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Genome-scale model of Rothia mucilaginosa predicts gene 
essentialities and reveals metabolic capabilities
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ABSTRACT Cystic fibrosis (CF), an inherited genetic disorder caused by mutations in the 
cystic fibrosis transmembrane conductance regulator gene, results in sticky and thick 
mucosal fluids. This environment facilitates the colonization of various microorganisms, 
some of which can cause acute and chronic lung infections, while others may positively 
impact the disease. Rothia mucilaginosa, an oral commensal, is relatively abundant in 
the lungs of CF patients. Recent studies have unveiled its anti-inflammatory properties 
using in vitro three-dimensional lung epithelial cell cultures and in vivo mouse models 
relevant to chronic lung diseases. Apart from this, R. mucilaginosa has been associated 
with severe infections. However, its metabolic capabilities and genotype-phenotype 
relationships remain largely unknown. To gain insights into its cellular metabolism 
and genetic content, we developed the first manually curated genome-scale metabolic 
model, iRM23NL. Through growth kinetics and high-throughput phenotypic microarray 
testings, we defined its complete catabolic phenome. Subsequently, we assessed the 
model’s effectiveness in accurately predicting growth behaviors and utilizing multiple 
substrates. We used constraint-based modeling techniques to formulate novel hypothe­
ses that could expedite the development of antimicrobial strategies. More specifically, 
we detected putative essential genes and assessed their effect on metabolism under 
varying nutritional conditions. These predictions could offer novel potential antimicro­
bial targets without laborious large-scale screening of knockouts and mutant transposon 
libraries. Overall, iRM23NL demonstrates a solid capability to predict cellular pheno­
types and holds immense potential as a valuable resource for accurate predictions in 
advancing antimicrobial therapies. Moreover, it can guide metabolic engineering to tailor 
R. mucilaginosa’s metabolism for desired performance.

IMPORTANCE Cystic fibrosis (CF) is a genetic disorder characterized by thick mucosal 
secretions, leading to chronic lung infections. Rothia mucilaginosa is a common 
bacterium found in various parts of the human body, acting as a normal part of 
the flora. In people with weakened immune systems, it can become an opportunistic 
pathogen, while it is prevalent and active in CF airways. Recent studies have highlighted 
its anti-inflammatory properties in the lower pulmonary system, indicating the intricate 
relationship between microbes and human health. Herein, we have developed the 
first manually curated metabolic model of R. mucilaginosa. Our study examined the 
previously unknown relationships between the bacterium’s genotype and phenotype 
and identified essential genes that impact the metabolism under various conditions. 
With this, we opt for paving the way for developing new strategies in antimicrobial 
therapy and metabolic engineering, leading to enhanced therapeutic outcomes in cystic 
fibrosis and related conditions.

KEYWORDS iRM23NL, Rothia mucilaginosa DSM20746, ATCC 25296, constraint-based 
modeling, flux balance analysis, flux variability analysis, mathematical network, genome-
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scale metabolic model, metabolic engineering, pathway analysis, SBML, Gram-positive, 
nasal microbiome, lung infections, cystic fibrosis, antimicrobial strategies

R othia mucilaginosa is a Gram-positive, encapsulated, non-motile, and non-spore-
forming bacterium of the Micrococcaceae family (1, 2). While it is mainly aerobic, it 

may also grow anaerobically as it can switch to fermentation or other non-oxygen-involv­
ing pathways. R. mucilaginosa is a common commensal of the normal oral, upper and 
lower respiratory tract, and part of the skin florae in humans (1, 3–6). This means it 
coexists harmlessly within the host and may even provide benefits. Nonetheless, it can 
also act as an opportunistic pathogen, particularly in individuals with weakened immune 
systems, as an etiological agent of serious infections such as endocarditis, sepsis, and 
meningitis (7). Janek et al. highlighted the high prevalence of R. mucilaginosa within 
the nasal microbiome (8). Moreover, they report its susceptibility to certain staphylococ­
cal bacteriocins, indicating its major competition with the nasal staphylococci and the 
substantial impact of bacteriocins in shaping the nasal microbiota. In 2020, Uranga 
et al. revealed that R. mucilaginosa produces the strongest Fe3+-binding archetypal 
siderophore known, called enterobactin (9). This attribute contributes to its competition 
with oral microbiota (the cariogenic S. mutans, A. timonensis, and Streptococcus sp.) as 
well as four methicillin-resistant strains of S. aureus (MRSA). Enterobactin is a type of 
siderophore produced by bacteria to scavenge, chelate, and transport ferric irons from 
their surrounding environment. These are essential for bacteria when iron is scarce as 
they facilitate their acquisition necessary for their growth and metabolic processes.

Prior metagenomic sequencing analyses have unveiled the prevalence of R. 
mucilaginosa at high abundances and its enhanced metabolic activity in the lungs of 
cystic fibrosis (CF) patients (10, 11). CF is caused by the hereditary mutation of the cystic 
fibrosis transmembrane conductance regulator (CFTR) gene that disrupts the transepi­
thelial movement of ions, leading to an aberrant accumulation of thick and sticky mucus 
within the airways. The impaired immune clearance creates a hypoxic environment (12) 
promoting the polymicrobial colonization of opportunistic microbes together with fungi 
and viruses, ultimately resulting in persistent and recurring infections (13). Guss et al. and 
Bittar et al. declared R. mucilaginosa as an emerging CF bacterium (14, 15), while Lim et 
al. provided evidence supporting that R. mucilaginosa is a frequently encountered and 
metabolically active inhabitant of CF airways (16). Additionally, a study from 2018 shows 
that the opportunistic pathogen Pseudomonas aeruginosa, which frequently causes 
infections in CF patients, builds essential primary metabolites, like glutamate, by utilizing 
compounds produced by R. mucilaginosa (17). This symbiotic interaction implies that P. 
aeruginosa benefits from its neighboring microbes, which contributes to its pathogenesis 
in the CF lungs. On the other hand, Rigauts et al. revealed the anti-inflammatory activity 
of R. mucilaginosa in the lower respiratory tract, which could impact the seriousness of 
chronic lung diseases (18).

In systems biology, genome-scale metabolic models (GEMs) represent comprehen­
sive reconstructions of organisms’ metabolic networks. They are built using genomic 
sequences and comprise all known biochemical reactions and associated genes. These 
models provide systems-level insights into cellular metabolism, allowing researchers 
to simulate and analyze the flow of metabolites through these networks (19). The 
interactions among reactions and metabolites in a metabolic model are mathematically 
represented with a stoichiometric matrix (20). In the past years, an array of in silico 
methods has been developed to analyze GEMs and derive valuable hypotheses. Flux 
balance analysis (FBA) is such a powerful computational technique that operates on the 
principle of achieving a steady state by optimizing the flux (rate) of metabolites through 
reactions while accounting for various constraints such as stoichiometry, thermody­
namics, and uptake/secretion boundaries (21). Applying flux balance analysis on a 
GEM provides insights into the intricate biological system interactions. This analytical 
approach facilitates the prediction of cellular phenotypes and identification of promising 
drug targets and contributes to optimizing biotechnological processes (22). Moreover, 
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such models can guide genetic engineering by suggesting genetic modifications that 
could enhance desired product formation or cellular behavior. Further applications 
include ameliorating culture media by incorporating components that increase bacterial 
growth rates. So far, GEMs have been an invaluable resource in the systems biology field 
that helped untangle the metabolism of various organisms and especially of high-threat 
pathogens (23, 24). As described above, R. mucilaginosa has gained great interest 
in the context of polymicrobial CF environments. However, its metabolic capabilities 
and genotype-phenotype relationships in isolated monoculture settings remain largely 
unexplored.

Here, we present the first manually curated and high-quality GEM of R. mucilaginosa, 
iRM23NL, striving to understand its metabolism and unique phenotypes under diverse 
conditions. Our simulation-ready network accounts for thousands of reactions and is 
available in a standardized format following the community guidelines (25). Through 
growth kinetic experiments and high-throughput phenotypic microarray assays, we 
validated iRM23NL’s accuracy in predicting growth and substrate utilization patterns. 
We refined the reconstruction by comparing the in vitro results to in silico simulations, 
resulting in novel metabolic reactions and genes. To our knowledge, this is the first study 
presenting high-throughput nutrient utilization and comprehensive growth data for R. 
mucilaginosa. Finally, we employed FBA to formulate novel gene essentiality hypotheses 
that could expedite the development of antimicrobial strategies. Figure 1 summarizes 
the experimental and computational work presented here.

RESULTS

Reconstruction of a high-quality metabolic model for R. mucilaginosa 
DSM20746

The pipeline we previously developed (26) was used to build the first high-quality 
and manually curated GEM of R. mucilaginosa DSM20746 (ATCC 25296). An initial draft 
metabolic model was derived with CarveMe (27) and is based on the Biochemical, 
Genetical, and Genomical (BiGG) identifiers (28). The translated sequence with over 1,700 
proteins and the Gram-positive-specific template were employed. This enabled us to 
build a more precise reconstruction considering information on the peptidoglycan layer 
for the biomass objective function (BOF). The draft network contained 1,015 reactions 
(141 pseudo-reactions), 788 metabolites, and 265 genes (Fig. 2). In the first gap-filling 
stage (Draft_2), we expanded the list of reactions based on the annotated genome 
and growth kinetics data in diverse growth environments. For this, we extensively 
indexed organism-specific literature and databases and included additional enzymatic 
reactions together with 50 new gene-protein-reaction associations (GPRs). Subsequently, 
high-throughput nutrient utilization assays and model validation incorporated further 
reactions and their associated metabolic genes. Non-metabolic genes, which take part in 
other cellular processes, e.g., signaling pathways or transcription, were not considered. 
In total, 95 reactions, together with their associated metabolites, were newly added into 
the model, along with 121 novel GPRs, increasing the genetic coverage. Over 60% of 
the transport reactions have a GPR assigned, while 63% of the total enzymatic reactions 
have at least one gene assigned. Moreover, missing exchange reactions were added 
to all extracellular metabolites to represent the exchange of substrates between the 
extracellular environment and the model. The strain-specific BioCyc31 database was 
further employed to correct the reversibility of biochemical reactions, while duplicated 
reactions and metabolites were eliminated. In all cases, when no organism-specific 
information was available, we leveraged data from closely related species based on 
our phylogenomic analysis (Fig. 3). According to the calculated average nucleotide 
identity (ANI) matrix, R. mucilaginosa exhibits a similarity to six out of the 12 tested 
Rothia genomes. More specifically, it shares a greater resemblance with R. aeria and R. 
dentocariosa underscoring a closer evolutionary relationship between these species.

R. mucilaginosa is primarily aerobic, efficiently generating ATP through oxic respi­
ration; however, in low-oxygen or oxygen-absent conditions, it shifts to anaerobic 
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metabolism to produce energy. This metabolic adaptability enables R. mucilaginosa to 
adapt in microaerophilic environments like the oxygen-restricted conditions in CF lungs 
(16). Our draft model lacked the ability to demonstrate anaerobic growth. Therefore, we 
investigated the metabolic cascade and systematically incorporated missing enzymes to 
ensure that the model can simulate growth even in the absence of oxygen by identifying 
and integrating alternative pathways. This refinement included the incorporation of 
enzymatic reactions, such as the superoxide dismutase (SPODM) and catalase (CAT) that 
are responsible for the breakdown of radical reactive oxygen species (ROS) and shielding 
the cell against oxidative damage (Fig. 4 Panel A). Such scavenging enzymes play an 
integral role in counteracting the harmful effects of ROS during anaerobic respiration 
(31). However, during this process, we found no associated GPRs for CAT within the 

FIG 1 Construction and validation flowchart of the metabolic network for R. mucilaginosa, iRM23NL. The study is divided into the experimental and computa­

tional phases. The proteome-derived metabolic reconstruction and curation was done based on the workflow we described elsewhere (26).
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organism-specific BioCyc database. Additional scavenging enzymes like glutathione and 
thioredoxin reductases essential for maintaining the redox balance (32) were already 
present in the initial draft model (GTHOr, GTHRDabc2pp, and TRDR). Altogether, the 
final model, iRM23NL, contains 1,162 reactions (619 gene-associated; 65 catalyzed by 
enzyme complexes, 70 catalyzed by isozymes, and 484 by simple gene association), 
171 exchange and sink reactions, 874 metabolites (558 in cytoplasm, 148 in periplasm, 
and 168 in the extracellular space), and 372 genes (Fig. 2). The model’s metabolic 
coverage is at 3.12%, which indicates a high level of modeling detail regarding reac­
tions, enzymes, and their associated genes (33). Additionally, we enriched the model 
elements with numerous database cross-references (34), while appropriate and precise 
Systems Biology Ontology (SBO) terms were assigned to each model entity using the 
SBOannotator package (35). The presence of no energy-generating cycles (EGCs) was 

FIG 2 Properties of the genome-scale metabolic model for R. mucilaginosa DSM20746, iRM23NL. (A) Evolution of metabolic network content from its initial draft 

to the final stage of extensive manual gap-filling. The shifts in the sets’ sizes are also displayed in each stage. The first stage of gap-filling is denoted by Draft_2, 

while the final stage is upon validation with experimental data. (B) UpSet plots comparing sets between three model versions created using the UpSetPlot 

package (29). The numbers indicate the cardinality of the respective set. (C) Subsystem-level statistics within pathways along with the distribution of gene- and 

non-gene-associated reactions. The pathway analysis was limited to reaction identifiers that could be successfully mapped to Kyoto Encyclopedia of Genes and 

Genomes (KEGG) (30) reactions.
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ensured and controlled after each curation stage, and the mass- and charge-imbalan­
ces were corrected. With this, the final Metabolic Model Testing (MEMOTE) (36) score of 
iRM23NL is 89%, while with highly specific SBO terms, the score drops by 2%. The final 
curated model, iRM23NL, is available as a supplementary file in Systems Biology Markup 
Language (SBML) Level 3 Version 1 (37) and JavaScript Object Notation (JSON) formats 
with the flux balance constraints (fbc) and groups plugins available.

The first validation step of iRM23NL aimed to evaluate its ability to correctly 
simulate biomass production across diverse environmental conditions and growth media 

FIG 3 Phylogenomic all-vs-all analysis between 13 Rothia species. Based on the calculated ANI matrix, R. mucilaginosa is mostly similar to six out of 13 genomes, 

with higher similarity to R. aeria and R. dentocariosa.
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formulations. To elucidate the bacterium’s optimal conditions and metabolic preferences, 
we experimentally tested five commonly used media, including three general nutrient 
media; brain heart infusion (BHI) and Luria-Bertani (LB), and tryptic soy broth (TSB), 
and two defined media; M9 minimal medium (M9) pure and Roswell Park Memorial 
Institute (RPMI) (Fig. 4 Panel B). The BHI medium was used as a baseline for the in 
vitro experiments since it is a known and well-established environment for the growth 
of R. mucilaginosa and enabled us to compare the bacterium’s growth characteristics 
to the newly tested media. For the in silico simulations, we applied FBA and added 
additional constraints to the linear programming problem defined in Equation 5. In more 
detail, we specified the flux constraints such that only extracellular metabolites defined 
in the medium of interest could flow freely through the system (unconstrained, finite 
fluxes), while the remaining fluxes were constrained to zero. We compared the in vitro 
to the in silico observed growth using the FCOD as a qualitative measure of growth 
(see Materials and Methods). Furthermore, we compared the OD at the start and the 
end of the experiment, considering a statistically significant difference between these 
measurements as an indication of growth. Our metabolic network, iRM23NL, simulated 
positive fluxes through the biomass reaction for all tested media except for the M9 pure 
medium, where a zero flux was observed. These findings align with the experimentally 
observed data. More specifically, there is no statistically significant difference in OD 
between the initial and final time-points in M9 pure medium (P-value = 0.1202 and 

FIG 4 Investigation of R. mucilaginosa’s growth behavior in different nutrient media. (A) Metabolic response of R. mucilaginosa under anaerobic stress as 

represented in iRM23NL. Reduction process of oxygen (O2
−) generating ROS is indicated by red arrows, while pathways highlighted in green arrows represent 

reactions governed by ROS scavenging enzymes leading to bacterial cell detoxification. (B) Experimentally-derived growth curves for R. mucilaginosa DSM20746 

in multiple liquid growth media along with the respective fold changes (FCs) of the acquired optical densities (ODs) at 590 nm, as defined in Equation 1. The data 

shown here are an average of three biological replicates (n = 3). Based on the experimental results, a threshold of FCOD = 1.4 was established to qualitatively 

describe bacterial growth. We verified the correctness of the threshold by performing statistical analysis as described in Materials and Methods. All data are 

normally distributed, while there is no significant difference between their variances. The asterisks flag the significance levels. The BHI medium was used as 

a baseline, while the Control line represents blank measurements of pure media. Bacterial growth was aerobically measured by the OD at 590 nm (ordinate) 

at three distinct time points ranging from 0 h to 48 h (abscissa). (C) In silico-simulated growth rates using iRM23NL. Detailed in silico media formulations are 

provided in Table S2.
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FCOD < 1.4) indicating no significant growth. Conversely, in the remaining examined 
media, statistically significant growth was observed (P-value = 0.00006–0.00142 and 
FCOD > 1.4) indicating significant growth in these settings. The highest aerobic growth 
rate was predicted in TSB [1.6 mmol/(gDW · h)], while the lowest biomass production 
flux was recorded for the M9 pure medium containing only essential salts. However, the 
RPMI medium followed as the second-highest in supporting bacterial in vitro cellular 
growth, offering a defined medium suitable for R. mucilaginosa’s cultivation. Although R. 
mucilaginosa increased its biomass after 24 h, it slightly declined after 48 h. On the other 
hand, the simulated network resulted in a contrary outcome compared to the expected 
experimental effect. More specifically, iRM23NL simulated a lower flux through biomass 
[0.44 mmol/(gDW · h)] with RPMI when compared to LB. It is important to note here that 
in order to simulate growth in RPMI medium, six metal ions [cobalt (Co2+), copper (Cu2+), 
manganese (Mn2+), zinc (Zn2+), ferric iron (Fe3+), and ferrous iron (Fe2+)] were supple­
mented. These compounds were missing from the providers’ medium formulation. Our 
findings underscored R. mucilaginosa’s adaptability to various nutritional environments, 
growing best in nutrient-rich conditions while revealing specific growth requirements 
beyond minimal settings.

We further employed iRM23NL to examine whether it could generate biomass within 
the human nasal environment and the CF lungs. For this purpose, we performed in 
silico simulations using the synthetic cystic fibrosis sputum medium (SCFM) (38) and 
synthetic nasal medium (SNM) (39) (Fig. 4 Panel C). Our computational model success­
fully simulated positive growth in both media, with a growth rate of 0.43 mmol/(gDW · 
h) in SNM and 0.45 mmol/(gDW · h) in SCFM. These results align with the documented 
metabolic activity of R. mucilaginosa in CF lungs and its frequent isolation from the 
human nasal cavity. Notably, the observed growth rates closely resembled the flux 
rate predicted for biomass production in RPMI medium. Additionally, we confirmed 
that iRM23NL accurately represented R. mucilaginosa’s capacity for facultative anaerobic 
respiration. In more detail, when the oxygen uptake was turned off iRM23NL could 
successfully exhibit growth using alternative metabolic pathways across all tested 
nutritional media. When the oxygen level was decreased, the model predicted up to 
68% reduction in biomass yield compared to aerobic conditions. Consequently, the 
remarkably lower anaerobic rates in all tested media mimic R. mucilaginosa’s inherent 
facultative anaerobic capabilities.

Nutrient utilization profile of R. mucilaginosa and predictive performance of 
iRM23NL

We experimentally characterized the metabolic phenotype of R. mucilaginosa DSM20746 
using four 96-well Biolog PM microplates (Fig. 5). These high-throughput assays serve as 
proxies for bacterial growth by measuring cellular respiration across several conditions. 
Active respiration in the minimal medium is detected by the reduction of tetrazolium 
dye over time, indicating the utilization of the provided sole source (40). We cultivated 
our strain in a minimal medium supplemented with various sources, and growth was 
monitored over 48 h to identify suitable nutrients for the bacterium (as described in 
Materials and Methods). The derived OD measurements were normalized according to 
the average growth over replicates per plate and converted to qualitative data represent­
ing non-growth (NG) or growth (G). In total, we tested the uptake and utilization of 379 
distinct carbon, nitrogen, phosphorus, and sulfur substrates. R. mucilaginosa demonstra­
ted the ability to utilize 61 of 190 tested carbon substrates, including carboxylates, 
saccharides, and amino acids, while 10 of 95 were found to be viable nitrogen sources 
(Fig. 5 Panel B). Furthermore, out of 59 tested phosphorus sources, R. mucilaginosa 
exhibited a loss of metabolic activity for 28 compounds, resulting in a non-viable 
phenotype, while only 71.4% of all analyzed sulfur substrates supported positive growth. 
More specifically, 6 inorganic phosphorus (IP), 14 organic phosphorus (OP), 2 cyclic 
nucleoside monophosphates (cNMPs), and 9 nucleoside monophosphates (NMPs) were 
successfully utilized as sole phosphorus sources (Fig. 5, Panel C). The experimentally 
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defined nutrient utilization phenome of R. mucilaginosa can be found in Fig. S1. An 
overview of all experimentally tested substrates, along with the assay results, can be 

FIG 5 Complete experimentally-derived nutrient utilization phenome of R. mucilaginosa DSM20746. (A) Utilization of individual nutrients by the bacterium 

across four Biolog phenotypic microarrays. Bacterial growth was measured by OD at 590 nm. (B) Numerical summary nutrient sources experimentally tested in 

each Biolog phenotype microarray (PM), classified into those resulting in bacterial growth and those that R. mucilaginosa could not utilize. (C) Categorization 

of all tested phosphorous sources during the high-throughput Biolog assay. Utilization of totally 31 phosphorus sources resulted in positive phenotype (green 

chart), while the cell exhibited an inability to utilize the remaining 28 (orange chart).
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found in Table S3. We independently confirmed the Biolog nutrient utilization data 
by testing the ability of DSM20746 to grow on minimal media in the presence of 10 
compounds (see Materials and Methods, Fig. S2).

Additionally, we evaluated the predictive performance of our metabolic model by 
using various C-, N-, P-, and S-containing substrates. All compounds from the high-
throughput phenotypic data were mapped to BiGG (28) identifiers and subsequently to 
iRM23NL. In total, 286 could be successfully mapped to the BiGG database. From these, 
126 existed as extracellular metabolites in iRM23NL and were considered for further 
analysis. Model simulations were performed under aerobic conditions with the minimal 
medium defined in Table S2 and FBA (see Materials and Methods). An extracellular 
reaction was enabled for each tested substrate to force the model to use its transport­
ers. Discrepancies between the Biolog data and the model simulations were utilized 
as basis for hypotheses to further improve and refine the network reconstruction. We 
resolved most inconsistencies via extensive literature mining and iterative gap analysis. 
For this, we used the organism- and strain-specific BioCyc (33) database. Throughout 
this process, we encountered different scenarios regarding incorrect model predictions. 
These included compounds present in all compartments, including the extracellular 
space, as well as substrates defined within the intracellular space and periplasm, with no 
transporter defined toward the extracellular space. If the experimental results indicated 
utilization of an undefined compound, we searched BioCyc (33) to find strain-specific 
and gene-based missing transporters or enzymatic reactions. When no organism-specific 
evidence was available, we sought supporting data from genomically identical species 
(Fig. 3). For instance, the compound 3-sulfino-L-alanine (3sala) was initially absent from 
any compartment in the preliminary draft model. Since no strain-specific information 
was available, we conducted a homology-based search using Basic Local Alignment 
Search Tool (BLAST) (41) to find genes with high similarity (similarity threshold: > 
80%) in related species. Subsequently, we identified cysteine desulfurase (SULFCYS) 
along with three associated transport reactions (proton-mediated; SULFCYSpp, diffusion; 
SULFCYStex, and ABC transport; SULFCYSabc) that displayed a similarity over 80% 
with R. dentocariosa. These components were consequently incorporated into iRM23NL, 
resulting in the expected positive utilization phenotype. Generally, false negative or 
false positive predictions arise from missing or erroneous involvement of transport­
ers, respectively. We resolved false positives by removing transport reactions lacking 
supporting gene evidence or adjusting their reversibility to facilitate export solely. 
More specifically, initial model predictions indicated that iRM23NL could not sustain 
growth when supplied with either L-cysteate (Lcyst) or AMP (amp) as sole sources, 
while Biolog assays indicated the opposite. To rectify this, we introduced the correspond­
ing irreversible transporters (LCYStex and AMPt) and enabled their in silico utilization 
of these compounds. Moreover, several metabolites (e.g., phosphoenolpyruvate; pep, 
trimetaphosphate; tmp, hypotaurine; hyptaur, and inorganic triphosphate; pppi) which 
were absent from the initial draft model but exhibited positive growth in utilization 
assays were subsequently incorporated into the final network, leading to additional 
true positives predictions. All in all, over 50 transport reactions were added into the 
network, while 37 wrongly added enzymatic functions were removed. We also incorpo­
rated novel GPRs encoding over 60 biochemical reactions. Nevertheless, we identified 
approximately 20 instances where the resolution of inconsistencies necessitated the 
inclusion of metabolic reactions lacking associated gene evidence. For instance, to 
enable the utilization of L-aspartate, we introduced a transporter via diffusion from 
extracellular to periplasm (ASPtex), for which no associated GPR was available. Similar 
scenarios arose for other compounds, e.g., D-galactose, D-glucuronate, and acetate. These 
instances underscore knowledge gaps in the metabolism of DSM20746 that require 
in-depth investigation. In total, 14 carbon and nitrogen sources failed to promote growth 
in iRM23NL. Surprisingly, all of these sources had corresponding transport reactions 
iRM23NL but still remained ineffective (e.g., L-fucose, L-arabinose, and L-rhamnose) and 
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nitrogen (L-tyrosin). We could not find further information on their transport or metabolic 
mechanism either in the genome annotation or the literature.

In summary, the final prediction accuracy of nutrient assimilation and utilization 
achieved by iRM23NL was 77% for carbon sources (MCC for PM1 = 0.52 and PM2A = 
0.58), 94.4% for nitrogen sources (MCC = 0.82), 97% for phosphorus and sulfur sources 
(ACC = 100%; MCC = 1.0 and ACC = 92.3%; MCC = 0.82, respectively) (Fig. 6). Our model’s 
performance was notably increased by 40% post-comprehensive curation compared to 
the initial draft model. Our refinement reduced false positive predictions by 17, leaving 
only 3 unresolved mismatches. The most remarkable improvement was in nitrogen 
and phosphorus sources predictions. The high predictive accuracy indicates that core 
metabolic pathways and multiple catabolic routes of DSM20746 have been accurately 
reconstructed within iRM23NL. Consequently, the network can predict the catabolism of 
numerous common compounds, such as sugars and amino acids.

Gene essentiality predictions using iRM23NL

Given the increased percentage of gene-associated reactions (Fig. 2, Panel C) and 
the high predictive accuracy of the metabolic reconstruction, we employed iRM23NL 
further to predict exploitable single gene knockouts. For this purpose, we systemati­
cally removed each biochemical reaction from the network and optimized iRM23NL to 
produce biomass using FBA. To mitigate the inherent variability of the optimization 
algorithms, we repeated our FBA simulation 100 times. Additionally, we employed 
parsimonious enzyme usage flux balance analysis (pFBA), which involves solving two 
sequential linear optimization problems to determine the flux distribution of the optimal 
solution while minimizing the total sum of flux. Then, we compared the predicted 
growth rates before and after introducing the simulated gene deletion. The FCgr 
between the knocked-out and wild-type growth rates was employed as a proxy for the 
gene’s essentiality. We proceeded with condition-specific in silico single gene deletions. 
For this purpose, we utilized a minimal and a nutrient-rich medium (M9 supplemented 
with glucose and LB) as well as two growth media that mimic the intra-human nasal 
passages and the lungs of CF patients [SNM (39) and SCFM (38)]. Generally, when 
subjected to nutrient-limited conditions, the model predicted a higher number of genes 
as essential for growth, while the count of essential genes remained consistent among 
oxic and anoxic conditions (Fig. 7, Panel A). In total, 4 metabolic genes exhibited a 
partially essential effect across all tested media. This indicates that these genes promote 
cellular fitness, and their deletion partially impairs the bacterium’s capacity to generate 
biomass. These genes are the Trka family potassium uptake protein (WP_005506372.1), 
ribulose-phosphate 3-epimerase (WP_005507411.1), glucose-6-phosphate isomerase 
(WP_005508482.1), and transaldolase (WP_005509117.1). The majority of essential genes 
are involved in nucleotide metabolism, peptidoglycan biosynthesis, or the energy 
metabolism. These over-represented subsystems among the identified essential genes 
suggest their importance in supporting the bacterium’s respiration (Fig. S4). Neverthe­
less, in nutrient-poor conditions (M9 medium) genes from the biosynthesis of leu­
cine (2-isopropylmalate synthase; WP_005508679.1 and 3-isopropylmalate dehydratase; 
WP_005507445.1), valine (ketol-acid reductoisomerase; WP_005508646.1 and dihydroxy-
acid dehydratase; WP_005509229.1), and chorismate (shikimate kinase; WP_005508729.1 
and 3-dehydroquinate dehydratase; WP_005504658.1) were found to be critical for the 
organism’s survival. Tables S4 and S5 list in detail the predicted essential genes, each 
corresponding to specific approaches employed in this study.

Subsequently, we conducted a protein sequence homology analysis with BLAST 
(42) against the human proteome to identify potential targets that could be exploited 
in future therapeutic strategies. For this, only genes highlighted as essential in both 
laboratory and synthetically defined media were considered (Fig. 7, Panel B). Overall, 
35 essential genes were common in LB and M9, of which 20 common genes repor­
ted homologous counterparts in the human genome. Further analysis revealed that 
among these genes, five genes exhibited over 50% sequence similarity with homologous 
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proteins although none resulted in over 80% similarity. Similarly, when iRM23NL was 
simulated with SCFM and SNM in both aerobic and anaerobic conditions, 45 shared 
genes were predicted to be essential. Homology analysis against the human genome 
yielded 25 genes with exhibited homology in the human genomes, with 7 demon­
strating over 50% sequence similarity. For instance, genes encoding proteins such as 
phosphopyruvate hydratase (WP_005506838.1), CTP synthase (WP_044141843.1), and 
adenylosuccinate synthase (WP_005509175.1) consistently exhibited human counter­
parts with similarity exceeding 50% across all tested growth media and oxygen levels. 
Among the essential genes shared between both LB and M9, 15 of them did not 
have any homologous hits. The same was observed for 20 common essential genes 

FIG 6 Predictive accuracy performance of iRM23NL using nutrient utilization data. Only substrates that exhibited complete mapping to both BiGG and model 

identifiers could be analyzed. Green represents correct predictions, and orange represents inconsistent predictions. The overall prediction accuracy of iRM23NL 

was computed using Equation 6.

FIG 7 Comparative analysis of novel gene essentialities in iRM23NL across four distinct growth media. (A) Classification of network-derived single gene deletions 

within iRM23NL, classified into essential, inessential, and partially essential genes, when subjected to aerobic (green) and anaerobic (orange) environments. 

Details regarding the classification schema can be found in Materials and Methods. (B) Protein sequence homology analysis of genes predicted to be essential 

in the laboratory media (LB and M9 pure supplemented with glucose) and the synthetically defined SNM and SCFM in both oxygen-rich and oxygen-limited 

conditions. The percentage identity threshold was set to 50% similarity to the human proteome.
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in SCFM and SNM. Some examples of these genes include orotate phosphoribosyl­
transferase (WP_005507935.1), type I pantothenate kinase (WP_005505041.1), dihydro­
neopterin aldolase (WP_005507619.1), and pantetheine-phosphate adenylyltransferase 
(WP_005508106.1). A more detailed comparison can be found in Table S6.

Our in silico transposon mutant analysis using iRM23NL could serve as a basis for 
several research and practical applications from rational and condition-specific drug 
target development to biotechnological applications and metabolic engineering.

DISCUSSION

The metabolic phenome of R. mucilaginosa, a bacterium with both beneficial and 
pathogenic behavior, remains still largely unexplored. Investigating its metabolic traits 
is of great importance as it holds the potential to unveil unique capabilities, includ­
ing substrate utilization, byproduct production, and contributions to host-microbe 
interactions. R. mucilaginosa is a versatile microbe found in humans’ oral, respiratory, and 
skin flora, where it coexists harmoniously. However, in immunocompromised individuals, 
R. mucilaginosa can act as an opportunistic pathogen, causing severe infections. Our 
study focuses on the metabolic aspects of R. mucilaginosa, particularly its behavior in 
isolated cultures. In 2019, a 17-species bacterial community model was reconstructed to 
simulate the polymicrobial community of the CF airways (43). This model accurately 
predicted the abundance of specific bacteria within patients’ CF lung communities 
by linking metabolomics and 16S rRNA gene sequencing data. However, studying a 
bacterium’s metabolism and genotype-phenotype relationships in monoculture provides 
a more controlled knowledge base. This allows for the precise manipulation of varia­
bles, enhancing our understanding of its individual traits, genetic makeup, metabolic 
pathways, and responses to stimuli (22, 23). Moreover, one can elucidate the bacterium’s 
unique contributions to nutrient uptake, substrate production, and growth dynamics, 
crucial for understanding its role in a broader ecosystem. Monoculture studies identify 
key genes and pathways, revealing how the bacterium functions autonomously. Such 
analysis serves as a valuable reference, differentiating inherent characteristics from those 
influenced by external interactions. To this end, we empirically analyzed the metabolic 
phenome of R. mucilaginosa DSM20746 and developed the first high-quality strain-spe­
cific GEM of R. mucilaginosa, called iRM23NL. We considered literature and database 
organism-specific evidence to manually gap-fill the model and include highly relevant 
biochemical reactions. Phylogenetic analysis of further Rothia species provided insights 
into the relationship and genetic diversity between these species and was utilized to 
extend the metabolic network’s completeness. Our model is simulation-ready, follows 
strictly community standards (25), and exhibits a high content quality MEMOTE score.

R. mucilaginosa is primarily aerobic and can perform oxic respiration by efficiently 
generating energy in the form of adenosine triphosphate (ATP) (1). However, when 
oxygen is limited or absent, R. mucilaginosa switches to anaerobic metabolism, which 
may involve fermentation or other alternative pathways to generate energy. As already 
mentioned, R. mucilaginosa has been previously found to be metabolically active in 
CF lungs where the oxygen levels are notably restricted (16). This indicates that the 
bacterium undergoes metabolic shift and can survive in microaerophilic environments. 
Various ROS products emerge as byproducts in the bacterial response to the fluctuating 
oxygen levels (34). In more detail, the cascade of ROS is initiated by the formation of 
O2

− upon univalent oxygen reduction within the electron transport chain (ETC). Extreme 
oxygen fluctuations may be lethal and can ultimately damage cellular structure. The 
detoxifying pathway includes the enzymes superoxide dismutase (SOD), catalase, and 
peroxidase that break down lethal radicals to water and oxygen enabling the cell to 
neutralize the oxidative stress (44) (see Fig. 4). However, the exact anaerobic respiration 
mechanism of R. mucilaginosa must be thoroughly examined in experimental settings.

Since R. mucilaginosa’s metabolic behavior and adaptability are mainly yet unknown, 
we started by testing its growth behavior in various nutrient media. Exploring 
how bacteria react to various growth conditions within the human body is pivotal 
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for understanding diseases and developing effective treatments. Moreover, they are 
essential for evaluating their evolution and adaptation to different environmental 
conditions, leading to new ecological niches in which the bacterium could be meta­
bolically active. We ultimately validated iRM23NL using our growth kinetics data in 
various growth media. Overall, iRM23NL’s predictions were in line with the experimental 
observations. R. mucilaginosa demonstrated higher experimental growth in nutrient-rich 
media. The model successfully simulated growth for most media, while no biomass 
production was achieved in the M9 pure medium. When comparing LB to RPMI, the 
simulated growth rate was higher in LB, while the empirical growth in RPMI was twice 
as high as that in LB. This can be attributed to the fact that computer models cannot 
mimic the entire experimental settings and lack kinetic parameters. As of September 
2023, bacteria like S. aureus, B. subtilis, and E. coli have been extensively researched for 
decades, with hundreds of thousands of PubMed (45) entries since the early 1990s. In 
contrast, R. mucilaginosa’s scientific prominence only began in the 21st century, with only 
423 publications to date, indicating significant knowledge gaps crucial for metabolic 
reconstructions. More specialized BOF would enhance the predictive power and would 
reflect a more organism-specific metabolism. Therefore, this scarcity underscores the 
urgent need for further research efforts to uncover the hidden facets of R. mucilagi­
nosa’s metabolism and its significance. Notably, to simulate in silico growth in RPMI 
and SCFM media, six metal ions needed to be supplemented. These metals have 
also been confirmed as essential for the in silico growth of S. aureus in RPMI (41). 
According to the model’s predictions RPMI, supplementation with manganese, zinc, 
and molybdate was required. Transition metals could be highly toxic; however, in 
controlled levels are important in the survival of all living organisms (46). For instance, 
they are involved in redox catalysis, needed for energy production through respiration, 
and in non-redox catalysis, necessary for many biosynthetic and metabolic processes. 
Additionally, transition metals are required for the activity of many enzymes, including 
those involved in genomic replication and repair and nitrogen fixation. However, since 
these compounds were absent from the providers’ medium formulation for RPMI, we 
speculate that the provided medium definition may not be exact. In all cases, the 
suggested metal co-factor promiscuity in R. mucilaginosa by iRM23NL needs to be 
examined to shed light on whether the bacterium could survive in the absence of one of 
the suggested metals.

Moreover, we experimentally characterized the strain’s ability to assimilate and 
utilize substrates using high-throughput phenotypic microarray assays. The utilization of 
various nitrogen sources did not result in active respiration, indicating that the bacterial 
genome lacks genes encoding for respective transporters. We used the phenotypic 
results to validate and extend our metabolic reconstruction, iRM23NL. Inconsistencies 
between the model and the phenotypic microarray results served as a basis for further 
model refinement. We enriched the model with missing transport reactions and their 
respective GPRs by referring to the organism- and strain-specific BioCyc (47) registry 
and the General Feature Format (GFF) annotation file. All in all, characterizing and 
determining the repertoire of nutrient sources a strain can use or assimilate is a critical 
factor of pathogenesis. It provides valuable insights into how pathogens adapt to host 
environments and evade host defenses. Our transporter-augmented model reflects a 
high accuracy degree with the experimental data regarding using carbon, nitrogen, 
phosphorus, and sulfur sources. Discrepancies between computational and empirical 
results highlight areas of current uncertainty knowledge regarding the metabolism of 
R. mucilaginosa. They could be attributed to non-metabolic factors that fall beyond the 
metabolic models’ scope, including regulatory processes, gene expression, and signaling 
pathways. However, targeted experiments are needed to fill the remaining network gaps 
and reveal novel enzymatic processes.

Considering the predictive precision of our metabolic reconstruction, we utilized 
iRM23NL to derive novel hypotheses. We examined the effects of condition-specific 
single gene knockouts on the bacterial capacity to produce biomass. Gene essentiality 

Research Article Microbiology Spectrum

June 2024  Volume 12  Issue 6 10.1128/spectrum.04006-2314

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/s

pe
ct

ru
m

 o
n 

12
 D

ec
em

be
r 

20
24

 b
y 

14
1.

48
.6

7.
87

.

https://doi.org/10.1128/spectrum.04006-23


analysis is inherently contingent upon specific conditions. In the context of constraint-
based metabolic modeling, a plethora of constraints are established, with the availabil­
ity of nutrients, often the growth medium, being the most prevalent. By altering the 
availability of these nutrients, the environmental conditions are modified, consequently 
exerting a profound influence on the metabolic state and growth of an organism (48, 
49). However, the true strength and versatility of GEMs lie in their ability to rapidly 
generate condition-specific hypotheses on a large scale, circumventing the need for 
labor-intensive and expensive screenings that may not always yield direct success. 
Various models, spanning organisms like A. baumannii, E. coli, S. cerevisiae, P. falciparum, 
and P. aeruginosa, demonstrated predictive accuracies ranging from 72% to 93% (50–60). 
Additionally, gene essentiality analysis has been instrumental in identifying potential 
drug targets for diseases such as cancer and viral infections, aligning well with both 
in vitro (61–63) and in vivo (64) data. Therefore, we utlized our GEM and created a 
high-throughput in silico-derived transposon mutant library considering two standard 
growth media, LB and M9, along with two growth media formulated to mimic the 
environment within the human body, SNM and SCFM. In this regard, we identified 
putative essential and partially essential genes and assessed their potential vulnerability 
under varying nutritional environments. With this, we opted for detecting candidate 
genes that could be considered in future antimicrobial and anti-inflammatory strategies 
in immunocompromised and CF patients. With this, we opted for identifying candidate 
genes for future research that hold promise for experimental validation. Determining 
which essential genes have human counterparts is of great importance for antibiotic 
drug development, as it helps assess potential side effects and cross-species effects on 
human genes targeted by antibiotics. Moreover, it provides insights into the molecular 
mechanisms of host-pathogen interactions, explaining how pathogens manipulate host 
cells and evade the immune system. Utilizing our GEM offers promising venues for future 
targeted engineering strategies without the need for laborious large-scale screening 
of knockouts and mutant libraries. This methodology would facilitate the rapid design 
of metabolic gene knockout strains by eliminating the associated reaction(s) from the 
model. Finally, CF lungs represent a highly dynamic environment (65, 66). However, GEMs 
are adaptable and can be tailored to reflect the metabolic capabilities of bacteria across 
diverse environmental conditions.

The main objective in our endeavor to combat R. mucilaginosa as an opportunistic 
pathogen causing infections (7) is identifying essential genes, particularly those without 
human counterparts. Determining these essential genes is crucial as we aim to neutralize 
the pathogen without harming the host. Simultaneously, we are exploring R. mucilagi­
nosa as an agent with anti-inflammatory properties (18). In this context, we opt for 
promoting Rothia’s growth, focusing on modulating the environmental conditions that 
have been reported to do so. Once the key pathways involved in the beneficial functions 
of R. mucilaginosa are known, our gene essentiality predictions can be exploited to 
boost activation of these pathways. Nonetheless, being aware of R. mucilaginosa-spe­
cific essential genes is crucial to avoid inadvertently targeting them during therapeutic 
treatments, ensuring both the bacterium’s growth and its anti-inflammatory activities. 
With this dual perspective, we indicate R. mucilaginosa’s therapeutic variety, including 
developing strategies to combat the bacterium, when it is detrimental while increasing 
cell biomass production when its anti-inflammatory properties are beneficial. The latter 
could benefit human health in the context of cystic fibrosis. However, these model-
driven hypotheses need to be extensively validated via in vitro and in vivo experiments.

Altogether, creating a genome-scale metabolic network for R. mucilaginosa reveals 
insights that would have been resource-intensive to acquire using traditional wet-lab 
means. Understanding the metabolic complexities of R. mucilaginosa is essential for 
expanding our basic understanding of bacterium’s microbiology and would benefit 
various practical applications. In medicine, it could facilitate the development of 
strategies to deal with caused infections, while in biotechnology, it would allow us 
to use its metabolic abilities for bioprocessing and bioengineering purposes. Hence, 
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our high-quality metabolic network, iRM23NL, could provide a systematic and detailed 
framework for analyzing R. mucilaginosa’s metabolism, yielding valuable insights with 
broad-reaching impacts.

MATERIALS AND METHODS

Experimental settings

Bacterial strain and growth conditions

The R. mucilaginosa DSM20746 (ATCC 25296) used for the experimental work in this 
study is a type strain, and it was purchased from the American Type Culture Collection 
(ATCC, US). To create an inoculum, the bacterium was streaked onto nutrient agar (NA, 
Neogen, Heywood, UK) plates from a cryopreserved glycerol stock stored at −80°C using 
a sterile loop. Subsequently, the plates were incubated at 37°C for 48 h to form colonies 
(pure cultures). It is important to note that each biological replicate was conducted 
using pure cultures derived from the initial frozen stock (no sub-culturing). This ensures 
maintaining the genetic and phenotypic characteristics of the strain without introducing 
any potential mutations or adaptations.

Growth kinetics protocol

R. mucilaginosa overnight liquid cultures were prepared by adding bacterial colonies 
from pure cultures to 5 mL BHI (Neogen, Heywood, UK) and were put at 37 mL in a 
shaking incubator for 24 h. The initial OD was assessed and, if necessary, adjusted via 
up-concentration or dilution to achieve OD590nm = 0.25. Then, the bacterial suspension 
was subjected to centrifugation at 10,000 RPM for 5 min, and the resulting pellet was 
re-suspended in the medium of interest at a dilution of 1:10. Ultimately, the inocula­
ted growth media were transferred to a sterile 96 well-plate, including three technical 
replicates for each tested condition together with their corresponding control conditions 
(sterile growth media). The outer wells were filled with milliQ water (MQ) to prevent 
evaporation. The respective OD590nm was measured aerobically at three distinct time 
points (0, 24, and 48 h) using an EnVision microplate reader (Perkin Elmer, Waltham, 
MA, USA). The microplates were incubated at 37°C during the interim periods between 
measurements. The final growth curves were generated for three biological replicates (n 
= 3) for the following growth media: BHI (baseline medium), LB (Neogen, Heywood, UK), 
M9 pure, RPMI medium (RPMI-1640 Sigma-Aldrich), and TSB (Neogen, Heywood, UK). In 
the M9 pure medium, only salts were considered. For detailed information regarding the 
constitution of M9, see Table S1. The rest of the media were prepared according to the 
providers’ instructions.

The raw data were normalized by subtracting the blank values from the 
measured ODs and were summarized by calculating the arithmetic mean across 
all  replicates. To interpret the growth of bacterial cells in all  tested media and 
compare their growth characteristics, we employed the FCOD  ratio, which is defined 
as follows:

(1)FCOD = OD590nm
t  =  48h

OD590nm
t  =  0h

In this context, we define FCOD below 1.4 as no growth, while FCOD ratios greater 
than 1.4 indicate a growth increase over time. This FCOD threshold was chosen by 
analyzing experimental data and growth curves. A value of 1.4 was selected, considering 
the range of calculated growth rates. Statistical tests, as described below, validated the 
threshold’s reliability in accurately discerning growth from no growth in the bacterial 
cultures.
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Phenotypic microarray screenings

DSM20746 was tested for utilizing multiple carbon, nitrogen, phosphorus, and sulfur 
sources. Biolog Phenotype Microarrays (PM, Hayward, CA, USA) were employed to test 
the utilization of 190 carbon (PM1 and PM2A), 95 nitrogen (PM3B), 59 phosphorus 
(PM4A), and 35 sulfur sources (PM4A). These assays use a tetrazolium redox dye to enable 
a colorimetric detection of active cell respiration across different nutrient sources (40). 
Normal cell respiration is indicated by the formation of a purple color as a result of the 
reduction of the colorless dye during incubation.

The PM plates were prepared following the manufacturer’s protocol for Gram-posi­
tive bacteria. Table 1 lists the assay set up for of PM plates. However, modifications 
were made during the cell suspension preparation. The strain was grown on nutrient 
agar plates without undergoing sub-culturing. Using an inoculation loop, individual 
colonies were picked and suspended in an inoculating fluid (IF-0) at an absorbance of 
0.0915 at 590 nm. Per the established protocol, 81% of transmittance (T) should be 
achieved. Given our measurement of OD, the subsequent conversion of transmittance to 
absorbance was carried out employing the following formula:

(2) Absorbance  = 2 − log10(%T)
In each well of a 96 well-plate, we introduced 100 μL of cell suspension, followed by 

a 48 h incubation period at 37°C. Bacterial growth was measured by the OD at 590 nm 
using a VICTOR Nivo Multimode microplate reader. Each PM plate was tested in duplicate.

The subsequent analysis of the acquired data included calculating the arithmetic 
mean across all technical and biological replicates for all measured n time points. 
Background noise was also removed, and the data were normalized by subtracting the 
blank values from the actual measurements. The area under curve (AUC) was used to 
distinguish between growth (AUC ≥ 50) and no growth (AUC < 50). The computation 
of the AUCs was carried out by leveraging the linear trapezoidal rule that expresses the 
interpolation between data points:

(3)AUC(ti + 1 − ti) = ti
ti + 1f(x) dx ≈ (ti + 1 − ti) ⋅ 12 (ODti + 1 + ODti)

where ti is the respective measured time point and i ∈ 0, …, e . More specifically, the 
trapezoidal rule is iteratively applied to adjacent data points defined along the curve 
whose summation resulted in the final AUC value. Hence for n measured data points, the 
final AUC value is defined as follows:

(4)AUCte = i = 0

e − 1
AUC(ti + 1 − ti)

Finally, we repeated this across the spectrum of tested compounds within the 
microarray plates.

TABLE 1 Assay configuration for diverse Biolog PM microplates combinationsa

For 1× PM

IF-0a GN/GP (1.2×) 10.0
Dye mix (100×) 0.12
PM additive (12x) 1.0
81%T cell suspension 0.88
Total volume 12.0
aVolumes are expressed in μL. The provided volume quantities are adequate for inoculating the specified number 
of plates in this study, using 100 μL/well with an additional excess.
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Independent confirmatory testings of Biolog data

To independently confirm the Biolog data, we applied the growth kinetics protocol 
described above to 10 compounds. Although the base inoculating fluid (IF) used for 
the metabolic PM plates is proprietary, it is considered to reflect a minimal medium 
composed mainly of salts and buffers (40, 67). Hence, we used the M9 pure medium 
supplemented with different substrates to perform the independent tests (Fig. S2). The 
following compounds were examined: α-D-glucose, D-mannose, adonitol, L-ornithine, 
L-methionine, salicin, succinate, L-alanine, L-malate, and L-histidine. We also included 
negative controls of substrates with the Biolog inoculation fluid zero (IF-0). To ensure 
accuracy, triplicates were carried out for each tested compound. The M9 pure medium 
and the exact concentrations of added substrates are described in Table S1. All bacterial 
cell suspensions were prepared in 1:10 dilutions, and the ODs590nm were measured at 0, 
24, and 48 h using an EnVision microplate reader (Perkin Elmer, Waltham, MA, US) and 
the associated software package.

We computed the arithmetic mean across the three replicates from the collected data 
set for each measured time point. Additionally, we performed a background correction 
to mitigate the influence of background noise or unwanted signal interference present in 
the measured ODs.

Statistical hypothesis analysis

We conducted statistical tests to evaluate the chosen threshold and potential statisti­
cally significant differences between measurements at the initial and final time-points, 
thereby indicating the significant growth or no growth. Specifically, we employed the 
Student’s t-test for each experimental condition, taking into account the data from the 
three biological replicates. The null hypothesis is formulated as following: there is no 
significant difference between the measured OD values in starting and end time-points. 
Prior to hypothesis testing, we checked the correctness of associated assumptions. More 
specifically, we assessed data normality through the Shapiro–Wilk test and verified the 
homogeneity of variances using the Levene’s test.

Computational framework and modeling methodology

Phylogenomic analysis

We supported the gap-filling process using evidence of closely related species within 
the Rothia genus. Employing ANIclustermap v.1.1.0 (68), we conducted a comprehensive 
genomic comparison involving R. mucilaginosa DSM20746 and 12 distinct Rothia species: 
R. koreensis, R. kristinae, R. santali, R. halotolerans, R. aeria, R. dentocariosa, R. terrae, R. 
amarae, R. nasimurium, R. mucilaginosa, R. aerolata, R. nasisuis, and R. endophytica (see 
Fig. 3). In brief, ANIclustermap creates an all-vs-all genome ANI clustermap and groups 
microbial genomes based on their genetic similarity. ANI is a pairwise measure to classify 
bacterial genomes according to their genetic similarity. It is defined as the genetic 
similarity across all orthologous genes shared between any two genomes (69, 70). It 
serves as a powerful tool for distinguishing strains of the same species or closely related 
species.

Draft model reconstruction and curation

The proteome of R. mucilaginosa DSM20746 (GCF_000175615.1) served as the basis 
for reconstructing a draft metabolic network. The DSM20746 (ATCC 25296) represents 
a type strain obtained from the throat, and its genetic and proteomic sequences 
were retrieved from National Centre for Biotechnology Information (NCBI) (https://
www.ncbi.nlm.nih.gov). The genome sequence was annotated using the NCBI Prokary­
otic Genome Annotation Pipeline (PGAP) (71). An initial draft model was built using 
CarveMe 1.5.1 (27). CarveMe uses mixed-integer linear programming (MILP) to convert 
a universal model into an organism-specific one by deleting metabolites and reactions 
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with low occurrence scores within the specific organism of interest. The universal BOF 
might yield incorrect gene essentiality predictions for biosynthesis pathways that rely on 
precursors unique to Gram-positive bacteria due to the absence of specific membrane 
and cell wall information. Hence, we chose the specialized Gram-positive template 
instead of the universal one to build our model more accurately. This Gram-positive 
template incorporates cell wall and membrane components specific to Gram-positive 
bacteria in contrast to the universal biomass reaction defined in CarveMe (27). Spe­
cifically, the BOF developed for iRM23NL includes essential macromolecules such as 
nucleotides and amino acids, co-enzymes, and inorganic ions. Moreover, it encompasses 
cell wall components like lipoteichoic acids, a peptidoglycan unit, and glycerol teichoic 
acids. The growth-associated (GAM) energy requirements are integrated into the biomass 
reaction (labeled as Growth), while non-growth associated maintenance (NGAM) is 
explicitly considered in the model, expressed by the reaction ATPM.

We conducted an extensive two-staged iterative gap-filling to address incomplete 
or missing information in the metabolic model. Gaps or missing reactions can arise for 
various reasons, such as incomplete genome annotations or undiscovered enzymatic 
activities. For this purpose, we leveraged information from both the bibliome and 
biochemical databases, including BioCyc (47). Thus, we ensured that the model could 
support the growth and viability of the organism under specific conditions.

We applied our previously published pipeline (26) to curate further the model based 
on community standards. The pipeline consists of eight steps, from which five (step 
3–step 4) are related to model curation and ensure a high quality of the final model. 
In Summary, ModelPolisher (34) and SBOannotator (35) were employed to enrich the 
model with multiple cross-references, while the mass- and charge-unbalanced reactions 
were fixed. Further annotations integrated into the model encompassed: Evidence and 
Conclusion Ontology (ECO) terms representing the confidence level and the asser­
tion method (biological qualifier: BQB_IS_DESCRIBED_BY), KEGG (30) subsystems as 
groups:member (biological qualifier: BQB_OCCURS_IN), and gene annotations. The latter 
was done by mapping the gene locus tags to the old tags using the GenBank GFF (72). 
Finally, we checked the presence of potential EGCs that could bias the final predictions 
(73). To manipulate the model structure, we employed the libSBML library (74).

The SBML Validator from libSBML (74) was used to assure a correct syntax of the 
model, while the quality control was carried out employing MEMOTE (36). However, it is 
worth noting that, as we discussed in our previous publication, MEMOTE considers only the 
parent nodes of the SBO directed acyclic graph excluding their respective children (26). 
Hence, MEMOTE was used carefully and not as an absolute quality indicator.

Linear programming: formulation of assumptions and constraints

FBA is used to determine the flux distribution through optimization of the objective 
function, typically the maximization of biomass production rate, under steady-state 
conditions (21). To address the under-determined nature of the system, constraints are 
imposed to define an allowable solution space that aligns with cellular functions. These 
constraints, encompassing mass balance, thermodynamics, and capacity, contribute to 
the FBA maximization problem. The linear programming problem used to obtain growth 
rates is described as follows:

(5)
maximize Z = cT v
subject to: S ⋅ v = 0vmin ≤ vr ≤ vmax for r ∈ 1, …, n∀r ∈ I :0 ≤ vr

where v  is the vector of fluxes within the network, S is the stoichiometric matrix, Z 

is the linear objective function, c  is the vector of coefficients, and I represents an index 

set containing the indices of all irreversible reactions. The dimensionality of vector v
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matches the number of reactions, denoted as n in the system, and is consistent with the 
n columns in the matrix S.

The unit mmol/(gDW · h) is utilized to denote the predicted growth rates since the 
biomass consistency (rate at which biomass is produced per unit of dry weight in the 
model) of iRM23NL approaches 1 mmol/(gDW · h) (36, 75, 76). Consequently, direct 
comparisons can be made between experimentally observed and predicted growth 
rates. These conversions maintain their validity under the assumptions of constant 
volume and steady-state inherent in constraint-based modeling (75).

Bacterial growth analysis and nutrient utilization assays

Bacterial cell growth within various media and multiple substrate utilization evaluations 
were determined by solving Equation 5. The medium and the nutrient source of interest 
defined additional constraints. To achieve this objective, adjustments were made to the 
upper and lower limits of exchange reactions, as appropriate. We set specific uptake 
rates for key components within the growth medium as follows: the uptake rate of 
transition metals was set at 5.0 mmol/(gDW · h), the uptake rate of oxygen under aerobic 
conditions was established at 20.0 mmol/(gDW · h), and the rest media components 
equal to 10.0 mmol/(gDW · h). As previously mentioned, the M9 pure medium was used 
for the substrate utilization assays. Only substrates present in the metabolic network as 
intra- or extracellular metabolites were considered for the in silico validation. The results 
from the experimental and the in silico growth tests were categorized into “growth” (G) 
or “non-growth” (NG). Here, “growth” indicates the network’s ability to generate biomass 
and, therefore, a positive growth rate. The model’s overall prediction performance was 
assessed using the following statistical parameters: overall agreement (ACC):

(6)ACC = TP + TN
TP + TN + FP + FN

and Matthews Correlation Coefficient (MCC):

(7)MCC = (TP ⋅ TN − FP ⋅ FN)(TP + FP)(TP + FN)(TN + FP)(TN + FN)
where true negative (TN) and true positive (TP) represent accurate predictions, and 

false negative (FN) and false positive (FP) indicate incorrect predictions. Inconsistencies 
were resolved via iterative manual network gap-filling. For all FBA simulations, we 
employed the Constraints-Based Reconstruction and Analysis for Python (COBRApy) (77) 
package. All growth media definitions are listed in Table S2.

Gene lethality analysis

The in silico single-gene knockouts were performed as described in our previous study 
using FBA (26). To address the degeneracy issue of optimization, we additionally ran our 
FBA simulations in a total of 100 independent runs. Furthermore, we utilized pFBA, a 
method that allows us to ascertain the flux distribution of the optimal solution while 
concurrently minimizing the overall flux sum (78). The results were categorized as either 
essential FCgr = 0, inessential (FCgr = 1), or partially essential (0 < FCgr < 1), where FCgr 
denotes the FC bacterial growth rate before and after deletion (27). Shared essential 
genes between FBA and pFBA, as well as all tested conditions, were further aligned 
against the human genome using BLAST (42).
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