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Abstract

Interfacing polar insulating oxides may result in the formation of interface-confined, high density
carriers with a number of emergent properties. A local coupling of carriers to a helimagnetic oxide
layer is shown to lead to an effective spin-orbit interaction with a band splitting determined by the
local s-d exchange interaction. As a result a bias-induced, non-equilibrium long-lived spin density
normal to the spiral plane is predicted. We find that the spin accumulation is strongly enhanced when
only one of the two bands is at the Fermi level and the chemical potential is close to the band edge. As a
consequence we predict a large spin-transfer torque and spin current emission that can be utilized for
oxide-based spintronic applications.

Introduction

Non-magnetic control of spins is essential for a number of spintronic devices with novel functionalities and low-
energy consumptions. The driving mechanisms are diverse [1, 2], such as the spin-Hall effect [3-5], current-
induced spin torques [6, 7], the spin-Seebeck effect [8], or the magnetoelectric effect [9—13]. Generally, akey
common element is the presence of a spin orbital interaction (SOI) which can lead to a substantial current-
driven torque or spin accumulation. This in turn can be utilized to steer the magnetization of a ferromagnetic
(FM) layer [7] for example. The largest efficiency of spin-transfer torques so far is observed in the topological
insulator (TT) bismuth selenide (Bi,Ses) with the Rashba SOI [14, 15] and magnetically doped TT hetrostructures
[16]. Here we show that the spin-torque ratio (i.e., the strength of the torque per unit charge density) can be
further enhanced by orders of magnitude when utilizing an emergent spin-polarization of a high-density two-
dimensional electron gas (2DEG) or liquid formed at the interface of oxide heterostructures that involve helical
magnetic order.

Such 2DEGs with carrier density ~10™ cm ™2 and mobility ~10* cm® V' s~ ! were realized for LaAlO;/
SrTiO3 (LAO/STO) or RTiO3/STO polar interfaces (where R is a trivalent rare Earth ion) [17]. Moreover, the
STO-layer retains the bulk character even down to a thickness of 2 unit cells [18]. This sheet of 2DEG can be
excellently confined in STO/1-monolayer-RO/STO heterostructures [19] and STO/SrTiy sNbg ;03 quantum-
well structures when the thickness of the SrTi, sNb, ,O; layer becomes less than 1.56 nm [20]. Experiments on
the gate-control of the Rashba-type spin—orbit coupling in LAO/STO heterostructures have been reported
[21,22]. Furthermore, experiments [23] evidenced anisotropic magnetoresistance in (STO) quantum wells
(<1 nm, with carrier density 7 x 10'* cm™?) epitaxially embedded in ferrimagnetic GdTiOs (GTO) or
antiferromagnetic SmTiOs. What happens if a helimagnet film is involved, e.g. if RMnO3 (R = Tb, Dy, Gd)
[24, 25] replaces one of the GTO layer or is deposited atop of highly confined STO quantum wells [20, 26].
Experimentally, the helical spin structure of TbMnO; (TMO), for instance, is found to persist down to 6nm
films on YAIO; [001] substrates [27]. In this case, due to electronic correlations the 2DEG carriers couple to the
local magnetic moments whose spiral structure leads to an (gauge) effective SOI [28]. Acting on traversing
carriers this SOI results in an emergent spin polarization of 2DEG, as shown below. Remarkably this effective
SOIresembles the semiconductor case for which the Rashba SOI and Dresselhaus SOI have equal strengths
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Figure 1. Schematic diagrams of the oxide-based 2DEG with large and long-lived spin accumulation for (a) spin transfer torques on a
FM electrode and (b) spin current injections via spin diffusion. {2 are Ohmic contacts, M is a FM electrode magnetization. The bc or ab
plane are the spiral plane of RMnO3 to which 2DEG couples. For clarity, the spiral plane is taken as the xz plane and the spiral vector
along the x-axis (see also the appendix A). (c) Induced spin density by applied electric fields E, (Sy) and temperature gradients

=V, T/T (S}) as functions of the chemical potential 11 and the exchange interaction U. Two inner contours with U = 0.05 eV are
present in (d) with the solid lines (full). The approximation results for U >> 4, kg are shown for comparison (dash lines). The spin
spiral wave vector q,, = [—0.277/a, 0, 0] and the temperature T = 20 K.

[29, 30]. Therefore, only a weak decay of spin polarization coherence occurs during a (nonmagnetic)
momentum-dependent intra-band scattering. Atlow temperatures, the inter-band scattering is suppressed
because of the band separation stemming from the local s-d exchange interaction. Thus, a large and long-lived
spin accumulation emerges in 2DEG as only the lower subband is occupied with electrons. Such a generated spin
accumulation is very useful for oxide-based spintronics, e.g., as highly efficient generators of spin transfer torque
steering the magnetization of an attached FM layer (see figure 1(a)), or for coherent spin-current injection (see
figure 1(b)). Further functionalities are expected with the RMnOj5 thin films grown on YAIO; [27] or STO [31]
substrates. For example, some helimagnets (TMO) possess spin-current driven ferroelectric polarization and
hence the SOI can be tuned by a moderate electric field [32].

Generalities and proposed setup

The proposed structures are sketched in figures 1(a)—(b). The essential building block is composed of the oxide-
based 2DEG and a helimagnet such as TMO (e.g. GTO/STO/TMO or STO/LAO/TMO). Below Tp, = 27 K,
TMO exhibits a spin-driven multiferroicity and a helical spin structure in the bc (or ab) plane [24, 32]. In the
following xz-plane is taken as the spiral plane, i.e., m(r) = [sin q,, - 1, 0, cos q,, - r] with the spiral vector
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q,, = [—4,,» 0, 0]. The coupling of 2DEG to the helical spin order is captured by the s-d Hamiltonian

P2
H=— + Uo - m(r). (@))
2m

It should be noted that the vector potential associated with the internal (real) magnetic field of the magnetic
moments is negligible [28]. P = 7/ k is the momentum operator, m is the effective electron mass, U'is the local
exchange coupling strength, and o is a vector with Pauli matrices components. Performing the unitarylocal
transformation U, = exp(—iq,, - ro,/2), the quantization axis becomes oriented along the vector m (r) at each
point (0, does not change, as [U,, 0,] = 0). H then transforms to (a brief summary of mathematical details is
included in the appendix A)

212
H:ﬁk

+ ak.o, + Ug, )
2m

with a = /2q,_ /(2m). Clearly, the transformed Hamiltonian H contains an (gauge) effective SOI that depends
linearly on the carriers wave vector k and on the helicity q of magnetic order. The strength of effective SOI, « is
determined by the effective mass 1 of the 2DEG as well. For the collinear magnetic phase (q,, = 0) this SOI

vanishes. Diagonalizing H yields two carrier subbands E* well-separated by U, i.e.

Ef =g + JU? + o2k} (3)

with &, = /°k?/(2m). Note, this band splitting suppresses efficiently the inter-subband scattering at low
temperatures. If U = 0, the 2DEG decouples completely from the helical magnetic structure and becomes a
2DEG without gauge spin—orbit coupling. We have then E; = E;" and effects based on lifting this degeneracy
disappear. In our case with given finite U the spiral structure selects a specific value for q, resultingin E; = E;*
and associated effects.

For 2DEG at oxide interfaces the effective electron mass m = 3m, [21, 33, 34] (. is the bare electron mass),
and q,, = 0.277/a (for TMO [32], alattice constanta = 5 Ais assumed). The effective SOI strength reads then
« = 0.216 eV A, which is of the same order as the Rashba SOI in typical semiconductor quantum wells [35, 36].
The k-dependence of the effective SOl is analogous to the Dresselhaus [110] model and the balanced Rashba and
Dresselhaus spin—orbit couplings [29, 30, 37, 38], in which case the system possesses an exact SU(2) symmetry
that renders spin lifetime infinite. In our case, given the large electron density and the high mobility of oxide
electron gases [17], the electron—phonon and electron-impurity scattering are usually weak. Scattering is
dominated by Coulomb interactions. However, due to the relatively large Fermi energy (~0.5 eV), amoderate
exchange interaction Uimplies long-lived spin coherence in 2DEG with inhomogeneous direction of spin
polarization [39]. Furthermore, the degeneracy of each subband may result in screening of the Coulomb
interaction at charged defects [40]. Together with the suppression of the kinetic energy due to the large effective
mass, we expect in general large spin-orbit effects in oxide heterostructures.

Induced spin density

By mixing orbital and spin degrees of freedom, the effective SOI suggests a current-induced spin density in
2DEG [7]. Generally, such a non-equilibrium spin density influenced by applied electric fields and temperature
gradients can be written as [41]

e se S VJT
Si(w) = S (W) + §(w) = Kj (WE; — nif(w)T, 4

whereiand j = (x, y, and z)are spatial subscripts. s, g, and e denote respectively the spin, heat, and charge
degrees of freedom. Formally, the conductivities ;" (here ¥ = e or q) is introducible via the linear response

function of the homogeneous spin density S; to a weak vector potential A;". Given that the vector potential A} is

related linearly to a current density J7, the response can be denoted by the Kubo product < §1-; 7 j'/ >, [42].
Taking that A° = Ee ' /iwand A1 = —(VT/T)e ! /iw, we have [41,43]

sv iT de N AV
Wy =-St | St LG + W) Gl 5)

€
En

where the charge and heat current densities are
se N s 1~ N
J =eVv and ] :E[H*%Vh (6)

with the ‘velocity’ operator ¥ = §H/6P. juis the chefnical potential of the system. Gy (¢,,) is the Matsubara
Green function corresponding to the Hamiltonian H
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€n — & + pu + Uo, + ak,o,

Gr(ep) =
Ko = B+ e — B 0

)

withe, = i2n + 1)7T for n € Z.The dc conductivity is limw_;olif;/ (w). From equation (5) follows that only
the conductivities #, are finite. This means a steady non-equilibrium spin density S, (normal to the spiral
plane) is generated by a steady current J; in response to electric field E, and/or temperature gradient —V, T /T
along the spiral wave vector, similar to the Aronov—Lyanda—Geller—Edelstein (ALGE) effect (also known as the
Edelstein effect) [44—46]. No spin-Hall conductivity are expected due to our special form of SOl as a result of the
coplanar spiral magnetic ordering [28, 41]. Furthermore, we consider (the experimentally relevant) situation
where the applied perturbations E, and —V, T /T are small such that a linear response approach is viable. Thus,
the effect of the induced current ] on the local magnetic moments is weak and can be neglected. Performinga

Matsubara sum over ¢, and for w — 0 the static spin density reads

. kdkdo 2exsin? 6 P P
S¢ = — ¢E, Ef — ) — nj(Ef —
g ‘ af @m)? Tkl U2 + ak3sin’ 0 e ®

+ (nf (B — p) + ng(Ex — )1,

2
ZEk(Ek -+ ma )sin29

722 ' P
n (nf(ES — 1) — ni (B — )
R BN e ©)

VT [ kdkdd
9 — X
5 = o |

+ (ex — p + 2ex sin?O) (g (B — ) + np(Ey — )],

where 1z (€) (1) is the Fermi distribution function (its energy derivative). 74 is the momentum-relaxation time.
Obviously the induced spin density vanishes for a collinear spin order in which case @ = 0.In the limit of

U = 0, the velocity ¥ and the current density J; come to be spin-independent and we have «j;’ = 0,leadingtoa
vanishing spin density as well. For strong s-d exchange interaction U >> akg with kg being the Fermi wave
vector, the above equations evidence alinear g,,,-dependence of S, (see the dash lines in figure 2). The sign of g,,,
and hence of S, is invertible by a transverse E field.

For low temperature n(¢) is strongly peaked which yields

(i) For p < —U or p > U, both subbands are then occupied by electrons or holes, respectively. We have
vanishing spin density

S; ~ 0 and S)? ~ 0. (10)

(i) For |u| < U, only the lower subband, E; is electronically populated. From equations (8)—(9) one finds

q Iz 4dn VT
S, = ——"7.eE.— and S! = ——7
T T gy Y AL

U, 1n
where 7 is the relaxation time at the Fermi wave vector.

Equations (10) and (11) are the main analytical results. Assuming that the spiral wave vector g, = 0.277/a,
U ~ 10 meV,and |p/U| ~ 1,inthe case of only E; being occupied we have Sye / (i, €Ex) ~ 107 pm'and
S} / (T Vi T / T) ~ 10> meV um ™', which are two orders larger than the values of GaAs-based quantum wells
with the Rashba SOl in [43]. In figure 1, numerical results of spin density, given by equations (8) and (9) with or
without the approximation U > akg, are shown as functions of zand Uand T' = 20 K which is below the
multiferroic transition temperature of TMO [24, 32]. The low-temperature approximate solutions,
equations (10) and (11) explain well the spin polarization behavior. The spin density is strongly enhanced only if
the lower subband (E;") is occupied with electrons as || < U (see figure 1(d)) and achieves its extremal value at
the band edge. The small discrepancies stem from deviation from U >> ok when SOI coefficient v is large (see
figure 2). Here we emphasize that this spin density survives even for weak s-d exchange interaction as long as the
thermal excitation energy is lower than the band splitting (i.e., kT < U)and p1/U = 1.For |u| > U both
subbands are occupied with electrons or nearly empty. The numerical results show a non-zero spin density (see
figure 2), which is two orders of magnitude lower than the values with only the E;” being occupied, however it is
still the same amplitudes as that in semiconductor quantum wells with Rashba SOI [43]. Whereas, the linear g,,,-
dependence of the spin polarization S holds for all cases with weak effective SOI. Experimentally, such large and
long-lived spin density at complex oxide interfaces is advantageous for highly efficient spin-orbit effects, as
discussed below.
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Figure 2. The q,,-dependence of the spin density with U = 0.05 eV for various values of the chemical potential (see the insets):
1 = —0.06 eV in the firstrow, it = 0.04 eV in the second row, and ;z = 0.06 eV in the third row, respectively.

Giant spin transfer torques

Different from the usual case of a pure Hall-effect geometry, in which a spin toque would be due to a spin current
injected into a FM layer, here the diffusion of the spin accumulation from the 2DEG results in a giant spin
transfer torques, e.g., on a FM top electrode, for instance, a Co electrode (see figure 1(a) and [47]). Let the
thickness of the FM layer be dgy and the zaxis has its origin at the 2DEG/FM interface. In the steady-state
regime the boundary conditions of itinerant spin density, Spy(z) in the FM are [14]: Sgp(0) = Sg and

T im(dev) = 0, where the spin current J3(z) = —DyV, Spni(2) with Dy being the diffusion coefficient. From
the equations governing the spin dynamics in the FM layer [48], the diffusion leads to a steady-state (itinerant)
spin distribution [14]

cosh[(z — dpm)/ Aml
cosh(drm/ Am)

Sem(2) = Sj(2) +i81.(2) = So , (12)

where A\, = \/ Dy / (T4 + T;I — 1'7'71) with 77, 74, and 7 being the spin precession time, the spin decoherence
time, and the spin diffusion-time in the FM electrode, respectively. Sgy; is perpendicular to the FM
magnetization. The initial (three-dimensional) spin density S is assumed to be aligned with the spin
accumulation in 2DEG due to the exchange interaction, Sy = xS"/dgg where dgg is the thickness of the electron
gas. x describes the interface effect and is of the order 1 [14]. The spin torque on the FM moments is defined as
the spatial change of the spin current compensated by the spin relaxation [14, 48]
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dem . 1
T= f dz| -V - T — —Sem(@) |. (13)
0 Tsf

In the limit of a thick FM layer, we find T = Sy A\, (T(;1 — i’T;l). The spin torque ratio is defined as,
Ost = 2eT/(/]}). For spin accumulation induced by the applied electric field E, we have then

2e S; >\m 1 P
— — (7, —1T7). 14
X/Z/H;egExdEG(Q 7) (14)

Ost =

The charge current densityis J; = % E, where &£, is the charge conductivity of 2DEG. Introducing the spin
density S;, equation (11) into the spin torque ratio, one finds

o mAm pf e _ T
K/idEG 2 U '

Osr = —x (15)

T6 U

0y = 2e*/his the conductance quantum. Using the effective electrical conductivity of STO/StTig sNbg ,O3
quantumwell, k¢ = 1.4 x 102Scm™ ' [20], together with dgg = 5 nm, g,, = 0.277/a for TMO [32],and
Am = 40 nm for Co [49], the spin torque ratio is

Osr ~ —37.6x 11| T T | (16)
Ul 1 Ty

For a typical ferromagnet (Ni, Co, Fe and their alloys), 75 = 77 = 10~ s[14, 48, 50]. The average momentum
relaxation time 7, in 2DEG is estimated by u = e7;,/m, where u is the mobility (~10* cm® Vs of 2DEG at
oxide interfaces [17, 51, 52]. We have then 7, = 10~!! — 10~!? sas observed in experiments [21, 33], which
results in a giant spin torque ratio, |@sy| ~ 10> — 104, at the band edge (11/U| = 1), compared to the value
(~2.0-3.5) in the TI Bi,Ses [14].

Long-range spin current

Alternatively, considering the spin-current injection geometry as shown in figure 1(b), by vertically depositing
the LAO/STO heterostructures on RMnQj; substrates, the diffusion of spin accumulation from the 2DEG/
helimagnet interface yields an exponential spin distribution in 2DEG, S(z) = Spe#/*t¢ and thus along-lived
spin current

J*(z) = SoDoe %/ 6 / X, (17)

along the a(z)-direction. Here \gg is the spin diffusion length in 2DEG, which is expected beyond pm.
Accounting for the Rashba SOI at LAO/STO interfaces, ag (k,0, — kj0,) thatarises due to abreak of the
structural inversion symmetry [21, 53], we infer that the spin current J5(z) leads to a transverse charge current
via an inverse ALGE effect [54] or inverse spin-Hall effect [55] depending on the direction of interfacial spin
density S : (i) In-plane Sy ||a with the be spiral, the induced charge current by inverse ALGE effect along the b-
axisreads, Ji (z) = ar7/; (2). (ii) Out-of-plane Sy ||c with the ab being the spiral plane: the transverse charge
current induced by the momentum scattering in the Rashba SOI leads here to a charge current along the b
direction such that J; (z) = fy% J? (), where 7yis the inverse spin-Hall angle. In an open circuit geometry, the

h
generated electric field Ej, satisfies fo e U (z) + kiEp]dz = 0, which gives
1

Ey=——
thEG

hgg
j; Ji (2)dz, (18)

along the spiral axis. hgg is the thickness of STO heterostructures and &, is the effective electrical conductivity of
2DEG along the b direction. E}, would lead to a transverse voltage, which can in turn be used for measuring the
spin accumulation and other parameters for optimizing the 2DEG/helimagnet building block.

Discussions

Our analysis assumes that the magnetic order is exactly coplanar in the spiral plane but it usually has a small
deviation in experiment. This would result in an another (random) weak effective SOl in the spiral plane and
introduces a spin dephasing in 2DEG. On the other hand, the parity symmetry breaking at the RMnOj interfaces
due to ferroelectric polarizations in cycloidal RMnOj gives rise to a conventional Rashba-type SOI. Comparing
the saturated polarization in RMnOs (~5 x 10~* C m~2 [32]) with thatin SrTiOs interfaces (~0.1C m~2[34]),
the strength of the Rashba SOI at the RMnO interface is expected to be however much smaller than 1072 eV A
at SrTiO; interfaces [21], which is already less than 10% of the gauge effective SOI considered here. Therefore,
the average spin decoherence induced by these corrections is small. Furthermore, the electric field [32] and

6
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Helimagnet

Figure 3. (a) Schematics of the coupled 2DEG/helimagnet heterostructure. The x axis is defined along the direction of the spiral
ordering and xz plane as the spiral plane. (b) Energy bands of 2DEG: the band splitting between two energy branches E* is determined
by the local s-d exchange interaction with the strength U.

magnetic field [31] tuning the spiral spin structure (i.e. q,,) offer new ways to manipulate spin torques. Very
recently, extreme mobility enhancement of 2DEG is found at LAO/STO interface by inserting a single-unit-cell
insulating layer of La, _,Sr,MnOs (LSMO) [56]. Mn*" sites with strong spin—orbit coupling are mostly trapped
in the LSMO buffer layer, whereas the 2DEG carriers stay on the Ti site. In principle, the Dzyaloshinskii—-Moriya
interaction would arise from spin-orbit scattering of electrons in an inversion-asymmetric crystal field [57], we
have then helical magnetic order and polar LSMO bulffer layer [58], which could be another promising candidate
of helimagnetic ultra-thin film in our considerations.
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Appendix A. Effective SOI and spinor state of 2DEG

Without loss of generality, let’s take the xz-plane as the spiral plane and the spin spiral vector along the x-axis (see
figure 3(a)), the local magnetization of the helimagnet reads then

m(r) = [sinq,, - 1, 0, cosq,, - rl, (A.1)

where q,, = [—q,,, 0, 0]is the spiral vector. Atlow temperature, the magnetization dynamics is much slower
than that of the 2DEG carriers, so we can treat the local magnetic moments as classical and static. By interfacing
2DEG and the helimagnet, the carriers are subject to the local s-d exchange interaction and the dynamics of the
2DEG s governed by the Hamiltonian equation (1). Upon the gauge transformation

U, (r) = exp(—iq,, - ro,/2), the quantization axis becomes oriented along the vector m (r) at each point. It
simplifies the last spatially inhomegeneous term in equation (1) as UgT (N[o - m(@)]Y;(r) = 0,.Sucha
transformation introduces however an additional (spinor) gauge potential

A, = — ifZUgT NV G (r) = —ioyq,, / 2 asa part of the transformed kinetic energy, i.e., we have the transformed
Hamiltonian of the 2DEG

A= +Ay) + Us. (A2)
2m

Gauging away the uniform energy displacement AE = Aé / 2m, we get then equation (2) and an effective SOI,
ak.o, with o = 7%q, /(2m). Clearly, the gauge effective SO is determined purely by the nontrivial topology of
the spiral magnetic texture, and its strength depends linearly on the carriers wave vector k and on the magnetic
spiral helicity q,, . For the collinear magnetic phase (g,, — 0) this effective SOI vanishes.

By diagonalizing the Hamiltonian H, we have two carrier subbands shown in figure 3(b)

Eg = 72k} + k))/2m + JU? + o%k]. (A.3)
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The corresponding eigenstates are respectively

¢ —
) COS— ) 1 Sll’l;

lpy) = ekt o ) = ek (A.4)
1 sm; COS?

with tan¢g = %kx
Noting that o, does not change because [0, U, (r)] = 0, one finds the expectation value of the spin
polarization (o) per electron in the original spin space as

(o)« = (Yiloylhs) = &

ak,
JU? + o?k?

Obviously, (o) is odd in k,, and hence it would vanish upon the summation over a symmetric k space. However,
in the presence of an electric field and/or a temperature gradient along the x direction, the Fermi surface is
displaced. We find thus (k,) = 0and consequently a finite value of the induced spin density S, = 7 (o) /2. The
other two components, {o,) and (o,) are periodic in the original space and averaged so to zero.

(A.5)
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