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Abstract

Fluctuation theorems impose constraints on the probability of observing negative entropy production
in small systems driven out of equilibrium. The range of validity of fluctuation theorems has been
extensively tested for transitions between equilibrium and non-equilibrium stationary states, but not
between general non-equilibrium states. Here we report an experimental verification of the detailed
fluctuation theorem for the total amount of entropy produced in the isothermal transition between
two non-equilibrium states. The experimental setup is a parallel RC circuit driven by an alternating
current. We investigate the statistics of the heat released, of the variation of the entropy of the system,
and of the entropy produced for processes of different durations. We show that the fluctuation
theorem is satisfied with high accuracy for current drivings at different frequencies and different
amplitudes.

1. Introduction

As already noted by Szilard in 1925 [ 1], entropy reduction can occur in a single realization of a thermodynamic
process at the mesoscopic scale and the second law of thermodynamics is recovered when averaging over many
realizations of such a process. At scales where thermal fluctuations are relevant, entropy-reducing trajectories
can be observed [2, 3]. The fluctuations of the entropy production are governed by the so-called fluctuation
theorems, which relate the probability to observe a trajectory destroying a certain amount of entropy to the
probability to observe a trajectory producing the same amount of entropy [4-14]. In particular, they ensure that
on average, the entropy production is positive. The fluctuation theorems are the building blocks of the emerging
theory of stochastic thermodynamics, which describes the equilibrium and non-equilibrium thermodynamics
of small systems, at the ensemble level as well as at the trajectory level [ 10, 15-21]. In parallel to the theoretical
development of stochastic thermodynamics, the fluctuation theorems and the thermodynamics of small systems
has been intensively investigated experimentally in last decade [2, 3, 22-30].

The fluctuation theorem for the total entropy production relates the probability P (A4S, ) to observe a
trajectory producing an amount AS,, of entropy in a given thermodynamic process to the probability
P(—AS,,;) to observe a trajectory destroying the very same amount of entropy in the time reversed or backward
process, where the driving of the system is reversed in time [8, 11, 13, 14]:

P(ASw) _ (A&m]
——— =exp|—|

P(-ASw)  \ ks W

Equation (1) has a wide range of validity: it is valid for systems in contact with one or many heat baths, for
transitions between stationary or non-stationary states or for systems in non-equilibrium stationary states. This
fluctuation theorem has been experimentally tested for the transition between equilibrium states [3, 33], where
it reduces to Crooks’ relation [7], for non-equilibrium steady-states [25, 27], and in the transition between non-
equilibrium steady-states [23], where it can be refined to give the Hatano—Sasa relation [9]. More recently, the
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Figure 1. Forward (left panel) and time reverse (right panel) protocols.

fluctuation theorem (1) was observed in a more general experiment involving a periodically driven system in
contact with two heat baths at different temperatures [31]. All the aforementioned experiments have this in
common, that at the end of the backward process, the system is in the same macroscopic state as at the beginning
of the forward process’.

In this paper, we report an experimental verification of the fluctuation theorem (1) in a situation where this
is not case: in our experiment, the final state of the backward process is in general different from the state the
system was prepared in at the beginning of the forward process. In such a transition, the fluctuation theorem (1)
presents a subtlety, as realized by Spinney and Ford [ 14]. In fact, in general, the distribution P appearing in the
denominator in the left-hand side of equation (1) is not the probability distribution of the entropy produced in
the backward process. In general, P is the distribution of a quantity which we will call conjugated entropy
production in the following. However, in situations were the final state of the backward process is the same as the
initial state of the forward process, conjugated entropy production and entropy produced in the backward
process are equal. Hence, in those cases, P is the probability distribution of the entropy produced in the
backward process.

Our experimental system is a parallel RC circuit driven by an alternating current. We verify the fluctuation
theorem (1) for processes of arbitrary durations for different driving frequencies and intensities, where we go far
beyond the slow driving considered in [30, 31]. Furthermore, we show the difference between conjugated
entropy production and entropy produced in the backward process.

The paper is organized as follows. We begin by sketching the derivation of the fluctuation theorem (1) in
section 2. In the derivation, we insist on the difference between the conjugated entropy production and entropy
produced in the backward process. We continue by describing the experimental setup and protocol in section 3.
In particular, we show how we sample forward and backward trajectories making the transition between two
non-equilibrium states. Finally, we present our experimental results in section 4. We study the statistics of the
heat dissipated to the environment, of the entropy produced and of the conjugated entropy production for
different driving times. Furthermore, we show that the fluctuation theorem (1) is satisfied for different driving
speeds and amplitudes. We close the paper with a short discussion of our results in section 5.

2. Detailed fluctuation theorem for the transition between two non-equilibrium states

We now sketch the derivation of equation (1) for the transition between two non-equilibrium states. Consider a
small system in contact with a heat bath at temperature T, that can be driven by varying a control parameter A.
Initially, the value of the control parameter is set to A (t5) = A9 and the system is prepared in a non-equilibrium
macroscopic state p (q, ty) = p,(q). In other words, at time ¢, the probability that the mesoscopic state of the
system is g is given by the non-equilibrium distribution p (g, ty). Due to the presence of thermal fluctuations,
the mesoscopic state of the system cannot be controlled, but only the probability distribution of mesoscopic
states. From time f, to t;, the control parameter is changed from 4 (¢;) = 4oto A (#;) = 4, accordingtoa
prescribed protocol 4 (). The final macroscopic state of the system s p (g, ;) = p, (q). In the backward process,
the initial state of the system is the final state of the forward process, p, (9), and the control parameter takes the
same values as in the forward case but runs them backwards in time. Hence, we assume that the time reverse
process starts just after the forward process ends, at time ¢t = #;. The control parameter is then varied according
to A(t; + t) = A(t; — t),assketched in figure 1. The backward process ends at time t, = #; + 7 where

T = t; — tois the duration of both the forward and time reverse process. The final macroscopic state of the
systemis p (q, ;) = p,(q) whichis in general different from p, (¢).

In fact, in the setup of [31], the macroscopic state is time periodic and the succession of forward and backward processes correspond to one
period. The experiments described in [3, 23, 25, 33] involve transitions between (equilibrium or non-equilibrium) stationary states.
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The amount of entropy produced by a trajectory m = {g,: to < t < t;}in the forward process is given by
[13,34-36]:

ASc[m] = kp log 2 2)

P [m]
where 7 [m]is the probability to observe the trajectory m in the forward process and P [m] is the probability to
observe the time reverse trajectory m of m in the backward process. The time reverse trajectory m contains the
same states as m, but runs backwards in time: m(f; + ) = m(f; — t) . The definition of entropy production in
(2) is consistent with the usual thermodynamic definition [34-36]:

Q[m]

ASior [m] = + AS[m], (3)

where Q [m]is the amount of heat dissipated to the environment along the trajectory m and

AS[m] = —kg log p,(q,) + kg log p,(q,) is the variation of the trajectory dependent entropy of the system
along the trajectory m [10]. In fact, it can be shown that [ 10, 13, 26, 37]:
Qm) _, . P[m|a]
= kg log , (4)
T P [m| ‘11]

where P [m |q,]is the probability to observe the trajectory m given the initial state g5, and P [m |q, ]is the
probability to observe the time reverse trajectory m in the backward process given the initial state g, of the time
reverse trajectory. Equations (4) and (3) together imply (2).

Equation (2) can be rewritten as follows:

ASyo
Py [m] = Py 1] exp (ﬂ) 5)
kg
For the time reverse process, let us define:
< Blm]
ASio[m] = kp 108 7 [m] = —ASot [m]. (6)

With this definition, integrating (5) over all the trajectories that produce the same amount of entropy AS;o, we
recover (1) with [13, 14]:

P(4S0) = [Prlm] 5(4Si[m] - 4Si:) dm, (7)

P(4S0) = [Pulm] 5(4Smlm] - ASo)din. (8)

However, AS,,[m] defined in equation (6) is not the amount of entropy produced by the trajectory in the time
reverse process. The latter is equal to

Qg[m]

ASg[m] = + ASy[m], (9)
where Qg [m]is the amount of heat dissipated to the environment in the time reverse process along the
trajectory m and ASg [m]is the variation of the entropy of the system. The heat released to the environment is
odd under time reversal:

_ A m o]
Qg[m] = kg log —————= = —Q[m]. (10)
Pl m fa,]
However, this is not the case for the variation of the entropy of the system:
ASy[m] = —kg log p2(4,) # —AS[m] = kg log pO(%). (11)
TN pi(a)

Therefore, ASS, [m] # —AS,, [m] = AS,,[m], and the quantity defined in (6) and entering the fluctuation
theorem is not the amount of entropy produced by the trajectory m in the backward process.

7 . Ls .
We assume here that the system does not have degrees of freedom that are odd under time reversal such as velocities. The variables odd
under time reversal should have their sign changed in rh.
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Figure 2. Sketch of the experimental setup. A resistor of R = 1 M&2 is connected in parallel with a capacitor of C = 1 nF. The voltage
source 8V, in series with the resistor represents Johnson—Nyquist noise.

The expression of the entropy AS., [m] produced in the backward process in terms of probability of paths is:
7)B[ﬁl ‘%]Pl(ql)
P m |g,]p2(a,)

In fact, while 73 [m |q,]1p, (q,) = Pg []is the probability to observe the trajectory m in the backward process,
the probability to observe the trajectory m in the time-reversal of the backward processis Px [m |q,]p, (q,). In
general, it is different from the probability to observe the trajectory m in the forward process:

Pe(m |q,1p,(q,) # Pe[m] = Pz [m |q,]p,(q,) because in general the final macroscopic state of the backward
process is not equal to the initial macroscopic state of the forward process, p, (q,) # p, (q,)-

ASE [ m] = kg log (12)

We call AS,,[1h] the conjugated entropy production. Using its definition (6) and the expression for the heat
dissipated in the backward process (10), we obtain that:

Qg[m]
T

ASii[m] = + AS[m], (13)

where

Po(4y)
pl(‘h)

AS[m] = —kg log = —AS[m]. (14)

Equations (13) and (14) allow one to do a physical interpretation of the conjugated entropy production. The
conjugated entropy production is equal to the variation of the entropy of the environment in the backward
process minus the variation of the entropy of the system in the forward process.

The conjugated entropy production is equal to the entropy produced in the backward process,
ASi [m] = AS;‘;t [m],ifand onlyif p,(q,) = p,(q,),i.e.if the final macroscopic state of the backward process is
also the initial state of the forward process. This is the case in the transition between equilibrium states and in
non-equilibrium stationary states. However, in the transition between two arbitrary non-equilibrium, non-
stationary states, it has no reason to be fulfilled.

The difference between AS,[th]and AS2, [m]is:

< < (4,)
ASi[m] — ASE, [m] = AS[m] — ASy[m] = ky log 221 (15)
Po(dy)
When averaging over many trajectories of the backward process, this difference is positive:
. P2 (4y)
(A50) = (4S5) = ks [pa(a,)log 2(—q°)dq0 > 0. (16)
0\ 4o

The right-hand side of (16) is the relative entropy or Kullback—Leibler divergence between the distributions p, and
Po- This quantity is non-negative and it is zero if and only the two distributions p, and p, are
indistinguishable [38].

3. Experimental setup

3.1. The system

The experimental setup is sketched in figure 2. A resistor of resistance R = 1 M£2 is connected in parallel with a
condenser of capacity C = 1 nF. The input current I(¢) is oscillating at a frequency of f, I (t) = I sin(wt)
with @ = 2zf;. The time constant of the circuitis 7. = RC ~ 1 ms.

4
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Figure 3. Three examples of stochastic trajectories during one period of the driving signal (red, green and blue strongly fluctuating
lines). The black solid line represents the ensemble average (g, ) and the black dashed lines represent the ensemble average plus and

minus one standard deviation ¢, = < (g, — (4q,) )2> . In this example, the driving frequency is f; = 75 Hz and the amplitude of the

drivingis g = 2.3 fC. The average and standard deviation are estimated from 38 164 trajectories.

The voltage across the resistor fluctuates due to Johnson—-Nyquist noise, which is modeled in figure 2 by
putting a voltage source in series with the resistor. At any time, this source produces a random voltage 6V,
satisfying [39, 40]:

(Vi) = 0, (17)

(6V;6Vy) = 2kg TR 6(t — t'). (18)
We denote g; the charge that has ﬂotwn through the resistor at time tand i, = dg,/dt is the current that flows
through it. Moreover, let g*, = f . I (s)ds the total charge that has flown through the circuit at time ¢. The

charge of the capacitoris thus q," — g, and the voltage across the circuit is equal to:

9, — 4

Ohm’s law for the resistor implies that:
U = Ri; + 6V, (20)
Hence, the charge g; obeys the following Langevin equation:

dg, 1
RE=—E(qt—qt> +5‘/t (21)
This equation is identical to the equation of motion of an overdamped Brownian particle whose position is g, its
friction coefficient is R and is trapped with a harmonic trap of stiffness 1/C centered at q,". Our control

parameter is q,". It oscillates sinusoidally at frequency f; and its amplitude is related to the amplitude of the input

currentthrough g = Inax / w. In figure 3, we plot three examples of realizations of the stochastic trajectory g,
together with the ensemble average.

3.2.Protocol
After a transient that we do not analyze here, the system relaxes toward a time periodic stationary state. In other
words, the probability distribution p (g, t) of the charge g at time ¢ is time periodic of period 1 /f;, the period of
the driving signal. We use this periodicity of p (g, t) to construct an ensemble of non-equilibrium trajectories.
Here is how we construct the ensembles of forward and backward trajectories of duration 7 from along
quasistationary trajectory {q, }. We chose the origin of time such that g, = g~ cos(wt), where @ = 2xfy. Let
74 > 7 bean integer multiple of the driving period 1 /f;. The nth member of the forward ensemble is the portion
of {q,} where (2n + 1)7g — 7 < t < (21 + 1)7g, nbeing an integer. The corresponding member of the
backward ensemble is the portion of {g, } where 2n + 1)7g < t < (2n + 1)7g + 7.
On figure 4, we sketch how the first two members of the forward and backward ensembles are obtained for
74 = 1/f;. The blue portions correspond to members of the forward ensemble and the green portions to

5
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7 [fC]

qt, q,

Td Ta+T 219 3Ta—T 374 31qa+T
t

Figure 4. Construction of the ensemble of non-equilibrium trajectories for a process duration of 7 = 8.4 ms from along stationary
trajectorydrivenat f; = 75 Hz.Since 7 < 1/f; = 13.3 ms, weset 7 = 1/f;. The smoothly oscillating thick curve represents the
control parameter g, The strongly fluctuating thin curve represents q,. The blue portions correspond to members of the forward
ensemble and the green portions to members of the backward ensemble. The forward trajectories startat time (2n + 1)74 — 7 and
endattime (2n + 1)74,and the backward trajectories start at time (21 + 1)74 and end at time (2n + 1)7g — 7, where nis an integer
(here,weplotn = Oandn = 1). Dueto the periodicity of the driving protocol, each member of the forward ensemble is subject to the
same driving signal and due to the symmetry of the driving signal, the protocol in each backward process is the time reverse of the
protocol in the forward process.

members of the backward ensemble. The smoothly oscillating curve represents the driving signal g, and the
strongly fluctuating curve is g,.

Due to the periodicity of the driving protocol, all the members of the forward ensemble are subjected to the
same driving signal. Moreover, since p (g, t) is time periodic of period 74, all the initial mesoscopic states of the
forward trajectories are drawn from the same initial distribution p, (q) and hence all the forward trajectories are
drawn from the same path distribution 7. The same reasoning applies the backward trajectories: their initial
mesoscopic state is drawn from the same distribution p, (q) and they are all submitted to the same driving.
Hence they are all drawn from the same path distribution 7. Finally, the origin of time was chosen such that g,*

* —_— *
nrg—t and+t :

driving that is the time reversal of the driving under which the members of the forward ensemble are submitted.

is symmetric around nzy, g Hence the members of the backward ensemble are subjected to a

3.3. Measurement of stochastic entropy production

The amount of entropy produced along a stochastic trajectory m is calculated using (3):

ASioi [m] = Q[m]/T + AS [m]. Following Sekimoto [17], the heat released to the environment in the time
interval [t, t + dt]is given by

dg, 1 x
dQ = | R—* + oV | odg, = = (g, - 47) o da, (22)

where o denotes Stratonovich product and the second equality is consequence of (21). Note that the amount of

e " . - Joul . thermal "
heat released per unit time is the sum of two contributions, Q; = Qt]ou ‘4 Qtt ™% The first contribution is due

- Joule

to the Joule heating inside the resistor: Q,”"" = Ri/?, and the second to the power injected by thermal

. + th 1
fluctuations: Q, =

to

= 6V,i,. The heat dissipated between times f, and #; along a stochastic trajectory m equals

nq,—q,;

Qml = [ dQ, = - / o dg, (23)

to 0 C
which is measured from the stochastic trajectories.
The trajectory dependent entropy is given by S (q,, t) = —kg log p (q,, t), where p(g,, t) is the probability
distribution of the charge g, at time ¢. The distribution p (g,, t) is estimated from the ensemble of trajectories.
The system’s entropy change along a trajectory m that starts at g, at time t, and ends at q; at time #, is obtained as

AS[m] = S(ql, tl) - S(qo, to) = —kg logp(ql, tl) + kg logp(qo, to). (24)

4. Experimental results

Figures 5 and 6 summarize the thermodynamics of the process as a function of the process duration z for a
driving frequency of f; = 75 Hz, and hence a driving period of 1 /f; ~ 13.3 ms, and a driving amplitude of

*

Gpax = 2.3 fC. We consider durations up to one period of the driving signal and hence we set 74 = 1/f;. The
signal g, was sampled at 20 kHz and the ensemble consists of 38 164 trajectories.

6
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Figure 5. (a) Average entropy production as a function of the process duration 7. The solid line represents the entropy production in
the forward process, the dotted line the entropy production in the backward process and the dashed line the conjugated entropy
production AS,y[t]. (b) Average variation of the entropy AS [m] of the system in the forward (solid line) and in the time reverse
process (dotted line). They are both equal to zero for all 7. The dashed line represents the average of AS[r] over the time reverse

process.
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Figure 6. Distributions of the heat (top), system entropy variation (middle) and entropy production (bottom) for the three different
durations 7 & 3.3,6.5and 10 ms corresponding respectively to one quarter, one half and three quarters of the driving period z4. Each
column corresponds to one value of 7. Upper row (panels (a), (b), and (c)): distributions of the heat dissipated in the forward (solid
lines) and time reverse process (dashed lines). Middle row (panels (d), (e), and (f)): distributions of the variation of the entropy of the
system in the forward process (solid lines), in the time reverse process (dotted lines) and of AS[1] given by (14) in the time reverse
process (dashed lines). Lower row (panels (g), (h), and (i)): Distribution P (AS,, ) of the entropy produced in the forward process
(solid lines), distribution Bs (AS;o) of the entropy produced in the backward process (dotted lines), and distribution P(AS,,) of the
conjugated entropy production (dashed lines).

Figure 5(a) shows the ensemble averages of the amount of entropy produced in the forward process, (AS )
(solid line), the amount of entropy produced in the backward process (452, ) (dotted line) and of the conjugated
entropy production (AS,,,) (dashed line) as a function of the process duration 7. These three quantities increase
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Figure 7. Ratio P (A4S )/P(—AS,,) on alogarithmic scale as a function of AS,,, for different driving frequencies, amplitudes and
durations 7. The black line corresponds to the theoretical prediction exp (AS;o/kg). Panel (a): driving frequency f; = 75 Hz, period
1/fy = 13.3 ms,amplitude q; = 1.4 fC. Panel (b): driving frequency f; = 75 Hz, period 1/f; = 13.3 ms, amplitude
Gmax = 2.3 fC. Panel (c): driving frequency f; = 1 kHz, period 1 /fy = 1 ms ~ RC,amplitude g, = 0.86 fC. Panel (d): driving
frequency fy = 1 kHz, period 1/fy = 1 ms ~ RC,amplitude q; = 1.3 fC. For panels (c) and (d), we considered durations up to
13 driving periods, hence 79 = 13 ms.

with 7, in a manner that is roughly linear with a periodic modulation. We check the inequality (16),
(AS.) = (ASE,). Moreover, the average amount of entropy produced in the forward process is approximately
equal to the average conjugated entropy production, (AS,, ) & (AS).

We also investigate the average value of the system’s entropy change (figure 5(b)) in the forward process,
(AS) (solid line), in the time reverse (ASg ) (dotted line) and the quantity (AS) (dashed line) as a function of the
process duration 7. The system’s entropy change vanishes on average both in forward and backward processes.
Hence, the average entropy production is equal to the average dissipated heat in both cases, (A4S ) = (Q)/T
and (AS,) = (Qp)/T.

In this situation (15) and (16) imply

P,(q)
Po(q)

(US) = (AS8) = (4S) = ks [p,(@)log == dg > 0. (25)

On figure 5(b) we can see that (AS) is non-negative for all 7, in accordance with (25). The quantity (AS) is zero
forr = 0,7 = 74/2 ® 6.5 msand 7 = 74, implying that for these durations, p, = p,. Infact, for r = 0, we have
ty = t; = t; and thereis no process and hence p, = p, = p,. For 7 = 74/2, wehave t, — t; = 74, and hence
2,(q) = p(g, to + 74) = p(g, ty) = p,(g) because p (g, t)is time periodic with period 74. The same reasoning
applies for 7 = 74.In that case, we have t, — ty = 27g,and hence p, (q) = p (g, to + 274) = p (g, to) = py(q)-
The quantity (AS) is also zero for 7 = 74/2 ~ 6.5 ms which is one half of the driving period. Finally, (AS)is
maximum for 7 & 3.3 msand 7z & 10 ms which correspond to one fourth and three fourth of the driving
period.

On figure 6, we show the distributions of the thermodynamic quantities heat, entropy variation and entropy
production in the forward and backward process for the three durations z ~ 3.3, 6.5 and 10 ms, corresponding
to one quarter, one half and three quarters of the period of the driving signal.

The first row of figure 6 (panels (a), (b), and (c)) shows the distributions of the heat released to the
environment in the forward (solid lines) and in the time reverse process (dashed lines). These are identical for
T & 6.5 ms otherwise they are different.
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In the middle row (panels (d), (¢) and (f)), we show the distributions of the system’s entropy change in the
forward process (solid lines) in the backward process (dotted lines) and of the quantity AS (dashed lines). The
distributions of the system’s entropy change in forward and backward processes are identical. They are
symmetric with respect to 0 and non-Gaussian for all values of 7. Similar results were also found in [27, 32]. The
distribution of AS[r] differs from the two others except for 7 ~ 6.5 ms.

The lower row (panels (g), (h) and (i)) of figure 6 shows the distribution P (AS.) of the entropy produced
in the forward process (solid lines), the distribution B; (AS,, ) of the entropy produced in the backward process
(dotted lines) and the distribution P(AS, ) of the conjugated entropy production (dashed lines). The three
distributions are Gaussian, as in [27]. The distributions of the entropy produced in the forward process and of
the conjugated entropy production are equal, P (AS;;) = P(ASo). The distribution By (A4S, ) of the entropy
produced in the backward process is equal to the two others for 7 = 6.5 ms, otherwise it has a different shape. In
accordance with equation (16) and with figure 5(a), its mean is smaller than the mean of the two others.
Moreover, its variance is also smaller. Note that a necessary condition for the fluctuation theorem (1) to hold
when the distributions P (AS,,;) and P(AS,, ) are Gaussian is that they are equal [24, 41].

Figure 7 shows that the theorem (1) is verified with high accuracy in our experiment. This figure shows the
ratio P (AS)/P(—AS,,; ) between the distribution P (AS,,) of the entropy produced in the forward process and
of the distribution P(—AS,,,) of (minus) the conjugated entropy production —AS,[m] for the backward
process for different driving frequencies and amplitudes and for the durations. Panels (a) and (b) correspond to
adriving frequency of f; = 75 Hz and hence a driving period of 1 /f; = 13.3 ms. The signal q, was sampled at
20 kHz. The drivingamplitudesare g = 1.4 fC for panel (a) and q = 2.3 fC for panel (b). The ensembles
consist of 38 424 (panel (a)) and 38 164 (panel (b)) trajectories. Panels (c) and (d) correspond to a driving
frequency of f; = 1 kHz and hence the driving periodis 1/f; = 1 ms ~ RC, which is the time constant of the
circuit. Here, we considered process durations up to 13 periods, and hence g = 13 /f; = 13 ms. The signal g,
was sampled at 100 kHz and the ensembles consist of 198 144 trajectories. The driving amplitudes are
... = 0.86 fCforpanel(c)and g = 1.3 fC for panel (d). The black solid line corresponds to the theory,
exp (ASio/kp). The fluctuation theorem (1) is fulfilled with high accuracy (along up to four decades) for all the
durations considered.

5. Conclusion

To summarize, in this work we have studied experimentally the thermodynamics of the transition between two
non-equilibrium states in a parallel RC circuit, in the light of the fluctuation theorem for the entropy production
(1). In such asituation, the fluctuation theorem (1) presents a subtlety: for the backward process it involves the
distribution of the conjugated entropy production (6) rather than the distribution of the entropy production.

We have characterized the statistics of the heat dissipation, entropy variation and entropy production in the
forward and backward processes. In particular, for the backward process, we have studied the difference between
entropy production and conjugated entropy production. Furthermore, we have verified that the detailed
fluctuation theorem is fulfilled with high accuracy for different driving frequencies and amplitudes and for
different process durations, which confirms the universality of the result.
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