
Algorithm Engineering for Expression Dag Based

Number Types

Marc Mörig

Department of Simulation and Graphics,

Otto-von-Guericke University Magdeburg, Germany,

moerig@isg.cs.uni-magdeburg.de

b

−

−

3

p

−

11 ×

6
p

2

a

12+ 144+ 20+ 3
p

4

7
+ 5× 11= 92+ 0

A dozen, a gross, and a score
Plus three times the square root of four
Divided by seven
Plus five times eleven
Is nine squared and not a bit more.

Leigh Mercer [7]

i

Zusammenfassung. Geometrische Algorithmen werden für das Real RAM Modell
entworfen, welches exakte Arithmetik mit reellen Zahlen in konstanter Zeit erlaubt.
Wird dieses Modell durch approximative Hardwarearithmetik ersetzt, so kommt
es zu Robustheitsproblemen. Implementierungen stürzen ab, berechnen falsche
Ergebnisse, oder terminieren nicht. Ein direkter Ansatz diese Probleme zu umgehen
ist exakte Arithmetik zu verwenden. Zahltypen mit beliebiger Präzision können
numerische Berechnungen exakt oder mit sehr großer Genauigkeit durchführen,
jedoch um den Preis einer deutlich höheren Laufzeit. Für geometrische Algorithmen
genügt jedoch eine korrekte Vorzeichenberechnung.

Auf Ausdrucksbäumen basierende Zahltypen speichern arithmetische Ausdrücke
in Form eines gerichteten azyklischen Graphens. Dies erlaubt es ihnen, einen Aus-
druck mehrfach auszuwerten und so oftmals die Kosten hoher Präzision zu umgehen.
Sie sind ein sehr allgemeines und benutzerfreundliches Werkzeug um robuste Imple-
mentierungen geometrischer Algorithmen zu erstellen. Wir berichten von unseren
Versuchen die Effizienz dieses Ansatzes mit Hilfe von Algorithm Engineering zu
verbessern. Unser Ziel ist es, uns den Laufzeiten von spezialisierten Lösungen
anzunähern, ohne die Benutzerfreundlichkeit oder Allgemeingültigkeit zu opfern.

Wir leisten folgende Beiträge. Erstens stellen wir ein neues Design für auf
Ausdrucksbäumen basierende Zahltypen vor. Unser Design nutzt C++ Templates, um
wesentliche Komponenten der Implementierung austauschbar zu machen. Dabei
identifizieren und separieren wir auch solche Komponenten die in anderen Zahltypen
nicht austauschbar sind. Für alle Komponenten stellen wir verschiedene Implemen-
tierungen bereit und zeigen so die Realisierbarkeit unseres Designs. Mit Hilfe von
Experimenten vergleichen wir verschiedene Optionen und untersuchen ihren Einfluss
auf die Gesamteffizienz. Dabei betrachten wir nicht nur Systemressourcen sondern
auch Statistiken über die interne Verwendung von Arithmetik. Varianten unseres
Zahltyps übertreffen die Effizient anderer Zahltypen für viele geometrische Probleme.

Zweitens stellen wir neue und verbesserte Algorithmen vor, welche auf fehler-
freien Transformationen basieren. Fehlerfreie Transformationen erlauben es, den
Fehler einer inexakten Gleitkommaoperation mit Hilfe einiger zusätzlicher Opera-
tionen zu rekonstruieren sowie Polynome über Gleitkommazahlen in Summen von
Gleitkommazahlen zu transformieren. Wir stellen verbesserte Algorithmen für das
Berechnen des Vorzeichens einer Summe von Gleitkommazahlen vor und zeigen
wie diese für die Erstellung robuster Implementierungen geometrischer Algorithmen
genutzt werden können. Weiterhin stellen wir neue Algorithmen für die effiziente
Konvertierung von Summen von Gleitkommazahlen in konventionelle Zahldarstellun-
gen vor. Diese Algorithmen erlauben es, zu mächtigeren Zahltypen zu wechseln, falls
sich fehlerfreie Transformationen für eine Berechnung als unzureichend erweisen,
ohne diese Berechnung neu starten zu müssen.

Drittens schlagen wir vor mit Hilfe fehlerfreier Transformationen den Auf-
bauen von Ausdrucksbäumen zu verzögern. Ausdrucksbäume aufzubauen verursacht
maßgebliche Kosten, so dass arithmetische Operationen mit geringer Präzision
möglicherweise schneller direkt durchgeführt werden können. Wir stellen ein Frame-
work vor welches das Aufbauen von Ausdrucksbäumen verzögern und statt dessen
Summen von Gleitkommazahlen berechnet und speichert. Unser Framework separi-
ert fünf Komponenten einer solchen Strategie: grundlegende Arithmetik, maximale
Anzahl von Summanden, Behandlung von Gleitkommaausnahmen, Reduktion der
Anzahl von Summanden sowie Wechseln zu einer Darstellung als Ausdrucksbaum.
Wir stellen verschiedene Implementierungen dieser Komponenten bereit und unter-
suchen ihren Einfluss auf die Gesamteffizienz.

ii

Abstract. Geometric algorithms are designed for the Real RAM model, which
allows for exact arithmetic with real numbers in constant time. It is well known that
replacing the Real RAM with imprecise hardware floating-point arithmetic leads to
robustness issues. Implementations occasionally and unpredictably crash, compute
incorrect results, or fail to terminate. A straightforward approach to overcome these
problems is to implement the Real RAM. Software number types allow to perform
numerical computations exactly or with very high precision, but at the cost of a
large increase in running time. For geometric algorithms however, only exact sign
computation is necessary.

Expression dag based number types record arithmetic expressions in form of a
directed acyclic graph. This enables them to evaluate an expression multiple times
and to avoid the cost of high precision computation in many cases. They are a
general and user-friendly option to abandon numerical robustness problems in the
implementation of geometric algorithms. In this thesis we report on our attempts
to improve the performance of expression dag based number types by means of
Algorithm Engineering. Our goal is to bring their performance closer to that of
specialized solutions without sacrificing their usability or generality.

Our contributions are as follows. First, we present a new design for expression
dag based number types. The design takes advantage of the C++ template mecha-
nism, to make key components of expression dag based number types exchangeable.
The design identifies and separates components which are not available or exchange-
able in previous expression dag based number types. For most components, different
options are implemented, showing the feasibility of our design. We compare differ-
ent options for components experimentally, evaluating their influence on the total
efficiency. Experiments do not only consider system resources, i.e., running time, but
also statistics about internal usage of arithmetic. The most efficient variants of our
number type outperform other number types on most geometric problems.

Second, we present new and improved algorithms based on error-free trans-
formation. Error-free transformations allow to recover the exact rounding error
arising in an otherwise inexact floating-point operation with the help of a few
additional floating-point operations and to transform polynomial expressions of
hardware floating-point numbers into sums of floating-point numbers exactly and
very efficiently. We present improved algorithms for computing the sign of a sum of
floating-point numbers and show how to use them for the robust implementation
of geometric algorithms. Furthermore we present new algorithms for the efficient
conversion of sums of floating-point numbers into more conventional number rep-
resentations. These conversion algorithms allow to use software number types
as fallback strategy if error-free transformations are insufficient for a numerical
computation without restarting this computation from scratch.

Third and last, we propose to improve the performance of expression dag based
number types by postponing dag creation with the help of error-free transformations.
Creating an expression dag comes at a non-negligible cost and an arithmetic operation
requiring only low precision might be faster to perform immediately. We present
a framework to postpone dag creation by computing and storing sums of floating-
point numbers instead. The framework separates five key components of such a
strategy: basic arithmetic, maximum number of summands, handling floating-point
exceptions, reducing the number of summands, and switching to an expression dag
representation if necessary. We provide several implementations for each component
and examine their influence on the total efficiency.

iii

Contents

Chapter 1. Introduction 1
1.1. Geometric Problems and Predicates 6
1.2. Why Implementations Fail 11
1.3. Robust Geometric Computation 18
1.4. Robust Geometric Computing in Practice 26

Chapter 2. Previous Work 31
2.1. Expression Dag Based Number Types 31
2.2. Exact Floating-Point Computations 44

Chapter 3. RealAlgebraic – an expression dag based number-type 65
3.1. Policy Based Design 66
3.2. Expression Evaluation 74
3.3. A Case Study on Common Subexpressions 78
3.4. Experiments 83

Chapter 4. New and Improved Exact Floating-Point Algorithms 101
4.1. Exact Sign of Sum Computation 101
4.2. Expansion to Bigfloat Conversion 115

Chapter 5. Exact Floating-Point Algorithms in RealAlgebraic 137
5.1. Deferring Dag Construction 138
5.2. Experiments 150
5.3. Exact Floating-Point Algorithms for Dag Evaluation 159

Chapter 6. Conclusion 161

Bibliography 165

Appendix A. Complete Results from Experiments 171

v

CHAPTER 1

Introduction

Algorithm Engineering [73] is a discipline that attempts to close a growing gap
between advances in the theoretical design of algorithms and the impact of these
algorithms in practice. The design of algorithms in theoretical computer science
considers simplified and abstract machine models. A usual assumption is for example
that all basic operations take unit cost. The main design goals in theory are time and
space efficiency, measured by asymptotic worst case analysis.

The results are often very sophisticated algorithms and data structures. However,
a sophisticated algorithm may have only a small asymptotic advantage over a simpler
one, and, due to having a larger constant factor arising from its intricacy, the advan-
tage will only appear for unreasonably large input sizes. Sometimes the algorithms
are ridiculously hard to implement or the constant factors hidden in the asymptotic
analysis are too large to make an implementation worthwhile.

The assumptions made in the machine model and for the analysis are often
unreasonable in practice. On modern hardware, operations are anything but unit-
cost. Memory access, especially to the hard drive, is significantly slower than a simple
arithmetic operation and algorithms should be designed taking this into account.
Sometimes, an algorithm behaves much better in practice than predicted by the worst
case analysis, due to the instances solved in practice having a different structure than
the worst case assumed for the analysis. In this case a better analysis exploiting this
structure might be possible.

These and other phenomena have been observed for quite a while and helped to
create the discipline of Algorithm Engineering. Its goal is to create usable, efficient
and robust implementations, by putting a larger focus on realistic computer models as
well as the tuning and experimental analysis of algorithms. But Algorithm Engineering
explicitly encompasses the design and analysis of algorithms too. Design and analysis
precede implementation and experiments, but implementation and experiments can
lead to findings that give rise to new ideas for the design and analysis. In this way,
Algorithm Engineering mandates a cycle of on-going algorithmic improvement.

One gap between theory and practice can be found in computational geometry,
where the implementation requires numerical computations that are rarely addressed
in algorithm design. Geometric algorithms are usually designed in the Real RAM
model [19, 85], which allows exact arithmetic with real numbers in constant time.
In this model, the numerical computations required by geometric algorithms are

1

2 1. INTRODUCTION

trivial. As soon as geometric algorithms are implemented, however, robustness
problems surface. Naïve implementations occasionally crash, run forever, or compute
incorrect results. It is well known, that these robustness problems stem from the
straightforward replacement of the Real RAM with imprecise hardware arithmetic [28,
97, 117].

The distinguishing property of geometric algorithms is that they perform com-
binatorial computations that are guided by numerical computations. The main task
of a geometric algorithm is to compute information about the global topology of the
processed geometric objects. To do this, it repeatedly inspects the local topology of
selected primitive geometric objects. The combinatorial part of the algorithm then
integrates the local topology information into global topology knowledge. This part
of the algorithm is usually considered in computational geometry theory.

To compute local topological information, numerical computations are used.
Primitive geometric objects are objects of constant size, for example points, lines,
circles, triangles, etc. Questions about the topology of constantly many primitive
objects are called geometric predicates. Typical predicates are for example, whether
two objects intersect or on which side of a line a point lies. Primitive geometric
objects are represented by numerical data, i.e., point coordinates or coefficients in
line equations. Answering a predicate is then equivalent to computing the sign of some
arithmetic expression over numerical input data. In the Real RAM model, computing
these signs is trivial, in practice numerical computations are either inaccurate or
expensive in terms of running time. Predicate evaluation comprises the numerical
part of a geometric algorithm implementation and guides the combinatorial part.

Many implementations of geometric algorithms still use hardware floating-point
arithmetic as a replacement for the Real RAM. The now well known robustness
problems arise from the imprecision necessarily inherent in this arithmetic. Depend-
ing on the complexity of the predicate, imprecise numerical computations more or
less frequently return an incorrect sign. Thus, the combinatorial layer of the imple-
mentation will occasionally see wrong local topology. More grave is the fact, that
the combinatorial layer will get information about local topology which is mutually
contradictory! Due to one or more incorrect signs, there may be no global topology
adhering to all the information given to the combinatorial layer. Not designed to
handle inconsistent information, the algorithm will go into some undefined state and
stop working correctly.

One solution to prevent these types of problems is to make sure all predicates
return the correct answer at all times. This approach is called Exact Geometric
Computation [113]. It ensures that the implementation is always in synchrony
with its theoretical counterpart and hence works correctly. One approach to Exact
Geometric Computation is providing a number type which guarantees correct sign
computation. Software number types allow to compute a number correctly to the
last bit, but at the cost of a much higher running time than hardware arithmetic.
For sign computation, however, often approximate computations suffice. After all,

1. INTRODUCTION 3

b

−

−

3

p

−

11 ×

6
p

2

a

RealAlgebraic a = sqrt(RealAlgebraic(2));
RealAlgebraic b = 3 - a - sqrt(11 - 6*a);

3−
p

2−
p

11− 6
p

2

Figure 1.1. An expression, a corresponding dag and the code leading to this dag.

the hardware arithmetic does compute correct signs for most predicate evaluations.
Otherwise geometric algorithms would not crash occasionally, but on every single
instance.

One basic idea for efficiency improvement is to record arithmetic expressions
and apply lazy evaluation to the sign computation. The recording is done in form
of an expression dag , a directed acyclic graph, storing operands and operations as
nodes. The sign computation is lazy in that the expression is evaluated not much
more accurately than necessary. Typically, several approximate evaluations are made.
If one evaluation does not verifiably compute the sign, another more accurate and
more expensive evaluation follows. The final evaluation has to be exact to the extend
that it guarantees to compute the sign correctly in any case. This strategy pays off
for geometric applications because most predicate calls require only low accuracy
computation.

Number types employing expression storage and lazy sign computation are
called expression dag based number types. Examples are lea [3], CORE::Expr [119],
leda::real [10], and Lazy_exact_nt [83]. These number types have a couple
of advantages over other approaches to Exact Geometric Computation. First of all,
they are easy to use. Integrating exact sign computation into a number type allows to
implement predicates exactly as they would be implemented in the Real RAM model.
In some programming languages, like C++, operator overloading allows to use custom
number types just like built-in number types. Then, expressions and formulas can be
written down almost as in math textbooks. Expression dag based number types can
be used straightforwardly but with the added benefit of abandoning all robustness
and precision issues, cf. Figure 1.1.

4 1. INTRODUCTION

Furthermore, many expression dag based number types are very general by
handling real algebraic numbers. A real number α is called algebraic if it is the root
of some polynomial with integer coefficients. The degree of an algebraic number
is the smallest degree of any polynomial with integer coefficients having α as root.
Any integer is a real algebraic number and real algebraic numbers are closed under
field operations (+,−,×,/), radicals (d

p
), and more generally extracting a real root

of a polynomial with real algebraic coefficients. The latter operation is called the
diamond operator (�). Current state of the art expression dag based number types
implement algebraic numbers. Most support field operations and radicals, some even
extracting roots from polynomials. This is remarkable since real algebraic numbers
are the largest natural set of numbers for which algorithms for exact sign computation
are known at all. It is, for example, open whether the sign of an expression can be
computed, if the functions exp or log are admitted [90].

Finally, these number types are specifically designed to be efficient in geometric
applications. The lazy approach to sign computation ensures that an expression
is evaluated with the accuracy actually needed to compute the sign, not some a
priori sufficient, high accuracy. The accuracy of an evaluation highly determines
the running time. Therefore, in expression dag based number types, the running
time for a sign computation is strongly, positively correlated to the difficulty of the
sign computation. This behavior is called adaptivity. In comparison to hardware
floating-point arithmetic, there is only a small overhead for all those predicate calls
which would be solved correctly anyway and more running time is only spend on
cases where it is worthwhile. This is in large contrast to traditional software number
types, where the running time for an evaluation depends almost exclusively on the
structure of the expression and is always large.

In terms of efficiency, however, expression dag based number types often fall
short to more specialized approaches to implement geometric algorithms robustly.
These approaches are applied not at the level of number types and arithmetic, but
at the predicate or combinatorial level of an implementation. On the predicate
level, for example, the expression to be evaluated is known and no explicit storage,
allowing for multiple evaluations, is necessary. This and other a priori knowledge,
not available at the arithmetic level, can be exploited to achieve more efficient
robust implementations. Nevertheless, advanced and specialized solutions require
more knowledge and more effort by the implementor, while using a number type is
straightforward.

In this thesis we report on attempts to improve the performance of expression
dag based number types by means of Algorithm Engineering. The goal is to bring
their performance closer to that of specialized solutions, while keeping their advan-
tages: ease of use and generality. The result is a new expression dag based number
type RealAlgebraic written in C++. RealAlgebraic is available for download on the
Internet [89] and contains all the techniques described in this work. Some parts
of RealAlgebraic have gone through the Algorithm Engineering cycle several times,

1. INTRODUCTION 5

where improvements were guided by experimental results. We describe the current
state and discuss the history where appropriate. Due to the on-going development,
experimental results in this thesis differ in some points from those presented in
previous publications [63, 64].

Our contributions are as follows. First, we present a new design for expression
dag based number types. The design takes advantage of the C++ template mechanism,
to make key components of expression dag based number types exchangeable. In
some parts, the design identifies and separates components which are not available
or exchangeable in previous expression dag based number types. For most basic
components, different options are implemented, showing the feasibility of the design.
This, too, goes beyond previous implementations. We compare different options
for components experimentally, evaluating their influence on the total efficiency.
Experiments do not only consider system resources, i.e., running time, but also
statistics about internal usage of arithmetic. Collecting these statistics is greatly
simplified by the design. Finally, the design allows a user to adjust RealAlgebraic to
her needs in terms of available third party libraries and type of application.

Second, we propose to improve the performance of expression dag based number
types by postponing dag creation. Creating an expression dag comes at a non-
negligible cost and an arithmetic operation requiring only low precision might be
faster to perform immediately. So called error-free transformations allow to transform
polynomial expressions of hardware floating-point numbers into sums of floating-
point numbers exactly and very efficiently. Algorithms based on error-free trans-
formations have been devised, e.g., for sign computation, very accurate arithmetic
and exact arithmetic [77, 93, 104]. We present a framework, based on algorithms
employing error-free transformations, to postpone dag creation by computing and
storing sums of floating-point numbers instead. The framework separates five key
components of such a strategy. These are (1) the basic algorithms to use, (2) a limit
on the number of summands to store, (3) a strategy to handle floating-point excep-
tions which may render error-free transformations inexact, (4) a strategy to reduce
the number of summands occasionally, and (5) a strategy to switch to an expression
dag representation if necessary. For each component, different implementations are
provided and we examine their influence on the total performance experimentally.

Third and last, we present three new and improved algorithms based on error-
free transformation. The first, ESSA, is an improvement of an algorithm by Helmut
Ratschek and Jon Rokne [88]. Though still rather slow compared to other exact
sign of sum algorithms, this algorithm is very robust with respect to the floating-
point environment. The second, Signk, combines techniques from Siegfried Rump
and his co-workers [77, 91] into an efficient algorithm for computing the sign
of a sum of floating-point numbers. The third, Monotonize was designed from
scratch and is a new tool for the efficient conversion of expansions, special sums of
floating-point numbers arising from algorithms by Douglas Priest [86] and Jonathan

6 1. INTRODUCTION

Shewchuk [104], into software floating-point numbers. The latter two algorithms
are part of the framework for postponing dag creation in RealAlgebraic.

In the remaining parts of this chapter we examine more closely why and how
floating-point based implementations of geometric algorithms fail. Then we discuss
approaches to resolve these robustness problems. Most of them follow the Exact
Geometric Computation paradigm but some provide robustness by other means.

1.1. Geometric Problems and Predicates

Geometric computation can be divided into three levels building upon each
other. The bottom level provides numbers and arithmetic. The middle level, often
called the geometric kernel, provides primitive geometric objects as well as operations
on them. Basic operations on geometric objects are constructions, which create
new geometric objects and predicates, which answer questions about the relation of
geometric objects. A typical construction is the creation of the line defined by two
different points, or its dual, computing the intersection point of two non-parallel
lines. The top level finally consists of algorithms and data structures and is usually
purely combinatorial.

In this section we discuss some classic problems in computational geometry
frequently surfacing in this thesis. We will not discuss algorithms for these problems,
but constructions and predicates that are associated with them, since these are the
tasks that must be solved on the arithmetic level. In general, different algorithms
for the same problem are based on the same set of predicates, though in some
cases predicates are algorithm dependent. Looking at the predicates will give us
some understanding of what arithmetic has to accomplish in order to provide Exact
Geometric Computation.

A configuration of input objects that lets a predicate evaluate to zero, is called
a degenerate configuration. What is considered degenerate is thus predicate depen-
dent and in some cases algorithm dependent. A set of input objects containing no
degenerate configuration is said to be in general position. As we will see, degenerate
and nearly degenerate configurations are those which contribute most to robustness
problems.

Convex Hull. Given n points in Euclidean space Rd , the convex hull is the
smallest convex subset of Rd containing all points. The convex hull is a convex
polytope whose vertices are input points. The problem is thus to compute the
combinatorial structure, i.e., the face lattice of the convex hull polytope. The problem
is often considered in fixed, small dimension d.

A single predicate, the so called orientation predicate is needed for convex hull
computation. Given points p1, . . . , pd+1 ∈ Rd , it is equivalent to computing the sign

1.1. GEOMETRIC PROBLEMS AND PREDICATES 7

of the determinant

(1.1) DOd =

�

�

�

�

�

�

�

�

�

�

�

p1,1 p1,2 . . . p1,d 1
p2,1 p2,2 . . . p2,d 1

...
...

. . .
...

...
pd,1 pd,2 . . . pd,d 1

pd+1,1 pd+1,2 . . . pd+1,d 1

�

�

�

�

�

�

�

�

�

�

�

.

The sign of DOd is zero if all d + 1 points are inside a d − 1 dimensional hyperplane
of Rd . Otherwise, the sign of DOd tells on which side of the hyperplane spanned
by p1, . . . , pd , the point pd+1 resides. The definition of side here depends on the
orientation of p1, . . . , pd within the hyperplane spanned by them. Computing a d-
dimensional convex hull needs the orientation predicate for all dimensions from 1 up
to d. Note that the 1-dimensional orientation predicate is equivalent to coordinate
comparison.

Lets make this more precise for two dimensions. Given three points p, q and
r in the plane, the 2D orientation predicate determines the position of r relative
to the oriented line ~̀(p, q), passing first through p and then q. Let p = (px , py),
q = (qx , qy) and r = (rx , ry), then the predicate is tantamount to computing the sign
of the determinant

(1.2) DO2 =

�

�

�

�

�

�

px py 1
qx qy 1
rx ry 1

�

�

�

�

�

�

=

�

�

�

�

px − rx py − ry
qx − rx qy − ry

�

�

�

�

.

The three points p, q and r are collinear if and only if DO2 is zero. Otherwise, r is to
the left of ~̀(p, q), if DO2 is greater than zero and r is to the right of ~̀(p, q), if DO2 is
smaller than zero.

Voronoi Diagram, Delaunay Triangulation. Let n points in Rd be given,
and call them sites. The Voronoi cell of a site is the set of points in Rd not closer to
any other site, measured by Euclidean distance. A Voronoi cell is a convex polyhedron
and the intersection of two Voronoi cells is a face of both. The Voronoi diagram is
the cell complex, partitioning whole Rd , induced by all Voronoi cells. Its vertices are
called Voronoi vertices. A Voronoi vertex has the same distance to all sites in whose
Voronoi cell it is contained. The boundary of all Voronoi cells is called the Voronoi
skeleton.

The Delaunay diagram of n sites in Rd is a cell complex partitioning the convex
hull of the sites into convex polytopes. It is dual to the Voronoi Diagram in the follow-
ing sense. Each full dimensional polytope P in the Delaunay diagram corresponds to a
Voronoi vertex v. The vertices of P are exactly those sites, whose Voronoi cell contains
v. If the sites are in general position, i.e., no d+2 sites are co-spherical, the Delaunay
diagram is a simplicial triangulation, i.e., all polytopes are simplices. A Delaunay
triangulation is a refinement of the Delaunay diagram obtained by triangulating all
non-simplices in a compatible way.

8 1. INTRODUCTION

Figure 1.2. Convex hull , Delaunay triangulation , and Voronoi
diagram , for a set of points in the plane.

Computing the Voronoi diagram or Delaunay diagram is based on the orientation
predicate and another predicate called the insphere or incircle predicate. Given d + 2
points in Rd , the insphere predicate checks whether one of the points is inside, on
the boundary of, or outside the sphere spanned by the remaining d + 1 points. To
this end, each point (p1, p2, . . . , pd) is lifted to the paraboloid

Xd+1 = X 2
1 + X 2

2 + . . .+ X 2
d

in d+1 dimensional space. Then, the d+1 dimensional orientation test is performed
on the lifted points.

Again, lets make this more precise for two dimensions. Given four points p, q, r,
and s in the plane, the incircle test determines the position of s relative to the circle
(possibly degenerated to a line) defined by p, q, and r. It is tantamount to computing
the sign of the determinant

(1.3) DIC =

�

�

�

�

�

�

�

�

px py p2
x + p2

y 1
qx qy q2

x + q2
y 1

rx ry r2
x + r2

y 1
sx sy s2

x + s2
y 1

�

�

�

�

�

�

�

�

=

�

�

�

�

�

�

px − sx py − sy (px − sx)2 + (py − sy)2

qx − sx qy − sy (qx − sx)2 + (qy − sy)2

rx − sx ry − sy (rx − sx)2 + (ry − sy)2

�

�

�

�

�

�

.

DIC is zero if and only if all four points lie on a common circle. Otherwise, consider
the circle boundary to be oriented, passing through p, q, and r in this order. Then, s
is on the right side of the circle boundary, if DIC is greater than zero, and on the left
side, if DIC is smaller than zero.

Thus, convex hull, Euclidean Voronoi diagram and Delaunay triangulation in
d-dimensional space can all be computed using predicates which employ polynomial
expressions of degree roughly d. The 2D and 3D orientation predicate and the incircle
and insphere predicate are by far the most prominent predicates in the literature.

1.1. GEOMETRIC PROBLEMS AND PREDICATES 9

Arrangements. A set of curves in the plane induces a subdivision of the plane
called an arrangement. The arrangement consists of vertices – intersection points of
curves, edges – connected subsets of a curve separated by intersection points, and
faces – connected subsets of the plane separated by curves. The goal is to compute
the adjacency structure between these elements in form of a planar map. A large
class of algorithms for computing arrangements are sweep line algorithms, traversing
the plane from left to right and updating data-structures wherever the combinatorial
structure changes. Hence, one basic predicate for these algorithms is to compare
intersection points of curves by x-coordinate.

The basic case are arrangements of straight lines and line segments. Segments
are usually defined by their endpoints, but it is not uncommon to represent lines in
the same fashion. Let p,q,r, and s be four points in the plane and let

(1.4)

Dx =

�

�

�

�

pxqy − pyqx qx − px
rx sy − rysx sx − rx

�

�

�

�

, Dy =

�

�

�

�

py − qy pxqy − pyqx
ry − sy rx sy − rysx

�

�

�

�

,

Dw =

�

�

�

�

py − qy qx − px
ry − sy sx − rx

�

�

�

�

.

Then, the lines `(p, q) and `(r, s) are parallel or identical, if Dw = 0. Otherwise, their
intersection point is given by t = (Dx/Dw , Dy/Dw). Whether the two segments pq
and rs intersect, can be checked using the orientation test to determine the position of
p and q relative to `(r, s) and the position of r and s relative to `(p, q). Of course, the
intersection point is also given by t. Computing intersection points involves a division.
In coordinate comparison the division may be avoided by rearranging, though some
care must be taken, not to flip the sign. Thus, comparing the x-coordinates of two
intersection points t and t ′ amounts to computing

sign(Dw) sign(D′w) sign(Dx D′w − D′x Dw).

Computing an arrangement of circles and circular arcs is arithmetically more
demanding, since the intersection point of two circles has algebraic coordinates. Let

Ci : (X − pi)
2 + (Y − qi)

2 − r2
i = 0 for i = 1, 2,

be two circles, where we assume pi , qi and ri are input numbers. The x-coordinates
of their intersection points are the real roots of the polynomial

P : 4(u2 + v2)X 2 + 4(wu− 2v2p2)X +w2 − 4v2(r2
2 − p2

2).

where
u= p2 − p1, v = q1 − q2, w = r2

2 − r2
1 + v2 + p2

1 − p2
2.

The coefficients of P are polynomials of degree four in the input data. Now denote
these coefficients by a, b, and c, i.e., let P = aX 2 + bX + c, then the roots of P are
given by

−b±
p

b2 − 4ac

2a
.

10 1. INTRODUCTION

Figure 1.3. Voronoi diagram , of line segments .

The sign of the polynomial discriminant ∆= b2 − 4ac determines the number of real
roots of P and hence the number of intersection points of C1 and C2. Comparing the
x-coordinates of two intersection points is then equivalent to computing the sign of
an expression of the form

(1.5)
−b′ ±

p

b′2 − 4a′c′

2a′
−
−b±

p

b2 − 4ac

2a
.

Voronoi Diagram of Segments. Voronoi diagrams have been generalized in
many ways, for example by considering a different measure of distance or by consid-
ering different types of sites. One generalization that has been studied extensively, is
the Voronoi diagram of line segments, cf. Figure 1.3. Here, the sites are line segments
and the distance to a site is the smallest Euclidean distance to any point in the site.

The predicates for Voronoi diagrams of segments again involve algebraic numbers.
It suffices to consider lines and points in predicates, since the shortest distance to
a segment is either the distance to one of the endpoints or the distance to the line
supporting the segment. Predicates for computing the Voronoi diagram of segments
have been analyzed by Christoph Burnikel in his thesis [8]. In [14], one incircle test is
discussed in detail. Consider three sites, two of which are lines `i : aiX + biY + ci = 0
for i = 1,2, while the third is a point p = (0,0), assumed to be the origin. The
situation is illustrated in Figure 1.4. In general, there are two Voronoi vertices v for
these sites. They have coordinates v = (hx/hw , hy/hw), where

hx = a1c2 + a2c1 ±
p

2c1c2(D1D2 + a1a2 − b1 b2),

hy = b1c2 + b2c1 ∓ sign(rs)
p

2c1c2(D1D2 + b1 b2 − a1a2),

hw = D1D2 − a1a2 b1 b2.

1.2. WHY IMPLEMENTATIONS FAIL 11

v

p

`1

`2

`3

Figure 1.4. Incircle test for the Voronoi diagram of segments. Sites `1,
`2 and p give rise to Voronoi vertex v. The distance from site `3 to v is
checked.

and

s = b1D2 − b2D1, r = a1D2 − a2D1, Di =
Æ

a2
i + b2

i .

To test whether a third line `3 : a3X + b3Y + c3 = 0 is closer to, has the same distance
to, or is further away from v, we can compare the squared distances from v to `3 and
from v to p, i.e., we need to determine the sign of

(1.6)
(a3vx + b3vy + c3)2

a2
3 + b2

3

− (v2
x + v2

y).

This expression contains nested square roots and is therefore again a bit more complex
than comparing coordinates of intersection points of circles.

1.2. Why Implementations Fail

Some failures of implementations of geometric algorithms have been reported in
the literature. The leda book [53, 58] gives some instructional examples in section
9.6 and reports on experiments that fail for floating-point based implementations in
sections 10.7 and 10.8. Shewchuk [104] discusses an example where the computation
of a 2D Delaunay triangulation by divide and conquer fails.

Lutz Kettner, Kurt Mehlhorn, Sylvain Pion, Stefan Schirra and Chee Yap [51]
show how to create input data that lets an implementation fail for the problem of 2D
convex hull and 3D Delaunay triangulation. After selecting an algorithm and a fixed
implementation thereof, they examine the decisions the implementation will make
for input points in a certain critical range of space. This allows them to select input
points where these decisions are incorrect and furthermore lead to failures. Failures
generated include computing output that is not intended, but also infinite looping, or
the program crashing. Their examples are easy to understand and their methods can

12 1. INTRODUCTION

p = (−8.108342610745490120, 11.19593152731062879) q = (6.051875220420371626,−10.76605938095569748)
r = (−10.36837214429271903 ,−11.52439098967022346) s = (6.561485054170720588, 6.356700203724280129)

Figure 1.5. A case where the floating-point arithmetic gives inconsistent
results: the intersection point is neither on `(p, q) nor on `(r, s).

be adapted to floating-point based implementations of algorithms for other geometric
problems too.

A very common floating-point based implementation of the 2D orientation predi-
cate Equation (1.2) is the straightforward one. Simply compute an approximation
D′O2 of DO2 as

(1.7) D′O2 = (px 	 rx)⊗ (qy 	 ry) 	 (qx 	 rx)⊗ (py 	 ry),

where ⊗ and 	 are the imprecise floating-point multiplication and subtraction. The
point r is distinguished in the computation of D′O2 and is called the pivot point. Many
familiar mathematical properties like associativity or distributivity do not hold for
floating-point operations. Therefore, while permuting p, q, and r will lead to sign
changes only in DO2, this is not the case for D′O2 in general.

Line Intersection. Lets have a look at the (in)consistency of floating-point
based implementations of the 2D orientation predicate and computing the intersection
point of two lines given by points. We start with four points p, q, r, s ∈ R2 with
floating-point coordinates, compute the lines `(p, q) and `(r, s) and their intersection
point u = `(p, q) ∩ `(r, s). Then we check whether u is on any of the lines. Stefan
Schirra [98] reports that only about 20% of intersection points are reported to be
on both lines in an experiment testing a large number of lines. Here, we look at two
examples only, but examine the situation near the intersection point more closely. We
visualize the results by actually checking for all points with floating-point coordinates
near the exact intersection of both lines, whether they are on any of the two lines.

For our computations we use the C++ library cgal [16], a major effort to create
complete, correct, and efficient implementations of geometric algorithms. cgal very

1.2. WHY IMPLEMENTATIONS FAIL 13

p = (3.252059952979871937, 3.437603823446059970) q = (−6.949812250336194985,−2.582393284533707867)
r = (4.887605177230521569,−5.300474947745502874) s = (−5.705693919859381680, 4.411419204009036754)

Figure 1.6. A case where the floating-point arithmetic gives consistent
results: the intersection point is on both `(p, q) and `(r, s).

strictly follows the Exact Geometric Computation paradigm. A kernel in cgal provides
basic geometric objects and operations and thus corresponds directly to the middle
level in geometric computation. The bottom level is provided by instantiating the
kernel with a number type. We use cgal’s Simple_cartesian kernel, instanti-
ated with double for floating-point based computations. The implementation of
predicates and constructions in the kernel is treated as a black box. Other imple-
mentations will give different results, but as long as they use inexact floating-point
based computations, the overall picture will be similar. To check the correctness of
the floating-point based computations and to draw the images correctly, we use the
Simple_cartesian kernel too, but instantiated with RealAlgebraic, the number
type discussed in this thesis.

Images, showing the results are given in Figure 1.5 and Figure 1.6. In the left
image, the line `(p, q) is drawn solid, while `(r, s) is drawn dashed. We closely zoom
in on the intersection. For each point u with floating-point coordinates we classify
if u is to the right (), to the left (), or on () ~̀(p, q). Correctly classified points
are drawn in grey, while misclassified points are colored (, ,). The approximate
intersection point, computed with floating-point arithmetic, is encased by a small box.
In the right picture, the roles of `(p, q) and `(r, s) are reversed. Hence, on the right
side all points are classified with respect to ~̀(r, s) and the lines are used in different
order to compute the intersection point.

Reversing the roles of `(p, q) and `(r, s) does not affect the approximate inter-
section point in both examples, i.e., cgal’s intersection point computation seems
consistent in this regard. This is no surprise, since the straightforward floating-point

14 1. INTRODUCTION

t

t ′

P

u

(a) The two tangents from r onto P.

~̀(pred(t), t)

pred(t)

t
P

u

(b) Searching the lower tangent.

Figure 1.7. Basic steps in a 2D convex hull computation.

implementation of Equation (1.4) is still symmetric with respect to `(p, q) and `(r, s).
In Figure 1.5, the approximate intersection point is correctly classified as left of both
~̀(p, q) and ~̀(r, s). Of course, mathematically, the intersection point of two lines is
on both lines, so here the floating-point implementation is inconsistent. This simple
example already indicates, that geometric algorithms that rely on this property may
be hard to implemented with floating-point arithmetic!

The situation in Figure 1.5 could be improved by computing a better approxima-
tion of the intersection. There are points near the exact intersection that are classified
to be on both lines. In Figure 1.6, the approximate intersection point of `(p, q) and
`(r, s) is classified to be on both lines. Here, the floating-point arithmetic delivers
consistent, if inexact, results by sheer coincidence. Points near the exact intersection
are however classified to be not on any of the lines.

Both examples also show that the 2D orientation predicate delivers incorrect
results for many points close to the lines. No points are classified correctly to be on a
line and in fact almost no point is. Furthermore the topology of misclassified points is
highly irregular. This is even more evident in the pictures by Kettner et al. [51], which
show a larger section of points along a line. Nevertheless, for most points, i.e., all
that are sufficiently far away from the line the orientation predicate decides correctly
and the approximate intersection point is quite close to the exact intersection point.
In general, floating-point arithmetic guarantees small errors and computes quite
accurately. As we will see shortly, this observation can be quantified and exploited for
efficient Exact Geometric Computation.

Convex Hull. Computing the convex hull of a set of points in the plane is
one of the best studied problems in computational geometry. We will now discuss
how a simple plane sweep algorithm for computing the convex hull can fail, when
implemented with floating-point arithmetic.

The algorithm is a variant of Grahams scan [19] and proceeds as follows. We
process the points one by one, in lexicographical order by increasing x and y-
coordinate. We maintain the convex hull P of already processed points as the circular

1.2. WHY IMPLEMENTATIONS FAIL 15

u

p

q
r

P

(a) Impossible situation: u is inside P.

u

p

q
r

(b) Resulting convex hull.

Figure 1.8. A single incorrect result from the 2D orientation predicate can
lead to catastrophic failure.

sequence of vertices in counterclockwise order along its boundary. Thus, when we
arrive at a new point u, we have to update P. Since we process points from left
to right, u is not contained in P. Consider the two tangents from u onto P, see
Figure 1.7a. Each tangent touches exactly one or two vertices of P. Let t ′ be the
vertex of P furthest from u that the upper tangent touches, and let t be the vertex of
P furthest from u that the lower tangent touches. Note that t = t ′ is possible in case
P is a segment. In the sequence of vertices of P, we replace all vertices between t
and t ′ with u.

How do we find t and t ′? Let q be the point that was processed in the previous
update step, then q is the rightmost vertex of P. We start with t = q and check the
position of u relative to ~̀(pred(t), t) with the 2D orientation predicate, see Figure 1.7
As long as u is not on the left side, we advance t to pred(t) and check the position of
u again. The vertex t ′ can be found analogously. There is one exceptional case: if P
is a segment we have to stop the search for t and t ′ after at most one step.

What can go wrong with this algorithm when a floating-point based orientation
predicate is used? We have already seen that the cgal implementation instantiated
with double occasionally decides incorrectly. The search for t and t ′ may stop to
soon, in which case the resulting polygon is not convex anymore. This may lead to
incorrect output or more problems in later steps, since the correctness of the search
for t and t ′ depends on P being convex! The search may also stop too late, in that
case vertices of P are cut away and may not be contained in the end result.

Carrying the first case to the extreme, the search for both t ′ and t may stop at q.
This can never occur geometrically, since for full dimensional P the upper and lower
tangent touch P in different vertices. But it can occur with a single incorrect result
from the 2D orientation predicate, as illustrated in Figure 1.8a. Here the current hull
polygon P has vertices p, q and r and is about to be updated with point u. Figure 1.9
shows the lattice of points with floating-point coordinates close to q, among them u,
and how the 2D orientation predicate classifies their position relative to ~̀(p, q) and
~̀(r, q). Point u is correctly classified to be right of ~̀(r, q), but incorrectly classified to

16 1. INTRODUCTION

q
u′ u q u′ u

p = (−10.04094770362331879 ,−7.506293383338360492) q = (1.056089924324703055,−0.9655180522057801307)
r = (−5.5608992432470305545,−2.255180522057801307) s = q

Figure 1.9. Zoom in on points q and u in Figure 1.8.

be left of ~̀(p, q). Since we process points from left to right, u must be outside P, but
the incorrect classification moves u inside P, at least from the view of the algorithm.
We have t = t ′ = q and all vertices between t and t ′ are to be replaced by u. The
implementation may now traverse the sequence of hull vertices, starting at t, and
remove vertices until t ′ is reached. This will remove all vertices except q. Then u is
inserted, resulting in the hull polygon shown in Figure 1.8b.

For another example, suppose we are updating the current hull P with the point
u′, three positions to the left from u in the lattice of floating-point points in Figure 1.9.
The point u′ is incorrectly classified to be on ~̀(r, q), and incorrectly classified to be
left of ~̀(p, q). Hence, u′ will be inserted into the sequence of vertices between q and
r, resulting in a non-simple hull polygon.

The algorithm described above fails due to a single incorrect predicate conclusion,
inconsistent with previous predicate decisions. Processing the points from left to right
requires to sort them initially, and sorting uses coordinate comparison of points as
a predicate. Sorting ensures that each point processed is outside the current hull,
this property is used extensively by the algorithm. If an incorrect 2D orientation
test places a point inside the current hull, this contradicts several previous predicate
results from sorting and problems ensue. But ensuring correct predicate results
ensures faithfulness to the actual input data and hence consistency. Together with
the correctness of an algorithm, this guarantees correct output. This is the essence of
Exact Geometric Computation.

Inconsistent Input. Floating-point based predicate implementations can lead
to inconsistencies, but sometimes the inconsistencies already exist in the input data.
Unless a line is in very special position, e.g., axis-parallel, almost no points with

1.2. WHY IMPLEMENTATIONS FAIL 17

p = (9749 ,9023) q = (−3749.000001,−9023)
r = (−807.49, 90.802) s = (92.83749 , −90.2348)

(a) The intersection of `(p, q) and `(r, s) has
no floating-point coordinates.

a

b c

d

(b) A quadrilateral mesh and a non-planar
quadrilateral.

Figure 1.10. Systems of equations almost never have floating-point solu-
tions. As a result quadrilaterals in meshes almost never have coplanar
vertices.

floating-point coordinates are exactly on that line. Hence the intersection of two lines
is almost never a point with floating-point coordinates, cf. Figure 1.10a. Similarly,
systems of (linear) equations almost never have a solution in floating-point numbers.

A mesh is a data structure used to model surfaces in three dimensional space. It
is a collection of vertices, edges and faces. The adjacency structure between vertices,
edges and faces makes up the combinatorial part of a mesh. The numerical data
are usually the coordinates of the vertices. In a quadrilateral mesh, each face is a
quadrilateral, enclosed by four edges and four vertices. Since three points determine
a plane in three-dimensional space, the fourth point of a quadrilateral should be
in the plane determined by the other three points. An interior vertex of a mesh is
shared by at least three quadrilaterals. That means, if we fix the other vertices of the
involved quadrilaterals to points with floating-point coordinates, this vertex should
be at the intersection of three planes and hence is unlikely to have floating-point
coordinates. The overwhelming majority of input data does however have floating-
point coordinates, simply because this is the dominant numerical format available.
As a consequence, four points forming a quadrilateral in a mesh are almost never
coplanar. Figure 1.10b shows a quadrilateral mesh and a non-planar quadrilateral.

Implementations of geometric algorithms failing due to this type of inconsistency
can not be repaired by Exact Geometric Computation. To determine the location of a
point relative to a non-planar quadrilateral using the 3D orientation predicate, three

18 1. INTRODUCTION

vertices from the quadrilateral must be used. The answer may differ, depending on
which of the vertices are selected! Handling or removing inconsistencies in the input
data is in general a very hard problem.

1.3. Robust Geometric Computation

The problems caused by inexact floating-point arithmetic, can be attacked on
all three levels of geometric implementation. To ensure correct control flow, correct
results from all predicate calls are necessary. This can be achieved on the arithmetic
level by number types that compute exact numerical values or at least provide
exact sign computation. On the level of geometric kernels, typically more efficient
techniques are available, exploiting a priori knowledge not available on the arithmetic
level. Finally, on the combinatorial level, one may redesign an algorithm to be able
to cope with numerical inaccuracies. These approaches usually do not fall into the
category of Exact Geometric Computation but still lead to robust implementations for
some geometric algorithms. Of course, there also exist approaches that span multiple
levels of geometric implementation.

1.3.1. Exact Arithmetic and Number Types. The Real RAM model allows for
exact real arithmetic at unit cost, but many geometric problems require only integer,
rational, or at most real algebraic numbers. For example, the set of integers, Z, allows
exact ring operations (+,−,×), while the set of rational numbers allows exact field
operations (+,−,×,/). Exact numerical computation with software number types
forms the backbone of Exact Geometric Computation, as a measure of last resort
if more efficient approaches have failed to give correct results. Software number
types are also used to compute approximations, if high accuracy is required. The
term accuracy relates to how close an approximation is to its ideal mathematical
counterpart.

Floating-point numbers reside between integer and rational numbers. They are
important due to their omnipresence in hardware. Almost all input numbers are
hardware integer or floating-point numbers. A binary floating-point number f 6= 0
consists of a sign s ∈ {−1,1}, a sequence m of bits called mantissa, and an exponent
e ∈ Z. The number of bits in m is called the precision of f . By interpreting m as a
binary number in a suitable way, e.g., as an integer, f is given as

f = s×m× 2e.

Many different conventions to interpret or normalize m are in use. With F , we
denote the set of all floating-point numbers, i.e., all numbers representable in the
described way, plus zero.

Floating-point numbers come in two flavors. The first are hardware floating-point
numbers, usually following the IEEE 754 standard [45, 46]. They have a fixed
precision and limited exponent range. Basic arithmetic operations (+,−,×,/, 2

p
)

are performed approximately, but optimally. The result of an operation is a floating-
point number closest to the true result. The other flavor are software floating-point

1.3. ROBUST GEOMETRIC COMPUTATION 19

numbers. Up to memory limitations, they allow arbitrary precision and unlimited
exponent range. Ignoring the limitations, as we will usually do in this thesis, software
floating-point numbers are the subset of rational numbers whose denominator is a
power of two. In this setting, ring operations (+,−,×) can be performed exactly and
basic arithmetic operations (e.g., +,−,×,/, d

p
, . . .) as well as important functions

(e.g., exp, log, . . .) can be performed approximately with arbitrary accuracy. The
accuracy of a floating-point number is limited by its precision, but high precision does
not guarantee high accuracy, as errors usually propagate in complex computations.
Since most geometric predicates require to compute the sign of polynomial expres-
sions in input values only, software floating-point numbers suffice for the correct
implementation of many geometric algorithms. To distinguish between hardware
and software floating-point numbers, from now on we call hardware floating-point
numbers simply floating-point numbers and software floating-point numbers will be
called bigfloat numbers.

Approaches to exact arithmetic with real algebraic numbers are less well known.
A real algebraic number α can, for examples, be represented exactly by a tuple (p, I)
where p is a polynomial having α as root and I is an isolating interval for α, i.e., α
is the only root of p in I . An exact representation in the straightforward sense, i.e.,
as a decimal or binary number is not possible. This poses no problem for geometric
applications, insofar it suffices to have a representation that is closed under the
necessary arithmetic operations and allows to compute the sign of a number. For real
algebraic numbers, both can be done using the representation as polynomial with
isolating interval and other representations [62, 114].

Limits of Exact Arithmetic. All exact arithmetic, be it with rational, bigfloat
or real algebraic numbers is essentially performed by reducing the computation
to multiple operations with exact integer arithmetic. Efficient algorithms for exact
integer arithmetic are known, see e.g., [110] and implementations of exact arithmetic
are widely available [37, 53, 71]. Unlike hardware arithmetic, the few limitations
of software number types are rarely relevant in practice. Using software arithmetic
obliterates any robustness problems and nearly all Exact Geometric Computation
solutions use them as a foundation around which more efficient solutions are build.

We can compute arbitrarily accurate approximations of nearly any number given
by an expression, e.g., by using bigfloat arithmetic. But it is important to note,
that this alone does not suffice to compute the sign of a number! Assume you are
presented with a number x in form of a black box. The black box allows you to
compute arbitrarily small intervals containing x , but will never give you an interval of
zero width. If at some point the returned interval does not contain zero, the sign of x
is known. If however x equals zero, you will never be able to detect this. Due to the
problem of zero detection, not much is known beyond real algebraic numbers. While
Chang et al. [17] show that a special geometric problem involving transcendental
numbers can be solved exactly, it is in general unknown whether the sign of an
expression can be computed, if the functions exp or log are admitted [90].

20 1. INTRODUCTION

filter

arithmetic
expressions

correct
signs

unverified signs

verified signs

filter
filter

exact
evaluation

Figure 1.11. A cascade of arithmetic filters.

Arithmetic Filtering. For the use in geometric algorithms, exact software
arithmetic does have one big disadvantage. A single arithmetic operation is usu-
ally several orders of magnitude more expensive than the corresponding operation
with hardware arithmetic. This is exacerbated by the fact that for most predicate
evaluations, the hardware supported arithmetic is fully sufficient. This is evident
in figures 1.5, 1.6, and 1.9, where points sufficiently far away from the line are
always classified correctly by the 2D orientation predicate. Indeed, if this weren’t the
case, floating-point based implementations of geometric algorithms would not fail
occasionally but be totally useless.

Relief from the high cost of exact arithmetic comes in the form of arithmetic filters.
Instead of computing a value x exactly, an arithmetic filter computes an interval I
that contains x . If zero is not contained in I , the sign of x is known, which is what
we are interested in after all. If the sign of x remains unknown, it must be computed
by other means. One might resort to using a better filter, which computes a tighter
interval. This way, arithmetic filters may be cascaded, with a simple but fast filter
first and more sophisticated and more expensive filters at later stages, cf. Figure 1.11.
The last stage must consist of an approach that can recognize zero signs, e.g., by
computing x exactly.

On the number type level, arithmetic filtering is synonymous to interval arithmetic.
Given intervals Ix and I y and an arithmetic operation ◦, we need to be able to compute
an interval I such that

(1.8) {x ◦ y | x ∈ Ix , y ∈ I y} ⊆ I .

Hence, if x ∈ Ix and y ∈ I y then x ◦ y ∈ I . This is called the inclusion property of
interval arithmetic. There are two common interval representations. The first is by
midpoint and radius of the interval, which can be interpreted as approximation x̂

1.3. ROBUST GEOMETRIC COMPUTATION 21

and corresponding error bound ex for the unknown vale x . Approximation and error
must satisfy |x − x̂ | ≤ ex and the sign of x is known if | x̂ |> ex . The second interval
representation stores lower bound

s

x and upper bound sx of the interval. The bounds
must satisfy

s

x ≤ x ≤ sx and the sign of x is known if 0 6∈ [
s

x , sx].
An arithmetic filter is called a floating-point filter if it is based on (hardware)

floating-point arithmetic. The straightforward floating-point approximation x̂ of
an expression very often has the correct sign. All that is needed is an error bound
ex , that can be used to verify that the sign is indeed correct. Christoph Burnikel,
Stefan Funke, and Michael Seel [13] show how to compute such an error bound with
floating-point numbers. The challenge in this approach is to account for second order
errors occurring in the computation of the bound. Hervé Brönnimann, Christoph
Burnikel and Sylvain Pion [5] take the other approach and represent intervals by
endpoints. They show how to implement interval arithmetic very precisely by using
the directed rounding modes of floating-point arithmetic. For the practitioner, there
are only minor differences between both approaches. The first approach is usually a
bit faster, because it avoids switching the rounding mode, while the second produces
more accurate intervals, since no second order error terms occur. It is not a priori
clear, which is the better one for a particular application.

Expression dag Based Number Types. The lazy sign computation schemes
of expression dag based number types are heavily based on arithmetic filters, both
floating-point filters and bigfloat filters. Combining an exact number type with a
floating-point filter alters the running time needed for an exact sign computation.
If the filter succeeds to compute the sign, sign computation will be fast. If the
filter fails, the sign computation will be only slightly slower than with the exact
number type alone. Adding more filter stages, in general improves the adaptivity of
a sign computation solution, but also increases the worst case running time which
is reached by degenerate cases. The strategy of arithmetic filtering pays off for
geometric computation because degenerate and nearly degenerate cases are usually
rare. We discuss internals of expression dag based number types in much more detail
in Section 2.1.

1.3.2. Exact Kernels and Predicates. On the level of geometric primitives,
more efficient strategies for Exact Geometric Computation are available. These
usually require more knowledge and work from the implementor, but can lead to
largely improved performance with respect to techniques on the number type level.

Representation of Geometric Objects. For a start, one may modify the
representation of basic geometric objects in a geometric kernel. One way to do this,
is to use homogeneous coordinate representation. Homogeneous coordinates use an
additional coordinate acting as common denominator to the other coordinates. A
tuple

(h1, . . . , hd , hd+1) ∈ Rd+1 with hd+1 6= 0

22 1. INTRODUCTION

represents the Cartesian point with coordinates

(x1, . . . , xd) ∈ Rd where x i = hi/hd+1.

Tuples differing by a non-zero scalar represent the same Cartesian point and are
considered equivalent. When hd+1 = 0 is allowed, homogeneous points span the
projective space, which is quite different from Euclidean space and care must be taken
to account for the differences [107, 112]. Homogeneous coordinate representation
allows to avoid division in many geometric applications and hence may lead to more
robust or more efficient implementations.

Another way to change the representation is, to lift the expression dag technique
from the arithmetic level to the geometric kernel. When for example computing
the intersection point p of two lines `1 and `2, a dag node for p is created, labeled
as intersection node and storing references to `1 and `2. Additionally, a floating-
point interval approximation for the coordinates of p is computed. This interval
approximation is used for further computations, i.e., constructions and predicates
involving p. Only if the interval representation turns out to be insufficient, the
coordinates are computed exactly. A first implementation of this technique is described
in [32], the more generic cgal implementation is described in [83]. In comparison
to expression dags at the arithmetic level, this approach has the advantage that
significantly fewer intermediate results must be stored, which results in lower cost
for dag construction and lower memory usage. Furthermore, arithmetic operations,
first interval, then exact arithmetic, are performed en bloc, which allows further
improvements.

Geometric filtering. Storing the creation history of a geometric object, in an
expression dag or otherwise, allows to use this information later on in predicate
implementations. Let again p be the intersection point of two lines `1 and `2. After
computation of p, an algorithm may ask on which side of `1 the point p is located. If
p still knows that it is the intersection of `1 and `2, the answer can be given without
resorting to arithmetic. Note that this is a degenerate case which is expensive for
arithmetic evaluation. Exploiting the creation history of geometric objects in predicate
implementations is called geometric filtering. It has been developed for algorithms,
where in a preprocessing step input objects are split into pieces. The splitting step
results in many degenerate configurations, which are later caught by geometric
filtering and would otherwise lead to expensive arithmetic evaluations [50, 111].

Floating-Point Filters. When implementing geometric predicates, informa-
tion not available on the arithmetic level can be exploited. First of all, the expression
which must be evaluated is known. Thus it can be re-evaluated several times, without
having to store it explicitly. Again, arithmetic operations on the same number type
are performed en bloc. Often upper bounds on the input numbers are known. If,
for example, the input numbers are hardware integers, a crude upper bound follows
simply from the integer type. If no upper bound is known, it may be computed in a
preprocessing step from input data.

1.3. ROBUST GEOMETRIC COMPUTATION 23

On the arithmetic level, floating-point filters must be fully dynamic, i.e., the
interval containing the true result is entirely computed at runtime. On the predicate
level, floating-point filters often use the interval representation by midpoint and
radius, respectively approximation and error bound. The approximation is almost
always the straightforward floating-point evaluation of the expression, computed at
runtime. But knowing the expression and/or upper bounds on the input numbers
allows to compute an error bound partially or completely in advance. In a static filter,
the error bound is entirely precomputed. Thus, a static filter takes the same runtime
as a straightforward floating-point evaluation, can however not determine the sign
for all predicate calls. In a semi-static filter the error bound is partially precomputed.
The improved speed of static and semi-static filters comes at a cost. The error bounds
are necessarily less sharp, hence the filter will verify the sign of an approximation
less frequently than dynamic filters. For these reasons, state of the art predicate
implementations use at least three stages. First, a static or semi static filter, then a
dynamic filter, and finally exact arithmetic is employed. Static and semi-static filters
are for example described in [13, 23, 30, 104].

Exact Arithmetic for Small Precision. Knowing the expression and upper
bounds on the input, also allows to predict the arithmetic requirements for exact
evaluation. If, for example, the expression is a polynomial of degree d and all input
numbers are integers with b bits, then all intermediate results can be represented
exactly using d(b + O(1)) bits of precision [56]. For many basic predicates, the
requirements for exact arithmetic are quite low. The 2D orientation predicate deter-
minant has a degree of 3. For 32 bit integer input, it can be evaluated exactly using a
precision of 100 bits. Software number types tend to be optimized for much larger
precision. Knowing the precision requirement in advance, allows to fine tune the
necessary final exact evaluation step. One can save dynamic memory allocation and
might use algorithms which are asymptotically suboptimal, but still faster for small
precision. Fortune and van Wyk [30] develop small precision exact integer arithmetic,
Shewchuk [104], based on work by Douglas Priest [86] and Theodorus Dekker [20],
presents efficient exact ring operations for small precision over floating-point input.
These form one set of algorithms used to defer expression dag creation in Chapter 5.
We have a look at Shewchuk’s work and the techniques it is based on in more detail
in Section 2.2.

Based on his exact arithmetic operations, Shewchuk develops multi-stage 2D
and 3D orientation predicate and insphere and incircle predicate implementations.
The arithmetic operations allow to compute partial results without knowing the
arguments completely. Partial result can be completed without recomputing the
already known parts. This is exploited to efficiently compute approximations of the
final result and corresponding error bounds with increasing quality. The predicates
consist of four stages of increasing complexity and are really unique in that partial
results from previous stages are reused and not recomputed in later stages. The

24 1. INTRODUCTION

evaluation scheme and the error bounds are carefully crafted by hand and result in
one of the most efficient predicate implementations to date.

Static Algebraic Predicates. Like rational arithmetic, exact arithmetic on
algebraic numbers reduces a single operation to several exact operations in integers.
In the case of predicates involving algebraic numbers of small degree, several au-
thors perform this reduction manually, resulting in static algebraic predicates. Olivier
Devillers, Alexandra Fronville, Bernard Mourrain, and Monique Teillaud [22] con-
sider comparing the x-coordinates of intersection points of circles. More generally,
Ioannis Emiris and Elias Tsigaridas [27] discuss approaches to compare the roots
of polynomials of small degree. The basic approach is to unroll general algorithms
for the computation with algebraic numbers to the specific case at hand. Using
symbolic computation techniques, the authors precompute expressions for quantities
occurring in these algorithms, like isolating intervals, resultants, or Sturm sequences.
They further simplify these expressions by exploiting common sub-expressions and
simple algebraic identities between them. The result are polynomial expressions of
small degree in the input data. At runtime, only the sign of one or more of these
expressions must be computed to determine the final comparison result. Furthermore,
for the evaluation of an expression, the whole set of available techniques for adaptive
evaluation may be emplaced, resulting in very efficient predicates.

Modular Arithmetic. Finally, modular arithmetic [110] may be used for sign
computation of polynomial expressions over integers. The approach requires an
upper bound on the final value of an expression, but not on intermediate results. A
good bound can be induced by prepending modular arithmetic with a floating-point
filter. Either the filter verifies the sign, or the value of the expression must be small.
Thus, floating-point filter and modular arithmetic complement each other, with the
floating-point filter providing smaller bounds for the modular arithmetic. To avoid
high precision arithmetic, the expression is evaluated multiple times with relatively
prime moduli, small enough to allow evaluation with hardware arithmetic. From the
residues, the exact value may be reconstructed using software arithmetic, the sign,
however, can be computed using hardware arithmetic alone [6, 82].

Automatic Predicate Generation. Designing and implementing efficient geo-
metric predicates is a difficult task, mostly due to the error analysis that must be
undertaken. To ease the implementation of multi stage geometric predicates, ex-
pression compilers have been devised. The compiler is fed with the expression, and
possibly further information on the input numbers and generates the code to compute
the sign of the expression for given input numbers correctly. For static and semi-static
floating-point filters the compiler performs the necessary error analysis. Fortune and
van Wyk [30] present an expression compiler, called ln for “little numbers”, based
on their static floating-point filter and small precision exact arithmetic. The compiler
generates C++ code for both the filter stage and the exact evaluation. The exact
evaluation code is completely unrolled, avoiding any memory allocation, function
calls and even loops. Burnikel et al. [13] provide an expression compiler expcomp

1.3. ROBUST GEOMETRIC COMPUTATION 25

for their floating-point filter too. It generates C++ code and uses number types
from the leda library for exact evaluation. Aleksandar Nanevski, Guy Blelloch, and
Robert Harper [76] present an expression compiler that automatically generates
multi-staged predicates following Shewchuk’s scheme. The generated predicates how-
ever fall slightly short of the ones that were hand made by Shewchuk. Nevertheless,
the compiler allows to generate more than the four predicates provided by Shewchuk.
Expression compilers ease the generation and implementation of efficient geometric
predicates, but they are restricted to a certain environment, i.e., the output language
or presence of certain libraries.

1.3.3. Robustness on the Combinatorial Layer. There exists an abundance of
techniques on the combinatorial level that allow geometric algorithms to cope with
numerical imprecision, for an overview see [97, 117]. The approaches are often
problem dependent and as diverse as the geometric problems they address. Very
often, they change the notion of what is considered a solution to a problem. Output
may lack certain topological properties exhibited by the exact solution, or the correct
output for something different than the actual input is computed. However, they
guarantee termination and that computed output is in some sense close to the exact
solution. In this regard, they can be considered robust. By avoiding expensive exact
arithmetic totally or at least more than exact approaches, they may potentially lead
to very efficient implementations. In this section, we briefly present a selection of
approaches on the combinatorial level that have been successfully applied to a variety
of problems.

Structural Filtering. Structural filtering [33, 75], although working on the
combinatorial level, is a technique which still belongs to Exact Geometric Compu-
tation. It applies to searching in data-structures, an important sub-step in many
algorithms. A frequent search step in geometric algorithms is point location, where
the part in a data-structure corresponding to a certain coordinate must be found. The
idea of structural filtering is, to perform the search in a first step with inexpensive
though inaccurate floating-point based predicates. Since these predicates return false
answers rarely and only in nearly degenerate cases, the search should stop at or close
to the true result in the data-structure. Then, exact predicates are used to verify and
possibly correct the position in the data-structure.

Controlled Perturbation. The technique of controlled perturbation [41], de-
vised by Dan Halperin and co-workers, randomly perturbs, i.e., actually changes the
input by a small amount and then attempts to compute the geometrically correct
output for the modified input. The goal of the perturbation is to remove degenerate
and nearly degenerate input configurations in such a way, that an arithmetic filter
with predetermined accuracy will compute the correct sign for all predicate calls. If
at some point the filter fails to determine a sign, the procedure is repeated. There is
a tradeoff between the amount of perturbation and hence the quality of the result,
the accuracy of the employed arithmetic filters and the probability that a restart
is necessary. Controlled perturbation has been applied successfully to a variety of

26 1. INTRODUCTION

problems, including arrangements of spheres and circles [40, 41] and Delaunay
triangulations [31]. Kurt Mehlhorn, Ralf Osbild and Michael Sagraloff generalize
controlled perturbation to a wide class of geometric algorithms [59].

Topology Oriented Implementation. The topology-oriented approach has
been devised and popularized by Kokichi Sugihara and co-workers. They applied
it successfully to many geometric problems, including the computation of convex
hulls, Voronoi diagrams, Delaunay triangulations, and the intersection of polyhedra,
see [109] for an overview of the technique and references to individual problems.
The basic idea is to separate topology and combinatorics from imprecise numerics in
order to avoid the inconsistency problem. Combinatorial invariants are determined,
which hold for an exact solution to a geometric problem but can be enforced without
resorting to numerical computation. Queries and updates to data-structures are
designed to rely on these invariants only and to enforce them rigorously. Information
from numerical computations may only guide these operations, combinatorial infor-
mation is given strict precedence. The goal is to design an algorithm in such a way,
that something combinatorially sound is computed, even if all numerical predicates
give random answers. The algorithm shall give the correct answer in the limit, as
the numerical precision tends to infinity. Since floating-point based predicates quite
often return correct results, there is hope the computed result is close to the correct
one. By design, the topology-oriented approach does not handle degeneracies. As an
example, we briefly discuss an incremental algorithm for the two dimensional Voronoi
diagrams of points [108]. The algorithm inserts sites one by one, maintaining the
current Voronoi skeleton as a graph. The combinatorial invariants for the topology
oriented approach are, that each site has exactly one connected Voronoi region, and
two Voronoi regions share at most one edge. In an update step, the part of the old
Voronoi skeleton covered by the new Voronoi cell is removed and replaced by the
boundary of the new cell. The invariants are enforced by ensuring that the removed
part always has a tree structure. Only the selection of the tree to be removed from
the current Voronoi skeleton is guided by numerical computation.

Martin Held [42] reports on his implementation of an incremental algorithm for
the computation of the Voronoi diagram of line segments. Computing the Voronoi
diagram of line segments involves algebraic numbers and is hence quite challenging in
terms of arithmetic and robustness. His code, called vroni, is based on the topological
approach and uses hardware floating-point arithmetic only. vroni has been shown
empirically to be both reliable and very fast. Its creation is a beautiful example for
Algorithm Engineering.

1.4. Robust Geometric Computing in Practice

The Exact Geometric Computation paradigm has been been widely successful
because it allows to implement algorithms as described in theory and leads to robust
implementations. Other approaches to the robustness problem are less attractive as
they require to re-invent algorithms or compute only approximate solutions. But, as

1.4. ROBUST GEOMETRIC COMPUTING IN PRACTICE 27

in the case of vroni, they may still lead to very efficient implementations which are
reliable in practice. Provable guarantees on robustness and output quality remain an
issue.

Libraries for Exact Geometric Computation. Many geometric algorithms
have been implemented successfully following the Exact Geometric Computation
paradigm and are now available to the scientific community, industry, and the general
public. Among the many approaches, the libraries leda [53, 58] and cgal [16]
stand out. Most of the techniques discussed in this chapter are part of one or both
libraries. Both leda and cgal can be considered a product of Algorithm Engineering
in Computational Geometry.

leda is the first library to follow the Exact Geometric Computation paradigm
rigorously. The decision for Exact Geometric Computation was made following
disappointing results with floating-point based implementations and the finding that
problem dependent approaches to robustness are unsuitable in a library, which should
be open to many applications. leda contains an extensive collection of geometric
algorithms and data-structures both in two and three dimensions. Tools for Exact
Geometric Computation are provided, too. leda contains exact number types and
interval arithmetic, as well as exact geometric kernels. Besides geometry, leda also
provides an extensive set of combinatorial algorithms.

cgal concentrates exclusively on geometry. It is the product of more than 15
years of work by the computational geometry community and now contains a much
larger body of geometric algorithms than leda. cgal is a more recent development,
too, and could therefore take advantage of C++’s template feature which was not
available when the development of leda started. By means of templates, cgal
very nicely separates the arithmetic layer, the layer of geometric primitives and the
combinatorial layer. The three layers can be combined easily and quite independently.
cgal is not only the product of Algorithm Engineering but, due to its generic design,
makes further Algorithm Engineering much easier and thereby possible. This thesis
has profited immensely from cgal, almost all experiments use kernels and geometric
algorithms from cgal.

Cost of Exact Geometric Computation. Despite the apparent advantages of
Exact Geometric Computation, practitioners still complain about its lack of efficiency.
Often, they compare the efficiency to the speed of floating-point based implementa-
tions, but this comparison is not quite fair, since floating-point based implementations
are not robust. Nearly all papers presenting new techniques for Exact Geometric
Computation compare their new approach experimentally to other methods for per-
formance. They often include straightforward floating-point based implementations
too, since they provide some sort of lower bound. But, not surprisingly, as soon as
problems are more challenging, the times for the floating-point based implementation
are missing because of robustness problems. We now summarize some experimental
results comparing Exact Geometric Computation approaches to each other and to
other robust and non-robust approaches.

28 1. INTRODUCTION

The input size of geometric algorithms, basis for asymptotic performance analysis,
is usually the number of basic geometric input objects. The input size affects the
number of predicate calls, not the time taken by a single predicate. Thus, exchanging
predicate implementations in a geometric algorithm alters the running time roughly
by a constant factor, independently of the input size. Assuming all predicates in an
algorithm are sped up by a factor s, the algorithm will be sped up by a constant
factor somewhat smaller than s, regardless of the input size. In case of adaptive
predicates, the average speed up factor for a predicate depends on the number of
nearly degenerate predicate evaluations. Hence, experiments are usually run for
several inputs with varying number of degenerate configurations, but not so much
for inputs of varying input size.

Predicates with Integer and Rational Numbers. Michael Karasick, Derek
Lieber and Lee Nackman [49] are among the first to report on the use of exact
arithmetic in geometric algorithms. They implement an algorithm for the computation
of the 2D Delaunay triangulation of input points with floating-point coordinates. They
report a slowdown factor of 10 000 when naïvely using rational arithmetic, compared
to a floating-point based implementation. Clearly, with such a performance hit, one
would abandon Exact Geometric Computation despite all problems with different
approaches. Karasick et al. manage to improve the slowdown to a factor of 5, by
using first filtering techniques in an adaptive scheme, and modifying the algorithm to
use less arithmetic.

Several authors report on the efficiency of their predicate implementations for
the computation of 2D and 3D Delaunay triangulations. Fortune and van Wyk [29]
compute the 2D Delaunay triangulation of integer points. Compared to a floating-
point based implementation, their predicates achieve a slight decrease in running
time for input sets without degeneracies, for nearly co-circular points they report an
increase in running time by 65%. Shewchuk [104] computes 2D and 3D Delaunay
triangulation of points with floating-point coordinates. In the two dimensional case,
the overhead for exactness is 8% to 30% for input sets with varying amounts of
degenerate configurations, in the three dimensional case the overhead is between
30% for uniformly distributed points and a factor of 11 for co-spherical points.
Devillers and Pion [23] compute the 3D Delaunay triangulation of points with
floating-point coordinates for some uniformly at random and real world input data
sets. For Shewchuk’s predicates they report an increase in running time of 40%
compared to floating-point predicates. Their own best exact predicates achieve an
overhead of 8% to 25% only. Devillers and Pion include expression dag based number
types CORE::Expr, leda::real, and Lazy_exact_nt in their experiments too.
For random input data, CORE::Expr is the fastest among the three, while for real
world data Lazy_exact_nt wins. Comparing to Shewchuk’s adaptive predicates,
the slowdown is at least a factor of 10 in any case.

The predicates for all problems mentioned so far consist of small polynomial
expressions. Evidently, Exact Geometric Computation has been achieved for them

1.4. ROBUST GEOMETRIC COMPUTING IN PRACTICE 29

at an increased runtime cost well below a factor of two, except for cases with many
degenerate input configurations. These are however the cases where Exact Geometric
Computation is needed the most. This is a small price to pay for correct results and
tolerable in all but the most runtime restricted applications. For these applications,
expression dag based number types do not appear to be efficient.

Predicates with Algebraic Numbers. Christoph Burnikel, Rudolf Fleischer,
Kurt Mehlhorn and Stefan Schirra [10] somewhat artificially design problems that
require the power of expression dag based number types. For example, they first
compute all intersection points induced by a set of lines or circles and then compute
the convex hull of these intersection points. Here, leda::real outperforms both
CORE::Expr and non-adaptive predicates based on exact number types. With respect
to a floating-point based implementation, the slowdown is a factor of 15 to 20 for
circles, and 25 to 60 for lines.

For problems involving algebraic numbers comparing exact approaches to non-
robust floating-point based approaches is meaningless, even when the input data are
hardware numbers. The robustness problems become so severe that no straightfor-
ward floating-point based implementation might work. Because exact approaches
are still felt to be too slow though, it is very interesting to look for the most efficient
exact approach.

Ioannis Emiris, Athanasios Kakargias, Sylvain Pion, Monique Teillaud, Elias
Tsigaridas [26] present a new geometric kernel for the computation of arrangements
of circles and circular arcs. To handle algebraic numbers occurring in this problem
they either employ CORE::Expr or leda::real, or static algebraic predicates based
on integer and rational number types [22, 27]. In their experiments, they compute
arrangements for randomly generated input sets and structured input sets with many
degeneracies. Among expression dag based number types, leda::real always
outperforms CORE::Expr. However, leda::real is a factor of two to four slower
than static algebraic predicates for an optimal choice of number type.

Menelaos Karavelas [50] reports on his implementation of segment Voronoi
diagrams, another problem involving algebraic numbers. In his experiments he
computes segment Voronoi diagrams for randomly generated data, structured data
with many degeneracies and real world data. For predicates he uses leda::real,
and alternatively static algebraic predicates based on rational numbers from gmp.
Both variants are combined with a floating-point filter and achieve essentially the
same running time. The reason might be, that the floating-point filter computes most
of the signs.

More recent results involving expression dag based number types are presented
by Martin Held and Willi Mann [43]. Among other problems, they examine the
problem of computing the Voronoi diagram of segments, using robust and exact
approaches. The first competitor is their own code vroni, based on floating-point
numbers as well as bigfloat numbers from mpfr. The mpfr based variant uses fixed
precision which is higher than that of hardware arithmetic. It is therefore more

30 1. INTRODUCTION

likely to produce correct topology and computes more accurate numerical data. The
second competitor is the implementation of segment Voronoi diagrams by Karavelas,
combined with CORE::Expr as exact number type. As input data, Held and Mann
use a data base of roughly 20000 input sets. The results are, that both Karavelas
implementation with CORE::Expr, and vroni based on mpfr are on average a factor
of 50 – 80 slower than vroni with floating-point based predicates. Furthermore, for
Karavelas implementation, the running times are much more scattered and some
outliers did not even finish computing in the time limit set for the experiments. A
slowdown by a factor of 50 seems to be a hard price to pay for exactness or more
accuracy.

These results might disencourage an implementor to use expression dag based
number types, despite other advantages. For linear problems, Exact Geometric
Computation seems achievable at a slowdown of less than two, while the cost for
using expression dag based number types is much higher. For problems involving
algebraic numbers, where it is reasonable to spend more time, static algebraic
predicates appear to be the better choice. In some cases, non-exact but much faster
implementations like vroni may be used.

On the other hand, many of the experimental results given here are outdated.
Linear problems rely on floating-point filters for speed. But floating-point filters are
unlikely to have been improved since then or to be improved in the future. The
reasons are, that they are quite simple and for easy predicates are so fast that there
is just no room for improvement. Expression dag based number types however are
internally quite complicated and it is reasonable to believe that progress can be made
to narrow the gap.

The issue with floating-point filters for arithmetically more demanding problems
is not lack of speed, but that floating-point filters fail more frequently and computation
with software number types becomes necessary. But adaptivity beyond the limits of
dynamic floating-point filters is only available in expression dag based number types.
The running times achieved with static algebraic predicates are not so small, as to
seem unreachable. The main goal of this thesis is, to improve expression dag based
number types to close the performance gap to other, more specialized approaches.

CHAPTER 2

Previous Work

In this chapter we briefly discuss work by other authors directly relevant to the
topics of this thesis. It is actually a chapter split in two. In the first part we closely
examine the techniques needed to make expression dag based number types work.
Then, we look more closely at some number types, and examine some strengths
and weaknesses in their implementation. We concentrate on CORE::Expr and
leda::real as they are most closely related to RealAlgebraic.

In the second part we discuss, how notoriously imprecise floating-point arith-
metic can be used to design and implement numerical algorithms that compute very
precise and even exact results. We start with some well known and less well known
approaches to the analysis of floating-point arithmetic. Then we present error-free
transformations, the basic toolkit for exact arithmetic based on floating-point numbers
and finally some algorithms using them.

2.1. Expression Dag Based Number Types

An expression dag is a directed acyclic graph with labeled nodes. Nodes without
outgoing edges are called leaf nodes. Leaf nodes are labeled with an integer or
rational number. All other nodes are called internal nodes, they are labeled with an
arithmetic operation. The number of outgoing edges of an internal node corresponds
to the arity of the label. We call the direct successors of a node the operands of
this node. An expression dag has exactly one node without ingoing edges, called
the root node. We may however consider any node in a dag as a root node, by
restricting the dag to the part reachable from this node. An expression dag represents
an arithmetic expression in the straightforward way. A leaf node represents its label,
and an internal node represents the expression obtained by applying its label to the
expressions represented by its operands. Figure 1.1 in the previous chapter shows
an expression dag and the represented expression. Note how the sub-expression

p
2,

which occurs twice in the expression, is shared in the dag. Each dag node has a value,
obtained by evaluating the expression it represents. The value is undefined if some
undefined operation occurs, e.g., division by zero. We identify a dag node with both
its expression and value.

Arithmetic operations we allow as label, are negation or unary minus (−), binary
field operations, (+,−,×,/), radicals of arbitrary degree (d

p
), and more generally

extracting the i-th largest real root of a polynomial p. This is called the �-operator

31

32 2. PREVIOUS WORK

(�(p, i)). The operands for a � node are the coefficients of p. With this set of
operations, the value of a dag node is either undefined or a real algebraic number.
Sometimes the operands for the �-operator are restricted to leaf nodes, i.e., integer or
rational numbers. We call an expression simple, if it does not contain the �-operator
and we call it division free, if it does not contain a division. General expressions may
contain all of the operations above.

2.1.1. Basic Techniques. Expression dag based number types record the cre-
ation history of a number as an expression dag. They defer numerical computations
to the point where a user asks for the sign or approximate value of a number. Storing
the expression allows to re-evaluate the expression. This has two main advantages.
First, the number is known exactly. Although the representation as expression dag is
rather implicit, any conceivable information about a number might be computed if
necessary. Second, having said that, the sign or an approximation of the expression
can be computed using as much numerical precision as necessary, but not more. Thus,
expression dag based number types allow for adaptive sign computation.

The user does not need to care about the internals. He only sees variables,
representing numbers, which he can manipulate in an accustomed way. In practice,
this variable is a handle, pointing to a dag node and the dag rooted at this node
represents the number. See again Figure 1.1, where two variables a and b are used
in the code sample. From the users viewpoint, arithmetic operations simply return
a new variable representing the result. Expression dag based number types mostly
differ in how expression evaluation and sign computation are performed. We now
collect some of the main techniques used.

Staged Filters. The main reason for storing expressions is to defer high preci-
sion computations, since they are not necessary in most cases. But a user will rarely
create a number without needing its sign or value at all. Therefore, each node v stores
a dynamic floating-point filter or floating-point interval containing v. This filter is
usually computed upon dag creation and the first means for sign computation. If the
node is approximated more accurately in later stages, the filter may be updated. This
allows to compute tighter floating-point intervals in arithmetic operations involving v
later on.

Some number types inspect the dag structure to detect zero signs or equality of
nodes, right after the floating-point filter and before switching to software number
types. For example, two nodes are equal if they have the same address in memory.
But it is also possible, to check the dag structure recursively. Leaf nodes are equal if
they store the same number, and internal nodes are equal, if they have equal operands
and are labeled with the same operation.

If the floating-point filter and other quick tests fail to give the correct sign or a
sufficiently accurate approximation, software number types are used. One possibility
is to compute the value of a node exactly using an appropriate number type. The
alternative is, to continue computing approximately, using bigfloat arithmetic.

2.1. EXPRESSION DAG BASED NUMBER TYPES 33

Approximation with Bigfloat Arithmetic. For each real number x and a
fixed precision of p bits, there are two bigfloat numbers pred(x) and succ(x), such
that

pred(x)≤ x ≤ succ(x),
and no bigfloat number strictly between them. A bigfloat operation with p bit
precision is rounding faithfully, if the result is as if first the exact result x is computed,
and then rounded to pred(x) or succ(x). We assume that all bigfloat operations
are rounding faithfully. A rounding mode additionally determines which of the two
numbers to choose. Common rounding modes are for example rounding to nearest,
or rounding upwards. While the first is slightly more accurate, the latter allows to
compute rigorous bounds more easily. We can control the relative error of a bigfloat
operation by specifying the precision p. Let fl(x) be a bigfloat number nearest to x ,
then

|x −fl(x)| ≤ 2−p|x | and |x −fl(x)| ≤ 2−p|fl(x)|.
To keep track of the error accumulating in a series of bigfloat operations, arithmetic
filters are used. Assume we use an interval representation based on midpoint and
radius as filter. In this case, each node v stores an approximation v̂ and an error
bound ev with

|v− v̂| ≤ ev .
We may however easily switch between different interval representations by accepting
some small additional error. For example, an upper bound sv for |v| can be computed
by sv = |v̂|+ ev with bigfloat arithmetic in any precision and rounding upwards.

We denote by ⊗p a bigfloat multiplication with p bit precision and faithful
rounding. Let z be a multiplication node with operands x and y, i.e., z = x × y.
Recompute ẑ = x̂ ⊗p ŷ . Then we have the following error estimate

|ẑ− z| ≤ |ẑ− x̂ ŷ|+ | x̂(ŷ − y)|+ |y(x̂ − x)|

≤ 2−p|ẑ|+ | x̂ |ey + syex
(2.1)

We can compute an upper bound of the right hand side, again using bigfloat arithmetic,
but now with small precision and rounding upwards. This gives us the error bound ez .
Similar error bounds exists for other arithmetic operations. By increasing the precision
p and recomputing all nodes, arbitrarily accurate approximations and corresponding
error bounds may be computed for a node. But there remain two questions: How to
increase the precision? And how to detect zero numbers, since except for polynomial
expressions, approximations can not be expected to become exact at any point.

Precision Driven Arithmetic. In the way just described, we can determine
the accuracy of an approximation. Precision driven arithmetic allows to specify the
accuracy of an approximation a priori, before it is recomputed. The scheme works
recursively and in general requires to recompute the approximation of child nodes. It
terminates at the leaves of the dag, where exact values are available. The technique
was first proposed by Thomas Dubé and Chee Yap [25]. Here we give the error
estimates and evaluation scheme for a multiplication node and absolute error, as

34 2. PREVIOUS WORK

z

x y

×

p
ẑ = x̂ ⊗p ŷ

ez = 2−p|ẑ|
+ | x̂ |ey + syex

p
x̂ ,ex

p
ŷ,ey

(a) Naïve.

z

x y

× p =
l

log2
2| x̂ ŷ|

B

m

ez = B ẑ = x̂ ⊗p ŷ

ex =
B

4sy

x̂
ey =

B
4 x̂

ŷ

(b) Precision driven.

Figure 2.1. Improving the approximation of a multiplication node. Figures
inspired by similar ones in [115]

presented in [10]. Schemes for more operations, both for relative error and absolute
error are presented by Yap [116] and Du [24].

Let again z be a multiplication node with operands x and y. Analogously to
Equation (2.1) we obtain

|ẑ− z| ≤ 2−p| x̂ ŷ|+ | x̂ |ey + syex(2.2)

This bound allows us to recompute ẑ for given ez , by bounding the terms on the right
hand side appropriately. Assume we want to achieve ez = B. First, we recompute
x̂ , recursively enforcing ex ≤ B/(4sy) by precision driven arithmetic. This step
requires an upper bound sy on |y|, which we can easily compute using the current
approximation of y. Afterwards, x̂ is known and we recompute ŷ, enforcing ey ≤
B/(4| x̂ |). Finally we set p, such that 2−p ≤ B/(2| x̂ ŷ|) and compute ẑ = x̂ ⊗p ŷ . Then
clearly |ẑ − z| ≤ B and we set ez = B. See Figure 2.1 for comparison of a naïve
improvement scheme and precision driven arithmetic.

Analogous schemes are known for other basic arithmetic operations and functions.
In some cases, i.e., for division and radicals, they involve lower bounds. Having a
lower bound on the absolute value of some node is equivalent to knowing its sign,
so sign computation may be triggered recursively. Precision driven arithmetic allows
to control the accuracy of an approximation to some expression in advance. This is
in contrast to bigfloat interval arithmetic, which can compute arbitrarily accurate
approximations and proper error bounds too. There, however, the accuracy is only
known after the computation.

Zero Separation Bounds. If expressions are evaluated approximately only,
separation bounds allow to identify nodes with a value of zero. A number ξ(E) is a
separation bound for some expression E, if

E 6= 0 ⇒ |E| ≥ ξ(E).

2.1. EXPRESSION DAG BASED NUMBER TYPES 35

If a separation bound is known, we can approximate E such that 2eE < ξ(E). Then,
the sign of E is known because either |Ê|> eE , which implies

sign(E) = sign(Ê) 6= 0

or |Ê| ≤ eE and
|E| ≤ 2eE < ξ(E) ⇒ E = 0.

Actual separation bounds in use with expression dag based number types consist of a
set of parameters for each dag node, among them the actual separation bound, and
simple rules how to compute these parameters recursively from the operands of a
node. They can be classified with respect to the type of expressions they support.

The parameters maintained in a separation bound for an expression E are typi-
cally bounds on quantities related to the minimal polynomial of the algebraic number
α given by E. A polynomial p ∈ Z[X] is called a minimal polynomial for α, if p(α) = 0
and the degree of p is minimal among all polynomials in Z[X] having α as root. Let

p(X) =
d
∑

i=0

aiX
i = ad

d
∏

i=1

(X −αi) ∈ Z[X]

be a minimal polynomial of α, i.e., let α = α1. The roots α1, . . . ,αd of p are called
conjugates of α. The proofs for separation bounds are mostly based on resultant
calculus [114], which allows to compute the necessary polynomials. An upper bound
D(E) on the degree d of α occurs in nearly all known separation bounds. It is given
by

(2.3) D(E) =
∏

v node in
dag for E

deg(v) where deg(v) =

di if v = di
p

deg(p) if v = �(p, i)
1 otherwise.

A separation bound ξ dominates another separation bound ξ′ for a class of expressions
E (ξ � ξ′), if ξ(E) ≥ ξ′(E) for all E ∈ E . A larger separation bound is clearly
preferable, because it requires less accuracy from an approximation to compute a sign.
Figure 2.2 gives an overview over known separation bounds and relations between
them. A recent survey on separation bounds is given by Stefan Schirra [99].

Maurice Mignotte [60, 61] was the first to consider proving the equality of two
algebraic numbers by approximation and separation bounds. He provides rules for
maintaining upper bounds on the degree and measure

M (α) = |ad |
d
∏

i=1

max{1, |αi |)}

of a number α, for simple expressions. If α 6= 0, then α > 1/M (α). We call this the
DM or degree-measure bound. Chen Li and Chee Yap [55] improve the DM bound by
computing tighter bounds on the degree using Equation (2.3) and add rules for the
�-operator restricted to integer coefficients. Hiroshi Sekigawa [103] improves upon

36 2. PREVIOUS WORK

degree-length [25] DM [55] DM[k] [84]

degree-height [118] Sekigawa [103] LY [55]

Canny [11] BFMS [11] BFMSS [12] BFMSS[k] [102]

Scheinerman [96]

? ?

?

� � �

≺?≺

≺�≺

≺

≺

≺

6=

6=

6=

≺

≺

≺

≺

=

=

=

simple, division free expr.

simple expressions

? general expr., restricted �

� general expressions

≺ dominance

= equality

6= incomparability

Figure 2.2. Relations between some known separation bounds.

the DM bound for simple, division free expressions, by maintaining upper bounds on
|ad | and

∏d
i=1 max{1, |αi |)} separately.

The BFMSS bound by Christoph Burnikel, Stefan Funke, Kurt Mehlhorn, Stefan
Schirra, and Susanne Schmitt [12] conceptually rewrites an expression E with value
α into a quotient of two division free expressions. Let β be the value of the numerator
in the rewritten expression, with minimal polynomial

q(X) = X d ′ +
d ′−1
∑

i=0

biX
i =

d ′
∏

i=1

(X − βi) ∈ Z[X].

The conceptual rewriting rules guarantee, that the degree d ′ of β is at most the
degree d of α. Let γ be the value of the denominator in the rewritten expression. The
BFMSS bound maintains an upper bound u(E) on the conjugates of β , and an upper
bound l(E) on the conjugates of γ. The rules for u(E) and l(E) are given in Table 2.1.
If α 6= 0, then

1≤ |b0|= |β1β2, . . . ,βd | implies |α|=
|β |
|γ|
≥

1

l(E)u(E)D(E)−1
.

The BFMSS bound improves upon its predecessor, the BFMS bound [11] with a better
conceptual rewriting rule, distributing the algebraic degree to either the numerator
or denominator, not both. In the BFMS bound, the degree of β can only be bounded
by D(E)2. Together with the split rule for radicals, attributed to Chee Yap, the BFMSS
bound dominates the BFMS bound. For simple, division free expressions, both bounds
are equal.

The LY bound by Chen Li and Chee Yap [55] maintains an upper bound U(E) on
the conjugates of α, and an upper bound lc(E) on the leading coefficient |ad | of the

2.1. EXPRESSION DAG BASED NUMBER TYPES 37

E u(E) l(E)

E ∈ Z |E| 1

A± B u(A)l(B) + u(B)l(A) l(A)l(B)

A× B u(A)u(B) l(A)l(B)

A/B u(A)l(B) l(A)u(B)
k
p

A, u(A)≥ l(A) k
p

u(A)l(A)k−1 l(A)
k
p

A, u(A)< l(A) u(A) k
p

u(A)k−1l(A)
Table 2.1. Rules for computing u(E) and l(E) for the BFMSS bound.

minimal polynomial of α. If α 6= 0, then

1≤ |a0|= |adα1α2, . . . ,αd | implies |α| ≥
1

lc(E)U(E)D(E)−1
.

To allow computing U(E) and lc(E) in the presence of division, the LY bound addition-
ally maintains a lower bound on the conjugates, and upper bounds on tail coefficient
and measure of the minimal polynomial. In one case, the LY bound resorts to the
DM bound, though any separation bound may be used here. For simple, division free
expressions, the LY bound and the BFMSS bound are equal.

Separation bounds are much worse for simple expressions than for division free
expressions. The very common floating-point input, however, introduces division
already at the leafs of a dag, even if the expression to evaluate is otherwise division
free. Sylvain Pion and Chee Yap [84] develop a generic approach to overcome this
issue. The basic idea is to factor a power of k from each number, before estimating the
separation bound parameters. To this end, input numbers are scaled to the smallest
integer, for computed numbers the corresponding power of k is computed recursively
from the arguments like other separation bound parameters. If this computation
can not be performed exactly, the error is moved into the original separation bound
parameters. Pion and Yap apply their scheme to the DM and BFMSS bound and
call the resulting bounds DM[k] and BFMSS[k]. Their new bounds dominate the
old ones. In practice, one should use k = 2, or k = 2 and k = 5 simultaneously,
because nearly all input numbers are binary or decimal. Experiments show that for
floating-point input, the separation bounds computed by BFMSS[2] are almost as
good as the BFMSS bound for integer input [84]. The BFMSS[2,5] bound is not a
large improvement over BFMSS[2]. Schmitt [102] extends the results of Pion and
Yap to the �-operator for the BFMSS bound.

For simple, division free expressions, the BFMSS[k] bound dominates all other
known separation bounds. Most of the relevant proofs can be found in [11, 55].
A proof that BFMS dominates Sekigawa’s bound is due to Stefan Schirra [100].
For simple expressions, the BFMSS bound, the LY bound, and the DM bound are

38 2. PREVIOUS WORK

incomparable [55]. This means, there exist expressions where any of the three is
the best known bound. The LY bound does however compute the DM bound anyway.
Applications should therefore use either the BFMSS[2] bound alone, or the LY bound
combined with the DM[2] bound, and the BFMSS[2] bound together.

Adaptive Evaluation. Separation bounds and precision driven arithmetic allow
to evaluate an expression directly, with sufficient accuracy to determine its sign. In
geometric applications this is however not the desired strategy. Instead, the expres-
sion is re-evaluated with gradually increasing accuracy, hoping that low accuracy
approximations suffice to compute the sign. A common strategy is to ensure quadratic
convergence at the root node. It is however by no means clear, that this is an optimal
strategy. To avoid unnecessary work, the first step should enforce an error smaller
than the one achieved by the floating-point filter.

Beyond the floating-point filter stage, high precision bigfloat arithmetic is the
main cost factor. Lets assume, that quadratic convergence translates to doubling the
precision in each node in each step. This is approximately true, once all nodes have
been approximated reasonably well. Then, each approximation step costs at least
twice the runtime of the previous step. The last approximation step, revealing the
sign, dominates the running time. If the root node is zero, the separation bound
determines the accuracy for the last step and thus the worst case running time. The
total runtime is then twice the time it would have taken to approximate the root node
directly to the accuracy required for the separation bound to strike.

If a node is not zero, however, the running time depends on how much this node
is actually separated from zero. This is what occurs in practice, since expressions over
floating-point numbers are almost never zero

Dag Node Management. A dag node may be referenced by several nodes or
handles. This allows for example to share common sub-expressions within the same
dag or between different dags. Usually it is up to the user to create dags in a way that
sub-expressions are shared, see again Figure 1.1 for an example. Sharing common
sub-expressions improves the performance because it reduces evaluation cost. To
allow for multiple references, nodes are reference counted, each node remembers the
number of other nodes or handles pointing to it. If the reference count of a node
drops to zero, it releases itself. Thus, reference counting enables automatic memory
management.

In the best case, the floating-point filter computes the sign for an expression. In
a typical geometric algorithm, e.g., using the 2D orientation predicate, this means
the dag is created, evaluated and immediately released. Dag nodes require small
chunks of memory from the heap. Since the filter evaluation is very fast, the necessary
memory management imposes a serious overhead. To reduce the overhead, expression
dag based number types use memory pools for dag nodes. The idea of a memory pool
is to allocate a large chunk of memory once and split it into small pieces, sufficient
for dag nodes. Nodes are then allocated from and released to the pool. Since the

2.1. EXPRESSION DAG BASED NUMBER TYPES 39

pool provides memory blocks of a fixed size only, this is much more efficient than
memory management by the operating system.

When the value of a node becomes known exactly, the node may store this value
and remove pointers to its operands, thus turning into a leaf node. This is known as
dag pruning. Pruning reduces the size of the dag and releases memory.

2.1.2. Concrete Number Types. The idea to store expressions as means for
adaptive sign computation was already mentioned by Fortune and van Wyk [29], but
was not pursued further due to high running time cost. We now list some number
types and discuss their specifics. Of those, only Lazy_exact_nt, leda::real and
CORE::Expr are publicly available.
lea: Mohand Benouamer, Philippe Jaillon, Dominique Michelucci, and Jean-Michel

Moreau present the first expression dag based number type, which they call lea
for lazy exact arithmetic [3]. lea supports rational arithmetic. The first evaluation
stage for sign computation uses a floating-point filter, then the expression struc-
ture is inspected to detect equality cases. Finally, and if necessary, the expression
in question is evaluated exactly using rational arithmetic. After exact evaluation,
the dag is pruned.

Lazy_exact_nt: The number type Lazy_exact_nt<NT> by Sylvain Pion and
Andreas Fabri [83] is a generic version of lea. It is distributed as part of the cgal
library. Lazy_exact_nt must be instantiated with some exact number type NT
used for the second evaluation stage. Lazy_exact_nt supports field operations
and square roots, but at most the operations supported by NT. In contrast to
lea, Lazy_exact_nt does not exploit expression structure. But if a node is
evaluated exactly, its floating-point interval representation is updated for later
operations.

Both lea and Lazy_exact_nt have the disadvantage of only two evaluation stages.
The accuracy achievable with floating-point filters is limited and large expressions may
categorically require higher accuracy for exact sign computation. Other number types
go beyond the capabilities of lea and Lazy_exact_nt, both in terms of functionality
and adaptivity. They implement subsets of algebraic numbers and increase accuracy
iteratively to provide adaptivity beyond the floating-point filter stage. Zero numbers
are detected using separation bounds.
Sekigawa: Hiroshi Sekigawa [103] discusses the implementation of a number type

supporting polynomial expressions over algebraic numbers. He uses bigfloat
interval arithmetic and increases the accuracy of approximations by the naïve
method.

leda::real: The number type leda::real [10] is part of the leda library [53]
developed at Max Planck Institute Saarbrücken and commercially available from
Algorithmic Solutions. The source code of an early version is publicly available
in a technical report [15], more recent source code can be found at [101].

40 2. PREVIOUS WORK

leda::real is the only number type to support general algebraic expressions
with an unrestricted �-operator.

The sign computation strategy of leda::real is very close to our descrip-
tion above. High precision approximations in leda::real are represented by
a bigfloat interval with midpoint and radius. If the floating-point filter fails,
leda::real first ensures that each node stores a valid interval. The interval
representation is initialized from the floating-point filter if possible, i.e., if the
floating-point filter does not represent the whole range of real numbers. Oth-
erwise it is computed from the operands with low precision bigfloat arithmetic,
based on Equation (2.1) and related error bounds. Initializing the interval rep-
resentation ensures that a finite upper bound for each node is available. If the
sign of the root node is still not known, precision driven arithmetic is performed,
improving the root node until either the interval approximation does not contain
zero or the separation bound is hit. The downwards propagation of precision is
based on absolute error, again precisely as described above. When the approxi-
mation of a node is improved, its floating-point filter is updated. Furthermore
it is checked, whether the node is now known exactly. If this is the case, the
dag is pruned. leda::real uses the BFMSS[2] separation bound to detect zero
numbers.

To possibly avoid expensive dag creation, a leda::real variable may store
a floating-point number explicitly, instead of referring to a dag node. Using
interval arithmetic, leda::real checks whether the result of an operation is
still a floating-point number. If this is the case, dag creation is avoided.

CORE::Expr 1: The number type CORE::Expr is the product of on-going develop-
ment efforts by Chee Yap and co-workers at New York University [25, 118, 79,
48, 54, 18]. We now discuss some internals of CORE::Expr 1. Version 1.7 is
currently part of the cgal library. The latest version 1.8 fixes some bugs, but is
otherwise identical to 1.7. The development of CORE::Expr 1 was halted in
favor of version 2, which we discuss further below. CORE::Expr 1 supports field
operations, square roots and the �-operator restricted to rational coefficients.

There are some differences between the sign computation strategy we de-
scribe above and the implementation of CORE::Expr. To represent approxima-
tions, CORE::Expr 1 uses a special type of bigfloat with associated error, which
actually is an interval representation. Let B = 2c for some positive c ∈ N. A triple
〈m, r, e〉 with m ∈ Z, r ∈ N and e ∈ Z represents the interval

[(m− r)Be, (m+ r)Be].

This is an interval representation with bigfloat midpoint and radius, such that
the mantissae m and r share a common exponent e. Originally, CORE::Expr 1
is based on a concept of mixed absolute and relative accuracy. A number x is
approximated to accuracy [a, r], written x̂ ∼= x[a, r], if

| x̂ − x | ≤max{2−a, 2−r |x |}.

2.1. EXPRESSION DAG BASED NUMBER TYPES 41

Only the less sharp of both bounds has to be satisfied. It is possible to express
a purely relative (resp. absolute) error bound by setting a =∞ (resp. r =∞).
Originally, mixed accuracy was propagated in precision driven arithmetic, but
newer versions of CORE::Expr 1 use absolute accuracy only.

When recomputing the approximation of a node, CORE::Expr 1 performs
ring operations exactly. This can be much more expensive than approximate
computation, because the cost depends on the output precision. The exact
result has only slightly better accuracy than an appropriate approximate one,
because the relevant error terms simply add up, see Equation (2.1). Furthermore,
CORE::Expr does not set the error bound for a node, but simply computes with
its bigfloat/interval representation. This may result in a slight improvement in
known accuracy.

The sign computation framework on the other hand tries to minimize the
usage of precision driven arithmetic and hence expensive bigfloat arithmetic.
Beyond the floating-point filter there is an initialization routine, and precision
driven arithmetic which call each other recursively. The initialization step is
called first and tries to compute for each node z the sign as well as a lower bound
lMSB(z) and an upper bound uMSB(z) on the most significant bit of z. More
precisely

lMSB(z)≤ blog2 |z|c ≤ uMSB(z)
must hold. This is effectively a one bit interval approximation not containing zero
and provides the upper and lower bound needed for precision driven arithmetic.
In most cases the interval and sign can be determined from the operand nodes
recursively, for example sign(x y) = sign(x) sign(y). The major exception is an
addition or subtraction node when no zero-free one bit interval approximation
can be determined from the operands. In this case precision driven arithmetic
is used to compute a sufficiently accurate approximation, however only after
performing the initialization step on the operands of this node. Thus, precision
driven arithmetic might start much lower than at the node whose sign is actually
requested and will need less accuracy. To detect zero nodes, CORE::Expr 1 uses
the maximum of the DM bound, the LY bound and the BFMSS[2, 5] bound.

CORE::Expr 2: In 2006, major redesign and improvement efforts on CORE::Expr
were made [24, 119], resulting in a new version. The current version number
is 2.1.1. CORE::Expr 2 supports field operations, radicals, and the �-operator
restricted to rational coefficients.

CORE::Expr 2 uses generic programming techniques, to make key parts of
an implementation exchangeable. These parts are the floating-point filter, the
separation bound, and an arithmetic kernel, providing approximate real number
computation. For the floating-point filter parameter, one implementation based
on the work by Burnikel et al. [13] is available. As separation bound, the BFMSS
bound and the BFMSS[2,5] bound are implemented and can be used. The
arithmetic kernel effectively must provide arbitrary precision interval arithmetic.

42 2. PREVIOUS WORK

One implementation is available, based on mpfr [71] bigfloat numbers and
representing intervals by endpoints.

The use of precision driven arithmetic has been improved. Ring operations
are now performed approximately, but error bounds are still computed, not
set. The sign computation scheme is even lazier than in CORE::Expr 1. The
initialization routine, computing sign(z), lMSB(z), and uMSB(z) is split into
three individual parts, which may call each other recursively. This may avoid
some unnecessary computations. Consider for example the lower bound lMSB(z).
In CORE::Expr 2 it is only computed when it is actually needed, i.e., requested
from a node. The node has several means to compute the information, which are
checked in order of expensiveness. It first checks the floating-point filter and then
whether lMSB(z) is already cached. Then, the node checks whether a bigfloat
approximation is available and can provide a lower bound. Only afterwards, the
node tries to compute lMSB(z), by requesting the necessary information from its
operands. As measure of last resort, the node is approximated using precision
driven arithmetic until a lower bound is known. Data is only cached when it
has been computed by expensive means, to avoid the overhead associated with
caching.

In contrast to all other number types mentioned so far, CORE::Expr 2
allows expressions involving transcendental constants and functions, e.g., π,
exp and log. Precision driven arithmetic is extended to these functions and
CORE::Expr 2 allows to approximate transcendental expressions to any a priori
absolute accuracy. Since the problem of detecting zero numbers is unsolved
beyond algebraic numbers, CORE::Expr 2 uses a cutoff bound for transcendental
expressions, i.e., any number below some small ε is considered to be zero.
CORE::Expr 2 notifies the user if the correctness of computational results
depend on the cutoff bound.

2.1.3. Possible Improvements. What can be improved, regarding the current
state of the art implementations leda::real and CORE::Expr? Both number types
have different strengths and weaknesses.

Not much can be done on the level of floating-point filters. Beyond that, bigfloat
arithmetic is the main cost factor. Thus, an implementation should avoid bigfloat
arithmetic as much as possible or reduce the precision of operations. The approach of
CORE::Expr, to shift the starting point for precision driven arithmetic downwards
in the dag is therefore reasonable. In applications however, the root node of a dag is
usually an addition or subtraction node, see for example the predicates discussed in
Section 1.1. If the floating-point filter fails on this node, it is very likely that precision
driven arithmetic starts right there.

In leda::real, bigfloat arithmetic with low precision is used to compute error
bounds, both a posteriori in an initialization step, and a priori for precision driven
arithmetic. Compared to the benefits, the overhead of bigfloat arithmetic is especially
large for small precision. Bigfloat arithmetic is used in this step basically because it

2.1. EXPRESSION DAG BASED NUMBER TYPES 43

has a much large exponent range and will not overflow. Here it might be better to
compute logarithmically, i.e., with one bit only and hence without bigfloat arithmetic,
as is done for precision propagation in CORE::Expr.

Both versions of CORE::Expr compute an a posteriori error bound in precision
driven arithmetic. This is unnecessary double work since the bound can only be
slightly better than the a priori bound. Much worse is however that CORE::Expr 2
represents intervals by endpoints! Assume we have approximated a node very accu-
rately, e.g., with a few thousand correct bits. In the midpoint and error representation,
the error term may have precision as small as one bit. To improve the node, one high
precision operation for the midpoint and several small precision operations for the
error bound are necessary. In the endpoint representation, however, both endpoints
have high precision and nearly all bits of the endpoints are equal! Improving the
approximation of the node requires two high precision bigfloat operations. All other
things being equal, for high precision intervals, the endpoint representation is slower
by a factor of two, compared to the midpoint and radius representation. Hence,
clearly the latter should be used.

leda::real is based on the leda number type leda::bigfloat, but more
efficient choices are available, especially the mpfr number type. Since different
bigfloat number types have similar interfaces, the bigfloat arithmetic should be easily
exchangeable in an expression dag based number type. Apart from allowing to choose
an efficient one, this also allows a user to provide her own bigfloat arithmetic, i.e.,
one that fits into her application environment.

In leda::real, there is this interesting approach to defer dag creation by storing
an exact floating-point number instead. Since the original problem is the inexactness
of floating-point arithmetic, this imposes rather strong conditions on the class of
expressions where this strategy is useful. The value of sub-expressions must be exactly
computable with floating-point arithmetic, but for the whole expression, floating-
point arithmetic should compute the wrong sign. Remember that a polynomial
expression of degree d over integers with b bits precision can be evaluated exactly
using d(b + O(1)) bits of precision. In general, this amount of precision is also
necessary. Hence, for the first condition to hold, input numbers must have low
precision, i.e., less than floating-point numbers can handle. It would be interesting
to extend this approach and allow exact representations with more precision than a
single floating-point number, to make the approach useful for input numbers with
larger precision, e.g., floating-point numbers. But there is a caveat. The high cost
and non-adaptiveness of exact representations and arithmetic are the reason for
expression dag based number types in the first place. Hence this can only work if
very fast exact arithmetic, tuned for low precision is available. Indeed, this arithmetic
must be faster than, lets say dag creation and computation of the floating-point filter.
We attempt to provide such an arithmetic based on fast and exact floating-point
algorithms in this thesis. We will discuss the basics for the development of such
algorithms in the next section.

44 2. PREVIOUS WORK

2.2. Exact Floating-Point Computations

Every computer scientist knows or should know [38] that floating-point arith-
metic is slightly imprecise. For many this may translate into a notion of fuzziness,
floating-point computations are perceived as slightly unpredictable or even non-
deterministic. The task of this section is to convince the reader of the contrary.
Floating-point arithmetic following the IEEE 754 standard [45] or its recent revision
the IEEE 754-2008 standard [46] is very well defined and has a precise notion of how
numbers are represented and arithmetic operations are carried out. The standard
allows to prove rigorous mathematical theorems about floating-point arithmetic and
based on these, design very precise and even exact algorithms.

Equally important, floating-point arithmetic following the IEEE 754 standard is
ubiquitous in hardware. This allows for efficient implementation nearly everywhere.
In recent years, the degree of compatibility has improved. For example graphic cards,
which are nowadays used for parallel general purpose computations, not only support
floating-point arithmetic, but continuously implement more IEEE 754 features, e.g.,
denormalized numbers, directed rounding, and exception handling. Another example
for improved compatibility is the x86 class of CPUs. These CPUs feature 80 bit
extended registers, which compute with larger precision and larger exponent range
than the default 64 bit floating-point numbers. While this increases the accuracy of
results when applying floating-point arithmetic naïvely, it does prevent techniques
like the ones we will discuss in this section. There are some means to improve the
situation, but none of the available techniques truly gives the results required by
the standard. With the advent of SSE floating-point instructions the situation has
changed, as these behave exactly as the standard requires.

While compatible hardware is available, one nevertheless has to be careful
that the programming environment does not mess up carefully designed algorithms.
For x86 CPUs we have to make sure for example, that only the SSE floating-point
instructions are used. Furthermore, nearly any class of CPUs has some kind of high
speed floating-point mode, which sacrifices standard conformity. These modes must
be avoided too. We need to make sure that compiler optimization, in particular
constant folding and expression rearrangement, is only done using the true semantics
of floating-point arithmetic at runtime and not that of real number arithmetic. Our
experience with the gnu, SUN, and Intel C++ compiler is, that full compliance with
the IEEE 754 standard is not the default behavior, but can be enforced easily with
compiler options.

All features of floating-point arithmetic that we rely on in the following are
already present in the older IEEE 754 standard. We will however use the updated
terminology of the IEEE 754-2008 standard.

2.2.1. Notation and Basic Facts. Recall, that with F we denote the set of
binary floating-point numbers, i.e., zero plus all real numbers f 6= 0 that can be
decomposed into a sign s ∈ {−1, 1}, a mantissa m ∈ N, and an exponent e ∈ Z , such

2.2. EXACT FLOATING-POINT COMPUTATIONS 45

that
f = s×m× 2e.

This is equivalent to the set of rational numbers, whose denominator is a power of
two, i.e.,

F =
⋃

σ∈2Z

σZ.

Our goal is now to characterize the subset F of F that corresponds to the set of
floating-point numbers defined by the IEEE 754 standard. We parameterize F with
three quantities. The first is the precision or number of bits in the mantissa, p, though
we use the equivalent quantity εm = 2−p. The other two parameters are the largest
and the smallest representable power of two, τ and η. Then, some number from F
is in F, if its mantissa uses at most p bits and contains no bit larger than τ and no bit
smaller than η. We formalize this in the following.

Definition 2.1. The function msb : R→ 2Z with

msb(x) =

¨

2blog2 |x |c for x 6= 0

0 for x = 0

gives the most significant bit for any real number x. The function lsb :F → 2Z with

lsb(f) =

¨

max{σ | f ∈ σZ, σ ∈ 2Z} for f 6= 0

∞ for f = 0

gives the least significant bit of any floating-point number f .

Siegfried Rump, Takeshi Ogita, and Shin’ichi Oishi [94] introduce the most
significant bit under the name of ufp(x) for unit in the first place as a tool for the
analysis of floating-point algorithms. The name is chosen complimentary to ulp(x) or
unit in the last place, which is a classic quantity in the error analysis of floating-point
algorithms. For a real number x , ulp(x) is the distance between the two floating-point
numbers closest to x . The quantities ulp(x) and lsb(x) are different and we do not
use ulp(x) in our analysis. Hence we settled for the names most significant bit and
least significant bit. Using them, we can now define the set F.

Definition 2.2. Let η,εm,τ be powers of two such that 0< η < εm < 1< τ. Then let

F̃= { x ∈ R |msb(x) ≤ 1
2
ε−1
m lsb(x) },

F= { f ∈ F̃ | η ≤ lsb(f), msb(f) ≤ τ },

F= F∪ {±∞}.

We call F the set of floating-point numbers.

Although F depends on several parameters, we omit them because we use only
one floating-point format at a time. The condition 0 < η < εm < 1 < τ is imposed
to consider only reasonable sets of floating-point numbers. All binary floating-point

46 2. PREVIOUS WORK

msb = ufp lsb ulp

x: +++

Figure 2.3. Visualization of floating-point numbers, location of msb(x),
lsb(x), ufp(x), ulp(x).

formats defined by the IEEE 754 standard can be obtained from Definition 2.2
for certain values of η, εm, and τ. Unless noted otherwise, our algorithms and
analyses hold for any of them. Of special interest to us is the binary64 format with
η = 2−1074, εm = 2−53 and τ = 21023 that is in widespread use and that we also use in
our implementations.

Next to η, εm, and τ, there are other constants of interest. The number 2τ(1−εm)
is the largest number in F. The number 1

2
ε−1
m η is the smallest positive so called

normalized number. A number f ∈ F, with msb(f)< 1
2
ε−1
m η, is called denormalized.

For a denormalized number, less than p bits beyond the most significant bit are
available, due to the limitation by η. The name denormalized comes from their
different hardware representation. Denormalized numbers also need special care
in most error analyses. But their inclusion into the standard makes the definition
above possible and allows for several nice results, which would be false otherwise.
Floating-point arithmetic also encompasses special values +∞,−∞ and nan. They
occur as the result of arithmetic operations in exceptional situations. We do not
include them into F and never allow them as input to our algorithms. By definition
F⊂ R. We use the set F̃ if we would like to ignore the limitations imposed by η and
τ.

We frequently visualize floating-point numbers as in Figure 2.3. For these ex-
amples, we use the binary64 format. For a floating-point number, we draw the
mantissa, where zero bits are white and non-zero bits are colored. The exponent is
only represented in relation to other numbers: if more than one number is in the
figure, bits of equal magnitude are vertically aligned, see for example Figure 2.4.

Before turning to arithmetic over F, we collect some properties of the most signif-
icant bit. The msb function is monotone for positive numbers and it is homogeneous
for powers of two. For x , y ∈ R and σ = 2k, k ∈ Z we have

|x |< |y| ⇒ msb(x)≤msb(y), msb(σx) = σmsb(x).

Furthermore, we can bound any number from below and above by means of its most
significant bit. For x ∈ R,

msb(x) ≤ |x | < 2msb(x).

For f ∈ F we can improve the upper bound slightly to

msb(f) ≤ | f | ≤ 2msb(f)(1− εm) < 2msb(f).

We will use these properties frequently in our proofs.

2.2. EXACT FLOATING-POINT COMPUTATIONS 47

Rounding and Arithmetic. We next discuss basic arithmetic operations over
F. Since the set F is finite, rounding is inevitable. Field operations (+,−,×,/) and
the square root (2

p
) are performed as if first the exact result is computed and then

rounded to a floating-point number according to some rounding mode. Essential to
rounding are the notion of predecessor and successor.

Definition 2.3. Let x ∈ R, then pred, succ : R→ F with

pred(x) =max{ f ∈ F | f < x}

succ(x) =min{ f ∈ F | x < f }

give the predecessor and successor of x.

A rounding mode is faithful if it rounds x ∈ F to itself and x ∈ R\F to either
pred(x) or succ(x). All five IEEE 754 rounding modes are faithful. There are three
directed rounding modes, roundTowardPositive, roundTowardNegative, and roundTo-
wardZero, which round to the next floating-point number in direction towards +∞,
−∞, and zero, respectively. The rounding modes roundTiesToAway and roundTiesTo-
Even round to the closest floating-point number. If the number to be rounded is
larger in absolute value than 2τ(1− εm), the rounding is first performed with respect
to F̃. If the closest number in F̃ is not an element of F, then the result is +∞ or
−∞, respectively. In case there is a tie, i.e., the number to be rounded is exactly
between two floating-point numbers, roundTiesToAway rounds to the floating-point
number farther away from zero. The rounding mode roundTiesToEven resolves ties
by rounding to the floating-point number whose last bit is zero.

There are two exceptional situations when rounding. We say underflow occurs,
when a real number x with msb(x)≤ 1

2
ε−1
m η is rounded to different numbers in F̃ and

F. We say overflow occurs, when a real number x with msb(x)> 1
2
ε−1
m η is rounded to

different numbers in F̃ and F. Both overflow and underflow signal a loss of accuracy.
When rounding to a nearest floating-point number, overflow corresponds to rounding
to ±∞ but for directed rounding this is not the case. The IEEE 754 standard provides
means for the user to check or be notified if overflow or underflow occurs.

Another exceptional situation occurs if the mathematical result of an operation
is not defined, for example in case of a division by zero. Then, the floating-point
arithmetic returns one of the special values ±∞ or nan. The IEEE 754 standard
attempts to define reasonable or expected results for these cases, even when ±∞
occur as operands. For example −4/0 =−∞ and −∞×−∞ = +∞. If no reasonable
result can be given, the return value is nan. In particular, any operation involving
a nan returns nan. Regarding the comparison of numbers, ±∞ behave as expected
and any comparison involving nan evaluates to false.

In this thesis we distinguish between faithful rounding and rounding to nearest
only. With fl̃ : R→ F we denote an arbitrary but fixed faithful rounding. All IEEE 754
rounding modes are a model for fl̃. With fl : R → F we denote a function that
rounds x ∈ R to a nearest floating-point number and breaks ties in a symmetric way,

48 2. PREVIOUS WORK

i.e., such that fl(−x) = −fl(x). The IEEE 754 rounding modes roundTiesToAway
and roundTiesToEven are a model for fl. We denote floating-point operations with
⊕,	,⊗,�, i.e., for a, b ∈ F, ◦ ∈ {+,−,×,/} and a ◦ b ∈ R we have aý b = fl̃(a ◦ b)
or aý b = fl(a ◦ b), depending on the rounding mode considered.

Properties of Faithful Rounding. Faithful rounding has the important prop-
erty of being monotone. For x , y ∈ R, fl̃ satisfies

x ≤ y ⇒ fl̃(x)≤ fl̃(y), fl̃(x)< fl̃(y) ⇒ x < y .(2.4)

In other words, we never skip over a floating-point number in the process of rounding.
One of the most basic tools for the analysis of floating-point operations is an estimate
of the error of floating-point operations. For the following see for example [44, 72,
80]. Let x ∈ R and f ∈ F with fl̃(x) = f , then

(2.5)
f = x(1+δ1) +µ1 = x/(1+δ2) +µ2 with

|δi |< 2εm, |µi |< η, µiδi = 0 for i = 1,2.

Floating-point addition and subtraction have better properties than the other
operations and they are also the operations we investigate the most. For a fixed
rounding mode, the result of rounding x ∈ R to f depends on x only, hence

a	−b = a⊕ b = b⊕ a = b	−a.

Therefore, all properties of ⊕ also hold for 	 as long as no condition on the signs of
the operands are imposed

To keep track of the lower bits arising in computations with floating-point num-
bers, we view them as element of a ring σZ, where σ is a power of two. A statement
such as f ∈ σZ tells us that f = 0 or σ ≤ lsb(f). Some useful properties are:

F⊂ ηZ(2.6)

σ1 ≥ σ2 ⇒ σ1Z⊆ σ2Z(2.7)

a, b ∈ σZ ⇒ a+ b ∈ σZ(2.8)

a, b ∈ σZ∩ F, u⊕ v ∈ F ⇒ u⊕ v ∈ σZ(2.9)

The first three are simply ring properties. Equation (2.9) follows from them, since
in the process of rounding u + v to u ⊕ v, trailing bits are removed, i.e., either
u+ v = 0 or η ≤ σ ≤ lsb(u+ v) ≤ lsb(u⊕ v). To demonstrate the usefulness of the
msb function in combination with Equation (2.9), we now show the well known
result that addition and subtraction are exact in case the result falls in the range of
denormalized numbers.

Lemma 2.4. Let a, b ∈ F with msb(a + b) ≤ 1
2
ε−1
m η. Then a + b ∈ F and hence

a⊕ b = a+ b for faithful rounding.

Proof. We know a, b ∈ F and hence that a + b ∈ ηZ. If a + b = 0 the claim
holds. Otherwise we have η≤ lsb(a+ b) and

msb(a+ b) ≤ 1
2
ε−1
m η ≤

1
2
ε−1
m lsb(a+ b).

2.2. EXACT FLOATING-POINT COMPUTATIONS 49

Furthermore msb(a+ b)< τ and hence a+ b ∈ F.

Lemma 2.4 is one major reason for the inclusion of denormalized numbers into
the IEEE 754 standard. It has some nice consequences. It implies for example that no
non-zero number is ever rounded to zero in an addition or subtraction. Since any
faithful rounding is monotone, it follows for a, b ∈ F that

(2.10) sign(a⊕ b) = sign(a+ b).

Furthermore, no underflow occurs for addition or subtraction and we get an improved
version of Equation (2.5). If a, b ∈ F and no overflow occurs in computing a⊕ b, then

(2.11)
a⊕ b = (a+ b)(1+δ1) = (a+ b)/(1+δ2) with

|δi |< 2εm for i = 1,2.

Another important exactness result is due to Pat Sterbenz [106]. It gives a
sufficient condition when the difference of two floating-point numbers with the same
sign is free from rounding error.

Lemma 2.5 (Sterbenz).
Let a, b ∈ F with a, b ≥ 0 and 1

2
a ≤ b ≤ 2a. Then a− b ∈ F and hence a	 b = a− b

for faithful rounding.

Note that Sterbenz Lemma holds unconditionally. It is not affected by underflow
or overflow.

Properties of Rounding to Nearest. Rounding to nearest is a special case of
faithful rounding, so all properties are preserved. We do however get smaller errors
and error estimates. A classic error estimate is the following [44, 72, 80]. Let x ∈ R
and f ∈ F with fl(x) = f , then

(2.12)
f = x(1+δ1) +µ1 = x/(1+δ2) +µ2 with

|δi | ≤ εm, |µi | ≤
1
2
η, µiδi = 0 for i = 1,2.

In comparison to Equation (2.5) the error bounds are reduced by a factor of about
two. The following theorem by Rump et al. [94] gives yet a better estimate.

Theorem 2.6. Let x ∈ R and f ∈ F with fl(x) = f .
If f ≥ 1

2
ε−1
m η, then

f = x +δ with |δ| ≤ εm msb(x)≤ εm msb(f).(2.13)

If f ≤ 1
2
ε−1
m η, then

f = x +µ with |µ| ≤ 1
2
η.(2.14)

The major difference between Equation (2.12) and Theorem 2.6 is the use
of the most significant bit in the error bound, which can be an improvement by
nearly a factor of two. Note that Equation (2.14) is only relevant for operations
where underflow might have occurred and that it is a much worse bound than

50 2. PREVIOUS WORK

Equation (2.13) in this case. In fact, the reason for having overflow and underflow
exceptions is to identify the cases where Equation (2.13) may not hold.

Again, we can give a better error estimate for floating-point addition and sub-
traction since underflow never occurs. Furthermore, we can exclude the possibility
of overflow by requiring that a result is a floating-point number. Let a, b, a⊕ b ∈ F,
where the addition is performed in rounding to nearest. Then

a⊕ b = a+ b+δ with |δ| ≤ εm msb(a+ b)≤ εm msb(a⊕ b).(2.15)

Both F and fl are symmetric with respect to zero, i.e., F=−F and fl(−x) =−fl(x)
for x ∈ R. Hence, for rounding to nearest we have

a⊕ b =−(−a	 b)

and similar equalities. For this reason we can often retreat to a special case, symmetric
to the remaining cases, in proofs concerning addition and subtraction.

2.2.2. Error-Free Transformations. The name error-free transformation refers
to algorithms that efficiently transform expressions of floating-point numbers into
mathematically equivalent expressions [77]. They form the basic toolkit for ex-
act floating-point algorithms or algorithms with increased precision. All error-free
transformations presented here require rounding to nearest.

Addition and Subtraction. There are two algorithms TwoSum and FastTwo-
Sum, which transform a sum of two floating-point numbers into a new sum. This is
done by recovering the exact error term arising in a floating-point addition.

Algorithm 2.7 (FastTwoSum).
Let a, b ∈ F, with |a| ≥ |b| or a = 0. Compute (x , y)← FastTwoSum(a, b). If x ∈ F,
then x = a⊕ b and a+ b = x + y.

Algorithm 2.8 (TwoSum).
Let a, b ∈ F and compute (x , y) ← TwoSum(a, b). If x ∈ F, then x = a ⊕ b and
a+ b = x + y.

1: procedure FastTwoSum(a, b)
2: x ← a⊕ b
3: bv ← x 	 a
4: y ← b	 bv
5: return (x , y)

1: procedure TwoSum(a, b)
2: x ← a⊕ b
3: bv ← x 	 a
4: br ← b	 bv
5: av ← x 	 bv
6: ar ← a	 av
7: y ← ar ⊕ br
8: return (x , y)

Both algorithms compute the same result, though FastTwoSum requires the
input summands to be ordered. Often it is known a priori, which summand will be
the larger one. If this is not known, one may use TwoSum, or one may swap the
summands if necessary. On contemporary CPUs, using TwoSum is then usually faster,

2.2. EXACT FLOATING-POINT COMPUTATIONS 51

since checking and swapping summands involves a branch, which may significantly
slow down the computation.

Note that the computed error term y equals the error term δ in Equation (2.15)
and we have |y| ≤ εm msb(x). Quite remarkably, we can compute the error term using
only two or five additional, ordinary floating-point operations. The only exception is
the case, when overflow occurs in the computation of x . TwoSum and FastTwoSum
are safe from overflow if |x | ≤ 2τ(1− εm) or equivalently x ∈ F.

A proof for the exactness of the error term in FastTwoSum was first given by
Theodorus Dekker [20], though the algorithm was in use before, see e.g., [47]. Using
Sterbenz Lemma, one can show that either x = a+ b or bv = x − a. In the first case
bv = b and y = 0. In the second case y = b	 bv = fl(b− x+a). The proof finishes by
observing that a+ b− (a⊕ b) ∈ F and hence y = b− x+a. TwoSum basically applies
FastTwoSum twice, reversing the roles of a and b. A proof for the exactness of the
error term computed by TwoSum is due to Donald Knuth [52]. Both FastTwoSum
and TwoSum are in danger of being messed up by the programming environment.
For example in FastTwoSum one might conclude that

y = b− bv = b− (x − a) = b− (a+ b− a) = 0.

using the semantics of real arithmetic.
Multiplication. Similar to TwoSum and FastTwoSum, TwoProduct trans-

forms the product of two floating-point numbers into a sum of two floating-point
numbers. A basic sub-step in the TwoSum algorithm given below, is to split the
operands into two numbers which can be multiplied exactly.

Algorithm 2.9 (split).
Let a ∈ F and compute (ahi, alo) ← split(a). Assume that no overflow occurs. Then
a = ahi+alo, |ahi| ≥ |alo| and both can be represented using a mantissa of at most bp/2c
bits.

Algorithm 2.10 (TwoProduct).
Let a, b ∈ F and compute (x , y)← TwoProduct(a, b). If neither overflow nor under-
flow occurs, then x = a⊗ b and ab = x + y.

1: procedure split(a)
2: c← (2dp/2e + 1)⊗ a
3: abig← c	 a
4: ahi← c	 abig
5: alo← a	 ahi
6: return (ahi, alo)

1: procedure TwoProduct(a, b)
2: x ← a⊗ b
3: (ahi, alo)← split(a)
4: (bhi, blo)← split(b)
5: e1← x 	 (ahi ⊗ bhi)
6: e2← e1 	 (alo ⊗ bhi)
7: e3← e2 	 (ahi ⊗ blo)
8: y ← (alo ⊗ blo)	 e3
9: return (x , y)

The split subroutine is due to Dekker [20], who attributes TwoProduct to G. W.
Veltkamp. In case p is odd, it may seem impossible to represent a p bit number as

52 2. PREVIOUS WORK

the sum of two bp/2c bit numbers. The missing bit is however hidden in the sign
of alo. Therefore, the products ahi ⊗ bhi etc. in TwoProduct are computed without
rounding error. The subsequent subtractions in TwoProduct are exact, too.

TwoProduct needs 16 additional operations to compute the error term y . Again,
y equals the error term δ in Equation (2.13) and we have |y| ≤ εm msb(x). Both,
overflow and underflow may affect TwoProduct. The splitting step involves the
constant 2dp/2e+1, which is multiplied with both a and b. If overflow occurs anywhere,
it occurs in the computation of c or x , too. Hence, TwoProduct is safe from overflow,
if

max{|a|, 2dp/2e + 1} ⊗max{|b|, 2dp/2e + 1} ≤ 2τ(1− εm).

No underflow can occur in split, since 2dp/2e+1 ∈ Z implies lsb((2dp/2e+1)a)≥ lsb(a).
But it may occur in any multiplication in TwoProduct itself. The exact product ab
may have up to 2p bits. Hence, TwoProduct is safe from underflow, if

ab = 0 or |a||b|> 1
2
ε−2
m η.

The newer IEEE 754-2008 standard mandates the availability of a fused-multiply-
add instruction fma(a, b, c), rounding ab+ c in one step to a floating-point number.
Using fma, TwoProduct can be implemented as

1: procedure TwoProduct(a, b)
2: x ← a⊗ b
3: y ← fma(a, b,−x)
4: return (x , y)

Although a fused-multiply-add operation might be more costly than a standard binary
floating-point operation, this TwoProduct implementation can be expected to be
more efficient. Furthermore, it avoids the problem of overflow in split and hence
increases the range of validity for TwoProduct. A TwoProduct based on fma is safe
from overflow, if |a| ⊗ |b| ≤ 2τ(1− εm).

TwoSum, FastTwoSum and TwoProduct have in common, that they compute
their results with just a few ordinary floating-point operations. They do not involve
any branches. Thus, they can easily be optimized by a compiler, e.g., using instruction
level parallelism, and lead to efficient code. Proofs for the exactness of the error
terms in TwoSum, FastTwoSum and TwoProduct can also be found in [104].

For each of the algorithms we gave sufficient and easily checkable conditions
when they are safe from corruption by overflow and underflow. Why do we care
so much for overflow and underflow? After all, they occur only for very small or
very large input data and in many cases the input data can be scaled to avoid these
problems. We do intend to integrate error-free transformations into an expression
dag based number type. One of the main advantages of such a number type is
user-friendliness. The user should get correct signs and approximations without
caring about the internals. To achieve this goal, we need means to handle overflow

2.2. EXACT FLOATING-POINT COMPUTATIONS 53

an underflow. A first step in this direction is to understand precisely when they may
corrupt our data.

Auxiliary Functions. In some cases, we would like to actually compute msb(f),
pred(f), or succ(f) for some f ∈ F. There are several means to do this. For example
in C/C++, the library function

double frexp(double f,int *e)

decomposes the floating-point number f into exponent e and mantissa m, allowing
to compute msb(f). The library function

double nextafter(double f, double t)

returns the floating-point number next to f in direction towards t and hence allows
to compute pred(f) and succ(f). An alternative is to interpret the memory repre-
sentation of a floating-point number as unsigned integer and manipulate the bits
directly. The IEEE 754 representation is such that for f ≥ 0, the unsigned integer
representation of the successor of f is simply the successor of the unsigned integer
representation of f . The practicality of these methods depends however on the
programming environment. For example, in our experience, frexp is prohibitively
slow. Accessing the bit representation may not be possible in every programming
language.

Luckily, msb(f), pred(f), and succ(f) can be computed with a few standard
floating-point operations. To compute the most significant bit, Siegfried Rump [93]
considers the computation

ϕ = (2εm)
−1 + 1, q← ϕ⊗ f , m← |q	 (1− εm)⊗ q|

and shows that m = msb(f) for f ∈ F, if no overflow occurs. If f ≤ 2εmτ, this
computation is safe from overflow, since (for εm ≤

1
4
):

ϕ f ≤ ((2εm)−1 + 1)2εmτ = (1+ 2εm)τ ≤ 2τ(1− εm) ∈ F.

This implies q ∈ F. If f > 2εmτ we perform the same computation, but scaled down
by εm. But then f ′ = εm f ≤ εm2τ(1− εm)< 2εmτ, so we always get a correct result.

How to compute predecessor and successor was shown by Siegfried Rump, Paul
Zimmermann, Sylvie Boldo, Guillaume Melquiond [92]. For f ∈ F, they first consider
the computation

(2.16)
ψ= εm(1+ 2εm), e←ψ⊗ | f | ⊕η,

s

f ← f 	 e, sf ← f ⊕ e

and show that with εm ≤
1

32

s

f =

¨

pred(f)
pred(pred(f))

and sf =

(

succ(f) for | f | 6∈ [1
2
, 2]ε−1

m η

succ(succ(f)) for | f | ∈ [1
2
, 2]ε−1

m η
.

54 2. PREVIOUS WORK

Hence,
s

f and sf are always a lower and upper bound on f and optimal except for a
small range of numbers near 1

2
ε−1
m η. The constant η used in this computation incor-

porates a possible performance penalty. On most architectures, operations involving
denormalized numbers are significantly slower than other operations. Thus one
should avoid denormalized constants, at least unless input numbers are denormalized
anyway. Thus, the final algorithm PredSucc, distinguishes between several cases.
It handles large numbers by Equation (2.16), but with η removed. Numbers with
msb(f) ≤ 1

2
ε−1
m η are handled directly by adding or subtracting η. The remaining

numbers are scaled upwards and again handled by Equation (2.16).

Algorithm 2.11 (msb).
Assume εm ≤

1
4
. Let f ∈ F and compute m← msb(f). Then m=msb(f).

Algorithm 2.12 (PredSucc).
Assume εm ≤

1
32

. Let f ∈ F and compute (p, s)← PredSucc(f). Then p = pred(f) and
s = succ(f).

1: procedure msb(f)
2: ϕ← (2εm)−1 + 1
3: if | f | ≤ 2εmτ then
4: q← ϕ⊗ f
5: m← |q	 (1− εm)⊗ q|
6: else
7: q← (εmϕ)⊗ f
8: m← ε−1

m |q	 (1− εm)⊗ q|
9: return m

1: procedure PredSucc(f)
2: ψ← εm(1+ 2εm) = succ(εm)
3: if | f | ≥ 1

2
ε−2
m η then

4: e←ψ⊗ | f |
5: p← f 	 e
6: s← f ⊕ e
7: else if | f |< ε−1

m η then
8: p← f 	η
9: s← f ⊕η

10: else
11: F ← ε−1

m f
12: e←ψ⊗ |F |
13: p← εm(F 	 e)
14: s← εm(F ⊕ e)
15: return (p, s)

Both msb and PredSucc require only a few floating-point operations and they might
be adapted further to specific uses. For example, branches can be avoided if it is
known that they are never called for large or small numbers.

2.2.3. Floating-Point Expansions. We ignore for a moment the limitations by
η and τ, i.e., consider floating-point arithmetic over F̃. Based on TwoSum, FastTwo-
Sum, and TwoProduct, Dekker [20] develops a so called double length arithmetic. A
number x is represented by two floating-point numbers xlo and xhi with x = xlo+ xhi.
The summands xlo and xhi satisfy

|xlo| ≤
εm

1− εm
|x |.(2.17)

2.2. EXACT FLOATING-POINT COMPUTATIONS 55

Note the similarity to the error bound on δ in Theorem 2.6. Equation (2.17) implies
that there are approximately 2p bits available in xhi and xlo to represent x . But
x might have more bits, namely if there is a gap of zero bits between xhi and xlo.
Double length arithmetic increases the precision and hence the accuracy, compared
to plain floating-point arithmetic. The sum and product of two plain floating-point
numbers can be computed exactly, but operations on double length numbers still
involve rounding error.

Douglas Priest [86] extends the idea of double length arithmetic by allowing an
arbitrary number of summands. Based on Priests work, Jonathan Shewchuk [104]
gives improved, i.e., faster algorithms.

Let a, b ∈ F with |a| ≤ |b|. Then a and b are non-overlapping if msb(a)< lsb(b).
Otherwise a and b overlap. A sequence e1, e2, . . . , en ∈ F is called an expansion if its
elements are pairwise non-overlapping and they are ordered by increasing magnitude,
except that any of the ei may be zero. More formally

e j 6= 0 ⇒ msb(ei)< lsb(e j) for 1≤ i < j ≤ n(2.18)

must hold. An expansion e = e1, e2, . . . , en represents the number

E =
n
∑

i=1

ei .

Therefore, we call the elements of an expansion summands. We call an expansion
zero-free if either all summands are non-zero or the expansion consists of only one
summand.

The term non-overlapping refers to how the mantissae of two floating-point
numbers behave, when aligning bits by significance. When two numbers are non-
overlapping, the relevant parts of their mantissae, i.e., the shortest subsequences
containing all non-zero bits, do not overlap, when aligning bits by significance. Please
see Figure 2.4 where examples for different types of expansions, are given. Expansions
have some nice properties. In a zero-free expansion, the sign of the expansion is the
sign of the most significant summand. By the non-overlapping property, non-zero bits
in different summands do not interfere with each other. Hence, we can talk about
the sequence of bits given by an expansion. Summands may however have different
signs, so the exact binary representation of the represented number is not directly
given.

Shewchuk also considers two other, slightly more restrictive types of expansions.
Let a, b ∈ F with |a| ≤ |b| be non-overlapping. Then a and b are adjacent, if 2a
overlaps b. Otherwise, a and b are non-adjacent. An expansion is called non-adjacent,
if its summands are pairwise non-adjacent.

An expansion is strongly non-overlapping if each summand is adjacent to at most
one other summand and each summand that is adjacent to some other summand is a
power of two. Hence, in a strongly non-overlapping expansion, adjacent summands
come in pairs and both summands are a power of two. This definition may seem
a bit artificial, but turns out to be the correct invariant for the fastest addition

56 2. PREVIOUS WORK

e5: +++

e4: −−−

e3: −−−

e2: +++

e1: +++

f6: +++

f5: −−−

f4: −−−

f3: +++

f2: +++

f1: −−−

h3: +++

h2: −−−

h1: +++

Figure 2.4. Several expansions representing the same number. Expansion
e is non-overlapping but not non-adjacent. Expansion f is strongly non-
overlapping. Expansion h is maximally non-overlapping and non-adjacent.

algorithm. Any non-adjacent expansion is also strongly non-overlapping and any
strongly non-overlapping expansion is also non-overlapping.

Priest considers a different notion of non-overlappingness, which we call max-
imally non-overlapping. Let a, b ∈ F with |a| ≤ |b|. Then a and b are maximally
non-overlapping if msb(a) ≤ εm msb(b). If a and b are maximally non-overlapping,
then they are also non-overlapping, since

msb(a)≤ εm msb(b)≤ εm
1
2
ε−1
m lsb(b)< lsb(b).

An expansion e = e1, e2, . . . , en ∈ F is maximally non-overlapping, if its summands are
pairwise maximally non-overlapping. Clearly, a maximally non-overlapping expansion
is also non-overlapping, but it need not be strongly non-overlapping or non-adjacent.

In a non-overlapping expansion, non-zero bits that fit into one summand may be
spread over multiple summands. Maximally non-overlapping expansions enforce a
more compact representation. The spacing between two maximally non-overlapping
floating-point numbers a and b is best possible, there are at least 2p bits available in
a+ b.

Priest [86] considers floating-point arithmetic over F̃ with faithful rounding,
and shows how to perform basic error-free transformations in this setting. For
floating-point arithmetic with rounding to nearest, his transformations simplify to
FastTwoSum and TwoProduct. He then presents algorithms for exact ring operations
and arbitrarily accurate division over F , based on these error-free transformations.
He represents elements from F by zero-free, maximally non-overlapping expansions.
A major component in his algorithms is a renormalization procedure which converts
a sequence of floating-point numbers, ordered by magnitude and with only little
overlap into a zero-free, maximally non-overlapping expansion.

2.2. EXACT FLOATING-POINT COMPUTATIONS 57

Jonathan Shewchuk [104] gives improved, i.e., faster algorithms for exact ring
operations over F . His algorithms are based on TwoSum, FastTwoSum and Two-
Product and represent numbers by non-overlapping expansions. Shewchuk considers
floating-point arithmetic with rounding to nearest and either tie-breaking to even
or tie-breaking towards zero. Depending on the tie-breaking rule, his algorithms
maintain different invariants for the processed expansions. The invariants are simpler
for tie-breaking towards zero, but unfortunately this rule is not available in IEEE 754.
Tie-breaking to even is however the default mode. An implementation of the algo-
rithms is available at [105]. We present some of these algorithms now, since we
use them in our attempts to defer dag creation in Section 5.1, where we also derive
additional properties of them.

Expansion Arithmetic. Of course, a single floating-point number is an expan-
sion, both non-adjacent and maximally non-overlapping. FastTwoSum, TwoSum, and
TwoProduct produce maximally non-overlapping expansions, too. If ties are broken
to even, then they also produce non-adjacent expansions.

Lemma 2.13. Let (x , y) be the results from FastTwoSum, TwoSum, or TwoProduct,
performed with tie-breaking to even. Then x and y are non-adjacent.

Proof. We can assume that y 6= 0. Then, by Equation (2.13) we have |y| ≤
εm msb(x). If the inequality is strict, then x and y are non-adjacent. If however
|y|= εm msb(x), then the last bit in x must be zero, due to the tie-breaking rule.

This observation plays a central role in the analysis of Shewchuk’s algorithms.
Shewchuk presents several algorithms for the addition of expansions, among them
FastExpansionSum is the fastest.

Algorithm 2.14 (FastExpansionSum).
We consider floating-point arithmetic over F̃, with εm ≤

1
16

, rounding to nearest and
tie-breaking to even. Let e = e1, e2, . . . , em and f = f1, f2, . . . , fn be two strongly non-
overlapping expansions. Then FastExpansionSum computes a strongly non-overlapping
expansion h= h1, h2, . . . , hm+n with

m
∑

i=1

ei +
n
∑

i=1

fi =
m+n
∑

i=1

hi .

FastExpansionSum runs in time O(m+ n).
1: procedure FastExpansionSum(e1, e2, . . . , em, f1, f2, . . . , fn)
2: Merge e1, e2, . . . , em and f1, f2, . . . , fn into a single sequence g1, g2, . . . , gm+n

of nondecreasing magnitude (except for stray zero summands).

3: (Q, h1)← FastTwoSum(g2, g1)
4: for i← 3 to m+ n do
5: (Q, hi−1)← TwoSum(Q, gi)
6: hm+n←Q
7: return (h1, h2, . . . , hm+n)

58 2. PREVIOUS WORK

The correctness proof for FastExpansionSum makes explicit use of the tie-
breaking rule. Furthermore Shewchuk gives examples, where the input expansions are
non-overlapping (resp. non-adjacent), but the output contains overlapping summands
(resp. adjacent summands). It is however important to maintain some invariant since
we want to apply algorithms iteratively. By choosing FastExpansionSum, we are
thus limited to strongly non-overlapping expansions. It is straightforward to modify
FastExpansionSum to produce zero-free output expansions, by only writing non-zero
summands to h. Of course, FastExpansionSum can also compute the difference of
two expansions, simply by negating one of the input expansions.

An alternative to FastExpansionSum is LinearExpansionSum, which maintains
the non-overlapping property. LinearExpansionSum runs in time O(m+ n), too, but
requires nine instead of six floating-point operations per summand. Finally, there is
ExpansionSum, which maintains the non-overlapping property for any tie-breaking
rule and the non-adjacent property, when tie-breaking to even is used. ExpansionSum
does not involve any branches, since summands must not be ordered, but takes time
O(mn). Shewchuk suggests to use an unrolled form of ExpansionSum to create small
expansions and FastExpansionSum with zero elimination for larger expansions. One
can however not mix them arbitrarily, since ExpansionSum does not maintain the
strongly non-overlapping property, even with tie-breaking to even.

The sum, or more precisely an expansion for the sum of k floating-point numbers
can be computed using a divide and conquer approach in time O(k log k). First,
recursively, compute two expansions for one half of the numbers each, then add these
expansions using FastExpansionSum.

The basis for the multiplication of two expansions is ScaleExpansion, which
allows to multiply an expansion with a single floating-point number.

Algorithm 2.15 (ScaleExpansion).
We consider floating-point arithmetic over F̃, with εm ≤

1
16

, rounding to nearest and
tie-breaking to even. Let e = e1, e2, . . . , em be a strongly non-overlapping expansion
and f ∈ F̃. Then ScaleExpansion computes a strongly non-overlapping expansion
h= h1, h2, . . . , h2m with

f ×
m
∑

i=1

ei =
2m
∑

i=1

hi .

ScaleExpansion runs in time O(m).
1: procedure ScaleExpansion(f , e1, e2, . . . , em)
2: (Q, h1)← TwoProduct(e1, f)
3: for i← 2 to m do
4: (T, t)← TwoProduct(ei , f)
5: (Q, h2i−2)← TwoSum(Q, t)
6: (Q, h2i−1)← FastTwoSum(T,Q)
7: h2m←Q
8: return (h1, h2, . . . , h2m)

2.2. EXACT FLOATING-POINT COMPUTATIONS 59

Thus, ScaleExpansion is compatible with FastExpansionSum. ScaleExpansion
maintains the non-overlapping property for any tie-breaking rule and the non-adjacent
property, when tie-breaking to even is used. To multiply two expansions, Shewchuk
suggests to first multiply one expansion with each summand from the other expan-
sion and add the resulting expansions by divide and conquer and FastExpansion-
Sum. This allows to multiply two expansions with m and n summands in time
O(mn log min{m, n}). The resulting expansion may have up to 2mn summands.

Of course, FastExpansionSum and ScaleExpansion may be used over F, too.
The results of ScaleExpansion are invalid, if overflow or underflow occurs. Due to
Lemma 2.4, FastExpansionSum is not affected by underflow, but its results are invalid
if overflow occurs. In Section 5.1 we give sufficient conditions for FastExpansionSum
and ScaleExpansion to be free from overflow and underflow.

Compression. We already mentioned, that non-overlapping expansions may
have significantly more summands than needed to represent a given number, cf.
Figure 2.4. And indeed, ScaleExpansion and FastExpansionSum commonly output
expansions, where many summands carry only a few non-zero bits, see for example
the experiments in Section 4.2.3. An excessive number of summands, however,
makes subsequent operations more expensive. The following algorithm Compress is
designed to reduce the number of summands in an expansion, if possible.

Algorithm 2.16 (Compress).
We consider floating-point arithmetic over F̃, with rounding to nearest and tie-breaking
to even. Let e = e1, e2, . . . , em be a non-overlapping expansion. Then Compress computes
a non-adjacent expansion f = f1, f2, . . . , fn with n≤ m, fi 6= 0 for 1≤ i ≤ n and

m
∑

i=1

ei =
n
∑

i=1

fi ,

�

�

�

�

�

n−1
∑

i=1

fi

�

�

�

�

�

≤ 2εm msb(fn).

Compress runs in time O(m).
1: procedure Compress(e1, e2, . . . , em)
2: Q← em
3: k← m
4: for i← m− 1 downto 1 do
5: (Q, q)← FastTwoSum(Q, ei)
6: if q 6= 0 then
7: gk ←Q
8: Q← q
9: gk ←Q

10: n← 1
11: for i← k+ 1 to m do
12: (Q, q)← FastTwoSum(gi ,Q)
13: if q 6= 0 then fn ← q
14: fn←Q
15: return (f1, f2, . . . , fn)

60 2. PREVIOUS WORK

Note that it is not necessary to use three sequences e, f , and g to store the
summands. Both f and g may be equal to e, i.e., e can be overwritten. Compress
maintains the non-overlapping property with any tie-breaking rule, but when tie-
breaking to even is used, it converts a non-overlapping expansion into a non-adjacent
expansion.

Unfortunately, Shewchuk does not discuss how much the number of summands
might be reduced. But, following the correctness proof of Compress, the intermediate
sequence gk, gk+1, . . . , gm satisfies msb(gi) ≤ 2εm msb(gi+1) for k ≤ i < m. This is
because in Line 5 we have |q| ≤ εm msb(Q) and the subsequent addition of smaller,
non-overlapping summands to q can increase q by at most a factor of two. The
sequence gk, gk+1, . . . , gm of summands is almost maximally non-overlapping. Hence
we have msb(gk) ≤ (2εm)m−k msb(gm) and get an upper bound on the number of
summands of

(2.19) m− k ≤
�

log2(msb(gk)/msb(gm))
p− 1

�

.

The second loop in Compress, computing f , does not increase the number of sum-
mands. Equation (2.19) relates the number of output summands to the number
of bits required to represent e exactly. For floating-point arithmetic over F, we get
a static upper bound if we replace gk with 2τ and gm with η. For the binary64
format, this yields an upper bound of 41 summands. Thus, Compress may be used
to avoid dynamic memory allocation. If a binary64 expansion is larger than 41
summands, we may compress it. Then, no output expansion will ever have more
than 2× 41× 41 = 3362 summands. Better static or semi static bounds may be
achieved if a priori information about input numbers and expressions is available. In
Section 5.1 we show that Compress is free from underflow and overflow for strongly
non-overlapping expansions.

2.2.4. Accurate Floating-Point Summation. Using TwoProduct, we can trans-
form any polynomial expression over floating-point numbers exactly into a sum of
floating-point numbers. This reduces the problem of computing the sign or an ap-
proximation of a polynomial expression to computing the sign or an approximation
of a sum. Let a1, a2, . . . , ak ∈ F, with A=

∑k
i=1 ai . There are several interesting tasks,

with increasing difficulty.
• Compute Â and eA, such that |A− Â| ≤ eA.
• Compute sign(A).
• Compute a faithful rounding fl̃(A).
• Compute fl(A), i.e., a floating-point number nearest to A.

For two numbers a1, a2 ∈ F, we already know how to do any of these tasks. Let
(x , y) = TwoSum(a1, a2), then we have

Â= x , eA = |y|, sign(A) = sign(x), fl(A) = x .

2.2. EXACT FLOATING-POINT COMPUTATIONS 61

Actually, it suffices to compute x ← a1 ⊕ a2, since we can set eA = εm|x |. But with
TwoSum, we additionally have a1+ a2 = x + y and no information about the original
sum is lost. This observation is the key to accurate summation of more than two
summands. Using error-free transformations, we can rewrite the sum repeatedly,
while simultaneously simplifying the task of computing an accurate result. We now
briefly present techniques and algorithms by other authors, that we use a starting
point for our work or for comparison in experiments later on.

Expansions. Floating-point expansion allow to evaluate polynomial expressions
exactly, so we may use them for summation, too. We may first transform a sequence
a1, a2, . . . , ak of floating-point numbers into a zero-free expansion e1, e2, . . . , em, using
the divide and conquer approach. The leading summand em carries the sign of the
sum and an approximation and error bound are given by

Â= em, eA = |em−1|+ lsb(em−1).

This approximation may however be poor, since em may carry a single non-zero bit
only. If we compress the expansion additionally, the same bounds hold, but then em
is a faithful approximation of A.

ESSA. Helmut Ratschek and Jon Rokne [88] present an algorithm, called ESSA
for “exact sign of sum algorithm”, to compute the sign of a sum of floating-point
values exactly. ESSA iteratively performs error-free transformations on the largest
positive and the smallest negative number in the current sum, thereby decreasing the
sum of the absolute values of the summands. The iteration continues until the sum
vanishes, or the largest positive number clearly dominates the sum of negative ones,
or vice versa. In Section 4.1.1 we show that instead of the error-free transformation
used by Ratschek and Rokne, FastTwoSum may be used. This modification leads
to a much improved variant, which we confirm theoretically and experimentally.
The improved variant is still slower than alternative approaches, but has the unique
property of being completely immune to both overflow and underflow.

Compensated Summation. A well known technique to improve the accuracy
of floating-point summation is compensated summation. First, the summands a1,
a2, . . ., an are added using an error-free transformation, e.g., TwoSum. Besides an
approximation â, this gives us n− 1 error terms. In a second step, the error terms
are summed up first, and then added to â, resulting in a better approximation Â.
Compensated summation can be traced back at least to William Kahan [47]. When
this paper was written, floating-point arithmetic was far from standardized and the
error terms were inexact. Takeshi Ogita, Siegfried Rump and Shin’ichi Oishi [77]
analyze compensated summation and prove an error bound eA for Â, computable in
floating-point arithmetic. In Section 4.1.2 we give an improved error bound based
on work by Siegfried Rump [91] and show how to use compensated summation
iteratively for exact sign computation.

62 2. PREVIOUS WORK

AccSum. Let a1, a2, . . . , ak ∈ F and A=
∑k

i=1 ai . The AccSum algorithm by Rump,
Ogita and Oishi [94] allows to compute a faithful approximation of A. AccSum
requires floating-point arithmetic over F with rounding to nearest and tie-breaking to
even. The number of summands is limited to k with 4(k+ 2)2εm < 1.

Let M ∈ N with k < 2M and let σ be a power of two such that |ai | ≤ 2−Mσ for
1≤ i ≤ k. Then AccSum performs the following extraction step.

1: procedure Extract(σ, a1, a2, . . . , ak)
2: µ0← 0
3: for i← 1 to k do
4: bi ← (σ⊕ ai)	 ai
5: a′i ← ai 	 bi
6: µi ← µi−1 ⊕ bi
7: return (µn, a′1, a′2, . . . , a′k)

Extract splits each summand ai into two parts bi and a′i such that

ai = bi + a′i , bi ∈ εmσZ, |a′i | ≤ εmσ.

The constant σ is chosen such that µ =
∑n

i=1 bi is a floating-point number and
therefore µ = µn. Indeed, µ < σ, and µ ∈ εmσZ, so for µ 6= 0 we have msb(µ) ≤
1
2
ε−1
m lsb(µ). Thus, AccSum transforms

k
∑

i=1

ai into µ+
k
∑

i=1

a′i ,

without rounding error. Now, two cases may occur. Either, µ is sufficiently large. Then
the a′i are added straightforwardly into an approximation â and µ⊕ â is a faithful
approximation of A. Or µ is small. Then, the extraction step is repeated, transforming

µ+
k
∑

i=1

a′i into µ+ ν +
k
∑

i=1

a′′i .

But now, σ can be chosen such that µ′ = µ+ ν is a floating-point number, too. Hence
we end up with

µ′ +
k
∑

i=1

a′′i ,

and again, AccSum decides based on µ′ whether to stop or to continue. The hard part
in the design of AccSum is to determine how to choose σ, as well as the threshold
that separates large µ from small µ in a way that makes the outlined strategy work.

In [95], Rump, Ogita and Oishi present variants of AccSum for different tasks.
For example to compute sign(A) only, some constants in AccSum may be relaxed,
possibly allowing fewer extraction steps. Other variants allow to compute a floating-
point approximation of A according to a rounding mode, i.e., the next larger, next
smaller or nearest floating-point number. These variants are computationally more

2.2. EXACT FLOATING-POINT COMPUTATIONS 63

expensive. Finally, there is also a variant that transforms a sum into a maximally
non-overlapping expansion. Siegfried Rump [93] presents an improved variant
called FastAccSum. While in AccSum, an extraction step for k summands takes 4k
floating-point operations, FastAccSum achieves essentially the same with only 3k
floating-point operations.

Application in Geometric Computing. Many authors have proposed to im-
plement robust predicates for Computational Geometry based on error-free transfor-
mations or exact floating-point summation, see for example [21, 39, 81, 87, 104].
Possibly the earliest example is [78], which assumes the availability of an exact scalar
product. These approaches lead to some of the fastest predicate implementations to
date. The downside is, that they involve careful error analysis tuned to the expres-
sion and underlying method [81, 104]. Furthermore, the problem of overflow and
underflow remains, though rarely relevant in practice.

But even if applied straightforwardly, exact arithmetic based on error-free trans-
formations is faster than traditional software number types for geometric predicates.
Software number types are asymptotically fast, but involve a constant overhead per
operation. Algorithms based on error-free transformations usually have a worse as-
ymptotic running time, but less constant overhead. For example, no initial conversion
into a software number is necessary. This tradeoff pays off in geometric predicates,
which require relatively low precision only.

In Chapter 4 we present improved algorithms for accurate floating-point sum-
mation. We implement geometric predicates based on our and other algorithms
and evaluate their efficiency experimentally. We also give new algorithms for the
efficient conversion of expansions to bigfloat numbers. In Chapter 5 we integrate
algorithms based on error-free transformations into our number type RealAlgebraic.
Our approaches are based on computing with expansions, as well as on accurate
summation algorithms. We rigorously treat and handle limitations of these algo-
rithms, e.g., underflow and overflow, to relieve the user from these problems and
keep RealAlgebraic user-friendly.

CHAPTER 3

RealAlgebraic – an expression dag based number-type

In this chapter we report on our new number type, RealAlgebraic, based on the
basic principles and algorithms described in Section 2.1. Our goal in the development
of RealAlgebraic is to improve the efficiency of such number types, while maintaining
their generality and usability.

From the basic approach of storing expressions to allow lazy adaptive evaluation
many design choices arise, exemplified in the differences between Lazy_exact_nt,
leda::real, and CORE::Expr. One has to choose for example a dynamic floating-
point filter and an implementation of arbitrary precision arithmetic. Furthermore
there is a large range of possible evaluation and sign computation schemes, even if
one decides to base them on precision driven arithmetic.

In RealAlgebraic some of these design choices are captured and exposed in terms
of exchangeable modules. For each choice, several options are implemented and
can be chosen by the user. In this way, RealAlgebraic is not a single number type but
actually a family of related number types. The goal of this approach is to allow and
simplify experiments that let us determine the impact of certain design choices on
the overall performance of the number type.

All RealAlgebraic variants provide the same interface and, with the exception of
running time, behave the same from the users point of view. RealAlgebraic supports
field operations and radicals of arbitrary degree, but not the �-operator. It allows
for exact sign computation and comparison results are always correct. Furthermore,
RealAlgebraic allows the computation of arbitrarily accurate bigfloat approximations,
where the user can specify the relative and absolute error a priori.

RealAlgebraic is implemented in C++. Through operator overloading, it may be
used like any built-in number type, but with the added benefit of exactness. Real-
Algebraic depends on three third party libraries, though not all must be available.
A working number-type can be obtained if either leda [53] or both boost [4] and
mpfr [71] are available. Since there are many choices to be made, we provide a
default RealAlgebraic variant. It is provided under the name Default_real_al-
gebraic in the file Default_real_algebraic.hpp. Including the file real_
algebraic_traits_for_cgal.hpp makes any RealAlgebraic variant fit for usage
with cgal.

In this chapter we first present the software design of RealAlgebraic, i.e., how we
made important parts of the implementation exchangeable and we present the options

65

66 3. REALALGEBRAIC – AN EXPRESSION DAG BASED NUMBER-TYPE

we implemented for several of these parts. Then we discuss some improvements to our
expression dag evaluation algorithms which, though small individually, together have
a noticeable impact on running time. We identify a problem in current dag evaluation
algorithms which negates the advantage of sharing common sub-expressions and
present two possible improvements. Finally, we compare the efficiency of several
RealAlgebraic variants in the context of various geometric algorithms. The default
RealAlgebraic variant is the result of these experiments.

3.1. Policy Based Design

We use generic programming based on the template mechanism of C++ to make
the relevant parts of our implementation exchangeable. In generic programming, a
Concept is an abstraction defined by a set of syntactical and semantical requirements.
Concrete types that actually fulfill the requirements of a concept are called a Model
of this concept.

According to Alexandrescu [1], a policy is a concept that encapsulates a certain
behavioral aspect of an algorithm or class. He illustrates this on the task of creating a
new object on the heap. The policy CreationPolicy depends on a template parameter T
itself and mandates a single member function Create() that shall return a pointer to
a new object of type T. Different models of CreationPolicy can implement Create()
differently, they can for example create an object using new or alternatively create the
object in a location raised from a memory pool by using placement new. Placement
new performs no memory allocation and instead creates a new object in a memory
location provided by the user. A class based on one or more policies is called a host
class. Host classes have to be instantiated at compile time by selecting an appropriate
model for each policy. If a host class is based on several policies, it is desirable that
those are orthogonal, meaning that models for those policies are freely combinable.
It is for example not advisable to combine a CreationPolicy model that raises memory
from a pool with a DestructionPolicy model that returns memory to the operating
system. In fact, handling creation and destruction by different policies constitutes
bad design.

The setup of one or more policies controlling the behavior of a host class is a
variant of the strategy design pattern [34], but with an emphasis on the point that
the strategy or policy is supplied through a template parameter and not a virtual
base class that concrete policies must implement. Providing policies as template
parameters allows run-time efficient, very fine-grained control. An overview of our
design in RealAlgebraic is given in Figure 3.1, showing all concepts, their models and
relations between them.

Our main host class is Real_algebraic, which is parameterized by three
policies. The ExpressionDagPolicy provides strategies for operations on the dag, i.e.,
creation of dag nodes, reference counting, dag evaluation and sign computation. The
complementary LocalPolicy provides a strategy to postpone or avoid the creation of
dag nodes, by using an explicit and exact number representation stored in the handle.

3.1. POLICY BASED DESIGN 67

Real_algebraic

LocalPolicy DataMediator

No_local_data Jobless_mediator

Local_double Local_double_to_expression_dag_mediator

Local_double_with_interval_check Local_double_interval_to_expression_dag_mediator

Local_double_interval

Local_double_sum

ExpressionDagPolicy

Basic_expression_dags

FilterPolicy Original_leda_expression_dags

Leda_interval_filter_policy

Boost_interval_filter_policy

SeparationBound

Bfmss2_separation_bound

ApproximationPolicy DM_separation_bound

Leda_approximation_policy LY_separation_bound

Mpfr_approximation_policy

Approximation_policy_statistics closely coupled, host policy

Figure 3.1. Concepts and models in RealAlgebraic.

The DataMediator provides conversion from the representation used by a LocalPolicy
to a dag representation.

LocalPolicy. The main cost factors of computing with expression dags are dy-
namic memory management and bigfloat arithmetic. Computing even the first
approximation of an expression is sometimes orders of magnitudes slower than eval-
uating the expression with floating-point arithmetic. Therefore it might be faster to
compute the result of an arithmetic operation in some way exactly and store it in the
handle, if possible, and resort to an expression dag only if this approach fails. If an
exact value is stored in a handle we say it is represented locally. A RealAlgebraic may
be represented locally or by an expression dag or both. In our implementation, the
local representation in the handle is inherited from the LocalPolicy model given as
parameter to Real_algebraic.

A LocalPolicy model must provide constructors, arithmetic operations and sign
computation on the local representation. All these operations may signal failure, in
which case they must be forwarded to the expression dag. A LocalPolicy model does
not need to expose anything about the internal representation. Only the success or

68 3. REALALGEBRAIC – AN EXPRESSION DAG BASED NUMBER-TYPE

failure of certain operations is of interest. A part of the required interface is shown
below.

LocalPolicy(double d);
creates a new LocalPolicy. The created LocalPolicy represents d iff d can be represented
locally.

bool local_creation_succeeded(double d);
returns if d is represented by (*this), given that (*this) has been created from
d.

bool local_multiplication(const LocalPolicy a,
const LocalPolicy b);

tries to compute a local representation for the product of a and b. If the product can
be computed locally, a local representation is indeed computed and true is returned.
Otherwise, false is returned.

bool local_sign(int& s);
tries to compute the sign of (*this) locally and stores it to s. If the sign can be
computed, true is returned. Otherwise, false is returned.

Constructors cannot return a Boolean value indicating whether their argument is
locally representable, so we allow to create a LocalPolicy right away and check
afterwards if a local representation is possible. For a variety of local representations
this interface allows for an efficient implementation of the creation process. To check
for success after the creation, we may compare to the stored number, or return a
flag that has been set by the constructor, or simply always return true, e.g., when
all floating-point numbers are locally representable. Which implementation is best,
depends on the specific number type used for local representation. We provide the
following LocalPolicy models.
No_local_data (nodaL): Here the strategy is simply to not store any representa-

tion locally. All operations are immediately forwarded to the ExpressionDagPolicy.
This simulates the behavior of both CORE::Expr versions where no attempts to
defer dag creation are made.

Local_double (doubL): Stores one floating-point number plus a boolean value,
which indicates whether this number is exact. Checks the exactness of arithmetic
operations using error-free transformations. Supports +,−,×,/, 2

p
, but not

d
p

.
Local_double_with_interval_check (dwicL): Stores the same data as Lo-

cal_double, but checks the exactness of arithmetic operations using interval
arithmetic, supplied by FilterPolicy. Supports +,−,×,/, d

p
. This LocalPolicy

models the behavior of leda::real, if instantiated with Leda_interval_-
filter_policy as FilterPolicy.

Local_double_interval (dintL): Stores a floating-point interval, based on Fil-
terPolicy and always computes an interval enclosure, even if the interval is not
a singleton. Forwards arithmetic operations to the ExpressionDagPolicy, if the

3.1. POLICY BASED DESIGN 69

interval is not a singleton. Sign computation is however forwarded only, if the
interval contains zero. Supports +,−,×,/, d

p
.

For all ExpressionDagPolicy models currently available, the interval stored by
Local_double_interval is identical to the one in the expression dag, so the
avoidance of sign computation on the dag is nearly pointless. It would however
be interesting, to combine this model with an expression dag that does not store
a floating-point interval. This saves space in the dag node, but keeps a floating-
point interval for all numbers which are still accessible to the user. It would
further be interesting to extend the DataMediator concept to allow a reverse
conversion and thus improvement of the local interval. This way, only those
intervals are improved that might be useful later on, in contrast to improving all
intervals in a dag.

Local_double_sum (dsumL): Stores a sequence a1, a2, . . . , an of floating-point
numbers, representing their sum

∑n
i=1 ai . Supports ring operations only and

performs arithmetic operations and sign computation using algorithms based on
error-free transformations. The behavior of Local_double_sum is governed
by several further policies, fixing for example the number of summands or the
set of arithmetic operations. Chapter 5 is dedicated to an in depth discussion of
Local_double_sum and its policies.
DataMediator. If we do not succeed in performing a task locally, we resort to

the expression dag. For an arithmetic operation, this may require to first transform
the local representation of the operands into an expression dag representation. This
conversion is done by a DataMediator model. The DataMediator plays a central
role in orthogonalizing LocalPolicy and ExpressionDagPolicy. We would like to allow
virtually any kind of exact number representation inside a LocalPolicy and we have to
provide a way to convert this representation into an expression dag. Using a bigfloat
type as intermediate representation is a straightforward option, but it restricts local
representations to those exactly convertible to a bigfloat type and involves the possibly
unnecessary cost for this conversion. Our solution is to provide the conversion method
separately with a DataMediator. A DataMediator model may depend on both the Local-
Policy model and ExpressionDagPolicy model it is made for, and gets privileged access
to both. It encapsulates the dependencies between both policies, thereby decoupling
them. Of course this might require a separate DataMediator for each pair of LocalPoli-
cy and ExpressionDagPolicy. In practice, the conversion method depends more on the
LocalPolicy than the ExpressionDagPolicy. Many DataMediator models in our current
design convert the local data to a floating-point number or bigfloat, and create a
single dag node storing it. Those can in fact be used with any ExpressionDagPolicy.

Except for Local_double_sum, each LocalPolicy model above has a unique
corresponding DataMediator, which can be found in Figure 3.1. Since these medi-
ators need to convert at most a single floating-point number to an expression dag
representation, they work with any ExpressionDagPolicy.

70 3. REALALGEBRAIC – AN EXPRESSION DAG BASED NUMBER-TYPE

ExpressionDagPolicy. An ExpressionDagPolicy model provides operations on an
expression dag, i.e., dag creation, sign computation and computation of arbitrarily
accurate approximations. The key tools for these tasks are a floating-point filter,
bigfloat arithmetic and a separation bound. We capture the requirements on these
tools in three concepts, the FilterPolicy, the ApproximationPolicy, and the Separation-
Bound. Both our ExpressionDagPolicy models allow to interchange these three tools.
Therefore, they do not provide a single expression dag implementation, but a family
of closely related ones.
Original_leda_expression_dags (oledaD): This model is originally based on

the source code for leda::real and implements the dag creation and evalu-
ation strategy of leda::real, as described in Section 2.1.2. It does however
incorporate the necessary changes to make floating-point filter, bigfloat arithmetic
and separation bound exchangeable.

Basic_expression_dags (basicD): This model is similar to the one above, but
includes some improvements to data storage and the sign computation algo-
rithm. Most importantly it employs a new scheme to propagate the accuracy
requirements in precision driven arithmetic. We discuss these improvements in
Section 3.2.
FilterPolicy. The FilterPolicy concept specifies an interface for a dynamic floating-

point filter or interval arithmetic and captures those features of interval arithmetic
relevant for its use in RealAlgebraic. Any model for FilterPolicy represents an interval
and provides arithmetic satisfying the interval inclusion property Equation (1.8). The
interface to access or modify the interval supports two representation paradigms:
midpoint and radius, or lower bound and upper bound. Depending on the actual
representation, accessing or modifying the interval may therefore require floating-
point computation. For this reason, the interface does not guarantee exact access to
the interval, but guarantees the inclusion property only.
Leda_interval_filter_policy (ledaF): This model is based on interval arith-

metic in leda, more precisely leda::interval_bound_absolute. This class
is an implementation of the dynamic floating-point filter by Burnikel et al. [13]
and represents intervals by midpoint and radius.

Boost_interval_filter_policy (boostF): This model is based on interval
arithmetic in boost, more precisely boost::numeric::interval<double>.
boost implements interval arithmetic as described by Brönnimann et al. [5].
Intervals are represented by upper and lower bound.
ApproximationPolicy. The ApproximationPolicy concept captures the functional-

ity required from bigfloat arithmetic in RealAlgebraic. A model must provide a bigfloat
type Approximation as well as approximate arithmetic operations on this type. The
required interface for arithmetic operations is the following.

3.1. POLICY BASED DESIGN 71

static bool mul(Approximation& c,
const Approximation& a,
const Approximation& b,
const Precision p,
const RoundingMode rm);

computes a× b rounded to at least p bit precision according to the rounding mode
rm and stores it in c. If no rounding occurred, i.e., if c = a × b, true is returned.
Otherwise false is returned. The references a, b and c may refer to the same variable.

We do not require the result to be rounded to exactly p bits. In mpfr, precision is
associated with variables, not operations, making it infeasible or at least inefficient to
enforce rounding to exactly p bits, e.g., in case c = a.

Next to arithmetic operations, an ApproximationPolicy model must provide some
auxiliary types and methods. Important is here the Exponent type, which arises
whenever log |x | instead of |x | is used in a computation. This is the case in the
error bound computation for precision driven arithmetic and in the computation of
separation bounds.
Mpfr_approximation_policy (mpfrA): Is based on the mpfr library [71]. In

Section 4.2 we present new methods to convert expansions exactly into bigfloat
numbers. It turns out, our new methods are faster even for a single floating-
point number, see Section 4.2.3. Thus, Mpfr_approximation_policy uses
the new conversion instead of the one provided by mpfr. The Exponent type is
a hardware integer type and thus might wrap around and lead to inexact error
bound computation on rare occasions.

Leda_approximation_policy (ledaA): Based on the leda::bigfloat num-
ber type from leda. For d

p
with d > 2, this model does not support the required

rounding modes but only guarantees the associated relative rounding error. It is
hence not quite conforming to ApproximationPolicy, but for the actual usage of
ApproximationPolicy inside current ExpressionDagPolicy models this poses no prob-
lem. The Exponent type is the exact number type leda::integer, therefore all
error bound computations are safe.

Approximation_policy_statistics: The purpose of this model is to collect
statistics about the usage of bigfloat arithmetic in RealAlgebraic. It is not really a
ApproximationPolicy itself, but must be parameterized by another Approximation-
Policy, which then provides the actual functionality. For each type of arithmetic
operation it collects a histogram of how often an operation of certain precision is
performed.

The mantissa of a bigfloat number is usually stored as an array of integers,
where each integer stores a part of the mantissa. These integers are called words
or limbs. To make the histogram more compact, we measure precision not in
the number of bits but in the number of limbs. For addition and subtraction we
collect a single histogram but separate histograms for multiplication, division
and radicals.

72 3. REALALGEBRAIC – AN EXPRESSION DAG BASED NUMBER-TYPE

While this is certainly a very rough approximation of the running time spend
for a single arithmetic operation, it does suffice for our purposes of gaining some
insight into the usage of bigfloat arithmetic in RealAlgebraic. See Section 3.3 for
how to use this model and Figure 3.5b for some collected statistics.
SeparationBound. The SeparationBound concept captures a separation bound.

The following models are implemented.
Bfmss2_separation_bound: Implements the BFMSS[2] separation bound, as

described by Pion and Yap [84].
DM_separation_bound: Implements the DM separation bound as described by

Mignotte [61, 12]. Note that this bound can be significantly worse then the
improved version by Li and Yap [55].

LY_separation_bound: Implements the new separation bound presented by Li
and Yap [55], but uses DM_separation_bound internally, i.e., not the im-
proved DM bound from [55].
Memory Allocation. By default, RealAlgebraic allocates memory for dag nodes

from a memory pool. It uses the pool implementation from either leda or boost,
depending on availability. There is no corresponding concept or policy, the user may
however select a specific pool implementation at compile time using preprocessor
macros.

Composing a RealAlgebraic Variant. To compose a RealAlgebraic variant, we
have to instantiate Real_algebraic with its three policies, which may themselves
be host classes depending on further polices. Instead of having in each host class
one template parameter per policy, we decided to have a single template parameter
only. The parameter has to be a class collecting all required policies as nested types.
By feeding the collecting class itself to the models collected inside it, all necessary
policies can be subsumed in a single class, resulting in a convenient way to create a
RealAlgebraic variant.

We now show how to create the default RealAlgebraic variant and custom variants.
We provide the policies for the default variant first in a templated class as shown
below.

template <class Derived>
struct Default_real_algebraic_policies_base{

typedef No_local_data LocalPolicy;
typedef Jobless_mediator<Derived> DataMediator;
typedef Basic_expression_dags<Derived> ExpressionDagPolicy;
typedef Leda_interval_filter_policy FilterPolicy;
typedef Mpfr_approximation_policy ApproximationPolicy;
typedef Bfmss2_separation_bound<Derived> SeparationBound;

};

While these are the preferred policies, as determined by our experiments in Sec-
tion 3.4, the actual choice also depends on the availability of third party libraries
boost, leda, and mpfr. The actual default collection of policies is created by deriving

3.1. POLICY BASED DESIGN 73

Real_algebraic

Jobless_mediator

Basic_expression_dags

Leda_interval_filter_policy

Mpfr_approximation

Bfmss2_separation_bound

No_local_data

Figure 3.2. Collaboration of classes in Default_real_algebraic.

from the templated collection, providing the derived class as template parameter.
In this way, each class depending on policies receives the collection as template
parameter. This allows to create the default RealAlgebraic variant.

struct Default_real_algebraic_policies :
public Default_real_algebraic_policies_base<

Default_real_algebraic_policies > {};

typedef Real_algebraic<Default_real_algebraic_policies>
Default_real_algebraic;

Instantiating Real_algebraicwith a set of policies generates a small class hierarchy.
The one generated for Default_real_algebraic is shown in Figure 3.2.

We could have provided a set of policies to Real_algebraic without using a
templated base class, but doing so enables us to easily exchange one policy without
having to specify the remaining ones. For example we might want to use Local_-
double as LocalPolicy but otherwise use the default parameters. Then we can do this
in the following way.

struct Custom_policies :
public Default_real_algebraic_policies_base<Custom_policies> {
typedef Custom_policies P;
typedef Local_double<P> LocalPolicy;
typedef Local_double_to_expression_dag_mediator<P> DataMediator;

};

typedef Real_algebraic<Custom_policies> Custom_real_algebraic;

74 3. REALALGEBRAIC – AN EXPRESSION DAG BASED NUMBER-TYPE

Comparison to Other Number Types. Our design goes beyond that of pre-
vious expression dag based number types. There is no genericity in leda::real
or CORE::Expr 1. The number type Lazy_exact_nt<NT> adds adaptivity to any
exact number type NT in a generic way. Our approach is however different. We
make the inner parts of our number type exchangeable to better understand their
interaction and influence on the performance, and to ultimately create better number
types. Closest to RealAlgebraic comes CORE::Expr 2, which makes floating-point
filter, separation bound and a so called arithmetic kernel exchangeable. While the
first two parameters are in correspondence to our FilterPolicy and SeparationBound
concepts, the arithmetic kernel of CORE::Expr 2 provides arbitrary precision interval
arithmetic. In RealAlgebraic only the underlying bigfloat arithmetic is exchangeable,
we leave the interval computation to an ExpressionDagPolicy model. Through Local-
Policy, we add the ability to combine different expression dag implementations with
strategies to avoid dag creation, an option which is not available in any other number
type.

3.2. Expression Evaluation

The general strategies for expression dag creation and expression evaluation
in Original_leda_expression_dags and Basic_expression_dags are very
similar to those in leda::real. But while Original_leda_expression_dags
only involves changes necessary to make floating-point filter, bigfloat arithmetic and
separation bound exchangeable, the strategy of Basic_expression_dags differs
in a few more details. We now discuss these modifications.

Reorganization of Node Data. A common strategy for the storage of data
in a dag node is, to only store the data absolutely necessary in the node itself and
move all other data variables into another structure, created upon request later. For
example, a bigfloat approximation is not always needed, but creating the variable
holding it requires expensive dynamic memory allocation. It is thus moved to another
structure and created later, if necessary.

In Basic_expression_dags, we have a common node type for all operations
and only one additional structure. Both leda::real and Original_leda_ex-
pression_dags have two additional structures, one for the approximation and one
for the separation bound. CORE::Expr 2 also has these two, plus a third one for
caching the sign and bounds. In Basic_expression_dags, the additional structure
is created when a bigfloat approximation is computed for the first time. While the
separation bound might be needed only even later, the runtime for initializing the
approximation easily dominates the cost for creating separation bound variables. No
separation bound is computed at this point. By having only one structure, we need
to store only one pointer in the node itself, reducing its size. We also moved a flag
required for dag traversal out of the dag node into the extra structure.

The dag node itself contains the following variables only: The floating-point filter,
one pointer for additional data, two pointers for operands, and two integers for the

3.2. EXPRESSION EVALUATION 75

reference count and node type. Four bits of the node type are used for the type flag,
i.e., constant floating-point, constant bigfloat, or +,−,×,/, d

p
, the remaining bits

store d in case of a d
p

node. Thus, on a 64 bit architecture a dag node has a size of
48 bytes, compared to 72 bytes in Original_leda_expression_dags. As long as
no bigfloat operations are necessary, the memory requirement for a dag is minimized.
This may help to improve the cache performance of an algorithm in this case, without
noticeably slowing down the case where bigfloat operations are necessary.

Careful Floating-Point Filter Update. It is generally useful to update the
floating-point filter stored in a dag node, once a high precision approximation has
been computed, since this node may be used as operand in the creation of new
nodes later on. This leads to a tighter interval in the new node and may avoid
bigfloat operations. Of course, it is only useful to perform an update for nodes that
are still directly accessible to the user, but this is expensive to check. Updating the
floating-point filter involves bigfloat operations and has non-negligible cost.

We update the floating-point filter only, if this is reasonable considering the
interval size. Let I be some interval with midpoint m and radius r, containing and
representing some unknown number x . If r is on the order of the floating-point
rounding error associated with m, i.e., r ® εm|m|, then it is very unlikely, that I can
be improved. If I is represented by midpoint and radius, then x must be of the
form x = m+ δ, with |δ| << r. If I is represented by upper and lower bound, no
improvement is possible. To allow for some widening in the conversion from bigfloat
approximation to floating-point filter, we do not update intervals once r ≤ 4εm|m|.

Logarithmic Error Bound Computation. We need to compute several types
of error bounds. In an initialization step, we report the error of an approximation
bound bottom up, while in precision driven arithmetic we request accuracy top down,
see Figure 2.1. The actual error bound formulas in these two cases are very similar.
Finally, there is the separation bound computation. In all expression dag based
number types, the separation bound is computed logarithmically, i.e., any parameter
x > 0 is maintained as log x with the necessary changes in formulas.

In Original_leda_expression_dags, the bottom up error, as well as the
top down accuracy requirement are computed directly, using bigfloat arithmetic
with low precision. To minimize computational cost, the precision is selected such
that all numbers may be stored using a single limb. The most expensive opera-
tions, i.e., division and radicals, are already avoided by computing logarithmically.
In Basic_expression_dags, all top down accuracy requirements are computed
logarithmically, avoiding any bigfloat operation.

By computing logarithmically we save some bigfloat operations, in a range of
precision where the bigfloat arithmetic is exceptionally expensive compared to the
accuracy it provides. By doing so, we get more restrictive accuracy requirements
further down in the dag, which translate to larger precision for the bigfloat operations
to compute approximations. Compared to direct error bound computation, the

76 3. REALALGEBRAIC – AN EXPRESSION DAG BASED NUMBER-TYPE

a

b

c

(qx , qy)

a

b

c

(qx , qy)

Figure 3.3. Two tiny integer programs.

necessary precision increases by one or two bits per stage, which is acceptable as long
as the depth of the dag is not too large.

Bottom up error computation in the initialization step remains however direct,
as this step is only used when the floating-point filter fails to provide a bound, e.g.,
when floating-point overflow occurred in the filter.

New Accuracy Propagation Rules. Besides computing accuracy require-
ments logarithmically, we also use a different set of rules to compute these accuracy
requirements. Our new rules for accuracy propagation are a refinement of those used
in leda::real [15] and Original_leda_expression_dags. They do resemble
those by Chee Yap [116] and subsequently refined by Zilin Du [24] and used in
CORE::Expr, by decoupling the actual recomputation of child nodes from computing
accuracy requirements for them. The new rules remove the necessity implied by
Equation (2.1) to recompute one child before computing the accuracy requirement for
the other child. The new rules do however further increase the accuracy requirements
on operands, for a result of the same quality. We present a new dag evaluation
algorithm that benefits from the decoupling in Section 3.3.

As an example, we now derive the new rule for the improvement of multiplication
nodes. Recall, that for each node v in the dag we maintain an approximation v̂ and
corresponding absolute error ev with

|v̂− v| ≤ ev

Let x , y, z be dag nodes with z = x y. We start with an error estimate analogous to
Equation (2.2) but get rid of the dependency on x̂ , which forces us to recompute x̂
first. As a result, we get an additional second order error term.

|ẑ− z| ≤ |ẑ− x̂ ŷ|+ | x̂(ŷ − y)|+ |y(x̂ − x)|

≤ 2−p| x̂ ŷ|+ (|x |+ ex)ey + syex

≤ 2−p| x̂ ŷ|+ sxey + syex + exey

3.3. A CASE STUDY ON COMMON SUBEXPRESSIONS 77

template <class NT>
bool geom_series_A(const NT r,

const int n){
NT s=0, p=1;

for(int i=0;i<n;i++){
s = s + p;
p = p * r;

}

NT t = (1 - p)/(1 - r);
return (t==s);

}

(a)

template <class NT>
bool geom_series_B(const NT r,

const int n){
NT a=0, p=1;

for(int i=0;i<n;i++){
a = p + a; //change here
p = p * r;

}

NT b = (1 - p)/(1 - r);
return (a==b);

}

(b)

Figure 3.4. Two C++ functions for the verification of Equation (3.2).

We compute logarithmically, so for each node v, we actually have a variable qv with
ev = 2qv . To bound the right hand side by 2qz , we set qx and qy such that

qx ≤ qz − 2− dlog2 sye =: a

qy ≤ qz − 2− dlog2 sxe =: b

qx + qy ≤ qz − 2 =: c
(3.1)

and recompute x̂ and ŷ . Then we set

p =max{2, dlog2 | x̂ |e+ dlog2 | ŷ|e+ 2− qz}

and compute ẑ = x̂ ⊗p ŷ . Then

2−p ≤
2qz−2

| x̂ ŷ|
, ex ≤

2qz−2

sy
, ey ≤

2qz−2

sx
, exey ≤ 2qz−2

and hence |ẑ− z| ≤ 2qz . As final step, we set ez = 2qz . How do we select qx and qy ,
as large as possible, such that Equation (3.1) is satisfied? This is a very tiny integer
optimization problem which takes only two combinatorially different configurations,
shown in Figure 3.3. We select

qx = a qy = b if a+ b ≤ c

qx =
�

c+ a− b

2

�

qy = c− qx otherwise.

The remaining rules for +,−,/ and d
p

can be found in the RealAlgebraic docu-
mentation [89]. Again, / and d

p
require a lower bound on divisor and radicand,

respectively.

78 3. REALALGEBRAIC – AN EXPRESSION DAG BASED NUMBER-TYPE

3.3. A Case Study on Common Subexpressions

In this section we study the behavior of expression dag based number types on
expression dags with common sub-expression. If a sub-expression occurs multiple
times in an expression, we may represent this sub-expression using a single dag
only. This has several advantages, using Equation (2.3) it might for example allow
to compute a better separation bound. The main advantage is however, that we
need to evaluate the shared sub-expression only once and thus can reduce evaluation
cost. Using an example, we show that current evaluation strategies may void this
advantage and we propose improved evaluation strategies.

We first encountered the problem, when assembling test cases to check the
correctness of the RealAlgebraic implementation. One of the test cases is the well
known identity

n−1
∑

i=0

r i =
1− rn

1− r
for r 6= 1,(3.2)

for geometric series. Using an expression dag based number type NT, and the code in
Figure 3.4, we can verify this identity for any r and n. Here we always use r =

p
13.

Note how the code reuses the sub-expression r i−1 for the computation of r i . When
running the code in Figure 3.4a for the default variant of RealAlgebraic and different
values of n on the descartes platform from Section 3.4, we get the running times in
the first line of the table below. For increasing n, the time increases moderately. If we
however replace (t==s) in the last line of Figure 3.4a with (s==t) and repeat the
experiment, we get the running times in the second line. Suddenly the running time
explodes with increasing n. A small code change leads to very significant differences
in the running time.

n 128 256 512 1024
deterministic t==s 0.00 0.00 0.00 0.03
RealAlgebraic s==t 0.01 0.06 0.51 6.27

Why does this happen? Bigfloat arithmetic is the main cost factor in expression
dag evaluation. Using our framework, it is easy to check, how much bigfloat arithmetic
is used by RealAlgebraic. The class Approximation_policy_statistics counts
how often a bigfloat operation of a certain precision is performed. The following code
extends the default RealAlgebraic type for the collection of statistics.

3.3. A CASE STUDY ON COMMON SUBEXPRESSIONS 79

struct Stat_policies :
public Default_real_algebraic_policies_base<Stat_policies> {

typedef Default_real_algebraic_policies_base<Stat_policies> Base;
typedef typename Base::ApproximationPolicy BAP;
typedef Approximation_policy_statistics<BAP> ApproximationPolicy;

};

typedef Real_algebraic<Stat_policies> Stat_real_algebraic;

We repeat both experiments for n = 128 and check the amount of bigfloat arithmetic
used. It turns out, that there is a large difference in the usage of multiplication,
while the difference for +,−,/, 2

p
is negligible. The upper part of Figure 3.5b,

labeled deterministic, shows how often a bigfloat multiplication of certain precision
is performed when running the code in Figure 3.4a and its modification. It is
clearly visible, that the problem is not more expensive bigfloat operations. Rather,
significantly more operations but of the same precision are performed by the (s==t)
variant. The y-axis is logarithmic, so the number of bigfloat multiplications roughly
squares.

The question remains, why this occurs. Figure 3.5a shows the expression dag
generated by the code in Figure 3.4a prior to the last line. The final comparison
(t==s) creates a new root node with t as left child and s as right child and computes
the sign of this node. For (s==t), the same happens, but with s as left child and t
as right child. In both cases, the sign of the root node is zero. This means, the sign
will not be found by a filter stage, but the node has to be approximated repeatedly,
until the separation bound is hit. Using r =

p
13, we also make sure, that no node

becomes known exactly at some point. Lets consider a single step of precision driven
arithmetic to improve the root node. It is significant, that precision driven arithmetic
first recursively improves the left child, then the right child and finally recomputes
the node itself, where left and right correspond to the drawing in Figure 3.5a. We
already identified the multiplication nodes as central to the problem. Due to the order
of traversal, in the case of (t==s), we visit each multiplication node coming from
above first. Later we arrive at this node again, coming from the left side. Upon the
second arrival, we again request an approximation of certain accuracy from this node.
If we are lucky, we need not recompute the approximation. This is what happens in
case (t==s). In case (s==t) we arrive from the left side first. Later we arrive at a
node again, coming from above. This time the present accuracy is insufficient and we
must recompute the approximation of this node and much worse, all nodes below.
Thus, we have to perform quadratically many bigfloat multiplications, while in case
(t==s) each node is recomputed only once.

In case (s==t), we approximate each multiplication node several times, with
increasing accuracy, until finally reaching the necessary maximal accuracy. This is
however not visible in Figure 3.5b, only more operations are performed. This shows

80 3. REALALGEBRAIC – AN EXPRESSION DAG BASED NUMBER-TYPE

/

− −

1 1

+ ×

+ ×

+ ×

+ ×

0 1

r

r

s p

t

(a) Generated dag for n= 4.

5 10 15 20

20

23

26

29

212

#
of

m
ul

ti
pl

ic
at

io
ns

s==t
t==s

5 10 15 20

20

23

26

29

212

precision

#
of

m
ul

ti
pl

ic
at

io
ns

de
te

rm
in

is
ti

c
ra

n
do

m
iz

ed

(b) Bigfloat multiplications for n= 128.

Figure 3.5. Dag structure and usage of bigfloat multiplication for RealAlge-
braic and the code in Figure 3.4a.

that the already available approximation can only be slightly insufficient, making the
difference disappear in the coarse statistics.

We can reproduce this behavior for other number types. Sharing a very similar
evaluation strategy with RealAlgebraic, leda::real shows the same behavior on
exactly the same example. For CORE::Expr 2, we have to make some changes,
i.e., swap the operands in the addition. The resulting code is shown in Figure 3.4b.
Running times from experiments with leda::real and CORE::Expr 2 are shown
below. Again, a small code change leads to a large change in running time. Although
we tried more variations of the code given here, we could not find one which
reproduces this behavior for CORE::Expr 1. The precision driven arithmetic of
CORE::Expr 1 performs ring operations exactly and computes the error bound for a
node, instead of setting it to the requested value. Therefore, the actual error stored in
a node may be slightly smaller than originally requested, which avoids the problem
in our example. This is however no general solution, as the accuracy requirements of

3.3. A CASE STUDY ON COMMON SUBEXPRESSIONS 81

parents may differ much more than can be bridged by a slightly better error bound
computation.

n 128 256 512 1024
t==s 0.00 0.01 0.02 0.10

leda::real s==t 0.07 0.37 2.87 31.59
a==b 0.00 0.01 0.01 0.04

CORE::Expr 2 b==a 0.01 0.06 0.62 4.29

In the bad case, the evaluation strategy totally negates the advantage of sharing
common sub-expressions. The dag is evaluated as if it were an expression tree,
storing copies of an identical sub-expression for each reference to it. Furthermore,
any dag sharing common sub-expressions is prone to this problem. If a node is refer-
enced several times, there is a good chance that all parents have different accuracy
requirements on this node. If we arrive from a parent with low requirements first,
we must recompute the node upon a later arrival. Since the accuracy requirements
propagated by precision driven arithmetic are usually tight, this will almost always
trigger a recomputation of all descendent nodes. Even if the problem does not appear
in cascaded form, we might easily loose a factor of two by going wrong just once near
the root node. This happens for example if we run the code in Figure 3.4b with Real-
Algebraic. Here, the operands for the addition are ordered favorably for RealAlgebraic,
but the root node (a==b) or (b==a) decides whether each multiplication will be
evaluated once or twice.

It is clearly undesirable, that the running time is this sensitive to small code
changes. A user may rewrite a part of her code and end up with significantly worse
performance, without any hint to the cause. If we compare two expression dag
based number types, one of them might seem inefficient only because expressions are
created in a way favoring the other number type. Of course, we would like to attain
minimal runtime, independent of the dag structure.

So, how can this problem be avoided? The accuracy propagation scheme in
leda::real in general requires to recompute the approximation of one child node
to compute the accuracy requirement for the other child, cf. Section 2.1 and is
therefore part of the problem. In Section 3.2 we lifted this requirement in nearly all
cases. The exceptions are the divisor node in a division and the radicand node in a
radical, for which a positive lower bound must be known. For these nodes it might be
necessary, to compute a lower bound and hence the sign recursively, but only once.
As soon as a lower bound is known, we can propagate the accuracy requirements to
these nodes and their siblings directly.

The new error propagation scheme allows to recurse to any child first. It is
however by no means clear how to choose an order to avoid recomputation for all
nodes in the dag globally. We can however choose randomly. If we do this for RealAl-
gebraic, we get the running times shown in the table below. The corresponding usage

82 3. REALALGEBRAIC – AN EXPRESSION DAG BASED NUMBER-TYPE

of bigfloat arithmetic for n= 128 is shown in the lower part of Figure 3.5b, labeled
randomized. Both the running time and the number of bigfloat multiplications is
significantly lower than in the deterministic (s==t) case, but still higher than in the
deterministic (t==s) case.

n 128 256 512 1024
randomized t==s 0.00 0.00 0.01 0.06
RealAlgebraic s==t 0.00 0.01 0.00 0.05

By randomizing dag traversal, the expected number of node re-evaluations in our
example becomes linear. It suffices to consider the dag rooted at s for the analysis.
Let M(i) be the number of bigfloat multiplications triggered by the addition node
with distance i to the root node. Then

M(i) =

¨

i− 1 if we traverse to the right first,

i− 1+M(i− 1) otherwise.

We can see by induction that the expected number of multiplications is bounded by
2(i−1). On average, we perform at most twice the optimal number of multiplications,
which our experiments nicely confirm.

Randomization helps to avoid a traversal order which leads to quadratically many
re-evaluations, provided there are only few such orders. In geometric applications,
where we compute the sign of expressions with equal dag structure a few hundred
times or more, the average running time using randomization will actually be realized.
However, the average number of bigfloat operations in a randomized evaluation
strategy is still larger than the minimal number and we would like to avoid even that.

The key to improvement is the observation, that the new scheme for precision
propagation from Section 3.2 does not need to recompute approximations at all. A
node can wait until all its parents have registered their accuracy requirements and all
its children have recomputed their approximation. Only then it has to compute a new
approximation. To this end, each node v stores a new information ẽv , which is the
new error bound the approximation of v should satisfy. This allows us to improve the
approximation of a node using the following algorithm.

Algorithm 3.1 (topological precision driven arithmetic).
Let u be a dag node and e > 0. Then TopPrecDrivArith computes an approximation û
such that

|u− û| ≤ e.

1: procedure TopPrecDrivArith (u, e)
2: ẽu←min{e, ẽu}
3: let D be the dag rooted at u
4: for all nodes v ∈ D in topological order do
5: if ẽv < ev then

3.4. EXPERIMENTS 83

6: if a lower bound from any child w of v is required then
7: compute sign and lower bound for w recursively
8: for all children w of v do
9: compute error bound r to request from w

10: ẽw ←min{r, ẽw}
11: for all nodes v ∈ D in reverse topological order do
12: if ẽv < ev then
13: compute necessary precision p and recompute v̂
14: ev ← ẽv

We only need to initialize ẽv once, when v is created, since it never becomes larger
than ev . By processing nodes in topological order in the first stage, we ensure that
upon arriving at a node v, all its parents have registered their accuracy requirements.
At this point we have all the data necessary to compute the requirements from v
to its children. In the second stage, processing nodes in reverse topological order
ensures that the children of a node have already been re-evaluated with the necessary
accuracy. Sorting the nodes of a dag topologically takes linear time in the size of the
dag, so there is no asymptotic disadvantage compared to other traversal methods.
The algorithm does however need to traverse the dag more often, so the involved
constants will be larger.

To avoid the overhead for additional dag traversal, expression evaluation may
be implemented in an introspective way [74]. Initially, straightforward precision
driven evaluation is used, while counting the number of dag node evaluations. If the
number of evaluation crosses some threshold, e.g., twice the number of dag nodes,
evaluation switches to the new evaluation scheme.

A final advantage of the algorithm is, that it may be parallelized to the amount
allowed by the expression dag. Any two nodes not connected by a directed path can
be processed in parallel in both stages. This is especially interesting for the second
stage, where expensive bigfloat operations are performed.

3.4. Experiments

We study the influence of different models and implementation parameters on
the overall performance of RealAlgebraic by means of experiments. Our goal is to
better understand the characteristics of our algorithms and to determine an efficient
default RealAlgebraic variant. To this end, we run several geometric algorithms with
different requirements on the arithmetic for randomly generated and structured input
data.

An alternative to using geometric algorithms is to compare the performance for
some geometric predicates or arithmetic expressions only. It is however difficult to
generate realistic input for predicates only. For example, matrices filled straight-
forwardly from pseudorandom numbers exhibit a structure that makes computing
the determinant numerically easier than truly random matrices [35]. Geometric
algorithms usually create a certain distribution of predicate calls, which may be

84 3. REALALGEBRAIC – AN EXPRESSION DAG BASED NUMBER-TYPE

hard to simulate or even understand. For example, a good algorithm computing the
Delaunay triangulation of a set of points will almost exclusively perform incircle tests
for points which are close to each other in the input set. Using geometric algorithms
as test bed produces more meaningful results about the performance of different
number types.

By a similar argument, one should favor input data from real applications over
artificial data. In that regard, the experiments by Held and Mann [43] are exemplary,
which test their algorithms on a set of approximately 20,000 data sets which were
collected over time. Real world data is however notoriously hard to obtain. Even if
one can run experiments with some real world data sets, it is unclear whether the
results carry over to other data sets. To achieve representativeness, one needs input
data from many different sources. We use artificially generated data, since we can
easily create many data sets with different characteristics. This allows us to observe
the performance of number types for both simple and more challenging input sets.

3.4.1. Experimental Setup. For our experiments we use algorithms from cgal,
solving four of the geometric problems introduced in Section 1.1. In cgal, the three
layers of geometric algorithm, geometric primitives and arithmetic are nicely sepa-
rated. This allows us to run the same algorithm with different geometric primitives
and with different number types, too.
Delaunay triangulation: We compute the Delaunay triangulation of points in the

plane, using Delaunay_triangulation_2 and the Simple_cartesian ker-
nel. All predicates involve polynomial expressions only.

Segment intersection: We compute all intersection points among a set of line seg-
ments in the plane using compute_intersection_points() and both the
Simple_homogeneous and Simple_cartesian kernel. In the homogeneous
kernel, geometric primitives involve polynomial expressions only. The degree of
these expressions is generally larger than of those needed for computing the 2D
Delaunay triangulation. With the Cartesian kernel, geometric primitives involve
rational expressions.

Arrangement of circles: We compute the arrangement of circles and line segments
using Arrangement_2 and the Simple_cartesian kernel. This problem
involves algebraic numbers and geometric primitives which are not provided by
the standard kernels in cgal. Additional geometric primitives are provided to the
arrangement implementation by a so-called traits class. We perform experiments
for two different traits classes. The first is Arr_circle_segment_traits_-
2, it handles algebraic numbers by means of static algebraic predicates. Each
predicate is reduced to the evaluation of several rational expressions. The second
traits class we use is Arr_circular_line_arc_traits_2. For number types
with field operations only, it provides static algebraic predicates, but if the number
type supports square roots, straightforward expressions are used for predicate
evaluation.

3.4. EXPERIMENTS 85

0 25 50 75 100

Figure 3.6. Input data for Delaunay triangulation.

Segment Voronoi Diagram: We compute the Voronoi diagram of line segments
using Segment_Delaunay_graph_hierarchy_2. Again, the necessary geo-
metric primitives are provided by a traits class. We use Segment_Delaunay_-
graph_filtered_traits_without_intersections_2 when segments do
not intersect in their interior, and Segment_Delaunay_graph_filtered_-
traits_2 otherwise. Both provide static algebraic predicates for number types
without square root and straightforward predicate implementations for number
types with square root. If segments do not intersect in their interior, static al-
gebraic predicates employ ring operations only, the straightforward predicates
however always need a division operation. Both traits classes have a built-in
dynamic floating-point filter. The geometric primitives for the Voronoi diagram
of segments are numerically harder than those for the arrangement of circles,
since they involve algebraic numbers of higher degree.

If we count using different kernels or traits classes, this gives us seven different
geometric algorithms solving four geometric problems. Each of these algorithms has
different requirements on the arithmetic. Two use ring operations, and two use field
operations only. Three algorithms use field operations plus square root, but may be
used in combination with more restricted number types, by means of static algebraic
predicates.

Input Data. Most input data sets are randomly generated. In some of those,
input objects are uniformly distributed. This usually results in predicate calls which
are numerically easy, i.e., may be decided by a floating-point filter. In other data
sets, some structure is imposed to enforce a larger amount of degenerate or nearly
degenerate predicate evaluations. Some data sets are completely structured without
a random component.

We generate floating-point input data with 53 bits of precision, and, since small
precision integer coordinates are common in real world applications, we also gen-
erate integer input data with 25 bits of precision. To this end, we first generate a
data set with floating-point coordinates, then scale the data such that its bounding
box coincides with [−224, 224]2. Finally we round all numerical data to integers.
Small precision integer data is more easy to handle numerically. For example, the
straightforward floating-point implementation of the 2D orientation predicate, given

86 3. REALALGEBRAIC – AN EXPRESSION DAG BASED NUMBER-TYPE

short long grid axis

Figure 3.7. Input data for segment intersection.

in Equation (1.7), always computes the correct result for 25 bit integer input. We
generate the following data sets.
Delaunay triangulation: For p ∈ {0, 25, 50, 75, 100}, we generate input data sets

with 10000 points each, of which p% are located almost on the boundary of a
union of disks. The remaining points are placed uniformly at random outside the
union of disk, no points are placed in the interior. With increasing p, this forces
the Delaunay triangulation algorithm to perform more nearly degenerate incircle
tests. Input data sets are shown in Figure 3.6.

Segment intersection: We generate four types of inputs sets, shown in Figure 3.7.
short: Sets of 2500 segments with endpoints uniformly distributed in a square.
The length of segments is restricted to approximately one third of the side of the
square.
long: Sets of 700 segments with endpoints uniformly distributed in a square.
grid: Sets of 500 segments with endpoints randomly placed on an 11× 11 grid.
Some intersection points will have the same x-coordinate, which is a degeneracy
for the plane sweep algorithm that we use.
axis: Sets of 700 axis parallel segments. In this type of set, there are many
degeneracies too, however all intersection points have a representation in input
precision.

Arrangement of circles: We generate four types of data sets, shown in Figure 3.8.
rand: Sets of 500 line segments and 500 circles, randomly generated inside a
square. Segment length and circle diameter are restricted to approximately one
fourth of the side of the square.
gridrn: A set of 529 circles with centers on a 23× 23 grid and radius of approxi-
mately twice the diagonal of the grid. There are many occurrences of four circles
almost intersecting in a single point. The data set is slightly rotated, such that
the intersection points are not all near the same x-coordinates. Due to numerical
imprecision, rotating the data set also perturbs the input data and thus further
relaxes the near degeneracies.
pack: An approximate circle packing of 2000 circles. We generate data sets
incrementally using the Voronoi diagram of disks. After a small initial set of disks,

3.4. EXPERIMENTS 87

rand gridrn pack gridnn

Figure 3.8. Input data for arrangements of circles and line segments.

we create alternately disks with random centers, touching at least one other disk
and disks with their center on random Voronoi vertices, touching at least three
other disks. Since we round data to floating-point numbers, circles in the final
data set are unlikely to touch but will either miss or intersect slightly.
gridnn: A set of 225 circles with centers on a 15× 15 grid and radius of approxi-
mately twice the diagonal of the grid. This data set is not rotated and therefore
closer to being degenerate than the gridrn set. Furthermore, intersection points
all occur near the same x-coordinate, which is another degeneracy for the plane
sweep algorithm we use.

Segment Voronoi diagram: We generate four types of data sets, which are shown
in Figure 3.9. In the first two, segments only intersect at endpoints, in the other
two, true intersections occur.
mst: Sets of 5000 segments, which form the minimum spanning tree of a point
set with 75% of points on the boundary of a union of disks. Most segments in
this data set are very short.
sqrs: Sets of 785 axis parallel segments, which are edges of small squares,
regularly placed on a 15× 15 grid.
short: Sets of 500 segments with endpoints uniformly distributed in a square.
The length of segments is restricted to approximately one third of the side of the
square.
shoax: Sets of 200 short, axis parallel segments inside a square. The length of
segments is restricted to approximately one third of the side of the square.
Platforms. Comparing algorithms by measured running time is a tricky business.

Apart from input data and in our case the geometric algorithm, also the compiler,
third party libraries, and hardware have an influence on the running time. In general,
small performance differences between algorithms may vanish or revert when the
computing environment changes. To give our results more significance, we run
experiments on three different platforms.
descartes: A desktop PC with an Intel Core i5-660 processor running at 3.33 GHz.

All software is compiled using g++ 4.6.3.

88 3. REALALGEBRAIC – AN EXPRESSION DAG BASED NUMBER-TYPE

mst sqrs short shoax

Figure 3.9. Input data for segment Voronoi diagram.

minkowski: A notebook with an Intel Core 2 Duo T5500 processor running at 1.66
GHz. All software is compiled using g++ 4.5.1.

thales: A Sun workstation with a SPARC-T3 processor running at 1.66 GHz. This
platform comes with a hardware fused-multiply-add instruction, which we exploit
in algorithms based on error-free transformations. All software is compiled using
g++ 4.7.1. Due to compiler incompatibilities, we are unable to use a precompiled
leda package on thales. The implementation of interval arithmetic in leda is
however almost entirely based on header files, therefore Leda_interval_fil-
ter_policy is still available.

On all platforms we use the following library versions: gmp 5.0.5, mpfr 3.1.1, boost
1.50, core 2.1.1, cgal 4.0.2, core 1.8 as shipped with cgal, and leda 6.4. With the
exception of leda, which comes in a precompiled package, we build all libraries and
all experiments in release mode and optimization level -O3.

3.4.2. Results. To avoid combinatorial blowup, we do not perform experiments
for all possible combinations of policies. Instead, we use Default_real_algebra-
ic as baseline variant and only exchange one or two parameters at a time. Using the
acronyms from Section 3.1, we label a number type with the parameters in which it
differs from the baseline variant.

For each type of input set, we generate 25 sets and for each number type run the
corresponding algorithm on all of them. We do this also in the two cases, where all 25
sets are equal. We measure and report the average running time. The complete set of
results can be found in Appendix A. Here we show barcharts for a few selected data
sets and algorithms only. Those are usually selected to show the general behavior,
but often also include interesting exceptional cases.

Memory Allocation. Exemplary results are shown in Figure 3.10. In most
cases, using a memory pool instead of the default allocator improves the performance.
The improvement is largest for computing the Delaunay triangulation and much
lesser for the remaining algorithms. There are some cases, e.g., the degenerate gridrn
dataset, where the default allocator gives better performance on both minkowski
and descartes.

3.4. EXPERIMENTS 89

25 50 short gridrn
0

0.4

0.8

ti
m

e
in

s

Delaunay triangulation Segment Voronoi
diagram static algebraic pred.

Arrangement of circles

boost_pool leda_pool no_pool

Figure 3.10. Effect of different strategies for dag node memory allocation
on the running time. Floating-point data on descartes.

In general, the pool implementations from boost and leda perform about equally
good. Results are comparable for integer and floating-point data as well as for
different platforms, though with a larger advantage for memory pools on thales.
We suggest to always use a memory pool for dag nodes, since the possible gain in
performance is larger than the possible loss.

Our observation that the choice of memory allocation has a larger impact for
geometric problems with simpler predicates is no surprise. With rising complexity, it
is more likely that the floating-point filter fails, simultaneously predicates are more
expensive to evaluate using software arithmetic. Hence a smaller fraction of the total
running time is spend with memory allocation in the first place, leaving less room
for improvement in total. Amdahl’s law [2] relates speedup in a part of a program
to total speedup of the program. It shows that total speedup is inherently limited
unless the part that is improved takes a significant portion of the overall running
time. Consider a program run, where the part to be optimized takes a fraction f of
the running time. If this part runs a factor of s faster, the total speedup ST of the
program is given by

ST =
1

(1− f) + f/s
.

No matter how large s is, the total speedup is limited to 1/(1− f). Conversely this
means, that for computing a Delaunay triangulation about half of the running time is
spend with memory allocation for dag nodes if the default allocator is used. Amdahl’s
law gives good reason to concentrate optimization efforts on those parts of a program
which account for most of the running time. Which parts of RealAlgebraic take up
most of the runtime depends however on the geometric problem and input data. We
can see effects that relate to Amdahl’s law in many of our experiments.

FilterPolicy. Between the two FilterPolicy models boostF and ledaF there is a
time versus accuracy tradeoff. boostF computes tighter intervals, while ledaF is
faster. FilterPolicy models are used for two different purposes in our implementation.
One is as first evaluation stage in expression dag evaluation, the other is to check if
operations can be performed locally, to defer dag creation. We therefore compare

90 3. REALALGEBRAIC – AN EXPRESSION DAG BASED NUMBER-TYPE

25 grid axis rand
0

0.25

ti
m

e
in

s

Delaunay triangulation
Cartesian

Segment intersection
predicates with 2p

Arrangement of circles

ledaF__nodaL ledaF__dintL
boostF_nodaL boostF_dintL

Figure 3.11. Effect of different FilterPolicy models on the running time.
Floating-point data on descartes.

them in combination with two LocalPolicy models: nodaL, where only the first use
case occurs, and dintL, where both use-cases may occur.

Selected results are shown in Figure 3.11. We get similar results in both use-cases,
as well as for integer and floating-point data. With respect to algorithms and data
sets, ledaF is the better choice for Delaunay triangulation and non-degenerate data
sets in segment intersection, as well as for arrangement of circles with square root.
boostF is the better choice for degenerate data sets in segment intersection and for
arrangement of circles with static algebraic predicates. For the Voronoi diagram of
segments, the winner depends on the platform. On minkowski, ledaF is the better
variant, while on descartes and thales, boostF has a small advantage. This
platform dependency is also visible for the other algorithms. While ledaF is clearly
the overall best choice on minkowski, on the other platforms this is less clear.

We check the influence, the FilterPolicy model has on the usage of bigfloat
arithmetic, a major cost factor in RealAlgebraic. Figure 3.12 shows bigfloat usage
statistics for both filters in combination with nodaL and the problems selected for
Figure 3.11. Note that both axes are logarithmic.

For Delaunay triangulation and the 25 data set, boostF reduces bigfloat usage
more than ledaF, but not enough to achieve a running time advantage. Both filters
are nearly equally effective, so the lower runtime cost of ledaF pays off. For Cartesian
segment intersection and the grid data set, the differences between both filters are
more significant and for the axis data set, boostF eliminates bigfloat operations
completely. For more degenerate data sets, the better accuracy of boostF eliminates
sufficiently more bigfloat operations to also gain a running time advantage. Hence
it is the better choice for these data sets. For arrangements of circles based on
predicates with square root and the rand data set, a surprising effect takes place.
Here, ledaF eliminates bigfloat operations of low precision, while the number of
operation with high precision is unchanged in comparison to boostF. Evidently,
there are sub-expressions which ledaF can evaluate exactly, but boostF can not.

With only a few exceptions, the possible performance loss from choosing boostF
over ledaF is larger then the possible performance loss from choosing ledaF over

3.4. EXPERIMENTS 91

21
25
29

213
217
221

21
25
29

213
217
221

21
25
29

213
217
221

20 22 24 26
21
25
29

213
217
221

20 22 24 26 20 22 24 26 20 22 24 26

25 grid axis rand

±

×

÷

2p

#
of

op
er

at
io

ns

precision

ledaF__nodaL
boostF_nodaL

Delaunay triangulation Segment intersection
Cartesian

Arrangement of circles
predicates with 2p

Figure 3.12. Usage of bigfloat arithmetic with different FilterPolicy models.
Selected problems correspond to Figure 3.11.

boostF. Thus, we suggest to use ledaF or a dynamic floating-point filter based
on similar techniques, unless one knows explicitly that data sets contain many
degeneracies.

ApproximationPolicy. There are two ApproximationPolicy models, mpfrA and
ledaA. To the set of competitors we add pure_mpfrA, which is a variant of mpfrA
purely based on mpfr, i.e., one that does not employ the improved floating-point
number to mpfr conversion. Exemplary results are shown in Figure 3.13.

Results are consistent for all platforms, algorithms and input sets. Not surprisingly,
mpfrA is a large improvement over ledaA. The few cases where both perform equal,
are those cases where no bigfloat arithmetic is used at all. Furthermore, mpfrA has
a small but consistent advantage over pure_mpfrA. The advantage is larger for
floating-point data and input sets with a larger amount of degeneracies, where more
conversions occur. Regarding Amdahl’s Law, it is surprising that something as fast
as this number type conversion can have a visible effect. Based on our results, we
suggest to use mpfrA in all cases.

92 3. REALALGEBRAIC – AN EXPRESSION DAG BASED NUMBER-TYPE

25 short grid shoax
0

0.4

0.8

ti
m

e
in

s

Delaunay triangulation
homogeneous Cartesian

Segment intersection Segment Voronoi
diagram

mpfrA pure_mpfrA ledaA

Figure 3.13. Effect of different ApproximationPolicy models on the running
time. Floating-point data on descartes.

25 short pack short
0

0.4

0.8

ti
m

e
in

s

Delaunay triangulation Segment intersection
Cartesian

Arrangement of circles
pred. with 2p

Segment Voronoi
diagram

basicD oledaD

Figure 3.14. Effect of different ExpressionDagPolicy models on the running
time. Floating-point data on descartes.

ExpressionDagPolicy. Selected results are shown in Figure 3.14, with corre-
sponding bigfloat usage statistics in Figure 3.15. Of our two ExpressionDagPolicy
models, basicD is consistently better than oledaD on all platforms, algorithms and
input sets. It is interesting to see, that basicD is an improvement even for those
problems which are solved exclusively without bigfloat arithmetic, e.g., Cartesian
segment intersection on short data sets. The improvement in these cases originates
in the reorganization of node data only! Reducing the node size does indeed improve
cache performance.

In general, both ExpressionDagPolicy models utilize about the same amount of
bigfloat arithmetic. The few small deviations, for example for multiplications on
the pack dataset in Figure 3.15 are usually dominated by other more frequent or
more expensive operations where the usage is equal for both ExpressionDagPolicy
models. There is however one exception from this rule. With oledaD, by far the most
operations are bigfloat additions of small precision. Due to the new implementation of
precision propagation, basicD significantly reduces their number without increasing
the number or precision of other bigfloat operations.

LocalPolicy. Selected results are shown in Figure 3.16. We first observe that
dwicL and dintL nearly always perform worse than doubL. The reason is, that
doubL performs an operation locally if and only if the corresponding floating-point
operation is exact, while the interval representation of dwicL and dintL may let
some exact operations go by undetected. Furthermore, error-free transformations are
simply faster than interval operations.

3.4. EXPERIMENTS 93

21
25
29

213
217
221

21
25
29

213
217
221

21
25
29

213
217
221

20 22 24 26
21
25
29

213
217
221

20 22 24 26 20 22 24 26 20 22 24 26

25 short pack short

±

×

÷

2p

#
of

op
er

at
io

ns

precision

basicD
oledaD

Delaunay triangulation Segment intersection
Cartesian

Arrangement of circles
pred. with 2p

Segment Voronoi
diagram

Figure 3.15. Usage of bigfloat arithmetic with different ExpressionDagPolicy
models. Selected problems correspond to Figure 3.14.

Among the remaining three models, nodaL, doubL, and dsumL, there is unfortu-
nately no unique best variant. Results are similar on all platforms but differ for integer
and floating-point data. For most data sets with floating-point coordinates, dsumL is
the best choice, while for most data sets with integer coordinates, doubL is the best
choice. However, regardless of integer or floating-point input data, nodaL remains
the best variant for data sets with few degeneracies. Following the basic assumption
that degenerate cases are rare and the principle to choose a simple approach when
in doubt, we suggest to use nodaL as base variant, but to consider as alternatives
doubL for small precision integer data and dsumL for floating-point data, especially
in case of degenerate input data.

How successful are different LocalPolicy models in reducing the number of bigfloat
operations? Figure 3.17 shows that mostly operations of low precision are avoided.
The reason is that these occur in the small subtrees whose creation may be avoided by
LocalPolicy models. For floating-point data dsumL is much more effective in reducing
bigfloat operations than doubL, which explains why it performs better there. On
integer data however, the difference is smaller. Here the advantages of doubL, i.e.,

94 3. REALALGEBRAIC – AN EXPRESSION DAG BASED NUMBER-TYPE

0

0.25

ti
m

e
in

s

flo
at

in
g-

po
in

t

nodaL dwicL
doubL dintL
dsumL

25 50 grid pack
0

0.25

ti
m

e
in

s

in
te

ge
r

Delaunay triangulation Segment intersection
Cartesian

Arrangement of circles
pred. with 2p

Figure 3.16. Effect of different LocalPolicy models on the running time.

faster computation of local operations and smaller memory footprint make it the
better choice. Interestingly, for integer pack data sets, the number of high precision
operations is affected, too, while the number of medium precision operations is
unchanged.

General Observations. In general, the selection of a best model for each
concept is independent of the platform, although some run time differences are more
significant on thales. With the exception of LocalPolicy, there is also no difference
between integer and floating-point data. The chosen models are combined into
the RealAlgebraic variant Default_real_algebraic. No experiments were done
comparing different separation bounds, since we have strong theoretical reason to
use the bfmssB bound for all computations.

Not surprisingly, solving a certain problem on integer data is faster than solving
the same problem on floating-point data. But our experiments also allow us to
check whether it is more efficient to use homogeneous or Cartesian coordinate
representation for computing intersections of segments and whether to use static
algebraic predicates or predicates with square root for computing an arrangement of
circles. Slightly generalized, the question is whether it is better to use straightforward
predicate implementations, employing more involved arithmetic operations, or use
more complicated predicate implementations based on simpler arithmetic operations.
Restricted to RealAlgebraic, the answer is to use straightforward predicates with more
involved arithmetic operations.

For those concepts, where the choice of model appears to be sensitive to the
amount of degeneracy in the data set, static algebraic predicates appear to prefer
models which were better suited for data with more degeneracies. For example,
predicates with square roots always prefer the ledaF FilterPolicy model, while static
algebraic predicates nearly always prefer boostF. Still, predicates with square root
using ledaF are nearly always faster than static algebraic predicates with boostF.
For LocalPolicy models a similar effect can be seen, although not quite as strong.

3.4. EXPERIMENTS 95

21
25
29

213
217
221

21
25
29

213
217
221

21
25
29

213
217
221

20 22 24 26
21
25
29

213
217
221

20 22 24 26 20 22 24 26 20 22 24 26

grid pack grid pack

±

×

÷

2p

#
of

op
er

at
io

ns

precision

nodaL
doubL
dsumL

floating-point data integer data
Segment intersection

Cartesian
Arrangement of circles

pred. with 2p
Segment intersection

Cartesian
Arrangement of circles

pred. with 2p

Figure 3.17. Usage of bigfloat arithmetic with different LocalPolicy models.
Selected problems correspond to Figure 3.16.

RealAlgebraic is designed on the assumption, that degenerate and nearly degenerate
predicate calls and expressions are rare. Our results suggest that static algebraic
predicates transform non-degenerate, easy to evaluate expressions into harder, and
closer to degenerate expressions. This would explain why RealAlgebraic performs
worse on static algebraic predicates than predicates with square root.

3.4.3. Comparison to other Exact Geometric Computation Solutions. Using
the same experimental setup as above, we compare three RealAlgebraic variants to
other exact number types and to Exact Geometric Computation approaches on the
level of geometric primitives. We use the nodaL, doubL, and dsumL variants, since
the LocalPolicy model is the most undetermined choice in our experiments. Note that
nodaL is equal to the default RealAlgebraic variant, while doubL and dsumL only
differ in the LocalPolicy model from it. Competing number types are leda::real,
CORE::Expr 1, and CORE::Expr 2 as well as the following:

96 3. REALALGEBRAIC – AN EXPRESSION DAG BASED NUMBER-TYPE

0 25 50 75 100
0

0.25

0.5

ti
m

e
in

s

Gmpzf nodaL CORE::Expr 2.1.1
Lazy_exact_nt<Gmpzf> doubL CORE::Expr 1.8
Epick dsumL
Epeck

Figure 3.18. Delaunay triangulation, floating-point data sets on descartes.

Gmpzf and Lazy_exact_nt<Gmpzf>: Gmpzf is a number type implementing the
ring F of bigfloat numbers. It is based on mpfr and part of cgal.

Gmpq and Lazy_exact_nt<Gmpq>: Gmpq is a rational number type, providing ex-
act field operations. Based on gmp and part of cgal.

EXT::real: A variant of leda::real, build from source code available on the
Internet [9, 101]. While we compile this number type ourselves, it still depends
on precompiled bigfloat arithmetic and other code from leda.

Where possible, we also run our experiments using the following kernels from cgal.
Exact_predicates_inexact_constructions_kernel (Epick): implements

a three stage evaluation scheme for geometric predicates. The first stage is a semi
static floating-point filter, followed by a dynamic filter. The final exact evaluation
is done using Gmpq. As the name suggests, this kernel does not support geometric
constructions, e.g., computing the intersection point of two segments. Arguments
to predicates must be input numbers.

Exact_predicates_exact_constructions_kernel (Epeck): implements the
expression dag technique on the level of geometric primitives, i.e., dag nodes
correspond to geometric constructions or predicates [32, 83]. The first evaluation
is done with a dynamic floating-point filter, an exact evaluation with Gmpq follows
if necessary. A few selected predicates, e.g., the 2D and 3D orientation and
insphere predicates additionally use a semi static filter.

The dynamic floating-point filter in cgal is based on the same techniques as boostF.
While we favor a different technique for RealAlgebraic, the slightly increased runtime
and precision are well invested here, since the dynamic filter is usually prepended by
a semi static filter of lower precision and runtime.

Selected results for floating-point data sets on descartes are shown in figures
3.18 – 3.21, complete results are given in Appendix A.

Delaunay Triangulation. With the exception of CORE::Expr 1 on the 0 data
set, all three RealAlgebraic variants are faster than any other number type, often by
a factor of two or more. On integer data sets, both the Epick and Epeck kernel

3.4. EXPERIMENTS 97

short long grid axis
0

0.4

0.8

ti
m

e
in

s

Gmpq nodaL CORE::Expr 2.1.1
Lazy_exact_nt<Gmpq> doubL CORE::Expr 1.8
Epeck dsumL leda::real

EXT::real

cr
as

h

Figure 3.19. Segment intersection with Cartesian coordinate representation,
floating-point data sets on descartes.

are far superior to RealAlgebraic, the Epick kernel by a factor of five to ten. On
floating-point data, however dsumL is slightly more efficient on data sets containing
many degeneracies, starting with the 50 data set. Due to the special construction
of data sets, one can nicely see the adaptivity or non-adaptivity of the different
approaches in Figure 3.18. dsumL behaves non-adaptive but is still quite fast and
therefore a good choice for data sets with many degeneracies.

Segment Intersection. Our observation for RealAlgebraic, that Cartesian coor-
dinate representation and usage of division is superior to homogeneous representation
and avoidance of division, carries over to other number types. In particular, Gmpzf
and Lazy_exact_nt<Gmpzf> with homogeneous coordinates are slower than Gmpq
and respectively Lazy_exact_nt<Gmpq> with Cartesian coordinates, the grid data
set with floating-point coordinates being a slight exception. We thus look at the
results for Cartesian representation only.

There is no clear winner among the competing number types. For data sets short
and long, nodaL and CORE::Expr 1 show the best performance. For the grid data
set, the best choice is either Gmpq, doubL, or dsumL, depending on data precision
and platform and for the axis data set, doubL is clearly the best. Of all number
types, only doubL and Lazy_exact_nt<Gmpq> are within a factor of two of the
best result for all data types and platforms. Of these two, doubL is usually the better
one. If we ignore the axis data set, the other two RealAlgebraic variants are within a
factor of two as well and nodaL is the overall best number type.

The Epeck kernel is usually faster than any number type for short, long and axis
data sets, but significantly slower than some number types on the grid data set with
floating-point coordinates. In any case, doubL is at most a factor of two slower than
Epeck, and ignoring the axis data set, nodaL is at most 50% slower than Epeck.

Arrangements of Circles. For arrangements of circles, our observation that
it is better to use an available square root operation and to avoid static algebraic
predicates does not carry over to other number types having an exact square root.
Switching the traits class and hence the predicate type can lead to a speedup by a
factor of two for one data set while leading to a simultaneous slowdown by the same

98 3. REALALGEBRAIC – AN EXPRESSION DAG BASED NUMBER-TYPE

rand gridrn pack gridnn
0

0.4

0.8

1.2

1.6

ti
m

e
in

s

Arr_circle_segment_traits_2
Epeck Gmpq

Lazy_exact_nt<Gmpq>

Arr_circular_line_arc_traits_2
nodaL CORE::Expr 2.1.1
doubL CORE::Expr 1.8
dsumL leda::real

EXT::real

Figure 3.20. Arrangement of circles, floating-point data on descartes.

factor on another data set. But regardless of the type of predicates, all number types
with square root are dominated by any of the three RealAlgebraic variants on all data
sets and platforms.

For number types without square root or in combination with the Epeck kernel,
both traits classes provide static algebraic predicates. Running times are gener-
ally close when they are instantiated with the same number type, though in most
cases Arr_circle_segment_traits_2 is the slightly better choice. With this
traits class, Gmpq is the best number type for the highly degenerate gridnn data set
but Lazy_exact_nt<Gmpq> is faster on all other data sets. The Epeck kernel is
faster than number type solutions for rand and gridrn data sets on descartes and
minkowski only.

In contrast to other number types, RealAlgebraic variants work better with the
Arr_circular_line_arc_traits_2 traits class. For the rand, gridrn, and pack
data sets, all three variants are usually within 50% of the globally best variant
including both traits classes and often better. In a few cases, doubL or dsumL are
the best choice for integer or floating-point data, respectively. Only on the highly
degenerate gridnn data set, the slowdown for RealAlgebraic variants compared to the
best variant reaches a factor of two.

Segment Voronoi Diagram. For the mst data set, Gmpzf is usually the best
variant, but all approaches using static algebraic predicates perform nearly equal. The
number types using a square root operation are somewhat slower and nearly equal to
each other, too. Inspection of statistics on bigfloat usage reveals, that relatively few
bigfloat operations of low precision are performed for mst, i.e., most predicates are
decided at an earlier evaluation stage. Hence the results only reflect the performance
of the floating-point filter in the two types of predicate implementations.

3.4. EXPERIMENTS 99

mst sqrs short shoax
0

0.4

0.8

1.2

1.6

ti
m

e
in

s

Gmpzf Epeck CORE::Expr 2.1.1
Lazy_exact_nt<Gmpzf> nodaL CORE::Expr 1.8
Gmpq doubL leda::real
Lazy_exact_nt<Gmpq> dsumL EXT::real

Figure 3.21. Segment Voronoi diagram, floating-point data on descartes.

For the other data sets sqrs, short, and shoax, dsumL is clearly the best approach,
and with a few exceptions all three RealAlgebraic variants are better than any other
number type or kernel. The differences here reflect the performance on degenerate
and nearly degenerate predicate calls only, since the non-degenerate cases are again
solved by the floating-point filter embodied in the traits class.

Conclusions. The tested RealAlgebraic variants, including the default variant
nodaL, are in many cases more efficient than other exact number types. The reason
for this is the combination of adaptive evaluation, memory manager, using efficient
bigfloat arithmetic as backbone and an efficient representation of high precision
interval approximations. Every other number type in the field of competitors lacks at
least one of these features.

Number types without adaptive evaluation, i.e., Gmpzf and Gmpq handle data
sets with many degeneracies well, but are inferior on non-degenerate input. The
memory pool for dag nodes gives RealAlgebraic an advantage for all data sets free from
any degeneracies. Only CORE::Expr 1 shows similar performance here, although
leda::real and EXT::real use custom memory management, too. Adding mem-
ory management to Lazy_exact_nt should improve its performance significantly
for non-degenerate input. On other input sets, the speed of the arbitrary precision
arithmetic is decisive. Here, Gmpzf and Gmpq and their lazy variants give strong
results and are therefore strong competitors to RealAlgebraic.

CORE::Expr 2 is the only number type similar in functionality to RealAlgebra-
ic and using state of the art bigfloat arithmetic. leda::real, EXT::real, and
CORE::Expr 1 all suffer from using outdated implementations. But CORE::Expr 2
is nearly always significantly slower than RealAlgebraic variants, and in many cases it
is even slower than its ancestor CORE::Expr 1. For input sets without degeneracies,
this can be attributed to the omission of memory management, but for input sets
with many degeneracies a different reason must hold. We suspect, the issue is in the
representation of high precision approximations. CORE::Expr 2 uses an interval

100 3. REALALGEBRAIC – AN EXPRESSION DAG BASED NUMBER-TYPE

representation by endpoints. For high accuracy approximations, both endpoints
carry nearly the same information, i.e., they are equal except for the last few bits.
Much worse, this representation in general enforces two high precision operations to
recompute an interval, whereas a midpoint and radius representation needs only one
high precision operations plus a few operations with small precision.

The Epick and Epeck kernels are superior to number-type based solutions for
the polynomial and rational problems they are designed for, although the RealAlge-
braic variants dsumL and doubL lead to better performance on a few input sets with
many degeneracies. The implementor of geometric algorithms should use a kernel
based solution if possible. Not only will he save the implementation of geometric
primitives, he will also gain much in terms of performance. Here, number type based
solutions are only the second option.

In the realm of geometric computations involving algebraic numbers of small
degree, static algebraic predicates are the strongest competitors to expression dag
based number types supporting algebraic numbers. Static algebraic predicates were
shown to have better performance for computing arrangements of circles [22, 26]
and comparable performance for computing the Voronoi diagram of segments [50].
Owing to the substantial improvements in RealAlgebraic, expression dag based num-
ber types have caught up. Our experiments show, that RealAlgebraic variants are
competitive to static algebraic predicates for arrangements of circles and clearly supe-
rior for computing Voronoi diagrams of segments. Our performance improvements
also narrow the large performance gap reported by Held and Mann [43], between
the Exact Geometric Computation approach and the topology oriented approach for
Voronoi diagrams of segments.

CHAPTER 4

New and Improved Exact Floating-Point Algorithms

In this chapter we present some new and improved algorithms that are based on
error-free transformation and work with sums of floating-point numbers. In the first
part we present two algorithms for computing the sign of the sum of floating-point
numbers exactly. We show that predicates based on error-free transformations and
exact sign of sum algorithms can be more efficient than predicates based on software
number types.

In the second part we present new algorithms for converting floating-point
expansions and sums of floating-point numbers exactly and efficiently into bigfloat
numbers. We present experiments showing the advantage of our algorithm over
straightforward approaches.

4.1. Exact Sign of Sum Computation

4.1.1. Improvements on ESSA. Helmut Ratschek and Jon Rokne [88] present
an algorithm, called ESSA for “exact sign of sum algorithm”, to compute the sign of
a sum of floating-point values exactly. They advocate the use of their algorithm in
computational geometry, see [87] for an overview.

Let two sequences of positive floating-point numbers a = a1, . . . , am and b =
b1, . . . , bn be given. ESSA allows to compute the sign of

S =
m
∑

i=1

ai −
n
∑

j=1

b j .

We call a the positive summands and b the negative summands. We denote with
l = m+ n the total number of summands. At any time, l is bounded by 2lεm ≤ 1.
Let us further assume, that at any time a1 is the largest positive summand and b1
the largest negative summand. To allow efficient access to a1 and b1, we maintain a
and b as heap. Using an error-free transformation, ESSA iteratively computes two
new summands x and y with a1 − b1 = x + y, but |x |+ |y| < a1 + b1. The old
summands a1 and b1 are removed from a and b and |x | and |y| are inserted into a
and b, according to the sign of x and y respectively. This step is iterated until the
sum vanishes, or a termination criterion shows that the positive summands dominate
the negative ones, or vice versa. The overall number of summands never increases.

101

102 4. NEW AND IMPROVED EXACT FLOATING-POINT ALGORITHMS

Original ESSA. The termination criterion and the error-free transformation
used by Ratschek and Rokne are based on exponent extraction. Let F be the exponent
of b1 if we normalize the mantissa to a number in [0.5, 1), i.e., F = blog2 b1c+ 1. If
a1 ≥ n2F , the sign of S is known since

S =
m
∑

i=1

ai −
n
∑

j=1

b j ≥ a1 − nb1 ≥ n(2F − b1)> 0,

and original ESSA terminates in this case. Likewise, let E be the exponent of a1.
In case b1 ≥ m2E , the sign is negative. If the sign can not be determined, the
termination criterion allows to bound the maximal difference between E and F .
Using the assumption 2lεm ≤ 1, it can easily be shown that |E − F | ≤ p− 1, which
means that the mantissae of a1 and b1 overlap in at least one bit.

Lets turn to the error-tree transformation. If both a1 and b1 have the same
exponent, we can compute their difference exactly, i.e. x = a1 	 b1 = a1 − b1 and
y = 0. If E > F and hence a1 > b1, we compute x = a1 	 u and y = u	 b1, where
u = 2dlog2 b1e. Since 1≤ E− F ≤ p−1, the operand u overlaps the mantissa of a1, and
therefore x = a1−u. Furthermore 1

2
u≤ b1 ≤ u and therefore y = u− b1 by Sterbenz

Lemma. The case F > E is handled analogously.
These two steps, the termination criterion and error-free transformation are

applied repeatedly until the sign is known. Since a and b are maintained in a heap
priority queue, there is an initialization cost of O(l) and each iteration takes time
O(log l). Ratschek and Rokne show the following bound on the number of iterations.

Theorem 4.1.
Run original ESSA with initially l ≤ 1

2
ε−1
m summands. Then the algorithm terminates

after at most pl2 iterations.

Marina Gavrilova, Dmitri Gavrilov and Jon Rokne [36] propose several modifica-
tions to the error-free transformation of original ESSA. In case E > F , they propose
to split b1 into bhi and blo such that b1 = bhi+ blo and bhi is basically the part of b1
overlapping the mantissa of a1. Then they compute x = a1 − bhi and y = blo. The
case F > E is handled analogously. The variants differ in whether bhi > b1 or bhi < b1
and hence in the sign of blo. Compared to the original error-free transformation, the
proposed modifications increase the amount of cancellation taking place in a single
iteration and should therefore lead to faster termination.

Revised ESSA. The special operations on floating-point numbers needed by the
original ESSA variants can be quite expensive. We will now present a new variant
which we call revised ESSA, which uses ordinary floating-point arithmetic only in
the termination criterion and FastTwoSum for the error free transformation. It thus
maximizes the amount of cancellation in each step. Our variant keeps the main
advantage of ESSA, which is robustness towards the floating-point environment. Like
original ESSA, revised ESSA is immune to overflow and underflow and works in any
IEEE 754 rounding mode. Hence it will always compute the correct sign, provided

4.1. EXACT SIGN OF SUM COMPUTATION 103

the input numbers are real numbers. Furthermore, we are able to give an improved
upper bound on the number of iterations. In experiments we can observe a reduced
number of iterations, too [67]. For all floating-point operations, we assume faithful
rounding only, in the following. Again, we start with the termination criterion, which
checks if the sign can be determined.

Algorithm 4.2 (essa_sign).
Let a, b, l, and S be defined as above. Run essa_sign(a1, m, b1, n) with faithful rounding.
Then essa_sign returns either unknown or the sign of S. Let α = max{a1, b1} and
β =min{a1, b1}. If unknown is returned, then α < lβ .

1: procedure essa_sign(a1, m, b1, n)
2: if m= 0 and n= 0 then return 0
3: if n= 0 then return +1
4: if m= 0 then return −1
5: if a1 > n⊗ b1 then return +1
6: if b1 > m⊗ a1 then return −1
7: return unknown

Proof. Consider Line 5 first. If essa_sign returns here, a1 > n⊗ b1 implies by
monotonicity of rounding, that a1 > nb1. From there it follows that

S =
m
∑

i=1

ai −
n
∑

j=1

b j ≥ a1 − nb1 > 0

and the correct sign is returned. An analogous claim holds for Line 6. Now we assume
that essa_sign does not return in Line 5, and ignore the possibility of overflow for a
moment. Then by Equation (2.5) we know that

a1 ≤ n⊗ b1 = (1+δ1)nb1 +µ1 |δ1|< 2εm, |µ1|< η, δ1µ1 = 0.

We have n≤ l − 1 since m> 0 and 2lεm ≤ 1, therefore

a1 < (1+ 2εm)nb1 ≤ (1+ 2εm)(l − 1)b1 < l b1 for µ1 = 0

a1 < nb1 +η ≤ (l − 1)b1 + b1 = l b1 for δ1 = 0.

If an overflow occurs in the product n ⊗ b1, we still have a1 < nb1 < l b1, since
nb1 ≤ a1 ∈ F implies that no overflow occurs. In any case a1 < l b1. From Line 6 we
have analogously b1 < la1 and combining these two inequalities we have α < lβ .

We perform the error-free transformation of a1−b1 into x+ y using FastTwoSum.
The correctness of FastTwoSum relies on the fact, that if x = a⊕ b is computed with
rounding to nearest, the exact rounding error a+ b− x is a floating-point number.
For faithful rounding this is not necessarily true. However, α < lβ from Algorithm 4.2
tells us that a1 and b1 overlap in at least one bit. This property allows us to show that
the rounding error involved in a1 	 b1 is a floating-point number even for faithful
rounding. Depending on whether a1 − b1 is rounded up or down to x , there are two
possible outcomes for the pair (x , y). An example is given in Figure 4.1.

104 4. NEW AND IMPROVED EXACT FLOATING-POINT ALGORITHMS

a1: +++

b1: +++

x: +++

y: +++

x ′: +++

y ′: −−−

Figure 4.1. The two possible results from the error-free transformation
a1 − b1 = x + y in ESSA.

In our usage of FastTwoSum, we rearrange the error-term computation to avoid
unary minus operations. The algorithm is given below. One might think of replacing
FastTwoSum with TwoSum to avoid the branch, but knowing which of a1 or b1 is
larger is equivalent to knowing the sign of x by Equation (2.10). We need to know
this sign anyway for insertion of x into the set of positive or negative summands.

Algorithm 4.3 (essa_diff).
Let a, b, l, and S be given as above. Compute (x , y)← essa_diff(a1, b1) with faithful
rounding. Then x + y = a1 − b1. Let α = max{a1, b1} and β = min{a1, b1}. Then
|x | < α and |y| < 2εmlβ . If essa_diff is performed with rounding to nearest, then
|y|< εmlβ .

1: procedure essa_diff(a1, b1)
2: x ← a1 	 b1
3: if a1 ≥ b1 then
4: y ← (a1 	 x)	 b1
5: else
6: y ← a1 	 (b1 ⊕ x)
7: return (x , y)

This already shows that ESSA terminates, since in each step a1 and b1 are
replaced by numbers smaller in absolute value. Since positive floating-point numbers
can not be arbitrarily small, sooner or later zero values must be produced which are
not inserted into the sequences a or b again. The number of summands drops and
eventually ESSA terminates.

Proof. Let s = a1− b1, x = fl̃(s) = a1	 b1 and y = s− x . We will first show that
y ∈ F and then proceed to show that y is actually computed by essa_diff. Finally
we prove the claimed inequalities.

We show y ∈ F first. Assume y 6= 0 and let

σ =min{lsb(a1), lsb(b1)},

then we know by Equation (2.6) – Equation (2.9), that a1, b1, s, x , y ∈ σZ and
particularly σ ≤ lsb(y). From Algorithm 4.2 we know that α < lβ ≤ 1

2
ε−1
m β , so we

4.1. EXACT SIGN OF SUM COMPUTATION 105

can conclude

msb(α) ≤ 1
2
ε−1
m msb(β) ≤ (1

2
ε−1
m)

2 lsb(β) and

msb(α) ≤ 1
2
ε−1
m lsb(α) ≤ (1

2
ε−1
m)

2 lsb(α).

The first of these two inequalities is the critical one. Combining them, we get

msb(α) ≤ (1
2
ε−1
m)

2σ.

We have |y|= |δ1||s| with |δ1|< 2εm by Equation (2.11). From −b1 < s < a1 follows
|s|< α. Combining all the collected inequalities, we have

msb(y) ≤ 2εm msb(s) ≤ 2εm msb(α) ≤ 2εm(
1
2
ε−1
m)

2σ ≤ 1
2
ε−1
m lsb(y).

Thus, we know that y ∈ F̃ and with η ≤ σ ≤ lsb(y) and msb(y) ≤ msb(α) ≤ τ it
follows that y ∈ F.

Now we show that y is indeed computed. We consider the case a1 ≥ b1 first. In
case b1 ≥

1
2
a1, by Sterbenz Lemma we have x = a1 − b1 and consequently y = 0. In

the other case b1 <
1
2
a1, we have 1

2
a1 = a1 −

1
2
a1 < a1 − b1 and with monotonicity

of rounding it follows that 1
2
a1 ≤ x . Furthermore, we have x ≤ a1 and can apply

Sterbenz Lemma to the computation bv ← a1 	 x , therefore bv = a1 − x . Finally,
we already know, that bv − b1 = a1 − x − b1 is a floating-point number, so in the
last step y ← bv 	 b1 we have y = bv − b1. For the case a1 < b1 the proof proceeds
analogously, after observing that x < 0 and b1 ⊕ x = b1 	 (−x).

It is worth noting that the discussion above implies that no overflow occurs, all
claims hold unconditionally. Another way to see this is, that by |s|< α≤ 2τ(1− εm)
all computed quantities are smaller than 2τ(1− εm) in absolute value and hence no
overflow occurs.

Finally we turn to the bounds on |x | and |y|. From |s|< α follows |x | ≤ α with
monotonicity of rounding. For |y| we have with Equation (2.11)

|y| = |δ1||s| ≤ 2εmα < 2εmlβ .

Now assume |x | = α, then |y| = β , which is a contradiction to 2εml ≤ 1. Hence
|x |< α. When rounding to nearest, we can replace 2εm by εm in the bound on |y| by
Equation (2.15).

We will now give an upper bound on the number of iterations revised ESSA
performs when run in rounding to nearest.

Theorem 4.4.
Run revised ESSA with initially l ≤ 1

2
ε−1
m summands and rounding to nearest. Then the

algorithm terminates after at most

χ(l)l2 iterations, where χ(l) =
1

2

�

p+ log2 l

p− log2 l

�

.

106 4. NEW AND IMPROVED EXACT FLOATING-POINT ALGORITHMS

Ratschek and Rokne show that their original ESSA terminates after at most
pl2 iterations. We remark that χ(l)< p for l ≤ 1

2
ε−1
m so our bound is indeed an

improvement. Furthermore for IEEE 754 binary64 arithmetic we have χ(l)≤ 1 for
l ≤ 217, which should include nearly all applications.

Our proof of the bound closely follows the proof of the upper bound for the
original ESSA by Ratschek and Rokne. But instead of working with the exponents of
numbers we look at their actual values and exploit the better reduction of a single
value in one iteration.

Proof. For l = 1 the algorithm does not perform an iteration, so we can assume
l ≥ 2. We consider the input numbers a1, a2, . . . , am and b1, b2, . . . , bn as a single
sequence of variables c1, c2, . . . , cl . Let σ be the smallest non-zero bit in all summands
and let it be attained by cµ:

σ =min{lsb(ci) | 1≤ i ≤ l}= lsb(cµ)

It follows that ci ∈ σZ for 1≤ i ≤ l. When we compute x + y = ci− c j in an iteration,
we replace α = max{ci , c j} with |x | and β = min{ci , c j} with |y| in the sequence.
Since x and y are computed using the operations ⊕,	 only, after such an operation
still ci ∈ σZ for 1 ≤ i ≤ l. By replacing α and β with |x | and |y|, the size of the
elements in the sequence is gradually reduced. We denote by c r

i the value of ci after
it has played r times the role of β . As soon as all elements are smaller than ε−1

m σ, all
computations x + y = ci − c j will result in y = 0. This holds in the case ci − c j = 0.
Otherwise we have

msb(ci − c j) ≤ max{msb(ci),msb(c j)} ≤
1
2
ε−1
m σ ≤

1
2
ε−1
m lsb(ci − c j)

which shows ci−c j ∈ F̃. Furthermore, we have η≤ σ ≤ lsb(ci−c j) and msb(ci−c j)≤
τ, so ci − c j ∈ F and hence x = ci 	 c j = ci − c j and y = 0.

When an element plays the role of β in a computation, its absolute value is
reduced by a factor of εml in Algorithm 4.3. We will now count how often an element
must play the role of β to be reduced to ε−1

m σ. We do not count when an element
plays the role of α, since then another element plays the role of β . When an element
plays the role of α its value is not increased so this does not invalidate the analysis.

Assume that at the start of the algorithm the sequence is ordered, i.e., c1 ≥ c2 ≥
. . .≥ cl . We can further assume, that the quotient of two consecutive numbers is not
too large, precisely we assume

(4.1) ci ≤ lε−1
m ci+1.

To justify this assumption, let ν be the lowest index such that the assumption is not
fulfilled, i.e.,

(4.2) cν > lε−1
m cν+1.

Let σ̂ =min{lsb(ci) | 1≤ i ≤ ν}= lsb(cµ̂). The algorithm now reduces the ci values,
however as long as an operation x + y = ci − c j only involves elements with i, j ≤ ν ,

4.1. EXACT SIGN OF SUM COMPUTATION 107

we have ci ∈ σ̂Z for 1≤ i ≤ ν . As long as values are non-zero, they stay larger than
lcν+1:

c r
i ≥ σ̂ = lsb(cµ̂) ≥ 2εm msb(cµ̂) > εmcµ̂ ≥ εmcν > lcν+1.

There are now two possibilities:
• The algorithm only considers elements ci , c j with i, j ≤ ν until all these elements

are zero and then proceeds with elements with larger index. In this case we can
scale all ci , i > ν by an appropriate power of two, such that cν ≤ lε−1

m cν+1 but
still cν > ε

−1
m cν+1. This will not change the course of the algorithm.

• At some point the algorithm considers for the first time two elements c r
i with i ≤ ν

and c j = c0
j with j > ν . Then the algorithm terminates immediately, because

c r
i > lcν+1 ≥ lc j but Algorithm 4.2 guarantees c r

i < lc j . This is not a worst case,
the algorithm would perform more steps if the gap was smaller.

Having justified the assumption we proceed with counting how often ci must play the
role of β to be smaller than ε−1

m σ. We have cl ≤ cµ < ε
−1
m σ and therefore

cki
i < (εml)ki ci by Algorithm 4.3

≤ (εml)ki (lε−1
m)

l−icl by Equation (4.1)

< (εml)ki (lε−1
m)

l−iε−1
m σ

so cki
i < ε

−1
m σ if (εml)ki (lε−1

m)
l−i ≤ 1. This is the case if

ki ≥ (l − i)
�

t + log2 l

t − log2 l

�

= (l − i)2χ(l).

The right hand side must be rounded up, because only an integral number of iterations
can be performed. When all summands are smaller than ε−1

m σ, at most l additional
iterations are required, so finally the total number of iterations is bounded by

l +
l
∑

i=1

ki = l + 2χ(l)
l
∑

i=1

(l − i) ≤ χ(l)l2 for l ≥ 2,

which finishes the proof.

In experiments we observed, that revised ESSA usually need less than l iterations,
and fewer iterations than original ESSA. But we also construct examples, where
revised ESSA needs more iterations than original ESSA [67].

4.1.2. The Signk Algorithm. In this section we present another algorithm,
Signk to compute the sign of a sum exactly. The algorithm uses compensated
summation, a well known technique to increase the accuracy of summation algorithms.
Compensated summation can be traced back at least to Kahan [47]. Ogita, Rump
and Oishi [77] analyze compensated summation and give an error bound that can be
used to verify the sign of the computed approximation. Using a result by Rump [91],

108 4. NEW AND IMPROVED EXACT FLOATING-POINT ALGORITHMS

we improve this error bound. Finally, we show how to use compensated summation
iteratively for sign computation.

In the following we assume, that no overflow occurs and that the number of
summands n is bounded by εmn < 1. Consider the following algorithm, which
computes the sum of n floating-point values straightforwardly.

1: procedure PlainSum(p1, . . . , pn)
2: s← p1
3: σ← |p1|
4: for i← 2 to n do
5: s← s⊕ pi
6: σ← σ⊕ |pi |
7: return (s,σ)

The approximation s, computed by PlainSum satisfies the following standard
error estimate, see e.g., [44, 77].

(4.3)

�

�

�

�

�

s−
n
∑

i=1

pi

�

�

�

�

�

≤ γn−1

n
∑

i=1

|pi | where γn =
nεm

1− nεm
.

Rump [91] improves upon this in several ways. Let s andσ be computed by PlainSum.
Then

(4.4)

�

�

�

�

�

s−
n
∑

i=1

pi

�

�

�

�

�

≤ (n− 1)⊗
�

εm ⊗msb(σ)
�

.

Note that for this bound to be valid, both s and σ must be computed in the same
order! The new bound is an improvement for several reasons. To actually compute
an upper bound of the right hand side in Equation (4.3), we have to take care of
rounding errors in the computation of the bound, e.g., resulting from replacing
∑n

i=1 |pi | with σ. The new bound can easily be computed. Furthermore, msb(σ) is
up to a factor of two smaller than σ ≈

∑n
i=1 |pi |, while (n− 1)εm is similar in size to

γn−1 for n<< ε−1
m .

The basis for compensated summation is the following algorithm, that transforms
a sequence of floating-point numbers into a new sequence of floating-point numbers
with the same sum.

1: procedure VecSum(p1, . . . , pn)
2: t ← p1
3: for i← 1 to n− 1 do
4: (t, qi)← TwoSum(t, pi+1)
5: qn← t
6: return (q1, . . . , qn)

The sequence q1, . . . , qn computed by VecSum satisfies
∑n

i=1 qi =
∑n

i=1 pi by the
properties of TwoSum. Note that qn is the plain floating-point approximation of the

4.1. EXACT SIGN OF SUM COMPUTATION 109

p1 p2 p3 p4 pn

two
sum

two
sum

two
sum

two
sum

q1 |q1| q2 |q2| q3 |q3| qn−1 |qn−1| qn

⊕ ⊕ ⊕ ⊕

t
⊕ ⊕ ⊕

σ

. . .

. . .

Figure 4.2. Flowchart for CompensatedSum.

sum
∑n

i=1 pi . Ogita et al. [77] show that the error terms q1, . . . , qn−1 satisfy

(4.5)
n−1
∑

i=1

|qi | ≤ γn−1

n
∑

i=1

|pi |,

i.e., they are much smaller in magnitude than the original summands. Compensated
summation now first transforms the sum using VecSum and then adds the resulting
sequence with plain summation.

1: procedure CompensatedSum(p1, . . . , pn)
2: q1, . . . , qn← VecSum(p1, . . . , pn)
3: (s,σ) = PlainSum(q1, . . . , qn−1)
4: t ← qn ⊕ s
5: return (t,σ)

By using the error estimates Equation (2.12) and Equation (4.3), Ogita et al.
prove the error bound

(4.6)

�

�

�

�

�

t −
n
∑

i=1

pi

�

�

�

�

�

≤ εm|t|+ γn−2

n−1
∑

i=1

|qi |

and show how to compute it rigorously in floating-point arithmetic. Then, they use
Equation (4.5) to get

�

�

�

�

�

t −
n
∑

i=1

pi

�

�

�

�

�

≤ εm|t|+ γn−2γn−1

n
∑

i=1

|pi |.

In comparison to the standard error estimate Equation (4.3) for plain summation,
this shows the improvement from using compensated summation. For n<< ε−1

m the
result t is almost as if it were first computed with a precision of 2p bits and then
rounded to p bits.

We give the following new error bound which improves upon Equation (4.6) in
two ways. It may be up to a factor of two smaller and it can be computed more easily.

110 4. NEW AND IMPROVED EXACT FLOATING-POINT ALGORITHMS

Our improvement simply stems from replacing Equation (2.12) and Equation (4.3)
with Theorem 2.6 and Equation (4.4).

Lemma 4.5.
Let nεm < 1 and p1, . . . , pn ∈ F. Compute (t,σ) = CompensatedSum(p1, . . . , pn).
Assume no overflow occurs. Then

�

�

�

�

�

t −
n
∑

i=1

pi

�

�

�

�

�

≤ εm ⊗msb(t) + (n− 2)⊗
�

εm ⊗msb(σ)
�

.

Proof. We have t = qn + s+δ with |δ|< εm msb(t) and therefore
�

�

�

�

�

t −
n
∑

i=1

pi

�

�

�

�

�

≤ |δ|+

�

�

�

�

�

s−
n−1
∑

i=1

qi

�

�

�

�

�

.

If msb(t)≤ 1
2
ε−1
m η, then δ = 0 by Lemma 2.4, otherwise εm msb(t) ∈ F. In any

case |δ| < εm ⊗msb(t). The bound on the other term follows from the improved
summation bound Equation (4.4).

Since only the final addition is not a floating-point operation, we can compute
the right hand side in Lemma 4.5 as

∆t = (1+ 2εm)⊗
�

εm ⊗msb(t) ⊕ (n− 2)⊗
�

εm ⊗msb(σ)
�	

.

This is valid since a+ b ≤ (a⊕ b)(1+ 2εm) implies a⊕ b ≤ (a⊕ b)⊗ (1+ 2εm) by
monotonicity of rounding. ∆t can be used to verify the sign of t, which is correct, if
|t|>∆t . This is the basis for algorithm Signk for computing the sign of a sum.

Algorithm 4.6 (Signk).
Let p = p1, p2, . . . , pn ∈ F and nεm < 1, εm ≤

1
8
. Assume rounding to nearest and that

no overflow occurs. Then Signk(p1, p2, . . . , pn) returns the sign of
∑n

i=1 pi .
1: procedure Signk(p1, p2, . . . , pn)
2: while n≥ 2 do
3: p1, . . . , pn← VecSum(p1, . . . , pn)
4: (s,σ) = PlainSum(p1, . . . , pn−1)
5: t ← pn ⊕ s
6: ∆t ← (1+ 2εm)⊗

�

εm ⊗msb(t) ⊕ (n− 2)⊗
�

εm ⊗msb(σ)
�	

7: if not t ≤∆t then return +1
8: if not −t ≤∆t then return −1
9: eliminate zero summands in p

10: if n= 0 then return 0
11: return sign(p1)

In Signk we iterate compensated summation until the sign of the approximation
t can be verified using ∆t , or at most one summand remains. In the actual imple-
mentation, summands are overwritten and all computations are moved into a single
loop since this is more efficient. If overflow occurs, then t or ∆t may become nan.

4.1. EXACT SIGN OF SUM COMPUTATION 111

Any comparison involving nan evaluates to false, hence the sign check is written to
terminate Signk in this case.

It is clear from the discussion above, that Signk returns the correct sign if no
overflow occurs. It remains however to be shown, that Signk terminates! The key
observation is, that repeated application of VecSum modifies and in fact improves the
sum until at some point the error bound will verify the sign.

Lemma 4.7. Signk always terminates.

Proof. First, we show that Signk terminates if no overflow occurs. Repeated
application of VecSum transforms the sequence of summands p1, . . . , pn into a special
form. We show, that at this point the error bound does indeed verify the sign of the
approximation and hence Signk terminates.

Let (x , y) = TwoSum(pi , pi−1) as computed in Signk. Then x ⊕ y = x , and
|y| ≤ εm msb(x), since y is the rounding error involved in the computation pi ⊕ pi−1.
Each TwoSum operation in VecSum replaces pi by x and pi−1 by y and then continues.
Hence, the algorithm moves the more significant parts of the sum towards pn. This
is very similar to bubblesort, where adjacent numbers are swapped if not in correct
order. After some iterations of Signk, we have pi ⊕ pi−1 = pi for 1 < i ≤ n and
VecSum will not lead to changes any more. We now consider the computation of t
and ∆t in an iteration where none of the summands is changed. The sequence of
summands satisfies

|pi | ≤ εm msb(pi+1) for 1≤ i < n.

Signk terminates for n= 1, therefore we have n≥ 2. Furthermore |pn| ≥
1
2
ε−1
m η. If

not, then |pn−1| ≤ εm|pn|<
1
2
η and hence pn−1 = 0. This in turn implies n = 1, a case

we just excluded. In the considered iteration, Signk computes t = pn, s = pn−1 and σ
as the floating-point sum of |p1|, . . . , |pn−1|. Let

σ1 = |p1| and σi = |pi | ⊕σi−1 for 1< i < n.

We next show
σi ≤ 2 msb(pi), for 1≤ i < n

by induction on i. For i = 1, we have σ1 = |p1|< 2 msb(p1), so the claim is true. For
i > 2, first we have

|pi |+σi−1 ≤ |pi |+ 2 msb(pi−1)

≤ 2(1− εm)msb(pi) + 2msb(εm msb(pi))

= (2− 2εm)msb(pi) + 2εm msb(pi)

= 2 msb(pi).

This in turn implies by monotonicity of rounding that

σi = |pi | ⊕σi−1 ≤ 2msb(pi).

112 4. NEW AND IMPROVED EXACT FLOATING-POINT ALGORITHMS

Altogether we have σ = σn−1 ≤ 2msb(pn−1). Note that the order of summation
matters for this bound to be valid. Finally we show that ∆t < |t| at the end of this
iteration, and that Signk terminates. We compute

∆t = (1+ 2εm)⊗
�

εm ⊗msb(pn) ⊕ (n− 2)⊗
�

εm ⊗msb(σ)
�	

.

We have
εm ⊗msb(pn) = εm msb(pn),

since |pn|>
1
2
ε−1
m η, and

(n− 2)⊗
�

εm ⊗msb(σ)
�

= (n− 2)
�

εm ⊗msb(σ)
�

,

since εm ⊗msb(σ) is always a power of two. But for εm ⊗msb(σ) we only have the
upper bound 2εm msb(σ). The critical case is msb(σ) = 1

2
ε−1
m η, then εm msb(σ) = 1

2
η,

which may be rounded to η. Compensating for the rounding error from the remaining
floating-point operations, we have

∆t ≤ (1+ 2εm)(1+ εm)
2�εm msb(pn) + 2(n− 2)εm msb(σ)

�

,

and by nεm < 1 and σ ≤ 2msb(pn−1)≤ 2εm msb(pn) we arrive at

∆t ≤ (1+ 2εm)(1+ εm)
2�εm msb(pn) + 4εm msb(pn)

�

= 5εm(1+ 2εm)(1+ εm)
2 msb(pn)

≤ 5
8
× 5

4
×
�

9
8

�2
msb(t) for εm ≤

1
8

< |t|.

Hence, if no overflow occurs, Signk terminates.
Finally we discuss what happens if overflow occurs somewhere. If overflow

occurs in the computation of t, then t will be nan in this or the next iteration and
Signk will terminate. This happens because VecSum recomputes t from the current
iteration as new summand pn in the next iteration. At least one of the new summands
will become ±∞ and TwoSum will produce nan as error term. Hence t = nan in the
next iteration latest.

When overflow occurs in the computation of ∆t , but not in the computation
of t, then ∆t =∞ and the sign of t is not verified. This poses a possible threat to
termination. We have however shown ∆t < |t| for a case that will always be reached
if no overflow occurs in the computation of t. Hence, no overflow occurs in the
computation of ∆t in that case and Signk will terminate.

We close with a note on an alternative version of Signk. It may seem wasteful
to compute t and all necessary intermediate results in one iteration, only to throw
them away and recompute them with VecSum in the next iteration. Instead, one
could perform VecSum only and use the simple error bound Equation (4.4) after the
first and ∆t after subsequent iterations. The computation of t by plain summation,
parallel to VecSum, is however cheap due to instruction level parallelism. In the
alternative approach, the first iteration is almost as expensive as a Signk iteration,

4.1. EXACT SIGN OF SUM COMPUTATION 113

but gives a result and error bound of significantly lower quality. To get a result of the
same quality and be able to use ∆t , one has to iterate over all summands twice.

4.1.3. Predicates based on Exact Sign of Sum Algorithms. Following [66],
we now present implementations of the 2D incircle and orientation predicates based
on error-free transformations and exact sign of sum algorithms. We compare the
efficiency of several predicate implementations by computing Delaunay triangulations.

We consider two strategies to transform the two predicates into a sum at runtime.
One results in a fixed number of summands, the other results in a variable, but
potentially smaller number of summands. We describe the strategy for the incircle
predicate only, it is both more involved and arithmetically more expensive. For the
orientation predicate, we use matching strategies.
S384: Given four points p, q, r, and s the incircle predicate is tantamount to comput-

ing the sign of the determinant

DIC =

�

�

�

�

�

�

px − sx py − sy (px − sx)2 + (py − sy)2

qx − sx qy − sy (qx − sx)2 + (qy − sy)2

rx − sx ry − sy (rx − sx)2 + (ry − sy)2

�

�

�

�

�

�

.

Symbolically expanding DIC results in a polynomial expression

rx sy p2
x − rxqy p2

x + sxqy p2
x − sx ry p2

x + qx ry p2
x − qx sy p2

x ± . . .

consisting of 48 monomial summands of degree four. By applying TwoProduct
six times, we transform each monomial into a sum of 8 summands, resulting in
an overall sum for DIC having 384 summands.

S96:1152: We perform six transformations like (phi
x , plo

x)← TwoSum(px ,−sx), to
get the determinant

DIC =

�

�

�

�

�

�

�

phi
x + plo

x phi
y + plo

y (phi
x + plo

x)
2 + (phi

y + plo
y)

2

qhi
x + qlo

x qhi
y + qlo

y (qhi
x + qlo

x)
2 + (qhi

y + qlo
y)

2

rhi
x + r lo

x rhi
y + r lo

y (rhi
x + r lo

x)
2 + (rhi

y + r lo
y)

2

�

�

�

�

�

�

�

.

Note that some of the �lo values might be zero, because the corresponding
subtraction is exact. Since by Sterbenz Lemma a floating-point subtraction is
exact if the operands differ by a factor of two in size at most, this is not unlikely!
We transform

(phi
x + plo

x)
2 + (phi

y + plo
y)

2 =

phi
x phi

x + 2phi
x plo

x + plo
x plo

x + phi
y phi

y + 2phi
y plo

y + plo
y plo

y

and analogous terms into a sum using TwoProduct, where a product incurring
�lo is computed only if �lo 6= 0. The resulting sum has between 4 and 12
summands. Then we use cofactor expansion on the last column. We transform

(qhi
x + qlo

x)(r
hi
y + r lo

y)− (q
hi
y + qlo

y)(r
hi
x + r lo

x)

114 4. NEW AND IMPROVED EXACT FLOATING-POINT ALGORITHMS

0 25 50 75 100
0

0.25

0.5

ti
m

e
in

s

Gmpzf S96:1152<AccSign> S384<AccSign>
Epick S96:1152<SignK> S384<SignK>
Expansions S96:1152<rev. ESSA> S384<rev. ESSA>
Shewchuk S96:1152<org. ESSA> S384<org. ESSA>

Figure 4.3. Delaunay triangulation, floating-point data sets on descartes.

and resembling expressions into a sum with between 4 and 16 summands. Each
remaining product of two sums is then transformed into a single sum by applying
TwoProduct to each pair of summands, resulting in a sum with between 32
to 384 summands. Overall, we get an expression with between 96 to 1152
summands.

We combine both methods to create a sum with four exact sign of sum algorithms.
Those are AccSign [95], a variant of AccSum specialized for sign computation, the
Signk algorithm, the original ESSA implementation by Ratschek and Rokne [57], and
our revised ESSA variant. We compare the resulting predicate implementations with
Shewchuk’s adaptive predicates, as well as predicates evaluating the determinants
straightforwardly using expansions [104]. For reference we also add the Epick
kernel as well as Gmpzf to the list of competitors.

We use the setup from Section 3.4 and run experiments on the descartes
platform, using floating-point data sets. Results are shown in Figure 4.3. Note that
cross comparisons with Figure 3.18, and Table A.1 are valid.

Clearly, S96:1152 has a significant advantage over S384. Closer inspection
shows, that about 75% of sums of variable length have the minimum number of 96
summands and virtually all of them have at most the 384 summands of the fixed
length sum [66]. This is caused by the good locality of the Delaunay triangulation
algorithm. Nearly all incircle tests are performed with points close to each other,
therefore nearly all of the initial transformations are exact, leading to short sums.

All predicates based on exact sign of sum algorithms show non-adaptive behavior
and in case of ESSA even anti adaptive behavior. For Signk and AccSign, the
explanation is that the generated sums are not complicated enough. Both algorithms
always terminate after exactly one iteration of the main loop. For the same reason,
there is also not much difference in running time between them. Our revised ESSA
variant is clearly better than original ESSA, yet worse than other exact sign of sum
algorithms, especially for longer sums.

4.2. EXPANSION TO BIGFLOAT CONVERSION 115

The experiments show that our predicate implementations behave more like
an exact evaluation of the expression. They are however faster than Gmpzf and,
ignoring ESSA, faster than expansions, too. For data sets with many degeneracies,
Signk on short sums is even faster than the adaptive Epick kernel. This suggests to
use our predicates as last stage in an adaptive evaluation scheme, e.g., replacing the
last stage in the Epick kernel. In [66] we show that this leads indeed to very fast
predicates, challenging even Shewchuk’s adaptive predicates. In Chapter 5 we show
how to utilize the speed of exact computations based on error free transformations in
expression dag based number types like RealAlgebraic.

4.2. Expansion to Bigfloat Conversion

An expansion e = e1, e2, . . . , en is a special sequence of floating-point numbers,
representing the sum of its elements

E =
n
∑

i=1

ei .

In this section we address the problem of converting e exactly and efficiently into
a bigfloat number, that is, we want to compute E. A straightforward approach is,
to first convert each summand ei into a bigfloat number and then compute the sum
exactly. This approach however does not take into account the special properties
of expansions, it works for any sum of floating-point numbers. Since summands in
an expansion are non-overlapping, computing their sum should be easier. The main
obstacle to better conversion algorithms is that summands may have different signs.
We call an expansion where all summands have the same sign monotone. To convert
a monotone expansion into a bigfloat number, it suffices to concatenate or join the
mantissae of all summands appropriately, see Figure 4.4.

The first result of this section is an efficient algorithm based on error-free transfor-
mations for converting any expansion into a monotone, maximally non-overlapping
expansion. In the important case of strongly non-overlapping expansions, the al-
gorithm is free from overflow and underflow. This means it always works and no
fall-back conversion strategy is needed. The second result are algorithms joining
the mantissae of monotone binary64 expansions into arbitrary precision mantissae
with 32 bit and 64 bit limbs. These algorithms perform integer arithmetic only and
are essentially branch free.

For both mpfr and leda::bigfloat, we implement two conversion strategies
based on these algorithms. Experiments show that they are significantly more efficient
than the straightforward approach.

4.2.1. Monotone Expansions. An expansion e1, e2, . . . , en is called monotone,
if all summands are positive, or all summands are negative or it consists of one
zero summand only. A monotone expansion is truly monotone in that summands
are strictly ordered, increasing if the summands are positive, decreasing if they are
negative. If e is monotone, it contains the non-zero bits of a binary representation of

116 4. NEW AND IMPROVED EXACT FLOATING-POINT ALGORITHMS

e5: +++

e4: +++

e3: +++

e2: +++

e1: +++

∑

ei : +++

Figure 4.4. Joining the mantissae from a monotone expansion.

E =
∑n

i=1 ei explicitly, see again Figure 4.4. Monotone, maximally non-overlapping
expansions are unique.

Lemma 4.8. Let e = e1, e2, . . . , en and f = f1, f2, . . . , fk be two monotone, maximal non-
overlapping expansions which represent the same number, i.e., with

∑n
i=1 ei =

∑k
j=1 f j .

Then n= k and ei = fi for 1≤ i ≤ n.

Proof. Clearly, en and fk have the same sign. We assume they are positive, the
other case is symmetric. Let s =

∑n
i=1 ei . We have s ≥ en and hence msb(s)≥msb(en).

Furthermore

s =
n
∑

i=1

ei

≤
n
∑

i=1

2 msb(ei)(1− εm)

≤
n
∑

i=1

2 msb(en)ε
n−i
m (1− εm)

= 2msb(en)

n−1
∑

i=0

εi
m −

n
∑

i=1

εi
m

= 2msb(en)(1− εn
m),

and therefore msb(s) ≤ msb(en). The same reasoning applies to fk and therefore
msb(en) =msb(fk). Let σ = 2εm msb(fk), then en − fk ∈ σZ. Assume en > fk, then

σ ≤ en − fk =
k−1
∑

j=1

f j −
n−1
∑

i=1

ei ≤
k−1
∑

j=1

f j < 2 msb(fk−1) ≤ 2εm msb(fk),

which is a contradiction. The case en < fk follows analogously. Therefore en = fk.
The claim follows by induction.

We call our algorithm to convert expansions into monotone expansions Mono-
tonize. Monotonize is similar to the first stage of Shewchuk’s compression algorithm.
In Shewchuk’s compression, starting with the most significant summand, the sum-
mands are added to a running total x , using FastTwoSum. Once the error term y is

4.2. EXPANSION TO BIGFLOAT CONVERSION 117

e7: +++

e6: +++

e5: −−−

e4: −−−

e3: −−−

e2: +++

e1: −−−

f3: +++

f2: +++

f1: +++

∑

ei : +++

Figure 4.5. Conversion of an expansion into a maximally non-overlapping
expansion by Monotonize.

non-zero, x is stored away and y becomes the new running total x ′. At this point,
x and x ′ are maximal non-overlapping. Since more summands are added to x ′, it
may however later overlap x . The first stage continues until all summands have been
processed. Then the second stage of compression removes any overlap. However,
after both stages, stored summands may have different signs.

The difference in Monotonize is, that it handles the case of an error term
with wrong sign differently and needs no second stage. Let e = e1, e2, . . . , en be
an expansion with en > 0. Since the summands are non-overlapping, we have
E =

∑n
i=1 ei > 0 and we need to produce positive output summands. Using Fast-

TwoSum, we add the summands to a running total x until the error term y becomes
non-zero. Adding a less significant, non-overlapping summand ei to x is much like
incrementing or decrementing x . No bit of x more significant that lsb(x) will be
altered. Hence, once y 6= 0, the remaining summands ei , ei−1, . . . can not alter the
bits in x but only those in y .

If y is positive, this means x now stores the leading bits of E. We store x into
an output summand f j and continue with y as new running total. If however y is
negative, then x is too large. We can however store pred(x) as output summand,
since the error term w = x −pred(x) is positive and protects the bits in pred(x) from
being changed. Note that w is a floating-point number. With FastTwoSum(w, y) we
compute a new running total and error term and continue as before. The complete
algorithm is given below. Examples for input and output of Monotonize are shown
in Figure 4.5, a simplified flowchart for the case en > 0 is given in Figure 4.6.

118 4. NEW AND IMPROVED EXACT FLOATING-POINT ALGORITHMS

Algorithm 4.9 (Monotonize).
Let e = e1, e2, . . . , en be an expansion. Assume rounding to nearest and that no overflow
occurs. Then Monotonize(e1, e2, . . . , en) computes the unique monotone, maximal
non-overlapping expansion f = f1, f2, . . . , fk with

n
∑

i=1

ei =
k
∑

j=1

f j .

The number of output summands is limited by k ≤ dlog2(2τ/η)/pe, and Monotonize

takes O(n+ k) steps. If
∑n

i=1 |ei | < τ(2− εm) or when e is strongly non-overlapping,
then no overflow occurs.

1: procedure Monotonize(e1, e2, . . . , en)
2: i← n
3: j← l
4: while i > 1 and ei = 0 do i
5: a← ei
6: s← sign(a)
7: while i > 0 do
8: (x , y)← FastTwoSum(a, ei)
9: while s y < 0 do

10: v← NextTowardZero(x)
11: w← x 	 v
12: f j ← v
13: (x , y)← FastTwoSum(w, y)
14: if s y > 0 then
15: f j ← x
16: a← y
17: else
18: a← x
19: f j ← a
20: return f j , f j+1, . . . , fl as f1, f2, . . . , fk

NextTowardZero computes the next floating-point number in direction to-
wards zero. It is a modification of Algorithm 2.12 for computing pred and succ by
Rump et al. [92] and given below. Unlike other algorithms on expansions, Mono-
tonize creates new summands in order of decreasing significance and may increase
the number of summands.

The central property of Monotonize is that the f j are maximal non-overlapping.
We need to show that when y 6= 0 occurs, the new output summand does not overlap
already stored summands. We will see that when x overlaps the last summand, then x
is a power of two, the overlap is exactly one bit, and y is negative. Hence, by passing
on to the next floating-point number in direction towards zero, the potential overlap
is removed. We will now demonstrate the properties of Monotonize, concentrating

4.2. EXPANSION TO BIGFLOAT CONVERSION 119

on the case en > 0. We start by analyzing single operations in Monotonize more
closely. The first lemma considers the FastTwoSum operation on the left in Figure 4.6.

Lemma 4.10. Let a, ei ∈ F be non-overlapping with a > |ei |. Furthermore, let x , y ∈ F
with x = a⊕ ei and x + y = a+ ei . Then x > 0 and either

msb(x)≤msb(a) or x = 2msb(a), y < 0.

Proof. Since a + ei > 0 also x > 0 by Equation (2.10). Since a and ei are
non-overlapping, we have 2msb(a) > a + ei and with monotonicity of rounding
follows 2msb(a) ≥ x . (In case 2msb(a) 6∈ F, actually 2msb(a) > x , since x ∈ F by
assumption). If 2msb(a) > x , then msb(a) ≥ msb(x). Otherwise 2msb(a) = x , in
this case x > a+ ei and hence y < 0.

Assuming additionally that a is smaller than, and does not overlap the last output
summand f j , Lemma 4.10 tells us that we are exactly in the desired situation: x
overlaps f j in at most one bit and if it does, it is a power of two and y < 0. The next
two lemmata consider the other path of computation leading to new values of x and
y, through the FastTwoSum operation on the bottom of Figure 4.6. With x ′ and y ′

we denote the values of x and y at the start of this path.

Lemma 4.11. Let x ′, y ′ ∈ F with x ′ = x ′ ⊕ y ′ and x ′ > 0, y ′ < 0. Then x ′ > 1
2
ε−1
m η.

Let furthermore v = pred(x ′) and w = x ′ 	 v. Then v > 0, msb(w) = w = x ′ − v, and
w >−y ′.

Proof. Since y ′ is the rounding error arising in x ′ ⊕ y ′, x ′ and y ′ are maximal
non-overlapping. Assume x ′ ≤ 1

2
ε−1
m η. Then msb(x ′ + y ′)≤ 1

2
ε−1
m η and hence x ′ ⊕

y ′ = x ′ + y ′ by Lemma 2.4. This is a contradiction to y ′ 6= 0.
From x ′ > 1

2
ε−1
m η follows v ≥ 1

2
ε−1
m η > 0. Since x ′ is the successor of v, we have

w = x ′ − v = 2εm msb(v) ∈ F. Finally, w ≥ −2y ′ > −y ′ since v < x ′ + y ′ < x ′ and
x ′ + y ′ is closer to x ′ than v due to rounding to nearest.

Note that w and v are not maximal non-overlapping but overlap in one bit. The
next FastTwoSum operation, computing a new running total x and error term y from
w and y ′ fixes this.

Lemma 4.12. Let w, y ′ ∈ F with msb(w) = w > −y ′ > 0. Furthermore let x , y ∈ F
with x = w⊕ y ′ and x + y = w+ y ′. Then x > 0 and either

msb(x)<msb(w) or x = w, y = y ′.

Proof. Since w + y ′ > 0 also x > 0 by Equation (2.10). We have msb(w) >
w + y ′ and with msb(w) ∈ F follows msb(w) ≥ x by monotonicity of rounding. If
msb(w)> x , then msb(w)>msb(x). Otherwise w = x and y = y ′.

Thus, either x and the last output summand v are maximally non-overlapping,
or we are again in the situation where x is a power of two, the overlap is exactly
one bit and y < 0. We are now ready to combine the previous results to prove the
properties of Monotonize.

120 4. NEW AND IMPROVED EXACT FLOATING-POINT ALGORITHMS

fast
two
sum

en

ei

a x

y

fast
two
sum

v=pred(x)
w=x 	 v

f j

y < 0

yes

no y > 0

yes

no i = 0

yes

no

Figure 4.6. Flowchart for Monotonize, applied to an expansion with en > 0.

Lemma 4.13. Run Monotonize(e) with an expansion e = e1, e2, . . . , en with en > 0.
Assume that no overflow occurs and denote by f1, f2, . . . , fk the sequence of output
summands. After any of the two FastTwoSum operations, we have a sequence of
summands

s = e1, e2, . . . , ei , y, x , f j , f j+1, . . . , fk.
Then

(A) y + x +
k
∑

l= j

fl =
n
∑

l=i+1

el

and

x , fl > 0 for j ≤ l ≤ k(B)

msb(fl−1)≤ εm msb(fl) for j < l ≤ k(C)

msb(y)≤ εm msb(x).(D)

Furthermore, either

(E) msb(x)≤ εm msb(f j) or x = 2εm msb(f j), y < 0.

Thus, Monotonize iteratively transforms the sequence of summands into a new
sequence with the same sum. Along the way, the subsequence e1, . . . , ei , y, x stays
non-overlapping, while the subsequence y, x , f j , . . . , fk is maximal non-overlapping,
with the already known exception: x may overlap f j in a single bit. Furthermore the
subsequence x , f j , . . . , fk is monotone. The following proof is purely technical, it sim-
ply combines the previous three lemma with induction, making sure the assumptions
are always fulfilled and everything works together nicely.

Proof. First we note that (D) follows from error estimate Equation (2.15) and
msb(y) ≤ |y|, since x and y are always the results of a FastTwoSum operation.
It remains however to show that FastTwoSum can be applied, i.e., that the input
numbers are ordered by absolute value.

4.2. EXPANSION TO BIGFLOAT CONVERSION 121

For (A), (B), (C) and (E) we proceed by induction. The base case occurs at the
start of Monotonize. The sequence

s′ = e1, . . . , en is turned into s = e1, . . . , en−2, y, x

by
(x , y)← FastTwoSum(en, en−1).

The summands en > 0 and en−1 are nonoverlapping and hence we can apply Fast-
TwoSum and Lemma 4.10. Equations (A) and (B) follow directly and for (C) and (E)
there is nothing to show.

For the induction step, let y ′ be the error term in the sequence, before the Fast-
TwoSum operation to be considered. We distinguish three cases, y ′ < 0, y ′ > 0, and
y ′ = 0, corresponding to different computation paths in Monotonize. In case y ′ < 0,
the sequence

s′ = . . . , ei , y ′, x ′, f j+1, . . . is turned into s = . . . , ei , y, x , f j , f j+1, . . .

by

f j ← pred(x ′)

w← x ′ 	 pred(x ′)

(x , y)← FastTwoSum(w, y ′).

By induction hypothesis, for s′ we have,

(A′) y ′ + x ′ +
k
∑

l= j+1

fl =
n
∑

l=i+1

el

x ′, fl ,> 0 for j+ 1≤ l ≤ k(B′)

msb(fl−1)≤ εm msb(fl) for j+ 1< l ≤ k(C′)

msb(y ′)≤ εm msb(x ′).(D′)

Furthermore, either

(E′) msb(x ′)≤ εm msb(f j+1) or x ′ = 2εm msb(f j+1), y ′ < 0.

We can apply Lemma 4.11 to x ′ and y ′. Hence f j > 0, which together with (B′)
shows (B). Furthermore w = x ′ − pred(x ′) and msb(w) = w > −y ′. Thus we can
apply FastTwoSum and Lemma 4.12 to w and y ′. It follows that

y ′ + x ′ = y ′ +w+ f j = y + x + f j

and together with (A′) follows (A). Since f j < x ′, it follows with (E′) that msb(f j)≤
εm msb(f j+1), which together with (C′) yields (C). Since w is the distance from
f j to the next larger floating-point number, we have w = 2εm msb(f j). Following
Lemma 4.12, we either have msb(x) < msb(w) = w = 2εm msb(f j), i.e., msb(x) ≤
εm msb(f j) or x = w = 2εm msb(f j), y = y ′ < 0. This shows (E) and concludes this
case.

122 4. NEW AND IMPROVED EXACT FLOATING-POINT ALGORITHMS

In case y ′ ≥ 0, the FastTwoSum operation on the left in Figure 4.6 is used.
We next show that ei does not overlap a and hence FastTwoSum and Lemma 4.10
can be applied. Let σ = 2k, k ∈ Z be maximal such that ei+1, . . . , en ∈ σZ. We
need to show that no non-zero bit smaller than σ is created before ei is used.
Monotonize manipulates summands with addition and subtraction, which are safe
by Equation (2.9). The only other operation is computing the predecessor v = pred(x).
While v may have smaller non-zero bits than x , at this point the error term y contains
already smaller bits, i.e., lsb(v) ≥ lsb(y) and no non-zero bit smaller than already
present is created. Hence a ∈ σZ and a does not overlap ei .
We return to the induction. In case y ′ > 0, the sequence

s′ = . . . , ei , ei+1, y ′, x ′, f j+1, . . . is turned into s = . . . , ei , y, x , f j , f j+1, . . .

by

f j ← x ′

(x , y)← FastTwoSum(y ′, ei+1).

By induction hypothesis, for s′ we have,

(A′) y ′ + x ′ +
k
∑

l= j+1

fl =
n
∑

l=i+2

el

x ′, fl > 0 for j+ 1≤ l ≤ k(B′)

msb(fl−1)≤ εm msb(fl) for j+ 1< l ≤ k(C′)

msb(x ′)≤ εm msb(f j+1) since y ′ > 0(E′)

msb(y ′)≤ εm msb(x ′).(D′)

From FastTwoSum follows

ei+1 + y ′ + x ′ = y + x + f j

and together with (A′) follows (A). By Lemma 4.10, with a = y ′, we have x > 0 and
together with (B′) follows (B). Furthermore (C) follows from (C′) and (E′). With
Lemma 4.10 and (D′) we have either x = 2msb(y ′) = 2εm msb(f j) and y < 0, or
msb(x)≤msb(y ′)≤ εm msb(f j) i.e., (E) holds.
In case y ′ = 0, the sequence

s′ = . . . , ei , ei+1, y ′ = 0, x ′, f j , . . . is turned into s = . . . , ei , y, x , f j , . . .

by
(x , y)← FastTwoSum(x ′, ei+1).

By induction hypothesis, for s′ we have,

(A′) x ′ +
k
∑

l= j

fl =
n
∑

l=i+2

el

4.2. EXPANSION TO BIGFLOAT CONVERSION 123

x ′, fl > 0 for j ≤ l ≤ k(B′)

msb(fl−1)≤ εm msb(fl) for j < l ≤ k(C′)

msb(x ′)≤ εm msb(f j) since y ′ = 0.(E′)

For (C) there nothing to show, it is identical to (C′). From FastTwoSum follows

ei+1 + x ′ = y + x

and together with (A′) we have (A). By Lemma 4.10, with a = x ′, he have x > 0,
and together with (B′) follows (B). With Lemma 4.10 and (E′) we have either
x = 2msb(x ′) = 2εm msb(f j) and y < 0 or msb(x) ≤msb(x ′) ≤ εm msb(f j), i.e., (E)
holds.

We can now subsume the properties of Monotonize, including the case of
negative or zero leading summand.

Lemma 4.14. Let e = e1, e2, . . . , en be an expansion and assume no overflow oc-
curs. Then Monotonize(e) computes a monotone, maximal non-overlapping expansion
f1, f2, . . . , fk with

∑n
i=1 ei =

∑k
i=1 fi and k ≤ dlog2(2τ/η)/pe summands. Monotonize

takes O(n+ k) steps.

The bound on k is tight, running Monotonize with e = −η,τ as input expan-
sion creates an output expansion with dlog2(2τ/η)/pe summands. This example
furthermore shows that k > n is possible.

Proof. Monotonize first skips zero summands. If there are only zero summands,
a single zero is returned which is a monotone, maximal non-overlapping expansion.
Otherwise it continues computing with a leading non-zero summand. Let s be the
sign of this summand. By symmetry of F and fl, a result analogous to Lemma 4.13
also holds for a negative leading summand. After the last FastTwoSum operation
we have s y ≥ 0 since otherwise Monotonize would perform further FastTwoSum
operations. At this point we either have a sequence

y = 0, x , f2, f3, . . . , fk with msb(x)≤ εm msb(f2)

and the computation ends with f1← x , or we have a sequence

y 6= 0, x , f3, f4, . . . , fk with msb(x)≤ εm msb(f3)

and the computation ends with f2← x , f1← y . Therefore, and by Lemma 4.13
k
∑

i=1

fi =
n
∑

i=1

ei

and
msb(fl−1)≤ εm msb(fl) for 1< l ≤ k

and all summands have the same sign. Output summands are optimally spaced,
i.e., their most significant bits are at least p bits apart. Hence there can be at most

124 4. NEW AND IMPROVED EXACT FLOATING-POINT ALGORITHMS

dlog2(2τ/η)/pe summands. Each iteration consumes an input summand or creates
an output summand, therefore the number of iterations is bounded by O(n+ k).

Finally we give two criteria, ensuring that no overflow occurs in Monotonize
and all computations are therefore correct. Note that the number τ(2− εm) is the
smallest number that may be rounded to +∞, it is halfway between 2τ(1− εm) and
succ(2τ(1− εm)) = 2τ, where the successor is taken in F̃.

Lemma 4.15. Let e = e1, e2, . . . , en be an expansion with
∑n

i=1 |ei |< τ(2− εm). Then
no overflow occurs in the call Monotonize(e).

Proof. We only have to show a⊕b ∈ F for all a, b that we call FastTwoSum(a, b)
for, cf. Algorithm 2.7. Assume en > 0. At the start of Monotonize we add
en, en−1, en−2, . . . to our running total x until the exact sum is not a floating-point
number for first time. Let l be the index where this happens, then

x = fl

n
∑

i=l

ei

!

.

Since
�

�

�

�

�

n
∑

i=l

ei

�

�

�

�

�

≤
n
∑

i=1

|ei |< τ(2− εm)

we round to a real number, i.e., x ∈ F. We store either x or pred(x) as first output
summand fk and therefore fk ∈ F. All further computations involve numbers smaller
than fk by Lemma 4.13 and hence no overflow can occur.

The previous criterion allows us to show that for strongly non-overlapping
expansions, Monotonize will always work correctly.

Lemma 4.16. Let e = e1, e2, . . . , en, be a strongly non-overlapping expansion, then
∑n

i=1 |ei |< τ(2− εm) and no overflow occurs in the call Monotonize(e).

Proof. The sequence |e1|, |e2|, . . . |en| is a strongly non-overlapping expansion
too. Consider the binary representation of E =

∑n
i=1 |ei |. We have msb(E)≤ τ and E

contains a zero bit at least every p+ 1 bits. Hence E < τ(2− εm).

The last result is particularly fortunate. Strongly non-overlapping expansions are
the most relevant type in practice and impeding overflow may be the reason, that
conversion to a bigfloat number is necessary in the first place. If we want to convert
strongly non-overlapping expansions with the help of Monotonize, we do not need a
secondary or backup strategy, covering the case of overflow.

We are now finished demonstrating the properties of Monotonize, but still need
to present the NextTowardZero subroutine. Let x ∈ F, then NextTowardZero(x)
shall compute pred(x) if x > 0 and succ(x) if x < 0. Following Lemma 4.11,
|x |> 1

2
ε−1
m η in this case. NextTowardZero is a slight modification of Algorithm 2.12

by Rump et al. [92] to simultaneously compute predecessor and successor of a

4.2. EXPANSION TO BIGFLOAT CONVERSION 125

floating-point number. We replace | f | by f in the computation of e, to always
compute the next number in direction towards zero instead of towards −∞. This
gives the desired result by symmetry of F and fl. The part handling denormalized
numbers is not necessary, but numbers near 1

2
ε−1
m η still need special care.

Algorithm 4.17 (NextTowardZero).
Let f ∈ F with | f | > 1

2
ε−1
m η. If f > 0, then NextTowardZero(f) returns pred(f),

otherwise succ(f) is returned.
1: procedure NextTowardZero(f)
2: ψ← εm(1+ 2εm) = succ(εm)
3: if | f | ≥ 1

2
ε−2
m η then

4: e←ψ⊗ f
5: p← f 	 e
6: else
7: F ← ε−1

m f
8: e←ψ⊗ F
9: p← εm(F 	 e)

10: return p

4.2.2. Joining the Mantissae of Monotone Expansions. In this section we
present C++ code to convert binary64 expansions into mpfr numbers. We concen-
trate on this special case, since the algorithms involve bit manipulation and many of
the important details are actually harder to describe in pseudocode. The principles
do however carry over to other IEEE 754-2008 formats, programming languages, and
bigfloat numbers.

Hardware Representation of binary64. On many contemporary architec-
tures, the C++ type double is an IEEE 754-2008 number in binary64 format. For
conversion to bigfloat numbers, we need direct access to the sign, the exponent and
the mantissa. The floating-point standard fixes the storage format, which enables
platform independent access. Code similar to the one below is present in other
projects, for example the mpfr library. Using the union keyword, we interpret a
double d as 64 bit unsigned integer l.
〈direct access to double representation〉≡
union ieee_binary64{

double d;
unsigned long long l;

〈raw bit access〉
〈demangled access〉

};

The placement of the individual data of d in l is shown in Figure 4.7. A double
stores one bit for the sign, 11 bits for the exponent and 52 bits for a part of the
mantissa, called fraction. The following methods directly return this data as integers,
which we denote by sb, eb and f respectively.

126 4. NEW AND IMPROVED EXACT FLOATING-POINT ALGORITHMS

sign bit

11 bits exponent

52 bits fraction

Figure 4.7. The IEEE 754-2008 binary64 format.

〈raw bit access〉≡
inline long sign_b(){

return (l & 0x8000000000000000ULL) >> 63;
}

inline long exponent_b(){
return (l & 0x7FF0000000000000ULL) >> 52;

}

inline unsigned long long fraction(){
return (l & 0x000FFFFFFFFFFFFFULL);

}

A triple (sb, eb, f) ∈ {0, 1}×{0, . . . , 211−1}×{0, . . . , 252−1} represents the following
double d. If eb = 0 then d is zero or denormalized non-zero:

d = (−1)sb × f × 2−1074

If 0< eb < 211 − 1 then d is a normalized number:

d = (−1)sb × (252 + f)× 2eb−1075

If eb = 211 − 1 then d 6∈ F:

f = 0 ⇒ d = (−1)sb ×∞
f 6= 0 ⇒ d = nan

These raw numbers are however not sufficient for our needs. Assuming d 6∈
{0,nan,±∞}, we need integral sign s, mantissa m and exponent e such that

(4.7) d = s×m× 2e.

The difficulty is, to handle normalized and denormalized numbers uniformly. By
casting eb to bool and back, we map non-zero eb to one and zero eb to zero. This
allows us to compute the other quantities with simple integer arithmetic and avoid
branching.
〈demangled access〉≡
inline bool normalized(){

return static_cast<bool>(l & 0x7FF0000000000000ULL);
}

4.2. EXPANSION TO BIGFLOAT CONVERSION 127

If d 6∈ {0,nan,±∞}, the following functions return s, e, m satisfying Equation (4.7).
〈demangled access〉+≡
inline long sign(){

return 1-2*sign_b();
}

inline long exponent(){
const long norm = static_cast<long>(normalized());
return eb - 1075 + norm;

}

inline unsigned long long mantissa(){
const unsigned long long norm =

static_cast<unsigned long long>(normalized());
return ((norm << 52) + fraction());

}

Representation of mpfr Bigfloat Numbers. An mpfr number consists of
the following four fields (excerpt from mpfr.h).
〈mpfr.h〉≡
typedef struct {

mpfr_prec_t _mpfr_prec;
mpfr_sign_t _mpfr_sign;
mpfr_exp_t _mpfr_exp;
mp_limb_t *_mpfr_d;

} __mpfr_struct;

For 0 6= x ∈ R the fields have the following semantics.
〈mpfr.h〉+≡
/*
The represented number is

_sign*(_d[k-1]/B+_d[k-2]/B^2+...+_d[0]/B^k)*2^_exp
where k=ceil(_mp_prec/GMP_NUMB_BITS) and B=2^GMP_NUMB_BITS.

For the msb (most significant bit) normalized representation,
we must have _d[k-1]>=B/2, unless the number is singular.

We must also have the last k*GMP_NUMB_BITS-_prec bits set to zero.
*/

Thus, the mantissa is stored in _mpfr_d, in limbs of GMP_NUMB_BITS bits each.
Limbs at a higher index store more significant bits and the most significant bit
of the most significant limb must be non-zero and has value 0.5. Hence, the
mantissa is interpreted as a number in [0.5,1). Sign, exponent, and precision
are stored in _mpfr_sign, _mpfr_exp, and _mpfr_prec respectively. The cases
x ∈ {0,nan,±∞} correspond to _mpfr_exp being near the smallest number repre-
sentable by mpfr_exp_t. To set a number to zero, we use an mpfr function call and

128 4. NEW AND IMPROVED EXACT FLOATING-POINT ALGORITHMS

we never set a number to nan or ±∞. Exponents arising in expansions are always in
the safe range of mpfr_exp_t.

To set an mpfr number to some 0 6= x ∈ R we first set the precision by calling
mpfr_set_prec(). This allocates the array _mpfr_d with sufficient entries. Then
we write _mpfr_sign, _mpfr_exp, and the entries of _mpfr_d. Thus, we only rely
on our knowledge of the representation of non-zero, real numbers in mpfr.

Expansions with one Summand. For warmup we discuss converting a double
d into an mpfr number. Similar, but more general code is available in mpfr. We
restrict ourselves to the case d ∈ F and always convert d exactly, i.e., omit the
possibility to reduce the precision by rounding. We use one 64 bit integer to access
the bits of d, instead of two 32 bit integers and our code can be inlined. Quite
surprisingly, all these small differences enable our code to be slightly faster than the
corresponding mpfr code, as we observe in Section 4.2.3.

Algorithm 4.18.
Let d ∈ F, then mpfr_set_double(rop,d) computes an mpfr number rop with
rop= d.
〈convert a double to mpfr〉≡
inline void mpfr_set_double(mpfr_t rop,const double d){

assert(ra_isfinite(d));
〈handle zero and set precision〉
〈set sign and exponent〉
〈set mantissa〉

}

First we handle the case d = 0 using an mpfr function call. If d 6= 0 we set the
precision of rop to 53 bits, allocating the mantissa.
〈handle zero and set precision〉≡
if(d == 0.0){

mpfr_set_ui(rop,0,GMP_RNDN);
return;

}
mpfr_set_prec(rop,53);

If d is normalized, the most significant non-zero bit in the mantissa, as returned
by ieee_binary64, has value 252. The leading bit of an mpfr mantissa must be
non-zero and has value 0.5. Therefore, we have to adjust the exponent by 53. In case
d is denormalized, we normalize it by multiplying with 253, to ensure that the most
significant bit is non-zero. In this case, the necessary exponent corrections cancel.
〈set sign and exponent〉≡
ieee_binary64 X;
X.d = d;
rop->_mpfr_sign = X.sign();
if(X.normalized()){

rop->_mpfr_exp = X.exponent()+53;

4.2. EXPANSION TO BIGFLOAT CONVERSION 129

}else{
double p = 9007199254740992.0;
assert(p == ldexp(1.0,53));
X.d *= p;
assert(X.normalized());
rop->_mpfr_exp = X.exponent(); //-53+53;

}

Since d in X is now normalized, the most significant non-zero bit in the mantissa is
the 53rd bit. Hence, in case of 64 bit limbs we have to shift 11 bits to the left. For 32
bit limbs, the mantissa overlaps two limbs and different shifting is needed, cf. m′ in
Figure 4.8.
〈set mantissa〉≡
#if GMP_NUMB_BITS==32

rop->_mpfr_d[1] = (X.mantissa() >> 21);
rop->_mpfr_d[0] = (X.mantissa() << 11);

#else //GMP_NUMB_BITS==64
rop->_mpfr_d[0] = (X.mantissa() << 11);

#endif

Expansions with more Summands. We are now ready to give an algorithm
for the conversion of monotone expansions with two or more summands. The main
loop of our algorithm, handling all but the first summand, is free from branches.

Algorithm 4.19.
Let e = e0, e1, . . . , en−1 be a monotone expansion, then mpfr_set_monotone_expan-
sion(rop,n,e) computes an mpfr number rop with rop=

∑n−1
i=0 ei .

〈convert a monotone expansion to mpfr〉≡
inline void
mpfr_set_monotone_expansion(mpfr_t rop,

const int n ,const double *const e){
〈handle less than two summands〉
〈set up precision, sign and exponent〉
〈clear mantissa and write first summand〉
〈write remaining summands〉

}

First we handle the cases n ∈ {0, 1}. If the expansion has at least two summands, all
summands are non-zero and we can use ieee_binary64 safely.
〈handle less than two summands〉≡
if(n == 0){

mpfr_set_ui(rop,0,GMP_RNDN);
return;

}else if(n == 1){
mpfr_set_double(rop,e[0]);
return;

}

130 4. NEW AND IMPROVED EXACT FLOATING-POINT ALGORITHMS

The sign and exponent of rop are determined by the leading summand en−1 and
are computed as above in Algorithm 4.18. The exponent maxexp of rop can be
interpreted as pointing directly in front of the most significant non-zero bit of e.
The exponent minexp of e0 points somewhere behind the least significant non-zero
bit, so it is sufficient to set the precision to maxexp− minexp. In case en−1 is not
normalized, this value may be smaller than 53 and even as low as 1. Therefore,
we adjust minexp to fulfill the minimal precision requirements of mpfr. Setting
the precision allocates a mantissa with k = d(maxexp− minexp)/GMP_NUMB_BITSe
limbs. We reuse maxexp to align the remaining summands to the mantissa of rop.
Figure 4.8 shows the alignment of the first and later summands on the mantissa of
rop for the case of 32 bit limbs.
〈set up precision, sign and exponent〉≡
ieee_binary64 X;
X.d = e[0];
mp_exp_t minexp = X.exponent();

X.d = e[n-1];
mp_exp_t maxexp = X.exponent()+53;

if(!X.normalized()){
const double d = 9007199254740992.0;
assert(d == ldexp(1.0,53));
X.d *= d;
assert(X.normalized());
maxexp = X.exponent(); //+53-53;
minexp = std::min(minexp,maxexp-MPFR_PREC_MIN);

}

const mpfr_prec_t prec = maxexp-minexp;
assert(prec >= MPFR_PREC_MIN);
mpfr_set_prec(rop,prec);
assert(rop->_mpfr_prec == prec);

const int k = (prec+GMP_NUMB_BITS-1)/GMP_NUMB_BITS;
assert((k-1)*GMP_NUMB_BITS < prec && prec <= k*GMP_NUMB_BITS);

rop->_mpfr_sign = X.sign();
rop->_mpfr_exp = maxexp;
mp_limb_t *const mant = rop->_mpfr_d;

Writing the mantissa of en−1 is again done as in Algorithm 4.18. The lower limbs of
rop may be overlapped by multiple mantissae, however in all but one mantissa the
overlapping bits are zero, cf. again Figure 4.4. We zero the lower limbs of rop so we
can write the remaining summands by bitwise or.

4.2. EXPANSION TO BIGFLOAT CONVERSION 131

m:

rop:

maxexp exp

32k

p

i limbsj bits

m>> (64− j) m>> (32− j) m<< j

m′:

m′ >> 21 m′ << 11

Figure 4.8. Aligning the mantissa of the leading summand m′ and any
other mantissa m to a 32 bit limb arbitrary precision mantissa.

〈clear mantissa and write first summand〉≡
#if GMP_NUMB_BITS==32

mant[k-1] = (X.mantissa() >> 21);
mant[k-2] = (X.mantissa() << 11);
for(int i=k-3;i>=0;--i) mant[i] = 0;

#else //GMP_NUMB_BITS==64
mant[k-1] = (X.mantissa() << 11);
for(int i=k-2;i>=0;--i) mant[i] = 0;

#endif

We iterate over the remaining summands and copy each mantissa. This loop is
completely free of branches, including computations done by ieee_binary64.
〈write remaining summands〉≡

int i = n-2;
while(i>=0){

const double wrt = e[i--];
〈write summand〉

}

For each summand we compute the position p of the last bit of its mantissa m in the
mantissa of rop, cf. Figure 4.8. Then we compute the index i of the limb this bit
belongs to and the number of bits j it has to be shifted to the left.
〈write summand〉≡
{

X.d = wrt;
mpfr_exp_t exp = X.exponent();
unsigned long long m = X.mantissa();

const int p = GMP_NUMB_BITS*k - maxexp + exp;
assert(p >= 0);

const int i = p/GMP_NUMB_BITS;
const int j = p%GMP_NUMB_BITS;
assert(0 <= i && i < k);

132 4. NEW AND IMPROVED EXACT FLOATING-POINT ALGORITHMS

#if GMP_NUMB_BITS==32
〈write mantissa to 32 bit limbs〉

#else //GMP_NUMB_BITS==64
〈write mantissa to 64 bit limbs〉

#endif
}

For 32 bit limbs, the mantissa m may overlap up to three limbs. While index i always
points to an existing limb, the limbs at position i + 1 and i + 2 may not exist, i.e.,
we are out of array bounds. In this case, however, the part m1 of m overlapping this
non-existing limb is zero. Instead of branching whether we are outside bounds, we
use m1 to recalculate the index. If m1 = 0 then i1 = 0 and otherwise i1 = i + 1. Since
we write the mantissa using bitwise or, no harm is done in the first case and the
mantissa is written correctly in the other case.
〈write mantissa to 32 bit limbs〉≡
const unsigned long long m1 = (m >> (32 - j));
const unsigned long long m2 = (m1 >> 32);

const int i1 = (i+1) * static_cast<bool>(m1);
const int i2 = (i+2) * static_cast<bool>(m2);

assert(i+1 < k || m1 == 0);
assert(i+2 < k || m2 == 0);

mant[i] |= (m << j);
mant[i1] |= m1;
mant[i2] |= m2;

For 64 bit limbs, the mantissa may overlap up to two limbs. We use the same trick
as above to avoid branching when out of array bounds. But there is another issue.
Shifting m by 64 bits will quite unintuitively leave m unchanged, instead of resulting
in m= 0. Since j may be zero, we perform the right shift in two steps.
〈write mantissa to 64 bit limbs〉≡
const int j1 = (64 - j) >> 1;
const int j2 = (64 - j) - j1;

const unsigned long long m1 = ((m >> j1) >> j2);
const int i1 = static_cast<bool>(m1)*(i+1);

assert(i+1 < k || m1 == 0);

mant[i] |= (m << j);
mant[i1] |= m1;

We implement code similar to the one presented here for the conversion of monotone
expansions to leda::bigfloat numbers [70, 69]. The internal storage format
and normalization conditions of leda::bigfloat are quite different from those of

4.2. EXPANSION TO BIGFLOAT CONVERSION 133

e7: +++

e6: +++

e5: −−−

e4: −−−

e3: −−−

e2: +++

e1: −−−

+++

−−−

∑

ei : +++

Figure 4.9. Conversion of an expansion into a bigfloat number by splitting.

mpfr. The mantissa is however stored in essentially the same fashion as an array
of limbs and it is reasonable to believe that other bigfloat number types follow that
convention as well [110]. Once exponent and sign are set and the first mantissa is
placed, the remaining summands can be handled in the way described above.

4.2.3. Comparison to Straightforward Conversion. Using the algorithms from
above, we can convert a general expansion into a bigfloat number by first transform-
ing it into an equivalent maximally non-overlapping monotone expansion and then
joining the mantissae of the new summands into a bigfloat number. This option is
illustrated in Figure 4.5. Alternatively, we may split the expansion into two monotone
expansions, convert them separately and then perform a single exact addition of two
bigfloat numbers. This option is illustrated in Figure 4.9. While overflow may occur
in the first conversion strategy for very large expansions, the second option is free
from overflow on principle, since there are no floating-point operations involved. It
may hence serve as a backup strategy.

For both mpfr and leda we tried several direct conversion approaches, using
functionality provided by the library. Among the things we tried are summing
by increasing or decreasing magnitude, increasing the output precision with each
summand or setting sufficient output precision before starting to sum up, as well as
some library specific approaches. mpfr has a function mpfr_sum() for computing
the sum of several mpfr numbers in one step, while leda supports exact addition, i.e.,
may internally compute and set the precision sufficient for an addition to be exact.
For each library we selected the two fastest direct approach for comparison.

As input data, we use randomly generated expansions, which we create by
evaluating a polynomial expression using Shewchuk’s arithmetic operations. This
way, test expansions are more likely to have a structure that actually occurs in
applications. As expression D we compute a 4× 4 determinant of 4× 4 determinants
of randomly generated numbers. D has a polynomial degree of d = 16. Using the
rand48 family of random number generators, we select a floating-point number
f ∈ [0, 1], a sign s ∈ {−1,+1} and an exponent e ∈ {−17, . . . , 17} and use s× f × 2e

134 4. NEW AND IMPROVED EXACT FLOATING-POINT ALGORITHMS

1

4

16

64

sp
ee

du
p

Monotonize

split
direct 2
direct 1

0 5 10 15

1

4

16

64

summands

sp
ee

du
p

0 20 40 60
summands

compressed uncompressed

64
bit

lim
bs

32
bit

lim
bs

Figure 4.10. Converting expansions to mpfr. Figures show the speedup for
each conversion method, relative to direct 2 , on a logarithmic scale.

as input number. All our input numbers can be uniformly scaled to integers with
p = 53+35 bit precision. Hence, D can be represented with approximately dp ≈ 1400
bits. We observed however that D was in fact representable with approximately 1000
bits only on average.

The evaluation of D gives us strongly non-overlapping expansions with about 220
summands on average. If we additionally compress the sums, we get non-adjacent
expansions with about 20 summands on average. In a compressed expansion, each
summand carries about 52 bits of information. Therefore, before compressing, each
summand carries less than 5 bits of information on average. Thus, uncompressed
and compressed expansions are input sets with quite different characteristics. This is
particularly relevant, since Monotonize compresses as a side effect and hence may
reduce the number of summands significantly before the actual conversion step. We
consider expansions with n= 1,2, . . . , 64 summands in the uncompressed case and
n = 1, 2, . . . , 20 in the compressed case. To generate expansion with fewer summands
than originally created, we simply ignore leading summands.

We run experiments with a limb size of both 64 bit and 32 bit on the descartes
platform. For 32 bit limbs we use a slightly different setup. Code is compiled with

4.2. EXPANSION TO BIGFLOAT CONVERSION 135

1

4

16

64

sp
ee

du
p

Monotonize

split
direct 1
direct 2

0 5 10 15

1

4

16

64

summands

sp
ee

du
p

0 20 40 60
summands

compressed uncompressed
64

bit
lim

bs
32

bit
lim

bs

Figure 4.11. Converting expansions to leda::bigfloat. Figures show
the speedup for each conversion method, relative to direct 1 , on a
logarithmic scale.

the -m32 flag of g++, since neither mpfr nor leda support 32 bit limbs in a 64
bit environment and we use libraries gmp 5.0.2, mpfr 3.0.1, and leda 6.3. To get
measurable running times, we generate 2000 expansions as described above, and
measure the total time for converting all expansions a 1000 times. The results are
shown in Figure 4.10 and Figure 4.11. The graphs do not show running time but the
speedup for each method with respect to the faster direct approach. This improves
the display of differences for the important range with very few summands, where
the actual running times are very small.

Both, conversion by Monotonize and conversion by splitting clearly outper-
form the direct approaches, and conversion by Monotonize is uniformly the fastest
method. The speedup is about the same for 32 and 64 bit limbs. As expected, Mono-
tonize achieves greater speedup for uncompressed than compressed expansions. For
mpfr, there is a small local minimum in the speedup achieved by Monotonize for
uncompressed expansions, near the mark of 20 summands. This roughly corresponds
to our observation that summands carry less than 5 bits of information. Near this
range the number of output summands of Monotonize jumps from one to two. For

136 4. NEW AND IMPROVED EXACT FLOATING-POINT ALGORITHMS

mpfr, our new approaches are strictly faster, even in the case of one summand only.
Both direct approaches simply call mpfr_set_d(), while our new approaches use
Algorithm 4.18. Hence we use Algorithm 4.18 in Mpfr_approximation_policy.

Our new conversion methods are so much faster than computing the sum straight-
forwardly, that they may help to speed up the exact computation of arbitrary sums,
not only expansions, too. As an intermediate step, one has to convert the sum into an
expansion first. This may be done using the divide and conquer distillation procedure
by Shewchuk [104], described in Section 2.2.3, or an extension of the AccSum
algorithm by Rump et al. [95].

CHAPTER 5

Exact Floating-Point Algorithms in RealAlgebraic

In this chapter we discuss, implement and evaluate strategies to integrate error-
free transformations into an expression dag based number type on the example of
RealAlgebraic. We have seen in Section 4.1.3, that exact floating-point algorithms
based on error-free transformations can lead to very fast and exact implementations of
arithmetic. But error-free transformations also have quite a few limitations. Basically,
only ring operations can be implemented exactly and even these may fail in case
overflow or underflow occurs.

Utilizing error-free transformations directly is far from simple or straightforward.
To allow a non-expert to benefit from their efficiency, it is necessary to wrap them
into a more user-friendly solution, for example a number type. The main goal
of expression dag based number types is to integrate fast evaluation strategies,
which may occasionally fail to compute a sign, with more expensive but also more
conservative strategies, into a user-friendly solution that eventually computes all signs
correctly. Error-free transformations, with their high speed but also their apparent
limitations fit well into this scheme.

In the first part of this chapter, we discuss our LocalPolicy model Local_dou-
ble_sum, which places exact arithmetic based on error-free transformations at
the very first evaluation stage. This way, dag creation is avoided and deferred to
the point where error-free transformations can not provide an exact result for an
operation. Since there are many ways to implement exact arithmetic based on error-
free transformations, Local_double_sum is again configurable by several policies.
We present our concepts and models, and the rationale behind them.

In the second part, we compare different variants of Local_double_sum by
means of experiments, with the goal of finding an optimal Local_double_sum
variant. Our findings are, that in general, the choice of implementation parameters
depends on the geometric problem solved. We therefore give guidelines, how one
may choose these parameters a priori without resorting to experiments and give a
default variant, which should give good performance in most circumstances.

We then compare the default Local_double_sum variant to other RealAlgebraic
variants and other expression dag based number type. It turns out that placing
exact arithmetic based on error-free transformations at the very first evaluation
stage, improves performance for geometric problems and input data with many near
degenerate configurations but is less advisable for non-degenerate data. Therefore

137

138 5. EXACT FLOATING-POINT ALGORITHMS IN REALALGEBRAIC

we close with a short discussion how error-free transformations may be integrated
into the later stages of expression dag evaluation.

5.1. Deferring Dag Construction

In this section we catch up on the discussion of LocalPolicy model Local_dou-
ble_sum, which we omitted previously in Chapter 3. The goal behind Local_dou-
ble_sum is to let RealAlgebraic benefit from the speed of error-free transformations
and exact floating-point algorithms. To this end, Local_double_sum represents
a number as the sum of a sequence of floating-point numbers and provides basic
arithmetic operations on this representation, as required by the LocalPolicy concept.
Just like RealAlgebraic itself, Local_double_sum is configurable by means of poli-
cies, where each policy reflects a single implementation alternative. The design and
implementation are based on the following considerations.

When we first started work on Local_double_sum, our RealAlgebraic imple-
mentation was much slower that exact predicate implementations based on error-free
transformations for all types of input data. Therefore we decided to bring error-free
transformations to the very first evaluation stage, i.e., on the LocalPolicy level and
before dag creation. One source of overhead in the first evaluation stages is dynamic
memory management for dag node creation. But if the floating-point filter can de-
termine the sign, dag creation was pointless. By deferring dag creation we postpone
and potentially eliminate this source of overhead. To avoid memory management
within Local_double_sum, too, we limit the number of summands to some small
constant. The decision to represent a number as a sum of floating-point numbers
does not permit operations such as division or radicals. For the remaining operations
addition, subtraction, and multiplication it is far from clear how to implement them
optimally. Finally, a framework like RealAlgebraic promises its user nearly uncondi-
tional correctness of computations, i.e., the only limit should be memory or time
constraints. Inexactness arising from overflow or underflow are not acceptable and
therefore must be taken care of without the user noticing. With this in mind, we
identify four orthogonal design decisions which are reflected in four concepts that
govern the behavior of our implementation.
DoubleSumOperations: Models for this concept provide a set of raw operations on

sums of floating-point numbers, namely ring operations, sign computation and
compression. A compression transforms a sum of floating-point numbers into an
equivalent sum with potentially fewer summands.

DoubleSumMaxLength: Models provide a limit on the number of summands al-
lowed.

DoubleSumCompression: Models decide when and how to apply compression to
reduce the number of summands.

DoubleSumProtection: Models provide a systematic way to handle overflow or
underflow.

5.1. DEFERRING DAG CONSTRUCTION 139

ExpressionDagPolicy DataMediator

Basic_expression_dags Local_double_sum_to_expression_dag_node_mediator

Expansion_to_expression_dag_node_mediator

Local_double_sum_to_expression_dag_tree_mediator

LocalPolicy Local_double_sum_to_expression_dag_mediator_statistics

Local_double_sum

Double_sum_storage

DoubleSumOperations

Double_sum_plain_operations

DoubleSumProtection Double_sum_expansion_zeroelim_operations

Double_sum_no_protection Double_sum_expansion_zeroelim_selfprotect_operations

Double_sum_warning_protection

Double_sum_restoring_protection

DoubleSumCompression

Double_sum_no_compression

DoubleSumMaxLength Double_sum_lazy_compression

Int_to_type<N> Double_sum_lazy_aggressive_compression

Double_sum_permanent_compressionclosely coupled, host policy

Figure 5.1. Concepts and models in Local_double_sum.

These four policies are complemented by the DataMediator policy of RealAlgebraic.
Contrary to the other LocalPolicy models, for Local_double_sum there are several
interesting ways to convert a sum of floating-point numbers into an expression dag.
Here we benefit from our earlier decision to separate conversion to an expression
dag from the LocalPolicy concept. An overview of the five relevant concepts and their
models is given in Figure 5.1, which complements Figure 3.1.

5.1.1. Basic Arithmetic Operations. Our decision to implement a LocalPolicy
based on error-free transformations, as well as the decision of how to implement
arithmetic operations is based on the experiments from Section 4.1.3. We have the
following three models for DoubleSumOperations.
Double_sum_plain_operations (plaiO): This model is build around the Signk

algorithm, which leads to the fastest predicates in Section 4.1.3. Arithmetic
operations are implemented as plainly as possible. Addition and subtraction
simply copy summands, the multiplication performs TwoProduct for all pairs of
summands. To compress a sum, we perform VecSum, but additionally eliminate
zero summands on the fly. Sign computation is performed using Signk.

In Figure 4.3, sign computation based on AccSum shows a performance
similar to Signk, however Signk is better suited in our case for practical reasons.

140 5. EXACT FLOATING-POINT ALGORITHMS IN REALALGEBRAIC

Signk improves the representation of a sum with each VecSum step and never
increases the number of summands. We can thus let it work on the original
sum. AccSum on the other hand produces an additional summand in the extrac-
tion step, which complicates its use in a framework with a limited number of
summands.

Double_sum_expansion_zeroelim_operations (expaO): This model is based
on arithmetic with floating-point expansions as described by Shewchuk [104,
105]. We maintain zero-free, strongly non-overlapping expansions. The basic
algorithms for arithmetic on this type of expansions are FastExpansionSum, the
corresponding subtraction routine, and ScaleExpansion. We use an implementa-
tion of these algorithms that additionally eliminates zero summands on the fly.
We implement missing functionality, i.e., operations involving expansions with
only one summand and a general multiplication routine following suggestions by
Shewchuk [104, section 2.8]. For compression, we use Compress. The sign of a
zero-free expansion is always the sign of the most significant summand and can
simply be read of.

Double_sum_expansion_zeroelim_selfprotect_operations (protO):
This model derives from expaO and performs all operations in exactly the same
manner, but is free from overflow and underflow. We discuss the way this is
achieved in Section 5.1.3 below.

Note that the models employ two opposing strategies. With plain sums, arithmetic
operations are lazy, at the cost of unstructured sums and potentially many summands.
Compression and sign computation do all the work. With expansions, a normal form
is maintained by arithmetic operations. This makes them more expensive, but also
reduces the number of summands. The sign of an expansion can be determined at no
extra cost!

5.1.2. Number of Summands and Compression. Arithmetic operations on
sums of floating-point numbers rapidly increase the number of summands. For
polynomial expressions c over floating-point numbers, define #s(c) by #s(f) = 1 for
f ∈ F̃, and

#s(a± b) = #s(a) +#s(b), #s(a× b) = 2#s(a)#s(b).

Then #s(c) is an upper bound on the number of floating-point summands required to
represent c. Note that #s(c) grows exponentially in the degree of the expression c.
The two individual rules are sharp in general. To see this in case of the addition, let

e =
�

ε−2i
m
�n

i=1, f =
�

ε−2n−2 j
m

�m
j=1.

Then the sequence e1, e2, . . ., en, f1, f2, . . ., fm is a non-adjacent and maximally
non-overlapping expansion, representing e+ f and no sequence representing e+ f
with fewer summands exists. To show the claim for the multiplication, we have to
choose the ei and f j such that the product ei × f j requires two summands for storage.

5.1. DEFERRING DAG CONSTRUCTION 141

Furthermore, we have to space the ei and f j sufficiently, such that the mn individual
products do not interfere with each other. This is for example achieved by setting

e =
�

ε−3i
m (1+ 2εm)

�n
i=1, f =

�

ε−4n j
m (1+ 2εm)

�m
j=1.

The arithmetic operations implemented in plaiO attain the given bounds. We know
on the other hand, that polynomial expressions of degree d over b bit integers can
be evaluated exactly with d(b+O(1)) bit precision [56]. This translates to roughly
(d × b)/p summands, which is linear in the degree d. The arithmetic operations of
expaO may show better behavior than predicted by #s in many cases, but we already
observed in Section 4.2.3, that without compression, expansions often carry only a
few bits of information per summand.

For these reasons, it is likely that often a more compact representation of a
number with fewer summands can be computed. Fewer summands make further
operations on a number cheaper and, since we limit the maximum number of sum-
mands, enable us to defer dag creation for larger expressions. Since it is unclear when
to attempt compression in an optimal way, we implement the following schemes.
Double_sum_no_compression (noC): No compression is triggered.
Double_sum_lazy_compression (lazyC): Triggers a single compression step

on the operands to an arithmetic operation, if the number of summands of the
result, as predicted by #s, is larger than the maximum number of summands.

Double_sum_lazy_aggressive_compression (laagC): Initially behaves like
lazyC, but triggers additional compression steps as long as the number of
summands was decreased in the previous step.

Double_sum_permanent_compression (permC): Triggers a single compression
step on each result of an arithmetic operation.

From top to bottom, these policies provide an increasing amount of additional
compression. Due to the different approaches in our DoubleSumOperations models,
we can expect, that plaiO will benefit more from additional compression than
expaO.

5.1.3. Handling Floating-Point Exceptions. Error-free transformations are, de-
spite their name, not completely free from errors or inexactness. Any such error
or inexactness is however linked to a floating-point exception. Since we consider
polynomial expressions only, and make sure that input numbers are always elements
from F, underflow and overflow are the only relevant exceptions to us.

The IEEE 754 standard requires the availability of a set of flags that are raised
when an exception occurs and may be checked and reset by the user. This provides
us with a way to be notified of floating-point exceptions after the fact. Based on
this mechanism we provide the following three policies for handling floating-point
exceptions. For these to be effective, a basic condition is that operations terminate in
all cases, especially if floating-point exceptions occur. Hence our rigorous discussion
that Signk always terminates.

142 5. EXACT FLOATING-POINT ALGORITHMS IN REALALGEBRAIC

Double_sum_restoring_protection (restP): This model stores a backup of
any sum about to be overwritten by an operation. After the operation, it checks
the exception flags. If an exceptions occurred, it resets the exception flags and
restores the sum. Eventually, the operation will be forwarded to the expression
dag. In this way, floating-point exceptions do not affect the correctness of a
computation and are invisible to the user, as intended.

Double_sum_warning_protection (warnP): This model resets the exception
flags prior to an operation and checks them afterwards. If an exception occurs,
an error handler is called. Unlike the previous model, this one is free from false
positives, but requires user interaction to handle the situation.

Double_sum_no_protection (noP): This model does not protect from floating-
point exceptions in any way. It allows us to determine the cost of the former
alternatives.

Since accessing exception flags and making backup copies can be quite expensive, we
do not employ the protection mechanisms indiscriminately. For example, addition
and subtraction in plaiO do not perform floating-point operations and are therefore
free from floating-point exceptions. The same holds for the sign computation in
expaO. Therefore, all operations in DoubleSumOperations are accompanied with a tag
indicating whether floating-point exceptions may actually occur, allowing to enable
or disable protection from floating-point exceptions at compile time.

No overflow in Compress. Another operation that is free from floating-point
exceptions in our case is the Compress algorithm in expaO. Compress uses only
floating-point additions and subtractions, it is thus unaffected by underflow. Less
obviously, it is free from overflow when run on a strongly non-overlapping expansion.
Intuitively, compression does not change the value of the sum and due to the non-
overlapping property all bits and especially the largest bit are already present in the
input expansion. Overflow can only occur when Compress generates larger non-zero
bits than present in the input expansion.

Lemma 5.1. Assume floating-point arithmetic over F, with rounding to nearest and
tie-breaking to even. Let e = e1, e2, . . . , em be a strongly non-overlapping expansion.
Then, no overflow occurs in the call Compress(e).

This property does not hold for non-overlapping expansions. If we consider
the sequence of bits of a strongly non-overlapping expansion, there must be a zero
bit at least every p + 1 bits [104]. Running Compress with the largest strongly
non-overlapping expansion over F, no overflow occurs. But if the number is made just
a bit larger, i.e., one of the zero bits is set to non-zero and all less significant bits are
set to zero, overflow does occur. See Figure 5.2 for an illustration. Our proof makes
explicit use of tie-breaking to even. Intuitively, the zero bit every p+ 1 bits catches
any carry coming from less significant summands, thus avoiding a carry on the largest
summand. The tie-breaking to even rule places this zero bit conveniently at the
transition between two summands, which we exploit in our proof. We conjecture that
a proof is possible without appealing to the tie breaking rule. But, since tie breaking

5.1. DEFERRING DAG CONSTRUCTION 143

2τ(1− εm): +++
1
2 εm 2τ(1− εm): +++

� 1
2 εm

�2 2τ(1− εm): +++

2τ(1− εm): +++
1
2 εm 2τ(1− εm): +++

1
2 ε

2
m τ: +++

Figure 5.2. In Compress, no overflow occurs on the upper expansion, but
on the lower one.

to even is needed for strongly non-overlapping expansions and FastExpansionSum
anyway, this is not relevant in our context.

Proof. To prove Lemma 5.1, we consider a recursive formulation of Compress
that allows an inductive argument. The base case occurs, when

∑m
i=1 ei is a floating-

point number. Otherwise, Compress sums em, em−1, . . . iteratively until the result is
not a floating-point number for the first time. Let this occur when adding e j , and let
Q =

∑m
i= j+1 ei , then we have gm and q with

gm =Q⊕ e j = fl

m
∑

i= j

ei

 , gm + q =
m
∑

i= j

ei .

Compress keeps gm as intermediate summand and recursively compresses the se-
quence e1, e2, . . . , e j−1, q, obtaining as output the sequence f1, f2, . . . , fl−2, fl−1. Then
it computes fl and q′ with

fl = gm ⊕ fl−1, fl + q′ = gm + fl−1.

Compress returns one of the expansions f1, f2, . . . , fl−2, q′, fl , or f1, f2, . . . , fl−2, fl ,
depending on whether q′ is non-zero. The computation of both gm and fl is at risk
from overflow. We show by induction on the recursive calls, that msb(fl)≤msb(em)
and infer as a side effect that no overflow occurs. We can assume that no input
summand is zero, since a zero summand simply results in an iteration of the first loop
not changing any values.

The sequence |e j |, |e j+1|, . . . , |em| is a strongly non-overlapping expansion, too.
Hence, the binary representation of E =

∑m
i= j |ei | contains a zero bit at least every

p+ 1 bits. Together with msb(E) =msb(em) this yields E <msb(em)(2− εm). In total
we have

�

�

�

�

�

m
∑

i= j

ei

�

�

�

�

�

<msb(em)(2− εm).

The right hand side msb(em)(2− εm) is the smallest number which might be rounded
to 2 msb(em) (or +∞, if 2 msb(em) 6∈ F). Therefore, the sum is rounded towards zero,
no overflow occurs in the computation of gm, and msb(gm)≤msb(em). Furthermore,
gm and q are non-adjacent by Lemma 2.13 because tie-breaking to even is in effect.

144 5. EXACT FLOATING-POINT ALGORITHMS IN REALALGEBRAIC

Q: +++

e j+1: −−−

e j : +++

e j−1: +++

e j−2: −−−

Figure 5.3. A critical case in proof of Lemma 5.1.

This discussion also settles the base case of the induction, when
∑m

i=1 ei itself is a
floating-point number and gm is returned as compression result.

Now we turn to the induction step. We claim the sequence e1, e2, . . . , e j−1, q is a
strongly non-overlapping expansion. If e j is not adjacent to e j−1, then q is neither,
because q ∈ lsb(e j)Z by Equation (2.9). The claim holds for this case. If e j is adjacent
to e j−1, then both are a power of two. Now consider the computation of Q⊕ e j . The
situation is visualized in Figure 5.3. First, Q is not adjacent to e j , because e j and
e j+1 are non-adjacent and Q ∈ lsb(e j+1)Z. We have msb(Q+ e j)≥ ε−1

m e j , because
otherwise

msb(Q+ e j) ≤
1
2
ε−1
m e j =

1
2
ε−1
m lsb(Q+ e j)

and Q+ e j ∈ F. With tie-breaking to even, we have gm =Q and q = e j . This shows,
that e1, e2, . . . , e j−1, q is a strongly non-overlapping expansion in this case, too.

By induction, the recursive application of Compress gives us a non-adjacent
expansion f1, f2, . . . , fl−1 with msb(fl−1)≤msb(q). We compute fl = gm ⊕ fl−1. Be-
cause gm and q are non-adjacent, gm and fl−1 are non-adjacent, too. But then, by the
same reasoning applied to the computation of gm above,

|gm + fl−1|<msb(gm)(2− εm),

no overflow occurs in the computation of fl and msb(fl)≤msb(gm)≤msb(em).

With this result, we need no protection from floating-point exceptions for the
compression step in expaO, or protO.

Avoiding Floating-Point Exceptions. A common strategy in practice is to
avoid overflow and underflow in the first place, by detecting that input consists of
very small or very large numbers and take appropriate action, e.g., rescale input
numbers to a safe range or at least warn the user.

We implement this approach in Double_sum_expansion_zeroelim_self-
protect_operations, which derives from expaO and provides exactly the same
set of operations, but prior to any operation checks the size of input numbers and
computes bounds on the output. If the operation is at risk from overflow or underflow,
it is not performed but eventually forwarded to the expression dag. No operation in
protO requires protection from a DoubleSumProtection model.

5.1. DEFERRING DAG CONSTRUCTION 145

We already discussed, that sign computation and compression are free from
floating-point exception, which leaves us with the ring operations addition, subtrac-
tion, and multiplication. Bounding the magnitude of output summands can be done
efficiently for expansions because summands are ordered by magnitude.

Let e = e1, e2, . . . , em be a zero-free, strongly non-overlapping expansion with
E =

∑m
i=1 ei . We want to bound E from above and below in terms of the leading

summand em. Note that em may consist of a single non-zero bit only. We have

(5.1) |E| ≤
m
∑

i=1

|ei |< 2msb(em)≤ 2|em|,

since |e1|, |e2|, . . . , |em| is non-overlapping. Finding a lower bound is slightly more
involved. We distinguish two cases. First, let |em| and |em−1| be non-adjacent.
Applying Equation (5.1) to the expansion e1, e2, . . . , em−1, we have

(5.2) |E| ≥ |em| −

�

�

�

�

�

m−1
∑

i=1

ei

�

�

�

�

�

> |em| − 2 msb(em−1)≥
1
2
|em|.

The other case is, that |em| and |em−1| are adjacent. Then both are a power of two,
and |em−1| and |em−2| are non-adjacent. Using Equation (5.2) we have

|E| ≥ |em| − |em−1| −

�

�

�

�

�

m−2
∑

i=1

ei

�

�

�

�

�

= |em−1| −

�

�

�

�

�

m−2
∑

i=1

ei

�

�

�

�

�

≥ 1
2
|em−1|=

1
4
|em|.

Combining these results, we have
1
4
|em| ≤ |E| ≤ 2|em|

in any case. Let f = f1, f2, . . . , fn, be another zero-free, strongly non-overlapping
expansion with F =

∑n
j=1 f j . We discuss addition and subtraction first, which are

free from underflow on principle. Let H = E + F . For any summand h in a strongly
non-overlapping expansion representing H, we have

|h| ≤ 4|H| ≤ 4
�

|E|+ |F |
�

≤ 8
�

|em|+ | fn|
�

≤ 8(1+ εm)
�

|em| ⊕ | fn|
�

Therefore, if

(5.3)
�

|em| ⊕ | fn|
�

≤ 1
8
τ,

we have |h| ≤ 2τ(1− εm) and h ∈ F. FastExpansionSum does not generate interme-
diate summands larger than output summands and is therefore safe from overflow
if Equation (5.3) holds. Computing the difference of two expansions is safe from
overflow under the same condition.

Multiplication may suffer from both overflow or underflow. We already gave
criteria for TwoProduct to be safe from overflow and underflow in Section 2.2.2 and
the reasoning for the general multiplication is not much different. Computing the

146 5. EXACT FLOATING-POINT ALGORITHMS IN REALALGEBRAIC

product of e and f using any combination of ScaleExpansion and FastExpansionSum
is free from underflow, if

(5.4) e1 f1 = 0 or |e1|| f1|>
1
2
ε−2
m η,

since we never leave the ring σZ, where σ is the product of the smallest non-zero
bits in e and f . Remember that e1 = 0 implies m = 1 and E = 0, i.e., there is no need
to check other summands in this case. Now let H = E × F and let h be a summand in
a strongly non-overlapping expansion representing H. Then

|h| ≤ 16(1+ εm)
�

|em| ⊗ | fn|
�

,

and h ∈ F, if

(5.5)
�

|em| ⊗ | fn|
�

≤ 1
16
τ.

The multiplication routine performs ScaleExpansion on f for each summand of e and
then adds the intermediate expansions using FastExpansionSum. It does not create
intermediate summands larger than output summands, and therefore the bounds
above apply to all intermediate summands as well. If TwoProduct is based on a
fused-multiply-add instruction, then no overflow occurs in a multiplication of two
expansions if Equation (5.5) holds. If however TwoProduct is based on split, the
splitting step may generate larger numbers. In this case, multiplication of expansions
is safe from overflow, if

(5.6) max{|em|, 2dp/2e + 1} ⊗max{| fn|, 2dp/2e + 1} ≤ 1
16
τ.

The criteria (5.3), (5.4), (5.5), and (5.6) are used by protO to ensure operations are
free from floating-point exceptions. We did not implement a similar approach for
plaiO, since bounding the output summands would first require to locate the most
significant and least significant input summand, which seemed too time consuming
in an unstructured sum.

5.1.4. Conversion to Expression Dags. Arithmetic operations in Local_dou-
ble_sum may fail for one of three reasons. An operation which is not addition,
subtraction, multiplication, or sign computation is requested, the number of sum-
mands for the result of an operation, as predicted by #s, exceeds the maximum
number of summands, or a floating point exception is impeding or has already oc-
curred. In all of these cases, the input to the failed operation has to be transformed
into an expression dag representation. We provide the following DataMediator models
which may be used with Local_double_sum.
Local_double_sum_to_expression_dag_node_mediator (nodeM): To con-

vert a sum into an expression dag, this model computes the value of the sum
exactly using bigfloat numbers and operations from the ApproximationPolicy.
Then it creates a single dag node storing the result.

Expansion_to_expression_dag_node_mediator (expaM): This model con-
verts the sum into a single dag node, too. In combination with plaiO, it behaves
exactly like nodeM, but for expansions the improved conversion method based

5.1. DEFERRING DAG CONSTRUCTION 147

Real_algebraic

Expansion_to_expression_dag_node_mediator

Basic_expression_dags

Leda_interval_filter_policy

Mpfr_approximation

Bfmss2_separation_bound

Local_double_sum

Double_sum_lazy_compression

Double_sum_no_compression

Double_sum_no_protection

Double_sum_expansion_zeroelim_selfprotect_operations

Double_sum_expansion_zeroelim_operations

Double_sum_storage

Figure 5.4. Collaboration of classes in a RealAlgebraic variant with Local_-
double_sum as LocalPolicy.

on Monotonize from Section 4.2 is used. There is another small improvement.
Let E be some number and em and em−1 the two leading summands in the
unique monotone, maximally non-overlapping expansion representing E. Then
|E− em| ≤ succ(|em−1|) and em and succ(|em−1|) are nearly optimal midpoint and
radius of a floating-point interval containing E. Computing succ(|em−1|) is free
from overflow, since |em−1|< |em|. We initialize the floating-point interval in the
dag node directly from these numbers, instead of computing it from the exact
bigfloat representation.

Local_double_sum_to_expression_dag_tree_mediator (treeM): Directly
converts the sum into an expression tree, more precisely a binary tree of minimal
height, whose leaves store the summands and whose intermediate nodes are
addition nodes. With this DataMediator, Local_double_sum may be seen as an
expression rewriting engine, rewriting polynomial expressions over floating-point
numbers into equivalent sums of floating-point numbers.

Local_double_sum_to_expression_dag_mediator_statistics (statM):
This model collects a histogram for the number of summands in sums converted
to an expression dag representation. It must be instantiated with another DataMe-
diator model, which performs the actual conversion. These statistics allow us to
study the effect different parameters have on the ability of Local_double_sum
to defer dag creation.

148 5. EXACT FLOATING-POINT ALGORITHMS IN REALALGEBRAIC

Another conversion alternative would be to introduce addition nodes with arity
greater than two, like they are available in CORE::Expr 2, to RealAlgebraic. That
would allow a conversion strategy which is similar to treeM, but saves the creation
of all but one intermediate node.

5.1.5. Collaboration of Policies. We can obtain a Local_double_sum variant
by collecting a set of models for the policies and pass them to the host class Lo-
cal_double_sum. The code below creates a RealAlgebraic variant by replacing
the LocalPolicy in Default_real_algebraic with a Local_double_sum variant,
but otherwise keeps the default policies. The number type Default_dsumL_real_
algebraic created here, is the one labeled dsumL in the experiments in Section 3.4
and the baseline variant for the experiments in the second part of this chapter.

template <class Derived>
struct dsumL_default_policies_base :
public Default_real_algebraic_policies_base<Derived>{
typedef Int_to_type<8> DoubleSumMaxLength;
typedef Double_sum_expansion_zeroelim_selfprotect_operations<Derived>

DoubleSumOperations;
typedef Double_sum_no_protection<Derived> DoubleSumProtection;
typedef Double_sum_lazy_compression<Derived> DoubleSumCompression;
typedef Local_double_sum<Derived> LocalPolicy;
typedef Expansion_to_expression_dag_mediator<Derived>

DataMediator;
};

struct dsumL_default_policies :
public dsumL_default_policies_base<dsumL_default_policies> {};

typedef Real_algebraic<dsumL_default_policies>
Default_dsumL_real_algebraic;

Local_double_sum gains access to the functionality of its policies by means
of inheritance. We use a linear inheritance scheme, with policies ordered by de-
pendencies. DoubleSumCompression models for example may modify sums through
compression and therefore need access to a DoubleSumOperations model as well as
a DoubleSumProtection model. The complete collaboration diagram for Default_
dsumL_real_algebraic is given in Figure 5.4.

Figure 5.5 shows the implementation of multiplication in Local_double_sum
and illustrates how policies interact. Note that the implementation must conform to
the LocalPolicy concept discussed in Section 3.1. The base class Double_sum_stor-
age provides an array to store summands and a variable length for the number of
summands. A length of zero means that no sum is stored or more generally that no
local representation is available. Conforming to the LocalPolicy concept, we use the
length of the result as return value.

5.1. DEFERRING DAG CONSTRUCTION 149

bool local_multiplication(const Local_double_sum& a,
const Local_double_sum& b){

assert(Storage::length == 0);
if (a.length > 0 && b.length > 0){

multiplication_length_predictor predictor;
Compression::compress_operands(a,b,predictor);

if(predictor(a.length,b.length) <= MaxLength::value){

typedef typename
Select< Compression::Tag_compress_result_needs_protection::value

|| Operations::Tag_multiplication_needs_protection::value,
typename Protection::Protector,
typename Protection::NoProtector >::Result Protector;

Protector p(*this);
Operations::multiplication(a,b);
Compression::compress_result();
Protection::restore(p);

}
}
return static_cast<bool>(Storage::length);

}

Figure 5.5. Implementation of local_multiplication() in Local_-
double_sum.

As a first step, we ask the DoubleSumCompression model to compress the operands
a and b. Protection from floating-point exceptions in this step must be provided
within the DoubleSumCompression model itself but of course relies on the given
DoubleSumProtection model. The functor multiplication_length_predictor
computes #s(a× b). We use it first to guide the compression of operands and then to
decide if the result may exceed the maximum number of summands. In case the result
will fit, we select a Protector type from the DoubleSumProtection model, based
on tags indicating the need for protection in the raw multiplication and subsequent
compression step. It should be noted that this step has no runtime cost, selecting the
Protector is performed at compile time. We create an instance of the Protector
type guarding the multiplication result, then compute the result and ask the Dou-
bleSumCompression model to compress it. Finally, the DoubleSumProtection model
is asked to react on any floating-point exceptions that occurred in the two previous
steps. Here, the restP model for example simply resets the length of the result to
zero in case an exception occurred.

Many of the functions provided by policies and called from inside the multi-
plication step consist of a few lines of code only. Like the actual Protector type,
these functions are known at compile time. We rely on the compiler to eliminate

150 5. EXACT FLOATING-POINT ALGORITHMS IN REALALGEBRAIC

21
25
29

213
217

1 3 5 7 9 11 13
21
25
29

213
217

1 3 5 7 9 11 13 1 3 5 7 9 11 13 1 3 5 7 9 11 13

grid long long rand

flo
at

in
g-

po
in

t
in

te
ge

r

#
co

nv
er

si
on

s

summands

2 summands 4 summands 8 summands 12 summands
18 summands 24 summands 32 summands 40 summands

Segment intersection Arrangement of circles
predicates with 2phomogeneous Cartesian

Figure 5.6. Effect of the maximum number of summands on the size and
frequency of sums converted to an expression dag representation. The
x-axis indicates the actual number of summands in converted sums, while
the label indicates the maximum number of summands allowed.

the overhead of function calls by inlining and optimize the complete multiplication
step as one unit. This is the advantage of template based design: flexibility and fine
grained control without runtime overhead.

5.2. Experiments

Using the setup from Section 3.4, we investigate the effects of using Local_dou-
ble_sum as LocalPolicy on the efficiency of RealAlgebraic. We compare the models
for all our policies, with the goal of finding an overall optimal Local_double_sum
variant. The default variant Default_dsumL_real_algebraic from the previous
section is the result of these experiments. Then we compare it to other LocalPolicy
models within RealAlgebraic and to other number types as well.

5.2.1. Evaluation of different Local_double_sum variants. The number of
available policies and models allows to create a very large number of Local_dou-
ble_sum variants. To reduce this amount, we resort again to the strategy of adopting
a baseline variant and examine models for one policy at a time only. As baseline
variant we use Default_dsumL_real_algebraic, which is a modification of
Default_real_algebraic, the baseline variant from Section 3.4, but using Lo-
cal_double_sum as LocalPolicy. Selected results are shown in figures 5.6 – 5.12,
complete results are given in Appendix A. As before, number types are labeled with
the models in which they differ from the baseline variant.

While examining one policy at a time helps to reduce the number of variants, the
effects from models for one policy are not independent of the models selected for other

5.2. EXPERIMENTS 151

0

0.4

0.8

ti
m

e
in

s

flo
at

in
g-

po
in

t

2 summands 12 summands 32 summands
4 summands 18 summands 40 summands
8 summands 24 summands

grid long long rand
0

0.4

0.8

ti
m

e
in

s

in
te

ge
r

homogeneous Cartesian
Segment intersection Arrangement of circles

predicates with 2p

Figure 5.7. Effect of the maximum number of summands on the running
time on the descartes platform. Selected problems correspond to Fig-
ure 5.6.

policies. For example, sums maintained by plaiO and expaO have very different
characteristics and are therefore likely to need a different amount of compression
for optimal performance. Similarly, the basic addition and subtraction provided by
plaiO are inherently free from floating-point exceptions. Addition based on plaiO
only needs protection when combined with permC. The results presented here for
each policy are therefore only valid in the context of the other models fixed for the
experiment. The baseline variant used for the experiments presented here, is the
result from repeated experiments of the same kind, in which the baseline variant
was iteratively modified with the goal of finding an optimal Local_double_sum
variant.

Number of Summands. For a fixed number of input summands, multiplication
needs significantly more output space than addition or subtraction. Therefore we
perform experiments with a maximum number of summands n ∈ {2k2, 2k(k+ 1) |
k = 1,2, 3,4}, which aligns with the space requirements for multiplication given by

#s(a× b) = 2#s(a)#s(b).

Nevertheless, multiplication is severely restricted. For example, for a maximum of
eight summands, multiplication can only be performed when the operands have at
most one and four, or two and two summands.

Results are consistent between different platforms. For integer input data, the
optimal maximum number of summands is somewhere in the range of four to eight
summands, surprisingly consistent for different problems and types of input data. For
floating-point input data, the global optimum is slightly higher at eight summands,
however for the problem of computing segment intersections the distribution is rather
bimodal, preferring either fewer or more than eight summands, depending on the

152 5. EXACT FLOATING-POINT ALGORITHMS IN REALALGEBRAIC

21
25
29

213
217

1 3 5 7 9 11 13
21
25
29

213
217

1 3 5 7 9 11 13 1 3 5 7 9 11 13 1 3 5 7 9 11 13

25 long long short

flo
at

in
g-

po
in

t
in

te
ge

r

#
co

nv
er

si
on

s

summands

__noC lazyC
laagC permC

Delaunay triangulation Segment intersection
homogeneous Cartesian

Segment Voronoi diagram

Figure 5.8. Effect of different DoubleSumCompression models on the size
and frequency of sums converted to an expression dag representation.

input data. Following these observations, we select a maximum of eight summands
for the baseline variant.

The maximum number of summands mediates a tradeoff between the ability
to evaluate larger polynomial expressions and the storage space for a single Re-
alAlgebraic number. Due to the static buffer for sums, increasing the maximum
number of summands increases the storage space for each RealAlgebraic, regardless
of whether the space is actually used. Wasting space may in turn have a negative
influence on the performance, since it implies that fewer useful data fits into the
various hardware caches. Assuming exact evaluation with Local_double_sum
is faster than evaluation using expression dags, the optimal run time should be
achieved for the smallest number of maximum summands that allows all polynomial
sub-expressions to be evaluated completely without expression dags.

Figure 5.6 shows the effect of the maximum number of summands on the
frequency and actual number of summands of sums converted to an expression dag
representation for a few selected problems, Figure 5.7 shows the corresponding
running times. We discuss integer data first. Homogeneous segment intersection
employs polynomial predicates only. No sums with more than three summands
are ever converted, and starting with a maximum number of eight summands, no
conversions occur at all. And indeed, optimal performance is achieved for eight
summands for these problems. The other two problems shown involve expressions
with division and square root. Starting with a maximum number of four summands,
always the same number of conversions occur, this is also the level where optimal
performance is achieved. For these problems, conversions are triggered by the
structure of the expression, i.e., a division or square root operation, not the lack of
space for summands.

5.2. EXPERIMENTS 153

0

0.3

0.6

ti
m

e
in

s

flo
at

in
g-

po
in

t__noC lazyC laagC permC

25 long long short
0

0.3

0.6

ti
m

e
in

s

in
te

ge
r

homogeneous Cartesian
Delaunay triangulation Segment intersection Segment Voronoi diagram

Figure 5.9. Effect of different DoubleSumCompression models on the run-
ning time on the descartes platform. Selected problems correspond to
Figure 5.8.

For floating-point input data the situation is different. For homogeneous segment
intersection and both input data sets, the amount of sums converted to an expression
dag is of similar quality in Figure 5.6. With an increasing maximum number of
summands, fewer sums with more summands are converted, and starting with a
maximum number of 24 summands, predicates are evaluated completely without
expression dags. But while for grid input data, optimal performance is achieved
when allowing 18 to 24 summands, this is by no means the case for long input
data, which has minima at two and at eight summands. The grid input data triggers
more degenerate predicate evaluations, which require bigfloat evaluations of the
expression dag, while the long input data involves only non-degenerate predicate
calls, which are solved by the floating-point filter. Therefore the strategy to postpone
dag creation longer by using more summands pays of for grid input data, but not for
long input data. Cartesian segment intersection on long input data again involves
only non-degenerate predicate calls and optimal performance is achieved for two
summands. There is however another minimum at eight and 12 summands, which
according to Figure 5.6 corresponds to the point where deferring dag construction
is limited by the structure of the expression. The results for arrangements of circles
on rand input data may be interpreted similarly, though actual differences are very
small.

For non-degenerate input, allowing more summands seems to pay off for integer
input, but not for floating-point input. The reason is the fixed cost of the floating-point
filter, which for non-degenerate input is the only relevant stage of dag evaluation.
The cost for this stage is the same for both integer and floating-point input. Exact
evaluation using expansions needs fewer summands for integer input and hence is
faster than dag creation and the floating-point filter in this case.

Finally, it is interesting to estimate the number of summands necessary to evaluate
predicates completely with Local_double_sum. For segment intersection, the most

154 5. EXACT FLOATING-POINT ALGORITHMS IN REALALGEBRAIC

25 long long gridrn
0

0.4

0.8

ti
m

e
in

s

Delaunay triangulation
homogeneous Cartesian

Segment intersection
predicates with 2p

Arrangement of circles

protO___noP
expaO___noP expaO_restP expaO_warnP

Figure 5.10. Effect of different DoubleSumProtection models on the running
time. Floating-point data on descartes.

involved predicate is the comparison of coordinates of intersection points. In the
homogeneous case, this involves computing the sign of

E = Dx D′w − D′x Dw ,

where the matrices Dx and Dw are given in Equation (1.4). We have #s(E) = 2048,
so at first it seems surprising this expression can be evaluated exactly using a few
summands only. We can however get better estimates. For each intermediate result,
we compute the number of bits and the minimum number of summands required
to represent it exactly. Applying #s to these figures gives the number of summands
necessary to perform the next operation exactly. For example, Dx and Dw have
polynomial degree three and two, respectively. For 25 bit integer input they are
representable with 78 and 53 bits, and after compression fit into an expansion with
two and one summand. Hence, the product of these two sums is computable with
four summands. The result however is exactly representable with 131 bits, which fits
into an expansion of three summands. The final difference E needs six summands
initially, but fits into three summands.

To perform the same computation for floating-point input, we need to estimate
a precision that allows to simultaneously scale all input numbers to a predicate call
to integers. For our input sets to segment intersection, a precision of 70 bits always
suffices. Most input numbers do however have the same exponent, so on average a
precision much closer to 53 bits should suffice. For an input precision of 53 bits, Dx
and Dw are both representable with three summands, therefore 18 summands suffice
to compute E. For an input precision of 70 bits, this goes up to 30 summands. For
Cartesian segment intersection, computing the sign of

E = Dx/Dw − D′x/D
′
w ,

is the hardest predicate. The largest polynomial sub-expression is Dx , which is exactly
computable with four summands for 25 bit input, and 12 summands for 53 bit to 70
bit input.

Figure 5.6 and Figure 5.7 show that good performance is achieved when the
maximum number of summands corresponds to the estimates given here, for the
reasons previously discussed. Thus, estimating the necessary number of summands in

5.2. EXPERIMENTS 155

long rand rand short
0

0.4

0.8

ti
m

e
in

s

homogeneous
Segment intersection

static algebraic pred. pred. with 2p
Arrangement of circles Segment Voronoi diagram

treeM expaM nodeM

Figure 5.11. Effect of different DataMediator models that may be used
with Local_double_sum on the running time. Floating-point data on
descartes.

the described way allows the user to make a good choice for the maximum number
of summands for her problem without resorting to experiment.

Protection from Floating-Point Exceptions. Results for different strate-
gies to protect from floating-point exceptions are consistent over all platforms, types
of input data, and algorithms, though more significant for algorithms where a larger
fraction of the total running times is spend within Local_double_sum. Selected
results are shown in Figure 5.10. No exceptions actually occur in our experiments.
warnP is clearly the slowest approach, implying that the cost for resetting exception
flags is very high. Surprisingly and despite making backup copies, restP is not much
slower than having no protection at all. The fastest approach is however that of
protO, which, with the exception of computing Delaunay triangulations, is nearly
indistinguishable from using expaO without protection.

Compression. Results are consistent between different platforms and algorithms,
but there are differences with respect to the input precision. Computing the Delaunay
triangulation is the geometric algorithm where differences between DoubleSumCom-
pression models are most significant. For floating-point input, lazyC is clearly the
best variant and noC clearly the worst. laagC and permC are in between and show
about equal performance. On the remaining algorithms, differences vanish with
increasing complexity of the involved predicates. The situation is slightly different for
integer input. Here noC shows a much better performance, especially on the thales
platform, and permC is the slowest variant for homogeneous segment intersection.

Figure 5.8 shows the effect of different DoubleSumCompression models on the
size and frequency of sums converted to an expression dag representation. For integer
input, fewer conversions with fewer summands take place than for floating-point
input. This explains the differences between integer and floating-point input. For
lower precision input, additional compression does not pay off, since the results fit
into the available space without it. For polynomial expressions, both lazyC and
laagC significantly reduce the number of conversions in comparison to noC. This
is not the case for more general expressions, here the main cause for conversion is
the structure of the expression, not the limit on the number of summands. permC is

156 5. EXACT FLOATING-POINT ALGORITHMS IN REALALGEBRAIC

0 long long sqrs
0

3

6

ti
m

e
in

s

Delaunay triangulation
homogeneous Cartesian

Segment intersection Segment Voronoi diagram

noFMA_protO___noP expaO_restP
protO___noP plaiO_restP_permC_treeM

Figure 5.12. Running times for different choices to implement basic arith-
metic operations. Floating-point data on thales.

the most effective compression strategy, it further reduces the number of conversions
with many summands, though at the cost of increasing the number of conversions
with few summands.

Overall, lazyC shows the best performance, for a variety of reasons. It applies
compression only when there is a direct advantage to it and a single application of
Compress generally suffices to bring an expansion into optimal form. permC does
not lead to a better running time, since it does not further reduce the number of
conversions, i.e., the work that must be done on the expression dag, in particular
when expaM is used. Thus we choose lazyC for the baseline variant.

Conversion to Expression Dags. Results are consistent over platforms and
algorithms, but there are differences with respect to the amount of degeneracy in
the input data. Selected results are shown in Figure 5.11. expaM is always better
than nodeM, the few examples where this is not the case occur, when no conversions
take place at all and can be attributed to noise in the running time measurements.
This is not surprising, since both compute the same result, but expaM is faster. In
comparison to the results from Section 4.2.3 the gain is relatively small. The reason is,
that the majority of converted sums has one to four summands only, and by Amdahl’s
law the cost for conversion has only limited influence on the total cost.

treeM follows the strategy to create expression dags and is in some cases faster
than expaM. This occurs in particular for non-degenerate input sets, where we already
observed that increasing the number of summands does not increase the performance,
i.e., those cases where creating an expression dag right away is superior to deferring
dag creation using Local_double_sum. Overall however, expaM is favored by the
majority of input sets and algorithms. Furthermore, choosing treeM over expaM can
lead to greater decline in running time than choosing expaM over treeM. Therefore,
we select expaM for the baseline variant.

Basic Arithmetic Operations. The three models for DoubleSumOperations
prefer different models for the remaining policies. Hence, for each DoubleSumOpera-
tions model we select a combination which is optimal for that model. expaO requires
restP to handle floating-point exceptions, but is otherwise the same as protO.

5.2. EXPERIMENTS 157

plaiO needs restP, too, and achieves optimal performance with permC and treeM.
On the thales platform, a fused-multiply-add instruction fma is available and will
be used for error-free transformations by default. On this platform we add a variant
not using fma to the set of competitors, to investigate the differences. Selected results
from the thales platform are shown in Figure 5.12.

Results are consistent between different platforms. For nearly all algorithms and
input sets, protO is clearly the fastest variant. Thus, the lazy strategy of plaiO, to
postpone the actual work to the point where the sign is requested or compression
is necessary does not pay off. There are a few exceptions though. For example, for
Cartesian segment intersection on integer data, plaiO is the fastest variant on the
non-degenerate input sets short and long. On the thales platform this also extends
to floating-point input. Generally we recommend to use protO and hence chose it
for the baseline variant.

Employing fma improves the performance in all cases, but substantial differences
occur only for computing the Delaunay triangulation. Clearly, the multiplication
takes up to small a portion of the total running time for more significant effects.
The new floating-point standard IEEE 754-2008 [46] mandates the availability of a
fused-multiply-add instruction, and new hardware providing it is under way. Since
a single fma call replaces 16 other floating-point operations in the implementation
of TwoProduct, we can expect similar improvements on those future platforms and
thus recommend to implement TwoProduct based on fma when available.

5.2.2. Comparison to other Exact Geometric Computation Approaches. On
the whole, the differences between several models for policies of Local_double_-
sum seem rather small. This is in part owning to the fact that for many problems,
only a small part of the total running time is spend within Local_double_sum
and an even smaller fraction is influenced by a single policy. The majority of the
running time is still spend in expression dag evaluation. Hence, the significance of
differences is largest for problems with simpler predicates. The exception to this rule
is the choice of the maximum number of summands. This policy evidently has the
largest influence on how successful Local_double_sum is in avoiding dag creation
and evaluation. The other policies merely influence the running time spend within
Local_double_sum itself.

In Section 3.4.3 we already discussed experiments comparing RealAlgebraic
variants nodaL, doubL, and dsumL to other exact number types and to approaches
to Exact Geometric Computation on the level of geometric primitives. In these
experiments, dsumL is the baseline Local_double_sum variant determined through
the experiments described in this section. When applied straightforwardly, all three
RealAlgebraic variants are competitive to and often much faster than other exact
number types. Thus, the baseline RealAlgebraic variant nodaL is already very efficient
to begin with. Our experiments show, that deferring dag construction can still improve
performance in many cases.

158 5. EXACT FLOATING-POINT ALGORITHMS IN REALALGEBRAIC

For floating-point input data, dsumL is an improvement over nodaL, and then
usually the fastest RealAlgebraic variant, if there is a certain amount of degeneracies
in the input data.

For integer input, dsumL is an improvement over nodaL for the same input sets,
but doubL is often even faster. The reason is that much lower precision is sufficient
to evaluate predicates exactly. Hence, doubL can defer dag creation as effectively
as dsumL, but faster. Only for homogeneous segment intersection, dsumL is faster
than doubL on integer input. Homogeneous coordinate representation allows to
avoid division, but requires predicates with higher polynomial degree and thus more
precision to compute the final result exactly. Whether doubL or dsumL is the better
approach to defer dag creation thus does not depend on input precision but on the
precision necessary to evaluate polynomial sub-expression in all predicates exactly.

From these observations a few guidelines, which LocalPolicy to use, follow. If one
knows that input data is free from degeneracies, no attempt to defer dag construction
should be made, i.e., nodaL should be used. If one expects degenerate predicate
evaluations, doubL oder dsumL should be used. Which of these, depends on the pre-
cision of input numbers and on the degree of the largest polynomial sub-expressions
occurring in predicates. From this data, one can estimate the number of summands
necessary to evaluate these expressions exactly. If one or two summands suffice,
doubL should be used, otherwise dsumL with an appropriate number of summands
should be used.

Approaches to Exact Geometric Computation on the level of geometric primitives
are faster than the three examined RealAlgebraic variants in many cases, but there are
a few exceptions, for example when computing the Delaunay triangulation of point
sets in the plane. The major difference between our input data sets for this problem
is the amount of nearly degenerate predicate calls they enforce. Figure 3.18 shows
that dsumL behaves non-adaptively, i.e., the running time does not vary with the
amount of degeneracies in the input data. Note that these problems are completely
solved by dsumL and no expression dags are actually constructed. Although some
strategies of dsumL, i.e., elimination of zero summands, or the lazy compression
scheme, may lead to adaptive behavior, the maximum limit of eight summands is to
small for these strategies to have a visible effect. Despite being non-adaptive at low
precision, dsumL is a very efficient strategy compared to other approaches. For data
sets without degeneracies, it can almost compete with the best adaptive number types,
nodaL and CORE::Expr 1. With an increasing amount of degeneracies, however, it
quickly becomes the fastest overall strategy, even outperforming the Epick kernel.

Similar behavior can be observed for other geometric problems in our experi-
ments. The larger the amount of degeneracies in the input data, the more likely some
RealAlgebraic variant is faster than Exact Geometric Computation approaches on the
level of geometric primitives. In case any RealAlgebraic variant is faster, then usually
dsumL is the fastest overall approach, showing that exact floating-point algorithms
allow for very fast exact evaluation.

5.3. EXACT FLOATING-POINT ALGORITHMS FOR DAG EVALUATION 159

5.3. Exact Floating-Point Algorithms for Dag Evaluation

In this section we draw some general conclusion from the experiments of the
previous section and discuss potentially better ways to employ exact floating-point
algorithms based on error-free transformations in expression dag based number types.

Evidently, exact floating-point algorithms based on error-free transformations
allow for very fast exact evaluation of polynomial expressions. Using them to defer
dag creation does however not lead to an improvement for non-degenerate data.
This shows, that they are still slower than dag creation and the first stage of ex-
pression evaluation with a dynamic floating-point filter. On the other hand, exact
floating-point algorithms appear to be much faster than evaluation with bigfloat
arithmetic, since deferring dag creation improves the overall running time in cases
where bigfloat evaluation becomes necessary. An improvement is made even in the
case of general expressions involving division and square roots, where only relatively
small polynomial sub-expressions are evaluated exactly and an expression dag is
created for the remaining expression.

This shows, that to achieve a performance improvement for both non-degenerate
and degenerate data, exact floating-point algorithms should be placed between the
floating-point filter stage and evaluation with bigfloat arithmetic. Such a strategy
would first create the complete expression dag and evaluate it with a floating-point
filter. Afterwards, exact floating-point algorithms will be used to collapse polynomial
sub-expressions over the leaves of the dag to a single node. Precision driven arithmetic
with bigfloat arithmetic would then be used on the remaining dag only.

For predicate calls that are decided by the floating-point filter, i.e., non-degenerate
input data, such a strategy can achieve the same running time as the RealAlgebraic
variant nodaL, which is faster than dsumL in these cases. For all other predicate
calls, the running time would be similar to the running time achieved by dsumL, plus
the additional time for dag creation and floating-point filter evaluation. This will be a
bit slower than dsumL but is still likely to be faster than nodaL.

The different running times would be achieved on a per predicate basis, while
currently one can select between nodaL or dsumL per data set only. Since rarely
any input set forces purely non-degenerate or degenerate predicate calls only, it is
likely that such a strategy would perform better or at least as good as the nodaL and
dsumL number types in most cases.

Integration into RealAlgebraic. A relatively straightforward way to integrate
exact floating-point algorithms into the dag evaluation stages of the RealAlgebraic
framework is, to provide an ApproximationPolicy model based on error-free transfor-
mations. We now propose how to implement such a model. Based on results from
the previous section we discard the option to represent a number as a plain sum of
floating-point numbers but choose floating-point expansions. Thus, our model may
be called Expansion_approximation_policy (expaA).

Since not all functionality that expaA must provide, can be implemented based
on expansions alone, it must incorporate bigfloat arithmetic, too. A number shall

160 5. EXACT FLOATING-POINT ALGORITHMS IN REALALGEBRAIC

be represented either as an expansion, or as a bigfloat. Arithmetic operations on
expansions shall be performed exactly, operations on bigfloat numbers approximately.
Note that the ApproximationPolicy interface permits exact operations and our current
ExpressionDagPolicy models already detects when an arithmetic operation is exact.
Once a dag node becomes known exactly in that way, its children will not be accessed
any more and may be pruned. When an operation may not be performed with
expansions, a conversion from expansion to bigfloat representation takes place. The
concrete type of bigfloat arithmetic should be of no concern to expaA, hence it shall
take another ApproximationPolicy model as template parameter, which provides the
bigfloat arithmetic.

For the implementation of arithmetic operations based on expansions within
expaA, the same questions arise as for the implementation of Local_double_sum
and most answers can be taken from the previous sections. For example, floating-
point exceptions should be handled by checking the magnitude of input numbers and
avoiding them in the first place, and a single application of Compress suffices to bring
an expansion into nearly optimal form. Conversion to a bigfloat number should be
done using the efficient conversion method based on Monotonize from Section 4.2.

Next to arithmetic operations, expaA has to provide some utility functions, e.g.,
rounding to a floating-point number, or read and write access to the exponent of a
bigfloat number. Efficient implementations of these operations for expansions still
have to be devised. One option not explored for Local_double_sum, is allowing
interspersed zeros in expansions. This would simplify arithmetic operations, but
complicate sign computation. Furthermore it requires more regular application of
compression to keep the number of summands small.

Another option for expaA not explored with Local_double_sum is, to not limit
the number of summands, as this would require dynamic memory management. The
advantage would be, that only an impending floating-point exception, or a division
or radical operation will force conversion to a bigfloat number. Arithmetic operations
on expansions may well be faster than bigfloat arithmetic on the complete set of
representable numbers. Recall that only numbers x with η≤ lsb(x), msb(x)≤ τ are
representable as expansion, which implies that only about 2000 bits are available in
the binary64 format. If the number of summands is not limited, the question when
to apply compression takes a different form. The trigger in form of the maximum
number of summands is not available in that case, but the representation as expansion
should still be kept compact to keep arithmetic operations efficient.

We think that using expansions for exact evaluation of polynomial expressions in
the first stage of expression dag evaluation in the described way may lead to further
improvements of expression dag based number types. While many implementation
parameters are already determined through our experiments with Local_double_-
sum, some parameters are still open and new parameters arise, so there is still room
for further research and experimentation.

CHAPTER 6

Conclusion

In this thesis we discussed the implementation of expression dag based number
types for geometric applications. We intended to improve the efficiency of such
number types by means of Algorithm Engineering following the cycle of (re-)design,
analysis, implementation and experimental evaluation. Our stated goal was to narrow
or close the performance gap between expression dag based number types and other
approaches to Exact Geometric Computation. One major tool that we considered were
error-free transformations. These are small and fast algorithms based on imprecise
hardware floating-point operations, which nevertheless allow for exact numerical
computations.

Implementation of Expression Dag Based Number Types. In Chapter 3 we
presented our new expression dag based number type RealAlgebraic. Our design
allows to easily create a variety of number types, which all provide the same func-
tionality, but differ in the implementation of major components for expression dag
based number types. We conducted experiments to find an optimal RealAlgebraic
variant and compared several RealAlgebraic variants to other number types, and to
some problem specific approaches to Exact Geometric Computation.

Concerning the implementation of expression dag based number types, we ob-
served that which component of an implementation accounts for most of the running
time is strongly dependent on the type of geometric problem and on properties of
the input data. To achieve a reasonable efficiency over a wide range of problems,
each component must be implemented efficiently. The default RealAlgebraic vari-
ant nodaL is more efficient than other expression dag based number types, since
there are in each case one or two components, where RealAlgebraic features a better
implementation.

In comparison to problem specific approaches to Exact Geometric Computation,
RealAlgebraic performs the better, the more involved the geometric problem at hand
is. For Delaunay triangulation, nodaL is about a factor of six slower than Shewchuk’s
adaptive predicates on the descartes platform, cf. Figure 3.18 and Figure 4.3, and
a factor of five to ten slower than the Epick kernel on any platform. For Cartesian
segment intersection, nodaL is within 50% of the Epeck kernel, except for the axis
dataset where the slowdown reaches a factor of four. For arrangements of circles,
nodaL is faster than static algebraic predicates in a few cases, and for the problem
of computing the Voronoi diagram of segments, RealAlgebraic is clearly the fastest

161

162 6. CONCLUSION

approach. This is a nice improvement over results reported for other expression dag
based number types reported in the literature, see again Section 1.4.

We further identified a problem in current dag evaluation strategies, that may
negate the main advantage of sharing common sub-expressions. In certain cases,
common sub-expression may be evaluated as often as they are referenced within the
dag. We propose a new algorithm TopPrecDrivArith which does not exhibit this
behavior. The implementation and practical evaluation of that algorithm remains
future work.

Exact Evaluation based on Error-Free Transformations. In Chapter 4
we presented improved algorithms based on error-free transformations for computing
the sign of a sum of floating-point numbers exactly and used them for the implemen-
tation of geometric predicates. Many authors have suggested to implement geometric
predicates based on error-free transformations and Shewchuk’s adaptive predicates
are considered state of the art implementations for the 2D and 3D orientation and
incircle test. But despite their advantages over traditional software number types in
terms of speed, exact computations based on error-free transformations do not seem
to have found widespread usage in geometric applications.

The reason may be, that so far no-one has cast these techniques into a form that
is efficient, yet simple to use. A major obstacle to this are the limitations of error-free
transformations. Error-free transformations allow for approximately 2000 bits of
precision only, before operations inevitably underflow or overflow. An implementation
therefore has to either live with these limitations, or provide a fallback strategy, e.g.,
in form of a more general software number type.

We have presented new algorithms that allow for switching from floating-point
expansions to such a fallback strategy efficiently. It is essential that our methods work
correctly when the input expansions are close to overflow or underflow, as this may
trigger switching to the fallback strategy in the first place. If the evaluation of an
expression using expansions fails, our new conversion methods allow to resume the
evaluation with more general software arithmetic at exactly the point where it failed.
This basically means that it becomes unnecessary to store the expression for later
re-evaluation.

Potential applications include static algebraic predicates, which reduce the sign
computation of an algebraic number with an a-priori known structure to the evalu-
ation of several polynomial expressions, or more generally the implementation of
number types providing exact ring operations over integers or floating-point numbers.
The integration of expansions into such number types should follow the guidelines
given in Section 5.3. Since exact number types are the backbone of Exact Geometric
Computation, many geometric application might benefit from the potential speed
improvements.

Deferring Dag Construction. In Chapter 5 we discussed options to integrate
exact computations based on error-free transformations into expression dag based
number types. We presented a new approach to defer dag creation, which represents

6. CONCLUSION 163

a number exactly as a sum of floating-point numbers and avoids dag creation as long
as such a representation can easily be obtained. This goes beyond the abilities of
previous expression dag based number types, which allow to store a single floating-
point number at most. Our experiments confirm that our extended approach is more
effective than previous approaches for floating-point input and allows to avoid dag
creation for larger sub-expressions. Furthermore it can lead to significant performance
improvements, but only if there is a certain amount of degeneracies in the input data.
The experimental results suggest, that exact computation with sums of floating-point
numbers and error-free transformations may be better placed at a later stage of dag
evaluation. The implementation and evaluation of such a strategy remain future
work.

Nevertheless, we have achieved performance improvements over the default
RealAlgebraic variant for many types of input data, which cover all types of geo-
metric problems considered, while rigorously treating all limitations of error-free
transformations and without sacrificing user-friendliness or limiting the scope or
generality of our number-type. We achieved performance improvements even in cases
where conversion to a more general software number type is always necessary due to
the presence of division and square root operations. We hope that our results with
RealAlgebraic serve as an incentive to try integrating exact computations based on
error-free transformations into other approaches to Exact Geometric Computation as
well.

Bibliography

1. Andrei Alexandrescu, Modern C++ design: Generic programming and design patterns applied, Addison-
Wesley, 2001.

2. Gene Myron Amdahl, Validity of the single processor approach to achieving large scale computing
capabilities, Proceedings of the spring joint computer conference (AFIPS ’67, spring), ACM, 1967,
pp. 483–485.

3. Mohand O. Benouamer, Philippe Jaillon, Dominique Michelucci, and Jean-Michel Moreau, A lazy
exact arithmetic, Proceedings of the 11th Symposium on Computer Arithmetic (ARITH’93), IEEE,
1993, pp. 242–249.

4. boost C++ Libraries, http://www.boost.org/.
5. Hervé Brönnimann, Christoph Burnikel, and Sylvain Pion, Interval arithmetic yields efficient dynamic

filters for computational geometry, Discrete Applied Mathematics 109 (2001), no. 1–2, 25–47.
6. Hervé Brönnimann, Ioannis Z. Emiris, Victor Y. Pan, and Sylvain Pion, Computing exact geometric

predicates using modular arithmetic with single precision, Proceedings of the 13th Symposium on
Computational Geometry (SoCG’97), ACM, 1997, pp. 174–182.

7. Maxey Brooke, Limerick-gimerick, Word Ways 13 (1980), no. 1, article 10.
8. Christoph Burnikel, Exact computation of voronoi diagrams and line segment intersection, Ph.D. thesis,

Universität des Saarlandes, 1996.
9. Christoph Burnikel, Rudolf Fleischer, Stefan Funke, Kurt Mehlhorn, Stefan Schirra, and Susanne

Schmitt, The LEDA class real number – extended version, Tech. Report ECG-TR-363110-01, Max-
Planck-Institut für Informatik, Saarbrücken, Germany, 2005.

10. Christoph Burnikel, Rudolf Fleischer, Kurt Mehlhorn, and Stefan Schirra, Efficient exact geometric
computation made easy, Proceedings of the 15th Symposium on Computational Geometry (SoCG’99),
ACM, 1999, pp. 341–350.

11. , A strong and easily computable separation bound for arithmetic expressions involving radicals,
Algorithmica 27 (2000), 87–99.

12. Christoph Burnikel, Stefan Funke, Kurt Mehlhorn, Stefan Schirra, and Susanne Schmitt, A Separation
Bound for Real Algebraic Expressions, Algorithmica 55 (2009), no. 1, 14–28.

13. Christoph Burnikel, Stefan Funke, and Michael Seel, Exact geometric computation using cascading,
International Journal of Computational Geometry and Applications 11 (2001), no. 3, 245–266.

14. Christoph Burnikel, Kurt Mehlhorn, and Stefan Schirra, How to compute the voronoi diagram of line
segments: Theoretical and experimental results, Proceedings of the 2nd European Symposium on
Algorithms (ESA’94), LNCS, vol. 855, 1994, pp. 227–239.

15. , The LEDA class real number, Research Report MPI-I-96-1-001, Max-Planck-Institut für
Informatik, Saarbrücken, Germany, January 1996.

16. CGAL: Computational Geometry Algorithms Library, http://www.cgal.org/.
17. Ee-Chien Chang, Sung W. Choi, DoYong Kwon, Hyungja Park, and Chee-Keng Yap, Shortest path

amidst disc obstacles is computable, Proceedings of the 21st Symposium on Computational Geometry
(SoCG’05), ACM, 2005, pp. 116–125.

18. CORE: A core library for robust numeric and geometric computation, http://cs.nyu.edu/exact/.

165

http://www.boost.org/
http://www.cgal.org/
http://cs.nyu.edu/exact/

166 BIBLIOGRAPHY

19. Mark de Berg, Otfried Cheong, Marc van Krefeld, and Mark Overmars, Computational Geometry:
Algorithms and Applications, 3rd rev. ed., Springer, 2008.

20. Theodorus Jozef Dekker, A floating-point technique for extending the available precision, Numerische
Mathematik 18 (1971), no. 3, 224–242.

21. James Demmel and Yozo Hida, Fast and accurate floating point summation with application to
computational geometry, Numerical Algorithms 37 (2005), 101–112.

22. Olivier Devillers, Alexandra Fronville, Bernard Mourrain, and Monique Teillaud, Algebraic methods
and arithmetic filtering for exact predicates on circle arcs, Computational Geometry: Theory and
Applications 22 (2002), 119–142.

23. Olivier Devillers and Sylvain Pion, Efficient exact geometric predicates for delauny triangulations,
Proceedings of the 5th Workshop on Algorithm Engineerung and Experiments (ALENEX’03), SIAM,
2003, pp. 37–44.

24. Zilin Du, Guaranteed precision for transcendental and algebraic computation made easy, Ph.D. thesis,
Courant Institute of Mathematical Sciences, New York University, May 2006.

25. Thomas Dubé and Chee-Keng Yap, A basis for implementing exact geometric algorithms, extended
abstract, Courant Institute of Mathematical Sciences, New York University, October 1993.

26. Ioannis Z. Emiris, Athanasios Kakargias, Sylvain Pion, Monique Teillaud, and Elias P. Tsigaridas,
Towards an open curved kernel, Proceedings of the 20th Symposium on Computational Geometry
(SoCG’04), ACM, 2004, pp. 438–446.

27. Ioannis Z. Emiris and Elias P. Tsigaridas, Comparing real algebraic numbers of small degree, Proceedings
of the 12th European Symposium on Algorithms (ESA’04), LNCS, vol. 3221, 2004, pp. 652–663.

28. A. Robin Forrest, Computational geometry and software engineering: Towards a geometric computing
environment, Techniques for Computer Graphics (David F. Rogers and Rae A. Earnshaw, eds.),
Springer, 1987, pp. 23–37.

29. Steven Fortune and Christopher J. van Wyk, Efficient exact arithmetic for computational geometry,
Proceedings of the 9th Symposium on Computational Geometry (SoCG’93), ACM, 1993, pp. 163–172.

30. , Static analysis yields efficient exact integer arithmetic for computational geometry, ACM
Transactions on Graphics 15 (1996), no. 3, 223–248.

31. Stefan Funke, Christian Klein, Kurt Mehlhorn, and Susanne Schmitt, Controlled perturbation for
delaunay triangulations, Proceedings of the 16th ACM-SIAM Symposium on Discrete Algorithms
(SODA’05), SIAM, 2005, pp. 1047–1056.

32. Stefan Funke and Kurt Mehlhorn, LOOK: A lazy object-oriented kernel design for geometric computation,
Computational Geometry: Theory and Applications 22 (2002), no. 1–3, 99–118.

33. Stefan Funke, Kurt Mehlhorn, and Stefan Näher, Structural filtering: A paradigm for efficient and exact
geometric programs, Computational Geometry: Theory and Applications 31 (2005), no. 3, 179–194.

34. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design patterns: Elements of reusable
object-oriented software, Addison-Wesley, 1995.

35. Bernd Gärtner, Pitfalls in computing with pseudorandom determinants, Symposium on Computational
Geometry, 2000, pp. 148–155.

36. Marina Gavrilova, Dmitri Gavrilov, and Jon G. Rokne, New algorithms for the exact computation of
the sign of algebraic expressions, Canadian Conference on Electrical and Computer Engineering, May
1996, pp. 314–317.

37. GMP: The GNU multiple precision arithmetic library, http://www.gmplib.org/.
38. David Goldberg, What every computer scientist should know about floating-point arithmetic, ACM

Computing Surveys 23 (1991), no. 1, 5–48.
39. Stef Graillat, Applications of fast and accurate summation in computational geometry, Research Report

RR2005–03, Laboratoire LP2A, Université de Perpignan, 2005.
40. Dan Halperin and Eran Leiserowitz, Controlled perturbation for arrangements of circles, Proceedings

of the 19th Symposium on Computational Geometry (SoCG’03), ACM, January 2003, pp. 264–273.

http://www.gmplib.org/

BIBLIOGRAPHY 167

41. Dan Halperin and Christian R. Shelton, A perturbation scheme for spherical arrangements with
application to molecular modeling, Computational Geometry: Theory and Applications 10 (1998),
273–287.

42. Martin Held, VRONI: An engineering approach to the reliable and efficient computation of Voronoi
diagrams of points and line segments, Computational Geometry: Theory and Applications 18 (2001),
no. 2, 95–123.

43. Martin Held and Willi Mann, An experimental analysis of floating-point versus exact arithmetic, 23rd
Canadian Conference on Computational Geometry (CCCG’11), August 2011, pp. 489–494.

44. Nicolas J. Higham, Accuracy and stability of numerical algorithms, 2. ed., SIAM, 2002.
45. ANSI/IEEE Standard 754-1985: IEEE standard for binary floating-point arithmetic, 1985, Reprinted in

SIGPLAN Notices, 22(2):9-25, 1987.
46. IEEE Standard 754-2008: IEEE standard for floating-point arithmetic, 2008, Revision of [45].
47. William Kahan, Further remarks on reducing truncation errors, Communications of the ACM 8 (1965),

no. 1, 40.
48. Vijay Karamcheti, Chen Li, Igor Pechtchanski, and Chee-Keng Yap, A core library for robust numeric and

geometric computation, Proceedings of the 15th Symposium on Computational Geometry (SoCG’99),
ACM, 1999, pp. 351–359.

49. Michael S. Karasick, Derek Lieber, and Lee R. Nackman, Efficient Delaunay triangulation using rational
arithmetic, ACM Transactions on Graphics 10 (1991), no. 1, 71–91.

50. Menelaos I. Karavelas, A robust and efficient implementation for the segment Voronoi diagram, Pro-
ceedings of the 1st International Symposium on Voronoi Diagrams in Science and Engineering, 2004,
pp. 51–62.

51. Lutz Kettner, Kurt Mehlhorn, Sylvain Pion, Stefan Schirra, and Chee-Keng Yap, Classroom examples of
robustness problems in geometric computation, Computational Geometry: Theory and Applications 40
(2008), no. 1, 61–78.

52. Donald Ervin Knuth, Seminumerical algorithms, The Art Of Computer Programming, vol. 2, Addison-
Wesley, 1969.

53. LEDA: Library of Efficient Data Structures and Algorithms,
http://www.algorithmic-solutions.com/.

54. Chen Li, Sylvain Pion, and Chee-Keng Yap, Recent progress in exact geometric computation, Journal of
Logic and Algebraic Programming 64 (2005), no. 1, 85–111.

55. Chen Li and Chee-Keng Yap, A new constructive root bound for algebraic expressions, Proceedings of
the 12th ACM-SIAM Symposium on Discrete Algorithms (SODA’01), SIAM, 2001, pp. 496–505.

56. Giuseppe Liotta, Franco P. Preparata, and Roberto Tamassia, Robust proximity queries: An illustration
of degree-driven algorithm design, SIAM Journal on Computing 28 (1998), no. 3, 864–889.

57. Georg Mackenbrock, Helmut Ratschek, and Jon G. Rokne, Experimental reliable code for 2D convex
hull construction, 1998, http://pages.cpsc.ucalgary.ca/~rokne/convex/.

58. Kurt Mehlhorn and Stefan Näher, LEDA: A platform for combinatorial and geometric computing,
Cambridge University Press, Cambridge, November 1999.

59. Kurt Mehlhorn, Ralf Osbild, and Michael Sagraloff, Reliable and efficient computational geometry via
controlled perturbation, Proceedings of the 33rd International Colloquium on Automata, Languages
and Programming (ICALP’06), Part 1, LNCS, vol. 4051, 2006, pp. 299–310.

60. Maurice Mignotte, Identification of algebraic numbers, Journal of Algorithms 3 (1982), 197–204.
61. , Mathematics for computer algebra, Springer, 1992.
62. Bhubaneswar Mishra, Algorithmic algebra, Texts and Monographs in Computer Science, Springer,

1993.
63. Marc Mörig, Deferring dag construction by storing sums of floats speeds-up exact decision computations

based on expression dags, 3rd International Congress on Mathematical Software (ICMS 2010), LNCS,
vol. 6327, September 2010, pp. 109–120.

http://www.algorithmic-solutions.com/
http://pages.cpsc.ucalgary.ca/~rokne/convex/

168 BIBLIOGRAPHY

64. Marc Mörig, Ivo Rössling, and Stefan Schirra, On the design and implementation of a generic number
type for real algebraic number computations based on expression dags, Mathematics in Computer
Science 4 (2010), no. 4, 539–556.

65. , On the design and implementation of a generic number type for real algebraic number computa-
tions based on expression dags, Tech. Report FIN-001-2010, Otto-von-Guericke-Universität Magdeburg,
Fakultät für Informatik, February 2010.

66. Marc Mörig and Stefan Schirra, On the design and performance of reliable geometric predicates
using error-free transformations and exact sign of sum algorithms, 19th Canadian Conference on
Computational Geometry (CCCG’07), August 2007, pp. 45–48.

67. , Engineering an exact sign of sum algorithm, Tech. Report FIN-002-2010, Otto-von-Guericke-
Universität Magdeburg, Fakultät für Informatik, February 2010.

68. Marc Mörig, Sven Scholz, Tobias Tscheuschner, and Eric Berberich, Chapter 6. Implementation Aspects,
in Müller-Hannemann and Schirra [73], pp. 237–289.

69. Marc Mörig and Silvio Weging, Companion web page to Summing Expansions Exactly and Efficiently,
2011, http://wwwisg.cs.uni-magdeburg.de/ag/RealAlgebraic/ex2bf.html.

70. , Summing expansions exactly and efficiently, Tech. Report FIN-09-2011, Otto-von-Guericke-
Universität Magdeburg, Fakultät für Informatik, November 2011.

71. MPFR: A multiple precision floating-point library, http://www.mpfr.org/.
72. Jean-Michel Muller, Nicolas Brisebarre, Florent de Dinechin, Claude-Pierre Jeannerod, Vincent

Lefèvre, Guillaume Melquiond, Nathalie Revol, Damien Stehlé, and Serge Torres, Handbook of
floating-point arithmetic, Birkhäuser Boston, 2010.

73. Matthias Müller-Hannemann and Stefan Schirra (eds.), Algorithm Engineering, LNCS, vol. 5971,
Springer, 2010.

74. David R. Musser, Introspective sorting and selection algorithms, Softw., Pract. Exper. 27 (1997), no. 8,
983–993.

75. Stefan Näher and Martin Taphorn, Experimental evaluation of structural filtering as a tool for exact and
efficient geometric computing, 19th Canadian Conference on Computational Geometry (CCCG’07),
2007, pp. 41–44.

76. Aleksandar Nanevski, Guy Blelloch, and Robert Harper, Automatic generation of staged geometric
predicates, Higher-Order and Symbolic Computation 16 (2003), no. 4, 379–400.

77. Takeshi Ogita, Siegfried M. Rump, and Shin’ichi Oishi, Accurate sum and dot product, SIAM Journal
on Scientific Computing 26 (2005), no. 6, 1955–1988.

78. Thomas Ottmann, Gerald Thiemt, and Christian P. Ullrich, Numerical stability of geometric algorithms,
Proceedings of the 3rd Symposium on Computational Geometry (SoCG’03), ACM, 1987, pp. 119–125.

79. Kouji Ouchi, Real/Expr: Implementation of an exact computation package, Master’s thesis, Courant
Institute of Mathematical Sciences, New York University, January 1997.

80. Michael L. Overton, Numerical computing with IEEE floating-point arithmetic, SIAM, 2001.
81. Katsuhisa Ozaki, Takeshi Ogita, Siegfried M. Rump, and Shin’ichi Oishi, Adaptive and efficient

algorithm for 2D orientation problem, Japan Journal of Industrial and Applied Mathematics 26
(2009), no. 2–3, 215–231.

82. Victor Y. Pan, Yanqiang Yu, and C. Stewart, Algebraic and numerical techniques for the computation of
matrix determinants, Computers and Mathematics with Applications 34 (1997), no. 1, 43–70.

83. Sylvain Pion and Andreas Fabri, A generic lazy evaluation scheme for exact geometric computations,
Science of Computer Programming 76 (2011), no. 4, 307–323.

84. Sylvain Pion and Chee-Keng Yap, Constructive root bound for k-ary rational input numbers, Theoretical
Computer Science 369 (2006), no. 1–3, 361–376.

85. Franco P. Preparata and Michael Ian Shamos, Computational Geometry: An Introduction, 1st ed.,
Springer, 1985.

86. Douglas M. Priest, Algorithms for arbitrary precision floating point arithmetic, Proceedings of the 10th
Symposium on Computer Arithmetic (ARITH’91), IEEE, June 1991, pp. 132–143.

http://wwwisg.cs.uni-magdeburg.de/ag/RealAlgebraic/ex2bf.html
http://www.mpfr.org/

BIBLIOGRAPHY 169

87. Helmut Ratschek and Jon Rokne, Geometric computations with interval and new robust methods:
Applications in computer graphics, GIS and computational geometry, Horwood Publishing, Chichester,
USA, 2003.

88. Helmut Ratschek and Jon G. Rokne, Exact computation of the sign of a finite sum, Applied Mathematics
and Computation 99 (1999), no. 2–3, 99–127.

89. RealAlgebraic: A number type for exact geometric computation, http://wwwisg.cs.
uni-magdeburg.de/ag/RealAlgebraic/.

90. Daniel Richardson, How to recognize zero, Journal of Symbolic Computation 24 (1997), no. 6,
627–645.

91. Siegfried Rump, Error estimation of floating-point summation and dot product, BIT Numerical Mathe-
matics 52 (2012), no. 1, 201–220.

92. Siegfried Rump, Paul Zimmermann, Sylvie Boldo, and Guillaume Melquiond, Computing predecessor
and successor in rounding to nearest, BIT Numerical Mathematics 49 (2009), no. 2, 419–431.

93. Siegfried M. Rump, Ultimately fast accurate summation, SIAM Journal on Scientific Computing 31
(2009), no. 5, 3466–3502.

94. Siegfried M. Rump, Takeshi Ogita, and Shin’ichi Oishi, Accurate floating-point summation part I:
Faithful rounding, SIAM Journal on Scientific Computing 31 (2008), no. 1, 189–224.

95. , Accurate floating-point summation part II: Sign, k-fold faithful and rounding to nearest, SIAM
Journal on Scientific Computing 31 (2008), no. 2, 1269–1302.

96. Edward R. Scheinerman, When close enough is close enough, American Mathematical Monthly 107
(2000), 489–499.

97. Stefan Schirra, Robustness and precision issues in geometric computation, Handbook of Computational
Geometry (Jörg Rüdiger Sack and Jorge Urrutia, eds.), Elsevier, Amsterdam, The Netherlands,
January 2000, pp. 597–632.

98. , Invited lecture: Real numbers and robustness in computational geometry, Real Numbers and
Computers’6, November 2004, Tech. Report 08-2004, Computer Science, University of Trier, pp. 7–21.

99. , Much Ado about Zero, Efficient Algorithms, LNCS, vol. 5760, September 2009, pp. 408–421.
100. , A note on sekigawa’s zero separation bound, Computer Algebra in Scientific Computing - 15th

International Workshop (CASC 2013), LNCS, vol. 8136, September 2013, pp. 331–339.
101. Susanne Schmitt, Web page for leda::real extendend [9], http://www.mpi-inf.mpg.de/

projects/exacus/leda_extension/.
102. , Improved separation bounds for the diamond operator, Tech. Report ECG-TR-363108-01,

Effective Computational Geometry for Curves and Surfaces, Sophia Antipolis, France, 2004.
103. Hiroshi Sekigawa, Zero determination of algebraic numbers using approximate computation and its

application to algorithms in computer algebra, Ph.D. thesis, University of Tokio, 2004.
104. Jonathan Richard Shewchuk, Adaptive precision floating-point arithmetic and fast robust geometric

predicates, Discrete and Computational Geometry 18 (1997), no. 3, 305–363.
105. , Companion web page to [104], 1997, http://www.cs.cmu.edu/~quake/robust.

html.
106. Pat H. Sterbenz, Floating-point computation, Prentice-Hall, 1974.
107. Jorge Stolfi, Oriented projective geometry, Academic Press, 1991.
108. Kokichi Sugihara and Masao Iri, A robust topology-oriented incremental algorithm for Voronoi diagrams,

International Journal of Computational Geometry and Applications 4 (1994), no. 2, 179–228.
109. Kokichi Sugihara, Masao Iri, Hiroshi Inagaki, and Toshiyuki Imai, Topology-oriented implementation –

An approach to robust geometric algorithms, Algorithmica 27 (2000), no. 1, 5–20.
110. Joachim von zur Gathen and Jürgen Gerhard, Modern computer algebra, 2nd ed., Cambridge Univer-

sity Press, 2003.
111. Ron Wein, High-level filtering for arrangements of conic arcs, Proceedings of the 10th European

Symposium on Algorithms (ESA’02), LNCS, vol. 2461, 2002, pp. 884–895.
112. Fujio Yamaguchi, A shift of playground for geometric processing from euclidean to homogeneous, The

Visual Computer 14 (1998), no. 7, 315–327.

http://wwwisg.cs.uni-magdeburg.de/ag/RealAlgebraic/
http://wwwisg.cs.uni-magdeburg.de/ag/RealAlgebraic/
http://www.mpi-inf.mpg.de/projects/exacus/leda_extension/
http://www.mpi-inf.mpg.de/projects/exacus/leda_extension/
http://www.cs.cmu.edu/~quake/robust.html
http://www.cs.cmu.edu/~quake/robust.html

170 BIBLIOGRAPHY

113. Chee-Keng Yap, Towards exact geometric computation, Computational Geometry: Theory and Applica-
tions 7 (1997), no. 1–2, 3–23.

114. , Fundamental problems of algorithmic algebra, Oxford University Press, 2000.
115. , On guaranteed accuracy computation, ch. 12, pp. 322–373, World Scientific, 2004.
116. , On guaranteed accuracy computation, Geometric Computation, World Scientific, 2004,

pp. 322–373.
117. , Robust geometric computation, Handbook of Discrete and Computational Geometry, CRC,

2nd ed., 2004, pp. 927–952.
118. Chee-Keng Yap and Thomas Dubé, The exact computation paradigm, Computing in Euclidean Geome-

try, World Scientific, 2nd ed., 1995, pp. 452–486.
119. Jihun Yu, Chee-Keng Yap, Zilin Du, Sylvain Pion, and Hervé Brönnimann, The design of Core 2:

A library for exact numeric computation in geometry and algebra, 3rd International Congress on
Mathematical Software (ICMS 2010), LNCS, vol. 6327, September 2010.

APPENDIX A

Complete Results from Experiments

The following tables contain results from experiments in Chapter 3 and Chapter 5.
For each number type or geometric kernel and each geometric problem and input
type, they contain the average running time for solving the geometric problem 25
times. A dash “–” indicates that a number type or geometric kernel is not applicable
to the geometric problem, while a star “?” means the experiments crashed on at least
one of the input sets.

The results are split into groups, reflecting their discussion in the text. The best
running time in each group is typeset in bold and table cells are colored according to
the relative deviation from the best time within the group. The color coding scheme
is given in Figure A.1.

0 0.25 0.5 0.75 1 1.25
∆

∆= t−tbest

tbest

Figure A.1. Color coding of running times.

171

172 A. COMPLETE RESULTS FROM EXPERIMENTS

Delaunay triangulation Segment intersect-
homogeneous

0 25 50 75 100 short long grid axis short
nodaL
doubL
dsumL

leda::real
EXT::real

CORE::Expr 1.8
CORE::Expr 2.1.1

Lazy_exact_nt<Gmpzf>
Gmpzf

Lazy_exact_nt<Gmpq>
Gmpq

0.06 0.08 0.11 0.13 0.16
0.06 0.08 0.11 0.13 0.15
0.09 0.09 0.09 0.09 0.09
0.33 0.46 0.59 0.69 0.79
0.26 0.39 0.51 0.63 0.73
0.07 0.31 0.55 0.80 1.04
0.20 0.34 0.47 0.62 0.77
0.16 0.19 0.21 0.23 0.26
0.35 0.35 0.37 0.35 0.37
0.16 0.25 0.32 0.37 0.44
1.20 1.22 1.21 1.23 1.27

0.31 0.34 0.48 0.82
0.29 0.42 0.47 0.75
0.34 0.53 0.36 0.50
0.74 1.06 2.10 2.76
0.71 1.04 2.09 2.90
0.29 0.33 0.78 0.90
0.52 0.59 1.08 1.24
0.33 0.45 0.26 0.43
0.49 0.64 0.23 0.42
0.34 0.46 0.53 0.78
1.08 1.44 0.53 0.87

0.20
0.22
0.32
0.45
0.45
0.20
0.29

–
–

0.29
0.51

Epick
Epeck

0.01 0.06 0.09 0.13 0.16
0.02 0.06 0.10 0.14 0.17

– – – –
– – – –

–
0.14

boost_pool
leda_pool

no_pool

0.06 0.09 0.12 0.14 0.16
0.06 0.09 0.11 0.14 0.16
0.13 0.17 0.19 0.21 0.24

0.30 0.34 0.48 0.79
0.31 0.34 0.48 0.80
0.35 0.39 0.48 0.80

0.19
0.20
0.21

ledaF__nodaL
boostF_nodaL

0.06 0.08 0.11 0.13 0.15
0.09 0.12 0.13 0.15 0.17

0.31 0.35 0.50 0.80
0.34 0.39 0.43 0.66

0.20
0.21

ledaF__dintL
boostF_dintL

0.08 0.10 0.13 0.15 0.17
0.23 0.25 0.27 0.28 0.33

0.29 0.38 0.52 0.83
0.46 0.67 0.55 0.80

0.21
0.28

mpfrA
pure_mpfrA

ledaA

0.06 0.08 0.11 0.13 0.15
0.06 0.09 0.13 0.16 0.19
0.05 0.18 0.29 0.40 0.48

0.31 0.34 0.48 0.81
0.31 0.35 0.52 0.86
0.31 0.35 2.12 4.17

0.20
0.20
0.20

basicD
oledaD

0.05 0.08 0.11 0.13 0.15
0.06 0.12 0.17 0.23 0.27

0.30 0.34 0.48 0.82
0.33 0.39 1.03 1.55

0.20
0.22

nodaL
doubL
dwicL
dintL
dsumL

0.06 0.08 0.11 0.13 0.16
0.06 0.08 0.11 0.13 0.15
0.08 0.10 0.12 0.15 0.17
0.08 0.10 0.13 0.15 0.17
0.09 0.09 0.09 0.09 0.09

0.31 0.34 0.48 0.82
0.29 0.42 0.47 0.75
0.29 0.37 0.49 0.82
0.30 0.38 0.50 0.85
0.34 0.53 0.36 0.50

0.20
0.22
0.21
0.21
0.32

2 summands
4 summands
8 summands

12 summands
18 summands
24 summands
32 summands
40 summands

0.17 0.18 0.20 0.20 0.21
0.11 0.11 0.12 0.12 0.12
0.09 0.09 0.09 0.09 0.09
0.09 0.09 0.09 0.09 0.09
0.10 0.10 0.10 0.10 0.10
0.10 0.10 0.10 0.10 0.10
0.10 0.11 0.10 0.11 0.11
0.11 0.11 0.11 0.11 0.11

0.36 0.58 0.51 0.79
0.57 0.75 0.53 0.72
0.34 0.52 0.36 0.49
0.37 0.69 0.36 0.37
0.43 0.90 0.33 0.41
0.51 0.82 0.34 0.38
0.50 0.89 0.36 0.38
0.53 0.96 0.40 0.41

0.27
0.38
0.33
0.32
0.36
0.37
0.39
0.81

protO___noP
expaO___noP
expaO_warnP
expaO_restP

0.09 0.09 0.09 0.09 0.09
0.08 0.08 0.08 0.08 0.08
0.27 0.27 0.27 0.28 0.28
0.10 0.10 0.11 0.10 0.11

0.34 0.52 0.36 0.50
0.34 0.52 0.36 0.50
0.47 0.67 0.41 0.62
0.36 0.54 0.37 0.51

0.32
0.32
0.35
0.32

__noC
lazyC
laagC
permC

0.11 0.11 0.11 0.12 0.12
0.09 0.09 0.09 0.09 0.09
0.10 0.10 0.10 0.10 0.10
0.10 0.10 0.10 0.10 0.10

0.40 0.64 0.40 0.53
0.34 0.52 0.37 0.50
0.34 0.54 0.36 0.49
0.35 0.52 0.36 0.52

0.35
0.32
0.33
0.32

treeM
expaM
nodeM

0.09 0.08 0.09 0.09 0.09
0.09 0.09 0.09 0.09 0.09
0.09 0.09 0.10 0.10 0.10

0.31 0.49 0.44 0.61
0.36 0.52 0.37 0.49
0.39 0.60 0.43 0.58

0.30
0.33
0.42

expaO_restP
plaiO_restP_permC_treeM

0.10 0.11 0.11 0.11 0.11
0.10 0.11 0.13 0.14 0.15

0.35 0.53 0.37 0.51
0.39 0.65 0.56 0.66

0.33
0.33

Table A.1. Results for floating-point data on descartes.

A. COMPLETE RESULTS FROM EXPERIMENTS 173

ion Arrangement of circles Segment Voronoi diagram
Cartesian static algebraic predicates predicates with 2p

long grid axis rand gridrn pack gridnn rand gridrn pack gridnn mst sqrs short shoax
0.26 0.30 0.35
0.29 0.30 0.08
0.47 0.27 0.21
0.63 1.10 0.36
0.64 1.13 0.51
0.26 ? 0.62
0.33 0.49 0.50

– – –
– – –

0.27 0.31 0.16
0.66 0.24 0.27

0.99 1.54 0.30 1.13
0.86 1.72 0.29 0.98
0.61 1.35 0.24 0.91
1.20 2.26 0.81 3.06
1.12 2.13 0.81 3.17
3.08 4.42 1.25 2.39
1.24 1.64 0.76 1.40

– – – –
– – – –

0.33 0.68 0.29 0.68
0.78 0.98 0.31 0.52

0.38 0.79 0.32 0.89
0.38 0.78 0.31 0.86
0.44 0.87 0.27 0.82
1.04 1.75 1.97 3.50
1.02 1.75 1.44 3.64
0.75 1.47 4.28 4.74
0.51 1.15 0.80 1.29

– – – –
– – – –

0.36 0.71 0.29 0.60
0.84 1.38 0.34 0.65

0.68 0.35 0.62 0.38
0.68 0.30 0.61 0.34
0.68 0.22 0.59 0.30
0.69 0.55 1.98 0.73
0.69 0.53 2.03 0.71
0.71 1.39 1.50 1.31
0.69 1.28 1.40 1.72
0.59 0.54 – –
0.58 0.51 – –
0.62 0.79 0.84 0.97
0.60 0.84 1.03 1.40

– – –
0.17 0.52 0.09

– – – –
0.28 0.55 0.32 0.69

– – – –
0.42 0.80 0.39 0.75

– – – –
0.62 0.99 1.07 1.21

0.24 0.29 0.33
0.25 0.30 0.35
0.24 0.28 0.33

0.95 1.51 0.30 1.12
1.00 1.53 0.31 1.15
0.93 1.20 0.32 1.02

0.37 0.76 0.31 0.89
0.37 0.79 0.31 0.91
0.34 0.73 0.33 0.84

0.67 0.35 0.62 0.38
0.68 0.34 0.61 0.38
0.67 0.38 0.67 0.44

0.25 0.30 0.34
0.27 0.29 0.14

0.99 1.56 0.30 1.12
0.98 1.35 0.29 0.81

0.37 0.78 0.31 0.89
0.39 0.80 0.32 1.03

0.68 0.35 0.62 0.38
0.67 0.31 0.63 0.36

0.27 0.32 0.45
0.40 0.34 0.15

0.88 1.76 0.31 1.13
0.90 1.45 0.31 0.77

0.39 0.81 0.32 0.91
0.45 0.85 0.35 0.81

0.68 0.36 0.63 0.40
0.68 0.38 0.71 0.44

0.26 0.30 0.36
0.25 0.32 0.37
0.25 0.95 1.25

0.99 1.54 0.29 1.15
1.03 1.61 0.33 1.17
1.95 3.39 0.99 5.10

0.37 0.80 0.31 0.88
0.38 0.80 0.32 0.92
0.68 1.17 1.27 3.94

0.68 0.35 0.62 0.38
0.68 0.37 0.65 0.41
0.69 0.90 1.76 1.18

0.26 0.30 0.34
0.29 0.57 0.47

1.00 1.54 0.30 1.14
1.66 2.49 0.54 2.19

0.37 0.79 0.31 0.90
0.44 0.92 0.52 1.66

0.67 0.35 0.61 0.37
0.68 0.48 0.95 0.51

0.26 0.30 0.35
0.29 0.30 0.08
0.29 0.31 0.46
0.28 0.31 0.45
0.47 0.27 0.21

0.99 1.54 0.30 1.13
0.86 1.72 0.29 0.98
0.86 1.73 0.30 1.10
0.87 1.75 0.31 1.11
0.61 1.35 0.24 0.91

0.38 0.79 0.32 0.89
0.38 0.78 0.31 0.86
0.38 0.81 0.32 0.91
0.39 0.81 0.32 0.90
0.44 0.87 0.27 0.82

0.68 0.35 0.62 0.38
0.68 0.30 0.61 0.34
0.68 0.34 0.62 0.37
0.68 0.37 0.63 0.40
0.68 0.22 0.59 0.30

0.36 0.33 0.19
0.60 0.38 0.20
0.46 0.27 0.21
0.46 0.25 0.22
0.51 0.27 0.24
0.53 0.28 0.25
0.55 0.29 0.27
0.70 0.35 0.40

0.83 1.68 0.29 1.01
0.85 1.51 0.28 1.02
0.60 1.36 0.24 0.91
0.61 1.40 0.24 0.94
0.63 1.43 0.27 0.95
0.79 1.43 0.28 1.03
0.66 1.48 0.27 0.99
0.68 1.66 0.28 0.99

0.45 0.90 0.31 0.85
0.46 0.85 0.29 0.83
0.44 0.87 0.27 0.82
0.44 0.93 0.27 0.80
0.47 0.95 0.27 0.81
0.47 0.95 0.27 0.82
0.49 0.98 0.28 0.81
0.50 1.00 0.28 0.81

0.68 0.29 0.61 0.33
0.67 0.24 0.59 0.30
0.67 0.22 0.58 0.30
0.67 0.23 0.59 0.31
0.68 0.24 0.60 0.33
0.68 0.25 0.61 0.33
0.68 0.25 0.62 0.35
0.69 0.26 0.62 0.36

0.47 0.28 0.21
0.46 0.27 0.21
0.50 0.28 0.24
0.47 0.27 0.21

0.60 1.36 0.24 0.90
0.60 1.37 0.24 0.92
0.62 1.40 0.26 0.93
0.61 1.40 0.24 0.97

0.44 0.86 0.27 0.83
0.44 0.85 0.27 0.81
0.47 0.90 0.28 0.84
0.44 0.87 0.27 0.84

0.67 0.22 0.58 0.30
0.67 0.22 0.58 0.30
0.68 0.26 0.62 0.38
0.67 0.23 0.59 0.31

0.51 0.30 0.22
0.47 0.27 0.22
0.47 0.27 0.22
0.47 0.27 0.21

0.64 1.44 0.25 0.92
0.60 1.36 0.24 0.91
0.60 1.35 0.24 0.92
0.60 1.36 0.24 0.91

0.46 0.87 0.28 0.83
0.44 0.84 0.27 0.81
0.45 0.85 0.27 0.83
0.44 0.85 0.27 0.81

0.67 0.23 0.58 0.31
0.68 0.22 0.58 0.30
0.68 0.22 0.58 0.31
0.67 0.23 0.58 0.30

0.46 0.36 0.21
0.47 0.27 0.21
0.60 0.33 0.21

1.09 2.27 0.33 1.18
0.60 1.35 0.24 0.90
0.68 1.53 0.27 0.95

0.45 0.89 0.30 0.88
0.44 0.85 0.27 0.81
0.49 0.96 0.29 0.84

0.68 0.25 0.60 0.33
0.68 0.22 0.58 0.30
0.68 0.24 0.62 0.34

0.47 0.27 0.21
0.53 0.45 0.22

0.61 1.40 0.24 0.98
1.09 1.95 0.33 1.12

0.44 0.88 0.27 0.84
0.48 0.92 0.35 0.90

0.67 0.23 0.59 0.31
0.68 0.27 0.60 0.34

174 A. COMPLETE RESULTS FROM EXPERIMENTS

Delaunay triangulation Segment intersect-
homogeneous

0 25 50 75 100 short long grid axis short
nodaL
doubL
dsumL

leda::real
EXT::real

CORE::Expr 1.8
CORE::Expr 2.1.1

Lazy_exact_nt<Gmpzf>
Gmpzf

Lazy_exact_nt<Gmpq>
Gmpq

0.05 0.05 0.05 0.05 0.05
0.04 0.04 0.04 0.04 0.04
0.04 0.04 0.04 0.04 0.04
0.10 0.10 0.10 0.10 0.11
0.09 0.09 0.09 0.09 0.09
0.07 0.09 0.14 0.20 0.30
0.19 0.22 0.26 0.32 0.39
0.16 0.17 0.16 0.17 0.18
0.34 0.35 0.35 0.36 0.37
0.16 0.17 0.18 0.17 0.18
0.76 0.77 0.78 0.78 0.82

0.31 0.35 0.23 0.73
0.26 0.39 0.15 0.42
0.23 0.35 0.12 0.19
? ? 0.53 1.45
? ? 0.52 1.43

0.30 0.33 0.30 0.84
0.52 0.60 0.36 1.02
0.33 0.44 0.17 0.42
0.43 0.62 0.21 0.37
0.33 0.46 0.22 0.70
0.97 1.28 0.46 0.81

0.20
0.21
0.25
0.51
0.49
0.20
0.28

–
–

0.29
0.42

Epick
Epeck

0.01 0.01 0.01 0.01 0.01
0.02 0.02 0.02 0.02 0.02

– – – –
– – – –

–
0.13

boost_pool
leda_pool

no_pool

0.06 0.06 0.06 0.06 0.06
0.05 0.05 0.05 0.05 0.05
0.12 0.13 0.12 0.12 0.13

0.30 0.34 0.23 0.72
0.31 0.35 0.23 0.75
0.36 0.39 0.23 0.73

0.19
0.20
0.21

ledaF__nodaL
boostF_nodaL

0.05 0.05 0.05 0.05 0.05
0.09 0.09 0.09 0.09 0.10

0.31 0.35 0.23 0.74
0.33 0.39 0.19 0.58

0.20
0.21

ledaF__dintL
boostF_dintL

0.05 0.05 0.05 0.05 0.05
0.19 0.19 0.19 0.19 0.20

0.30 0.42 0.25 0.77
0.43 0.63 0.24 0.60

0.21
0.27

mpfrA
pure_mpfrA

ledaA

0.05 0.05 0.05 0.05 0.05
0.05 0.05 0.05 0.05 0.05
0.05 0.05 0.05 0.05 0.05

0.31 0.35 0.23 0.75
0.31 0.36 0.24 0.78
0.31 0.36 0.55 3.07

0.20
0.20
0.20

basicD
oledaD

0.05 0.05 0.05 0.05 0.05
0.05 0.06 0.05 0.06 0.05

0.31 0.35 0.23 0.74
0.33 0.39 0.31 1.22

0.20
0.22

nodaL
doubL
dwicL
dintL
dsumL

0.05 0.05 0.05 0.05 0.05
0.04 0.04 0.04 0.04 0.04
0.05 0.05 0.05 0.06 0.06
0.05 0.05 0.05 0.05 0.05
0.04 0.04 0.04 0.04 0.04

0.31 0.35 0.23 0.73
0.26 0.39 0.15 0.42
0.30 0.42 0.25 0.73
0.30 0.43 0.25 0.75
0.23 0.35 0.12 0.19

0.20
0.21
0.22
0.21
0.25

2 summands
4 summands
8 summands

12 summands
18 summands
24 summands
32 summands
40 summands

0.06 0.07 0.06 0.07 0.07
0.04 0.04 0.04 0.04 0.04
0.04 0.04 0.04 0.04 0.04
0.05 0.04 0.04 0.04 0.05
0.05 0.05 0.05 0.05 0.05
0.05 0.05 0.05 0.05 0.05
0.05 0.05 0.05 0.06 0.06
0.06 0.06 0.06 0.06 0.06

0.37 0.57 0.19 0.52
0.33 0.51 0.18 0.31
0.23 0.35 0.12 0.19
0.25 0.37 0.12 0.20
0.28 0.57 0.15 0.30
0.36 0.46 0.16 0.26
0.32 0.48 0.16 0.27
0.36 0.52 0.18 0.30

0.28
0.23
0.24
0.26
0.29
0.30
0.32
0.70

protO___noP
expaO___noP
expaO_warnP
expaO_restP

0.04 0.04 0.04 0.04 0.05
0.03 0.04 0.04 0.04 0.04
0.22 0.22 0.22 0.23 0.23
0.06 0.06 0.06 0.06 0.06

0.23 0.35 0.12 0.19
0.22 0.33 0.11 0.18
0.40 0.61 0.21 0.35
0.25 0.37 0.13 0.20

0.25
0.24
0.27
0.25

__noC
lazyC
laagC
permC

0.04 0.04 0.05 0.05 0.04
0.05 0.04 0.04 0.04 0.05
0.05 0.05 0.05 0.05 0.05
0.04 0.05 0.05 0.05 0.05

0.24 0.37 0.12 0.19
0.24 0.35 0.12 0.19
0.23 0.36 0.12 0.19
0.26 0.37 0.13 0.21

0.25
0.25
0.25
0.25

treeM
expaM
nodeM

0.04 0.04 0.04 0.04 0.04
0.04 0.04 0.04 0.04 0.05
0.04 0.04 0.04 0.04 0.05

0.23 0.35 0.12 0.18
0.23 0.35 0.12 0.19
0.23 0.37 0.12 0.19

0.22
0.25
0.29

expaO_restP
plaiO_restP_permC_treeM

0.06 0.06 0.06 0.06 0.06
0.07 0.06 0.06 0.06 0.07

0.25 0.37 0.13 0.21
0.27 0.40 0.14 0.21

0.25
0.23

Table A.2. Results for integer data on descartes.

A. COMPLETE RESULTS FROM EXPERIMENTS 175

ion Arrangement of circles Segment Voronoi diagram
Cartesian static algebraic predicates predicates with 2p

long grid axis rand gridrn pack gridnn rand gridrn pack gridnn mst sqrs short shoax
0.25 0.15 0.33
0.32 0.12 0.08
0.34 0.14 0.14
0.74 0.38 0.13
0.73 0.40 0.16
0.26 0.24 0.61
0.33 0.21 0.50

– – –
– – –

0.28 0.14 0.17
0.52 0.19 0.26

0.85 1.26 0.24 0.97
0.67 1.04 0.22 0.57
0.54 1.21 0.21 0.77
1.01 1.70 0.41 2.52
0.95 1.62 0.40 2.59
2.97 4.18 1.18 2.12
1.16 1.46 0.52 1.10

– – – –
– – – –

0.32 0.62 0.19 0.52
0.69 0.86 0.28 0.41

0.36 0.74 0.21 0.85
0.33 0.61 0.17 0.58
0.35 0.71 0.19 0.71
0.82 1.39 0.64 2.77
0.83 1.43 0.65 2.91
0.51 1.03 0.93 2.23
0.47 1.05 0.48 0.99

– – – –
– – – –

0.34 0.64 0.20 0.46
0.74 1.24 0.30 0.56

0.66 0.18 0.56 0.31
0.67 0.11 0.50 0.25
0.67 0.11 0.50 0.25
0.67 0.16 1.26 0.46
0.67 0.16 1.27 0.44
0.68 0.39 1.23 1.02
0.66 0.41 1.26 1.47
0.56 0.25 – –
0.56 0.19 – –
0.57 0.34 0.68 0.84
0.57 0.28 0.77 1.14

– – –
0.17 0.14 0.09

– – – –
0.28 0.49 0.23 0.52

– – – –
0.41 0.74 0.26 0.59

– – – –
0.56 0.40 0.90 1.08

0.24 0.14 0.31
0.25 0.14 0.33
0.25 0.13 0.31

0.81 1.26 0.24 0.97
0.86 1.27 0.25 0.99
0.81 1.00 0.26 0.88

0.35 0.74 0.21 0.85
0.36 0.75 0.21 0.84
0.33 0.68 0.23 0.78

0.67 0.18 0.56 0.32
0.67 0.18 0.56 0.31
0.67 0.19 0.60 0.37

0.26 0.14 0.34
0.27 0.14 0.13

0.85 1.26 0.24 0.98
0.86 1.23 0.25 0.75

0.36 0.74 0.21 0.83
0.37 0.75 0.23 1.01

0.67 0.18 0.56 0.31
0.66 0.12 0.57 0.30

0.30 0.16 0.41
0.41 0.16 0.15

0.68 1.44 0.23 0.94
0.68 1.07 0.24 0.60

0.35 0.74 0.18 0.86
0.40 0.72 0.20 0.63

0.67 0.18 0.52 0.32
0.67 0.13 0.58 0.36

0.26 0.14 0.33
0.25 0.15 0.35
0.25 0.30 1.10

0.85 1.26 0.24 0.97
0.88 1.33 0.26 1.03
1.39 2.33 0.56 4.39

0.36 0.75 0.21 0.83
0.36 0.75 0.22 0.86
0.53 1.01 0.73 4.11

0.67 0.17 0.56 0.31
0.66 0.19 0.58 0.34
0.66 0.41 1.42 0.74

0.25 0.15 0.33
0.29 0.19 0.46

0.86 1.26 0.24 1.00
1.16 1.74 0.38 1.85

0.36 0.75 0.21 0.83
0.41 0.82 0.32 1.38

0.67 0.18 0.56 0.31
0.67 0.26 0.76 0.38

0.25 0.15 0.33
0.32 0.12 0.08
0.31 0.16 0.42
0.31 0.16 0.41
0.34 0.14 0.14

0.85 1.26 0.24 0.97
0.67 1.04 0.22 0.57
0.68 1.40 0.22 0.92
0.69 1.43 0.23 0.94
0.54 1.21 0.21 0.77

0.36 0.74 0.21 0.85
0.33 0.61 0.17 0.58
0.34 0.75 0.18 0.85
0.34 0.73 0.18 0.86
0.35 0.71 0.19 0.71

0.66 0.18 0.56 0.31
0.67 0.11 0.50 0.25
0.67 0.17 0.51 0.30
0.67 0.18 0.53 0.32
0.67 0.11 0.50 0.25

0.40 0.14 0.12
0.34 0.13 0.14
0.34 0.14 0.15
0.35 0.14 0.15
0.39 0.16 0.18
0.41 0.16 0.19
0.44 0.17 0.20
0.57 0.22 0.30

0.61 1.29 0.23 0.83
0.68 1.20 0.22 0.79
0.54 1.22 0.21 0.77
0.56 1.26 0.22 0.81
0.59 1.31 0.25 0.83
0.75 1.31 0.26 0.90
0.62 1.36 0.25 0.85
0.64 1.50 0.26 0.87

0.38 0.73 0.19 0.73
0.34 0.69 0.18 0.73
0.35 0.71 0.19 0.72
0.35 0.72 0.19 0.72
0.39 0.76 0.20 0.75
0.39 0.76 0.20 0.73
0.40 0.78 0.20 0.75
0.41 0.80 0.20 0.76

0.67 0.12 0.49 0.26
0.67 0.11 0.50 0.26
0.66 0.11 0.49 0.26
0.67 0.11 0.50 0.27
0.67 0.12 0.52 0.28
0.68 0.12 0.52 0.29
0.68 0.12 0.53 0.31
0.68 0.12 0.53 0.31

0.34 0.14 0.15
0.33 0.13 0.14
0.37 0.15 0.17
0.34 0.14 0.15

0.55 1.23 0.21 0.78
0.55 1.22 0.21 0.79
0.57 1.27 0.23 0.80
0.60 1.28 0.23 0.83

0.35 0.71 0.19 0.72
0.34 0.70 0.19 0.71
0.37 0.76 0.20 0.73
0.37 0.74 0.19 0.75

0.67 0.11 0.50 0.26
0.67 0.11 0.50 0.26
0.66 0.12 0.54 0.33
0.67 0.11 0.51 0.27

0.34 0.14 0.15
0.34 0.14 0.15
0.34 0.14 0.15
0.34 0.14 0.14

0.55 1.22 0.21 0.78
0.55 1.22 0.22 0.77
0.55 1.24 0.22 0.79
0.55 1.22 0.22 0.78

0.36 0.71 0.19 0.73
0.34 0.70 0.19 0.72
0.35 0.72 0.19 0.71
0.35 0.71 0.19 0.71

0.67 0.11 0.49 0.26
0.68 0.11 0.50 0.26
0.66 0.11 0.50 0.26
0.68 0.11 0.50 0.26

0.31 0.13 0.14
0.34 0.14 0.15
0.40 0.15 0.14

0.68 1.45 0.24 0.84
0.56 1.22 0.21 0.77
0.58 1.27 0.22 0.80

0.35 0.71 0.19 0.73
0.35 0.71 0.19 0.71
0.37 0.73 0.19 0.73

0.68 0.12 0.50 0.26
0.67 0.11 0.50 0.26
0.68 0.11 0.50 0.27

0.34 0.15 0.15
0.31 0.14 0.15

0.60 1.26 0.23 0.83
0.75 1.52 0.26 0.91

0.37 0.73 0.20 0.74
0.36 0.73 0.20 0.76

0.67 0.11 0.51 0.27
0.68 0.11 0.51 0.27

176 A. COMPLETE RESULTS FROM EXPERIMENTS

Delaunay triangulation Segment intersect-
homogeneous

0 25 50 75 100 short long grid axis short
nodaL
doubL
dsumL

leda::real
EXT::real

CORE::Expr 1.8
CORE::Expr 2.1.1

Lazy_exact_nt<Gmpzf>
Gmpzf

Lazy_exact_nt<Gmpq>
Gmpq

0.15 0.21 0.28 0.33 0.38
0.17 0.24 0.30 0.35 0.39
0.24 0.24 0.24 0.25 0.25
0.83 1.18 1.48 1.74 2.01
0.68 1.00 1.31 1.56 1.81
0.14 0.70 1.27 1.89 2.47
0.44 0.77 1.11 1.46 1.83
0.64 0.71 0.77 0.82 0.87
0.85 0.86 0.87 0.88 0.90
0.64 0.83 1.00 1.14 1.26
2.74 2.73 2.77 2.78 2.89

0.74 0.76 1.09 1.86
0.69 0.94 1.04 1.81
0.87 1.31 0.90 1.31
1.50 2.13 5.17 6.98
1.54 2.26 5.11 7.13
0.70 0.66 1.62 1.92
1.29 1.34 2.46 2.87
0.92 1.22 0.69 1.18
1.18 1.53 0.56 0.99
0.93 1.23 1.27 1.94
2.72 3.43 1.25 2.11

0.43
0.47
0.70
0.88
0.95
0.42
0.60

–
–

0.75
1.21

Epick
Epeck

0.02 0.12 0.21 0.29 0.35
0.08 0.18 0.28 0.35 0.42

– – – –
– – – –

–
0.37

boost_pool
leda_pool

no_pool

0.14 0.22 0.27 0.33 0.37
0.14 0.22 0.27 0.33 0.39
0.33 0.41 0.48 0.55 0.60

0.70 0.70 1.08 1.89
0.74 0.73 1.09 1.85
0.92 0.87 1.12 1.99

0.42
0.43
0.47

ledaF__nodaL
boostF_nodaL

0.14 0.21 0.27 0.33 0.38
0.50 0.61 0.69 0.77 0.84

0.74 0.75 1.09 1.87
1.07 1.22 1.43 2.17

0.43
0.55

ledaF__dintL
boostF_dintL

0.22 0.29 0.36 0.40 0.45
1.74 1.83 1.91 1.99 2.08

0.68 0.87 1.15 1.99
2.33 3.38 2.26 3.52

0.46
1.14

mpfrA
pure_mpfrA

ledaA

0.14 0.21 0.27 0.33 0.38
0.14 0.25 0.32 0.40 0.47
0.15 0.46 0.75 1.00 1.23

0.74 0.75 1.09 1.86
0.74 0.75 1.19 1.99
0.74 0.75 5.39 10.69

0.43
0.43
0.43

basicD
oledaD

0.14 0.21 0.27 0.33 0.39
0.18 0.30 0.42 0.52 0.60

0.74 0.75 1.09 1.87
0.81 0.84 2.13 3.35

0.43
0.46

nodaL
doubL
dwicL
dintL
dsumL

0.15 0.21 0.28 0.33 0.38
0.17 0.24 0.30 0.35 0.39
0.21 0.28 0.34 0.39 0.44
0.22 0.29 0.35 0.40 0.45
0.24 0.24 0.24 0.25 0.25

0.74 0.76 1.09 1.86
0.69 0.94 1.04 1.81
0.65 0.84 1.14 1.95
0.67 0.87 1.16 1.96
0.87 1.31 0.90 1.31

0.43
0.47
0.48
0.46
0.70

2 summands
4 summands
8 summands

12 summands
18 summands
24 summands
32 summands
40 summands

0.43 0.46 0.49 0.51 0.54
0.28 0.29 0.30 0.31 0.32
0.24 0.25 0.25 0.25 0.26
0.24 0.24 0.24 0.24 0.25
0.26 0.26 0.26 0.26 0.27
0.27 0.26 0.26 0.27 0.27
0.28 0.28 0.28 0.28 0.29
0.29 0.29 0.29 0.29 0.30

0.80 1.22 1.12 1.85
1.39 1.63 1.17 1.70
0.87 1.30 0.91 1.30
0.98 1.78 0.90 0.97
1.07 2.37 0.85 1.05
1.30 2.05 0.84 0.94
1.26 2.25 0.91 0.97
1.36 2.46 1.00 1.07

0.60
0.78
0.72
0.74
0.79
0.81
0.87
2.14

protO___noP
expaO___noP
expaO_warnP
expaO_restP

0.24 0.24 0.25 0.25 0.25
0.21 0.21 0.22 0.22 0.22
0.79 0.79 0.80 0.81 0.83
0.30 0.30 0.30 0.31 0.31

0.86 1.30 0.91 1.30
0.83 1.27 0.89 1.29
1.27 1.75 1.01 1.68
0.91 1.37 0.94 1.36

0.72
0.70
0.81
0.73

__noC
lazyC
laagC
permC

0.28 0.29 0.29 0.30 0.31
0.24 0.24 0.24 0.25 0.25
0.26 0.26 0.26 0.26 0.27
0.27 0.27 0.27 0.28 0.28

1.00 1.53 0.97 1.40
0.87 1.31 0.92 1.32
0.87 1.31 0.92 1.33
0.88 1.28 0.88 1.34

0.73
0.71
0.71
0.71

treeM
expaM
nodeM

0.24 0.24 0.24 0.25 0.26
0.24 0.24 0.24 0.25 0.25
0.25 0.26 0.26 0.26 0.27

0.81 1.27 1.09 1.56
0.87 1.31 0.90 1.31
0.99 1.50 1.05 1.49

0.70
0.71
0.94

expaO_restP
plaiO_restP_permC_treeM

0.30 0.30 0.30 0.31 0.32
0.28 0.32 0.36 0.39 0.42

0.91 1.36 0.94 1.35
1.01 1.65 1.35 1.72

0.73
0.75

Table A.3. Results for floating-point data on minkowski.

A. COMPLETE RESULTS FROM EXPERIMENTS 177

ion Arrangement of circles Segment Voronoi diagram
Cartesian static algebraic predicates predicates with 2p

long grid axis rand gridrn pack gridnn rand gridrn pack gridnn mst sqrs short shoax
0.53 0.65 0.73
0.61 0.67 0.18
1.00 0.60 0.53
1.20 2.63 0.84
1.35 2.68 1.19
0.50 ? 1.34
0.69 1.10 1.14

– – –
– – –

0.62 0.71 0.38
1.51 0.56 0.66

2.21 3.10 0.70 2.48
1.88 3.44 0.67 2.25
1.36 2.78 0.54 2.01
2.29 4.34 1.94 7.45
2.17 4.13 1.91 7.59
7.05 9.88 2.96 5.46
2.79 3.58 1.44 3.20

– – – –
– – – –

0.77 1.50 0.65 1.59
1.82 2.26 0.73 1.18

0.77 1.57 0.65 1.98
0.80 1.59 0.65 1.88
0.93 1.73 0.57 1.77
2.15 3.44 4.61 8.40
2.16 3.54 3.31 8.65
1.63 3.12 4.53 10.41
1.08 2.37 1.83 2.78

– – – –
– – – –

0.83 1.61 0.65 1.40
1.94 3.27 0.77 1.51

2.30 0.89 1.78 0.96
2.28 0.77 1.76 0.88
2.26 0.58 1.69 0.79
2.29 1.36 5.26 1.82
2.30 1.32 5.28 1.79
2.31 3.22 3.75 2.82
2.33 3.12 3.71 4.23
2.09 1.63 – –
2.06 1.32 – –
2.18 2.17 2.38 2.66
2.14 2.16 2.76 3.40

– – –
0.46 1.28 0.26

– – – –
0.69 1.26 0.74 1.61

– – – –
0.99 1.91 0.90 1.69

– – – –
2.21 2.70 2.99 3.35

0.51 0.65 0.72
0.53 0.65 0.72
0.52 0.64 0.77

2.13 3.06 0.70 2.48
2.20 3.14 0.70 2.48
2.17 2.80 0.76 2.42

0.77 1.52 0.65 1.97
0.77 1.55 0.65 1.98
0.77 1.50 0.69 1.94

2.28 0.89 1.77 0.95
2.28 0.89 1.77 0.96
2.29 0.98 1.90 1.15

0.53 0.65 0.74
0.70 0.80 0.37

2.21 3.12 0.69 2.50
2.43 3.30 0.83 2.22

0.77 1.58 0.65 1.97
0.92 1.86 0.78 2.60

2.28 0.89 1.77 0.96
2.27 1.00 2.08 1.20

0.58 0.69 0.96
1.60 1.17 0.85

1.91 3.52 0.71 2.50
2.38 3.76 0.96 2.39

0.80 1.63 0.67 2.00
1.48 2.78 1.02 2.32

2.29 0.91 1.80 1.01
2.31 1.91 2.92 2.41

0.53 0.65 0.73
0.53 0.71 0.78
0.53 2.41 3.09

2.21 3.13 0.70 2.47
2.31 3.33 0.76 2.64
4.63 7.64 2.49 13.22

0.78 1.57 0.66 2.02
0.77 1.58 0.68 2.05
1.46 2.54 3.05 9.57

2.31 0.89 1.77 0.96
2.30 0.96 1.85 1.05
2.32 2.27 4.83 3.12

0.53 0.65 0.73
0.59 1.20 0.98

2.20 3.11 0.69 2.47
3.51 4.92 1.19 4.60

0.77 1.58 0.65 2.00
0.91 1.83 1.09 3.53

2.29 0.88 1.77 0.96
2.29 1.16 2.47 1.24

0.53 0.65 0.73
0.61 0.67 0.18
0.62 0.70 1.00
0.59 0.69 0.97
1.00 0.60 0.53

2.21 3.10 0.70 2.48
1.88 3.44 0.67 2.25
1.91 3.54 0.71 2.47
1.90 3.52 0.71 2.52
1.36 2.78 0.54 2.01

0.77 1.57 0.65 1.98
0.80 1.59 0.65 1.88
0.80 1.63 0.66 1.99
0.80 1.60 0.67 1.99
0.93 1.73 0.57 1.77

2.30 0.89 1.78 0.96
2.28 0.77 1.76 0.88
2.26 0.87 1.79 0.97
2.27 0.91 1.80 1.00
2.26 0.58 1.69 0.79

0.76 0.72 0.44
1.17 0.78 0.50
1.01 0.61 0.53
1.03 0.58 0.55
1.09 0.60 0.58
1.14 0.62 0.62
1.23 0.66 0.67
1.45 0.74 0.85

1.78 3.35 0.68 2.19
1.89 3.04 0.64 2.19
1.35 2.76 0.54 2.03
1.39 2.88 0.56 2.06
1.43 2.94 0.61 2.10
1.84 2.94 0.63 2.19
1.49 3.03 0.60 2.14
1.53 3.44 0.62 2.18

0.91 1.78 0.65 1.88
0.93 1.69 0.61 1.84
0.92 1.73 0.57 1.78
0.95 1.89 0.57 1.75
0.99 1.96 0.58 1.77
1.01 1.98 0.58 1.81
1.02 2.04 0.59 1.79
1.06 2.10 0.59 1.79

2.26 0.74 1.76 0.85
2.26 0.62 1.69 0.78
2.24 0.58 1.69 0.79
2.22 0.59 1.70 0.80
2.27 0.61 1.72 0.83
2.29 0.62 1.73 0.85
2.29 0.64 1.75 0.88
2.28 0.66 1.75 0.89

1.02 0.61 0.54
0.98 0.60 0.51
1.11 0.65 0.60
1.02 0.62 0.54

1.36 2.76 0.54 2.00
1.36 2.81 0.54 2.01
1.45 2.92 0.60 2.05
1.39 2.91 0.55 2.19

0.92 1.74 0.57 1.78
0.92 1.72 0.56 1.80
0.99 1.84 0.60 1.84
0.93 1.78 0.57 1.91

2.24 0.58 1.71 0.80
2.25 0.58 1.68 0.78
2.26 0.68 1.83 1.01
2.25 0.60 1.71 0.82

1.05 0.67 0.51
1.00 0.60 0.52
1.00 0.61 0.54
1.00 0.60 0.52

1.43 2.94 0.59 2.04
1.36 2.77 0.54 2.00
1.36 2.77 0.54 2.05
1.37 2.80 0.54 2.01

0.94 1.75 0.61 1.82
0.92 1.72 0.57 1.78
0.92 1.73 0.57 1.79
0.93 1.74 0.57 1.78

2.24 0.60 1.69 0.79
2.25 0.59 1.69 0.79
2.24 0.58 1.69 0.79
2.24 0.59 1.69 0.80

1.04 0.82 0.52
1.00 0.60 0.54
1.37 0.74 0.52

2.23 4.23 0.73 2.61
1.36 2.76 0.54 2.02
1.56 3.10 0.61 2.13

0.95 1.83 0.63 1.96
0.92 1.73 0.56 1.79
1.06 1.92 0.61 1.84

2.25 0.65 1.74 0.85
2.25 0.59 1.69 0.79
2.26 0.62 1.77 0.90

1.02 0.62 0.54
1.17 0.98 0.55

1.37 2.87 0.54 2.20
2.22 3.82 0.78 2.52

0.93 1.78 0.58 1.83
1.00 1.83 0.73 1.98

2.26 0.60 1.71 0.83
2.24 0.70 1.75 0.89

178 A. COMPLETE RESULTS FROM EXPERIMENTS

Delaunay triangulation Segment intersect-
homogeneous

0 25 50 75 100 short long grid axis short
nodaL
doubL
dsumL

leda::real
EXT::real

CORE::Expr 1.8
CORE::Expr 2.1.1

Lazy_exact_nt<Gmpzf>
Gmpzf

Lazy_exact_nt<Gmpq>
Gmpq

0.13 0.13 0.13 0.13 0.13
0.10 0.10 0.10 0.10 0.11
0.11 0.11 0.12 0.12 0.12
0.26 0.26 0.26 0.27 0.27
0.23 0.23 0.23 0.23 0.24
0.15 0.20 0.31 0.46 0.71
0.45 0.51 0.63 0.75 0.93
0.64 0.65 0.65 0.66 0.68
0.81 0.83 0.83 0.85 0.96
0.65 0.65 0.66 0.66 0.68
1.74 1.74 1.77 1.81 1.86

0.74 0.74 0.51 1.77
0.63 0.89 0.37 1.01
0.59 0.88 0.31 0.48
? ? 1.14 3.53
? ? 1.17 3.62

0.70 0.67 0.61 1.79
1.28 1.32 0.81 2.40
0.92 1.21 0.48 1.13
1.06 1.39 0.50 0.91
0.93 1.23 0.57 1.73
2.37 3.01 1.05 1.91

0.43
0.47
0.56
0.97
1.02
0.42
0.60

–
–

0.74
0.98

Epick
Epeck

0.02 0.02 0.02 0.02 0.02
0.07 0.07 0.07 0.07 0.08

– – – –
– – – –

–
0.38

boost_pool
leda_pool

no_pool

0.12 0.13 0.13 0.13 0.13
0.12 0.13 0.12 0.13 0.13
0.30 0.31 0.31 0.31 0.33

0.69 0.70 0.50 1.76
0.73 0.74 0.50 1.76
0.92 0.87 0.55 1.86

0.41
0.43
0.47

ledaF__nodaL
boostF_nodaL

0.12 0.14 0.12 0.13 0.13
0.50 0.51 0.50 0.51 0.53

0.74 0.74 0.51 1.75
1.08 1.23 0.60 1.88

0.43
0.55

ledaF__dintL
boostF_dintL

0.11 0.11 0.12 0.12 0.12
1.51 1.52 1.53 1.55 1.60

0.70 0.98 0.56 1.73
2.23 3.27 1.26 2.93

0.47
1.12

mpfrA
pure_mpfrA

ledaA

0.12 0.12 0.13 0.13 0.13
0.13 0.12 0.13 0.13 0.13
0.12 0.12 0.12 0.14 0.13

0.74 0.74 0.51 1.77
0.74 0.75 0.53 1.88
0.74 0.75 1.36 7.98

0.43
0.42
0.43

basicD
oledaD

0.14 0.12 0.12 0.13 0.13
0.15 0.14 0.15 0.15 0.15

0.74 0.75 0.51 1.77
0.80 0.83 0.67 2.70

0.43
0.46

nodaL
doubL
dwicL
dintL
dsumL

0.13 0.13 0.13 0.13 0.13
0.10 0.10 0.10 0.10 0.11
0.13 0.14 0.14 0.14 0.14
0.11 0.11 0.11 0.12 0.12
0.11 0.11 0.12 0.12 0.12

0.74 0.74 0.51 1.77
0.63 0.89 0.37 1.01
0.69 0.95 0.55 1.68
0.70 0.98 0.55 1.72
0.59 0.88 0.31 0.48

0.43
0.47
0.50
0.47
0.56

2 summands
4 summands
8 summands

12 summands
18 summands
24 summands
32 summands
40 summands

0.17 0.17 0.17 0.17 0.18
0.11 0.11 0.11 0.11 0.12
0.11 0.11 0.12 0.12 0.12
0.12 0.12 0.12 0.12 0.12
0.13 0.13 0.13 0.13 0.13
0.13 0.14 0.14 0.14 0.14
0.15 0.15 0.15 0.15 0.15
0.16 0.16 0.16 0.16 0.16

0.85 1.23 0.46 1.26
0.82 1.21 0.43 0.72
0.60 0.88 0.31 0.48
0.63 0.91 0.31 0.49
0.69 1.44 0.35 0.72
0.89 1.10 0.38 0.62
0.81 1.17 0.42 0.67
0.89 1.31 0.46 0.76

0.58
0.51
0.57
0.60
0.65
0.69
0.75
1.88

protO___noP
expaO___noP
expaO_warnP
expaO_restP

0.11 0.11 0.11 0.11 0.12
0.09 0.09 0.09 0.09 0.09
0.65 0.66 0.67 0.67 0.69
0.18 0.19 0.18 0.18 0.19

0.60 0.87 0.30 0.46
0.57 0.83 0.29 0.45
1.12 1.65 0.56 0.98
0.65 0.96 0.33 0.55

0.58
0.56
0.66
0.58

__noC
lazyC
laagC
permC

0.12 0.11 0.12 0.12 0.12
0.11 0.11 0.12 0.12 0.12
0.12 0.12 0.12 0.12 0.12
0.12 0.13 0.12 0.13 0.13

0.61 0.93 0.31 0.48
0.60 0.88 0.31 0.48
0.60 0.87 0.31 0.48
0.63 0.94 0.33 0.53

0.56
0.56
0.57
0.57

treeM
expaM
nodeM

0.12 0.11 0.11 0.11 0.12
0.11 0.11 0.11 0.11 0.12
0.12 0.11 0.11 0.11 0.12

0.59 0.88 0.31 0.48
0.60 0.88 0.31 0.49
0.59 0.89 0.30 0.48

0.53
0.57
0.68

expaO_restP
plaiO_restP_permC_treeM

0.18 0.18 0.18 0.18 0.19
0.19 0.19 0.19 0.19 0.20

0.66 0.96 0.33 0.55
0.71 1.06 0.37 0.57

0.59
0.54

Table A.4. Results for integer data on minkowski.

A. COMPLETE RESULTS FROM EXPERIMENTS 179

ion Arrangement of circles Segment Voronoi diagram
Cartesian static algebraic predicates predicates with 2p

long grid axis rand gridrn pack gridnn rand gridrn pack gridnn mst sqrs short shoax
0.53 0.31 0.68
0.70 0.26 0.18
0.74 0.30 0.34
1.39 0.81 0.28
1.51 0.89 0.34
0.50 0.49 1.32
0.68 0.46 1.17

– – –
– – –

0.62 0.31 0.38
1.21 0.44 0.64

1.84 2.56 0.55 2.16
1.41 2.09 0.48 1.27
1.24 2.47 0.48 1.71
1.94 3.19 0.96 6.08
1.86 3.00 0.94 6.16
6.67 9.13 2.65 4.67
2.58 3.18 1.17 2.49

– – – –
– – – –

0.74 1.35 0.45 1.17
1.60 1.91 0.61 0.92

0.73 1.46 0.43 1.88
0.70 1.27 0.35 1.30
0.75 1.47 0.38 1.57
1.64 2.68 1.54 6.65
1.69 2.85 1.54 7.00
1.11 2.19 2.00 4.77
1.03 2.17 1.01 2.24

– – – –
– – – –

0.80 1.46 0.45 1.03
1.73 2.82 0.67 1.26

2.27 0.47 1.64 0.80
2.25 0.32 1.49 0.65
2.25 0.31 1.50 0.68
2.24 0.43 3.41 1.14
2.24 0.42 3.44 1.11
2.24 0.96 3.16 2.39
2.26 1.06 3.43 3.69
2.00 0.74 – –
2.01 0.52 – –
2.04 0.93 2.00 2.38
2.05 0.74 2.16 2.86

– – –
0.46 0.35 0.26

– – – –
0.67 1.13 0.50 1.18

– – – –
0.98 1.76 0.62 1.30

– – – –
2.05 1.10 2.57 3.00

0.51 0.30 0.69
0.53 0.30 0.68
0.52 0.30 0.73

1.80 2.53 0.54 2.15
1.85 2.55 0.54 2.18
1.85 2.32 0.61 2.07

0.72 1.46 0.43 1.90
0.73 1.49 0.43 1.88
0.71 1.46 0.47 1.82

2.26 0.47 1.64 0.79
2.26 0.47 1.64 0.80
2.26 0.51 1.75 0.98

0.53 0.31 0.68
0.69 0.36 0.37

1.85 2.56 0.54 2.15
2.08 2.97 0.70 2.01

0.73 1.47 0.43 1.87
0.87 1.73 0.58 2.52

2.27 0.47 1.64 0.81
2.25 0.42 1.92 1.06

0.65 0.34 0.89
1.63 0.64 0.84

1.47 2.83 0.51 2.08
1.80 2.76 0.71 1.88

0.70 1.45 0.37 1.83
1.35 2.48 0.67 1.87

2.27 0.47 1.52 0.81
2.26 0.62 2.47 2.17

0.54 0.31 0.68
0.52 0.32 0.74
0.53 0.75 2.82

1.85 2.56 0.55 2.16
1.93 2.75 0.60 2.28
3.25 5.17 1.36 10.89

0.73 1.47 0.43 1.87
0.74 1.47 0.45 1.92
1.15 2.12 1.66 10.28

2.28 0.47 1.64 0.80
2.27 0.51 1.71 0.89
2.26 1.11 3.95 1.98

0.53 0.31 0.68
0.58 0.39 0.94

1.85 2.55 0.55 2.16
2.47 3.36 0.81 4.06

0.74 1.47 0.43 1.88
0.84 1.67 0.63 3.05

2.28 0.47 1.64 0.80
2.25 0.62 2.04 0.95

0.53 0.31 0.68
0.70 0.26 0.18
0.69 0.35 0.92
0.65 0.34 0.89
0.74 0.30 0.34

1.84 2.56 0.55 2.16
1.41 2.09 0.48 1.27
1.48 2.82 0.51 2.06
1.47 2.84 0.50 2.08
1.24 2.47 0.48 1.71

0.73 1.46 0.43 1.88
0.70 1.27 0.35 1.30
0.72 1.47 0.38 1.86
0.70 1.44 0.37 1.83
0.75 1.47 0.38 1.57

2.27 0.47 1.64 0.80
2.25 0.32 1.49 0.65
2.25 0.46 1.52 0.78
2.26 0.47 1.52 0.81
2.25 0.31 1.50 0.68

0.78 0.30 0.29
0.72 0.28 0.32
0.76 0.31 0.34
0.81 0.32 0.38
0.88 0.35 0.42
0.94 0.37 0.45
1.00 0.39 0.49
1.23 0.47 0.66

1.32 2.55 0.51 1.76
1.52 2.40 0.49 1.74
1.23 2.43 0.47 1.71
1.27 2.51 0.49 1.76
1.33 2.58 0.54 1.82
1.73 2.63 0.56 1.91
1.39 2.75 0.54 1.85
1.43 3.09 0.56 1.90

0.77 1.48 0.38 1.58
0.73 1.42 0.37 1.54
0.74 1.45 0.38 1.57
0.77 1.52 0.38 1.60
0.82 1.60 0.39 1.62
0.84 1.62 0.40 1.63
0.85 1.67 0.40 1.65
0.88 1.71 0.40 1.65

2.24 0.33 1.50 0.66
2.26 0.31 1.49 0.66
2.24 0.31 1.50 0.67
2.20 0.31 1.51 0.69
2.26 0.32 1.52 0.73
2.27 0.32 1.54 0.74
2.28 0.33 1.55 0.76
2.27 0.33 1.56 0.78

0.77 0.31 0.36
0.74 0.30 0.34
0.86 0.35 0.42
0.77 0.33 0.36

1.23 2.45 0.47 1.71
1.23 2.44 0.47 1.71
1.32 2.61 0.53 1.77
1.35 2.57 0.50 1.83

0.74 1.48 0.38 1.56
0.73 1.45 0.37 1.56
0.81 1.60 0.42 1.64
0.79 1.54 0.39 1.65

2.23 0.31 1.50 0.68
2.25 0.31 1.49 0.66
2.25 0.34 1.62 0.89
2.24 0.32 1.54 0.73

0.74 0.30 0.34
0.74 0.30 0.35
0.75 0.31 0.34
0.76 0.30 0.34

1.23 2.47 0.48 1.71
1.23 2.44 0.47 1.71
1.23 2.45 0.47 1.73
1.24 2.45 0.47 1.72

0.74 1.47 0.38 1.56
0.74 1.46 0.38 1.57
0.75 1.48 0.38 1.58
0.75 1.47 0.38 1.55

2.22 0.31 1.49 0.67
2.23 0.31 1.50 0.68
2.23 0.31 1.49 0.67
2.24 0.31 1.49 0.68

0.72 0.31 0.35
0.75 0.30 0.36
0.92 0.35 0.34

1.50 2.85 0.52 1.85
1.25 2.44 0.47 1.71
1.30 2.55 0.49 1.76

0.74 1.45 0.39 1.59
0.74 1.47 0.38 1.56
0.80 1.54 0.39 1.58

2.23 0.32 1.49 0.68
2.24 0.31 1.49 0.67
2.24 0.32 1.50 0.68

0.77 0.34 0.36
0.71 0.33 0.36

1.35 2.58 0.51 1.84
1.57 2.94 0.57 1.98

0.78 1.54 0.40 1.67
0.77 1.51 0.40 1.68

2.24 0.31 1.53 0.72
2.23 0.33 1.53 0.74

180 A. COMPLETE RESULTS FROM EXPERIMENTS

Delaunay triangulation Segment intersect-
homogeneous

0 25 50 75 100 short long grid axis short
nodaL
doubL
dsumL

CORE::Expr 1.8
CORE::Expr 2.1.1

Lazy_exact_nt<Gmpzf>
Gmpzf

Lazy_exact_nt<Gmpq>
Gmpq

0.99 1.53 2.02 2.46 2.86
1.06 1.61 2.10 2.54 2.93
1.16 1.17 1.19 1.20 1.24
1.14 5.43 9.77 14.23 18.74
4.50 7.00 9.68 12.42 15.31
3.57 4.25 4.72 4.96 5.29
6.89 6.96 6.98 7.08 7.30
3.52 4.81 5.91 6.69 7.39
14.30 14.45 14.56 14.75 15.25

2.56 3.50 6.09 11.26
2.97 4.42 5.72 10.81
4.01 6.34 5.13 7.48
2.96 4.07 10.94 13.75
8.66 12.22 16.41 20.72
4.44 6.41 4.14 6.83
8.01 11.65 4.39 7.78
4.40 6.35 8.12 11.64
16.74 25.28 9.50 15.63

1.65
1.98
3.15
1.93
3.75

–
–

2.64
7.30

Epick
Epeck

0.06 0.73 1.30 1.77 2.17
0.14 0.75 1.27 1.72 2.08

– – – –
– – – –

–
1.37

boost_pool
no_pool

0.99 1.55 2.04 2.49 2.89
2.63 3.39 4.08 4.70 5.26

2.57 3.50 6.12 11.27
3.83 5.31 7.40 13.34

1.65
2.05

ledaF__nodaL
boostF_nodaL

0.99 1.54 2.03 2.47 2.87
1.28 1.75 2.15 2.50 2.80

2.56 3.49 6.12 11.38
2.82 3.87 5.59 8.95

1.66
1.77

ledaF__dintL
boostF_dintL

1.34 1.90 2.39 2.83 3.23
3.39 3.84 4.23 4.57 4.93

3.03 4.37 6.55 11.97
5.24 7.70 7.22 11.71

1.84
2.80

mpfrA
pure_mpfrA

0.99 1.54 2.02 2.47 2.86
1.00 1.61 2.16 2.65 3.09

2.56 3.49 6.07 11.23
2.56 3.50 6.42 11.72

1.65
1.64

basicD
oledaD

0.99 1.54 2.03 2.47 2.87
1.13 2.10 2.96 3.77 4.43

2.55 3.50 6.09 11.22
2.76 3.79 12.63 20.88

1.65
1.74

nodaL
doubL
dwicL
dintL
dsumL

0.99 1.53 2.02 2.46 2.86
1.06 1.61 2.10 2.54 2.93
1.44 1.99 2.47 2.92 3.32
1.35 1.89 2.38 2.82 3.22
1.16 1.17 1.19 1.20 1.24

2.56 3.50 6.09 11.26
2.97 4.42 5.72 10.81
3.01 4.36 6.44 11.84
3.03 4.35 6.50 11.90
4.01 6.34 5.13 7.48

1.65
1.98
2.01
1.84
3.15

2 summands
4 summands
8 summands

12 summands
18 summands
24 summands
32 summands
40 summands

3.64 3.90 4.12 4.33 4.58
2.07 2.15 2.22 2.28 2.38
1.16 1.18 1.19 1.20 1.25
1.09 1.10 1.11 1.12 1.15
1.17 1.17 1.18 1.19 1.22
1.20 1.21 1.21 1.22 1.25
1.27 1.27 1.28 1.29 1.32
1.31 1.32 1.32 1.34 1.37

3.57 5.43 6.12 10.75
5.20 7.29 6.16 9.64
4.01 6.32 5.14 7.52
4.25 7.84 4.87 4.91
4.64 8.14 3.64 4.71
5.18 8.54 3.45 4.96
5.76 9.67 3.87 5.51
6.38 10.83 4.36 6.18

2.52
3.24
3.15
3.31
3.54
3.80
4.12
5.24

protO___noP
expaO___noP
expaO_warnP
expaO_restP

1.16 1.18 1.19 1.20 1.24
0.98 0.99 1.00 1.01 1.05
1.77 1.79 1.81 1.83 1.89
1.23 1.25 1.26 1.28 1.32

4.02 6.36 5.15 7.50
3.86 6.18 5.12 7.36
4.50 6.89 5.28 7.98
4.07 6.41 5.16 7.58

3.16
3.08
3.27
3.16

__noC
lazyC
laagC
permC

1.93 2.00 2.05 2.10 2.17
1.17 1.18 1.19 1.21 1.25
1.24 1.25 1.26 1.28 1.32
1.25 1.26 1.27 1.29 1.33

4.63 7.31 5.49 7.73
4.02 6.36 5.16 7.49
4.08 6.42 5.17 7.54
4.14 6.26 5.02 7.53

3.25
3.16
3.20
3.20

treeM
expaM
nodeM

1.13 1.17 1.19 1.22 1.26
1.17 1.18 1.19 1.21 1.24
1.28 1.29 1.31 1.32 1.38

3.76 5.95 5.88 9.03
4.02 6.36 5.16 7.49
4.53 7.30 5.85 8.40

2.88
3.17
4.27

protO___noP
plaiO_restP_permC_treeM

1.16 1.18 1.19 1.20 1.24
1.62 1.96 2.24 2.48 2.70

4.02 6.36 5.15 7.50
4.51 6.97 7.13 9.76

3.16
3.01

noFMA_protO___noP
protO___noP

1.26 1.28 1.29 1.31 1.35
1.16 1.18 1.19 1.20 1.24

4.09 6.42 5.16 7.56
4.02 6.36 5.15 7.50

3.17
3.16

Table A.5. Results for floating-point data on thales.

A. COMPLETE RESULTS FROM EXPERIMENTS 181

ion Arrangement of circles Segment Voronoi diagram
Cartesian static algebraic predicates predicates with 2p

long grid axis rand gridrn pack gridnn rand gridrn pack gridnn mst sqrs short shoax
2.34 3.37 4.42
2.88 3.52 1.31
4.79 3.06 3.44
2.76 6.85 9.21
5.34 7.39 9.01

– – –
– – –

3.61 4.17 2.40
10.54 3.82 4.28

7.20 13.52 3.48 15.75
7.04 13.46 3.35 13.90
4.87 10.81 2.56 12.50

41.12 62.89 20.54 39.00
14.33 27.79 10.28 24.42

– – – –
– – – –

3.18 6.83 3.68 10.01
8.51 13.15 4.40 7.73

3.72 6.83 4.19 13.16
3.84 6.98 4.26 12.73
4.71 8.41 3.74 12.44
13.15 22.27 42.08 107.55
7.37 16.00 11.85 21.68

– – – –
– – – –

4.24 8.61 3.55 8.59
13.29 21.96 4.89 10.98

11.91 5.62 11.28 7.06
11.26 4.55 10.96 6.18
11.73 3.50 10.93 5.80
11.69 26.21 27.92 21.97
11.96 18.08 24.06 29.24
9.38 10.57 – –
8.83 9.91 – –
9.46 13.80 13.84 16.66
8.93 15.92 17.18 25.83

– – –
1.91 8.42 1.24

– – – –
3.26 6.93 3.99 10.01

– – – –
4.86 9.81 4.78 10.04

– – – –
9.37 16.53 17.29 20.55

2.34 3.39 4.42
2.87 3.88 5.39

7.24 13.60 3.50 15.81
8.63 16.84 4.37 17.64

3.74 6.88 4.19 13.19
4.30 8.12 4.68 14.06

11.97 5.63 11.33 7.07
11.30 6.57 12.21 8.88

2.34 3.38 4.46
2.50 3.32 1.69

7.21 13.58 3.50 15.83
7.28 12.34 3.46 11.62

3.73 6.85 4.18 13.21
3.88 7.05 4.26 18.26

11.94 5.64 11.29 7.08
11.93 4.90 11.61 6.74

2.60 3.57 5.75
4.03 3.98 2.31

7.14 13.82 3.58 15.90
7.56 12.25 3.69 11.80

3.88 7.14 4.32 13.46
4.90 8.61 4.73 12.63

11.29 5.47 11.12 7.09
11.72 5.77 12.84 7.13

2.34 3.36 4.42
2.31 3.52 4.58

7.20 13.52 3.48 15.79
7.53 14.15 3.68 16.25

3.71 6.83 4.18 13.17
3.76 6.91 4.28 13.42

11.91 5.63 11.27 7.06
11.96 5.77 11.50 7.26

2.33 3.37 4.43
2.48 6.71 5.98

7.19 13.53 3.48 15.75
15.24 24.79 6.60 29.61

3.72 6.84 4.17 13.15
4.45 8.16 6.43 20.91

11.96 5.63 11.27 7.06
12.07 7.32 15.41 8.85

2.34 3.37 4.42
2.88 3.52 1.31
2.90 3.62 5.96
2.61 3.55 5.77
4.79 3.06 3.44

7.20 13.52 3.48 15.75
7.04 13.46 3.35 13.90
7.13 13.85 3.59 15.81
7.13 13.86 3.58 15.88
4.87 10.81 2.56 12.50

3.72 6.83 4.19 13.16
3.84 6.98 4.26 12.73
3.87 7.13 4.26 13.39
3.88 7.13 4.33 13.44
4.71 8.41 3.74 12.44

11.91 5.62 11.28 7.06
11.26 4.55 10.96 6.18
11.64 5.53 11.35 7.25
11.68 5.53 11.34 7.24
11.73 3.50 10.93 5.80

3.39 3.63 2.90
5.00 3.80 3.02
4.78 3.07 3.44
4.99 2.97 3.65
5.35 3.10 3.90
5.76 3.27 4.17
6.26 3.48 4.53
7.14 3.85 5.28

6.81 13.29 3.35 13.73
5.85 11.99 3.00 13.16
4.90 10.84 2.58 12.57
4.93 11.04 2.62 12.61
4.99 10.89 2.67 12.60
5.31 11.06 2.75 12.74
5.28 11.47 2.84 12.83
5.44 11.93 2.94 12.95

4.41 7.67 4.26 12.69
4.55 7.77 4.00 12.48
4.71 8.44 3.74 12.45
4.75 8.55 3.72 12.52
4.82 8.60 3.73 12.41
4.87 8.68 3.74 12.42
4.91 8.76 3.77 12.49
4.97 8.80 3.79 12.48

11.65 4.51 11.29 6.19
11.27 3.53 10.54 5.40
11.28 3.46 10.70 5.66
11.44 3.43 10.77 5.74
11.46 3.55 10.91 5.95
11.48 3.64 11.05 6.14
11.38 3.78 11.16 6.37
11.42 3.92 11.35 6.63

4.79 3.07 3.45
4.69 3.02 3.38
4.92 3.11 3.53
4.79 3.07 3.44

4.88 10.82 2.56 12.49
4.85 10.75 2.55 12.54
4.96 10.95 2.63 12.53
4.95 11.26 2.58 14.09

4.72 8.44 3.73 12.44
4.67 8.37 3.71 12.42
4.80 8.58 3.76 12.45
4.72 8.29 3.73 13.20

11.67 3.50 10.94 5.82
11.33 3.36 10.65 5.56
11.71 3.62 11.07 6.04
11.34 3.51 10.80 5.71

4.98 3.35 3.44
4.81 3.08 3.45
4.85 3.09 3.47
4.82 3.07 3.40

5.18 11.49 2.86 12.75
4.89 10.85 2.58 12.50
4.94 10.90 2.59 12.52
4.92 10.86 2.58 12.52

4.79 8.47 3.96 12.64
4.72 8.47 3.73 12.45
4.75 8.49 3.75 12.47
4.74 8.46 3.73 12.49

11.71 3.66 10.89 5.74
11.72 3.50 10.92 5.82
11.73 3.52 10.95 5.82
11.29 3.44 10.70 5.66

4.41 4.01 3.47
4.81 3.08 3.45
6.59 3.83 3.46

8.42 16.50 3.70 15.23
4.89 10.85 2.58 12.50
5.98 12.62 2.99 13.14

4.60 8.23 4.18 13.28
4.73 8.46 3.73 12.45
5.42 9.52 3.99 12.76

11.72 3.97 11.12 6.31
11.72 3.50 10.92 5.82
11.73 3.69 11.45 6.56

4.79 3.07 3.45
4.69 4.77 3.50

4.88 10.82 2.56 12.49
8.27 15.11 4.00 14.85

4.72 8.44 3.73 12.44
4.73 8.33 4.86 13.41

11.67 3.50 10.94 5.82
11.72 4.40 11.17 6.42

4.81 3.07 3.48
4.79 3.07 3.45

4.89 10.83 2.58 12.51
4.88 10.82 2.56 12.49

4.73 8.46 3.73 12.42
4.72 8.44 3.73 12.44

11.77 3.54 10.96 5.84
11.67 3.50 10.94 5.82

182 A. COMPLETE RESULTS FROM EXPERIMENTS

Delaunay triangulation Segment intersect-
homogeneous

0 25 50 75 100 short long grid axis short
nodaL
doubL
dsumL

CORE::Expr 1.8
CORE::Expr 2.1.1

Lazy_exact_nt<Gmpzf>
Gmpzf

Lazy_exact_nt<Gmpq>
Gmpq

0.89 0.90 0.91 0.92 0.94
0.55 0.55 0.56 0.56 0.58
0.76 0.76 0.77 0.78 0.80
1.14 1.61 2.38 3.56 5.30
4.51 4.98 6.10 7.13 8.33
3.56 3.62 3.61 3.66 3.78
6.56 6.61 6.65 6.71 6.95
3.52 3.57 3.57 3.60 3.73
11.75 11.84 11.98 12.14 12.58

2.54 3.49 2.46 9.89
2.77 4.21 1.92 6.42
3.12 4.82 1.74 3.06
2.95 4.08 3.82 12.65
8.66 12.22 6.68 17.92
4.44 6.41 2.76 6.52
7.40 10.62 3.88 7.17
4.41 6.35 3.23 9.90
12.07 17.12 6.31 11.44

1.64
1.97
2.72
1.93
3.75

–
–

2.64
5.29

Epick
Epeck

0.07 0.06 0.07 0.07 0.07
0.14 0.14 0.14 0.14 0.15

– – – –
– – – –

–
1.37

boost_pool
no_pool

0.90 0.91 0.91 0.92 0.95
2.55 2.56 2.59 2.61 2.67

2.55 3.50 2.47 9.90
3.82 5.31 3.30 12.05

1.64
2.04

ledaF__nodaL
boostF_nodaL

0.90 0.90 0.92 0.92 0.95
1.28 1.29 1.30 1.32 1.36

2.55 3.49 2.47 9.96
2.82 3.88 2.06 7.56

1.65
1.77

ledaF__dintL
boostF_dintL

0.71 0.71 0.72 0.73 0.75
2.73 2.74 2.77 2.80 2.88

2.99 4.43 2.79 9.99
5.03 7.50 3.17 9.10

1.81
2.79

mpfrA
pure_mpfrA

0.90 0.90 0.91 0.92 0.95
0.91 0.91 0.92 0.93 0.96

2.54 3.49 2.46 9.87
2.54 3.49 2.54 10.33

1.64
1.63

basicD
oledaD

0.89 0.90 0.91 0.92 0.94
1.04 1.05 1.05 1.06 1.09

2.55 3.48 2.46 9.87
2.75 3.79 3.43 16.13

1.64
1.73

nodaL
doubL
dwicL
dintL
dsumL

0.89 0.90 0.91 0.92 0.94
0.55 0.55 0.56 0.56 0.58
0.92 0.91 0.94 0.93 0.97
0.71 0.71 0.72 0.73 0.75
0.76 0.76 0.77 0.78 0.80

2.54 3.49 2.46 9.89
2.77 4.21 1.92 6.42
3.03 4.48 2.79 9.89
2.98 4.42 2.78 9.96
3.12 4.82 1.74 3.06

1.64
1.97
2.02
1.81
2.72

2 summands
4 summands
8 summands

12 summands
18 summands
24 summands
32 summands
40 summands

1.31 1.32 1.32 1.33 1.37
0.71 0.71 0.72 0.73 0.75
0.76 0.77 0.77 0.78 0.80
0.78 0.78 0.79 0.80 0.82
0.82 0.82 0.83 0.84 0.86
0.85 0.86 0.86 0.87 0.89
0.91 0.91 0.92 0.93 0.95
0.95 0.96 0.97 0.97 1.00

4.49 6.52 2.51 7.82
4.07 7.47 2.71 4.79
3.10 4.81 1.74 3.06
3.32 5.11 1.86 3.31
3.70 5.98 2.09 3.88
4.19 6.32 2.33 4.17
4.62 7.15 2.64 4.72
5.22 8.11 3.01 5.39

2.60
2.33
2.72
2.88
3.11
3.37
3.70
4.81

protO___noP
expaO___noP
expaO_warnP
expaO_restP

0.76 0.77 0.77 0.78 0.80
0.58 0.58 0.59 0.59 0.61
1.37 1.38 1.39 1.40 1.45
0.83 0.84 0.84 0.85 0.87

3.11 4.81 1.74 3.07
2.92 4.53 1.64 2.89
3.75 5.77 2.07 3.69
3.16 4.92 1.77 3.13

2.72
2.65
2.81
2.71

__noC
lazyC
laagC
permC

0.67 0.68 0.68 0.69 0.71
0.76 0.77 0.77 0.78 0.80
0.79 0.79 0.80 0.81 0.83
0.75 0.76 0.76 0.77 0.79

3.14 5.11 1.77 3.01
3.12 4.82 1.74 3.08
3.16 4.89 1.77 3.12
3.30 5.15 1.85 3.31

2.70
2.73
2.75
2.72

treeM
expaM
nodeM

0.76 0.77 0.77 0.78 0.80
0.76 0.77 0.77 0.78 0.80
0.76 0.77 0.77 0.78 0.80

3.11 4.80 1.73 3.06
3.12 4.82 1.74 3.08
3.10 4.79 1.74 3.05

2.46
2.73
3.21

protO___noP
plaiO_restP_permC_treeM

0.76 0.77 0.77 0.78 0.80
1.01 1.01 1.02 1.03 1.06

3.11 4.81 1.74 3.07
3.68 5.90 2.09 3.52

2.72
2.48

noFMA_protO___noP
protO___noP

0.88 0.89 0.89 0.90 0.93
0.76 0.77 0.77 0.78 0.80

3.23 4.96 1.81 3.19
3.11 4.81 1.74 3.07

2.75
2.72

Table A.6. Results for integer data on thales.

A. COMPLETE RESULTS FROM EXPERIMENTS 183

ion Arrangement of circles Segment Voronoi diagram
Cartesian static algebraic predicates predicates with 2p

long grid axis rand gridrn pack gridnn rand gridrn pack gridnn mst sqrs short shoax
2.34 1.48 4.23
2.95 1.36 1.31
4.04 1.71 2.29
2.75 2.89 9.18
5.35 3.45 9.03

– – –
– – –

3.61 1.86 2.40
7.37 2.74 4.35

5.78 11.03 2.59 12.35
5.03 8.00 2.28 7.69
4.47 9.33 2.26 9.55

40.38 59.77 19.04 33.05
13.44 25.65 8.58 18.84

– – – –
– – – –

3.08 6.14 2.41 7.04
7.39 11.74 3.88 5.98

3.30 6.43 2.38 11.50
3.20 5.84 2.01 8.73
3.78 7.24 2.16 10.38
6.37 11.88 15.22 35.49
6.77 14.54 6.51 15.45

– – – –
– – – –

4.09 7.92 2.38 6.21
12.17 20.55 4.45 9.36

11.79 2.71 10.47 5.82
11.15 1.61 8.95 4.47
11.65 1.58 9.41 4.99
11.17 8.27 22.92 18.90
11.56 6.29 21.63 25.16
8.79 4.40 – –
8.46 3.46 – –
8.54 5.61 11.77 15.07
8.28 5.06 14.76 23.46

– – –
1.90 1.79 1.25

– – – –
3.16 6.27 2.65 7.08

– – – –
4.72 9.01 3.12 7.53

– – – –
8.45 6.49 15.12 18.85

2.33 1.48 4.24
2.87 1.79 5.20

5.80 11.09 2.60 12.37
7.14 13.95 3.41 14.04

3.32 6.45 2.39 11.53
3.89 7.63 2.81 12.40

11.88 2.72 10.49 5.83
11.12 3.10 11.33 7.62

2.34 1.49 4.27
2.51 1.37 1.66

5.81 11.07 2.61 12.40
6.00 10.78 2.82 9.41

3.31 6.43 2.38 11.54
3.48 6.60 2.73 16.40

11.87 2.72 10.46 5.83
11.80 1.85 10.78 5.65

2.65 1.64 5.27
4.12 1.83 2.31

5.31 10.87 2.42 12.11
5.62 8.96 2.64 8.41

3.25 6.52 2.14 11.74
4.22 7.77 2.52 9.66

11.22 2.65 9.10 5.59
11.61 1.84 10.64 6.15

2.34 1.48 4.23
2.31 1.52 4.38

5.78 11.04 2.59 12.34
6.04 11.58 2.73 12.78

3.30 6.42 2.37 11.47
3.34 6.49 2.43 11.69

11.83 2.71 10.46 5.82
11.82 2.78 10.61 5.99

2.34 1.48 4.23
2.47 1.92 5.71

5.78 11.03 2.59 12.35
9.50 16.15 4.26 23.40

3.30 6.41 2.38 11.50
3.84 7.35 3.55 17.93

11.79 2.71 10.45 5.82
11.86 3.72 13.11 6.72

2.34 1.48 4.23
2.95 1.36 1.31
2.98 1.75 5.51
2.66 1.64 5.32
4.04 1.71 2.29

5.78 11.03 2.59 12.35
5.03 8.00 2.28 7.69
5.38 10.99 2.45 12.05
5.32 10.93 2.42 12.09
4.47 9.33 2.26 9.55

3.30 6.43 2.38 11.50
3.20 5.84 2.01 8.73
3.30 6.58 2.16 11.72
3.25 6.52 2.14 11.73
3.78 7.24 2.16 10.38

11.79 2.71 10.47 5.82
11.15 1.61 8.95 4.47
11.56 2.68 9.37 5.76
11.52 2.69 9.32 5.74
11.65 1.58 9.41 4.99

3.87 1.56 1.76
3.48 1.48 1.89
4.03 1.70 2.29
4.30 1.81 2.48
4.68 1.96 2.74
5.08 2.11 3.02
5.58 2.31 3.37
6.47 2.67 4.11

4.81 9.65 2.33 9.74
4.53 9.00 2.20 9.41
4.50 9.39 2.27 9.63
4.58 9.54 2.32 9.65
4.71 9.79 2.41 9.77
5.02 9.96 2.49 9.97
5.00 10.33 2.58 9.99
5.15 10.81 2.69 10.12

3.62 6.81 2.15 10.25
3.43 6.57 2.05 10.09
3.79 7.27 2.15 10.38
3.84 7.37 2.16 10.38
3.92 7.45 2.19 10.46
3.97 7.54 2.20 10.48
4.02 7.62 2.23 10.51
4.05 7.65 2.25 10.52

11.54 1.71 9.23 4.71
11.28 1.51 9.05 4.59
11.27 1.54 9.18 4.86
11.32 1.57 9.23 4.94
11.33 1.60 9.36 5.14
11.37 1.62 9.49 5.31
11.37 1.65 9.61 5.54
11.40 1.69 9.77 5.78

4.06 1.72 2.29
3.94 1.67 2.22
4.17 1.75 2.37
4.05 1.76 2.29

4.48 9.36 2.26 9.56
4.45 9.30 2.25 9.56
4.56 9.48 2.32 9.58
5.08 11.48 2.52 11.11

3.80 7.27 2.16 10.38
3.75 7.20 2.14 10.36
3.87 7.40 2.20 10.42
3.90 7.45 2.41 11.29

11.60 1.58 9.41 5.00
11.23 1.53 9.13 4.77
11.66 1.62 9.54 5.25
11.33 1.55 9.36 5.04

4.04 1.70 2.27
4.06 1.71 2.29
4.09 1.72 2.31
4.05 1.70 2.25

4.47 9.33 2.25 9.50
4.49 9.38 2.27 9.53
4.52 9.40 2.28 9.56
4.50 9.36 2.27 9.53

3.78 7.25 2.14 10.34
3.80 7.27 2.16 10.39
3.81 7.30 2.16 10.36
3.79 7.28 2.16 10.35

11.64 1.57 9.36 4.94
11.67 1.58 9.39 5.00
11.67 1.59 9.40 5.00
11.28 1.54 9.13 4.80

3.67 1.67 2.30
4.06 1.71 2.29
4.82 1.92 2.30

5.48 10.89 2.50 10.22
4.49 9.38 2.27 9.53
4.85 9.89 2.36 9.79

3.69 7.16 2.18 10.46
3.80 7.28 2.16 10.39
4.02 7.48 2.20 10.46

11.67 1.65 9.41 5.01
11.67 1.58 9.40 5.00
11.66 1.62 9.40 5.04

4.06 1.72 2.29
3.69 1.73 2.35

4.48 9.36 2.26 9.56
5.79 11.12 2.68 10.62

3.80 7.27 2.16 10.38
3.75 7.30 2.23 10.65

11.60 1.58 9.41 5.00
11.64 1.66 9.55 5.26

4.09 1.72 2.33
4.06 1.72 2.29

4.50 9.37 2.28 9.58
4.48 9.36 2.26 9.56

3.82 7.31 2.17 10.38
3.80 7.27 2.16 10.38

11.68 1.59 9.42 5.04
11.60 1.58 9.41 5.00

	Chapter 1. Introduction
	1.1. Geometric Problems and Predicates
	1.2. Why Implementations Fail
	1.3. Robust Geometric Computation
	1.4. Robust Geometric Computing in Practice

	Chapter 2. Previous Work
	2.1. Expression Dag Based Number Types
	2.2. Exact Floating-Point Computations

	Chapter 3. RealAlgebraic – an expression dag based number-type
	3.1. Policy Based Design
	3.2. Expression Evaluation
	3.3. A Case Study on Common Subexpressions
	3.4. Experiments

	Chapter 4. New and Improved Exact Floating-Point Algorithms
	4.1. Exact Sign of Sum Computation
	4.2. Expansion to Bigfloat Conversion

	Chapter 5. Exact Floating-Point Algorithms in RealAlgebraic
	5.1. Deferring Dag Construction
	5.2. Experiments
	5.3. Exact Floating-Point Algorithms for Dag Evaluation

	Chapter 6. Conclusion
	Bibliography
	Appendix A. Complete Results from Experiments

