
J. Math. Anal. Appl. 538 (2024) 128421
Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

journal homepage: www.elsevier.com/locate/jmaa

Regular Articles

Elliptic p-Laplacian systems with nonlinear boundary condition

Franziska Borer a, Siegfried Carl b, Patrick Winkert a,∗

a Technische Universität Berlin, Institut für Mathematik, Straße des 17. Juni 136, 10623 Berlin, Germany
b Institut für Mathematik, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 16 January 2024
Available online 11 April 2024
Submitted by H. Frankowska

Keywords:
Clarke’s gradient
Elliptic systems
Nonsmooth functionals
Nonsmooth mountain-pass theorem
Steklov eigenvalues
Sub-supersolution approach

In this paper we study quasilinear elliptic systems given by

−Δp1u1 = −|u1|p1−2u1 in Ω,

−Δp2u2 = −|u2|p2−2u2 in Ω,

|∇u1|p1−2∇u1 · ν = g1(x, u1, u2) on ∂Ω,

|∇u2|p2−2∇u2 · ν = g2(x, u1, u2) on ∂Ω,

where ν(x) is the outer unit normal of Ω at x ∈ ∂Ω, Δpi denotes the pi-Laplacian 
and gi : ∂Ω ×R ×R → R are Carathéodory functions that satisfy general growth and 
structure conditions for i = 1, 2. In the first part we prove the existence of a positive 
minimal and a negative maximal solution based on an appropriate construction of 
sub- and supersolution along with a certain behavior of gi near zero related to the 
first eigenvalue of the pi-Laplacian with Steklov boundary condition. The second 
part is related to the existence of a third nontrivial solution by imposing a variational 
structure, that is, (g1, g2) = ∇g with a smooth function (s1, s2) �→ g(x, s1, s2). 
By using the variational characterization of the second eigenvalue of the Steklov 
eigenvalue problem for the pi-Laplacian together with the properties of the related 
truncated energy functionals, which are in general nonsmooth, we show the existence 
of a nontrivial solution whose components lie between the components of the positive 
minimal and the negative maximal solution.

© 2024 The Author(s). Published by Elsevier Inc. This is an open access article 
under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

Let Ω ⊆ RN be a bounded domain with a C2-boundary ∂Ω. For i = 1, 2 and 1 < pi < ∞ we consider the 
following pi-Laplacian system with nonlinear boundary conditions
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−Δp1u1 = −|u1|p1−2u1 in Ω,

−Δp2u2 = −|u2|p2−2u2 in Ω,

|∇u1|p1−2∇u1 · ν = g1(x, u1, u2) on ∂Ω,

|∇u2|p2−2∇u2 · ν = g2(x, u1, u2) on ∂Ω,

(1.1)

where ν(x) is the outer unit normal of Ω at x ∈ ∂Ω, Δpi
denotes the pi-Laplacian given by

Δpi
ui = div

(
|∇ui|pi−2∇ui

)
for ui ∈ W 1,pi(Ω), i = 1, 2,

and gi : ∂Ω ×R ×R → R are Carathéodory functions that satisfy appropriate growth and structure condi-
tions, see Sections 3 and 4 for the detailed assumptions.

We are interested in the multiplicity of solutions of the system (1.1). In the first part, under general 
local conditions on the vector field (g1, g2), we prove the existence of a positive minimal and a negative 
maximal solution (see Definition 2.4) by constructing suitable pairs of sub- and supersolution to the system 
(1.1) using a specific behavior of gi near zero corresponding to the first eigenvalue of the pi-Laplacian with 
Steklov boundary condition (see (2.6)). In the second part of this paper we suppose a variational structure 
of the system (1.1) which means that (g1, g2) = ∇g with a smooth function (s1, s2) �→ g(x, s1, s2). Then, 
by means of the extremal positive and negative solutions obtained in the first part, we are going to show 
the existence of a third nontrivial solution whose components lie between the components of the positive 
minimal and the negative maximal solution of (1.1). The proof uses a variational characterization of the 
second eigenvalue of the Steklov eigenvalue problem for the pi-Laplacian together with the properties of 
the corresponding truncated energy functionals. The main difficulty is the fact that the truncated energy 
functionals turn out to be nonsmooth independently of the smoothness of ∇g. This situation is different to 
the scalar case and needs further investigations in terms of Clarke’s generalized gradient of locally Lipschitz 
functionals.

Our work is motivated by the papers of Carl-Motreanu [6] and Winkert [36]. In [6] the authors study a 
Dirichlet system of the form

−Δp1u1 = f1(x, u1, u2) in Ω,

−Δp2u2 = f2(x, u1, u2) in Ω,

u1 = u2 = 0 on ∂Ω,

(1.2)

where fi : Ω ×R ×R → R are Carathéodory functions having a certain local behavior near zero. It is shown 
that the system (1.2) has at least three nontrivial solutions whereby the first and the second eigenvalue of 
the pi-Laplacian with Dirichlet boundary condition have been used. On the other hand, in [36], a scalar 
equation with nonlinear boundary condition of the form

−Δpu = f(x, u) − λ|u|p−2u in Ω,

|∇u|p−2∇u · ν = λ|u|p−2u + g(x, u) on ∂Ω,
(1.3)

has been considered. Here, the nonlinearities f : Ω × R → R and g : ∂Ω × R → R are Carathéodory 
functions which are bounded on bounded sets and which satisfy appropriate conditions near zero and at 
infinity. If λ is larger than the second eigenvalue of the eigenvalue problem of the p-Laplacian with Steklov 
boundary condition, then the existence of three nontrivial solutions has been shown whereby two of them 
have constant sign and the third one turns out to be sign-changing. In our paper we combine the ideas 
of both papers to show multiplicity of solutions for the coupled system given in (1.1). We also refer to 
El Manouni-Papageorgiou-Winkert [12] which extends problem (1.3) to more general, nonhomogeneous 
operators of type (p, q).
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As far as we know there are only few works for elliptic systems with nonlinear boundary condition and 
with a variational structure. In 2016, de Godoi-Miyagaki-Rodrigues [10] studied the following Laplacian 
system

−Δu + C(x)u = f(x, u) in Ω,

∇u · ν = g(x, u) on ∂Ω,
(1.4)

where

C(x) =
(
a(x) b(x)
b(x) c(x)

)

is a positive definite matrix for a.a. x ∈ Ω and the nonlinearities f : Ω ×R2 → R2, g : ∂Ω ×R2 → R2 satisfy 
suitable growth and structure conditions. The authors prove existence results for (1.4) when resonance or 
nonresonance conditions occur by using variational tools. For systems with nonlinear boundary conditions 
but without a variational structure we refer to the works by Guarnotta-Livrea-Winkert [18] who developed a 
sub-supersolution method for variable exponent double phase systems and Frisch-Winkert [15] for bounded-
ness, existence and uniqueness results for coupled gradient dependent elliptic systems, see also the paper of 
Guarnotta-Marano-Moussaoui [21] for singular convective systems based on perturbation techniques along 
with fixed point arguments.

We should also mention the following special case of (1.1) treated by Fernández Bonder-Pinasco-Rossi in 
[13], who proved the existence of nontrivial strong solutions to the system

Δu = u, Δv = v

on a bounded set Ω of RN with nonlinear coupled boundary conditions given by

∇u · ν = Hv(x, u, v), ∇v · ν = Hu(x, u, v),

for x ∈ ∂Ω, where they just suppose general structure conditions on the Hamiltonian H and its derivatives. 
Unlike in [13], here we not only provide an existence result, but prove the existence of multiple solutions 
with precise sign information.

Systems with homogeneous Neumann boundary conditions have been studied in the papers by Chabrowski 
[7] by constrained minimization based on the concentration compactness principle, by Guarnotta-Marano 
[19,20] getting infinitely many solutions for convection problems by appropriate pairs of sub-supersolution 
and by Motreanu-Perera [29] who studied p-Laplace systems via Morse theory. Finally, in case of systems 
with Dirichlet boundary conditions, we refer to the works by Carl-Motreanu [5] for convective p-Laplace 
systems based on a sub-supersolution approach, de Morais Filho-Souto [11] using the concentration com-
pactness principle, Gambera-Marano-Motreanu [17] for (p, q)-problems via Brouwer’s fixed point theorem, 
Hai-Shivaji [22] for parametric p-Laplacian systems, Liu-Nguyen-Winkert-Zeng [25] for coupled double phase 
obstacle systems involving nonlocal functions and convection terms, Marino-Winkert [26] for existence and 
uniqueness results of convection systems, Motreanu-Moussaoui-Pereira [28] for p-Laplacian systems via sub-
supersolution method and the Leray-Schauder topological degree, Motreanu-Vetro-Vetro [31,32] for systems 
involving (p, q)-Laplacians, see also the references therein.

The paper is organized as follows. In Section 2 we present the main tools which are needed in the sequel 
including the properties of the eigenvalue problem for the r-Laplacian (1 < r < ∞) with Steklov boundary 
condition. Section 3 deals with the existence of extremal positive and negative solutions where positive 
(resp. negative) means that both components are positive (resp. negative). Finally, in Section 4 we are 
going to assume a variational structure of (1.1) and prove the existence of a third nontrivial solution whose 
components lie between the related components of the positive and the negative solution.
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2. Preliminaries

In this section we recall the main tools that will be needed in the sequel. For 1 ≤ r < ∞ we denote by 
Lr(Ω) and Lr(Ω; RN ) the usual Lebesgue spaces with norm ‖ ·‖r and by W 1,r(Ω) the corresponding Sobolev 
space with norm ‖ · ‖1,r = ‖∇ · ‖r + ‖ · ‖r. We equip the spaces Vi := W 1,pi(Ω) with the equivalent norms

‖u‖1,pi
=

(
‖∇u‖pi

pi
+ ‖u‖pi

pi

) 1
pi for all u ∈ Vi,

where 1 < p1, p2 < ∞. Moreover, we denote by Lr(∂Ω) the boundary Lebesgue space with norm ‖ · ‖r,∂Ω for 
any r ∈ [1, ∞]. For s ∈ R, we set s± = max{±s, 0} and for u ∈ W 1,r(Ω) we define u±(·) = u(·)±. We have

u± ∈ W 1,r(Ω), |u| = u+ + u−, u = u+ − u−.

The space Lpi(Ω) is endowed with the natural partial ordering given by the positive cone

Lpi(Ω)+ = {u ∈ Lpi(Ω): u(x) ≥ 0 a.e. in Ω} ,

which implies a related partial ordering in its subspace W 1,pi(Ω). The positive cone

L+ = Lp1(Ω)+ × Lp2(Ω)+

induces the componentwise partial ordering on the product space

L = Lp1(Ω) × Lp2(Ω).

This implies the componentwise partial ordering in the subspace W = V1 × V2.

Definition 2.1. We say that (u1, u2) ∈ W is a weak solution of problem (1.1) if

∫
Ω

|∇u1|p1−2∇u1 · ∇ϕ1 dx +
∫
Ω

|u1|p1−2u1ϕ1 dx =
∫
∂Ω

g1(x, u1, u2)ϕ1 dσ (2.1)

and

∫
Ω

|∇u2|p2−2∇u2 · ∇ϕ2 dx +
∫
Ω

|u2|p2−2u2ϕ2 dx =
∫
∂Ω

g2(x, u1, u2)ϕ2 dσ (2.2)

hold true for all (ϕ1, ϕ2) ∈ W and all the integrals in (2.1) and (2.2) are finite. Here, σ denotes the 
(N − 1)-dimensional Hausdorff surface measure on ∂Ω.

Next, we introduce the notion of weak sub- and supersolution to (1.1).

Definition 2.2. We say that (u1, u2), (u1, u2) ∈ W form a pair of weak sub- and supersolution of problem 
(1.1) if ui ≤ ui a.e. in Ω for i = 1, 2 and
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∫
Ω

(
|∇u1|p1−2∇u1 · ∇ϕ1 + |u1|p1−2u1ϕ1

)
dx−

∫
∂Ω

g1(x, u1, w2)ϕ1 dσ

+
∫
Ω

(
|∇u2|p2−2∇u2 · ∇ϕ2 + |u2|p2−2u2ϕ2

)
dx

−
∫
∂Ω

g2(x,w1, u2)ϕ2 dσ ≤ 0

(2.3)

and
∫
Ω

(
|∇u1|p1−2∇u1 · ∇ϕ1 + |u1|p1−2u1ϕ1

)
dx−

∫
∂Ω

g1(x, u1, w2)ϕ1 dσ

+
∫
Ω

(
|∇u2|p2−2∇u2 · ∇ϕ2 + |u2|p2−2u2ϕ2

)
dx

−
∫
∂Ω

g2(x,w1, u2)ϕ2 dσ ≥ 0

(2.4)

for all (ϕ1, ϕ2) ∈ W with ϕ1, ϕ2 ≥ 0 a.e. in Ω and for all (w1, w2) ∈ W such that ui ≤ wi ≤ ui for i = 1, 2
and with all integrals in (2.3) and (2.4) to be finite.

If u = (u1, u2), u = (u1, u2) is a pair of weak sub- and supersolution, then the order interval [u, u] =
[u1, u1] × [u2, u2] is called trapping region, whereby

[ui, ui] =
{
u ∈ W 1,pi(Ω) : ui ≤ u ≤ ui a.e. in Ω

}
.

For 1 < pi < ∞, i = 1, 2, let Api
: Vi → V∗

i be the operator given by

〈Api
(ui), ϕi〉Vi

=
∫
Ω

|∇ui|pi−2∇ui · ∇ϕi dx (2.5)

for ui, ϕi ∈ Vi, where 〈 · , · 〉Vi
denotes the duality pairing between Vi and its dual space V∗

i . The following 
proposition summarizes the main properties of Api

, see, for example, Carl-Le-Motreanu [4, Lemma 2.111].

Proposition 2.3. Let pi ∈ (1, ∞) and let Api
: Vi → V∗

i be given by (2.5). Then Api
is well-defined, bounded, 

continuous, monotone and of type (S+), that is, uk
i ⇀ ui in Vi and lim supk→∞ 〈Api

(uk
i ), uk

i −ui〉 ≤ 0 imply 
uk
i → ui in Vi for i = 1, 2.

Next, we want to explain the notion of minimal and maximal constant sign solutions.

Definition 2.4. An element m ∈ W is said to be a minimal positive solution of (1.1) if m is a positive solution 
of (1.1) and if for any positive solution u with u ≤ m it follows that m = u. Similarly, we define a maximal 
negative solution.

Let C1(Ω) be equipped with norm ‖ · ‖C1(Ω) and let C1(Ω)+ be its positive cone defined by

C1(Ω)+ =
{
u ∈ C1(Ω) : u(x) ≥ 0 for all x ∈ Ω

}
.

This cone has a nonempty interior given by
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int
(
C1(Ω)+

)
=

{
u ∈ C1(Ω)+ : u(x) > 0 for all x ∈ Ω

}
.

Let us recall some basic facts about the Steklov eigenvalue problem for the r-Laplacian with r ∈ (1, ∞)
which is given by

−Δru = −|u|r−2u in Ω,

|∇u|r−2∇u · ν = λ|u|r−2u on ∂Ω.
(2.6)

From Lê [23] we know that the set of eigenvalues of (2.6), denoted by σ(r), has a smallest element λ1,r
which is positive, isolated, simple and can be characterized by

λ1,r = inf
u∈W 1,r(Ω)

{
‖∇u‖rr + ‖u‖rr : ‖u‖rr,∂Ω = 1

}
.

We further point out that every eigenfunction corresponding to the first eigenvalue λ1,r does not change 
sign in Ω. In fact it turns out that every eigenfunction associated to an eigenvalue λ 
= λ1,r changes sign on 
∂Ω.

In what follows we denote by u1,r the normalized (i.e., ‖u1,r‖r,∂Ω = 1) positive eigenfunction correspond-
ing to λ1,r. As shown in Lê [23], thanks to the nonlinear regularity theory and the nonlinear maximum 
principle, we can suppose that u1,r ∈ int

(
C1(Ω)+

)
. Additionally, due to the fact that λ1,r is isolated, the 

second eigenvalue λ2,r is well-defined by

λ2,r = inf [λ ∈ σ(r) : λ > λ1,r] .

Now, let ∂Br,∂Ω
1 = {u ∈ Lr(∂Ω) : ‖u‖r,∂Ω = 1} and Sr = W 1,r(Ω) ∩∂Br,∂Ω

1 . Then, due to Martínez-Rossi 
[27], we have a variational characterization of λ2,r given by

λ2,r = inf
γ̂∈Γ̂(r)

max
−1≤t≤1

[
‖∇γ̂(t)‖rr + ‖γ̂(t)‖rr

]
,

where Γ̂(r) = {γ̂ ∈ C([0, 1], Sr) : γ̂(0) = −u1,r, γ̂(1) = u1,r}.
Next, we recall some basic notions in nonsmooth analysis that are required in the sequel. We refer to the 

monograph of Carl-Le-Motreanu [4]. For a real Banach space (X, ‖ · ‖X), we denote by X∗ its dual space 
and by 〈·, ·〉 the duality pairing between X and X∗. A function f : X → R is said to be locally Lipschitz if 
for every x ∈ X there exist a neighborhood Ux of x and a constant Lx ≥ 0 such that

|f(y) − f(z)| ≤ Lx‖y − z‖X for all y, z ∈ Ux.

For a locally Lipschitz function f : X → R on a Banach space X, the generalized directional derivative of f
at the point x ∈ X along the direction y ∈ X is defined by

f◦(x; y) := lim sup
z→x,t→0+

f(z + ty) − f(z)
t

,

see Clarke [9, Chapter 2]. Note that if f : X → R is strictly differentiable, that is, for all x ∈ X, f ′(x) ∈ X∗

exists such that

lim
z→x
t→0+

f(z + ty) − f(z)
t

= 〈f ′(x), y〉 for all y ∈ X,

then the usual directional derivative f ′(x; y) given by
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f ′(x; y) = lim
t→0+

f(x + ty) − f(x)
t

exists and coincides with the generalized directional derivative f◦(x; y).
If f1, f2 : X → R are locally Lipschitz functions, then we have

(f1 + f2)◦(x; y) ≤ f◦
1 (x; y) + f◦

2 (x; y) for all x, y ∈ X.

The generalized gradient of a locally Lipschitz function f : X → R at x ∈ X is the set

∂f(x) := {x∗ ∈ X∗ : 〈x∗, y〉 ≤ f◦(x; y) for all y ∈ X} .

Based on the Hahn-Banach theorem we easily verify that ∂f(x) is nonempty. An element x ∈ X is said to 
be a critical point of a locally Lipschitz function f : X → R if there holds

f◦(x; y) ≥ 0 for all y ∈ X

or, equivalently, 0 ∈ ∂f(x), see Chang [8].
The nonsmooth mountain-pass theorem due to Chang is stated as follows [8, Theorem 3.4].

Theorem 2.5. Let X be a reflexive real Banach space and let J : X → R be a locally Lipschitz functional 
satisfying the nonsmooth Palais-Smale condition. If there exist x0, x1 ∈ X and a constant r > 0 such that 
‖x1 − x0‖ > r and max{J(x0), J(x1)} < infx∈∂Br(x0) J(x), then J has a critical point u0 ∈ X such that

inf
x∈∂Br(x0)

J(x) ≤ J(u0) = inf
π∈Π

max
t∈[0,1]

J(π(t)),

where Π = {π ∈ C([0, 1], X) : π(0) = x0, π(1) = x1} and ∂Br(x0) = {u ∈ X : ‖u − x0‖ = r}.

3. Constant-sign solutions

In this section we prove the existence of maximal and minimal constant sign solutions for problem (1.1). 
We suppose the following hypotheses:

(H0) For i = 1, 2, the functions gi : ∂Ω × R × R → R are Carathéodory functions such that gi(x, 0, 0) = 0
for a.a. x ∈ ∂Ω and

|gi(x, s1, s2)| ≤ Hi(x) for a.a.x ∈ ∂Ω,

for all (s1, s2) ∈ M , whereby M is a bounded set and Hi ∈ L∞(∂Ω). Moreover, it holds

|gi(x1, s1, t1) − gi(x2, s2, t2)|
≤ Li (|x1 − x2|αi + |s1 − s2|αi + |t1 − t2|αi)

(3.1)

for all (x1, s1, t2), (x2, s2, t2) ∈ ∂Ω × [−Ki, Ki] × [−Ki, Ki], where Ki is a positive constant, αi ∈ (0, 1]
and ‖Hi‖∞,∂Ω ≤ Li.

(H1) There exist constants ki > 0 and di < 0 for i = 1, 2 such that

g1(x, k1, s2) ≤ 0 for a.a.x ∈ ∂Ω and for all s2 ∈ [0, k2],
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g1(x, d1, s2) ≥ 0 for a.a.x ∈ ∂Ω and for all s2 ∈ [d2, 0],

g2(x, s1, k2) ≤ 0 for a.a.x ∈ ∂Ω and for all s1 ∈ [0, k1],

g2(x, s1, d2) ≥ 0 for a.a.x ∈ ∂Ω and for all s1 ∈ [d1, 0].

(H2) For i = 1, 2, there exist constants ci > λ1,pi
such that

lim inf
s1→0+

g1(x, s1, s2)
sp1−1
1

≥ c1

uniformly for a.a. x ∈ ∂Ω and for all s2 ∈ (0, k2],

lim inf
s1→0−

g1(x, s1, s2)
|s1|p1−2s1

≥ c1

uniformly for a.a. x ∈ ∂Ω and for all s2 ∈ [d2, 0),

lim inf
s2→0+

g2(x, s1, s2)
sp2−1
2

≥ c2

uniformly for a.a. x ∈ ∂Ω and for all s1 ∈ (0, k1],

lim inf
s2→0−

g2(x, s1, s2)
|s2|p2−2s2

≥ c2

uniformly for a.a. x ∈ ∂Ω and for all s1 ∈ [d1, 0).

Remark 3.1. Note that (3.1) is needed for the usage of the regularity results of Lieberman [24]. Indeed, if 
u = (u1, u2) is a solution of (1.1) such that (0, 0) ≤ (u1, u2) ≤ (k1, k2) and both not identically zero, then 
(u1, u2) ∈ int

(
C1(Ω)+

)
× int

(
C1(Ω)+

)
. Let us verify this just for u1, the case for u2 works in the same 

way. First, from the boundedness of u1 and (3.1) along with Theorem 2 in Lieberman [24], we know that 
u ∈ C1,α(Ω) for some α ∈ (0, 1). From the first line in (1.1) we have Δp1u1 ≤ up1−1

1 for a.a. x ∈ Ω. Taking 
β(s) = sp1−1 for all s > 0, we get from Vázquez’s strong maximum principle (see [34]) that u1(x) > 0 in 
Ω since 

∫
0+

1
(sβ(s))

1
p1

ds = +∞. Suppose there exists x0 ∈ ∂Ω such that u1(x0) = 0. Applying again the 

maximum principle we obtain ∇u1(x0) · ν(x0) < 0. In view of hypothesis (H2) first line, for ε > 0 small 
enough such that c1 − ε > 0, there exists δ > 0 such that for all s1 ∈ (0, δ) we get

g1(x0, s1, s2) ≥ (c1 − ε)sp1−1
1 uniformly for all s2 ∈ (0, k2],

which yields by the continuity of g1 as s1 → 0+

g1(x0, 0, s2) ≥ 0 uniformly for all s2 ∈ (0, k2].

The continuity of g1 then shows that g1(x0, 0, s2) ≥ 0 for all s2 ∈ [0, k2], in particular for s2 = u2(x0) ∈
[0, k2], that is, we have g1(x0, 0, u2(x0)) ≥ 0, and thus from the third line of (1.1) it follows

∇u1(x0) · ν(x0) ≥ 0,

which is in contradiction to ∇u1(x0) · ν(x0) < 0. Hence, u1 > 0 in Ω and so u1 ∈ int
(
C1(Ω)+

)
. A similar 

result holds for a solution (v1, v2) such that (d1, d2) ≤ (v1, v2) ≤ (0, 0), both not identically zero, then 
(v1, v2) ∈ (− int

(
C1(Ω)+

)
) × (− int

(
C1(Ω)+

)
).
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Theorem 3.2. Let hypotheses (H0), (H1) and (H2) be satisfied. Then there exist a positive solution (u1, u2) ∈
W and a negative solution (v1, v2) ∈ W of the system (1.1).

Proof. From (H1) we directly obtain

−g1(x, k1, s2) ≥ 0 for a.a.x ∈ ∂Ω and for all s2 ∈ [0, k2],

−g2(x, s1, k2) ≥ 0 for a.a.x ∈ ∂Ω and for all s1 ∈ [0, k1].
(3.2)

Hypothesis (H2) implies that there exists δ ∈ (0, min{k1, k2}) such that

g1(x, s1, s2) > λ1,p1s
p1−1
1 (3.3)

for a.a. x ∈ ∂Ω, for all s1 ∈ (0, δ) and for all s2 ∈ (0, k2],

g2(x, s1, s2) > λ1,p2s
p2−1
2 (3.4)

for a.a. x ∈ ∂Ω, for all s1 ∈ (0, k1] and for all s2 ∈ (0, δ).
From the Steklov eigenvalue problem for the pi-Laplacian multiplied with εpi−1 > 0 we know that

∫
Ω

|∇(εu1,pi
)|pi−2∇(εu1,pi

) · ∇ϕi dx +
∫
Ω

(εu1,pi
)pi−1ϕi dx

= λ1,pi

∫
∂Ω

(εu1,pi
)pi−1ϕi dσ

(3.5)

holds for all ϕi ∈ Vi with ϕi ≥ 0 and i = 1, 2. We choose ε > 0 small enough such that

εu1,pi
(x) < δ for all x ∈ Ω and i = 1, 2. (3.6)

Using (3.5) and (3.6) along with (3.3) and (3.4) in (2.3) for

(u1, u2) := (εu1,p1 , εu1,p2) and (u1, u2) := (k1, k2)

gives
∫
∂Ω

(
λ1,p1(εu1,p1)p1−1 − g1(x, εu1,p1 , w2)

)
ϕ1 dσ

+
∫
∂Ω

(
λ1,p2(εu1,p2)p2−1 − g2(x,w1, εu1,p2)

)
ϕ2 dσ ≤ 0.

On the other hand, we get from (3.2) and (2.4) that
∫
Ω

(
|∇k1|p1−2∇k1 · ∇ϕ1 + kp1−1

1 ϕ1

)
dx +

∫
∂Ω

(−g1(x, k1, w2))ϕ1 dσ

+
∫
Ω

(
|∇k2|p2−2∇k2 · ∇ϕ2 + kp2−1

2 ϕ2

)
dx +

∫
∂Ω

(−g2(x,w1, k2))ϕ2 dσ ≥ 0

for all (ϕ1, ϕ2) ∈ W with ϕ1, ϕ2 ≥ 0 a.e. in Ω and for all (w1, w2) ∈ W such that ui ≤ wi ≤ ui for 
i = 1, 2. Therefore, (u1, u2) ∈ W and (u1, u2) ∈ W form a pair of sub- and supersolution related to 
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Definition 2.2. From Guarnotta-Livrea-Winkert [18] (for μ ≡ 0) we know that a solution (u1, u2) ∈ W of 
the system (1.1) exists such that ui ≤ ki. Moreover, the nonlinear regularity theory implies that (u1, u2) ∈
int(C1(Ω)+) × int(C1(Ω)+), see Remark 3.1.

Similarly, one can show that (d1, d2) and (−εu1,p1 , −εu1,p2) form a pair of sub- and supersolution in the 
sense of Definition 2.2 for the system (1.1) provided the parameter ε > 0 is sufficiently small. Therefore, we 
obtain a negative solution (v1, v2) ∈ (− int(C1(Ω)+)) × (− int(C1(Ω)+)) satisfying vi ≥ di for i = 1, 2. �

Next, we are going to prove the existence of a minimal positive and of a maximal negative solution of 
the system (1.1) in the trapping region constructed in the proof of Theorem 3.2.

Theorem 3.3. Let hypotheses (H0), (H1) and (H2) be satisfied. Then, for a given solution (u1, u2) ∈ W of 
problem (1.1) in [εu1,p1 , k1] × [εu1,p2 , k2] for some ε > 0 there exists a minimal solution (uε

1, u
ε
2) of (1.1)

in [εu1,p1 , k1] × [εu1,p2 , k2] such that uε
i ≤ ui for i = 1, 2. Furthermore, given a solution (v1, v2) ∈ W of 

problem (1.1) in [d1, −εu1,p1 ] × [d2, −εu1,p2 ] for some ε > 0, there exists a maximal solution (vε1, vε2) of (1.1)
in [d1, −εu1,p1 ] × [d2, −εu1,p2 ] such that vεi ≥ vi for i = 1, 2.

Proof. We are going to prove just the first assertion of the theorem, the second one can be shown using 
similar arguments.

We choose ε > 0 sufficiently small (like in the proof of Theorem 3.2). Then, Theorem 3.2 guarantees 
that a solution (u1, u2) ∈ W of (1.1) exists in [εu1,p1 , k1] × [εu1,p2 , k2]. Denote by Sε the set of all solutions 
(h1, h2) of (1.1) such that (h1, h2) ∈ [εu1,p1 , k1] × [εu1,p2 , k2] satisfying hi ≤ ui for i = 1, 2. Apparently, Sε

is not empty. We are going to prove that Sε has a minimal element by applying Zorn’s Lemma. For this 
purpose, let C be a chain in Sε. Then we can find a sequence {uk

1, u
k
2}k≥1 ⊂ C such that uk+1

i ≤ uk
i for 

i = 1, 2 and for all k ≥ 1 satisfying

inf C = inf
k≥1

(uk
1 , u

k
2).

Since (uk
1 , u

k
2) ∈ C we know that (uk

1 , u
k
2) solves system (1.1). Testing (2.1) with ϕ1 = uk

1 and (2.2) with 
ϕ2 = uk

2 and using (H0) together with the trace theorem, we get that

‖uk
i ‖pi−1

1,pi
≤ Ci

for Ci > 0 independent of uk
i and for all uk

i ∈ Vi. Hence, the sequence {uk
1 , u

k
2}k≥1 is bounded in W. 

Therefore, up to a subsequence if necessary, not relabeled, we may assume that

uk
i ⇀ ûi in Vi, i = 1, 2,

uk
i (x) → ûi(x) for a.a.x ∈ Ω

uk
i (x) → ûi(x) for a.a.x ∈ ∂Ω.

(3.7)

From (3.7) we conclude that (û1, ̂u2) ∈ [εu1,p1 , k1] × [εu1,p2 , k2] and ûi ≤ ui for i = 1, 2. Furthermore, testing 
the corresponding weak formulations with uk

i − ûi and using (3.7) along with (H0) we get that

lim sup
k→∞

〈Api
(uk

i ), uk
i − ûi〉 ≤ 0 for i = 1, 2.

Combining this with (3.7) and the fact that Api
fulfills the (S+)-property on Vi, see Proposition 2.3, we 

conclude that

uk
i → ûi in Vi, i = 1, 2. (3.8)
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Applying (3.8) to the corresponding weak formulations shows that (û1, ̂u2) is a solution of (1.1) that belongs 
to Sε and inf C = (û1, ̂u2) ∈ Sε. From Zorn’s Lemma, see Papageorgiou-Winkert [33, p. 36], we conclude 
that Sε has a minimal element (uε

1, u
ε
2). �

In order to get maximal and minimal solutions of (1.1), we have to suppose further conditions on the 
vector field (g1, g2) near zero as follows.

(H3) There exist constants αi ≥ ci, i = 1, 2, such that

lim sup
s1→0+

g1(x, s1, s2)
sp1−1
1

≤ α1

uniformly for a.a. x ∈ ∂Ω and for all s2 ∈ (0, k2],

lim sup
s1→0−

g1(x, s1, s2)
|s1|p1−2s1

≤ α1

uniformly for a.a. x ∈ ∂Ω and for all s2 ∈ [d2, 0),

lim sup
s2→0+

g2(x, s1, s2)
sp2−1
2

≤ α2

uniformly for a.a. x ∈ ∂Ω and for all s1 ∈ (0, k1],

lim sup
s2→0−

g2(x, s1, s2)
|s2|p2−2s2

≤ α2

uniformly for a.a. x ∈ ∂Ω and for all s1 ∈ [d1, 0).

Now we can state and prove our main result on maximal and minimal solutions of (1.1).

Theorem 3.4. Let hypotheses (H0)–(H3) be satisfied. Then, problem (1.1) admits a positive solution 
(u1,+, u2,+) ∈ int(C1(Ω)+) × int(C1(Ω)+) such that ui,+ ≤ ki for i = 1, 2, which is minimal among the posi-
tive solutions of (1.1). Moreover, problem (1.1) admits a negative solution (u1,−, u2,−) ∈ (− int(C1(Ω)+)) ×
(− int(C1(Ω)+)) such that ui,− ≥ di for i = 1, 2, which is maximal among the negative solutions of (1.1).

Proof. As before, we only show the existence of a minimal positive solution of (1.1), the proof for the 
maximal negative solution works in a similar way. The application of Theorems 3.2 and 3.3 gives us a 
sequence {(un

1 , u
n
2 )}n≥n0 ⊆ W for n0 sufficiently large such that for every integer n ≥ n0 we have that 

(un
1 , u

n
2 ) is a solution of (1.1) that is minimal in the trapping region [ 1

nu1,p1 , k1] × [ 1
nu1,p2 , k2] such that 

un+1
i ≤ un

i for i = 1, 2. From this and (H0) we may suppose, for a subsequence if necessary, not relabeled, 
that, for i = 1, 2,

un
i ⇀ ui,+ in Vi,

un
i → ui,+ in Lpi(Ω) and pointwisely a.e. in Ω,

un
i → ui,+ in Lpi(∂Ω) and pointwisely a.e. in ∂Ω,

for some (u1,+, u2,+) ∈ W. As in the proof of Theorem 3.3 by applying the (S+)-property of Api
on Vi, see 

Proposition 2.3, we conclude that (u1,+, u2,+) is a solution of (1.1).
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Claim: ui,+ 
= 0 for i = 1, 2.
Suppose this is not the case and assume that u1,+ = 0. For each n ≥ n0 we set

wn = un
1

‖un
1‖1,p1

and ξn = g1(x, un
1 , u

n
2 )

(un
1 )p1−1 wp1−1

n .

Clearly the sequence {wn}n≥n0 ⊆ V1 is bounded and due to hypotheses (H2) and (H3) we may assume that

wn ⇀ w in V1,

wn(x) → w(x) in Lp1(Ω) and pointwisely a.e. in Ω,

wn(x) → w(x) in Lp1(∂Ω) and pointwisely a.e. in ∂Ω,

ξn ⇀ ξ in L
p1

p1−1 (∂Ω),

(3.9)

for some w ∈ V1 and ξ ∈ L
p1

p1−1 (∂Ω). Since (un
1 , u

n
2 ) ∈ W is a solution of (1.1), we have from (2.1) with 

ϕ1 = wn − w ∈ V1 and the representation un
1 = ‖un

1‖1,p1wn that
∫
Ω

|∇wn|p1−2∇wn · ∇(wn − w) dx +
∫
Ω

|wn|p1−2wn(wn − w) dx

=
∫
∂Ω

ξn(wn − w) dσ.
(3.10)

From (3.10) and (3.9) we obtain that

lim
n→∞

∫
Ω

|∇wn|p1−2∇wn · ∇(wn − w) dx = 0.

Thus, again by the (S+)-property of Ap1 on V1 it follows that wn → w in V1 which implies that w 
= 0 since 
‖wn‖1,p1 = 1. Moreover, from the strong convergence in V1 and the fact that (un

1 , u
n
2 ) ∈ W is a solution of 

(1.1) as well as the representation un
1 = ‖un

1‖1,p1wn it follows from (2.1) that
∫
Ω

|∇w|p1−2∇w · ∇ϕ dx +
∫
Ω

|w|p1−2wϕdx =
∫
∂Ω

ξϕdσ

for all ϕ ∈ V1.
Taking (H2) and (H3) into account, for any given ε > 0 there exists an integer n(x) for a.a. x ∈ ∂Ω such 

that for every n ≥ n(x) it holds

(c1 − ε)wn(x)p1−1 ≤ ξn(x) ≤ (α1 + ε)wn(x)p1−1 for a.a.x ∈ ∂Ω.

Since ε > 0 is arbitrary, letting n → ∞, we get via Mazur’s theorem

c1w(x)p1−1 ≤ ξ(x) = μ(x)w(x)p1−1 ≤ α1w(x)p1−1 for a.a.x ∈ ∂Ω

with c1 ≤ μ(x) ≤ α1 for a.a. x ∈ ∂Ω and

μ(x) = g1(x, u1,+(x), u2,+(x))
u1,+(x)p1−1 > 0 for a.a.x ∈ ∂Ω.
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Hence w is an eigenfunction associated to the eigenvalue 1 of the weighted eigenvalue problem with weight 
μ(x) > 0

−Δp1w = −wp1−1 in Ω,

|∇w|p1−2∇w · ν = μ(x)wp1−1 on ∂Ω.
(3.11)

We consider now the V (x)-weighted eigenvalue problem

−Δp1wV = −wp1−1
V in Ω,

|∇wV |p1−2∇wV · ν = λ(V )V (x)wp1−1
V on ∂Ω,

(3.12)

with V (x) > 0, λ(V ) the eigenvalue for the weight V (x) and wV the corresponding eigenfunctions. In the 
following, we call λ1(V ) the first eigenvalue of (3.12). Since w is nonnegative, due to Fernández Bonder-
Rossi [14, Theorem 1.2 and Proposition 3.1], we know that λ1(μ) = 1 because of (3.11). We consider now 
problem (3.12) with weights c1 and λ1,p1 and related first eigenvalues λ1(c1) and λ1(λ1,p1), respectively. 
Since λ1,p1 < c1 ≤ μ(x) for a.a. x ∈ ∂Ω, we have with [14, Theorem 1.3] that

1 = λ1(μ) ≤ λ1(c1) < λ1(λ1,p1). (3.13)

Since λ1,p1 is the smallest eigenvalue of (2.6) with eigenfunction u1,p1 > 0 we see that λ1(λ1,p1) = 1. This 
is a contradiction to (3.13). Hence, ui,+ 
= 0 for i = 1, 2. Since ui,+ ∈ [0, ki] for i = 1, 2, by the nonlinear 
regularity theory, see Remark 3.1, we conclude that (u1,+, u2,+) ∈ int

(
C1(Ω)+

)
× int

(
C1(Ω)+

)
.

It remains to show that (u1,+, u2,+) is a minimal positive solution of problem (1.1). To this end, let 
(v1, v2) ∈ W be any positive solution of (1.1) such that v1 ≤ u1,+ and v2 ≤ u2,+. Again, by the nonlinear 
regularity theory and the strong maximum principle, we know that (v1, v2) ∈ int

(
C1(Ω)+

)
× int

(
C1(Ω)+

)
. 

This fact along with the construction of (u1,+, u2,+) ensures that

1
n
u1,pi

≤ vi ≤ ui,+ ≤ un
i ≤ ki for i = 1, 2 (3.14)

whenever n is sufficiently large. However, since (un
1 , u

n
2 ) is a minimal solution in [ 1

nu1,p1 , k1] × [ 1
nu1,p2 , k2], 

we get from (3.14) that un
i ≤ vi for i = 1, 2. But then, again because of (3.14), it follows that u1,+ = v1 and 

u2,+ = v2. This completes the proof of the theorem. �
4. Another nontrivial solution

In this section we are interested in a third nontrivial solution of the system (1.1) under the assumption 
that (1.1) has a variational structure. To be more precise we consider the system

−Δp1u1 = −|u1|p1−2u1 in Ω,

−Δp2u2 = −|u2|p2−2u2 in Ω,

|∇u1|p1−2∇u1 · ν = gs1(x, u1, u2) on ∂Ω,

|∇u2|p2−2∇u2 · ν = gs2(x, u1, u2) on ∂Ω,

(4.1)

where

(g1(x, s1, s2), g2(x, s1, s2)) = (gs1(x, s1, s2), gs2(x, s1, s2)) =: ∇g(x, s1, s2),
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with g : ∂Ω × R × R → R being a Carathéodory function which is twice differentiable with respect 
to the second and third variable (s1, s2) ∈ R2. Moreover, we suppose that the partial derivatives 
gs1 , gs2 , gs1s1 , gs1s2 , gs2s2 are Carathéodory functions on ∂Ω ×R2 and gs1 , gs2 are supposed to be bounded 
on bounded sets. Without any loss of generality, we assume that g(x, 0, 0) = 0 for a.a. ∂Ω.

To avoid having to write down all the conditions again, let us now assume that (H0)–(H3) hold true 
replacing (g1, g2) by (gs1 , gs2). Taking Theorem 3.4 into account, we can find a minimal positive solution 
(u1,+, u2,+) of problem (4.1) with ui,+ ≤ ki for i = 1, 2. Based on this, we introduce the truncation 
function τ+ : ∂Ω × R2 → R2 assigning to each (x, s1, s2) ∈ ∂Ω × R2 the projection τ+(x, s1, s2) of (s1, s2)
on the closed convex subset [0, u1,+(x)] × [0, u2,+(x)] of R2. In the same way, by applying the maximal 
negative solution (u1,−, u2,−) of (4.1) with ui,− ≥ di for i = 1, 2 obtained in Theorem 3.4, we define the 
truncation function τ− : ∂Ω ×R2 → R2 as the projection τ−(x, s1, s2) of (s1, s2) on the closed convex subset 
[u1,−(x), 0] × [u2,−(x), 0] of R2. Lastly, we introduce the truncation function τ0 : ∂Ω × R2 → R2 as the 
projection τ0(x, s1, s2) of (s1, s2) on the closed convex subset [u1,−(x), u1,+(x)] × [u2,−(x), u2,+(x)] of R2.

With the help of the truncation functions τ+, τ−, τ0 : ∂Ω ×R2 → R2 we can introduce truncated functions 
related to g : ∂Ω ×R ×R → R in the following way:

g+(x, s1, s2) = g(x, τ+(x, s1, s2))

+ (s1 − u1,+(x))+gs1(x, τ+(x, s1, s2))

+ (s2 − u2,+(x))+gs2(x, τ+(x, s1, s2))

− s−1 gs1(x, τ+(x, s1, s2))

− s−2 gs2(x, τ+(x, s1, s2)),

g−(x, s1, s2) = g(x, τ−(x, s1, s2))

− (s1 − u1,−(x))−gs1(x, τ−(x, s1, s2))

− (s2 − u2,−(x))−gs2(x, τ−(x, s1, s2))

+ s+
1 gs1(x, τ−(x, s1, s2))

+ s+
2 gs2(x, τ−(x, s1, s2)),

g0(x, s1, s2) = g(x, τ0(x, s1, s2))

− (s1 − u1,−(x))−gs1(x, τ0(x, s1, s2))

− (s2 − u2,−(x))−gs2(x, τ0(x, s1, s2))

+ (s1 − u1,+(x))+gs1(x, τ0(x, s1, s2))

+ (s2 − u2,+(x))+gs2(x, τ0(x, s1, s2)).

These truncated mappings g−, g+, g0 : ∂Ω × R2 → R are Carathéodory functions being locally Lipschitz 
continuous with respect to the variables (s1, s2) ∈ R2. Therefore, their generalized gradients in the sense of 
Clarke exist. Applying Clarke’s calculus according to [9, Theorem 2.5.1], we have the following representa-
tions:

∂(s1,s2)g+(x, s1, s2) = {∇g(x, s1, s2)}
for a.a.x ∈ ∂Ω and for all (s1, s2) ∈ [0, u1,+(x)] × [0, u2,+(x)],

(4.2)

∂(s1,s2)g−(x, s1, s2) = {∇g(x, s1, s2)}
for a.a.x ∈ ∂Ω and for all (s , s ) ∈ [u (x), 0] × [u (x), 0],

(4.3)

1 2 1,− 2,−
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∂(s1,s2)g0(x, s1, s2) = {∇g(x, s1, s2)}
for a.a.x ∈ ∂Ω and for all (s1, s2) ∈ [u1,−(x), u1,+(x)] × [u2,−(x), u2,+(x)].

(4.4)

Taking the modified truncated functions g−, g+, g0 : ∂Ω ×R2 → R into account, we introduce the related 
truncated, nonsmooth functionals E+, E−, E0 : W → R defined by

E+(u1, u2) = 1
p1

‖u1‖p1
1,p1

+ 1
p2

‖u2‖p2
1,p2

−
∫
∂Ω

g+(x, u1, u2) dσ,

E−(u1, u2) = 1
p1

‖u1‖p1
1,p1

+ 1
p2

‖u2‖p2
1,p2

−
∫
∂Ω

g−(x, u1, u2) dσ,

E0(u1, u2) = 1
p1

‖u1‖p1
1,p1

+ 1
p2

‖u2‖p2
1,p2

−
∫
∂Ω

g0(x, u1, u2) dσ.

These functionals are locally Lipschitz and so their generalized gradients exist. Before we consider the 
location of the critical points of these functionals, we need to suppose an additional condition:

(H4) (i) The function s2 �→ gs1(x, s1, s2) is nondecreasing on the interval [d2, k2] for a.a. x ∈ ∂Ω and for 
all s1 ∈ [d1, k1].

(ii) The function s1 �→ gs2(x, s1, s2) is nondecreasing on the interval [d1, k1] for a.a. x ∈ ∂Ω and for 
all s2 ∈ [d2, k2].

Next, we are interested in the location of critical points of the functionals E+, E−, E0 : W → R.

Proposition 4.1. Let hypotheses (H0)–(H3) be satisfied, where (g1, g2) is replaced by ∇g and suppose (H4). 
Then, the following assertions hold:

(i) If (v1, v2) ∈ W is a critical point of E+, then

0 ≤ v1(x) ≤ u1,+(x) and 0 ≤ v2(x) ≤ u2,+(x)

for a.a. x ∈ ∂Ω.
(ii) If (v1, v2) ∈ W is a critical point of E−, then

u1,−(x) ≤ v1(x) ≤ 0 and u2,−(x) ≤ v2(x) ≤ 0

for a.a. x ∈ ∂Ω.
(iii) If (v1, v2) ∈ W is a critical point of E0, then

u1,−(x) ≤ v1(x) ≤ u1,+(x) and u2,−(x) ≤ v2(x) ≤ u2,+(x)

for a.a. x ∈ ∂Ω.

Proof. We only prove the assertion in (i), the cases (ii) and (iii) can be shown using similar arguments. To 
this end, let (v1, v2) be a critical point of E+, that is, (0, 0) ∈ ∂E+(v1, v2) which means that
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−Δp1v1 = −|v1|p1−2v1 in Ω,

−Δp2v2 = −|v2|p2−2v2 in Ω,

|∇v1|p1−2∇v1 · ν = h1(x) on ∂Ω,

|∇v2|p2−2∇v2 · ν = h2(x) on ∂Ω,

(4.5)

where

(h1(x), h2(x)) ∈ ∂(s1,s2)g+(x, v1(x), v2(x)), (4.6)

which follows from Clarke [9, Theorem 2.7.5]. Note that the precise expressions of the functions h1 and h2
can be found in Carl [2,3]. Using the fact that (u1,+, u2,+) solves problem (4.1), we obtain, due to (4.5) and 
(4.6), by choosing the test function (v1 − u1,+)+ ∈ V1, that

∫
Ω

(
|∇v1|p1−2∇v1 − |∇u1,+|p1−1∇u1,+

)
· ∇(v1 − u1,+)+dx

+
∫
Ω

(
|v1|p1−2v1 − up1−1

1,+

)
(v1 − u1,+)+ dx

=
∫

{v1>u1,+}

(h1(x) − gs1(x, u1,+, u2,+)) (v1 − u1,+) dσ

=
∫

{v1>u1,+,v2<0}

(gs1(x, u1,+, 0) − gs1(x, u1,+, u2,+)) (v1 − u1,+) dσ

+
∫

{v1>u1,+,0≤v2≤u2,+}

(gs1(x, u1,+, v2) − gs1(x, u1,+, u2,+)) (v1 − u1,+) dσ,

since

∂(s1,s2)g+(x, s1, s2) = {∇g(x, u1,+(x), u2,+(x))} for a.a.x ∈ ∂Ω

provided s1 > u1,+(x) and s2 > u2,+(x). Applying (H4) (i) gives us

∫
Ω

(
|∇v1|p1−2∇v1 − |∇u1,+|p1−1∇u1,+

)
· ∇(v1 − u1,+)+ dx

+
∫
Ω

(
|v1|p1−2v1 − up1−1

1,+

)
(v1 − u1,+)+ dx ≤ 0.

Therefore, v1 ≤ u1,+. In the same way, using (H4) (ii), we show that v2 ≤ u2,+.
From hypotheses (H2) and (H3) we get that gs1(x, 0, s2) = 0 for a.a. x ∈ ∂Ω and for all s2 ∈ [0, k2]. Using 

−v−1 ∈ V1 as test function, taking (4.5) and (4.6) again into account, it follows that

∫
Ω

|∇v1|p1−2∇v1 · ∇(−v−1 )dx +
∫
Ω

|v1|p1−2v1
(
−v−1

)
dx

= −
∫

h1v1 dσ

{v1<0}
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= −
∫

{v1<0,v2<0}

gs1(x, 0, 0)v1 dσ −
∫

{v1<0,0≤v2≤u2,+}

gs1(x, 0, v2)v1 dσ

−
∫

{v1<0,v2>u2,+}

gs1(x, 0, u2,+)v1 dσ = 0.

Thus, v1 ≥ 0. In the same way, we prove that v2 ≥ 0. �
In the next proposition we are going to compare the minimal and maximal constant-sign solutions 

obtained in Theorem 3.4 with the minimizers of the constructed nonsmooth functionals.

Proposition 4.2. Let hypotheses (H0)–(H3) be satisfied, where (g1, g2) is replaced by ∇g and suppose (H4). 
Then the minimal positive solution (u1,+, u2,+) of problem (4.1) is the unique global minimizer of E+ and a 
local minimizer of E0 while the maximal negative solution (u1,−, u2,−) of problem (4.1) is the unique global 
minimizer of E− and a local minimizer of E0.

Proof. Due to the truncated function g+ : ∂Ω × R2 → R, it is clear that the functional E+ : W → R is 
coercive and sequentially weakly lower semicontinuous. This guarantees the existence of a global minimizer 
(w1, w2) ∈ W of E+ which is a critical point of E+ in the sense of nonsmooth analysis, see Section 2. From 
Proposition 4.1 (i) and ui,+ ≤ ki for i = 1, 2, it follows that

0 ≤ wi(x) ≤ ui,+(x) ≤ ki for a.a.x ∈ ∂Ω and for i = 1, 2.

Recall that u1,pi
is the first eigenfunction of the Steklov eigenvalue problem given in (2.6) with ‖u1,pi

‖pi,∂Ω =
1. This implies that

‖∇u1,pi
‖pi
pi

+ ‖u1,pi
‖pi
pi

= λ1,pi
, (4.7)

where λ1,pi
> 0 is the associated first eigenvalue. Then, from hypothesis (H2) and (H4) along with the mean 

value theorem applied to g+, we know that for every ε > 0 there exists t > 0 such that

E+(tu1,p1 , tu1,p2) ≤ (λ1,p1 − c1 + ε) t
p1

p1
+ (λ1,p2 − c2 + ε) t

p2

p2
,

where we have used (4.7). Therefore, taking ε > 0 such that ε < min{c1 − λ1,p1 , c1 − λ1,p1}, we see that 
E+(tu1,p1 , tu1,p2) < 0. Therefore, (w1, w2) 
= (0, 0).

Next, let us now prove that both components of wi are nontrivial. Suppose that w1 
= 0 and w2 = 0. 
From hypothesis (H2) we find a number δ > 0 small enough such that

g(x, s1, s2) − g(x, s1, 0) > λ1,p2

sp2
2
p2

for a.a. x ∈ ∂Ω, for all s1 ∈ (0, k1] and for all s2 ∈ (0, δ]. Using this fact together with ‖u1,p2‖p2
p2,∂Ω = 1, we 

obtain for t > 0 small enough that

E+(w1, tu1,p2) = E+(w1, 0) + λ1,p2

tp2

p2

−
∫
∂Ω

(g(x,w1, tu1,p2) − g(x,w1, 0)) dσ

< E+(w1, 0),
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which is a contradiction since (w1, 0) is the global minimizer of E+. A similar argument can be used in 
order to show that w2 
= 0. Therefore, we have that w1 
= 0 and w2 
= 0.

As a critical point of E+ is understood in the sense of (4.5) with (4.6), we know from Proposition 4.1
(i) along with (4.2) that (w1, w2) is a solution of problem (4.1). Applying the regularity theory, as before, 
yields that (w1, w2) ∈ int

(
C1(Ω)+

)
× int

(
C1(Ω)+

)
. Then, combining Proposition 4.1 and the fact that 

(u1,+, u2,+) is the minimal positive solution of (4.1), we conclude that (w1, w2) = (u1,+, u2,+). Therefore, 
we know that (u1,+, u2,+) is a local minimizer of E0 on C1(Ω) × C1(Ω) since the functionals coincide on 
int

(
C1(Ω)+

)
× int

(
C1(Ω)+

)
. Then, from Bai-Gasiński-Winkert-Zeng [1], we know that (u1,+, u2,+) is a 

local minimizer of E0 on W. In a similar way, by using (ii) instead of (i) in Proposition 4.1 (2) and (4.3)
instead of (4.2), we can show the results of (u1,−, u2,−). �

For the next result, we need associated scalar problems of (4.1) defined by

−Δp1u1 = −|u1|p1−2u1 in Ω,

|∇u1|p1−2∇u1 · ν = gs1(x, u1, 0) on ∂Ω,
(4.8)

and

−Δp2u2 = −|u2|p2−2u2 in Ω,

|∇u2|p2−2∇u2 · ν = gs2(x, 0, u2) on ∂Ω.
(4.9)

We have the following result.

Proposition 4.3. Let hypotheses (H0)–(H3) be satisfied, where (g1, g2) is replaced by ∇g and suppose (H4). 
Then there exists (u+, v+) ∈ int

(
C1(Ω)+

)
× int

(
C1(Ω)+

)
such that u+ is a solution of (4.8) and v+ is a 

solution of (4.9) satisfying

u+ ≤ u1,+, v+ ≤ u2,+, E+(u+, 0) = inf E+(·, 0), E+(0, v+) = inf E+(0, ·).

Furthermore, there exists (u−, v−) ∈ (− int
(
C1(Ω)+

)
) ×(− int

(
C1(Ω)+

)
) such that u− is a solution of (4.8)

and v− is a solution of (4.9) satisfying

u− ≥ u1,−, v− ≥ u2,−, E−(u−, 0) = inf E−(·, 0), E−(0, v−) = inf E−(0, ·).

Proof. Note that E+(·, 0) : W 1,p1(Ω) → R is coercive and sequentially weakly lower semicontinuous. Hence, 
we can find u+ ∈ W 1,p1(Ω) such that

E+(u+, 0) = inf E+(·, 0).

Therefore, u+ is a critical point of E+(·, 0), that is, 0 ∈ ∂E+(·, 0)(u+). By means of (H4) we have with 
nonnegative test function ϕ1

∫
Ω

|∇u1,+|p1−2∇u1,+ · ∇ϕ1 dx +
∫
Ω

up1−1
1,+ ϕ1 dx

=
∫
∂Ω

gs1(x, u1,+, u2,+)ϕ1 dσ ≥
∫
∂Ω

gs1(x, u1,+, 0)ϕ1 dσ.

Using this and the fact that u+ solves
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∫
Ω

|∇u+|p1−2∇u+ · ∇ϕ1 dx +
∫
Ω

|u+|p1−2u+ϕ1 dx =
∫
∂Ω

(g+)s1(x, u+, 0)ϕ1 dσ

we get, with the test function (u+ − u1,+)+ ∈ W 1,p1(Ω), that

∫
Ω

(
|∇u+|p1−2∇u+ − |∇u1,+|p1−2∇u1,+

)
∇(u+ − u1,+)+dx

+
∫
Ω

(
|u+|p1−2u+ − up1−1

1,+

)
(u+ − u1,+)+ dx

≤
∫

{u+>u1,+}

((g+)s1(x, u+, 0) − gs1(x, u1,+, u2,+)) (u+ − u1,+) dσ

=
∫

{u+>u1,+}

(gs1(x, u1,+, 0) − gs1(x, u1,+, u2,+)) (u+ − u1,+) dσ ≤ 0.

This implies 0 ≤ u+(x) ≤ u1,+(x) for a.a. x ∈ ∂Ω. Therefore, u+ is a solution of (4.8). Applying again the 
regularity results, as before, we get that u+ ∈ int

(
C1(Ω)+

)
. The proofs for v+, u− and v− can be done in 

a very similar way. �
For our main result, we need the following sub-homogeneous conditions on the right-hand sides of (4.8)

and (4.9).

(H5) For any t ∈ [0, 1] the following hold:
(i) gs1(x, ts1, 0) ≤ tp1−1gs1(x, s1, 0) for a.a. x ∈ ∂Ω and for all s1 ∈ [d1, 0];
(ii) gs1(x, ts1, 0) ≥ tp1−1gs1(x, s1, 0) for a.a. x ∈ ∂Ω and for all s1 ∈ [0, k1].

(H6) For any t ∈ [0, 1] the following hold:
(i) gs2(x, 0, ts2) ≤ tp2−1gs2(x, 0, s2) for a.a. x ∈ ∂Ω and for all s2 ∈ [d2, 0];
(ii) gs2(x, 0, ts2) ≥ tp2−1gs2(x, 0, s2) for a.a. x ∈ ∂Ω and for all s2 ∈ [0, k2].

Now we can formulate and prove our main result.

Theorem 4.4. Let hypotheses (H0)–(H3) be satisfied, where (g1, g2) is replaced by ∇g and suppose (H4)–(H6). 
Moreover, we replace in (H2) the eigenvalues λ1,pi

by λ2,pi
for i = 1, 2, where λ2,pi

is the second eigenvalue 
of the pi-Laplacian with Steklov boundary condition. Then, the system (4.1) has at least three nontrivial 
solutions, that is, a minimal positive solution

(u1,+, u2,+) ∈ int
(
C1(Ω)+

)
× int

(
C1(Ω)+

)
,

a maximal negative solution

(u1,−, u2,−) ∈ (− int
(
C1(Ω)+

)
) × (− int

(
C1(Ω)+

)
),

and a third solution (u1,0, u2,0) ∈ C1(Ω) × C1(Ω) such that (u1,0, u2,0) 
= (0, 0) and

u1,− ≤ u1,0 ≤ u1,+ and u2,− ≤ u2,0 ≤ u2,+.
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Proof. The existence of a minimal positive solution (u1,+, u2,+) ∈ int
(
C1(Ω)+

)
× int

(
C1(Ω)+

)
and a maxi-

mal negative solution (u1,−, u2,−) ∈ (− int
(
C1(Ω)+

)
) × (− int

(
C1(Ω)+

)
) of (4.1) follows from Theorem 3.4. 

By Proposition 4.2 we know that both pairs (u1,+, u2,+) and (u1,−, u2,−) are local minimizers of the func-
tional E0. Since they are extremal positive and negative solutions of (4.1), taking Proposition 4.1 into 
account, we can suppose that they are strict local minimizers. We also point out that the functional E0 ful-
fills the nonsmooth Palais-Smale condition (see, for example, Motreanu-Rădulescu [30, Definitions 1.5–1.7]) 
since E0 is coercive. This allows us to apply the nonsmooth version of the mountain-pass theorem stated in 
Theorem 2.5 which gives us a critical point (u1,0, u2,0) ∈ W of E0, that is,

(0, 0) ∈ ∂E0(u1,0, u2,0)

satisfying

max {E0(u1,+, u2,+), E0(u1,−, u2,−)}
< E0(u1,0, u2,0) = inf

γ∈Γ
max

−1≤t≤1
E0(γ(t)), (4.10)

where

Γ = {γ ∈ C([0, 1],W) : γ(0) = (u1,−, u2,−), γ(1) = (u1,+, u2,+)} . (4.11)

Clearly, from (4.4) as well as Proposition 4.1 (iii) and the expression of the generalized gradient 
∂E0(u1,0, u2,0), we see that (u1,0, u2,0) is a solution of (4.1). Furthermore, because of (4.10), we directly 
conclude that

(u1,0, u2,0) 
= (u1,+, u2,+) and (u1,0, u2,0) 
= (u1,−, u2,−).

It remains to show that (u1,0, u2,0) 
= (0, 0). The idea is to construct a path γ̃ ∈ Γ such that

E0(γ̃(t)) < 0 for all t ∈ [0, 1].

From Proposition 4.3 we know that u+ and v+ are the positive solutions of (4.8) and (4.9) while u− and 
v− are the negative solutions of (4.8) and (4.9), respectively. Let us assume that

E+(u+, 0) ≤ E+(0, v+), (4.12)

the case E+(0, v+) < E+(u+, 0) can be handled in the same way. For ε > 0 sufficiently small we set

m := E+(u1,+, u2,+) and c = E+(u+, εu1,p2). (4.13)

Since (u1,+, u2,+) is the unique global minimizer of E+, see Proposition 4.2, we see that m < c.
Claim: There are no other critical values of E+ in the interval (m, c].
Due to Proposition 4.1 (i), the representation of the generalized gradient in (4.2) and the fact that 

(u1,+, u2,+) is a minimal positive solution of problem (4.1), it is clear that we cannot have critical points of 
E+ whose both components are positive others than (u1,+, u2,+). Using again hypothesis (H2) we have for 
ε > 0 small enough that

g(x, u+, εu1,p2) − g(x, u+, 0) > λ1,p2

εp2

p2
up2

1,p2
(4.14)

for a.a. x ∈ ∂Ω. From (4.14) we obtain, since ‖u1,p2‖p2 = 1, that
p2,∂Ω
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E+(u+, εu1,p2) = E+(u+, 0) + λ1,p2

εp2

p2

−
∫
∂Ω

(g(x, u+, εu1,p2) − g(x, u+, 0)) dσ

< E+(u+, 0).

(4.15)

Therefore, from (4.15), (4.12), (4.13) and Proposition 4.3 we conclude that there are no critical values of 
E+ in the interval (m, c] associated to critical points with one positive component and the other one equal 
to zero. This proves the Claim.

Because of the Claim, we can now apply the nonsmooth version of the second deformation lemma to 
the functional E+, see Gasiński-Papageorgiou [16, Theorem 2.1.1]. This gives us a continuous map η =
(η1, η2) : [0, 1] ×E−1

+ ((−∞, c]) → E−1
+ ((−∞, c]) such that

η(0, u1, u2) = (u1, u2), η(1, u1, u2) = (u1,+, u2,+),

E+(η(t, u1, u2)) ≤ E+(u1, u2)
(4.16)

for all t ∈ [0, 1] and for all (u1, u2) ∈ E−1
+ ((−∞, c]). Based on (4.16), we define a path γ+ ∈ C([0, 1], W) by

γ+(t) = (η1(t, u+, εu1,p2)+, η2(t, u+, εu1,p2)+) for all t ∈ [0, 1].

Obviously, the path γ+ joins (u+, εu1,p2) and (u1,+, u2,+). Taking (4.16) and (4.15) into account, we derive 
that

E0(γ+(t)) = E+(γ+(t)) ≤ E+(η1(t, u+, εu1,p2)+, η2(t, u+, εu1,p2)+)

≤ E+(u+, εu1,p2) < E+(u+, 0) ≤ E+(0, v+)
(4.17)

for all t ∈ [0, 1] and for ε > 0 sufficiently small.
Next, we can suppose, without any loss of generality, that

E−(u−, 0) ≤ E−(0, v−).

Then, as above, we can construct a path γ− ∈ C([0, 1], W) such that γ−(0) = (u−, −εu1,p2), γ−(1) =
(u1,−, u2,−) and

E0(γ−(t)) < E−(u−, 0) ≤ E−(0, v−) < 0 (4.18)

for all t ∈ [0, 1] and for ε > 0 sufficiently small.
Now, let Si = W 1,pi(Ω) ∩ ∂Bpi,∂Ω

1 with ∂Bpi,∂Ω
1 = {u ∈ Lpi(∂Ω): ‖u‖pi,∂Ω = 1} be endowed with the 

topology induced by W 1,pi(Ω) for i = 1, 2 and let Si,C = Si ∩C1(Ω) be endowed with the topology induced 
by C1(Ω). We set

Γ0,i = {γ ∈ C([0, 1], Si) : γ(0) = −u1,pi
, γ(1) = u1,pi

} ,
Γ0,i,C = {γ ∈ C([0, 1], Si,C) : γ(0) = −u1,pi

, γ(1) = u1,pi
}

for i = 1, 2.
Now let us fix constants μ̃ ∈ (0, c2−λ2,p2) and μ̂ ∈ (0, c2−λ2,p2 −μ) with c2 as in (H2). Then, the density 

of S2,C in S2 (which implies the density of Γ0,2,C in Γ0,2, see Winkert [35] for a proof of it), guarantees that 
we can find a path γ0,2 ∈ Γ0,2,C such that
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max
u∈γ0,2([0,1])

‖u‖p2
1,p2

< λ2,p2 + μ̂. (4.19)

Note that we supposed hypothesis (H2) with λ1,pi
replaced by λ2,pi

. Then it follows that we can find δ > 0
such that

g(x, s1, s2) − g(x, s1, 0) > (c2 − μ̃)s
p2
2
p2

(4.20)

for a.a. x ∈ ∂Ω, for all s1 ∈ [d1, k1] and for all s2 ∈ (0, δ). Now, we can choose ε > 0 sufficiently small such 
that

ε|γ0,2(t)(x)| < δ for all t ∈ [0, 1] and for a.a.x ∈ ∂Ω. (4.21)

Combining (4.19), (4.20), (4.21) and the fact that ‖γ0,2(t)‖p2
p2,∂Ω = 1 for all t ∈ [0, 1], we obtain

E0(v, εγ0,2(t)) = 1
p1

‖v‖p1
1,p1

+ εp2

p2
‖γ0,2(t)‖p2

1,p2
−

∫
∂Ω

g(x, v, εγ0,2(t)) dσ

= E(v, 0) + εp2

p2
‖γ0,2(t)‖p2

1,p2

+
∫
∂Ω

(g(x, v, 0) − g(x, v, εγ0,2(t))) dσ

≤ E(v, 0) + εp2

p2
(λ2,p2 + μ̂− c2 + μ̃)

(4.22)

for all t ∈ [0, 1] and for all v ∈ W 1,p1(Ω) with v ∈ [u1,−, u2,+]. Now we take a continuous path γ1 : [0, 1] →
C1(Ω) such that γ1(0) = u−, γ1(1) = u+ and we set γ0(t) = (γ1(t), εγ0,2(t)). Then we get a path with the 
endpoints (u−, −εu1,p2) and (u+, εu1,p2) such that, due to (4.22),

E0(γ0(t)) ≤ E0(γ1(t), 0) + εp2

p2
(λ2,p2 + μ̂− c2 + μ̃) (4.23)

for all t ∈ [0, 1]. The concatenation of the paths γ−, γ0 and γ+ generates a path γ̃ which satisfies, because 
of (4.17), (4.18), and (4.23)

E0(γ̃(t)) ≤ max
t∈[0,1]

E0(γ1(t), 0) + εp2

p2
(λ2,p2 + μ̂− c2 + μ̃)

for all t ∈ [0, 1]. From (4.10) and (4.11) we see that

E0(u1,0, u2,0) ≤ max
t∈[0,1]

E0(γ1(t), 0) + εp2

p2
(λ2,p2 + μ̂− c2 + μ̃) . (4.24)

Recall that μ̂ ∈ (0, c2 − λ2,p2 − μ). Therefore,

εp2

p2
(λ2,p2 + μ̂− c2 + μ̃) < 0. (4.25)

This means, with regard to (4.24) and (4.25), we only have to prove the existence of a continuous path 
s �→ γ1(s) with γ1(0) = u− and γ1(1) = u+ satisfying
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E0(γ1(s), 0) ≤ 0 for all s ∈ [0, 1]. (4.26)

We define the path γ1 by

γ1(s) =

⎧⎨
⎩

(1 − 2s)u− if s ∈
[
0, 1

2
]
,

(2s− 1)u+ if s ∈
[1
2 , 1

]
.

Applying g0(·, (1 − 2s)u−, 0) = g(·, (1 − 2s)u−, 0), we get for s ∈ [0, 12 ]

E0(γ1(s), 0) = 1
p1

(1 − 2s)p1‖u−‖p1
1,p1

−
∫
∂Ω

g(x, (1 − 2s)u−, 0) dσ. (4.27)

Since u− is a solution of (4.8), it holds

‖u−‖p1
1,p1

=
∫
∂Ω

gs1(x, u−, 0)u− dσ. (4.28)

Combining (4.27) and (4.28) yields

E0(γ1(s), 0)

=
∫
∂Ω

(
1
p1

(1 − 2s)p1gs1(x, u−, 0)u− − g(x, (1 − 2s)u−, 0)
)

dσ. (4.29)

We observe that

∫
∂Ω

1
p1

(1 − 2s)p1gs1(x, u−, 0)u− dσ

=
∫
∂Ω

1∫
0

∂

∂t

tp1

p1
(1 − 2s)p1gs1(x, u−, 0)u− dtdσ

=
∫
∂Ω

1∫
0

tp1−1(1 − 2s)p1gs1(x, u−, 0)u− dtdσ

(4.30)

and

∫
∂Ω

g(x, (1 − 2s)u−, 0) dσ =
∫
∂Ω

1∫
0

∂

∂t
g(x, t(1 − 2s)u−, 0) dtdσ

=
∫
∂Ω

1∫
0

gs1(x, t(1 − 2s)u−, 0)(1 − 2s)u− dtdσ.

(4.31)

Using (4.30) and (4.31) in (4.29) and hypothesis (H5) (i) leads to
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E0(γ1(s), 0)

=
∫
∂Ω

1∫
0

(1 − 2s)u−
(
(t(1 − 2s))p1−1gs1(x, u−, 0) − gs1(x, t(1 − 2s)u−, 0)

)
dtdσ

≤ 0.

Using similar arguments, one can show that E0(γ1(s), 0) ≤ 0 for [ 12 , 1]. Hence, we have shown that (4.26) is 
satisfied. This completes the proof. �
Example 4.5. For the sake of simplicity, we have omitted the x-dependence on g and consider the problem

−Δp1u1 = −|u1|p1−2u1 in Ω,

−Δp2u2 = −|u2|p2−2u2 in Ω,

|∇u1|p1−2∇u1 · ν = −α(p1 + q1)|u1|p1+q1−2u1

+ βp1(u+
1 )p1−1(u+

2 )p2 + γp1|u1|p1−2u1 on ∂Ω,

|∇u2|p2−2∇u2 · ν = −α(p2 + q2)|u2|p2+q2−2u2

+ βp2(u+
2 )p2−1(u+

1 )p1 + γp2|u2|p2−2u2 on ∂Ω,

with constants p1, p2 > 2, α, β, q1, q2 > 0 and

γ > max
{
λ1,p1

p1
,
λ2,p2

p2

}
.

Then, the potential is given by

g(s1, s2) = −α
(
|s1|p1+q1 + |s2|p2+q2

)
+ β(s+

1 )p1(s+
2 )p2 + γ (|s1|p1 + |s2|p2)

with the partial derivatives

gs1(s1, s2) = g1(s1, s2)

= −α(p1 + q1)|s1|p1+q1−2s1 + βp1(s+
1 )p1−1(s+

2 )p2 + γp1|s1|p1−2s1,

gs2(s1, s2) = g2(s1, s2)

= −α(p2 + q2)|s2|p2+q2−2s2 + βp2(s+
1 )p1(s+

2 )p2−1 + γp2|s2|p2−2s2.

Then, for any constants k1, k2 > 0 and d1, d2 < 0, Hypotheses (H0)–(H6) are satisfied provided α > 0 is 
sufficiently large. Let us prove this for g1, the same arguments can be used for g2.

Since g1 is continuous in (s1, s2) ∈ R ×R, it is a Carathéodory function. Furthermore we have with

s := max
(s1,s2)∈M

{|s1|, |s2|},

where M is a bounded set, that

|g1(s1, s2)| ≤ α(p1 + q1)sp1+q1−1 + βp1s
p1+p2−1 + γp1s

p1−1

:= C ∈ L∞(∂Ω).
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Furthermore, for t1, s1, t2, s2 ∈ [−K1, K1], we have

|g1(s1, t1) − g1(s2, t2)|
≤ α(p1 + q1)||s1|p1+q1−2s1 − |s2|p1+q1−2s2|

+ βp1|(s+
1 )p1−1(t+1 )p2 − (s+

2 )p1−1(t+2 )p2 |
+ γp1||s1|p1−2s1 − |s2|p1−2s2|

≤ α(p1 + q1)||s1|p1+q1−2s1 − |s2|p1+q1−2s2|

+ βp1

(
|(s+

1 )p1−1(t+1 )p2 − (s+
1 )p2−1(t+2 )p2 |

+ |(s+
1 )p2−1(t+2 )p2 − (s+

2 )p1−1(t+2 )p2 |
)

+ γp1||s1|p1−2s1 − |s2|p1−2s2|
≤ α(p1 + q1)||s1|p1+q1−2s1 − |s2|p1+q1−2s2|

+ βp1

(
|(s+

1 )|p1−1|(t+1 )p2 − (t+2 )p2 | + |(t+2 )p2 ||(s+
1 )p2−1 − (s+

2 )p1−1|
)

+ γp1||s1|p1−2s1 − |s2|p1−2s2|
≤ α(p1 + q1)||s1|p1+q1−2s1 − |s2|p1+q1−2s2|

+ βp1

(
Kp1−1

1 |(t+1 )p2 − (t+2 )p2 | + Kp2
1 |(s+

1 )p2−1 − (s+
2 )p1−1|

)

+ γp1||s1|p1−2s1 − |s2|p1−2s2|.

(4.32)

Now we consider the function f(x) := |x|Px for x ∈ [−K1, K1]. Because of f ′(x) = (P + 1)|x|P we see that 
f is continuously differentiable with sup |f ′(x)| = (P + 1)KP

1 , so it is a Lipschitz constant. Hence

|f(x1) − f(x2)| ≤ (P + 1)KP
1 |x1 − x2|.

This can be used for the first and third term in (4.32). For the second term we consider f̃(x) = |x|Q for 
x ∈ [−K1, K1] \ {0}. In a similar way it then can be shown that supf̃ ′(x) = supQ|x|Q−2x ≤ QKQ−1

1 and 
therefore

|f̃(x1) − f̃(x2)| ≤ QKQ−1
1 |x1 − x2|.

This helps to estimate the second term in (4.32) for s1, s2, t1, t2 ∈ [−K1, K1] \ {0}. In the case where 
t1 = t2 = 0 or t1 > 0 and t2 < 0 we directly get |(t+1 )p2 + (t+2 )p2 | ≤ |t1 − t2|. So, all together yields

|g1(s1, t1) − g1(s2, t2)|
≤ α(p1 + q1)||s1|p1+q1−2s1 − |s2|p1+q1−2s2|

+ βp1

(
Kp1−1

1 |(t+1 )p2 − (t+2 )p2 | + Kp2
1 |(s+

1 )p2−1 − (s+
2 )p1−1|

)

+ γp1||s1|p1−2s1 − |s2|p1−2s2|
≤ α(p1 + q1)(p1 + q1 − 2)Kp1+q1−2

1 |s1 − s2|

+ βp1

(
Kp1−1

1 p2K
p2−1
1 |t1 − t2| + Kp2

1 (p2 − 1)Kp2−2
1 |s1 − s2|

)

+ γp1(p1 − 2 + 1)Kp1−2
1 |s1 − s2|

≤ L1(|s1 − s2| + |t1 − t2|)
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for L1 > 0 sufficiently large. This shows (H0).
Let k1, k2 > 0 and s2 ∈ [0, k2]. Then

g1(k1, s2) = −α(p1 + q1)kp1+q1−1
1 + βp1k

p1−1
1 (s+

2 )p2 + γp1k
p1−1
1

≤ −α(p1 + q1)kp1+q1−1
1 + βp1k

p1−1
1 kp2

2 + γp1k
p1−1
1

≤ 0

for α > 0 sufficiently large. Let d1, d2 < 0 and s2 ∈ [d2, 0]. Then

g1(x, d1, s2) = −α(p1 + q1)|d1|p1+q1−2d1 + γp1|d1|p1−2d1 ≥ 0

for α > 0 sufficiently large. This shows (H1).
For every s2 ∈ (0, k2] we have that

lim inf
s1→0+

g1(s1, s2)
sp1−1
1

= lim inf
s1→0+

−α(p1 + q1)|s1|p1+q1−2s1 + βp1(s+
1 )p1−1(s+

2 )p2 + γp1|s1|p1−2s1

sp1−1
1

= lim inf
s1→0+

(
−α(p1 + q1)sq11 + βp1(s+

2 )p2 + γp1
)

= βp1(s+
2 )p2 + γp1

= lim sup
s1→0+

g1(s1, s2)
sp1−1
1

.

Therefore there exist constants ĉ1, α̂1 > 0 with α̂1 ≥ ĉ1 > λ1,p1 such that

ĉ1 ≤ βp1(s+
2 )p2 + γp1 ≤ α̂1.

Furthermore, for every s2 ∈ [d2, 0), we have

lim inf
s1→0−

g1(s1, s2)
|s1|p1−2s1

= lim inf
s1→0−

−α(p1 + q1)|s1|p1+q1−2s1 + γp1|s1|p1−2s1

|s1|p1−2s1

= lim inf
s1→0−

(−α(p1 + q1)|s1|q1 + γp1)

= γp1

= lim sup
s1→0−

g1(s1, s2)
|s1|p1−2s1

.

Thus, there exist constants c̃1, α̃1 > 0 with α̃1 ≥ c̃1 > λ1,p1 such that

c̃1 ≤ γp1 ≤ α̃1.

We now set

c1 := min{ĉ1, c̃2} and α1 := max{α̂1, α̃2}
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to get (H2) and (H3).
Let x ∈ ∂Ω and s1 ∈ [d1, k1]. We want to show that gs1(s1, ·) is nondecreasing on the interval [d2, k2]. 

For this let s̃2, ̂s2 ∈ [d2, k2] with s̃2 ≤ ŝ2. Then

gs1(s1, s̃2)

= −α(p1 + q1)|s1|p1+q1−2s1 + βp1(s+
1 )p1−1(s̃+

2 )p2 + γp1|s1|p1−2s1

≤ −α(p1 + q1)|s1|p1+q1−2s1 + βp1(s+
1 )p1−1(ŝ+

2 )p2 + γp1|s1|p1−2s1

= gs1(s1, ŝ2).

This shows (H4).
Let t ∈ [0, 1]. Then we have

gs1(ts1, 0)

= −α(p1 + q1)tp1+q1−1|s1|p1+q1−2s1 + γp1t
p1−1|s1|p1−2s1

= tp1−1 (−α(p1 + q1)tq1 |s1|p1+q1−2s1 + γp1|s1|p1−2s1
)
.

Therefore

gs1(ts1, 0) ≤ tp1−1gs1(·, s1, 0) for d1 ≤ s1 ≤ 0,

gs1(ts1, 0) ≥ tp1−1gs1(·, s1, 0), for 0 ≤ s1 ≤ k1.

This shows (H5). Hypothesis (H6) can be shown in a similar way.
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