/s41559-024-02564-9

15. Preston, K. A., Cornwell, W. K. & DeNoyer, J. L. Wood density and 
vessel traits as distinct correlates of ecological strategy in 51 
California coast range angiosperms. New Phytol. 170, 807–818 
(2006).

16. Swenson, N. G. & Zambrano, J. Why wood density varies across 
communities. J. Veg. Sci. 28, 4–6 (2017).

17. Slik, J. W. F. et al. Environmental correlates of tree biomass, basal 
area, wood specific gravity and stem density gradients in Borneo’s 
tropical forests. Glob. Ecol. Biogeogr. 19, 50–60 (2010).

18. Crivellaro, A., Piermattei, A., Dolezal, J., Dupree, P. & Büntgen, U. 
Biogeographic implication of temperature-induced plant cell wall 
lignification. Commun. Biol. 5, 767 (2022).

19. Gleason, S. M. et al. Weak tradeoff between xylem safety and 
xylem‐specific hydraulic efficiency across the world’s woody 
plant species. New Phytol. 209, 123–136 (2016).

20. Choat, B. et al. Global convergence in the vulnerability of forests 
to drought. Nature 491, 752–755 (2012).

21. Johnson, D. M., Katul, G. & Domec, J. Catastrophic hydraulic 
failure and tipping points in plants. Plant Cell Environ. 45, 
2231–2266 (2022).

22. McDowell, N. G. et al. Mechanisms of woody-plant mortality 
under rising drought, CO2 and vapour pressure deficit. Nat. Rev. 
Earth Environ. 3, 294–308 (2022).

23. Johnson, D. M. et al. Co‐occurring woody species have diverse 
hydraulic strategies and mortality rates during an extreme 
drought. Plant Cell Environ. 41, 576–588 (2018).

24. Hacke, U. G., Sperry, J. S., Pockman, W. T., Davis, S. D. & McCulloh, 
K. A. Trends in wood density and structure are linked to 
prevention of xylem implosion by negative pressure. Oecologia 
126, 457–461 (2001).

25. Sperry, J. S., Hacke, U. G. & Pittermann, J. Size and function 
in conifer tracheids and angiosperm vessels. Am. J. Bot. 93, 
1490–1500 (2006).

26. Larjavaara, M. & Muller-Landau, H. C. Rethinking the value of high 
wood density. Funct. Ecol. 24, 701–705 (2010).

27. Niklas, K. J. & Spatz, H. Worldwide correlations of mechanical 
properties and green wood density. Am. J. Bot. 97, 1587–1594 
(2010).

28. Köhler, P. & Huth, A. Towards ground-truthing of spaceborne 
estimates of above-ground life biomass and leaf area index in 
tropical rain forests. Biogeosciences 7, 2531–2543 (2010).

29. Vibrans, A. C. et al. Unprecedented large-area turnover 
estimates for the subtropical Brazilian Atlantic Forest based on 
systematically-gathered data. Ecol. Manag. 505, 119902 (2022).

30. Rodrigues, A. V. et al. A test of the fast–slow plant economy 
hypothesis in a subtropical rain forest. Plant Ecol. Divers. 14, 
267–277 (2021).

31. Pyles, M. V. et al. Human impacts as the main driver of tropical 
forest carbon. Sci. Adv. 8, eabl7968 (2022).

32. Haddad, N. M. et al. Species’ traits predict the effects of 
disturbance and productivity on diversity. Ecol. Lett. 11, 348–356 
(2008).

33. Sommerfeld, A. et al. Patterns and drivers of recent disturbances 
across the temperate forest biome. Nat. Commun. 9, 4355 (2018).

34. Martin, A. R., Erickson, D. L., Kress, W. J. & Thomas, S. C. Wood 
nitrogen concentrations in tropical trees: phylogenetic patterns 
and ecological correlates. New Phytol. 204, 484–495 (2014).

35. Liang, X., Ye, Q., Liu, H. & Brodribb, T. J. Wood density predicts 
mortality threshold for diverse trees. New Phytol. 229, 3053–3057 
(2021).

36. Macdonald, E. & Hubert, J. A review of the effects of silviculture 
on timber quality of Sitka spruce. Forestry 75, 107–138 (2002).

37. Barlow, J. et al. Anthropogenic disturbance in tropical forests 
can double biodiversity loss from deforestation. Nature 535, 144 
(2016).

38. Wang, J. A., Baccini, A., Farina, M., Randerson, J. T. &  
Friedl, M. A. Disturbance suppresses the aboveground carbon 
sink in North American boreal forests. Nat. Clim. Change 11, 
435–441 (2021).

39. Mack, M. C. et al. Carbon loss from boreal forest wildfires offset by 
increased dominance of deciduous trees. Science 372, 280–283 
(2021).

40. Slik, J. W. F. et al. Wood density as a conservation tool: 
quantification of disturbance and identification of 
conservation-priority areas in tropical forests. Conserv. Biol. 22, 
1299–1308 (2008).

41. Berenguer, E. et al. Seeing the woods through the saplings: 
using wood density to assess the recovery of human-modified 
Amazonian forests. J. Ecol. 106, 2190–2203 (2018).

42. Feeley, K. J., Davies, S. J., Perez, R., Hubbell, S. P. & Foster, R. B. 
Directional changes in the species composition of a tropical 
forest. Ecology 92, 871–882 (2011).

43. Lewis, S. L. et al. Above-ground biomass and structure of 260 
African tropical forests. Philos. Trans. R. Soc. B 368, 20120295 
(2013).

44. Carreño-Rocabado, G. et al. Effects of disturbance intensity on 
species and functional diversity in a tropical forest. J. Ecol. 100, 
1453–1463 (2012).

45. Bunker, D. E. et al. Species loss and aboveground carbon storage 
in a tropical forest. Science 310, 1029–1031 (2005).

46. Yuan, Z. et al. Multiple metrics of diversity have different effects 
on temperate forest functioning over succession. Oecologia 182, 
1175–1185 (2016).

47. Gourlet-Fleury, S. et al. Environmental filtering of dense-wooded 
species controls above-ground biomass stored in African moist 
forests. J. Ecol. 99, 981–990 (2011).

48. Lohbeck, M. et al. Successional changes in functional 
composition contrast for dry and wet tropical forest. Ecology 94, 
1211–1216 (2013).

49. van der Sande, M. T. et al. A 7000-year history of changing plant 
trait composition in an Amazonian landscape; the role of humans 
and climate. Ecol. Lett. 22, 925–935 (2019).

50. Poorter, L. et al. The importance of wood traits and hydraulic 
conductance for the performance and life history strategies of 42 
rainforest tree species. New Phytol. 185, 481–492 (2010).

51. Chaturvedi, R. K., Raghubanshi, A. S., Tomlinson, K. W. & Singh, J. S.  
Impacts of human disturbance in tropical dry forests increase 
with soil moisture stress. J. Veg. Sci. 28, 997–1007 (2017).

52. Liang, J. et al. Positive biodiversity–productivity relationship 
predominant in global forests. Science 354, 6309 (2016).

53. Brown, S. Estimating Biomass and Biomass Change of Tropical 
Forests: A Primer (FAO, 1997).

54. Falster, D. S. et al. BAAD: a biomass and allometry database for 
woody plants. Ecology 96, 1445–1445 (2015).

55. Vieilledent, G. et al. New formula and conversion factor to 
compute basic wood density of tree species using a global wood 
technology database. Am. J. Bot. 105, 1653–1661 (2018).

56. Zhang, S.-B., Slik, J. W. F., Zhang, J.-L. & Cao, K.-F. Spatial patterns 
of wood traits in China are controlled by phylogeny and the 
environment. Glob. Ecol. Biogeogr. 20, 241–250 (2011).

57. Zanne, A. E. et al. Data from: Towards a worldwide wood 
economics spectrum. Dryad https://doi.org/10.5061/dryad.234 
(2009).

58. Schepaschenko, D. et al. A dataset of forest biomass structure for 
Eurasia. Sci. Data 4, 170070 (2017).

59. Kattge, J. et al. TRY plant trait database–enhanced coverage and 
open access. Glob. Change Biol. 26, 119–188 (2020).

60. Henry, M. et al. GlobAllomeTree: international platform for tree 
allometric equations to support volume, biomass and carbon 
assessment. Iforest 6, 326–330 (2013).

http://www.nature.com/natecolevol
https://doi.org/10.5061/dryad.234


Nature Ecology & Evolution | Volume 8 | December 2024 | 2195–2212 2207

Article https://doi.org/10.1038/s41559-024-02564-9

61. Kennedy, C. M., Oakleaf, J. R., Theobald, D. M., Baruch-Mordo, 
S. & Kiesecker, J. Managing the middle: a shift in conservation 
priorities based on the global human modification gradient. Glob. 
Change Biol. 25, 811–826 (2019).

62. Giglio, L. MOD14A1 MODIS/Terra thermal anomalies/fire daily L3 
global 1 km SIN grid V006. USGS https://doi.org/10.5067/MODIS/
MOD14A1.061 (2015).

63. Santoro, M. et al. GlobBiomass—global datasets of forest biomass 
[dataset]. PANGAEA https://doi.org/10.1594/PANGAEA.894711 (2018).

64. Santoro, M. et al. A detailed portrait of the forest aboveground 
biomass pool for the year 2010 obtained from multiple remote 
sensing observations. Geophys. Res. Abstr. 20, EGU2018-18932 
(2018).

65. Ma, H. et al. The global distribution and environmental drivers of 
aboveground versus belowground plant biomass. Nat. Ecol. Evol. 
5, 1110–1122 (2021).

66. Pagel, M. Inferring the historical patterns of biological evolution. 
Nature 401, 877–884 (1999).

67. Blomberg, S. P., Garland, T. Jr & Ives, A. R. Testing for phylogenetic 
signal in comparative data: behavioral traits are more labile. 
Evolution 57, 717–745 (2003).

68. Li, F. et al. Evolutionary history shapes variation of wood density of 
tree species across the world. Plant Divers. 46, 283–293 (2024).

69. Webb, C. O., Ackerly, D. D. & Kembel, S. W. Phylocom: software 
for the analysis of phylogenetic community structure and trait 
evolution. Bioinformatics 24, 2098–2100 (2008).

70. Ploton, P. et al. Spatial validation reveals poor predictive 
performance of large-scale ecological mapping models. Nat. 
Commun. 11, 4540 (2020).

71. Batjes, N. H. Harmonized soil property values for broad-scale 
modelling (WISE30sec) with estimates of global soil carbon 
stocks. Geoderma 269, 61–68 (2016).

72. Asner, G. P., Scurlock, J. M. O. & Hicke, J. A. Global synthesis of 
leaf area index observations: implications for ecological and 
remote sensing studies. Glob. Ecol. Biogeogr. 12, 191–205 (2003).

73. Kerfriden, B., Bontemps, J.-D. & Leban, J.-M. Variations in 
temperate forest stem biomass ratio along three environmental 
gradients are dominated by interspecific differences in wood 
density. Plant Ecol. 222, 289–303 (2021).

74. Pellegrini, A. F. A. et al. Decadal changes in fire frequencies shift 
tree communities and functional traits. Nat. Ecol. Evol. 5, 504–512 
(2021).

75. Snorrason, A., Kjartansson, B., Gunnarsson, E. & Eysteinsson, T.H. 
Global Forest Resources Assessment Update 2005 (FAO, 2005).

76. Araza, A. et al. A comprehensive framework for assessing the 
accuracy and uncertainty of global above-ground biomass maps. 
Remote Sens. Environ. 272, 112917 (2022).

77. Spawn, S. A., Sullivan, C. C., Lark, T. J. & Gibbs, H. K. Harmonized 
global maps of above and belowground biomass carbon density 
in the year 2010. Sci. Data 7, 112 (2020).

78. Ruesch, A. & Gibbs, H. K. New IPCC Tier-1 Global Biomass 
Carbon Map for the Year 2000. ESS-DIVE https://doi.
org/10.15485/1463800 (2008).

79. Baraloto, C. et al. Disentangling stand and environmental 
correlates of aboveground biomass in Amazonian forests.  
Glob. Change Biol. 17, 2677–2688 (2011).

80. Jenkins, J. C., Chojnacky, D. C., Heath, L. S. & Birdsey, R. A. 
National-scale biomass estimators for United States tree species. 
For. Sci. 49, 12–35 (2003).

81. Yang, H. et al. Global patterns of tree wood density. Glob. Change 
Biol. 30, e17224 (2024).

82. Markesteijn, L., Poorter, L., Paz, H., Sack, L. & Bongers, F. 
Ecological differentiation in xylem cavitation resistance is 
associated with stem and leaf structural traits. Plant Cell Environ. 
34, 137–148 (2011).

83. Zheng, J., Zhao, X., Morris, H. & Jansen, S. Phylogeny best 
explains latitudinal patterns of xylem tissue fractions for woody 
angiosperm species across China. Front. Plant Sci. 10, 556 (2019).

84. Ibanez, T. et al. Community variation in wood density along a 
bioclimatic gradient on a hyper-diverse tropical island. J. Veg. Sci. 
28, 19–33 (2017).

85. Enrique, G. et al. A multidimensional functional trait approach 
reveals the imprint of environmental stress in Mediterranean 
woody communities. Ecosystems 21, 248–262 (2018).

86. de la Riva, E. G. et al. Disentangling the relative importance of 
species occurrence, abundance and intraspecific variability in 
community assembly: a trait-based approach at the whole-plant 
level in Mediterranean forests. Oikos 125, 354–363 (2016).

87. Serra‐Maluquer, X. et al. Wood density and hydraulic traits 
influence species’ growth response to drought across biomes. 
Glob. Change Biol. 28, 3871–3882 (2022).

88. Muller-Landau, H. C. Interspecific and inter-site variation in wood 
specific gravity of tropical trees. Biotropica 36, 20–32 (2004).

89. Ter Steege, H. et al. Continental-scale patterns of canopy tree 
composition and function across Amazonia. Nature 443, 444–447 
(2006).

90. LeBauer, D. S. & Treseder, K. K. Nitrogen limitation of net primary 
productivity in terrestrial ecosystems is globally distributed. 
Ecology 89, 371–379 (2008).

91. Ziter, C., Bennett, E. M. & Gonzalez, A. Temperate forest fragments 
maintain aboveground carbon stocks out to the forest edge 
despite changes in community composition. Oecologia 176, 
893–902 (2014).

92. Morreale, L. L., Thompson, J. R., Tang, X., Reinmann, A. B. & 
Hutyra, L. R. Elevated growth and biomass along temperate forest 
edges. Nat. Commun. 12, 7181 (2021).

93. Smith, I. A., Hutyra, L. R., Reinmann, A. B., Marrs, J. K. & 
Thompson, J. R. Piecing together the fragments: elucidating 
edge effects on forest carbon dynamics. Front. Ecol. Environ. 16, 
213–221 (2018).

94. Zanne, A. E. et al. Angiosperm wood structure: global patterns in 
vessel anatomy and their relation to wood density and potential 
conductivity. Am. J. Bot. 97, 207–215 (2010).

95. Muñoz, G. R., Encinas, J. I. & de Paula, J. E. Wood density as an 
auxiliary classification criterion for botanical identification of 241 
tree species in the order Sapindales. Eur. J. Res. 138, 583–594 
(2019).

96. Slik, J. W. F. Estimating species-specific wood density from the 
genus average in Indonesian trees. J. Trop. Ecol. 22, 481–482 (2006).

97. Boyle, B. L. et al. The taxonomic name resolution service: an 
online tool for automated standardization of plant names. BMC 
Bioinformatics 14, 16 (2013).

98. Jin, Y. & Qian, H. V. PhyloMaker: an R package that can generate 
very large phylogenies for vascular plants. Ecography 42, 
1353–1359 (2019).

99. Revell, L. J. phytools: an R package for phylogenetic comparative 
biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).

100. Ooms, J. & Chamberlain, S. phylocomr: Interface to ‘Phylocom’. R 
package version 0.3.4 (2019).

101. Panchen, Z. A. et al. Leaf out times of temperate woody plants 
are related to phylogeny, deciduousness, growth habit and wood 
anatomy. New Phytol. 203, 1208–1219 (2014).

102. Poorter, L. et al. Biomass resilience of neotropical secondary 
forests. Nature 530, 211 (2016).

103. Olson, D. M. et al. Terrestrial ecoregions of the world: a new 
map of life on Earth: a new global map of terrestrial ecoregions 
provides an innovative tool for conserving biodiversity. Bioscience 
51, 933–938 (2001).

104. Karger, D. N. et al. Climatologies at high resolution for the Earth’s 
land surface areas. Sci. Data 4, 170122 (2017).

http://www.nature.com/natecolevol
https://doi.org/10.5067/MODIS/MOD14A1.061
https://doi.org/10.5067/MODIS/MOD14A1.061
https://doi.org/10.1594/PANGAEA.894711
https://doi.org/10.15485/1463800
https://doi.org/10.15485/1463800


Nature Ecology & Evolution | Volume 8 | December 2024 | 2195–2212 2208

Article https://doi.org/10.1038/s41559-024-02564-9

105. Amatulli, G. et al. A suite of global, cross-scale topographic 
variables for environmental and biodiversity modeling. Sci. Data 
5, 180040 (2018).

106. Wilson, A. M. & Jetz, W. Remotely sensed high-resolution global 
cloud dynamics for predicting ecosystem and biodiversity 
distributions. PLoS Biol. 14, e1002415 (2016).

107. Fan, Y., Li, H. & Miguez-Macho, G. Global patterns of groundwater 
table depth. Science 339, 940–943 (2013).

108. Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial 
resolution climate surfaces for global land areas. Int. J. Climatol. 
37, 4302–4315 (2017).

109. Shangguan, W., Hengl, T., de Jesus, J. M., Yuan, H. & Dai, Y. 
Mapping the global depth to bedrock for land surface modeling. 
J. Adv. Model Earth Syst. 9, 65–88 (2017).

110. Rodell, M. et al. The global land data assimilation system. Bull. 
Am. Meteorol. Soc. 85, 381–394 (2004).

111. Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. 
Soc. 146, 1999–2049 (2020).

112. Gelaro, R. et al. The modern-era retrospective analysis for 
research and applications, version 2 (MERRA-2). J. Clim. 30, 
5419–5454 (2017).

113. Didan, K., Munoz, A. B., Solano, R. & Huete, A. MODIS Vegetation 
Index User’s Guide (MOD13 Series) (Univ. of Arizona, 2015).

114. Myneni, R., Knyazikhin, Y. & Park, T. MOD15A2H MODIS/terra leaf 
area index/FPAR 8-day L4 global 500 m SIN grid V006. USGS 
https://doi.org/10.5067/MODIS/MYD15A2H.006 (2015).

115. Zhao, M., Running, S., Heinsch, F. A. & Nemani, R. in Land Remote 
Sensing and Global Environmental Change (eds Ramachandran, B. 
et al.) 635–660 (Springer, 2010).

116. Trabucco, A. & Zomer, R. J. Global Soil Water Balance Geospatial 
Database (CGIAR-CSI, 2010).

117. Zomer, R. J., Trabucco, A., Bossio, D. A. & Verchot, L. V. Climate 
change mitigation: a spatial analysis of global land suitability for 
clean development mechanism afforestation and reforestation. 
Agric. Ecosyst. Environ. 126, 67–80 (2008).

118. Hansen, M. C. et al. High-resolution global maps of 21st-century 
forest cover change. Science 342, 850–853 (2013).

119. Crowther, T. W. et al. Mapping tree density at a global scale. 
Nature 525, 201–205 (2015).

120. Simard, M., Pinto, N., Fisher, J. B. & Baccini, A. Mapping forest 
canopy height globally with spaceborne lidar. J. Geophys. Res. 
Biogeosci. https://doi.org/10.1029/2011JG001708 (2011).

121. Besnard, S. et al. Mapping global forest age from forest 
inventories, biomass and climate data. Earth Syst. Sci. Data 13, 
4881–4896 (2021).

122. Tuanmu, M.-N. & Jetz, W. A global 1-km consensus land-cover 
product for biodiversity and ecosystem modelling. Glob. Ecol. 
Biogeogr. 23, 1031–1045 (2014).

123. Klein Goldewijk, K., Beusen, A. & Janssen, P. Long-term dynamic 
modeling of global population and built-up area in a spatially 
explicit way: HYDE 3.1. Holocene 20, 565–573 (2010).

124. Klein Goldewijk, K., Beusen, A., Van Drecht, G. & De Vos, M. The 
HYDE 3.1 spatially explicit database of human-induced global 
land-use change over the past 12,000 years. Glob. Ecol. Biogeogr. 
20, 73–86 (2011).

125. Gorelick, N. et al. Google Earth Engine: planetary-scale geospatial 
analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).

126. Van Den Hoogen, J. et al. Soil nematode abundance and 
functional group composition at a global scale. Nature 572, 
194–198 (2019).

127. LeDell, E. et al. h2o: R interface for the ‘H2O’ scalable machine 
learning platform. R package version 3.44.0 (2020).

128. Li, J. Assessing the accuracy of predictive models for numerical 
data: not r nor r2, why not? Then what? PLoS ONE 12, e0183250 
(2017).

129. Sagi, O. & Rokach, L. Ensemble learning: a survey. WIREs Data Min. 
Knowl. Discov. 8, e1249 (2018).

130. Phillips, O. L. et al. Species matter: wood density influences 
tropical forest biomass at multiple scales. Surv. Geophys. 40, 
913–935 (2019).

131. Heiberger, R. M. & Holland, B. Statistical Analysis and Data  
Display: An Intermediate Course with Examples in R  
(Springer, 2019).

132. Hothorn, T. & Zeileis, A. partykit: a modular toolkit for 
recursive partytioning in R. J. Mach. Learn. Res. 16, 3905–3909 
(2015).

133. Borkovec, M. & Madin, N. ggparty: ‘ggplot’ visualizations for the 
‘partykit’ package. R package version 1.0.0 (2019).

134. Braatz, S. M. State of the World’s Forests, 1997 (FAO, 1997).
135. Mo, L. The global distribution and drivers of wood density across 

angiosperms and gymnosperms and their impact on forest 
carbon stocks (Version Ver01). Zenodo https://doi.org/10.5281/
zenodo.13331493 (2024).

Acknowledgements
This work was supported by grants to L.M. from the China  
Scholarship Council, to C.M.Z. from the SNF Ambizione Fellowship 
programme (no. PZ00P3_193646) and to T.W.C. from DOB Ecology 
and the Bernina Foundation. We thank RESTOR (www.restor.eco) 
for providing data and Google Earth Engine for analytical support. 
This study was in part supported by the ESA CCI Biomass project 
funded by the European Space Agency (4000123662/18/I-NB) and 
The Open Earth Monitor Project funded by the European Union. 
The GEO-TREES initiative (https://geo-trees.org/) contributed plot 
data to this study, supported by the European Space Agency, IIASA, 
RAINFOR, AfriTRON, ForestPlots.net, ForestGEO, Smithsonian 
Tropical Research Institute, TmFO, Universite de Toulouse, University 
of Leeds, UCL and CIRAD. The French National Forest Inventory 
data were downloaded by GFBi at https://inventaire-forestier.ign.fr/
dataifn/; the Italian Forest Inventory data were downloaded by GFBi at 
https://inventarioforestale.org/. O. Bouriaud acknowledges funding 
from the Romanian National Council for Higher Education Funding, 
CNFIS, project no. CNFIS-FDI-2024-F-0155. J.-C.S. considers this work 
a contribution to Center for Ecological Dynamics in a Novel Biosphere 
(ECONOVO), funded by Danish National Research Foundation (grant 
no. DNRF173) and his VILLUM Investigator project ‘Biodiversity 
Dynamics in a Changing World’, funded by VILLUM FONDEN (grant no. 
16549). ForestPlots.net and RAINFOR contributions led by O.L.P. were 
supported by multiple sources including the Royal Society (GCRF 
International Collaboration Award ICA\R1\180100), the European 
Research Council (advanced grant no. 291585), the UK Natural 
Environment Research Council (NE/B504630/1, NE/D010306/1, 
NE/G012067/1, NE/D005590/1, NE/I028122/1, NE/S011811/1) and 
the Gordon and Betty Moore Foundation. The exploratory plots of 
FunDivEUROPE were established through funding from the European 
Union Seventh Framework Programme FP7/2007-2013 under grant no. 
265171. T.M.F. was supported by a Czech Science Foundation Standard 
Grant (21-06446S). We thank the FCT—Portuguese Foundation for 
Science and Technology, project UIDB/04033/2020 and ICNF-Instituto 
da Conservação da Natureza, Portugal, National Forest Inventory for 
support. This study used GFBi plot data originally collected in Brazil 
with funding by Conselho Nacional de Desenvolvimento Científico 
e Tecnológico (CNPq) (project 520053/1998-2). We are grateful to 
all the ministries and agencies from the Government of Spain that 
supported the collection, compilation and coordination of forest 
inventory data, also including the Spanish Forest Inventories. S.d.M. 
was supported by the Serra-Húnter fellowship provided by the 
Government of Catalonia (Generalitat de Catalunya). C.A. and P. 
Schall thank the Deutsche Forschungsgemeinschaft Priority Program 
1374 Biodiversity Exploratories. We acknowledge the use of data 

http://www.nature.com/natecolevol
https://doi.org/10.5067/MODIS/MYD15A2H.006
https://doi.org/10.1029/2011JG001708
https://doi.org/10.5281/zenodo.13331493
https://doi.org/10.5281/zenodo.13331493
http://www.restor.eco
https://geo-trees.org/
https://inventaire-forestier.ign.fr/dataifn/
https://inventaire-forestier.ign.fr/dataifn/
https://inventarioforestale.org/


Nature Ecology & Evolution | Volume 8 | December 2024 | 2195–2212 2209

Article https://doi.org/10.1038/s41559-024-02564-9

drawn from the Natural Forest plot data collected between January 
2009 and March 2014 by the LUCAS programme for the New Zealand 
Ministry for the Environment. Data were sourced via the NZ National 
Vegetation Survey Databank. Data from T.R.F. were supported by NERC 
(NE/W001691/1, NE/N011570/1, NE/R017980/1). K.J.S. thanks the IBL 
for supporting this work by internal funds under project no. 261509 
AFTER FBS—maintenance of ForBioSensing project performance 
indicators.

Author contributions
L.M., T.W.C. and C.M.Z. conceived, developed and wrote the paper. 
L.M. performed the analysis, with assistance from C.M.Z., T.W.C., 
D.S.M., J.v.d.H., H.M. and L.B.-M. J.L., S.d.M., G.-J.N., P.B.R. and O.L.P. 
provided conceptual and/or editorial input to improve the paper. 
M.A., Y.C.A.Y., G.A., A.M.A.Z., B.V.A., E.A.-D., P.A.-L., L.F.A., I.A., C.A., 
C.A.-F., A.A.-M., L.A., V.A., G.A.A., T.R.B., R.B., O. Banki, J.G.B., M.L.B., 
J.-F.B., L.B., P. Birnbaum, R. Bitariho, P. Boeckx, F. Bongers, C.C.F.B., 
O. Bouriaud, P.H.S.B., S.B., F.Q.B., R. Brienen, E.N.B., H.B., F. Bussotti, 
R.C.G., R.G.C., G.C., R.C., H.Y.H.C., C. Chisholm, H.C., E.C., C. Clark, 
D.C., G.D.C., D.A.C., F.C., J.J.C.-R., P.M.C., J.R.C., S.D., A.L.d.G., M.D., 
G.D., B.De.V., I.D., J.D., A.D., N.E., B.J.E., T.J.E., A.B.F., T.M.F., T.R.F., 
L.V.F., L. Finér, M.F., C.F., L. Frizzera, J.G.P.G., D.G., H.B.G., D.J.H., A. 
Hector, A. Hemp, G.H., B.H., J.L.H., M.H., P.H., A. Hillers, E.N.H., C.H., 
T.I., N.I., A.M.J., B.J., V.K.J., C.A.J., T.J., I.J., V.K., K. Kartawinata, E.K., 
D. Kenfack, D.K.K., S.K., G.K., M.L.K., T.J.K., H.S.K., K. Kitayama, M.K., 
H.K., F.K., D. Kucher, D.L., M.L., S.L.L., Y.L., G.L., H.L., N.V.L., B.S.M., 
Y.M., E.M., B.S.M., B.H.M.-J., A.R.M., E.H.M., J.K.M., J.A.M., O.M.-C., 
C. Mendoza, I.M.-P., S.M., C. Merow, A.M.M., V.S.M., S.A.M., P.M., 
M.G.N.-M., D.N., V.J.N., R.V.N., M.R.N., P.A.N., P.O., E.O.-M., Y.P., A.P., 
A.P.-G., E.I.P., M. Park, M. Parren, N. Parthasarathy, P.L.P., S.P., N. Picard, 
M.T.F.P., D.P., N.C.A.P., L.P., A.D.P., J.R.P., H.P., F.R.A., Z.R.-C., S.J.R, M.R., 
S.G.R., A.R., F.R., E.R., P. Saikia, C.S.-E., P. Saner, P. Schall, M.-J.S., D. 
Schepaschenko, M.S.-L., B.S., J.S., E.B.S., V.S., J.M.S.-D., D. Sheil, A.Z.S., 
A.C.DaS., J.E.S.-E., M. Silveira, J.S., P. Sist, F.S., B. Sonké, E.E.S., A.F.S., 
K.J.S., J.-C.S., M. Svoboda, B. Swanepoel, N. Targhetta, N. Tchebakova, 
H.t.S., R.T., E.T., P.M.U., V.A.U., R.V., F.V., P.M.V.B., F.v.d.P., T.V.D., M.E.v.N., 
R.M.V., H. Verbeeck, H. Viana, A.C.V., S.V., K.v.G., H.-F.W., J.V.W., G.D.A.W., 
F.W., H. Woell, V.W., R.Z., T.Z.-N., C.Z., X.Z., M.Z., Z.-X.Z. and I.C.Z.-B. 
provided data for the analysis. All authors reviewed and approved  
the paper.

Funding
Open access funding provided by Swiss Federal Institute of 
Technology Zurich.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary 
material available at https://doi.org/10.1038/s41559-024-02564-9.

Correspondence and requests for materials should be addressed to 
Lidong Mo.

Peer review information Nature Ecology & Evolution thanks  
Jean-Michel Leban, Zhili Liu and the other, anonymous, reviewer(s) for 
their contribution to the peer review of this work. Peer reviewer reports 
are available.

Reprints and permissions information is available at  
www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, 
as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons licence, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2024

Lidong Mo1    , Thomas W. Crowther1  , Daniel S. Maynard1,2  , Johan van den Hoogen1  , Haozhi Ma1  , Lalasia Bialic-Murphy1  , 
Jingjing Liang3  , Sergio de-Miguel4,5  , Gert-Jan Nabuurs6  , Peter B. Reich7,8,9  , Oliver L. Phillips10  , Meinrad Abegg11  , 
Yves C. Adou Yao12  , Giorgio Alberti13,14  , Angelica M. Almeyda Zambrano15  , Braulio Vilchez Alvarado16  , 
Esteban Alvarez-Dávila17  , Patricia Alvarez-Loayza18  , Luciana F. Alves19  , Iêda Amaral20  , Christian Ammer21  , 
Clara Antón-Fernández22  , Alejandro Araujo-Murakami23  , Luzmila Arroyo23  , Valerio Avitabile24  , Gerardo A. Aymard25,26  , 
Timothy R. Baker10  , Radomir Bałazy27  , Olaf Banki28  , Jorcely G. Barroso29  , Meredith L. Bastian30,31  , Jean-Francois Bastin32  , 
Luca Birigazzi33  , Philippe Birnbaum34,35,36  , Robert Bitariho37  , Pascal Boeckx38  , Frans Bongers6  , Coline C. F. Boonman39,40  , 
Olivier Bouriaud41  , Pedro H. S. Brancalion42  , Susanne Brandl43  , Francis Q. Brearley44  , Roel Brienen10  , Eben N. Broadbent15  , 
Helge Bruelheide45,46  , Filippo Bussotti47  , Roberto Cazzolla Gatti48  , Ricardo G. César42  , Goran Cesljar49  , Robin Chazdon50,51  , 
Han Y. H. Chen52  , Chelsea Chisholm1  , Hyunkook Cho53  , Emil Cienciala54,55  , Connie Clark56  , David Clark57  , 
Gabriel D. Colletta58  , David A. Coomes59  , Fernando Cornejo Valverde60  , José J. Corral-Rivas61  , Philip M. Crim62,63  , 
Jonathan R. Cumming62  , Selvadurai Dayanandan64  , André L. de Gasper65  , Mathieu Decuyper6  , Géraldine Derroire66  , 
Ben DeVries67  , Ilija Djordjevic68  , Jiri Dolezal69,70  , Aurélie Dourdain66  , Nestor Laurier Engone Obiang71  , Brian J. Enquist72,73  , 
Teresa J. Eyre74  , Adandé Belarmain Fandohan75  , Tom M. Fayle76,77  , Ted R. Feldpausch78  , Leandro V. Ferreira79  , Leena Finér80  , 
Markus Fischer81  , Christine Fletcher82  , Lorenzo Frizzera83  , Javier G. P. Gamarra84  , Damiano Gianelle83  , Henry B. Glick85  , 
David J. Harris86  , Andrew Hector87  , Andreas Hemp88  , Geerten Hengeveld6  , Bruno Hérault89,90  , John L. Herbohn91  , 
Martin Herold92  , Peter Hietz93  , Annika Hillers94,95  , Eurídice N. Honorio Coronado96  , Cang Hui97,98  , Thomas Ibanez99  , 
Nobuo Imai100  , Andrzej M. Jagodziński101,102  , Bogdan Jaroszewicz103  , Vivian Kvist Johannsen104  , Carlos A. Joly105  , 
Tommaso Jucker106  , Ilbin Jung53  , Viktor Karminov107  , Kuswata Kartawinata108  , Elizabeth Kearsley109  , David Kenfack110  , 

http://www.nature.com/natecolevol
https://doi.org/10.1038/s41559-024-02564-9
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Nature Ecology & Evolution | Volume 8 | December 2024 | 2195–2212 2210

Article https://doi.org/10.1038/s41559-024-02564-9

Deborah K. Kennard111  , Sebastian Kepfer-Rojas104  , Gunnar Keppel112  , Mohammed Latif Khan113  , Timothy J. Killeen23  , 
Hyun Seok Kim114,115,116,117  , Kanehiro Kitayama118  , Michael Köhl119  , Henn Korjus120  , Florian Kraxner121  , Dmitry Kucher122  , 
Diana Laarmann120  , Mait Lang120  , Simon L. Lewis10,123  , Yuanzhi Li124  , Gabriela Lopez-Gonzalez10  , Huicui Lu125  , 
Natalia V. Lukina126  , Brian S. Maitner72  , Yadvinder Malhi127  , Eric Marcon128  , Beatriz Schwantes Marimon129  , 
Ben Hur Marimon-Junior129  , Andrew R. Marshall91,130,131  , Emanuel H. Martin132  , James K. McCarthy133  , Jorge A. Meave134  , 
Omar Melo-Cruz135  , Casimiro Mendoza136  , Irina Mendoza-Polo137  , Stanislaw Miscicki138  , Cory Merow50  , 
Abel Monteagudo Mendoza139,140  , Vanessa S. Moreno42  , Sharif A. Mukul91,141  , Philip Mundhenk119  , 
María Guadalupe Nava-Miranda142,143  , David Neill144  , Victor J. Neldner74  , Radovan V. Nevenic68  , Michael R. Ngugi74  , 
Pascal A. Niklaus145  , Petr Ontikov107  , Edgar Ortiz-Malavasi16  , Yude Pan146  , Alain Paquette147  , Alexander Parada-Gutierrez23  , 
Elena I. Parfenova148  , Minjee Park3,114  , Marc Parren149  , Narayanaswamy Parthasarathy150  , Pablo L. Peri151  , 
Sebastian Pfautsch152  , Nicolas Picard153  , Maria Teresa F. Piedade154  , Daniel Piotto155  , Nigel C. A. Pitman18  , Lourens Poorter6  , 
Axel Dalberg Poulsen86  , John R. Poulsen56,156  , Hans Pretzsch157,158  , Freddy Ramirez Arevalo159  , Zorayda Restrepo-Correa160  , 
Sarah J. Richardson133  , Mirco Rodeghiero83,161  , Samir G. Rolim155  , Anand Roopsind162  , Francesco Rovero163,164  , 
Ervan Rutishauser165  , Purabi Saikia166  , Christian Salas-Eljatib167,168  , Philippe Saner169  , Peter Schall21  , Mart-Jan Schelhaas6  , 
Dmitry Schepaschenko170,171  , Michael Scherer-Lorenzen172  , Bernhard Schmid173  , Jochen Schöngart154  , Eric B. Searle147  , 
Vladimír Seben174  , Josep M. Serra-Diaz175,176  , Douglas Sheil149,177  , Anatoly Z. Shvidenko121  , Ana Carolina Da Silva178  , 
Javier E. Silva-Espejo179  , Marcos Silveira180  , James Singh181  , Plinio Sist89  , Ferry Slik182  , Bonaventure Sonké183  , 
Enio Egon Sosinski Jr.184  , Alexandre F. Souza185  , Krzysztof J. Stereńczak27  , Jens-Christian Svenning40,186  , 
Miroslav Svoboda187  , Ben Swanepoel188  , Natalia Targhetta154  , Nadja Tchebakova148  , Hans ter Steege28,189  , Raquel Thomas190  , 
Elena Tikhonova126  , Peter M. Umunay191  , Vladimir A. Usoltsev192  , Renato Valencia193  , Fernando Valladares194  , 
Peter M. Van Bodegom195  , Fons van der Plas196  , Tran Van Do197  , Michael E. van Nuland198  , Rodolfo M. Vasquez139  , 
Hans Verbeeck109  , Helder Viana199,200  , Alexander C. Vibrans65,201  , Simone Vieira202  , Klaus von Gadow203  , Hua-Feng Wang204  , 
James V. Watson205  , Gijsbert D. A. Werner206  , Florian Wittmann207  , Hannsjoerg Woell208  , Verginia Wortel209  , 
Roderick Zagt210  , Tomasz Zawiła-Niedźwiecki211  , Chunyu Zhang212  , Xiuhai Zhao212  , Mo Zhou3  , Zhi-Xin Zhu204  , Irie C. Zo-Bi90   
& Constantin M. Zohner1

1Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland. 2Department of Genetics, Evolution and 
Environment, University College London, London, UK. 3Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA. 
4Department of Agricultural and Forest Sciences and Engineering, University of Lleida, Lleida, Spain. 5Forest Science and Technology Centre of Catalonia 
(CTFC), Solsona, Spain. 6Wageningen University and Research, Wageningen, the Netherlands. 7Department of Forest Resources, University of Minnesota, 
St. Paul, MN, USA. 8Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia. 9Institute for Global 
Change Biology and School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA. 10School of Geography, University of Leeds, 
Leeds, UK. 11Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland. 12UFR Biosciences, University Félix 
Houphouët-Boigny, Abidjan, Côte d’Ivoire. 13Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy. 
14National Biodiversity Future Center (NBFC), Palermo, Italy. 15Spatial Ecology and Conservation Lab, School of Forest, Fisheries and Geomatics Sciences, 
University of Florida, Gainesville, FL, USA. 16Forestry School, Tecnológico de Costa Rica TEC, Cartago, Costa Rica. 17Fundacion Con Vida, Universidad 
Nacional Abierta y a Distancia (UNAD), Medellin, Colombia. 18Field Museum of Natural History, Chicago, IL, USA. 19Center for Tropical Research, Institute 
of the Environment and Sustainability, UCLA, Los Angeles, CA, USA. 20National Institute of Amazonian Research, Manaus, Brazil. 21Silviculture and Forest 
Ecology of the Temperate Zones, University of Göttingen, Göttingen, Germany. 22Division of Forest and Forest Resources, Norwegian Institute of 
Bioeconomy Research (NIBIO), Ås, Norway. 23Museo de Historia natural Noel kempff Mercado, Santa Cruz, Bolivia. 24European Commission, Joint 
Research Center, Ispra, Italy. 25UNELLEZ-Guanare, Programa de Ciencias del Agro y el Mar, Herbario Universitario (PORT), Guanare, Venezuela. 
26Compensation International S. A. Ci Progress-GreenLife, Bogotá, Colombia. 27Department of Geomatics, Forest Research Institute, Sękocin Stary, 
Poland. 28Naturalis Biodiversity Center, Leiden, the Netherlands. 29Centro Multidisciplinar, Universidade Federal do Acre, Rio Branco, Brazil. 30Proceedings 
of the National Academy of Sciences, Washington, DC, USA. 31Department of Evolutionary Anthropology, Duke University, Durham, NC, USA. 32TERRA 
Teach and Research Centre, Gembloux Agro Bio-Tech, University of Liege, Liege, Belgium. 33Forestry Consultant, Grosseto, Italy. 34Institut Agronomique 
néo-Calédonien (IAC), Nouméa, New Caledonia. 35AMAP, Univ Montpellier, Montpellier, France. 36CIRAD, CNRS, INRAE, IRD, Montpellier, France. 37Institute 
of Tropical Forest Conservation, Mbarara University of Sciences and Technology, Mbarara, Uganda. 38Isotope Bioscience Laboratory—ISOFYS, Ghent 
University, Ghent, Belgium. 39Department of Aquatic Ecology and Environmental Biology, Institute for Water and Wetland Research, Radboud University, 
Nijmegen, the Netherlands. 40Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) and Center for Biodiversity Dynamics in a Changing 
World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark. 41Ștefan cel Mare, University of Suceava, Suceava, Romania. 
42Department of Forest Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil. 43Bavarian State Institute of Forestry, 
Freising, Germany. 44Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK. 45Institute of Biology, Geobotany and 
Botanical Garden, Martin Luther University Halle-Wittenberg, Halle-Wittenberg, Germany. 46Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-
Leipzig, Leipzig, Germany. 47Department of Agriculture, Food, Environment and Forest (DAGRI), University of Firenze, Florence, Italy. 48Department of 
Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy. 49Department of Spatial Regulation, GIS and Forest Policy, 
Institute of Forestry, Belgrade, Serbia. 50Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA. 51Tropical Forests 
and People Research Centre, University of the Sunshine Coast, Sippy Downs, Queensland, Australia. 52Faculty of Natural Resources Management, 
Lakehead University, Thunder Bay, Ontario, Canada. 53Division of Forest Resources Information, Korea Forest Promotion Institute, Seoul, South Korea. 
54IFER - Institute of Forest Ecosystem Research, Jilove u Prahy, Czech Republic. 55Global Change Research Institute CAS, Brno, Czech Republic. 56Nicholas 

http://www.nature.com/natecolevol


Nature Ecology & Evolution | Volume 8 | December 2024 | 2195–2212 2211

Article https://doi.org/10.1038/s41559-024-02564-9

School of the Environment, Duke University, Durham, NC, USA. 57Department of Biology, University of Missouri-St Louis, St. Louis, MO, USA. 58Programa de 
Pós-graduação em Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil. 59Department of Plant Sciences and 
Conservation Research Institute, University of Cambridge, Cambridge, UK. 60Andes to Amazon Biodiversity Program, Madre de Dios, Peru. 61Facultad de 
Ciencias Forestales y Ambientales, Universidad Juárez del Estado de Durango, Durango, Mexico. 62Department of Biology, West Virginia University, 
Morgantown, WV, USA. 63Department of Physical and Biological Sciences, The College of Saint Rose, Albany, NY, USA. 64Biology Department, Centre for 
Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada. 65Natural Science Department, Universidade Regional de 
Blumenau, Blumenau, Brazil. 66Cirad, UMR EcoFoG (AgroParisTech, CNRS, INRAE, Université des Antilles, Université de la Guyane), Campus Agronomique, 
Kourou, French Guiana. 67Department of Geography, Environment and Geomatics, University of Guelph, Guelph, Ontario, Canada. 68Institute of Forestry, 
Belgrade, Serbia. 69Institute of Botany, The Czech Academy of Sciences, Třeboň, Czech Republic. 70Department of Botany, Faculty of Science, University 
of South Bohemia, České Budějovice, Czech Republic. 71IRET, Herbier National du Gabon (CENAREST), Libreville, Gabon. 72Department of Ecology and 
Evolutionary Biology, University of Arizona, Tucson, AZ, USA. 73The Santa Fe Institute, Santa Fe, NM, USA. 74Queensland Herbarium and Biodiversity 
Science, Department of Environment and Science, Toowong, Queensland, Australia. 75Ecole de Foresterie et Ingénierie du Bois, Université Nationale 
d’Agriculture, Kétou, Benin. 76School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK. 77Biology Centre of the 
Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic. 78Geography, Faculty of Environment, Science and Economy, 
University of Exeter, Exeter, UK. 79Museu Paraense Emílio Goeldi, Coordenação de Ciências da Terra e Ecologia, Belém, Brazil. 80Natural Resources 
Institute Finland (Luke), Joensuu, Finland. 81Institute of Plant Sciences, University of Bern, Bern, Switzerland. 82Forest Research Institute Malaysia, Kuala 
Lumpur, Malaysia. 83Research and Innovation Center, Fondazione Edmund Mach, San Michele All’adige, Italy. 84Forestry Division, Food and Agriculture 
Organization of the United Nations, Rome, Italy. 85Glick Designs LLC, Hadley, MA, USA. 86Royal Botanic Garden Edinburgh, Edinburgh, UK. 87Department of 
Biology, University of Oxford, Oxford, UK. 88Department of Plant Systematics, University of Bayreuth, Bayreuth, Germany. 89Cirad, UPR Forêts et Sociétés, 
University of Montpellier, Montpellier, France. 90Department of Forestry and Environment, National Polytechnic Institute (INP-HB), Yamoussoukro, Côte 
d’Ivoire. 91Forest Research Institute, University of the Sunshine Coast, Sippy Downs, Queensland, Australia. 92Helmholtz GFZ German Research Centre for 
Geosciences, Remote Sensing and Geoinformatics Section, Telegrafenberg, Potsdam, Germany. 93Institute of Botany, Department of Integrative Biology 
and Biodiversity Research, University of Natural Resources and Life Sciences Vienna, Vienna, Austria. 94Centre for Conservation Science, The Royal 
Society for the Protection of Birds, Sandy, UK. 95Wild Chimpanzee Foundation, Liberia Office, Monrovia, Liberia. 96Instituto de Investigaciones de la 
Amazonía Peruana, Iquitos, Peru. 97Centre for Invasion Biology, Department of Mathematical Sciences, National Institute for Theoretical and 
Computational Sciences, Stellenbosch University, Stellenbosch, South Africa. 98Theoretical Ecology Unit, African Institute for Mathematical Sciences, 
Cape Town, South Africa. 99AMAP, Univ Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France. 100Department of Forest Science, Tokyo University of 
Agriculture, Tokyo, Japan. 101Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland. 102Department of Game Management and Forest 
Protection, Poznań University of Life Sciences, Poznań, Poland. 103Faculty of Biology, Białowieża Geobotanical Station, University of Warsaw, Białowieża, 
Poland. 104Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark. 105Department of Plant 
Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil. 106School of Biological Sciences, University of Bristol, Bristol, UK. 
107Forestry Faculty, Mytischi Branch of Bauman Moscow State Technical University, Mytischi, Russian Federation. 108Negaunee Integrative Research 
Center, Field Museum of Natural History, Chicago, IL, USA. 109CAVElab-Computational and Applied Vegetation Ecology, Department of Environment, 
Ghent University, Ghent, Belgium. 110CTFS-ForestGEO, Smithsonian Tropical Research Institute, Panama City, Panama. 111Department of Physical and 
Environmental Sciences, Colorado Mesa University, Grand Junction, CO, USA. 112UniSA STEM and Future Industries Institute, University of South Australia, 
Adelaide, South Australia, Australia. 113Department of Botany, Dr Harisingh Gour Vishwavidyalaya (A Central University), Sagar, India. 114Department of 
Agriculture, Forestry and Bioresources, Seoul National University, Seoul, South Korea. 115Interdisciplinary Program in Agricultural and Forest Meteorology, 
Seoul National University, Seoul, South Korea. 116National Center for Agro Meteorology, Seoul, South Korea. 117Research Institute for Agriculture and Life 
Sciences, Seoul National University, Seoul, South Korea. 118Graduate School of Agriculture, Kyoto University, Kyoto, Japan. 119Institute for World Forestry, 
University of Hamburg, Hamburg, Germany. 120Institute of Forestry and Engineering, Estonian University of Life Sciences, Tartu, Estonia. 121Biodiversity and 
Natural Resources Program, International Institute for Applied Systems Analysis, Laxenburg, Austria. 122Peoples Friendship University of Russia (RUDN 
University), Moscow, Russian Federation. 123Department of Geography, University College London, London, UK. 124Department of Ecology, State Key 
Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China. 125Faculty of Forestry, Qingdao Agricultural University, 
Qingdao, China. 126Center for Forest Ecology and Productivity, Russian Academy of Sciences, Moscow, Russian Federation. 127Environmental Change 
Institute, School of Geography and the Environment, Oxford, UK. 128AgroParisTech, UMR-AMAP, Cirad, CNRS, INRA, IRD, Université de Montpellier, 
Montpellier, France. 129Departamento de Ciências Biológicas, Universidade do Estado de Mato Grosso, Nova Xavantina, Brazil. 130Department of 
Environment and Geography, University of York, York, UK. 131Flamingo Land Ltd, Kirby Misperton, UK. 132Department of Wildlife Management, College of 
African Wildlife Management, Mweka, Tanzania. 133Manaaki Whenua – Landcare Research, Lincoln, New Zealand. 134Departamento de Ecología y Recursos 
Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico. 135Universidad del Tolima, Ibagué, Colombia. 136Colegio 
de Profesionales Forestales de Cochabamba, Cochabamba, Bolivia. 137Jardín Botánico de Medellín, Medellin, Colombia. 138Department of Forest 
Management, Dendrometry and Forest Economics, Warsaw University of Life Sciences, Warsaw, Poland. 139Jardín Botánico de Missouri, Oxapampa, Peru. 
140Universidad Nacional de San Antonio Abad del Cusco, Cusco, Peru. 141Department of Environment and Development Studies, United International 
University, Dhaka, Bangladesh. 142Instituto de Silvicultura e Industria de la Madera, Universidad Juárez del Estado de Durango, Durango, Mexico. 
143Programa de doctorado en Ingeniería para el desarrollo rural y civil, Escuela de Doctorado Internacional de la Universidad de Santiago de Compostela 
(EDIUS), Santiago de Compostela, Spain. 144Universidad Estatal Amazónica, Puyo, Ecuador. 145Department of Evolutionary Biology and Environmental 
Studies, University of Zürich, Zurich, Switzerland. 146Climate, Fire and Carbon Cycle Sciences, USDA Forest Service, Durham, NC, USA. 147Centre for Forest 
Research, Université du Québec à Montréal, Montréal, Québec, Canada. 148V. N. Sukachev Institute of Forest, FRC KSC, Siberian Branch of the Russian 
Academy of Sciences, Krasnoyarsk, Russian Federation. 149Forest Ecology and Forest Management Group, Wageningen University & Research, 
Wageningen, the Netherlands. 150Department of Ecology and Environmental Sciences, Pondicherry University, Puducherry, India. 151Instituto Nacional de 
Tecnología Agropecuaria (INTA), Universidad Nacional de la Patagonia Austral (UNPA), Consejo Nacional de Investigaciones Científicas y Técnicas 
(CONICET), Río Gallegos, Argentina. 152School of Social Sciences (Urban Studies), Western Sydney University, Penrith, New South Wales, Australia. 153GIP 
Ecofor, Paris, France. 154Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil. 155Laboratório de Dendrologia e Silvicultura Tropical, Centro de 
Formação em Ciências Agroflorestais, Universidade Federal do Sul da Bahia, Itabuna, Brazil. 156The Nature Conservancy, Boulder, CO, USA. 157Chair of 
Forest Growth and Yield Science, Department of Life Science Systems, TUM School of Life Sciences, Technical University of Munich, Freising, Germany. 
158Sustainable Forest Management Research Institute iuFOR, University Valladolid, Valladolid, Spain. 159Universidad Nacional de la Amazonía Peruana, 

http://www.nature.com/natecolevol


Nature Ecology & Evolution | Volume 8 | December 2024 | 2195–2212 2212

Article https://doi.org/10.1038/s41559-024-02564-9

Iquitos, Peru. 160Servicios Ecosistémicos y Cambio Climático (SECC), Fundación Con Vida & Corporación COL-TREE, Medellín, Colombia. 161Centro 
Agricoltura, Alimenti, Ambiente, University of Trento, San Michele All’adige, Italy. 162Center for Natural Climate Solutions, Conservation International, 
Arlington, TX, USA. 163Department of Biology, University of Florence, Florence, Italy. 164Tropical Biodiversity, MUSE—Museo delle Scienze, Trento, Italy. 
165Info Flora, Geneva, Switzerland. 166Department of Botany, Banaras Hindu University, Varanasi, India. 167Departamento de Gestión Forestal y su Medio 
Ambiente, Universidad de Chile, Santiago, Chile. 168Vicerrectoría de Investigación y Postgrado, Universidad de La Frontera, Temuco, Chile. 169Rhino and 
Forest Fund e.V., Kehl, Germany. 170International Institute for Applied Systems Analysis, Laxenburg, Austria. 171Siberian Federal University, Krasnoyarsk, 
Russian Federation. 172Geobotany, Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany. 173Department of Geography, Remote Sensing 
Laboratories, University of Zürich, Zurich, Switzerland. 174National Forest Centre, Forest Research Institute Zvolen, Zvolen, Slovakia. 175Université de 
Lorraine, AgroParisTech, INRAE, Silva, Nancy, France. 176Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, 
Aarhus University, Aarhus, Denmark. 177Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, 
Norway. 178Santa Catarina State University, Lages, Brazil. 179Departamento de Biología, Universidad de la Serena, La Serena, Chile. 180Centro de Ciências 
Biológicas e da Natureza, Universidade Federal do Acre, Rio Branco, Brazil. 181Guyana Forestry Commission, Georgetown, French Guiana. 182Environmental 
and Life Sciences, Faculty of Science, Universiti Brunei Darussalam, Bandar Seri Begawan, Brunei Darussalam. 183Plant Systematic and Ecology 
Laboratory, Department of Biology, Higher Teachers’ Training College, University of Yaoundé I, Yaoundé, Cameroon. 184Embrapa Recursos Genéticos e 
Biotecnologia, Brasilia, Brazil. 185Departamento de Ecologia, Universidade Federal do Rio Grande do Norte, Natal, Brazil. 186Section for Ecoinformatics and 
Biodiversity, Department of Biology, Aarhus University, Aarhus, Denmark. 187Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, 
Prague, Czech Republic. 188Wildlife Conservation Society, Vientiane, Laos. 189Quantitative Biodiversity Dynamics, Department of Biology, Utrecht 
University, Utrecht, the Netherlands. 190Iwokrama International Centre for Rainforest Conservation and Development (IIC), Georgetown, French Guiana. 
191School of Forestry and Environmental Studies, Yale University, New Haven, CT, USA. 192Botanical Garden of Ural Branch of Russian Academy of Sciences, 
Ural State Forest Engineering University, Yekaterinburg, Russian Federation. 193Pontificia Universidad Católica del Ecuador, Quito, Ecuador. 194LINCGlobal, 
Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain. 195Institute of Environmental Sciences, Leiden University, Leiden, the Netherlands. 196Plant 
Ecology and Nature Conservation Group, Wageningen University, Wageningen, the Netherlands. 197Silviculture Research Institute, Vietnamese Academy 
of Forest Sciences, Hanoi, Vietnam. 198Department of Biology, Stanford University, Stanford, CA, USA. 199Agricultural High School, Polytechnic Institute of 
Viseu (IPV), Viseu, Portugal. 200Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, UTAD, Quinta de Prados, 
Vila Real, Portugal. 201Department of Forest Engineering Universidade Regional de Blumenau, Blumenau, Brazil. 202Environmental Studies and Research 
Center, University of Campinas (UNICAMP), Campinas, Brazil. 203Department of Forest and Wood Science, University of Stellenbosch, Stellenbosch, 
South Africa. 204Key Laboratory of Tropical Biological Resources, Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, 
Haikou, China. 205Division of Forestry and Natural Resources, West Virginia University, Morgantown, WV, USA. 206Department of Zoology, University of 
Oxford, Oxford, UK. 207Department of Wetland Ecology, Institute for Geography and Geoecology, Karlsruhe Institute for Technology, Karlsruhe, Germany. 
208Independent Researcher, Sommersbergseestrasse, Bad Aussee, Austria. 209Centre for Agricultural Research in Suriname (CELOS), Paramaribo, 
Suriname. 210Tropenbos International, Wageningen, the Netherlands. 211Polish State Forests, Coordination Center for Environmental Projects, Warsaw, 
Poland. 212Research Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, China. 

  e-mail: lidong.mo@usys.ethz.ch

http://www.nature.com/natecolevol
mailto:lidong.mo@usys.ethz.ch









	The global distribution and drivers of wood density and their impact on forest carbon stocks

	Spatial and phylogenetic wood density variation

	Geospatial mapping

	Drivers of global wood density variation

	Wood density and global biomass estimates

	Discussion

	Conclusion

	Methods

	Data sources

	Phylogenetic and trait analysis

	Generating species- and genus-level wood density information

	Plot-level wood density metrics

	Environmental and human disturbance covariates

	Representation of training data

	Geospatial modelling of global forest wood density properties

	Model consistency and uncertainty

	Geographic variation and drivers of community wood density properties

	Variable selection
	Variable importance

	Context-dependency of human disturbance and fire frequency effects

	Estimation of the living biomass in global forest

	Reporting summary


	Acknowledgements

	Fig. 1 Observed wood densities across the global forest inventory plots and within gymnosperms, angiosperms, forest types and biomes.
	Fig. 2 Phylogenetic tree and wood density information of global tree species.
	Fig. 3 Global maps of wood density.
	Fig. 4 Variable importance of the selected environmental metrics.
	Fig. 5 Comparison of global living tree biomass distribution using spatially explicit wood density data versus a universal wood density value.




