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Abstract

Background and objective: Hydronephrosis is essential in the diagnosis of renal
colic. We automated the detection of hydronephrosis from ultrasound images to
standardize the therapy and reduce the misdiagnosis of renal colic.
Methods: Anonymously collected ultrasound images of human kidneys, both nor-
mal and hydronephrotic, were preprocessed for neural networks. Six ‘‘state of the
art’’ models were trained and cross-validated for the detection of hydronephrosis,
and two convolutional networks were used for kidney segmentation. In the testing
phase, performance metrics included true positives, true negatives, false positives,
false negatives, accuracy, and F1 score, while the evaluation of the segmentation
task involved accuracy, precision, dice, jaccard, recall, and ASSD.
Key findings and limitations: A total of 523 sonographic kidney images (423 nonhy-
dronephrotic and 100 hydronephrotic) were collected from three different ultra-
sound devices. After training on this dataset, all models were used to evaluate
200 new ultrasound kidney images (142 nonhydronephrotic and 58 hydronephro-
tic kidneys). The highest validation accuracy (98.5%) was achieved by the AlexNet
model (GoogLeNet 97%, AlexNet_v2 96%, ResNet50 96%, ResNet101 97.5%, and
ResNet152 95%). The deeplabv3_resnet50 and deeplabv3_resnet101 reached a dice
coefficient of 94.74% and 94.48%, respectively, on the task of automated kidney seg-
mentation. The study is limited by analyzing only hydronephrosis, but this specific
focus enabled high detection accuracy.
Conclusions and clinical implications: We show that our automated ultrasound deep
learning model can be trained and used to interpret and segmentate ultrasound
images from different sources with high accuracy. This method will serve as an
automated tool in the diagnostic algorithm of acute renal failure in the future.
lsevier B.V. on behalf of European Association of Urology. This is an open access article
org/licenses/by/4.0/).
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Patient summary: Hydronephrosis is crucial in the diagnosis of renal colic. Recent
advances in artificial intelligence allow automated detection of hydronephrosis in
ultrasound images with high accuracy. These methods will help standardize the
diagnosis and treatment renal colic.
� 2024 The Author(s). Published by Elsevier B.V. on behalf of European Association of
Urology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

Hydronephrosis is a major criterion in diagnosing acute
renal colic [1]. It indicates the possible presence of obstruc-
tion (eg, urolithiasis) or reflux in the upper urinary tract,
and shows up on ultrasound as a hypoechogenic fluid in
both the renal pelvis and the calyces. With 750 000 cases
per year in Germany, urolithiasis significantly impacts the
population’s quality of life and socioeconomic factors [2].
According to Smith-Bindman et al [1], utilizing ultrasonog-
raphy as the initial diagnostic tool in suspected nephrolithi-
asis cases has been shown to reduce the necessity for
computed tomography scans, resulting in lower radiation
exposure and no increase in serious adverse events, pain,
or hospital visits. A substantial variation in the treatment
of renal colic has also been documented. Imaging and blood
tests are performed in about half of patients, urinalysis is
not performed in one-fifth of patients, and antibiotics are
incorrectly prescribed to one-fourth of patients [3]. Based
on these data, a standardized and automated initial triage
of patients, incorporating various clinical and hematological
information, including the potential identification of
hydronephrosis through ultrasound evaluations of the kid-
neys, has the potential to mitigate radiation exposure,
improve diagnostic accuracy, and enhance subsequent
treatment of renal colic. Recent advances in deep learning
neural networks (NNs), imaging techniques, and computa-
tional capabilities have facilitated image-based pattern
recognition within different datasets. These models have
already been used for predictive pattern discovery [4,5]
and in the image-based detection of various urological
pathologies [6,7].

Using an ultrasound database of urological organs, an NN
can successfully be trained to distinguish the kidneys from
other urological organs and automatically detect the pres-
ence of hydronephrosis.

In cases of renal colic, our clinical experience suggests
that the presence of kidney dilation, in conjunction with
other clinical and laboratory features, plays a pivotal role
in diagnostic and therapeutic decision-making processes,
placing more emphasis on its existence rather than its
extent.

As part of our endeavor to develop software that aids in
triage and offers automated therapeutic recommendations
for patients with renal colic in the emergency room before
contact with doctors, we have created an NN designed to
detect kidney dilation automatically.
2. Patients and methods

We created a local image database of anonymized ultra-
sound images from three different ultrasound devices from
our department (Fig. 1).
2.1. Image preprocessing and NNs

Image preprocessing and image augmentation are impor-
tant steps in machine learning, as it helps standardize
images and reduce noise [8]. This step also improves the
ability of models to learn relevant information from the
database [9]. To simulate the conditions of the ultrasound
examination in which the probe can take different rotation
positions, we applied random image augmentation to our
dataset and rotate the images. Moreover, the contrast of
the ultrasound images is affected by the imbalanced distri-
bution of the ultrasound waves by the position of the kidney
on different depths or by the interposition of different struc-
tures between the probe and the organ (ie, adipose tissue,
liver, spleen, etc.). Accordingly, to simulate reality, we fur-
ther augmented the dataset with different degrees of
brightness.

The image preprocessing and NN training were done
using the python Pytorch library [10]. The images were first
cropped, resized (224 � 224 pixels), and normalized. Subse-
quently, data augmentation was performed using Pytorch
random augmentations; the method is based on the
RandAugment method proposed by Cubuk et al [11]. The
augmentations included random horizontal flips, rotations
with a random angle, and random applications of filters
with a default probability of 50%. For image classification,
we opted to use NN architectures present within the state
of the art (SotA) algorithms [12–14]. Consequently, the
NNs created were based on the ResNet [12], AlexNet [13],
and GoogLeNet [14] architectures. Some minor changes
were made to the architectures and their parameters before
training them with our dataset. First, the AlexNet architec-
ture was implemented with 0.5 dropout layers and the
ReLU activation functions. Furthermore, the input was
adapted for grayscale images by reducing the input chan-
nels to 1 instead of 3 normally used for RGB images. Second,
the GoogLeNet architecture was also adapted for grayscale
images, and dropouts of 0.2 and 0.7 were used for the main
and auxiliary output layers, respectively. Finally, the ResNet
architectures used within this work were based on the
implementations offered by the Pytorch torchvision pack-
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Fig. 1 – Comprehensive visual summary depicting the paper workflow structure: real ultrasound kidney images were collected with three different
ultrasound devices (N1, N2, and N3) from patients with hydronephrosis (class 1) and no hydronephrosis (class 2), and used to train six neuronal networks
(AlexNet, AlexNet_v2, ResNet50, ResNet101, ResNet152, and GoogLeNet) for disease classification (hydronephrosis or no hydronephrosis) and two neuronal
networks (deeplabv3_resnet50 and deeplabv3_resnet101) for the segmentation task. Afterward, the neural networks were tested on unseen images, with the
best F1 score in the disease classification reached by AlexNet and the best dice coefficient in the segmentation task by deeplabv3_resnet50. Using specific
filters on the AlexNet, it was shown on which part of the image the neural network focuses on disease classification. AI = artificial intelligence.
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age [15] adapted for grayscale images. Every NN was
trained using the cross-entropy loss and the Adam Opti-
mizer with a learning rate of LR and weight decay of 0.0005.

As metrics for evaluation, the F1 score and the accuracy
of the trained NN models were calculated within an unseen
data test set. Both the accuracy and the F1 score are metrics
commonly used within machine learning to assess model
performance. These are functions of the true negatives
(TNs), true positives (TPs), false negatives (FNs), and false
positives (FPs) of the test data samples. The accuracy is
the number of correctly labeled data over the total number
of data samples, while the F1 score is calculated as shown in
Supplementary Figure 1.
2.2. Automated kidney segmentation

For the segmentation models, each image data sample was
accompanied by its corresponding mask represented by a
red contour surrounding the area of interest, that is, the kid-
ney. Therefore, the masks were extracted and transformed
into binary images within the preprocessing of the images.
Subsequently, the images and their masks were cropped,
resized, and normalized as in the classification datasets.
Furthermore, random data augmentation, similar to the
approach used in the hydronephrosis detection dataset,
was applied to the segmentation data samples [11].

The Deeplabv3 models [10] were chosen from the SotA
to perform semantic segmentation on our dataset, specifi-
cally the ResNet50 and ResNet101 architectures. During
implementation, we found that the pretrained models avail-
able within the torchvision [10] package drastically outper-
formed the models trained from scratch. Consequently, the
images were transformed to RGB to be compatible with the
pretrained models. Our models were initialized using the
pretrained ones as a starting point and further trained with
our dataset. To assess the model training performance, the
image pixel-wise precision and accuracy were calculated.
Each pixel of the output image was categorized as TP, TN,
FN, or FP with respect to the original mask. Then, for the val-
idation, we calculated the accuracy, precision, dice, jaccard,
recall, and ASSD score of the segmentation networks on 50%
of the test dataset.

Explainable artificial intelligence (XAI) algorithms were
used to analyze the output of our models. To this end, we
used the Captum python library [16] to implement the
XAI algorithms. First, the outputs were analyzed using the
integrated gradient method proposed by Sundararajan
et al [17]. It is a representation of the integral of gradients
with respect to inputs along a dimension of the input. Next,
the gradient Shapley Additive Explanations (SHAP) were
calculated. Gradient SHAP calculates the expected values
of gradients at random points between a baseline and the
input with Gaussian noise [18]. Furthermore, the noise tun-
nel attribution method was performed in the data samples,
where the attribution is computed multiple times while
incrementally adding Gaussian noise to the sample (Fig. 2)
[19]. Finally, an occlusion-based method was used where
contiguous patches of the image are replaced with the base-



Fig. 2 – Example of all filters applied to one ultrasound image for the explainable artificial intelligence with the AlexNet model: (A) integrated gradients, (B)
noise tunnel attribution, (C) gradient SHAP, and (D) occlusion based attribution (for Fig. 2A–C, the focus of the network is shown in black—more intense, more
relevant the area in the diagnosis of the hydronephrosis; for Fig. 2D, the focus of the network is shown in white—more intense, more relevant the area in the
diagnosis of the hydronephrosis). SHAP = Shapley Additive Explanations.
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line and the output difference is computed. The resulting
images represent a heatmap of the most significant patches
of the original data sample [20].
2.3. Software and hardware

Our analyses were based on Python 3.10 (Python Software
Foundation, Wilmington, DE, USA) and were built in
Pytorch. All analyses were performed on a computer with
2 Intel Xeon Gold processor 6248R (Intel, Santa Clara, CA,
USA) and an Santa Clara, California, USA NVIDIA GeForce
RTX 3090 with 24 GB RAM.
2.4. Ultrasound devices

The ultrasound equipment employed to acquire the images
comprised Herlev, Denmark BK with the 5000 (N1) and
Specto (N2) models and Solingen, Nordrhein-Westfalen,
Deutschland GE using Logiq P9 (N3). The images were all
two dimensional and were captured using B-mode ultra-
sound with the help of convex abdominal probes (2–5
MHz) while the patients were lying on their back.
Table 1 – Data set: device 1 (N1—BK 5000), device 2 (N2—BK Specto), an

N1, n (%) N2

Training set
Normal 191 (36.52) 17
Hydronephrosis 29 (5.55) 27
Total 220 (42.07) 20
Test set
Normal 68 (34) 39
Hydronephrosis 14 (7) 15
Total 82 (41) 54

N = number of images per device.
2.5. Ethics

This study followed German data regulations and the Decla-
ration of Helsinki, and was approved by our local ethical
committee (EK 22-360).
3. Results

A total of 723 ultrasound images were collected from three
different ultrasound devices (see Table 1). Of the images,
523 were used as the training set and 200 as the test set.
The most images from the training set were recorded with
the BK 5000 device (N1) followed by BK Specto (N2) and
GE Logiq P9 (N3).

All six models were trained in order to achieve the best
F1 score. All the models were trained using the Adam opti-
mizer for 1500 epochs, whereas GoogLeNet was trained for
750 epochs. GoogLeNet achieved the highest training accu-
racy of 100%, while ResNet50 and ResNet152 obtained the
highest validation accuracy of 98.07%. Overall, the models
exhibited high training accuracies, but varied in validation
d device 3 (N3—GE Logiq P9)

, n (%) N3, n (%) Total

6 (33.65) 56 (10.71) 423
(5.16) 44 (8.41) 100
3 (38.81) 100 (19.12) 523

(19.50) 35 (17.50) 142
(7.50) 29 (14.50) 58
(27) 64 (32) 200



Fig. 4 – Manually and automated segmented kidney images: (A) kidney with
hydronephrosis and (B) kidney without hydronephrosis. Yellow color
indicates manually segmented, blue color indicates automated segmenta-
tion with the deeplabv3_resnet50—fully convolutional network, and over-
lapped image indicates both manual and automated segmentation
employed.
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accuracies and training durations. These training character-
istics are presented in Supplementary Table 1.

In the test phase, we analyzed the performance metrics
of our six deep learning models in terms of test accuracy,
recall, precision, F1 score, and the difference in F1 score
compared with the AlexNet. AlexNet exhibits the highest
F1 score of 98.95%, test accuracy of 99.52%, recall of 99.3%,
and a precision of 98.6%, setting the baseline for F1 score
difference as 0. AlexNet_v2 and ResNet152 have deviations
in F1 score from AlexNet, with 1.71% and 2.35%, respec-
tively. ResNet101 achieved the closest F1 score to AlexNet
with only a 0.7% difference. All models showcased high per-
formance, with test accuracies ranging from 96.15% to
99.52%, and ResNet152 achieved a recall of 100%. The confu-
sion matrix indicating the evaluation of all models is pre-
sented in Table 2.

Three images were misclassified by the AlexNet (one
image with no hydronephrosis as hydronephrosis and two
images with hydronephrosis as no hydronephrosis; Fig. 3).
Figure 3A shows a hypoechogenic structure in the middle
of the renal calyx system, which could be misinterpreted
as a dilated middle calyx. Figure 3B was misinterpreted as
normal, although with a low probability (65%) of a correct
diagnosis. Figure 3C had unclear margins of the kidney,
which eventually mislead the diagnosis.

In order to understand and interpret the predictions of
the models, we used four different types of filters (activa-
tion maps). The activation maps for the AlexNet model
highlight the focus of the NN when it analyzes the image
for hydronephrotic characteristics (Supplementary Fig. 2).

For the segmentation task, we trained two fully convolu-
tional networks: deeplabv3_resnet50 and deeplabv3_res-
net101. DeeplabV3 with ResNet50 has test accuracy of
Table 2 – Confusion matrix for the neural networks trained on the data

Test accuracy (%) Recall (%) Precision (%)

AlexNet 99.52 99.3 98.6
AlexNet_v2 96.15 99.3 95.27
ResNet50 98.07 97.89 96.53
ResNet101 96.15 98.59 97.9
ResNet152 98.07 100 93.42
GoogLeNet 98.07 96.48 99.28

Fig. 3 – Misinterpreted images from AlexNet: (A) normal kidney misinterprete
normal.
90.21% and a dice score of 94.74. In comparison, DeeplabV3
with ResNet101 scores slightly better in test accuracy at
90.37%, has nearly identical precision of 99.28%, and a mar-
ginally lower dice score of 94.48. The confusion matrix of
the NNs in the test phase is shown in Supplementary
Table 2.

Two examples of automated segmentation with the
deeplabv3_50 are presented in Figure 4.
4. Discussion

In addition to utilizing deep learning techniques for predic-
tive purposes, such as estimating the success rate of stone
set

F1 score (%) Difference F1 score (AlexNet – actual), (%)

98.95 0
97.24 1.71
97.2 1.75
98.25 0.7
96.6 2.35
97.86 1.09

d as hydronephrotic; (B and C) hydronephrotic kidneys misinterpreted as
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removal with shockwave lithotripsy and anticipating the
need for readmission to the intensive care unit following
ureteroscopy, artificial intelligence (AI) models have made
significant advancements in risk stratification and the field
of image recognition [4–6,21–24]. These models have
demonstrated state-of-the-art performance in image recog-
nition and segmentation due to their robust and accurate
classification capabilities [25,26]. The application of deep
learning for image segmentation in computer or magnetic
resonance imaging has already been reported for the pros-
tate, bladder, kidney, and urolithiasis [27–30].

This study illustrates the feasibility of employing AI for
the recognition of ultrasound images depicting kidneys
with hydronephrosis. Smail et al [7] evaluated the efficacy
of a convolutional neuronal network model with five convo-
lutional layers, trained to categorize prenatal hydronephro-
sis according to the 5-point Society for Fetal Urology
classification system. This model achieved overall accuracy
of 94%. Lien et al [31] adapted three deep learning models
(U-Net, Res-UNet, and UNet++) and assessed their accuracy
in detecting hydronephrosis through ultrasound images.
The most effective model (Res-UNet) reached an accuracy
of 94.6%.

Our AlexNet model accurately classified ultrasound
images as not hydronephrotic or hydronephrotic, with over-
all accuracy of 98.5%. To our knowledge, it is the highest
accuracy of an NN in the detection of hydronephrosis. The
ability of the AI model to rapidly analyze large volumes of
imaging data can save time, improve the efficiency of the
diagnostic process, and reduce interobserver variability in
the interpretation of ultrasound images.

Nonetheless, the use of AI raises concerns about the
transparency and accountability of the decision-making
process. Therefore, this model integrated elements of XAI
to determine which features from the image contribute
most to the NN output (Supplementary Fig. 2). By present-
ing the suspicious area of the organ, we ensure the model’s
transparency and transfer the decision-making to trained
medical personnel.

A further section of our analysis is the automated seg-
mentation of the kidney in ultrasound images as a key part
of computer-aided diagnosis systems. This feature repre-
sents the extraction of representative regions from the
ultrasound image (in our case, kidneys) to better describe
the target organ and improve diagnostics. Chen et al [32]
developed a fully automatic kidney segmentation with a
deep NN architecture, which segmentate the kidneys from
different quality classes of images with a total accuracy of
98.8%. Here, we developed a pixel-wise segmentation
model, which reached a dice coefficient of 94.7%. As the
main purpose of our model was the detection of
hydronephrosis, we reached sufficient accuracy to detect
the kidneys and, subsequently, the specific characteristics
of this pathology. Nonetheless, future work is needed to
improve the total segmentation accuracy of our model.

The potential limitations of our study should be consid-
ered carefully, as these may affect the analysis performance
of the models. First, we used still images and not a series of
images of the whole organ, which may limit the diagnostic
capabilities of the algorithm. Thus, the model’s accuracy
could be increased further by using a series of images. This
study is exclusively focused on a single kidney pathology:
hydronephrosis. The exclusion of images depicting various
pathologies, such as cysts, venous dilations, large cavities
in junctional syndromes, or tumors, along with the decision
not to analyze all available ultrasound modes/images (B
mode, Mmode, Doppler, three-dimensional [3D] ultrasound
data, cine clips, multimodal ultrasound images, and 3D
images), may impact the hydronephrosis detection rate by
introducing potential FPs or FNs. Nonetheless, in an end-
to-end AI scenario for kidney analysis using ultrasound
images, our model’s role becomes pivotal in hydronephrosis
detection. Specifically designed to interpret hydronephrosis,
our model stands out as the preferred choice, complement-
ing other models that focus on different entities or patholo-
gies. Another limitation is the number of images used to
train the models. Although we have tried to consider all
possible variations of the kidney locations, we could not
consider all possible angles and degrees of brightness of
the ultrasound findings. We aimed to overcome this limita-
tion with in silico image augmentation.
5. Conclusions

In summary, our model reached high accuracy in differenti-
ating between not hydronephrotic and hydronephrotic kid-
neys. After further training and improvements, this deep
learning model could be integrated into AI-aided imaging
diagnostic tools and also standardize the diagnosis and
treatment of renal colic.
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Appendix A. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.euros.2024.01.017.
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