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The cardiac component of cardio-respiratory polysomnography is covered by ECG

and heart rate recordings. However, their evaluation is often underrepresented in

summarizing reports. As complements to EEG, EOG, and EMG, these signals provide

diagnostic information for autonomic nervous activity during sleep. This review presents

major methodological developments in sleep research regarding heart rate, ECG,

and cardio-respiratory couplings in a chronological (historical) sequence. It presents

physiological and pathophysiological insights related to sleep medicine obtained by

new technical developments. Recorded nocturnal ECG facilitates conventional heart

rate variability (HRV) analysis, studies of cyclical variations of heart rate, and analysis

of ECG waveform. In healthy adults, the autonomous nervous system is regulated in

totally different ways during wakefulness, slow-wave sleep, and REM sleep. Analysis of

beat-to-beat heart-rate variations with statistical methods enables us to estimate sleep

stages based on the differences in autonomic nervous system regulation. Furthermore,

up to some degree, it is possible to track transitions fromwakefulness to sleep by analysis

of heart-rate variations. ECG and heart rate analysis allow assessment of selected sleep

disorders as well. Sleep disordered breathing can be detected reliably by studying cyclical

variation of heart rate combined with respiration-modulated changes in ECGmorphology

(amplitude of R wave and T wave).

Keywords: sleep stages, autonomic function, heart rate, ECG, cardiovascular regulation, sleep apnea

INTRODUCTION

Polysomnography primarily focuses on the recording of neurophysiological signals derived
from the skull, such as electroencephalography (EEG), electrooculography (EOG), and
electromyography (EMG). EEG electrodes are placed on well-defined head positions according
to the 10–20 system (Berry et al., 2014). Sleep follows a sequence of sleep stages with light sleep,
deep sleep, and REM sleep in repetitive cycles through normal sleep in healthy adults. Metabolic,
immune, and autonomous nervous system functions show varying activity closely following these
sleep stages.

In order to investigate the autonomous nervous system functions during sleep, respiration,
body movement, electrocardiography (ECG), and—quite recently—blood pressure are registered
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as part of cardiorespiratory polysomnography (Berry et al.,
2014; Roebuck et al., 2014). This review focuses on ECG
and ECG-derived heart rate during sleep. According to
current recommendation, only one channel of ECG is usually
recorded. Hence, cardiovascular regulation is unfortunately often
underrepresented in cardiorespiratory polysomnography. Only
more recent polysomnography systems offer a new way to
calculate non-invasive blood pressure from recordings of a
photoplethysmographically derived pulse wave on the finger
(Gesche et al., 2012). The pulse wave is easily obtained from
regular oxygen saturation sensors, if configured appropriately.
Together with the ECG, it allows the calculation of pulse transit
time (PTT). PTT can be used as a surrogate for blood pressure,
adding an important component to cardiovascular monitoring
during sleep. Although quantitative continuous recordings of
blood pressure by, e.g., Portapres would be more accurate, they
are very expensive, not trivial to apply, and as a consequence not
much used in sleep studies. Blood pressure recordings are not
discussed in this review.

Heart rate fluctuations are calculated from the recording of a
single channel ECG. For sleep studies this is sufficient. Tracking
of nocturnal variations of the sympathetic and parasympathetic
nervous system functions is possible. Additionally an ECG
during attended cardiorespiratory polysomnography in a sleep
laboratory or at other clinical services (pneumology, neurology,
anesthesiology, intensive care unit) serves as an online monitor
for vital functions during a sleep study (Penzel et al., 1993). A
single channel ECG is sensitive enough to detect bradycardia,
tachycardia, arrhythmias, paroxysmal atrial fibrillation, and
AV block. Occasionally a single channel recording indicates
nocturnal coronary ischemia (Caples et al., 2007). ECG recording
enables initial evaluation of nocturnal arrhythmia in terms of
heart-rate variability (HRV) and ectopic beats (Caples et al.,
2007). This can be sufficient when a differential diagnosis
of cardiac arrhythmia is not needed. The reduced recording
can support the indication for a more comprehensive cardiac
examination by multi-channel ECG recording or by long-term
ECG recording with three or more ECG leads.

During sleep, the autonomic nervous system is subject to
pronounced changes and variability (Snyder et al., 1964). These
alterations are linked to sleep stages, and differ between sleep
stages profoundly. This is so impressive that sleep itself had
been called a “challenging test for the autonomic nervous
system” (Verrier et al., 1996). We have learned from basic
research studies in animals and humans that the autonomic
nervous system activity changes in a characteristic way with the
sleep stages (Somers et al., 1993; Trinder et al., 2001). Seminal
investigations that recorded muscle sympathetic nerve activity
(MSNA) have documented a profound attenuation in neuron
firing activity. This progresses from wakefulness, throughout
light sleep, and to deep sleep. The lowest activity of the
sympathetic nervous system during deep sleep/slow wave sleep—
sleep stage N3—is associated with predominant activity of the
parasympathetic nervous system. During rapid eye movement
sleep (REM sleep) an increased MSNA had been found again.
This REM-sleep associated activity appears to be irregular, it
occurs in bursts. This contrasts to high MSNA activity during

wakefulness, which is correlated with physical and mental
workloads.

Analysis of fluctuations in heart rate has been
performed by classic techniques of calculating HRV with
frequency analysis using spectral analysis (Akselrod et al.,
1981). Fourier analysis had been applied first. Over the last
decades, spectral analysis of heart rate proved to be successful
because frequency components were related to autonomous
nervous system components (Tobaldini et al., 2013). Other
spectral analysis methods beside Fourier analysis were applied.
Spectral analysis had been widely accepted because physiological
functions were attributed to frequency components. The low
frequency content of HRV (LF, 0.04–0.15Hz) reflects both
sympathetic and vagal modulations. The high-frequency range
(HF, 0.15–0.4Hz) is associated with respiration and reflects the
activity of the parasympathetic nervous system (Task force of the
European Society of Cardiology and the North American Society
of Pacing and Electrophysiology, 1996). Discussions on the
physiological significance of very low frequencies (VLF, below
0.04Hz) are still ongoing. Sleep-related breathing disorders,
vasomotor activities, and thermoregulation may contribute
to these VLF components. These relationships are not fully
explored. However, other effects may contribute to the VLF
components. If a subject has a low breathing frequency, e.g.,
breathing at a rate of 9–10 breaths per minute during sleep, then
the spectral power is shifted toward lower frequencies. This will
result in impaired LF and HF components and all subsequent
spectral analysis values are no longer interpretable.

Considering the physical signal amplitude of ∼1mV, the
ECG is the largest electrophysiological signal on the human
body surface. When digitally recorded the signal is digitized
with at least 100Hz to preserve the waveform. In more recent
equipment, and according to guidelines, ECG should be digitized
with 500Hz (Berry et al., 2014). The technical recommendation
is the same as used for digitization of the electrophysiological
parameters from the skull. ECG digitization below 500 Hz is
associated with limitations involving the detection of small heart
rate variations and distinct waveform patterns. With respect to
amplifier technology, and compared to EEG, EOG, and EMG,
ECG signals are simple to record due to their large signal
amplitudes. Signal to noise ratio is much better and requires less
sophisticated amplifiers. Consequently, and based on knowledge
of the underlying physiology of the autonomic nervous system,
ECG became a highlighted candidate for developing a simple tool
for studying sleep and diagnosing sleep disorders (Penzel et al.,
2015). The ECG and derived calculations may serve as a simple
surrogate parameter for sleep recording on the skull with EEG,
EOG, and EMG.

Here we describe developments and possibilities, as well
as the present status of limitations of this future directing
approach: recording sleep stages and sleep disorders from a single
channel ECG. This approach is on the edge of reducing sleep
studies to one directly (with sensors on the body) recorded
physiological signal. This recording offers a high diagnostic
value in terms of cardiac screening as well. Regarding our
selection and presentation of studies reviewed here, it has been
possible to consider only a restricted number of studies. The
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selection of approaches and algorithms reflects our personal
group perspective in a chronological order and may not
reflect all possible approaches. With this specific approach our
review complements an earlier review on HRV in normal and
pathological sleep which was organized according to methods
applicable and to a selection of selected sleep disorders (Tobaldini
et al., 2013).

EFFECTS OF SLEEP STAGES AND SLEEP
APNEA ON HEART RATE VARIABILITY

Cyclical Variation of Heart Rate with Sleep
Apnea
A few early reports observed and described the respiratory
pattern of sleep apnea (Burwell et al., 1956). But these early
reports could not show all physiological conditions linked to
this pathology. Guilleminault described obstructive sleep apnea
and its collapse of the upper airways during sleep for 10 to
typically 60 s, occurring several 100 times per night, as a new
pathological entity. He observed and described characteristic
variations in heart rate observed in parallel to obstructive apnea
events (Guilleminault et al., 1984). This pattern can be observed
best when plotting heart rate as a beat-to-beat “tachogram.”
Plotting heart rate in this way is the first procedure to be
performed before any sophisticated analysis algorithms for heart
rate processing are applied (Stein et al., 2003; see Figure 1 upper
part). The phenomenon observed in parallel to apnea events was
described as cyclical variation in heart rate by Guilleminault.
The study by Guilleminault proposed to use this characteristic
pattern for diagnosing sleep apnea (Guilleminault et al., 1984).
Many diagnostic devices—intended to detect and diagnose sleep
apnea outside of a sleep laboratory, so called out-of-center sleep
recordings, in fact made use of this heart-rate pattern just by
plotting the beat-to-beat tachogram (Penzel et al., 1990; Collop
et al., 2011).

Influences of snoring and respiratory timing on heart rate
as a reflection for sympathetic and parasympathetic activity
were investigated further. With onset of snoring an increase
in inspiratory time (Ti) and expiratory time (Te) is observed
(Stoohs and Guilleminault, 1991). With continuous snoring, Ti
increases further and Te decreases. These research results did
trigger investigations on respiratory motor output and MSNA
(St. Croix et al., 1999). It could be shown, that MSNA was
maximal at end-expiration and minimal at end-inspiration. This
demonstrates an additional influence of lung inflation feedback
on sympathetic discharge and suggests that feedback from
baroreceptors and pulmonary stretch receptors are dominant
determinants of the respiratory modulation of MSNA (St. Croix
et al., 1999). Fatiguing inspiratory muscles, as observed with
prolonged inspiration, can increase MSNA even more (St. Croix
et al., 2000). These physiological mechanisms are mentioned but
not further considered in this review.

During each apnea event, relative bradycardia becomes
apparent. Due to the cessation of breathing, the level of oxygen
in the blood decreases. This is monitored best by partial
oxygen pressure (pO2). Because it is difficult and expensive to
monitor pO2 non-invasively and continuously, sleep laboratories

monitor oxygen saturation (SaO2) using pulse oximetry on
the finger (SpO2). It must be kept in mind that due to the
physiological oxygen binding curve oxygen saturation (SaO2)
drops much slower than partial oxygen pressure at high values.
Furthermore, most often oxygen saturation is recorded on the
finger (SpO2), which is the periphery of the body, to which a
lower blood oxygen content needs to travel (circulatory delay).
With these physiological considerations, oxygen desaturation
events on the finger (SpO2) are often delayed compared to apnea
events recorded by respiratory sensors directly. Furthermore,
desaturation events are often not as severe as expected,
depending on baseline oxygen partial pressure and the impact
of the oxygen binding curve. The drop in heart rate is a
physiological reaction to the apnea event in order to improve
blood gas exchange in the lung when not breathing, most likely
mediated by parasympathetic activity. This reflex is known as the
“diving reflex” observed in healthy persons as well. The reduction
in heart rate (diving reflex) is followed by acceleration in heart
rate, a relative tachycardia, which promotes blood gas exchange
in the lungs after the apnea event, when the upper airway
occlusion ends, the airways re-open and subsequent, increased
breathing occurs. Today we assume that the very rapid increase
in heart rate at the end of apnea is not due to an additional
increase in MSNA, which is already high and is increasing during
the apnea event, but it is due to an immediate cessation of
parasympathetic activity at the end of apnea. We assume that
parasympathetic activity is also high during the apnea event and
ceases with the onset of respiration at the end of each apnea
event. Thereby MSNA becomes the major component causing
an increase in heart rate and blood pressure, both being further
regulated by baroreceptor reflex.

Superimposed in addition, a decline of mean heart rate is
observed over the time course of the night (Snyder et al., 1964).
This decrease is another fundamental physiological mechanism
during normal sleep, described in more detail below.

These patterns taken together, arising from alterations in
sympathetic nervous activity and parasympathetic nerve activity
during each apnea event provide a heart rate pattern which is
very typical for sleep apnea, just like a signature. As a result, it
is possible to count the number of apnea events by counting the
signature patterns of cyclical HRV. The MESAM system and its
successors, as well as new polygraph devices, employ a simple
plotting of heart rate for diagnosis of sleep apnea in an outpatient
context (Penzel et al., 1990; Roos et al., 1993; Stein et al., 2003).

Since the cyclical variation in heart rate presents such a
prominent periodic pattern, it was logical to apply mathematical
methods of frequency analysis and spectral analysis to
quantitatively assess the cyclical variation in heart rate (Figure 1
lower part). The initial aim of this analysis was to determine the
degree of severity of sleep-related breathing disorders. Various
teams have employed the method of Fourier analysis—which
has successfully been applied for other aspects of sleep analysis,
specifically sleep EEG analysis—for identifying rhythmic
activities as well (Figure 2). Limitations subsequently arose in
the attempt to evaluate automatically the periodic pattern by
use of Fourier analysis (Ivanov et al., 1996). In general, the
cyclical variations are not as uniformly periodic as seen in well
selected patients. Apnea and hypopnea event durations are not
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FIGURE 1 | This figure shows cyclical fluctuations of heart rate, in beats per minute, for a patient with obstructive sleep apnea, before CPAP therapy,

in the time window at the top left. The plot shows 512 s of nocturnal heart rate per line. Below this plot is the spectral analysis of this same time window. To the

right, in the same type of presentation, is the heart rate of the same patient after initiation of CPAP therapy. The cyclical fluctuations of heart rate that occur during

sleep apnea have been eliminated. Lower, at the bottom right, is again the spectral analysis of the heart rate. The low frequencies, characteristic for apnea—around

0.02 Hz of the heart rate variability—have disappeared. This figure originated in the Sleep Lab of the University of Marburg, Germany, and was created around 1990

from digital recordings by an Atari computer.

constant, with a large variation in duration of apnea events,
especially associated with the different sleep stages. In addition
a superimposed variability of heart rate which accompanies
sleep stages and REM sleep in particular (Somers et al., 1993),
is observed as well. And furthermore, the longer a patient
suffers from undiagnosed obstructive sleep apnea, the less the
physiological compensating diving reflex may protect him and
the dipping of heart rate during the apnea event becomes less
and gets more impaired (Stein et al., 2003).

The application of period analysis and spectral analysis has
many limitations. The amplitude of cyclical variation of heart
rate (difference between minimum heart rate during apnea
event und maximum heart rate during compensating paced
breathing) depends on physical training condition, age, weight,
and concomitant diseases. For example diabetes, which impairs
autonomic function and heart rate fluctuations, obviously
reduces the amplitude of cyclical variation of heart rate. Often an
individual characteristic pattern of bradycardia and tachycardia,
like a personal signature is found. This is further influenced

by concomitant cardiologic diseases, arrhythmia, pacemaker
ECGs, and heart failure—which make the signature difficult
to interpret. Therefore, automatic assessment of sleep-related
breathing disorders based on cyclical heart-rate variation alone,
is very difficult to achieve (Penzel et al., 2015). For home sleep
testing of sleep apnea the determination of oxygen saturation
and more direct recording of breathing disorders are simpler and
essential for greater diagnostic reliability (Roos et al., 1993).

Regulation of Heart Rate in the Various
Sleep Stages
Sleep stage associated changes in MSNA and in vagal nerve
activity affect heart rate as well. Snyder’s physiological
investigations demonstrated that heart rate decreases during
sleep and reaches lowest values during deep sleep (Snyder et al.,
1964). Correspondingly during deep/slow wave sleep MSNA has
very low levels. The parasympathetic nervous system dominates
(Somers et al., 1993). During deep sleep, physical recovery
occurs, and basal metabolic rate falls to its lowest level as well.
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FIGURE 2 | This figure shows the spectral analysis of the cyclical variation in heart rate with obstructive sleep apnea (OSA): left and right. This is

evident in the red zones at frequencies between 0 and 0.04Hz, which belong to the very low frequency (VLF) band. The central area shows only normal respiration,

evidenced by the bright strip in the frequency range around 0.2Hz, which belongs to the high frequency (HF) band. IBI stands for “interbeat interval” and shows the

inverse heart rate. This figure originated at the Computers in Cardiology Competition (taken from Penzel et al., 2002).

Consequently, mean heart rate and HRV are maximally reduced.
In REM sleep, in contrast, brain activity returns to a high level
and the cortex is busy with the processing of mental activities.
The autonomic system is likewise activated, and high levels of
varying sympathetic tone are encountered (Somers et al., 1993).
The mean heart rate is again higher, with values similar to those
in light sleep, almost as high as during relaxed wakefulness. HRV
is elevated in addition. Pronounced variation in heart rate is
apparent, without association to physical load—still during sleep.
In addition to these sleep stage associated influences, heart rate
and HRV are subject to circadian modulation. They are further
influenced by behavior prior to the sleep period, for example by
extended wakefulness periods (i.e., sleep deprivation experiment
with increased sleep pressure; Glos et al., 2014). Figure 3

show an example illustrating variation in heart rate caused by
sleep stage, circadian timing, and by 40 h wakefulness/sleep
deprivation in one subject recorded continuously for a period of
altogether 56 h.

Non-linear Analysis of Long-Term Heart
Rate Variability
Attempts to identify sleep apnea on the basis of heart rate,
and with computer-aided techniques, have encountered the
problems described above with classical frequency-analysis
procedures. This has led to consideration and development
of new computational methods taken from statistical physics.
These techniques were previously applied to the analysis of
weather data, water-level information, and stock-exchange price
fluctuations, and were widely considered to be methods of
“chaos analysis.” The objective of these methods in general is to

analyze data that appear random and to detect an inner structure
and patterns of order that deviate from pure random behavior
and that demonstrate phenomena of determinism, otherwise
termed as “deterministic chaos.” One primary attempt here is to
analyze the extent to which one value (of heart rate) depends
on an immediately preceding value (of heart rate). If there is
strong dependence between two subsequent heart beats, the
relationship is termed correlated behavior. If there is random
dependence between two heart beats, then the relationship is
termed uncorrelated behavior.

The analytical procedures applied here are included among
the methods of non-linear dynamics—e.g., an evaluation of
complexity. In this way, investigation using the methods of
non-linear dynamics has taken place for HRV, throughout an
entire night, with patients with sleep apnea (Ivanov et al., 1996).
The method used here analyzes beat-to-beat variability applying
detrended fluctuation analysis (DFA). Although differences have
been found between patients with sleep apnea and healthy test
subjects, these disparities have not sufficed to establish distinct
differentiation in terms of medical diagnosis.

One difficulty in the employment of DFA entails sudden
fluctuations in dynamics: as they take place, for example, in
weather data and in economic data series. Such alterations render
it impossible to find uniform patterns of behavior for beat-to-beat
variability in heart rate. We have observed major disturbances
in heart rate with changes in sleepers’ body positions at night,
and during transition from one sleep stage to the next. To
improve the analysis, therefore, the time course of nocturnal
heart rate was broken down according to the various sleep stages,
and the local disturbances resulting from stage transitions were
discarded (Bunde et al., 2000). In other words, sequences of
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FIGURE 3 | Example of variation of heart rate (15-min mean) due to sleep stage, circadian timing, and sleep deprivation in a young male subject

recorded for a period of altogether 56h (middle panel). The recording consists of a Baseline sleep recording at night of 8 h, followed by a period of 40 h of

sustained wakefulness inducing sleep deprivation, and finished with a Recovery sleep recording at night. For Baseline sleep and Recovery sleep periods 1-min mean

and 5-min moving average values of heart rate are plotted and aligned to the sleep stage distribution (Hypnogram, 30 s resolution) in addition (upper and lower panel).

It can be seen that heart rate is modulated mostly by sleep stages resulting in quite stable values during NREM sleep (sleep stages S1, S2, S3, S4) and highly variable

values during REM sleep (marked with red color bars) as well as during wakefulness (marked with gray color bars). In addition changes in heart rate in part occur due

to sleep stage changes accompanied by body movements (MT). In addition throughout sleep a global trend for longer RR intervals (→ lower heart rate) in the morning

(Continued)
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FIGURE 3 | Continued

hours due to circadian modulation could be observed. During Recovery sleep this effect is more pronounced maybe because of the modified sleep profile due to the

rebound character of sleep after 40 h of wakefulness. During the 40 h period of sustained wakefulness starting at 08:00 h in the morning and finishing in the late

evening the following day it can be clearly seen that heart rate is modulated in a sinusoidal fashion by the circadian system. Although no sleep is present, the RR

interval maximum (→ lowest heart rate) occurs in the morning hours after ∼20 h of wakefulness. In addition fluctuations of heart rate can be observed throughout the

entire 40 h period caused by a limited amount of activity and different cognitive tasks. MT, Movement Time; Wake, Wake stage; REM, Rapid Eye Movement sleep

stage; S1, None REM (NREM) sleep stage 1; S2, NREM sleep stage 2; S3, NREM sleep stage 3; S4, NREM sleep stage 4.

“pure” sleep stages were prepared for studying of HRV with
DFA. Only as a second step, beat-to-beat sequences of heart
rate were once again investigated for variability and sleep apnea.
Investigation was performed to examine the extent to which one
heartbeat interval is correlated with the subsequent heartbeat
interval. It then became apparent that systematic investigation of
HRV—on the basis of pure sleep-stage episodes from which the
transition phases had been disregarded—revealed distinct and
highly pronounced differences between the sleep stages. These
differences were found in the beat-to-beat regulation of heart
rate. In deep/slow wave sleep, there is a virtually uncorrelated
behavior pattern from beat to beat, whereas extensively correlated
behavior exists from beat to beat during REM sleep. These
differences were greater between the various sleep stages than
the differences found for episodes of heart rate with and without
sleep apnea (Bunde et al., 2000).

These results were initially surprising, since the influence of
sleep apnea on heart rate appears so pronounced and distinct.
However, the marked alterations in sympathetic and vagal tone
throughout the distinct stages of sleep provide a very good
explanation here. Changes in sympathetic and vagal tone with
respect to heart rate are evidently not so distinctly visible, since
they are smaller in amplitude. They, however, are highly apparent
in the beat-to-beat variation in heart frequency. This also explains
why the differences between the sleep stages as determined by
classical frequency analysis could in fact be determined, yet why
they were not greatly pronounced. Indeed: in frequency analysis,
not only the frequencies are taken into account, but precisely
also the amplitudes at the respective frequencies—i.e., the so-
called spectral power. Investigations of heart rate during sleep,
furthermore, disclosed that influences of autonomic nervous
system activity on heart-rate regulation are so dominant that
they still prevail during sleep apnea and that they also allow
distinction between sleep stages among these patients as well
(Bunde et al., 2000). With respect to beat-to-beat variability, the
cyclical variation in heart rate caused by sleep apnea therefore
signifies merely a relatively minor additional disturbance. The
results accordingly suggested the feasibility of a new procedure
for determining differences between sleep stages (Penzel et al.,
2003). The greatest differences arise between deep sleep on the
one hand—with virtually uncorrelated beat-to-beat regulation—
and REM sleep on the other, with extensively correlated beat-to-
beat regulation of heart rate.

Analysis of Short-Term Heart Rate
Variability
Short-term HRV and complexity have also been studied for
many years. Early works include a test of several short-term

measures of HRV to predict myocardial infarction from day
and night-time recordings (Bigger et al., 1993). Related to our
subject, a study of alternations of short-term HRV by obstructive
sleep apnea was previously presented (Narkiewicz et al., 1998).
Analyzing the increments between successive heartbeat intervals,
short-term anti-correlations between the increments’ signs (i.e.,
between accelerations and decelerations) have been identified
(Kantelhardt et al., 2002). These anti-correlations were strong
during deep sleep/slow-wave-sleep, weaker during light sleep,
and even weaker during REM sleep, a finding very useful for
modeling transient correlations in heartbeat dynamics during
sleep considering the sleep stages (Kantelhardt et al., 2003).
This has very recently been used as a starting point for a more
sophisticated model (Soliński et al., 2016) with program code
available on PHYSIONET (Goldberger et al., 2000).

Deceleration capacity (DC), which describes how quickly the
heart rate decelerates within two beats, is lower during REM
sleep and deep sleep as compared to light sleep and wakefulness
(Schumann et al., 2010). This specific parameter decreases with
age. We note that low values of DC have previously been shown
to predict an increased mortality after myocardial infarction
(Bauer et al., 2006). More recently, a complexity analysis based on
conditional entropy supported the interpretation that REM sleep
is a relatively high risk period compared to non-REM stages when
aging (Viola et al., 2011).

Heart rate variability can be analyzed through various
techniques such as those proposed in the seminal paper
from the Task Force (Task force of the European Society of
Cardiology and the North American Society of Pacing and
Electrophysiology, 1996). These are mostly linear methods based
in the time and frequency domain. Time domain parameters
are calculated on the basis of the RR-intervals using simple
statistical methods. While the mean heart rate is the simplest,
the standard deviation over the whole time series (sdNN) is the
most prominent measure used to describe what is considered
HRV. However, none of the existing methodologies proved to
be reliable in describing physiology and pathophysiology of
cardiovascular regulation. We developed appropriate models
by applying sophisticated methods to data of subjects with
different pathologies. These models include many parameters
from non-linear dynamics, a necessity based on insights such
as those from a study of the complexity of the sinus node
activity modulation system. Examples include methods based
on symbolic dynamics, renormalized entropy, finite time growth
rates, recurrence quantification analysis, large-scale dimension
densities (Wessel et al., 2007).

The lack of widespread clinical use of these methods 20 years
after the Task Force publication even despite much statistical data
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suggesting the predictive power of various cardiovascular indexes
indicates a need for a new approach to clinical applicability.
More clinical studies using these parameters are clearly needed,
possibly focusing more on the question of additional information
contained in existing indexes, than the development of new
parameters.

Following these thoughts, we performed studies including
respiration as a cofactor. Starting with asking “Is the normal
heart rate “chaotic” due to respiration?” (Wessel et al., 2009),
we demonstrated the influence of respiration on short-term
HRV recordings. A recent case report (Sidorenko et al.,
2016) presented a prominent case of this effect. In this case
power spectra of HRV and respiration demonstrated an almost
identical picture. A sudden change of the respiratory pattern
caused a shift of the power distribution function toward lower
frequencies. As a result the power in the LF band increased.
This effect can lead to wrongly interpreted information when
focusing on power in spectral bands. This potential error can
be avoided by simply recording respiration in addition to
heart rate and considering this effect when interpreting HRV
power bands. Even if it is not possible to record respiration
directly using respiratory sensors, the respiratory signal can be
estimated with considerable accuracy regarding respiratory rate
from the electrocardiogram itself—see below. Complex signal
processing methods such as cardiorespiratory synchronization
and coordination are providing further potential improvements
for clinical applications.

RESPIRATION-RELATED CHANGES OF
HEART RATE AND ECG

Respiratory Sinus Arrhythmia and the
Baroreflex
The regulation of breathing and heartbeat are intimately coupled,
as has been known for many years from basic physiology
investigations (Koepchen and Thurau, 1959; Moser et al., 1995).
The best studied mechanism of this cardiopulmonary coupling
(CPC) is respiratory sinus arrhythmia, which also constitutes a
major share of HRV. Respiratory sinus arrhythmia describes the
respiratory-gated fluctuation of the heart rate: during inspiration,
the heart rate increases; during expiration, it decreases again.
Petr Einbrodt, in 1860, was the first to describe this coupling.
Components which contribute to this regulation are MSNA,
vagal nerve activity, respiratory timing, and pulmonary stretch
receptors (Stoohs and Guilleminault, 1991; St. Croix et al.,
1999; see Figure 4 for an example). In daytime during exercise,
respiratory sinus arrhythmia is usually not visible, or is so weak
that it cannot be depicted. During relaxation at rest and during
sleep, in contrast, it is much larger and easily recognizable
(Raschke, 1987). Early studies were even able to describe
correlation between the extent of coupling and the various sleep
stages. So the respiratory sinus-arrhythmia is significantly smaller
in REM sleep than in Non-REM sleep (Bartsch et al., 2012).

Some studies demonstrated that respiratory sinus arrhythmia
is not only the direct effect of respiration on heart rate but also the
response of heart rate to the respiratory modulations of arterial

FIGURE 4 | Occurrences of heartbeats (•), as a function of the

respiratory phase (0◦ for initiation of inhalation; 180◦ for beginning of

exhalation), as taken from a typical subject during deep sleep. The

heart-rate trend (magenta plot) shows respiratory sinus arrhythmia

(RSA)—accelerated heartbeat during inhalation and retarded heartbeat during

exhalation. The intensity of the RSA is determined by the amplitude of sinus

modulation.

pressure mediated by baroreflex (Eckberg, 2009). Therefore, two
different simple models, the respiratory gate (Eckberg, 2003)
and the deBoer-Karemaker-Strackee-Model (de Boer et al., 1985)
were developed in order to explain this phenomenon. Recently
it was suggested that more complex models should be utilized to
describe cardiorespiratory coupling (Riedl et al., 2010; Porta et al.,
2012; Runge et al., 2015).

Recognition of Sleep Apnea with Heart
Rate and Morphology of the ECG
In 2000 at the Computers in Cardiology Conference, in Boston,
USA, a public competition was inaugurated as part of a
congress held by engineers of biomedical technology who are
professionally involved with ECG analysis. This competition
focused on solving a problem encountered in ECG analysis:
recognition of obstructive sleep apnea by study of nocturnal
ECGs (Penzel et al., 2002). ECGs from healthy test subjects,
patients with moderate sleep apnea (up to 100min of apnea per
night), and patients with pronounced sleep apnea (more than
100min with sleep apnea per night) were made available on a
file server of PHYSIONET (Goldberger et al., 2000). A total of
35 ECG recordings were provided for training purposes, and 35
recordings were provided for purposes of analysis to competition
participants. Additional respiratory signals were provided for
some subjects in order to illustrate the underlying mechanisms of
apnea to be studied. Out of 12 competitors two teams succeeded
in correctly classifying all 35 subjects into the three groups, and
were even able to correctly identify minutes with or without
sleep apnea events in 92 and 94% of all 17,268min of recordings
presented (Penzel et al., 2002).

What made the two teams better than the other teams?
In addition to data on the cyclical variation in heart rate,
these teams had also analyzed the corresponding ECG plots
(Penzel et al., 2002). This indeed revealed that respiration
modulates the R wave and the T wave of ECGs in their
amplitudes due to the movement of the cardiac electric
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axis imposed by respiration. This respiratory component is
predominantly mechanical due to shifting of the heart with
each breath, which each intrathoracic pressure change (see
next section). This phenomenon had been known for long,
but had not been exploited in this context (Moody et al.,
1986). The so-called electrocardiographically derived respiration
signal (EDR)—i.e., data on respiration as derived from an
ECG—enables evaluation of the respiration activity and, in
turn, detection of apnea and hypopnea events. Although
when employed alone, EDR also demonstrates weaknesses
in recognition of apnea and hypopnea events, it offers—in
combination with information derived from cyclical variation in
heart rate—an astonishingly high level of certainty in detecting
sleep-related breathing disorders from ECGs. We note that
respiration can also deform the R- and T-waves and thus
affect the duration of heartbeat intervals as well, so that
rhythmical modifications of amplitude and intervals are not
completely independent (Lombardi et al., 1996; Porta et al.,
1998).

Reasons for Morphology Alterations of the
ECG during Sleep Apnea
The certainty of EDR-based detection of sleep-related breathing
disorders arises from the fact that the influence of breathing on
an ECG is mainly mechanical in nature, and is therefore mainly
independent of factors that affect the cyclical variation in heart
rate. As a result, the combination of evaluation of autonomic
influences on heart rate and assessment of the mechanical
influences on the ECG (with EDR) enables good detection of
apnea events. If further factors are included—oxygen saturation,
snoring, and body movements—this enables application of an
out-of-center sleep apnea recording system that can achieve
a high degree of sensitivity and specificity for detection of
sleep-related breathing disorders: without direct recording of
respiration (de Chazal et al., 2009). This paves the way for
reduced systems for sleep apnea detection.

In future, new systems that implement this combination
or recording methods need to be validated. According to the
classification of out-of-center sleep apnea diagnostic systems,
these methods, which only rely on one recorded signal, the
ECG, are not eligible for reimbursement by health care providers
(Collop et al., 2011; Qaseem et al., 2014). Therefore, specific
validation studies are needed to confirm sensitivity, specificity,
and reliability of out-of-center sleep apnea recording systems,
preferably in combination with oxygen saturation recording.
Depending on just one recorded signal these systems have no
backup in case of loose electrodes or signal failure, which is an
obvious limitation.

CARDIOPULMONARY COUPLING AND
SYNCHRONIZATION

Cardio-Respiratory Phase Synchronization
An important coupling phenomenon between systems is called
phase synchronization. This had been described for the first time
in the seventeenth century in conjunction with pendulum clocks

(Huygens, 1673; Pikovsky et al., 2001). During cardiorespiratory
phase synchronization, heartbeats occur more often during some
phases of the respiratory cycle: e.g., at the beginning of the
inspiration, at the end of inspiration, and in the middle of
expiration (Figure 5; Schäfer et al., 1998, 1999; Toledo et al., 2002;
Bartsch et al., 2007, 2012). The occurrence of cardiorespiratory
phase synchronization is intermittent and not constant. This
means that the phenomenon can be observed during a few
percent of observational time only. For reliable tracking of phase
synchronization throughout the night, surrogate data techniques
are needed to check statistical significance for each detected
synchronized episode (see, e.g., Toledo et al., 2002; Bartsch et al.,
2007).

Phase synchronization between heart rate and respiration can
occur independent of respiratory sinus arrhythmia. This is shown
in Figures 4, 5. In addition, both coupling mechanisms are
influenced by different physiological parameters. An important
example for this influence is respiratory frequency. Whereas, the
extent of respiratory sinus arrhythmia is distinctly dependent
on respiratory frequency, this is not the case for phase
synchronization (Figure 6; Bartsch et al., 2012).

The physical training condition of the persons examined is
evidently significant for the extent of cardiorespiratory phase
synchronization (Schäfer et al., 1998, 1999). Athletes have
demonstrated pronounced synchronization between respiration
and heartbeat, which leads to the conclusion that the occurrence
of this synchronization represents ergonomically effective
regulation. The influence of the extent and effectiveness of
this coupling on physical or mental performance have not
been determined until now. It is assumed that coupling could
represent a good surrogate parameter for recovery periods after
physical exercise.

More studies have systematically investigated this phase
synchronization during sleep. This had been done for healthy
subjects and also for patients with sleep-apnea bymultiple groups
(Cysarz et al., 2004; Kabir et al., 2010; Bartsch et al., 2012;
Müller et al., 2012, 2014; Riedl et al., 2014; Solà-Soler et al.,
2015). In healthy persons, it had been proven that the percentage
of time spent with strong synchronization depends on sleep
stages. Synchronization between respiration and heartbeat is

FIGURE 5 | This figure shows simultaneous occurrence of respiratory

sinus arrhythmia (magenta plot) and cardiorespiratory phase

synchronization (blue circles). During synchronization, heartbeats occur

more frequently during particular respiratory phases: here, three heartbeats

take place during one respiratory cycle (dots in the blue circles; based on

Bartsch et al., 2012).
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FIGURE 6 | The amplitude of respiratory sinus arrhythmia is distinctly a

function of respiratory rate, and is most pronounced at ∼5 respiratory

cycles per minute (black squares). In contrast, the mean duration of

episodes with phase synchronization exhibits no dependency on respiratory

rate (red circles; based on Bartsch et al., 2012).

observed for the largest percentage of time during deep sleep. In
contrast to this the percentage of time with synchronization is
smallest during REM sleep (Bartsch et al., 2012). This sleep-stage
dependency ismany times greater for phase synchronization than
for respiratory sinus arrhythmia, and is likewise much greater
than the variations in mean heart rate, HRV, and respiratory
rate (Table 1). In patients with sleep disordered breathing, such
as sleep-apnea, the time spent with synchronization is strongly
impaired.

Another technique to evaluate cardiopulmonary coupling
during sleep solely utilizes continuous ECG signals and derives
the HRV (e.g., RR interval time series) as well as fluctuations
in R-wave amplitude induced by respiration (Thomas et al.,
2005). From the R-wave amplitude fluctuations, ECG-derived
respiratory signal (EDR) is obtained again. The cross spectral
power and coherence of the RR time series and corresponding
EDR series are calculated for consecutive windows and the
product of coherence and cross-spectral power is used to
obtain the ratio of coherent cross power in the low-frequency
(0.01–0.1Hz) band to that in the high-frequency (0.1–0.4Hz)
band. Developing and applying this technique, Thomas et al.
investigated recordings of cardiorespiratory polysomnography of
healthy subjects and found that consolidated, stable non-REM
sleep is characterized by high frequency coupling (0.1–0.4Hz),
increased absolute and relative delta power (Thomas et al.,
2014), stable breathing and oxygenation, absence of arousals
and blood pressure dipping. In contrast, unstable non-REM
sleep is characterized by low frequency coupling (0.01–0.1Hz),
intermittent arousals, and non-dipping of blood pressure. In
patients with obstructive and central sleep apnea, ventilation, and
oxygenation abnormalities are observed (Thomas et al., 2005).
An example of cardiopulmonary coupling in a patient with heart
failure and Cheyne-Stokes breathing is depicted in Figure 8.
Patients with heart failure have more often central sleep apnea
than obstructive sleep apnea.

Cardio-Respiratory Coordination
Cardio-respiratory coordination can be calculated by an
analysis of both, the cardiac and the respiratory cycle. The

TABLE 1 | Relative changes of parameters during the various stages of

sleep.

Parameter Wakefulness Light sleep

(N1 and N2)

Deep sleep (N3)

Heart rate 1.06 0.98 0.99

Heart rate variability (HRV) 1.15 0.97 0.93

Respiratory rate 1.02 0.95 0.92

Strength of RSA 0.90 1.33 1.37

Strength of

Synchronization

1.6 2.7 4.2

Themean values for each sleep phase have been normalized to the corresponding value in

REM sleep. While mean heart rate, HRV, and respiratory rate increase during wakefulness

as compared with REM sleep, they drop during non-REM sleep (light and deep sleep). The

opposite dependence is observed for the strength of respiratory sinus arrhythmia (RSA). In

contrast, the strength of cardio-respiratory synchronization is weakest during REM sleep.

Furthermore, a greater sensitivity with respect to transitions between stages of sleep is

seen for synchronization—greater by a factor of ten than for RSA. This demonstrates that

sleep regulation influences both aspects of cardiopulmonary coupling in different ways.

coordination itself defines the mutual influence of the onsets
of cardiac and respiratory cycles on each other (Moser et al.,
1995). In particular cardio-respiratory coordination leads to
a constant-time relationship between the cardiac and the
respiratory cycle. Formally, it differs from the previously
described phase synchronization by considering the alignments
in the time domain instead of the phase domain and the
bidirectional aspect. The cardio-respiratory coordination is
mostly observed during anesthesia (Galletly and Larsen, 1997),
rest (Raschke, 1991), sleep (Raschke, 1991; Cysarz et al.,
2004), and during relaxed condition, similar as the cardio-
respiratory phase synchronization. An indicator of the difference
between both the phenomena is their different dependencies
on sleep stages where cardiorespiratory coordination is most
frequently detected in light sleep (Raschke, 1991) in contrast
to the phase synchronization which has its maximum during
deep sleep (Bartsch et al., 2012). Because of the prevailing
observation during relaxed conditions, it has been assumed that
disturbances like stress strongly reduce coordination as well as
synchronization. One such example is obstructive sleep-apnea
(Raschke, 1987; Kabir et al., 2010; Solà-Soler et al., 2015) and
another is mental stress (Niizeki and Saitoh, 2012). As soon as a
series of sleep apnea events occur, respiratory regulation follows
the circulatory system. As a result, the coupling, the relationship
between the two systems, is impaired. The impairment can be so
strong that the coupling is no longer detected.

A recent analysis with much improved time resolution
indicated that coordination takes place during apnea phases and
is not extinguished by the brief hyperventilation phases that
follow each single apnea event (Riedl et al., 2014; Figure 7).
Coupling and coordination of respiration and the circulatory
system are therefore considered as additional markers for
cardiovascular regulation, similar to HRV (Togo and Takahashi,
2009; Tobaldini et al., 2013), blood pressure variability (Parati
et al., 1995), and baroreceptor sensitivity (Parati et al., 2000).

Beside this, discussions regarding the origin of the cardio-
respiratory coupling and the dominant direction of this
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FIGURE 7 | This figure shows examples of cardiorespiratory coordination during and after apnea events. The upper plot shows a so-called coordigram

where the cardiorespiratory coordination is characterized by red horizontal strips. The black bars below display the detected episodes of coordination. For

comparison, the second color-coded plot is the related synchrogram where again red horizontal strips characterize cardiorespiratory phase synchronization. As in the

plot above, the black bars at the bottom display the detected periods of phase synchronization. The third plot shows the associated alterations of beat-to-beat

intervals, with the characteristic cyclical variations that are triggered by apnea events. The fourth plot shows the associated signal for abdominal respiratory

movement, with the characteristic pattern of consecutive obstructive apnea events (marked by horizontal red bars).

mutual interaction are needed. This may require more basic
physiological experiments.

DISCUSSION

New attempts by engineers and start-up enterprises are currently
undertaken to develop cost-effective equipment on the basis of
easily accessible devices, such as Smartphones, to record heart-
rate and pulse-rate (Behar et al., 2013). Based on data gathered
by Smartphone applications, spectral analysis and procedures
involving nonlinear dynamic analysis are used to calculate HRV.
Attempts are likewise being made to apply findings from the
above-described studies to work with the signals involved. Other
endeavors with Smartphone applications have attempted by
means of simply recorded signals to detect sleep, to distinguish
sleep stages, and also the occurrence of sleep apnea.

These applications are available at low cost and have found
extensive use in the public. They are popular because insights
into sleep and possibly sleep disorders can be obtained using
a recording and an analysis conducted at home without
consulting a sleep medicine center which would be expensive

and would have considerable waiting time for an investigation.
In contrast to cardiorespiratory polysomnography, none of these
algorithms has been validated in appropriate clinical studies.
Clarification is still required to determine the extent to which
these possibilities offer diagnostic potential, or to which they
merely increase individual concern and worry if something
unusual is found. This is an example of a fuzzy transition from
medical and physiological expertise to general knowledge and
wellness applications in the general frame of quantify yourself.

Even if many cardiorespiratory polysomnography recordings
are performed every day, i.e., in Germany between 1000 and
2000 each day, there is no validated processing or analysis
for the one-channel ECG recorded with each of them—except
for a simple descriptive statistics on heart rate values such
as mean, maximum, and minimum values for the recording
period. The reason for this low level analysis is the lack of
automatic detection of irregularities/arrhythmias in a single-
channel ECG, which are usually recognized only by visual
inspection by a trained clinician. The reduced evaluation of ECG
does not reflect methods and knowledge on HRV available up
to date. Even established algorithms as well as new analysis
algorithms for HRV and for cardiorespiratory coupling are
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FIGURE 8 | This figure depicts the spectrogram of heart rate for a patient with heart failure and Cheyne-Stokes breathing. The study took place in 2014

at the Interdisciplinary Sleep Medicine Center, Charité Universitätsmedizin Berlin, with application of the M1 device that records ECG, heart rate, respiration calculated

by EDR, snoring, and body position. The plot results from an analysis of heart-rate variability: top signal, with marking corresponding to the dominance of

high-frequency coupling (HFC), low-frequency coupling (LFC), and very low-frequency coupling (vLFC). The figure also shows an approximation of sleep stages:

second signal block from the top with marking of REM, stable non-REM (shown as Stb. NR), unstable non-REM (shown as Uns. NR), and wake stages (shown as

Wake). The plots at the bottom show the spectrograms of cardiorespiratory coupling (see main text), indicators for body position (up for upright, left, prone, right, and

supine), the intensity of actigraphy (Act), and snoring events (Snore). This evaluation distinctly reveals impaired sleep.

not applied in sleep studies until today. With respect to HRV
analysis this may be due to the interference between respiration
and HRV parameters. Only controlled conditions in terms of
paced breathing would allow a comparison of inter and intra
individual changes. Cardiorespiratory coupling however does
influence both interdependent systems and therefore can be very
useful for clinical interpretation in polysomnography recordings.
In order to promote this additional interpretation a closer
interaction between clinicians and researchers on this topic is
needed. This cooperation may help interpreting the so called
autonomous arousal. The autonomous arousal describes changes
in parameters as observed during autonomous nervous system

activations which are not seen in parallel in EEG leads as central
nervous activations. Instead they are short alterations in ECG
and heart rate as well as blood pressure, often as a consequence
of brief movements, respiratory irregularities such as sights or
other phenomena observed during sleep. These brief events are
not yet further evaluated and may contribute as sleep disturbing
factors. Similar to respiratory related arousals (so called RERAs),
clinicians observe movement and cortical activity and ECG
related arousals (Fietze et al., 1999). These short transient events
may be important for a differential diagnosis and furthermore
for a decision in treatment of persons with reported sleep
disorders.
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New methods for the evaluation of ECG and blood pressure
will allow better to distinguish between subjects being healthy or
disturbed sleepers, as already seen in subjects with obstructive
snoring, subjects with bruxism, or subjects with periodic
leg movements without cortical arousals. These people do
suffer without obvious indications in conventional sleep EEG
parameters.

This uncertainty is especially significant in light of the
necessary assumption that this form of investigation is
being conducted not only with healthy subjects and with
patients definitely suffering from sleep apnea, but also
with persons who merely snore and others who represent
transition forms between snoring and sleep apnea. The
quality of such applications becomes particularly evident in
the context of such borderline cases: which are even more
widespread than cases of unequivocal sleep apnea itself.
For this reason, reliable validation of such applications are
required before diagnostic employment. Otherwise, they
represent merely one more general application intended
to measure data from individuals and to expand their
personal digital environment, without sustainable background
and without the possibility of specific and well-founded
intervention.

The devices that are now commercially available and that
address these concepts include, for example, a diagnostic early-
warning instrument for characterization of sleep quality and
assessment of sleep disordered breathing: the M1 SleepImage
recording system (MyCardio LLC, Broomfield, CO, USA).
The device is attached to the thorax with two self-adhesive
electrodes. Then it records a single-channel ECG. In parallel
it records snoring by means of a microphone, and body
position and activity by an acceleration sensor. From the
ECG the system determines the HRV and the EDR. With
this the software calculates the degree of cardiopulmonary
coupling (CPC) as described above (Thomas et al., 2005).
The CPC can be depicted by a spectrogram (Figure 8).
This helps to identify the frequency band in which CPC
is present. Of particular interest for clinical applications are
sleep disordered breathing such as sleep apnea. During sleep
disordered breathing, CPC is elevated in the low frequency
band, i.e., low-frequency coupling (LFC). It is furthermore
possible to characterize existing sleep disordered breathing
on the basis of various patterns in LFC. An initial study
has identified greater likelihood of a narrow-band sample in
LFC for central apnea events—whereas, in contrast, a more
pronounced broad-band pattern is characteristic of obstructive
sleep apnea (Schramm et al., 2014). This is of special interest,
because the distinction between obstructive and central sleep
apnea has diagnostic and possibly therapeutic consequences.
Prospective studies are needed to verify these finding and
to confirm results on large patient groups which are less
preselected.

An additional possibility, likewise still in initial stages
of investigation, would be the recognition of sleep-related

breathing disorders among patients with cardiac pacemakers,
by using data collected and provided by the pacemaker
itself. In recent pacemakers (ICD and CRT devices), an
impedance measurement can monitor breathing continuously
and, in turn, evaluate sleep apnea and the severity of
this disorder by calculating the number of apnea events
per hour of sleep, just like regular diagnostic devices. It
would be likewise necessary to investigate the diagnostic
benefits of this integrated technique by means of clinical
trials with large patient groups. Currently no treatment
consequences are taken when apnea events are detected using this
methodology.

SUMMARY

Analysis of ECG data and heart rate during sleep provides
an appreciable diversity of information on the physiology and
the pathophysiology of sleep-wake regulation. Assessment of
nocturnal ECGs with respect to cyclical fluctuations of heart
rate, combined with study of respiration-dependent alterations in
ECG morphology (e.g., amplitudes of the R-waves and T-waves),
allows reliable recognition of sleep-related breathing disorders.
The quality of sleep itself can also be approximately evaluated
by analysis of heart-rate variations. Deep sleep and REM sleep,
to be sure, demonstrate characteristic properties in heart-rate
variability.

Even now, new methods are being applied in practice by
presenting sleep findings that already include analysis of sleep
and sleep-related breathing disorders with the aid of long-term
ECG systems, data from pacemaker ECGs, and information from
innovative, reduced-scale recording systems. To arrive at solid
diagnostic and therapeutic conclusions from these results, it
will be necessary to conduct prospective validation studies and
to perform clinical evaluation with parallel out-of-center sleep
studies and polysomnography. In addition new algorithms are
needed which allow an automated processing of heart rate and
HRV which results in a conclusive report, similar to the report
created from sleep stage scoring or respiration scoring.
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