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ABSTRACT

Introduction: Invasive meningococcal disease 
(IMD) causes significant mortality and long-term 
sequelae. This study assesses the potential public 
health impact of adolescent vaccination strate-
gies employing MenACWY and MenC vaccines 
in Germany, where the existing meningococ-
cal immunisation programme predominantly 
involves MenC administration in toddlers.
Methods: A dynamic transmission model was 
developed to simulate the carriage of five menin-
gococcal serogroup compartments (AY/B/C/W/

Other) from 2019 until 2060 within 1-year age 
groups from 0 to 99 years of age. IMD cases were 
estimated based on case-carrier ratios. The model 
considered vaccine effectiveness against carriage 
acquisition and IMD.
Results: The model predicts that introducing 
MenACWY adolescent vaccination could lead to 
a considerable reduction in IMD incidence, with 
the potential to prevent up to 65 cases per year 
and a cumulative total of 1467 cases by 2060. 
This decrease, mainly driven by herd effects, 
would result in a reduction of IMD incidence 
across all age groups, regardless of vaccination 
age. Furthermore, implementing MenACWY vac-
cination in adolescents is projected to decrease 
annual MenACWY-related IMD mortality by up 
to 64%, equating to an overall prevention of 156 
IMD deaths by 2060. These protective outcomes 
are expected to culminate in approximately 2250 
life years gained (LYG) throughout the model’s 
projected time horizon. In contrast, the adoption 
of MenC vaccination in adolescents is predicted 
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to have minimal influence on both IMD inci-
dence and mortality, as well as on LYG.
Conclusion: The results of this study dem-
onstrate that implementing MenACWY vacci-
nation for adolescents in Germany is likely to 
notably reduce IMD incidence and mortality 
across age groups. However, the introduction of 
MenC adolescent vaccination shows only lim-
ited impact. Considering the extensive health-
care resources typically required for IMD man-
agement, these findings suggest the potential for 
economic benefits associated with the adoption 
of MenACWY adolescent vaccination, warrant-
ing further cost-effectiveness analysis.

Keywords: Invasive meningococcal disease; 
Meningococcal conjugate vaccination; 
MenACWY ; MenC; Dynamic transmission 
model; Epidemiological modelling; Herd effects; 
Life years gained; Germany

Key Summary Points 

Why carry out this study?

Invasive meningococcal disease (IMD) pre-
sents a significant public health challenge in 
Germany, with high lethality and long-term 
sequelae.

This study aimed to assess the impact of 
introducing MenACWY and MenC adoles-
cent vaccination in Germany, focussing on 
their potential to address the unmet need in 
reducing IMD cases, especially from sero-
groups W and Y.

What was learned from the study?

The introduction of MenACWY vaccination 
for adolescents could lead to a substantial 
reduction in IMD cases and deaths, prevent-
ing up to 65 annual IMD cases and a total 
of 1467 IMD cases by 2060, while additional 
MenC vaccination showed minimal impact.
Enhanced vaccine protection against car-
riage with MenACWY is predicted to further 
decrease IMD incidence, potentially pre-
venting over 2300 cases by 2060.

Scenarios prohibiting co-colonization indi-
cated strong replacement effects leading 
to a decrease in the number of prevented 
IMD cases, emphasizing the complexity of 
meningococcal disease dynamics.

The study highlights the potential public 
health benefits of MenACWY vaccination, 
including a considerable increase in life 
years gained, and suggests the necessity for 
further economic analysis to fully under-
stand its cost-effectiveness in the context of 
IMD management in Germany.

INTRODUCTION

Invasive meningococcal disease (IMD) is a severe 
bacterial infection caused by Neisseria menin-
gitidis (Nm) that manifests in meningitis and/
or sepsis and can lead to long-term disability or 
death. The pathogen colonizes the human naso-
pharynx without causing any symptoms, but 
meningococcal carriers transmit the pathogen 
to susceptible individuals via respiratory drop-
lets. Carriage prevalence varies based on factors 
such as age, immune status and social condi-
tions, but it is particularly high among adoles-
cents and young adults with prevalence rates of 
up to 24% in Europe [1].

In Europe, IMD is caused predominantly by 
Nm serogroups B and C, although their inci-
dence has been steadily decreasing in the last 
decade. In contrast, cases due to serogroups 
W and Y are rising, especially among older 
age groups [2, 3]. In response to these trends, 
various European countries have adapted their 
immunisation guidelines, either transitioning 
to MenACWY vaccination in toddlers and/or 
adolescents in existing programmes or introduc-
ing MenACWY vaccination campaigns among 
adolescents [4, 5]. Preliminary evaluations of 
MenACWY vaccine implementation indicate 
promising results, signifying a decrease in both 
the prevalence of Nm carriage and the incidence 
of IMD serogroups W and Y [6–8]. In Germany, 
MenB is the most common serogroup associ-
ated with IMD, although the proportions of 
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MenW and MenY among IMD cases increased 
from 2001 to 2019 [9]. Vaccination recommen-
dations in Germany include MenC in toddlers, 
and routine MenB vaccination, with the latter 
being introduced in early 2024 [10]. To date, 
MenACWY vaccination is only recommended 
for individuals with increased risk for IMD due 
to underlying conditions [4, 5]. Hence, expand-
ing MenACWY vaccination recommendations 
is also discussed in Germany. Mathematical 
models can provide valuable insights into the 
potential impact of vaccination strategies on 
the incidence and transmission of meningococ-
cal disease. Therefore, we developed a dynamic 
transmission model to evaluate various adoles-
cent vaccination strategies in Germany. Specifi-
cally, we compared the current practice of MenC 
toddler vaccination alone to the potential addi-
tion of either a MenC or MenACWY vaccination 
for adolescents.

METHODS

Model Structure

This article is based on previously conducted 
studies and does not contain any new studies 
with human participants or animals performed 
by any of the authors.

We developed a dynamic susceptible-
infected-susceptible (SIS) model to estimate 
meningococcal carriage of five serogroup 
compartments (MenAY/MenB/MenC/MenW/
MenO). Due to the low rate of occurrence, 
serogroup A was combined with serogroup Y 
into a single compartment, denoted as MenAY. 
Serogroup W was modelled as a separate com-
partment (MenW) to account for the recent 
emergence of more invasive serogroup W 
strains [3] despite its relatively low incidence. 
A compartment for meningococcal carriage of 
type “non-typable”/”non-ascertainable” and 
“other” labelled “MenO” was also added, as 
in the past these cases were responsible for a 
non-negligible share of IMD cases in Germany 
[11]. Individuals may get infected (i.e. become 

nasopharyngeal carriers) with a specific sero-
group, and after recovering from carriage, 
return to the susceptible compartments, where 
they remain at risk of reinfection. To track vac-
cination history, we partitioned the carriage 
compartments into three blocks according to 
vaccination status: the first block encompasses 
all individuals without a history of MenC or 
MenACWY vaccination, whereas the second 
and third block include individuals vaccinated 
during toddler age and adolescence, respec-
tively. Individuals consecutively transition 
through these blocks, initiating from the first 
(Fig. 1). The model time horizon spans from 
1999 to 2060, using 1999 to 2018 as calibra-
tion phase, inclusive of a 3-year burn-in period 
(1999–2001), and employing 2019 to 2060 for 
extrapolation. The model is implemented as a 
system of difference equations with a time step 
of one day (Eq. S1–S2).

In the main analysis, we allowed for co-
colonization and computed the model indi-
vidually for each serogroup, incorporating 
serogroup-specific inputs. However, as previ-
ous models have assumed no co-colonization, 
an alternative analysis incorporating competi-
tive serogroup interaction was conducted. This 
entailed constructing a second model version 
where individuals could be infected by only 
one serogroup at a time, thereby addressing 
the structural uncertainty associated with the 
inclusion of co-colonization (Eq. S3).

Modelled Population

The modelled population follows the German 
population aged 0–99 years stratified into 1200 
age cohorts (i.e. monthly ageing steps). Demo-
graphic changes (i.e. mortality and migration) 
and the flow of age cohorts through the model 
over time is accounted for by the changing rate 
D . This rate expresses the relative change in size 
of each age cohort during the course of one age-
ing step. Using population estimates and forecasts 
of the German Federal Statistical Office [12], the 
factor is calculated as follows:
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with t indicating a change in time by year; i , 
a change in age by year; NPop , the size of an 
age cohort at given t and i ; and s indicating 
the number of ageing steps by which a year is 
divided. A rate > 1 indicates that the respective 
age cohort grew in size during the course of an 
ageing step while a rate < 1 indicates a reduction 
in cohort size.

At the beginning of each ageing step, individ-
uals transition from one age cohort to the next, 
with the cohort size adjusted in accordance with 
the respective demographic changing rate. All 
those aged 99 are assumed to die after their last 
ageing step in the age group of 99 years. New-
borns are introduced into the model as absolute 

(1)Dt ,i =





N
Pop
t+1,i+1

N
Pop
t ,i




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s

�

numbers to the susceptible compartment and 
are uniformly distributed over the pre-defined 
ageing steps as the model progresses in time.

Model Inputs

Carriage Transmission

For each serogroup � and age group i the force 
of infection ��t ,i results from the age dependent 
contact behaviour, the carriage prevalence of 
serogroup � , and its transmissibility.

The transmissibility ε�i represents the sero-
group- and age-specific proportion of infectious 
contacts leading to carriage acquisition in age 
group i which is estimated within the model 
calibration. The contact rates βi,j denote the 
average number of contacts from individuals in 
age group i with individuals in age group j and 
are informed by social contact frequencies based 
on the German part of the POLYMOD survey 
[13] as realized in Tomori et al. [14]. We assumed 
the force of infection to be proportional to the 

carrier fraction 
C�t ,j

Nt ,j
 , with C�t ,j representing the 

carrier size of serogroup � at time t in age group 
i , and Nt ,j the corresponding total population.

IMD Incidence

We translated estimated carriage incidence 
into IMD cases via age- and serogroup-specific 
case–carrier ratios. These ratios were estimated 
using age-specific carriage prevalence derived 
from a meta-analysis [1], with the presumption 
of a 6-month carriage duration to convert preva-
lence into incidence [15, 16]. The serogroup dis-
tribution of carriage was extracted from a local 
German study in children and young adults 
conducted by Claus et al. [17]. We assumed the 
reported serogroup distribution to apply to the 
entire population. We obtained serogroup and 
age-specific IMD cases from SurvStat@RKI [18] 
for the period 2002–2005 and calculated a yearly 
average. The 2002–2005 interval was chosen as 

(2)��t ,i = ε�i

∑

j

βi,j
C�t ,j

Nt ,j

Fig. 1  Dynamic model structure. Note: transition 
between susceptible and infected compartments is only 
displayed for block 1 but applies to all compartments. N, 
non-vaccinated; V1, toddler vaccinated and protected; 
V1U, toddler vaccinated and unprotected; V2, adolescent 
vaccinated and protected; V2/1, adolescent vaccinated but 
only toddler protected; V2U, adolescent vaccinated and 
unprotected; suffix “S”, susceptible; suffix “Φ”, serogroup 
Φ carriers. serogroup Φ symbolizes the five serogroup com-
partments modelled in the study. For each compartment, 
the above model was run separately with the respective 
serogroup-specific inputs
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it precedes the introduction of Germany’s first 
meningococcal vaccine, providing a period with 
officially reported IMD data unaffected by vac-
cination impact. For each modelled serogroup 
we determined case–carrier ratios and applied 
log–log models for age-related interpolation/
extrapolation (Fig. S1).

IMD Lethality

Case-fatality rates (CFR) for IMD cases were 
informed with data from the official German 
IMD surveillance. Serogroup-specific CFRs 
for MenB (overall CFR: 8.2%), MenC (11.9%), 
MenW (12.0%) and MenY (7.5%) were calcu-
lated using data from an analysis for the years 
2001–2015 [19], complemented with data from 
the yearly national reports of infectious dis-
ease epidemiology for the years 2016–2020 [11, 
20–23]. As the CFR of IMD varies by serogroup 
and age, we used the age stratification reported 
by Hellenbrand et al. [24], who reported CFRs 
for IMD in Germany by age group to adjust the 
serogroup-specific values. CFR input values com-
bining serogroup and age group are presented 
in Table S1. Additionally, IMD-related deaths 
were converted into life years by multiplying 
the number of deaths in each age group by the 
corresponding age-specific life expectancy [25]. 
This approach permitted a comparison of total 
life years across scenarios and enabled the com-
putation of life years gained (LYG).

Vaccination

We compared different strategies of additional 
adolescent vaccination to the status quo, which 
is MenC toddler vaccination. The adolescent 
vaccination strategies differed in vaccine type, 
vaccination age and level of carriage protection 
(see Table 1). Four scenarios (scenarios 1a to 2b) 
evaluated MenACWY vaccination strategies, 
whereas the remaining two focused on MenC 
strategies. Scenario 1a was designated as the base 
case scenario.

Vaccination coverage for toddlers receiving 
MenC vaccination up to 36 months of age was 
estimated at 90%, based on surveillance data 
indicating incomplete vaccine uptake within 
the first 2 years of life [26, 27]. For adolescent 
vaccination, we assumed that 50% of eligible 
individuals would be vaccinated within the vac-
cination time window, based on the observed 
human papillomavirus vaccination coverage 
(initial dosis) in girls in Germany [26]. We mod-
elled vaccine effectiveness against IMD using 
an all-or-nothing approach for MenC and Men-
ACWY vaccines, with both vaccines assumed to 
be 89% effective in vaccinees aged ≤ 10 years and 
96% effective in vaccinees aged > 10 years [28].

To determine protection against carriage for 
the MenC vaccine, we utilised a large meningo-
coccal carriage survey study from the UK, which 
reported a protective effect of 75.0% [29]. For 
MenACWY vaccine, we considered two sources: 

Table 1  Modelled vaccination strategies

*Base case scenario

Scenario Strategy Carriage protection of 
adolescent vaccination 
(%)

Status quo MenC vaccination at 12 months

Scenario 1a* Status quo + MenACWY vaccination at age 12–14 years 36.2

Scenario 1b Status quo + MenACWY vaccination at age 15–17 years 36.2

Scenario 2a Status quo + MenACWY vaccination at age 12–14 years 80.0

Scenario 2b Status quo + MenACWY vaccination at age 15–17 years 80.0

Scenario 3a Status quo + MenC vaccination at age 12–14 years 75.0
Scenario 3b Status quo + MenC vaccination at age 15–17 years 75.0
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(i) results of a randomised controlled trial from 
England, which reported an effectiveness of 
36.2% [30], and (ii) an observational pre-post 
study of the UK MenACWY vaccination pro-
gram, reporting an effectiveness of 80.0% [7]. 
A comprehensive rationale for the selection of 
input parameters related to protection against 
carriage is presented in the supplementary mate-
rial (Text S1).

We accounted for waning of vaccination 
effects for all serogroups using exponential 
decay with a mean duration of protection of 
5 years for individuals aged up to 2 years, and 
10 years for individuals > 2 years [28, 31–33]. 
To incorporate clearance from nasopharyngeal 
carriage into our model, we assumed a carriage 
duration of 6 months for all serogroups and esti-
mated the clearance rate as the reciprocal of car-
riage duration [15].

The impact of the MenB vaccine on IMD is 
only considered outside the dynamic model, 
reducing the probability of invasive disease, due 
to a lack of evidence regarding the carriage effect 
of MenB vaccines [34]. Since 2013, the MenB 
vaccine has been available in Germany and 
was only recommended for individuals with an 
increased IMD risk by the standing committee 
on vaccination (STIKO) until early 2024 [35]. A 
three-dose vaccination regimen for infants and 
a two-dose regimen for adults were assumed 
[36, 37]. Based on sales data for MenB vaccine 
doses, we applied an annual vaccine coverage 
that started at 2.5% in 2014, increased to 14.5% 
by 2020, and remained constant thereafter. 
Assumed protection duration was 33 months for 
individuals aged up to one year and 38 months 
for those older than one year [38]. Vaccine effec-
tiveness against MenB IMD was estimated to be 
58% [39, 40]. A list of model inputs can be found 
in Table S1.

Calibration

The model was calibrated by adjusting the age- 
and serogroup-specific carriage transmissibility 
to match notified IMD cases reported in Ger-
many from 2002 to 2018 [18]. The calibration 
process involved a two-stage approach: initially, 
a derivative-free search algorithm based on the 

Nelder–Mead method was employed through 
nloptr (R Interface to NLopt) to constrain the 
parameter space [41]. Subsequently, Bayes-
ian sampling was performed via Markov chain 
Monte Carlo (Metropolis–Hastings algorithm) 
to further refine the calibrated estimates and 
to derive distributions of the calibrated param-
eters [42, 43]. Model parameters based on weak 
or no evidence (i.e. carriage transmissibility) 
were estimated within a Bayesian framework 
using publicly available data on yearly age- and 
serogroup-specific IMD cases [18]. Parameters 
that were well supported through data such as 
demographics, vaccine coverage or case-fatal-
ity rates were kept fixed within the model. We 
employed uniform prior distributions within 
plausible ranges and computed likelihood from 
observed and predicted age- and serogroup-spe-
cific IMD cases, assuming a Poisson distribution. 
The posterior distribution was subsequently 
derived as the product of the prior and likeli-
hood functions.

Analysis

The public health impact of the different adoles-
cent vaccination strategies (Table 1) was assessed 
by estimating IMD cases (per 100,000) and IMD 
deaths. Additionally, we calculated the number 
needed to vaccinate (NNV) to prevent one IMD 
case by dividing the number of persons vacci-
nated by the number of IMD cases prevented 
for each scenario. To address parameter uncer-
tainty, a probabilistic sensitivity analysis (PSA) 
was performed. This analysis involved simulta-
neous variation of key input variables (Table S1) 
over their respective probability distribution to 
generate new sets of input parameters. In total, 
5000 model realizations were computed for the 
status quo and the base case scenario.

RESULTS

Calibration and Status Quo Scenario

After the two-step calibration process, the 
model’s predictions demonstrated good fit with 
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age- and serogroup-specific notification data 
from Germany. The model projections indicate 
a reduction in overall IMD burden from approxi-
mately 280–175 cases per year (0.33–0.23 cases 
per 100,000) by 2060 (Fig. S2). More specifically, 
model predictions for IMD cases associated with 
MenB, MenC and MenO show a decline, while 
those related to MenW and MenAY increase 
under the current vaccination strategy. Although 
MenB remains the predominant cause of IMD 
throughout the projection period, MenW and 
MenAY cumulatively account for over 50% of 
cases by the end of the extrapolation period. 
With respect to age-specific IMD cases, the 
model predicts an increase in cases among indi-
viduals aged 65 years and older, with a concur-
rent decrease in all other modelled age groups 
(Fig. 2).

Public Health Impact of Adolescent 
Vaccination Strategies

The model predicts that the base case scenario 
(status quo versus scenario 1a) would consider-
ably reduce IMD incidence in Germany, with 
the potential to prevent up to 65 IMD cases 
per year and 1467 cases overall until 2060, 
translating into 156 prevented IMD deaths. 
This corresponds to a prevention of 17% of 
total IMD cases and 40% of MenACWY-specific 

cases by the end of the modelling period, 
resulting in a NNV of 7255. These protective 
effects were, to different degrees, observed 
across all age groups, indicating the presence 
of herd effects (Fig. S3). Assuming an 80% pro-
tection against carriage (scenario 2a and 2b) 
further amplified this impact, potentially pre-
venting 2359 IMD cases until 2060, with up 
to 95 prevented IMD cases at the end of the 
extrapolation period (Fig. 3). In the base case 
scenario, the majority of prevented IMD cases 
were due to MenW, followed by MenAY with 
853 and 576 prevented IMD cases, respectively. 
When assuming an 80% protection against 
carriage, the number of prevented MenW 
IMD cases increases to 1294, and the number 
of prevented MenAY IMD cases increases to 
983. Prevented MenC IMD cases had a negli-
gible contribution to the total number of pre-
vented IMD cases. The introduction of MenC 
adolescent vaccination led to a small decrease 
in IMD cases, with up to 84 cases prevented 
over the extrapolation period. Age of vaccina-
tion had a marginal impact in all modelled 
scenarios. Conversion of averted IMD deaths 
into LYG resulted in 2250 LYG for the base 
case scenario and a maximum of 4222 LYG 
assuming 80% protection against carriage. 
In contrast, both MenC adolescent vaccina-
tion scenarios yielded fewer than 500 LYG, 
markedly less than the MenACWY scenarios 

Fig. 2  Calibrated and observed invasive meningococcal disease (IMD) cases by sero- and age group for the status quo sce-
nario. Note: dotted vertical line represents end of calibration period and beginning of projection period
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yet higher when evaluated as LYG per IMD 
death. This discrepancy can be attributed to 
the model’s prediction that MenC predomi-
nantly impacts younger individuals, whereas 
MenAY and MenW are more prevalent in older 
demographics. Modifying adolescent vaccina-
tion coverage to 30% and 70% in the base case 
scenario resulted in the prevention of 1025 
and 1776 total IMD cases, respectively, corre-
sponding to 109 and 188 averted IMD deaths.

Structural Uncertainty Analysis

When restricting carriage to colonization of 
one serogroup at a time, the second model ver-
sion predicts an increase in MenW and MenAY 
IMD cases and a decline in MenB and MenO 
cases, similar to the status quo scenario in the 
main analysis. However, these variations – both 
the rise in MenW and MenAY and the decline 
in MenB and MenO – are more pronounced 

than in the main analysis (Fig. S4). When com-
paring the base case with the status quo sce-
nario, the reduction of IMD cases attributed to 
MenACWY (n = 1282) is offset by an increase in 
cases from the remaining serogroups (n = 572), 
resulting in major replacement effects. MenB 
and MenO carriers appear to occupy the niche 
previously dominated by MenW and MenAY 
carriers. Enhanced vaccine effectiveness against 
carriage (80% instead of 36.2%) resulted in sim-
ilar trends: the prevention of 2618 MenACWY 
cases was offset by an additional 1856 MenB 
and MenO cases. As in the main analysis, intro-
ducing a MenC adolescent vaccination had a 
minor impact on overall IMD burden (Fig. S5).

Probabilistic Sensitivity Analysis

Considering parameter uncertainty, the base case 
scenario projects a 17.0% reduction [95% confi-
dence interval (CI) 10.2–23.0%] in overall IMD 

Fig. 3  Public health impact of adolescent vaccination 
strategies: A absolute change in invasive meningococcal 
disease (IMD) cases over time by scenario; B total pre-
vented IMD cases by serogroup and scenario; and C total 
prevented IMD deaths by serogroup and scenario. Panel 

B and C do not contain MenB and MenO since presented 
scenarios do not affect disease burden of these serogroups. 
Rounding to the nearest integer may have introduced an 
error of ± 1 to the total numbers in panel B and C 
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cases, averting 1449 (95% CI 850–2135) cases. 
These estimates align with outcomes derived 
from deterministic analyses. The prevented cases 
for MenW and MenAY serogroups in the PSA 
were estimated to be 829 (95% CI 458–1295) and 
571 (95% CI 342–832), respectively. Moreover, 
there was a 20.1% average reduction (95% CI 
11.7–29.2%) in IMD-associated mortality, equat-
ing to 153 (95% CI 84–237) averted deaths. Fur-
ther stratified, the averted deaths for MenW and 
MenAY were projected at 104 (95% CI 53–176) 
and 43 (95% CI 22–69), respectively (Fig. 4).

DISCUSSION

The introduction of MenACWY vaccination in 
adolescents is projected by our model to sub-
stantially reduce MenAY and MenW IMD cases 
and associated deaths. Over the entire extrapola-
tion period, 17% of total IMD cases and 40% of 
MenACWY IMD cases were averted, correspond-
ing to a NNV to prevent one IMD case of 7255. 
Although this NNV appears high in relation to 
more prevalent diseases, it remains moderate in 
comparison with other meningococcal vaccina-
tion strategy models for Germany. For instance, 
Scholz et  al. reported an NNV of 12,080 for 
routine infant MenB vaccination [38], while 

Fig. 4  Results from the probabilistic sensitivity analysis: A 
invasive meningococcal disease (IMD) cases by serogroup 
over time for the status quo scenario; B IMD cases by 
serogroup over time for the base case scenario; C absolute 
change in IMD cases by serogroup comparing base case 

to status quo scenario; D absolute change in IMD deaths 
by serogroup comparing base case to status quo scenario. 
Note: lines depict the mean of all simulations and shaded 
areas show the range between the 2.5% and 97.5% quan-
tiles
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Christensen et al. reported NNV values exceed-
ing 30,000 for various MenB strategies targeting 
infants to adolescents in Germany [44].

Following a rise in MenW and MenY IMD 
cases, countries including the UK, the Nether-
lands, Spain, Greece and Italy have implemented 
adolescent MenACWY vaccination strategies [4, 
5]. Although the comprehensive evaluation of 
the public health impact and the vaccine effec-
tiveness against IMD and carriage remains ongo-
ing, preliminary data from England’s emergency 
adolescent MenACWY programme reported a 
69% reduction in MenW IMD cases during its 
first year relative to trend predictions. Notably, 
no cases were identified in the initial vacci-
nated cohort, even with a vaccination coverage 
of 36.6% [6]. Ohm et al. assessed the long-term 
duration of seroprotection against Nm in ado-
lescents who had received a single MenACWY 
vaccination, following priming in early child-
hood with MenC conjugate vaccination. Their 
findings indicated that in this age group, the 
median duration of protection against MenCWY 
serogroups exceeded 30 years [45]. In Germany, 
no routine meningococcal adolescent vaccina-
tion is currently recommended, although the 
RKI is evaluating potential strategies with MenC 
and MenACWY vaccination [46]. Based on our 
results, vaccines targeting MenW and MenAY 
should be prioritized in adolescent vaccination 
strategies to reduce the overall IMD burden.

We utilised the most recent Germany-spe-
cific data whenever possible and developed a 
dynamic transmission model to account for 
indirect vaccine benefits. We also addressed 
uncertainty in multiple dimensions. For 
instance, to examine structural uncertainty, we 
adopted two versions of meningococcal car-
riage transmission models: one allowing for 
co-colonization and another prohibiting it, 
due to uncertainty about the simultaneous car-
riage of multiple serogroups. Our findings indi-
cate that prohibiting co-colonization results in 
strong replacement effects, which diminish the 
vaccine’s overall effectiveness against IMD, as 
non-targeted serogroups replace those targeted 
by the vaccine. This phenomenon is consistent 
with prior research on dynamic meningococ-
cal carriage models [47], but has so far not been 

observed in countries introducing MenACWY in 
adolescents.

Uncertainty concerning MenACWY vaccine’s 
carriage protection was approached via two 
sources: (i) results of a randomised controlled 
trial from England, which reported an effective-
ness of 36.2% [30], and (ii) an observational 
pre-post study of the UK MenACWY vaccina-
tion program, reporting an effectiveness of 80% 
[7]. We considered both inputs because the ran-
domised controlled trial, while reducing poten-
tial bias in direct vaccine effectiveness estimates, 
was only conducted for one of the quadrivalent 
meningococcal vaccines available in the market. 
To address this uncertainty, we incorporated sce-
narios with carriage effectiveness data from the 
observational pre-post study, which employed 
another MenACWY vaccine.

Our model has several limitations. First, IMD 
cases are estimated outside the dynamic trans-
mission model. Affected individuals remain in 
the modelled population and further contrib-
ute to carriage transmission, although a more 
accurate approach might involve removing 
these cases considering the IMD mortality and 
typical public health responses such as antibi-
otic prophylaxis in close contacts. However, we 
expect the overall impact to be minimal given 
the proportionally low number of IMD cases to 
carriers.

Additionally, the co-colonization model oper-
ates under the assumption that an individual 
can simultaneously experience IMD from differ-
ent serogroups. Though this could inflate IMD 
case estimates, the small percentage of carriers 
developing IMD likely diminishes this effect. 
Another underlying assumption pertains to 
demographic changes, suggesting migrants pos-
sess similar carriage prevalence and serogroup 
distribution as the native population. Despite 
potential inconsistencies in this assumption [48, 
49], observed and projected IMD cases, strati-
fied by serogroup and age group, did not show 
notable disparities during or post the increased 
migration movements in 2015.

In our analysis, the potential influence of 
the coronavirus disease 2019 (COVID-19) pan-
demic containment measures on contact behav-
iour during 2020 to 2022 was not incorporated, 
potentially affecting model extrapolations for 
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that period [50]. Nonetheless, upon evaluating 
reported IMD cases for Germany up to August 
2023 [18], model forecasts reasonably align 
with observed cases in terms of serogroup dis-
tribution. Notably, MenW and MenY IMD cases 
showed a considerable rise, jointly representing 
41% of recorded cases, with the surge predomi-
nantly attributed to MenY. The model projected 
a combined MenAY and MenW IMD case rate of 
23%. It is significant to note that post-pandemic, 
there was a particular increase in MenY IMD 
cases, whereas MenW IMD has not returned to 
pre-pandemic levels. While observed MenB cases 
constituted 38%, the model anticipated a 56% 
proportion. The model also forecasted a decline 
in MenC IMD cases, representing 8%, though 
observed data indicated a more rapid decrease at 
4%. Finally, MenO comprised 17% of observed 
cases, compared with the model’s 13%. Over-
all, the model effectively reflects the observed 
trends in IMD infections, specifically, a decline 
in MenB and MenC cases coupled with a rise in 
MenW and MenY cases.

Employing the official population projec-
tions from the German Federal Statistical Office 
ensures data accuracy. However, during model 
development, these forecasts spanned only until 
2060, providing a shorter extrapolation period 
than other comparable models [38, 44, 47]. Con-
sidering the observed IMD infection trajectories, 
notably the increased prevention of IMD cases 
towards the end of the extrapolation period, 
such a restricted time horizon may underesti-
mate the public health benefits of MenACWY 
adolescent vaccination.

Last, our study did not reflect the recommen-
dation of routine immunisation against MenB in 
infants issued by STIKO in early 2024 [10]. We 
assumed steady MenB coverage of 14.5%, which 
is likely to be an underestimation after the rec-
ommendation and subsequent reimbursement 
of MenB for infants by all statutory health insur-
ances in Germany. However, we expect minor 
impact on our results, as the majority of pre-
dicted IMD cases prevented by adolescent con-
jugate vaccination in our model is in adolescents 
and adults.

CONCLUSION

Our results suggest that introducing MenACWY 
adolescent vaccination in Germany could sub-
stantially reduce IMD cases across all age groups, 
an observation mainly attributed to indirect 
vaccination effects. In contrast, the addition 
of MenC adolescent vaccination shows mini-
mal impact. Given the increasing incidence of 
MenW and MenY cases across Europe, these 
findings are important for the development of 
further meningococcal vaccination strategies. 
While our study provides valuable insights for 
public health policy formulation aimed at opti-
mizing meningococcal vaccination benefits, it is 
imperative to integrate economic evaluations in 
subsequent analyses to provide a comprehensive 
basis for policymakers’ decisions.
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