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Abstract

We investigate theoretically the dynamic multiferroic (MF) response of coupled ferroelectric (FE)/
ferromagnetic (FM) composites upon excitation by a photo-induced acoustic strain pulse. Two
magnetoelectric (ME) mechanisms are considered: interface strain- and charge-mediated ME
couplings. The former results in demagnetization, depolarization and repolarization within tens of
picoseconds via respectively magnetostriction and piezoelectricity. Charge ME interaction affects the
FE/FM feedback response leading to magnetization recovery. Experimental realization based on
time-resolved x-ray diffraction is suggested. The findings indicate the potential of composite MF for
photo-steered, high-speed, multi-state electronic devices.

Introduction

Appropriately synthesized ferroelectric (FE) and ferromagnetic (FM) multilayer or nano structures may show a
multiferroic (MF) (magnetic, electric, and/or elastic) response which is indicative of an emergent coupling
between the respective order parameters [1-12]. In addition to the fundamental questions regarding the origin
of the underlying physics, this observation holds the promise of qualitatively new device concepts. MF memory
devices [13] with multi-state data storage and heterogeneous read/write capability through the interfacial strain
effects [14—18], the direct electric field effects [19—-27], and exchange-bias [28—30] are a few examples. A key
element thereby is the strength and symmetry of MF coupling and whether it is utilizable for swiftly transferring/
converting FM into FE information. Time-resolution, particularly how fast such a conversion may take place and
how to map itin practice are issues that have not been addressed yet theoretically for MF composites, despite the
intense research on MF materials. This work contributes to this aspect by making a specific proposal for an
experiment and provides theory and numerical simulations to unveil the time scale of mediating information
(excitation) via MF coupling. Recently, first time-resolved x-ray diffraction (trXRD) experiments were conducted
to access the time-resolved FE response and lattice dynamics in single phase MF BiFeOs; film [31, 32]. Photo-
induced stabilization and enhancement of FE polarization were observed for Ba ¢.1Sr ¢ 9TiO3/La o.7Ca(Sr) 0.3
MnOs; [33]. Our focus here is on layered FE/FM composites (see figure 1) whose magnetoelectric (ME) interaction
may stem from the interfacial strain effects and /or spin rearrangement [4, 6, 9, 27].

For isolated FM systems, the ultrafast laser-induced magnetization dynamics (i.e. roughly speaking, a
femtosecond demagnetization, a picosecond recovery, and a picosecond to nanosecond magnetization precession
and relaxation) are intensively studied with important implications for photo-magnetic devices [34]. For FE
nanostructured materials, the ultrafast mechanical and electronic dynamics are well documented [35, 36]. An
optical pump excitation pulse generates a propagating mechanical stress, which results in picosecond polarization
dynamics [37-39] that can be probed experimentally via trXRD. In composite MFs, it is yet to be clarified how
upon such a pump pulse the coupled time-resolved MF dynamics are manifested, an issue addressed here.

©2016 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Figure 1. (a) Schematics of the proposed setup: few ferromagnetic (FM) layers (e.g., Fe) coupled to a ferrelectric (FE) film (e.g., BaTiO3,
or PbZr ;. Ti,O; deposited on a SrTiO; (STO) substrate. The structure is irradiated with a laser pulse that induces a lateral acoustic
wave (u(t) with laser tuneable amplitude ) triggering strain-driven multiferroic dynamics mappable by tracing the time evolution of
transient FE polarization (c) (via trXRD), and FM magnetization (d) (via time resolved magneto-optical Kerr effect). (b) Structure
dynamics of the heterostructure with the reflectivity (r) from the substrate beingr = 0 orr = 1. The general structure deformation is
asuper-position of these two cases.

Generalities and proposed setup

Experimentally, FE/FM MF heterostructures were successfully realized and characterized [1-4, 9-11]. In principle,
strain and charge co-mediated ME coupling are expected in composite MFs [40]. The direct charge-mediated ME
interaction is generally due to the induced changes in the magnetic states by the electrostatic screening effect

[9, 27] itis however strong and plays a dominant role in some FE/FM-metal systems [42—45]. Whereas, the
piezoelectric strain is found to give rise to an electrically tunable uniaxial magnetic anisotropy [9, 18, 40]. To
unveil the transient dynamics we propose in figure 1 to employ photo-induced transient strain and trXRD and
monitor the effects of interface strain- and charge-mediated ME couplings. The strain can be chosen lateral, as in
our case, or as having in-plane components by an additional appropriate grating atop the FM film. For strain-
induced magnetization dynamics in conventional isolated FM we refer to [46] and references therein.
Calculations show, for a MF composite chain electrically induced magnetization reversal is not achievable for
large/thick FM subsystem [ 18, 47]. This is because of the interface-limited nature of MF coupling [9, 27].
Therefore, it is advantageous to choose a system consisting of a thin FM layer (such as Fe with thickness

dpp = 10 nm) and a thicker FE layer (e.g. PbZr 1 Ti,O; (PZT) or BaTiO; (BTO) with thickness dgg = 100 nm)
grown epitaxially on a substrate SrTiO3 (STO) (figure 1(a)). Fe[110] can be caped (with thin transplant Au-layer

to prevent oxidation) and rotated to align parallel to BTO[100], resulting in in-plane misfit strains“uHFe = 1.39%

BTO _

and —0.139%. The normal strains are determined by the Poisson ratio, #1g. = uHFe / uf¢and

ngTo = uHBTO / uPTO with ng, = 0.26 [48] and ngro = 0.65 [49], respectively. In the following we focus on the
particular situation where the spontaneous FE polarization is directed perpendicular to the substrate plane
(hereafter referred to as the e,-direction).

From a computational point of view, the coarse-graining procedure with cell sizea = 5 nm is conveniently
used to obtain the macroscopic quantities of polarization P; (with i = 1,..., Ngg and Ngg = dpg/a) and
magnetization M; (with j = 1,..., Npyand Ny = dgy/a) [50]. The change in polarization P; to a first-order
approximation can then be understood in terms of piezoelectricity [51]

4The in-plane misfit strains are estimated by, uHFe = —(q — aOFe)/aH = 1.39% and u”BTO = —(aq) — a(?TO)/a” = —0.139%, where ab®

(0.4053 nm along Fe[110]) and abT©(0.3992 nm along BTO[100]) are free lattice constant of Fe and BTO, respectively.
agedre + afTOdpTo

g = 0-3998 nmiis the in-plane lattice constant of epi-bilayer.
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AP, = ZCaguiFgE + €0 X°E;, (D
3
where ¢3¢ (€ = 1, 2, 3)istheimproper piezoelectric tensors [52], € is the free space permittivity, and x© is the
electric susceptibility. The effective electric field E; derives as E; = 6Frg/dP;, where Fgg is being the coarse-

grained FE free energy [18], Fpr = Fgg + Fppi. The elastic Gibbs function Fgg corresponding to the tetragonal
phase of BaTiO; reads [18, 41]

(0%
Fep = 7—ZP% + EZ:Pl4 + HZ(R‘ — P’
+ _Z[C3l(u1x + M )+ C33u1z PIZ + Z CFE FE ulEE. (2)

€0

Here we accounted for the symmetry c;; = ¢3,. The stiffness coefficient of the FE part is CIFIE. Fppy is thelong
range FE dipole—dipole interaction which has the usual form

1 [E~h—3®~wﬂw-m1

3

FDDI = 3

ATeErE €0 jk T
where egg is the FE permittivity, r; is the distance between P, and Py, and ej is the unit vector joining the two
dipoles.

Analogously, for the FM energy density the relation applies Fpyy = Fxc + Fuymi- Fxc consists of the nearest-
neighbor exchange interaction (A-term) between M; and M, ;, the uniaxial magneto-crystalline anisotropy
contributions (K;-term), and the (magneto-) elastic energies,

A K 2
Fxc=———SM, M, — —SM
XC azMSZ; j j+1 MSZ; z

M

+BIZMEM( : ]* 2CHu ) @)

: M

7€

M is the saturation magnetization. The anisotropy K; depends on the FM film thickness dgy,

K, = (K / drm — 1 M? / 2), where K describes the surface anisotropy contributions that are significant for
ultra-thin film tending to align the magnetization normal to the surface, whereas, 1, M;’/2 denotes the
demagnetization field that is equivalent to an easy in-plane contribution. B, and C/M respectively denote the
magneto elastic constants and elastic moduli of the FM layer. The magnetic dipole—dipole interaction Fypyy is

l wawwMWMﬂ

Fyvn = HO Z
]¢l

5 : 5)
where 1, is the magnetic permeability constant.

We are targeting exclusively ps-ns time scales, i.e. the range for laser-induced fs-demagnetization [34] is not
discussed here. The dynamics of orbital degrees of freedom is therefore not explicitly taken into account (i.e., they
are assumed to have relaxed to the dynamics considered here). The material parameters for the FE subsystem are
chosenas o = 2.77 x 107 Vm C ' [53], = 1.70 x 108Vm>C °[53],x = 1.0 x 108Vm C ' [26],

P; = 0.499C m ™ *[18],and C11 = 1.78 x 10''N m™*[54]. The improper piezoelectric constants are set as those
of BTO[52]: 3 = 0.3Cm 2, 33 = 6.7 Cm 2, and the Poisson ratio n = 0.64 [49]. Further material parameters
concerning the FM layer are iron, i.e., A = 2.07 x 10~>alongFe[100], B; = —2.95 x 10N m %

CIM =241 x 10" Nm ?[55], A = 2.1 x 107" Jm ' [56], K; = 4.8 x 10*Jm ~ [56], M, = 1.71 x 10°
Am' [56]. We assume that none of these parameters changes during the dynamics of interest here.

From the symmetry point of view, the space-inversion symmetry and the time-reversal symmetry are
intrinsically broken at the FE/FM interface [57, 58], the MF coupling is thus restricted to the region in the
vicinity of the interface,

Fye = P - M, — %)\O’ cos? ¢. 6)

The first y-term has its origin in a magnon-driven, direct ME interaction in the vicinity of the FE/FM interface
acting within the spin-diffusion length on the order of nanometers [27, 45]. v is the coupling strength in unit of
s F~'. Given that the spin-diffusion length is around 8.5 nm in Fe [59], the linear direct ME coupling is assumed
to only involve the interfacial nearest neighbor cells, i.e. the FE polarization P; and FM magnetization My, only.
The second A-term involves piezoelectricity and the magnetostriction at the interface, associated with an
additional uniaxial anisotropy energy for the FM layer [14, 18, 55]. Ais the average magnetostriction coefficient,
and ¢ is the angle between the magnetization M and the direction of the stress o across the interface,

o = —ClFu® + CfMu™. The in-plane static stress at the interface is assumed to be balanced due to the lattice

3
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Figure 2. Polarization and magnetization feedback dynamics induced by interplay of interface strain and charge co-mediated
magnetoelectric couplings (with varying strength ) for strong excitation with 1y = 1%. Comparing with the amplitude of
magnetization in figure 1(d) after 100 ps, an obvious magnetization recovery is induced by the charge-mediated ME interaction.

deformation. Taking that A > 0 in our case, a negative film stress (c < 0) on FM layer favors ¢ = m /2 which
means an in-plane magnetization while o > 0 favors an out-of-plane magnetization with ¢ = 0.Itshould be
noted that we focus on thin FM films, the indirect high-order ME coupling, such as a spin-motive force resulting
from the non-equilibrium magnetic domain wall dynamics [60], is disregarded here. Other cases of strains can
be treated similarly.

As demonstrated by trXRD experiments [36—38, 61], except for a static strain due to the lattice mismatch,
electronic excitation by an ultrafast pump pulse generates dynamic transient strain propagating through the FE/
FM films, directly affecting the dynamics of the magnetization and polarization. Here we assume that an applied
optical pulse is exclusively absorbed in Fe layer, changing so the electronic configuration of the absorbing
material and generating a transient stress that results in a displacive excitation of phonons in the Fe/BTO
systems through the electron—phonon coupling. The expansion front with an amplitude u¢ (0, 0) starts at time
t = 0 from the top air-Fe interface, enters into the Fe and BTO layers with the respective sound velocity
(Vg = 5130 m s~ and vgro = 5437 m s, respectively) and arrives at the surface of the substrate after
At = dpm/Vre + dpe/veTOo ~ 20 ps. Atthe BTO/substrate interface, the strain front is reflected from the
substrate surface and backs into the Fe/BTO heterostructure, encountering the incoming strain wave, and then
launching a coherent acoustic standing wave with the wave vector k = 1/(dpy + dgg)- Such a coherence lattice
motion is manifested in fast oscillation (with system-size-determined period T = At) of FE polarization and
FM magnetization due to piezoelectricity and magnetostriction respectively, as shown in figures 1 and 2.
Furthermore, the polarization/magnetization dynamics are coupled to each other at the interface due to the ME
coupling, which gives rise to marked changes in FE/FM response since the surface contribution to the free
energy plays an important role for nanostructures.

The time evolution of the strain wave depends significantly on the pump fluences [37]. Without loss of
generality two limiting cases are to be considered:

(1) Strong excitation. For large pump fluences, the heterostructures may suddenly deform within femtose-
conds. For ps dynamics, the strain front amplitude acts promptly as
ue(z, t) = —ugsinQRukz — 2nwt + 7/2) (i.e.,—ug for t = 0) with the frequency w = 1/T. The strain
standing wave reads u(z, t) = —2ug[1 — cos(2mkz)sin(2nwwt)] after t = 2 T = 40 ps.

(ii) Weak excitation. For moderate pump fluences the expansion front u¢ (z, t) = ugsin(2wkz — 27wt ) travels
within FE/FM heterostructures leading to the standing wave u, (z, t) = 2u sin(2wkz) cos(2mwt). The
general pump case is a super-position of these two cases.

Numerical results and analysis

The MF dynamics is studied by kinetic Monte Carlo simulations [18, 62] with open boundary condition at room
temperature (300 K) for tetragonal BTO phase. The kinetic Monte Carlo method is advantageous in that it is
computationally more tractable than a direct solution of the coupled Landau-Lifshitz—Gilbert/Landau—
Khalatnikov equations that we examined earlier [26]. The magnetic moments M; are understood as three-
dimensional unit vectors, which are updated coherently, i.e., at each trial step the direction of new M; is limited
within a cone around the initial spin direction [63]. The maximum angle 0,,,,, of the cone is determined by
means of a feedback algorithm so that the number of accepted spin modifications is just half the total number of
equilibrium configurations at a given temperature before the x-ray diffraction [64]. In experiments with BTO,
the FE dipoles in the tetragonal phase are along the [001] direction and are thus assumed to be bi-directional
vectors. The remanent polarization is P, and the field-induced deviation is AP, and is given by equation (1)

4
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Figure 3. Multiferroic responses with only the charge-mediated interface magnetoelectric coupling (y = 1.0's F~"and A = 0). The
FE repolarization (left) gives rise to a magnetization reversal (right).

[65, 66]. During the simulations, the MF equilibrium at 300 K is at first established with AP, = 0, O,y is
determined. Then a transmit strain along the chain is turned on at t = 0 and it propagates through the
multiferrroic chain. The strain wave and all induced FE dipole moments are updated with the time step

7o = 0.1ps, which is also taken as the time unit of Monte-Carlo algorithm [62]. To reduce possible random
errors, the data are collected and averaged for 4000 independent runs.

As discussed after equation (6), the MF dynamics is in general strain and charge mediated. However, for the
type of excitations considered here strain is a key factor. For an insight into various mechanisms, at first only
strain-mediated ME interaction is considered. Figure 1 shows transient changes in the averaged polarization and
magnetization for a strong pump pulse with 100% reflectivity from the substrate. FE polarizations are strongly
suppressed by the photo-induced stress (figure 1 (¢)), with/without the strain-mediated ME couplings. There
are two distinguishable change steps (at t = 20 ps and t = 40 ps, respectively) corresponding to 7-phase shifts
between the incoming expansion wave and the reflected front before forming a standing strain wave. As the peak
strain exceeds 1.4% a critical point is arrived. The negative piezoelectric contribution AP, exceeds the
permanent dipole P, a full FE polarization reversal is then induced by the strong piezoelectricity within 40 ps.
Experimentally such a strain-induced ultrafast characterization of polarization dynamics has indeed been
observed in a PbZr 0.2Ti0.803/SrRuQOj3 superlattice [37, 38, 61], where the FE dynamics was traced back to the
anharmonic coupling of the tetragonal distortion and the FE soft phonon mode in PZT. For the FM subsystem
in general, an optical excitation generates a time-dependent magneto-elastic anisotropy making the normal z-
axis magnetically harder with the increase of the amplitude of strain wave 1, (see equation (4)). This leads to a
fast-oscillation but a relatively weak and slow reduction of the normal magnetization (M, ) (see figure 1 (d)).
Upon accounting for the uniaxial interfacial magnetic anisotropy (A-term in equation (6)) that stems from the
stress o across the FE/FM interface, we find a magnetic transition from FM to paramagnetic state (i.e.,

(M,) — 0)in 100 ps range (figure 1 (d)). We recall that we adopt a phenomenology based on coarse-grained
order parameters that formally result from an averaging over microscopic quantitiesoveran 5 X 5 x 5 nm?
cell. As mentioned above the time scale and the origin of the demagnetization processes in our system are quite
different from the conventional fs to ps laser-induced demagnetization dynamics [34, 67]. Furthermore, the
lattice deformation u; < 0 results in a surface tensile rather than compressive strain to Fe along the z-axis. So,
such a collapse of magnetic order does not correspond to the case of ‘Iron under pressure’ [68—70], where
magnetic transition is simultaneously accompanied by a high pressure bce to hep structure transition. Here the
magnetic collapse phenomenon is attributable to the extraordinarily hardening of the magnetic uniaxial o -axis.
As strain wave propagates through the heterostructures, the interface stress o acting on Fe is rapidly oscillating
and reaches a giant value, for instance 0 = —16.5 GPawith uy = 1%(2%) at t = 55(15) ps, which makes the
stress axis extremely hard, altering substantially the FM order along the magnetocrystalline axis within tens of
picoseconds. The in-plane magnetization is then favorable. Considering the SO(2) rotational symmetry of the
magnetoelastic anisotropy (B;-term in equation (4)) about the e,-axis, however, there is no preferred easy axis in
the normal plane to the direction of surface stress, resulting in a rotational in-plane anisotropy. The numerical
calculations confirm that the in-plane averaged magnetization (M,) and (M,) present a noise-like dynamic
behavior, we thus have an ultrafast interface strain-driven demagnetization in a MF FE/FM heterostructure.

For a more complete scenario of ultrafast MF dynamics, another interfacial ME coupling induced by the
spin-polarized screening charges should be considered [27]. Different from strain-mediated MF interaction, the
charge-mediated, magnon-driven ME effect couples directly the dynamics of FE polarization and FM
magnetization and favors antiparallel alignment perpendicular to the interface. Taking into account that the
strength of direct ME interaction is around 1 s F~!in metallic FM film [27, 43, 45], such electrically controllable
effective magnetic field generated by the non-vanishing normal FE polarization gives rise to an induced
magnetization along (P,) from the paramagnetic state, as evidenced in figure 2. On the other hand, with strain
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Figure 4. Multiferroic dynamics for weak excitation (19 = 1%) with different reflectivity (r = 0 or 1) from the substrate. A giant
interface charge-mediated magnetoelectric coupling v = 25 s F~ ' is assumed in the theoretical simulation (not appropriate for FE/
FM heterostructures in experiments).

amplitude 1y = 1%, the coupling strength v = 1s F~'is insufficient to produce considerable feedback changes
in FE polarization. The FE/FM feedback is only pronounced, for alarge coupling . The pre-contact FE cell
diminishes in magnitude and then flips its direction for v > 14 s F~', causing the emergence of the re-polarized
FE. Simultaneously, due to the interplay of the interface strain and charge-mediated magnetic anisotropy, the
FM part recovers remnant magnetism, which favors the opposite orientation of the polarization as expected.

Given the large mismatch in stiffness coefficients between FE/FM films [25] or appropriately fabricated FM/
FE crystal orientation [44], the magnetostrictive effects can be minimized, the direct electric-field effects would
then dominate the MF dynamics. In figure 3 the MF responses, driven by charge-mediated ME interaction only,
are demonstrated. As one can see, the propagating mechanical stress with the strain-front 1.5% reverse the FE
polarization and consequently the FM magnetization due to the requirement of the antiparallel configuration
between the polarization and magnetization by the direct charge-mediated ME coupling.

To explore the FE/FM feedback response in the case of weak excitation, a very large interface charge-
mediated ME coupling v = 25 s F~ " is assumed in the theoretical simulation. The system exhibits
demagnetization due to the dynamic strain effect as well (see figure 4), but FE re-polarization vanishes even with
such an unrealistic (giant) interface charge-mediated ME coupling, though the FE/FM feedback are still present
and induces a quasi-square-pulse FE dynamic behavior.

Conclusions

We proposed and theoretically realized a scheme for studying ultrafast dynamics in a composite MF
heterostructure related to Fe/BaTiO3. Based on the piezoelectricity and the magnetostriction resulting from a
coherent lattice motion in the FE and the FM launched by a pump laser pulse, the critcial amplitude of the strain
front 1.4% gives rise to a complete switching of the bipolar FE polarization, while at the same time for zero ME
coupling of any type it has low impact on the FM order (figures 1(c) and (d)). Only in the presence of the strain-
mediated ME coupling (second term of equation (6)) the total out-of-plane magnetization becomes supressed
(figure 1(d)). The effect of the charge-mediated coupling (first term of equation (6)) is opposite. It resultsin a
partial recovery of the total M,-component on the time scale of about 200 ps (figure 2). It should be noted that
the reflectivity of propagating strain wave from the substrate is not necessary for the ultrafast MF dynamics but it
indeed enhances the studied effects (see figure 4). In addition, it is numerically evident that such ultrafast ME
dynamics are general in FE/FM heterostructures containing strong piezoelectric FE subsystem, such as BaTiO5
and PbTiO; [52]. The results indicate the potential of MF composite for photo-operated high-speed devices.
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