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Abstract

The topological Hall effect (THE) of electrons in skyrmion crystals (SkXs) is strongly related to the
quantum Hall effect (QHE) on lattices. This relation suggests to revisit the QHE because its Hall
conductivity can be unconventionally quantized. It exhibits a jump and changes sign abruptly if the
Fermi level crosses a van Hove singularity. In this Paper, we investigate the unconventional QHE
features by discussing band structures, Hall conductivities, and topological edge states for square and
triangular lattices; their origin are Chern numbers of bands in the SkX (THE) or of the corresponding
Landau levels (QHE). Striking features in the energy dependence of the Hall conductivities are traced
back to the band structure without magnetic field whose properties are dictated by the lattice
geometry. Based on these findings, we derive an approximation that allows us to determine the energy
dependence of the topological Hall conductivity on any two-dimensional lattice. The validity of this
approximation is proven for the honeycomb lattice. We conclude that SkXs lend themselves for
experiments to validate our findings for the THE and—indirectly—the QHE.

1. Introduction

With the recent ascent of skyrmions [ 1-5]—particle-like topologically nontrivial field configurations [6]—to
one of the most auspicious research areas in physics, the transport of electrons in a Hall geometry may become of
great interest again. Skyrmions in magnets typically rely on the Dzyaloshinskii-Moriya interaction [7, 8] and are
detected in non-centrosymmetric B20 materials, e.g., in MnSi [4]. Other mechanisms [5], e.g., frustration [9],
allow for smaller skyrmions. The skyrmion size is not only relevant for potential applications in storage and
spintronics devices [ 10—13] but also for the magnitude of the skyrmion-induced transport signal; the latter often
depends on the skyrmion density

nsk(r) = s(r) - (;—XS(T) X %S(r)) (D

(s(r) spin texture of the skyrmion).

The topological Hall effect (THE) [14—22] of electrons in skyrmion crystals (SkXs)—regular arrays of
skyrmions—arises from the real-space Berry curvature of the spin texture which produces an emergent
magnetic field proportional to ngy (r). The THE is closely related to the quantum Hall effect (QHE) on lattices
[22]. The description of the QHE for free electrons in terms of dispersionless Landau levels (LLs) [23] motivated
Onsager to formulate a scheme to deduce LLs from any band structure [24]. The experimental discovery [25] of
the QHE showed that this theory is valid in general, except for small deviations associated with the underlying
lattice. Hofstadter butterflies calculated for various lattices [26—30] confirmed Onsager’s quantization scheme
but the LLs did not appear perfectly dispersionless (as is the case for free electrons).

The anomalous quantum Hall conductivity of graphene near half filling [31] motivated to describe the QHE
by means of Chern numbers [32, 33]. It was found that LLs near a van Hove singularity would cause an
enormous quantum Hall signal, fully compensating the contributions of all other LLs; such a feature is absent for
free electrons and cannot be explained with Onsager’s quantization scheme.

©2017 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Gate voltage

Figure 1. Setups for the quantum and the topological Hall effect. (a) Hall bar (xy plane) with square structural lattice in an external
homogeneous magnetic field B (green arrow along the z direction). The sign of the quantum Hall conductivity can be changed by
tuning the gate voltage; this effect is caused by the fermion character of the electrons (electron- versus holelike) that depends on the
adjusted Fermi energy. As aresult, an electron (sphere) is deflected to the left or to the right (blue and red arrows). (b) Analogous setup
for the topological Hall effect. The external magnetic field is replaced by a skyrmion crystal, the latter represented as color-coded
circles. (c) Closeup of the magnetic unit cell of a skyrmion on a honeycomb structural lattice. The spin texture is represented in
Lorentz-microscopy style. In the top part, the in-plane component of the spins (arrows) is coded by the color scale. The emergent
magnetic field is shown in the bottom plane (green: positive, red: negative).

Recently we have shown that the THE in a SkX can be mapped onto the QHE by homogenization of the
emergent field [22]; this correspondence tells that THE and QHE describe essentially the same physics (QHE in
figure 1(a), THE in figure 1(b)). When electrons are strongly coupled to the skyrmion texture, THE experiments
could simultaneously verify the validity of the topological theory for the QHE.

Berry curvature and Chern numbers allow for profound understanding of both effects. In this Paper we
elaborate on the general nature of the effects and point out the importance of van Hove singularities whose
properties are dictated by the structural lattice. In addition, we propose a handy approximation for the energy-
dependent Hall conductivity which circumvents calculations of the Berry curvature; its validity is checked for
the QHE and the THE on a honeycomb lattice.

This Paper is organized as follows. Theoretical issues are addressed in section 2 in which we recapitulate
topological transport (section 2.1) as well as the QHE for free electrons (section 2.2) and for electrons on a lattice
(section 2.3). In section 3 we present and discuss results for the QHE on a square lattice in detail (section 3.1) and
briefly for a triangular lattice (section 3.2). Subsequently, we turn to the THE in SkXs (section 3.3) and discuss its
relation to the QHE. Inspired by the close relation of THE and QHE we introduce an approximation for the
energy-dependent Hall conductivity of both QHE and THE (section 3.4). We conclude with section 4 which is
attributed to an experimental verification and motivates further theoretical research.

2. Theoretical aspects

2.1. Topological contributions to Hall coefficients
The two-dimensional electronic system in the xy plane is described by a Hamiltonian H in tight-binding
formulation (explicit formulations are given below). The Berry connection

A (k) = i(un () [Vilun (k)

and the Berry curvature

0 0
QD (k) = —AP (k) — —AD (k
n (k) 6kx"() 8ky"()

for all bands # are calculated from their eigenvectors u,, (k) with eigenenergies E, (k). The intrinsic transverse
Hall conductivity is given by the Kubo formula [34]

_ et @) B
O3y (Bp) = 75; j; Q0 [ (B — Er) &,

evaluated as a Brillouin zone (BZ) integral; f (x) is the Fermi distribution function. e and / are the electron charge

and the Planck constant, respectively. At zero temperature only states below the Fermi energy Er contribute to

transport: if Eg is located in the band gap above the Ith band, oy, is proportional to the winding number [35, 36]
wp = Z Cn, @)

n<l
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in which
1
C,= — 09 (k) d2k
2 fBZ w (k)

is the Chern number of the nth band. The winding number tells number and propagation direction of
topologically nontrivial edge states within in the /th band gap. More precisely, this bulk-boundary
correspondence [37] identifies w; with 1% edge states with right-handed and »" edge states with left-handed
chirality,

w) = TllR — T’llL.

These edge states distinguish a topological from a conventional insulator [37-40].

2.2. QHE for free electrons
Free electrons that are confined to the xy plane in ahomogeneous magnetic field B = Be, are described by the
Hamiltonian

H= L(p + eA)?,
2m

in which the vector potential A defines the magnetic field B = V X A. A canonical transformation maps this
Hamiltonian onto that of a harmonic oscillator, giving dispersionless equidistant LLs with energies [41]

1
En = ﬁUJC(Vl + E)) n =0,

with the cyclotron frequency w, = eB/m. A constant-energy cut of the free-electron parabola at E, encloses the

area (in reciprocal space)
B h

=, Py=—. 3
B, 0= 3)

Therefore, the ‘number of states’ of each LL is identical. The constant Berry curvature

e (e

QE (k) = Qy,

ofalL (e.g., calculated in Landau gauge A = Bye,) vields its Chern number C,, = —1. This tells that the number
of topological nontrivial edge states in adjacent band gaps differs by -1. The larger B, the smaller is the
number of edge states below a fixed Fermi level and the smaller is the Hall conductivity, because the energy
difference of two adjacent LLs is proportional to B.

In Onsager’s quantization scheme [24] the above result for the free electron parabola is carried over to any
zero-field band structure (calculated for B = 0). A LLis formed if the enclosed area in reciprocal space fulfills
relation (3). Hence, each LL exhibits the same occupation, as for free electrons.

2.3.QHE on alattice
For electrons on alattice, the sum over all Chern numbers C, has to be zero. Therefore, lattice properties
introduce phenomena that are missing for LLs stemming from free electrons.

The electronic structure for a two-dimensional lattice is described by the tight-binding Hamiltonian

H=) tjc ¢ (4)
:

with nearest-neighbor hopping strengths t;; (i and j site indices); ¢ and ¢; are creation and annihilation
operators, respectively. The hopping strengths
e

ti=te Vi, = = f A(r) - dr, (5)
ri—ﬂ‘]‘

depend on the vector potential A (). The integration is along the line that connects site i with site j; ¢ is the
hopping strength of the zero-field Hamiltonian.

The phases ¢; are not gauge-invariant. The physically relevant quantity is the magnetic flux through the
plaquettes of the lattice. Since the flux is proportional to the sum of the ‘encircling’ ;;, the phases have to be
compatible with the periodicity of the lattice. This imposes specific values on the magnetic field B, so that
commensurability

ti = titm)(jtn) (6)

is valid for a lattice with # atoms in its unit cell.
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3. Results and discussion

In what follows, we investigate and explain how lattice effects manifest themselves in the QHE. We start with the
instructive square lattice (section 3.1) and turn then to the triangular lattice (section 3.2) in which an
unconventionally quantized Hall conductivity shows up.

After revisiting the THE on a triangular lattice (section 3.3) we formulate the approximation for the Hall
conductivity of both THE and QHE and check its validity for the honeycomb lattice (section 3.4).

3.1. QHE on a square lattice
The square lattice with lattice constant a is defined by its lattice vectors @, = ae, and a, = ae,.In Landau gauge,
A = Bye,, the QHE Hamiltonian for this lattice takes the matrix form

by e 0 .. 0 ek
e-iasky p, eldk, 0
0 —iaky hyo0 0
H=tl . ¢ : } :3 - : .
0 0 0 hg1 el
eiaky 0 0 efiaky hq

with

hj = 2cos (akx + 2772]').
q

The coprime integers p and q define the strength B of the magnetic field: p/q = ®/®, with ® = Ba?. For the
most part of this Paper we set p = 1 because we aim at relating the QHE to the THE in SkXs; for the latter,p = 1
corresponds to the topological charge of a skyrmion (section 3.3; the case p > 11isbriefly discussed in
section 3.1.5).

The restriction of the #;; (equation (6)) compels to use a rectangular unit cell with lattice vectors b; = ae, and
b, = age,. Hence, the magnetic Brillouin zone covers 1/g-th of the structural Brillouin zone.

3.1.1. LLs and Hall conductivity

The band structure for B = 0 (i.e., the zero-field band structure, depicted within the structural Brillouin zone in
figure 2(b)) has amaximum at E = +4 ¢t,aminimum at E = —4 ¢, and two energetically degenerate VHSs at
Eyys = 0 (for t > 0); the latter appear as one pole in the density of states and are referred to as ‘the VHS’ in the
following.

For B > 0, the emerging LLs are symmetrically distributed about the VHS, which implies that for odd q one
LL shows up exactly at the VHS (g = 13 in figure 3(a)). On top of this, the LLs exhibit g oscillations. The
amplitudes of these oscillations are largest for LLs close to the VHS; on the contrary, LLs close to the band edges
appear practically dispersionless. The positions (in reciprocal space) of maxima and minima of every second
band coincide.

The energy-resolved Hall conductivity oy, is zero at energies below the band bottom E = —4 ¢ of the zero-
field band structure (figure 3(b)). With increasing energy, oy, decreases in steps of 0y = e?/hateach LL, which is
readily explained by their Chern numbers of —1. These steps comply with LLs of free electrons (section 2) and
are abrupt because the associated LLs are practically dispersionless.

The sizable oscillation amplitudes of the LLs near the VHS at Eyys = 0 manifest themselves as modulations
in o,; in other words, the jumps are not abrupt. This is explained by the Berry curvature which is
inhomogeneously distributed within the Brillouin zone, in contrast to the Berry curvature of free-electron LLs.
Nevertheless, the Chern numbers equal —1.

For odd g, the LL closest to the VHS has a Chern number of ¢ — 1: this causes a sizable jump and a change of
sign in oy,. For even g, the two LLs closest to the VHS touch each other and carry ajoint Chern number of g — 2.
Ateven larger energies, o, decreases and reaches zero at the top of the band structure (E = +4 t).

The overall shape of the energy-resolved conductivity is antisymmetric, which reflects the symmetric shape
of the zero-field band structure. Briefly summarizing at this point, LLs and Hall conductivity show features that
are clearly attributed to lattice properties.

3.1.2. Fermion character and Berry curvature
To elaborate on the above findings we assume that the LLs can be separated into free-electron and lattice-
influenced ones. LLs of the first type are almost dispersionless, possess an almost constant Berry curvature {2,

4
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Qx a

Figure 2. Band structure of a square lattice for B = 0. The band structure, depicted in (b), is cut at constant energies «, (3, and y(close
ups in panel (a)). At a, there is one closed hole pocket (marked red), whereas for +y there is one electron pocket (blue). At the van Hove
singularity /3, the band structure exhibits a Lifshitz transition and the fermion character (electron- versus holelike) changes. Energies
in units of the hopping strength ; a lattice constant.

) F (o) 7

Energy (t)
o

) = 4

-4 PN EPEPEPIN EPUPEPIN EPSPETE AU AT A B

Wave vector q oxy (00)

Figure 3. Quantum Hall effect on a square lattice for p/q = 1/13. (a) Landau levels. The fermion character is indicated by color:
electronlike blue, holelike red (see also figure 2(a)). (b) Hall conductivity oy,. The conductivity decreases in steps of —op at every LL.
An exception is the LL at the van Hove singularity (purple, at E = 0) that carries a Chern number of ¢ — 1 = +12; asa consequence,

0xy increases abruptly. Energies in units of the hopping strength £ oy = €?/h.

and have Chern numbers of —1. The second type shows up close to Eyys, with oscillations in both energy and
Berry curvature; the positions (in reciprocal space) of their extrema coincide with those of their Berry curvature.

Now, we discuss the Berry curvature distributions in detail. For this purpose we determine the fermion
character of the electrons at constant-energy cuts of the zero-field band structure.

Atlow energies (cut yin figure 2) the dispersion is almost parabolic and the circular Fermi line encloses
occupied states. This electron pocket has positive curvature and is associated with a positive effective mass m*.
With increasing energy, the dispersion deviates more and more from that of free electrons; the constant energy
contours become warped but the Fermi lines remain electronlike.

At Eyys (cut 8) the Fermi line is a square; its vanishing curvature implies an infinite effective mass. Hence,
the Lorentz force of an external magnetic field leaves the electronic states unaffected, which explains why the LLs
close to Eyys show oscillations that resemble the zero-field band structure (see figures 2(b) and 4(a)).
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Figure 4. Landau level at the van Hove singularity of a square lattice with p/q = 1/7. (a) Lattice-induced modulations of the
dispersion relation in the Brillouin zone (BZ) of the square lattice. The magnetic BZ (green) covers 1/gth of the original BZ and
contains g modulation periods. (b) Dispersion relation (three-dimensional representation) and Berry curvature 2 — €2 (contour
plot) in one half of the magnetic BZ, normalized to the area of the Brillouin zone F (so that the average gives the Chern number of the
band). (c) Schematic presentation of the Berry curvature of the three Landau levels close to the van Hove singularity (dashed purple
line). Gray bands are projections onto the one-dimensional cut through the magnetic BZ. Extrema of the Berry curvature appear at
avoided crossings; its sign is distinguished by color (red: positive, blue: negative). Energies in units of the hopping strength t.

Athigher energies, the Fermi line becomes circular again but holelike and with negative curvature. The band
structure exhibits a Lifshitz transition [42] at Eyys, which is accompanied by a change of the fermion character:
from electronlike below the VHS (with a positive effective mass #1*) to holelike above the VHS (with
negative m*).

The Berry curvature of LLs at the band bottom and at the top of the bands is almost homogeneous, like those
of free-electron LLs. In contrast, LLs close to the VHS exhibit an inhomogeneous Berry curvature. Q@ (k) — Q
shows extrema at the band extrema; for E < 0 (electron pockets), it is negative at the band maxima and positive
at the minima. For E > 0 (hole pockets), this behavior is reversed.

Now, we explain the large Chern number of the LL close to the VHS for odd q. The Berry curvature [43]

_ (tn (k) | VieH (k) |1 (k) X (1 < m)
o = lrgn [En(k) — En(l)P

of band # is dominated by contributions from the adjacent bands. The maxima of band 7 coincide with the
minima of the adjacent band above, its minima coincide with the maxima of the adjacent band below. Viewing
these avoided crossings as split Dirac points suggests to describe each avoided crossing by a two-band
Hamiltonian

H = /w(=keox + kyo,) + m*ay,

in which (k,, k,) is taken relative to the k of the respective extremum. The nonzero effective mass m* lifts the
linear band crossing at k = 0. Its sign determines the sign of the Berry curvature and, consequently, that of the
Chern number C = £sgn(m*) /2 of the avoided crossing. Since the avoided crossings appear in even numbers,
the (total) Chern number of the LL is integer.

As argued before, the sign of m* corresponds to the fermion character. Therefore, the fermion character
defines the sign of Berry curvature (minus §2). This argument fits to our numerical findings: below (above) the
VHS, i.e., in the electron (hole) regime with m* > 0 (m* < 0), energy maxima coincide with minima (maxima)
of the Berry curvature. As aresult, the Berry curvature contributions of the maxima and minima of the LL
oscillations cancel out and the Chern number of —1 is that of free-electron LLs.

The above reasoning does not hold for the LL near the VHS because its Berry curvature is dictated by states
below and above the VHS. Therefore, the dispersion minima are electronlike, which leads to a maximum of the
Berry curvature. The maxima are holelike and, thus, also coincide with maxima of the Berry curvature (see
panels b and c of figure 4). In total, the Berry curvature of this particular LL is positive throughout the BZ.
Considering the two-band model for this LL, each of the g minima and g maxima induces a Chern number of
+1/2. The total Chern number of the LL is thus C = g, from which the Chern number of —1 due to the
background € (free electrons) has to be subtracted.

In summary, we obtain an outstanding Chern number of C = q — 1for the LL at the VHS. A similar
reasoning for even g resultsin C = q — 2 for the LL pair close to the VHS. All other LLs carry the Chern number
—1 of free-electron LLs because their Berry curvature is dictated by states with the same fermion character, with
the consequence that minima and maxima contributions due to band oscillations cancel out (see the top and the
bottom LL in figure 4(¢)).
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Figure 5. Quantum Hall effect on a square lattice with p/q = 1/13. (a) The density of states (DOS, light smooth curve) is quantized
into Landau levels (LLs; opaque peaks), each containing the same number of states. The LL at the VHS carries a Chern number of
C =g — 1 = +12,theother ones C = — 1. The fermion character is indicated by the color (see figure 2). (b) The enclosed area ¢
(proportional to the integrated DOS; light curves) is decomposed with respect to the fermion character ((,: electronlike, negative; ¢, :
holelike, positive) and quantized (opaque). Energy in units of the hopping strength ¢.

3.1.3. An approximation for the Hall conductivity
The above line of argument lends itself to formulate an approximation for deriving Hall conductivities. This rule
of thumb only requires knowledge of the zero-field band structure (B = 0).

IfaFermiline encloses anarea { = (j + 1/2) (, (jinteger, (, = F/q, F areaof the Brillouin zone)
irrespective of the fermion character, a dispersionless LL is formed at the respective energy (figure 5(a)),
according to Onsager’s quantization scheme. All LLs carry Chern numbers of —1; an exception are the LLs close
to the VHS which carry alarge Chern number. Recall that at the VHS the Hall conductivity changes sign. This
rough picture yields quite a detailed energy dependence of the Hall conductivity. Taking as an example a square
lattice, the approximated conductivity (opaque in figure 5(b)) matches the numerically computed one (see
figure 3(b)).

The semiclassical expression [44]

Oxy = 0—0(i - &] (7)

relates the Hall conductivity with the number of enclosed states and their fermion character (bright in
figure 5(b); C, for electrons, ¢, for holes); it reproduces the overall shape well but lacks quantization [45].

The above construction works well for free-electron LLs. However, it appears questionable for LLs close to
the VHS because the Fermi lines are not closed (confer the Lifshitz transition at the constant-energy cut 3in
figure 2). Anyway, the rule describes the jump at the VHS if the fermion character is taken into account for the
enclosed area ( (taken negative for electrons and positive for holes). This corresponds to a shift of +-q at the VHS.
Other lattice-induced features are not taken into account, for example the dispersion of the LLs. Still, the
proposed approximation estimates well the overall shape of the Hall conductivity.

3.1.4. Bulk-boundary correspondence
We now address the effect of the VHS on the topological edge states (TESs). The winding number of a band gap,
equation (2), tells how many TESs bridge this gap.

Starting from the band bottom for odd q (g = 13 in figure 6(a)), the Chern number of —1 for each LL
decreases the winding number by 1. Consequently, the number of TESs propagating to the left (with negative
velocity) increases by 1 per band gap. At the VHS, the TESs cling to the oscillating LLs. The large Chern number
in this region ‘compensates’ all left-propagating TESs and creates (¢ — 1) /2 right-propagating TESs (with
positive velocity). Approaching the top of the band structure, the number of TESs decreases until it reaches zero.

The same holds for even g (¢ = 14 in figure 6(b)), with the exception that the winding number of the band
gap at the VHS is zero. Hence, there are either no TESs at all or there are q/2 left- and q/2 right-propagating
TESs. The latter is the case here: edge states from the bottom penetrate the lower band of the pair at Eyys and

7



10P Publishing

NewJ. Phys. 19 (2017) 063042 B Gébel et al

4F 4r bulk

-4

L -4

L

F

x| b
x| F
| b

r

x| F

edge
Wave vector g Wave vector q

Figure 6. Landau levels and topological edge states of a square lattice with (a) p/q = 1/13 and (b) p/q = 1/14. The spectral density
of a semi-infinite Hall bar is computed by Green function renormalization [46, 47], the edge localization is coded by color (blue: bulk;
red: edge). Energies in units of the hopping strength ¢.
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Figure 7. Quantum Hall effect on a square lattice. (a) Landau levels for p/q = 1/5. The fermion character is indicated by color
(electronlike blue, holelike red). (b) Landau levels for p/q = 3/16. Chern numbers of the individual LLs are given in the column C,,,
Chern numbers of the five groups in the column }° C,,. (c) Hall conductivity gy, for p/q = 3/16 (opaque lines)and p/q = 1/5 (light
lines). Energies in units of the hopping strength t, oy = e?/h.

edge states from above penetrate the upper band of the pair; then they cling to the other band. The Hall
conductivity at Eyys vanishes although there are edge states.

3.1.5. Hierarchy of LLs
In the definition of the flux p/q = ©/®y, q defines the number of atoms in the magnetic unit cell and,
therefore, fixes the number of LLs. While we focus on p = 1 in this Paper, a few remarks on the case p > 1 will
contribute to the discussion.

For p > 1, one observes the formation of LL groups (p/q = 3/16 in figure 7(b)), which is not described by
Onsager’s original quantization scheme. In an extended scheme p/q is expressed as a continued fraction
[26,48,49]

p___ 1
1 >
q fl+—fz+ :

fy+o

which establishes a hierarchy of LL groups. f; is the number of LL groups of order 1, while the number of groups
of higher order can be calculated from the f;[49]. With an unterminated continued fraction even irrational
values of p/q can be calculated.
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In our example

1
g 16 541

f, = 5tells that the LLs are arranged into 5 groups of first order (figure 7). These LL groups are related to those of
the case p/q = 1/5 (reproduced in panel a). These bands splitupin {3, 3, 4, 3, 3} LLs (of second order). There
are no LLs of higher order because the continued fraction is terminated.

The Chern numbers of the first-order LL groups concur with Onsager’s quantization scheme [30, 49, 50]; the
column Y C, in figure 7(b) can be produced from the approximation given in section 3.1.3. These group Chern
numbers are the sums of the Chern numbers of the individual LLs; see the column C,,. Besides explicit
calculation, the latter can be obtained from the Diophantine equation [30, 49, 51].

The hierarchy of LLs and their Chern numbers dictate the Hall conductivity; the first-order LL groups are
dominating the overall behavior (see opaque (p/q = 3/16) and transparent (p/q = 1/5) curves in figure 7(c)).

3.2. QHE on a triangular lattice
We turn briefly to the triangular lattice, extending the discussion of results given in [22]. Due to the hexagonal
symmetry of the triangular lattice the Hall conductivity is unconventionally quantized, which is explained by the
zero-field band structure.

Inthegauge A = B(y — x/ J3)e, the Hamiltonian reads

b b0 .0 KD
W ok BP0 0
o 0 R0 o)
o 0 0 . ks A
SR (VR [

with the matrix elements

(.
hj = 2cos ﬁakx + lak}, + 27721‘ , B = () = ¢? + b0 e—27r1q(1 + %),
2 2 q ) ] y y

and

= ex iﬁakx = ex fi&
X p 2 > Yy p 2 .

The lattice vectors are a; = ae,and a, = a(:3e, — e,) / 2.

The QHE is preferably described in a rectangular cell, similar to that of the square lattice; this facilitates a
comparison of the two systems. The magnetic Brillouin zone fits g-times into the structural Brillouin zone. The
bands show g oscillations that resemble the zero-field band structure (see figures 8(a) and 9) and appear most
pronounced near the VHS (figure 9(c)). There, the Chern number reads g — 1. For a detailed discussion we refer
to[22].

The zero-field band structure (figure 8(a)) has two electron pockets at energies between the band bottom
E = —3 tandthe VHS at Eyys = —2 t; otherwise it has one hole pocket (top of thebands at E = +6 t). Dueto
the different symmetry of the hexagonal lattice, the VHS is closer to the band bottom than to the top of the band;
thus, a LLis not pinned exactly to the VHS. Nevertheless, the LL closest to the VHS is formed by states with
positive and states with negative effective mass, which causes the Berry curvature to be positive throughout the
BZ (figure 9(b)). This leads to the large Chern number of C = q — 1, asis the case for the square lattice.

The unconventional quantization of the conductivity shows up at energies below the VHS. There, each of the
two separated electron pockets has to fulfill Onsager’s quantization. Therefore, two LLs appear if
¢ = 2(j+ 1/2) ¢, (jinteger; figures 8(c) and (d)). The total Chern number of such a pair reads —2. As aresult,
the conductivity shows steps of 2 e2/h (figures 8(e) and (f)).

In summary, the interpretation of the QHE on the square lattice (section 3.1) can be carried over to the
triangular lattice. A difference appears at energies below the VHS because the LLs are asymmetrically distributed
about the VHS and two electron pockets (instead of one) show up.
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Figure 8. Quantum Hall effect on a triangular lattice for p/q = 1/14. (a) and (b) Zero-field band structure with constant energy cuts
(a0, B, 7); as figure 2. (c) Landau levels. The color represents the fermion character (blue electronlike, red holelike). (d) Density of
states (DOS; semitransparent for the zero-field band structure shown in panel (a)) and Onsager-quantized levels (opaque; Chern
numbers are indicated). The blue LLs appear in pairs carrying a total Chern number of —2. (e) Enclosed area in reciprocal space. The
sign encodes the fermion character (electronlike negative, holelike positive). (f) Hall conductivity. Energies in units of the hopping
strength ¢, 0y = e?/h.

Figure 9. Landau level near the VHS of the triangular lattice for ¢ = 8. (a) Oscillations of the Landau level represented in the structural
Brillouin zone (BZ, hexagon). The magnetic Brillouin zone is depicted as green rectangle. (b) Three-dimensional representation of the
LL’s dispersion in one half of the magnetic BZ. Its Berry curvature 2® — ) is shown as color scale at the bottom (normalized to the
area of the Brillouin zone F). Energies in units of the hopping strength .

3.3. THE in SkXs
The THE in a SkX is closely related to the QHE [22]. A one-to-one correspondence has been established for
bands and Chern numbers, except for energies close to VHSs. Nevertheless, even in this region the Hall
conductivities of both effects are similar to each other in case of large skyrmions. The THE in SkXs is quantized,
like the QHE.

The magnetic texture of a skyrmion (top hexagon in figure 1(c); notice that the spin in the center points in
positive z direction, what corresponds to a generating magnetic field in negative z direction) carries an integer
topological charge

Ngk = = f nsi(r)d’r = w,
47 xy

in which wis the vorticity. It acts on the electron spin via a Zeeman interaction. The corresponding Zeeman term
in the Hamiltonian can be transformed into a Peierls term whose effective magnetic field—the emergent field of
the skyrmion (bottom hexagon in figure 1(c))—acts on the electron charge. This field is collinear with a nonzero
average and, therefore, the Hall conductivity of the THE is similar to the conductivity of the QHE with a
corresponding homogeneous magnetic field with p/q = Nsi /n = £1/n, where nis the number of atoms in
the skyrmion unit cell.

THE and QHE differ in the inhomogeneity of the emergent field (THE: inhomogeneous; QHE:
homogeneous). The inhomogeneity ‘bends’ the almost flat LLs of the QHE and redistributes their Berry
curvature. If it does not introduce level crossings, the Chern numbers remain unchanged. However near a VHS,
the LLs are so close to each other that a bending could alter the Chern numbers and, thus, the conductivity.

10
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Figure 10. Band structure of a skyrmion crystal on a triangular lattice with n = 12 sites per magnetic unit cell for selected coupling

strengths 7 (in units of the hopping strength #; denoted at the top of each panel). For each band the alignment of the spin to the local
magnetic texture is indicated by color (parallel: blue; antiparallel: red). Energies in units of .

Nevertheless, the total Chern number of a bundle of LLs near the VHS is conserved. As a consequence, the
conductivities of THE and QHE show the same global energy dependence.
Following [20], the spin-dependent electronic structure is described by the tight-binding Hamiltonian

H= Z t ciT ¢+ st,- . (CITO'C,') (8)
ij i

(iandj site indices) with real nearest-neighbor hopping strength . The second sum couples the spins (¢, and ;
are now two-component creation and annihilation operators) to the local magnetic texture {s;} of the SkX viaa
Zeeman term; O is the vector of Pauli matrices.

The coupling strength m to the magnetic texture is now discussed for a skyrmion on a triangular structural
lattice with n = 12 atoms in the (magnetic) unit cell and Ng, = 1. For m = 0, the spin is not coupled to the
skyrmion texture and the bands are spin-degenerate. The band structure of the triangular lattice (figure 8(a)) is
back-folded into the magnetic Brillouin zone (figure 10(a)). The bands appear between E = —3 t and +6 ¢;a
van Hove singularity shows up at Eyyg = —2 t.

For nonzero m, the spins align with the skyrmion texture and the spin degeneracy of the bands is lifted
(figure 10(b)). Increasing m further, the bands are separated into two blocks: one with spins parallel, the other
with spins anti-parallel to the skyrmion texture (panels ¢ and d). While for m = 6 ¢ both blocks deviate in
details, in the limit m >> t both blocks exhibit identical, rigidly shifted dispersion relations. The band blocks,
with width <9 ¢, are shifted by +m. While the upper bands of each block are well separated and quite dispersive,
around the VHSs atenergies —2 ¢ = m the band widths and gaps are considerably smaller.

The band structures are invariant with respect to changes of the skyrmion helicity—when continuously
turning a Néel- into a Bloch-type skyrmion—and the skyrmion number Ng (skyrmion and antiskyrmion).

For strong coupling (i >> t), the electrons’ spins are fully aligned with the skyrmion texture. Thus, it is
sufficient to consider only one band block, which then describes spinless electrons; recall that this was also the
case for the QHE discussed above. However, the effect of the skyrmion magnetic texture has to be taken into
account by alocal gauge transformation to the reference frame which is defined by the local magnetic moments
[20,22,52,53]. The transformation is presented in the appendix.

In this emergent-field picture the THE is described by coupling of the electron’s charge to a magnetic field in
z direction. In the limit of large skyrmions, the magnetic texture is quasicontinuous and the emergent field can
be understood as a real-space Berry curvature which is proportional to the skyrmion density ng), (equation (1)).
For small skyrmions, however, the discrete skyrmion density is proportional to the local ‘spin chirality’, i.e., the
solid angle spread out by neighboring spins. In contrast to the homogeneous magnetic field that causes a QHE,
the emergent magnetic field for the THE is inhomogeneous (bottom hexagon in figure 1(c)). Yet, it is nonzero on
average, because it has to fulfill [52]
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Figure 11. Bulk-boundary correspondence in a skyrmion crystal on a triangular structural lattice with n = 48 sites in the magnetic
unit celland m/t = 5. The spectral density is depicted for bulk (blue) and edge (red) states in the energy range of well-separated bulk
bands (band 43 to 48). Each bulk state has a Chern number of — 1, which reduces the winding number w; (j = 43, ..., 48) and, thus,
the number of topological edge states in each band gap in steps of 1.
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so that both effects (QHE and THE) can be compared.

The intimate relation of THE and QHE on a lattice becomes evident for the edge states. We briefly address edge
states of a skyrmion lattice with n = 48 sites in the magnetic unit cell (figure 11), which corresponds to a QHE system
with p/q = 1/48. The six topmost bands (blue) of the lower block are identified as LLs each of which carries a Chern
number of —1. Hence, the number of edge states (red) bridging the band gaps increases by 1 with decreasing energy.
This explains the quantized topological Hall conductivity [20, 22].

3.4. Approximation for the topological and quantum Hall conductivity

The above interpretation of the QHE (sections 3.1 and 3.2) suggests to formulate an approximation for the
energy dependence of the transverse Hall conductivity, like in [44, 45]. This rule applies also to the THE in a SkX
for strong coupling to the skyrmion texture.

3.4.1. Formulation of the approximation
Consider a two-dimensional lattice which either is subject to a homogeneous magnetic field or hosts a crystal of
skyrmions with topological charge Ng. Its unit cell comprises 1 atoms. n2 determines how the initial b bands of the
zero-field band structure are quantized. The zero-field band structure hosts v van Hove singularities at energies
E\(,%S, i = 1, ..., v,given by the symmetry of the structural lattice.

The approximation of the conductivity oy, (E) proceeds as follows.

1. The zero-field band(s) is (are) quantized in accordance with Onsager’s quantization prescription. The
resulting LLs are assumed dispersionless. Their homogeneously distributed Berry curvature yields a Chern
number of — Ny (4Ng, ) per band in the lower (upper) band block for the THE in a SkX. For the QHE with a
uniform field one sets Ny = sign(B) and treats only the lower block.

2. The conductivity is shifted at E\(/%s by £ Ngsxapn/v for the lower and upper block, respectively, to account
for the lattice influence (op = e%/h). For the QHE the shift is sign(B) gyn/v.

This procedure yields the conductivities

62 E 12 H
3y () = Ny I D(E) — — 3 0(E EQ. ) dE/ ©)
o i o(E)

for the lower (—) and the upper (+) band block. D(E) is the normalized density of states, f D(EYdE' = b,and
0 is the Heaviside function. o(E) counts the number of pockets at E and redefines the conventional floor
function: | x |, rounds down in steps of 0, while the conventional | x | gives the next lower integer of x. Thus,

| Jo() accounts for Onsager’s quantization scheme, in which the winding number at the next lower Eyys
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Figure 12. Deduction of the topological Hall conductivity and quantum Hall conductivity from (a) band structure and (b) density of
states of a honeycomb lattice for zero magnetic field. (c) Lower block of the topological Hall conductivity oy, versus Fermi energy for a
skyrmion crystal on a honeycomb lattice (red) and QHE with uniform magnetic field (blue) for n = 72 sites in the magnetic unit cell.
For clarity, only the lower or upper halves are depicted. The topological Hall conductivity was computed for very strong coupling

(m = 900 t) and rigidly shifted by m. The approximation (equation (9)) produces the gray curve. Energies in units of the hopping
strength t, o = €%/h.

determines the offset of the integer quotient. An offset of 0/2 has to be included to account for the 1/2 in the
Onsager scheme (LL formationif { = (j 4+ 1/2) (,) per electron- or hole-pocket.

Addition. For a SkX, the band energies have to be scaled by cos(J;; /2) to adjust the total band width (see also
equation (A2) in the appendix). The average angle of neighboring spins can be approximated by
U = 3/2 - ma/X. Here, Xis the pitch of the spin spirals whose superposition forms the SkX (see [9]). For large
skyrmions (A >> a) the scaling factor approaches 1 and the scaling is irrelevant.

3.4.2. Application to the honeycomb lattice

As an illustration, we apply equation (9) to the honeycomb lattice. The two atoms in the structural unit cell yield
b = 2bands and a DOS that is symmetric about the VHS (panels a and b of figure 12). Considering g sites in each
of the sublattices yields n = 2 q. The QHE Hamiltonian then reads in matrix form

o KPP 0o 0o .. 0 0 g9

hl(*) 0 g(+) 0 0 0

0 ¢© o KPP .. 0 0

(=)
=g 90 0 000

0 0 0 0 . 0 g® o0

0 0 0 0 ..g? o AP

g9 0o 0o o0 .. 0 B o0
with

_ Comii?
h](+) — (h]( e = ¢x¢y + ((b;zc)* e 2miig, gH = (g = ¢:¢ R

and

. aky .ak
¢, = exp (lzaﬁ ), ¢y = exp (17)’)

To check the validity of the approximation we compare the Hall conductivities of the THE and of the QHE—
computed from the above Hamiltonian—with that produced by equation (9) for n = 72 and for large coupling

m. Since in all cases oy, (E) is antisymmetric to the block center we show the THE data only for the lower halfand
QHE data only for the upper half of the band block.
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All three data sets agree well, even the quantization plateaus are reproduced in a wide energy range
(figure 12(c)). The quantum Hall conductivity (blue) matches the approximation (gray). Deviations show up
close to the VHS at which sizable modulations indicate dispersive LLs; recall that the LL dispersion is not taken
into account by the approximation. The jump itself is reproduced best for large n. For small n the jump may be
shifted in energy because it is not pinned to the VHS (see the triangular lattice in section 3.2). In the
approximation, however, the jump is introduced artificially at Eys, what explains the deviation.

Larger deviations appear for the THE (red). Again, the plateaus are reproduced by the approximation but not
in great detail. The inhomogeneous emergent field of the skyrmion texture creates band bendings even for the
former dispersionless LLs of the QHE far off the VHSs. Therefore, the conductivity shows small modulations at
the plateau edges. In addition, lattice effects are significant at Eyys, as for the QHE; the jump is quite broad,
spread over several levels.

The THE data have been scaled by cos(ﬁ_,j / 2) = cos(m / 12) (equation (A2) in the appendix), as explained in
the previous section (see ‘Addition’). This scaling is insignificant for skyrmions of size n = 72, as can be seen by
the minimal shift of Eyys (compare the sign change of the gray curve in the lower and upper halves of the block
in figure 12(c)).

Summarizing, the approximation works well at energies apart of VHSs: both the quantization steps and the
change of sign are reproduced for QHE and THE. Close to VHSs the approximation of the THE improves with
skyrmion size.

4. Conclusion and outlook

In this Paper we discussed the QHE and the THE on square, triangular, and honeycomb lattices, with a focus on
the energy dependence of the quantized Hall conductivities oy,. A sizable jump in oy, which is accompanied by a
change of sign, is attributed to van Hove singularities of the zero-field band structure, as for the QHE in [32, 45].
We showed that this sign change can be traced back to a single band with a very large Chern number. While the
bands below and above a van Hove singularity have positive as well as negative Berry curvature contributions,
they exclusively induce positive Berry curvature in the distinguished band in the vicinity of the singularity.

We pointed out that the THE is closely related to the QHE, because the emergent magnetic field due to the
skyrmion texture is nonzero on average. Thus, the topological Hall conductivity shows an energy dependence
similar to that of the quantum Hall conductivity. To support our results we calculated Chern numbers and
winding numbers as well as the TESs.

Based on our findings we developed a handy approximation for the Hall conductivity. This approximation is
in good agreement with the quantum Hall and topological Hall results. For the QHE, it only lacks effects of band
oscillations near the van Hove singularity. Our approximation gives non-specialists a rule of thumb to
determine the transverse Hall conductivity of both effects for any structural lattice. It circumvents
computationally demanding calculations of the Berry curvature.

Concerning experiments, the prominent features of o,,—quantization, jump, and change of sign—are
preferably investigated in the THE of SkXs. SkXs with a skyrmion radius of about 1 nm (e.g., Fe/Ir(100), [54])
would act as gigantic emergent magnetic fields of about 4000T [20]. This way, the predicted properties of the
QHE in lattices could be (indirectly) reviewed because of the relation of THE and QHE: results for the THE can
be carried over to the QHE and vice versa.

The THE can be studied in metals which host a SkX phase, e.g., MnSi [4], Fe; _,Co,Si [55], and FeGe [56].
Typically, finite temperatures and external magnetic fields B are necessary to stabilize a SkX phase. In samples
with negligible anomalous Hall effect—another additional contribution to the Hall conductivity, that is
significant for sizable intrinsic spin—orbit coupling—the Hall conductivity oy, increases linearly with Bif Bis
small. A transition from a topologically trivial phase to a SkX phase would cause a sharp increase of oy, because
the THE sets in abruptly at the phase boundary [22]. This additional contribution depends on the lattice
geometry, as shown in this Paper. It changes sign when the chemical potential passes a van Hove singularity,
which could be achieved by applying a gate voltage. At low temperatures, the THE signal exhibits its salient
features (quantization and change of sign) most clearly. Note that gating is limited to several hundred meV in
experiments. Thus, to experimentally verify the sign change, the ungated chemical potential should lie in the
vicinity of a van Hove singularity. This restriction is lifted for the detection of the quantization steps which occur
in the entire energy range.

Depending on the desired feature, different sizes of skyrmions are favorable in experiments: the change of
sign in oy, shows up sharply for large skyrmions, as the integrated density of states is well resembled by the
numerous LLs [22]. A compromise between sharpness of the sawtooth-shaped feature (favored by large
skyrmions) and signal strength (favored by small skyrmions) has to be made, because a conductance rather than
a conductivity is measured in an experiment. Low-temperature SkXs with very small skyrmions are preferable to
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detect the unconventional quantization. The quantization plateaus of oy, are largest for small skyrmions [22]
and low temperatures prevent smoothening of the corresponding steps. The preparation of such SkXs is
challenging but feasible [54, 57-60].

A combined analysis of the anomalous Hall effect and the THE seems to be worthwhile in the future. If
intrinsic spin—orbit coupling is sizable, the anomalous contribution to the Hall effect has to be calculated to
extract the topological contribution from experimental data[16, 61, 62].

The skyrmion texture affects magnon transport as well. The transformation that produces the emergent field
for electrons leads to an emergent electrodynamics that transforms the Landau-Lifshitz—Gilbert equation into
the Hamiltonian of a charged particle in fictitious fields [63]. This suggests to apply the argumentation of this
Paper to analogs for the topological magnon Hall effect [64—66].

Our approximation suggests an expansion to SkXs with [Ngi| > 1, since the ratio p/q that defines the
magnetic field of the QHE is related to Ny /n for the THE. Single skyrmions [67] as well as crystals with a higher
skyrmion number [68] have already been simulated. The recently predicted antiferromagnetic skyrmions on
square lattices [69—71] lend themselves for studying the topological spin Hall effect in detail or to find a way to
generate a nonzero THE by making the two skyrmion sublattices inequivalent.
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Appendix. Mapping the topological onto the QHE

Thelocal gauge transformation addressed in section 3.3 is mediated by the gauge field A (r) that defines the
emergent magnetic field B(r) = V x A(r) . B(r) is along the z direction and inhomogeneous. Its z
component [52]

X
Ox dy

(AL)

B = 25(0) ((%(r) 0s(r))

(7 = 1)is given by the topological charge density of a skyrmion (lower hexagon in figure 1(c)). Since the
emergent field couples to the charge but not to the spin of the electron, the gauge transformation recasts the
coupling of an electron’s spin to the magnetic texture as a fictitious field acting on its charge. Both descriptions
are equivalent and yield identical results for the THE, in the limit m — oo.

In a tight-binding model, the gauge field introduces new effective hopping strengths

t,»jff =t exp(—ie/ﬁf A(r) - dl).
ri—r;
dl points along the hopping path from site i to site j. tgff is the hopping strength in the QHE Hamiltonian
Houp =Y t5" df d
ij
for the QHE, in which d. (d;) is a creation (annihilation) operator. The effective hopping can be expressed as [20]

9; .
t,»jff = t;; COS 71]6‘“’7, (A2)

with tfrom equation (8) and 1J;; the angle between the spins of site i and site j. With the corresponding polar
angles ¢; and ¢, the phase reads
—sin(y; — ¢)

Y LB
cos(y; — @) + cot = cot —

a;; = arctan (A3)
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