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Abstract
The topologicalHall effect (THE) of electrons in skyrmion crystals(SkXs) is strongly related to the
quantumHall effect (QHE) on lattices. This relation suggests to revisit theQHEbecause itsHall
conductivity can be unconventionally quantized. It exhibits a jump and changes sign abruptly if the
Fermi level crosses a vanHove singularity. In this Paper, we investigate the unconventional QHE
features by discussing band structures, Hall conductivities, and topological edge states for square and
triangular lattices; their origin areChern numbers of bands in the SkX (THE) or of the corresponding
Landau levels (QHE). Striking features in the energy dependence of theHall conductivities are traced
back to the band structure withoutmagneticfieldwhose properties are dictated by the lattice
geometry. Based on these findings, we derive an approximation that allows us to determine the energy
dependence of the topological Hall conductivity on any two-dimensional lattice. The validity of this
approximation is proven for the honeycomb lattice.We conclude that SkXs lend themselves for
experiments to validate our findings for the THE and—indirectly—theQHE.

1. Introduction

With the recent ascent of skyrmions [1–5]—particle-like topologically nontrivial field configurations [6]—to
one of themost auspicious research areas in physics, the transport of electrons in aHall geometrymay become of
great interest again. Skyrmions inmagnets typically rely on theDzyaloshinskii–Moriya interaction [7, 8] and are
detected in non-centrosymmetric B20materials, e.g., inMnSi [4]. Othermechanisms [5], e.g., frustration [9],
allow for smaller skyrmions. The skyrmion size is not only relevant for potential applications in storage and
spintronics devices [10–13] but also for themagnitude of the skyrmion-induced transport signal; the latter often
depends on the skyrmion density
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(s(r) spin texture of the skyrmion).
The topological Hall effect (THE) [14–22] of electrons in skyrmion crystals (SkXs)—regular arrays of

skyrmions—arises from the real-space Berry curvature of the spin texturewhich produces an emergent
magnetic field proportional to ( )rnSk . The THE is closely related to the quantumHall effect (QHE) on lattices
[22]. The description of theQHE for free electrons in terms of dispersionless Landau levels (LLs) [23]motivated
Onsager to formulate a scheme to deduce LLs from any band structure [24]. The experimental discovery [25] of
theQHE showed that this theory is valid in general, except for small deviations associatedwith the underlying
lattice.Hofstadter butterflies calculated for various lattices [26–30] confirmedOnsager’s quantization scheme
but the LLs did not appear perfectly dispersionless (as is the case for free electrons).

The anomalous quantumHall conductivity of graphene near half filling [31]motivated to describe theQHE
bymeans of Chern numbers [32, 33]. It was found that LLs near a vanHove singularity would cause an
enormous quantumHall signal, fully compensating the contributions of all other LLs; such a feature is absent for
free electrons and cannot be explainedwithOnsager’s quantization scheme.
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Recently we have shown that the THE in a SkX can bemapped onto theQHEby homogenization of the
emergent field [22]; this correspondence tells that THE andQHEdescribe essentially the same physics (QHE in
figure 1(a), THE infigure 1(b)).When electrons are strongly coupled to the skyrmion texture, THE experiments
could simultaneously verify the validity of the topological theory for theQHE.

Berry curvature andChern numbers allow for profound understanding of both effects. In this Paperwe
elaborate on the general nature of the effects and point out the importance of vanHove singularities whose
properties are dictated by the structural lattice. In addition, we propose a handy approximation for the energy-
dependentHall conductivity which circumvents calculations of the Berry curvature; its validity is checked for
theQHE and the THEon a honeycomb lattice.

This Paper is organized as follows. Theoretical issues are addressed in section 2 inwhichwe recapitulate
topological transport (section 2.1) aswell as theQHE for free electrons (section 2.2) and for electrons on a lattice
(section 2.3). In section 3we present and discuss results for theQHEon a square lattice in detail (section 3.1) and
briefly for a triangular lattice (section 3.2). Subsequently, we turn to the THE in SkXs (section 3.3) and discuss its
relation to theQHE. Inspired by the close relation of THE andQHEwe introduce an approximation for the
energy-dependentHall conductivity of bothQHE andTHE (section 3.4).We concludewith section 4which is
attributed to an experimental verification andmotivates further theoretical research.

2. Theoretical aspects

2.1. Topological contributions toHall coefficients
The two-dimensional electronic system in the xy plane is described by aHamiltonianH in tight-binding
formulation (explicit formulations are given below). The Berry connection
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for all bands n are calculated from their eigenvectors ( )kun with eigenenergies ( )kEn . The intrinsic transverse
Hall conductivity is given by theKubo formula [34]
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evaluated as a Brillouin zone (BZ) integral; f (x) is the Fermi distribution function. e and h are the electron charge
and the Planck constant, respectively. At zero temperature only states below the Fermi energyEF contribute to
transport: ifEF is located in the band gap above the lth band, sxy is proportional to thewinding number [35, 36]


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n

Figure 1. Setups for the quantum and the topological Hall effect. (a)Hall bar (xy plane)with square structural lattice in an external
homogeneousmagnetic field B (green arrow along the z direction). The sign of the quantumHall conductivity can be changed by
tuning the gate voltage; this effect is caused by the fermion character of the electrons (electron- versus holelike) that depends on the
adjusted Fermi energy. As a result, an electron (sphere) is deflected to the left or to the right (blue and red arrows). (b)Analogous setup
for the topological Hall effect. The externalmagneticfield is replaced by a skyrmion crystal, the latter represented as color-coded
circles. (c)Closeup of themagnetic unit cell of a skyrmion on a honeycomb structural lattice. The spin texture is represented in
Lorentz-microscopy style. In the top part, the in-plane component of the spins (arrows) is coded by the color scale. The emergent
magnetic field is shown in the bottomplane (green: positive, red: negative).
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inwhich
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is the Chern number of the nth band. Thewinding number tells number and propagation direction of
topologically nontrivial edge states within in the lth band gap.More precisely, this bulk-boundary
correspondence [37] identifieswlwith nl

R edge states with right-handed and nl
L edge states with left-handed

chirality,

= -w n n .l l l
R L

These edge states distinguish a topological from a conventional insulator [37–40].

2.2.QHE for free electrons
Free electrons that are confined to the xy plane in a homogeneousmagnetic field =B eB z are described by the
Hamiltonian

= +( )p AH
m

e
1

2
,2

inwhich the vector potential A defines themagnetic field =  ´B A. A canonical transformationmaps this
Hamiltonian onto that of a harmonic oscillator, giving dispersionless equidistant LLs with energies [41]
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with the cyclotron frequency w = eB mc . A constant-energy cut of the free-electron parabola at En encloses the
area (in reciprocal space)
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Therefore, the ‘number of states’ of each LL is identical. The constant Berry curvature

W = W( )( ) k ,n
z

0

of a LL (e.g., calculated in Landau gauge =A eBy x) yields its Chern number = -C 1n . This tells that the number
of topological nontrivial edge states in adjacent band gaps differs by±1. The largerB, the smaller is the
number of edge states below afixed Fermi level and the smaller is theHall conductivity, because the energy
difference of two adjacent LLs is proportional toB.

InOnsager’s quantization scheme [24] the above result for the free electron parabola is carried over to any
zero-field band structure (calculated forB=0). A LL is formed if the enclosed area in reciprocal space fulfills
relation (3). Hence, each LL exhibits the same occupation, as for free electrons.

2.3.QHEon a lattice
For electrons on a lattice, the sumover all Chern numbersCn has to be zero. Therefore, lattice properties
introduce phenomena that aremissing for LLs stemming from free electrons.

The electronic structure for a two-dimensional lattice is described by the tight-bindingHamiltonian

å= ( )†H t c c 4
ij

ij i j

with nearest-neighbor hopping strengths tij (i and j site indices); †ci and ci are creation and annihilation
operators, respectively. The hopping strengths

 òj= =j-


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depend on the vector potential ( )A r . The integration is along the line that connects site iwith site j; t is the
hopping strength of the zero-fieldHamiltonian.

The phasesjij are not gauge-invariant. The physically relevant quantity is themagnetic flux through the
plaquettes of the lattice. Since theflux is proportional to the sumof the ‘encircling’jij , the phases have to be
compatible with the periodicity of the lattice. This imposes specific values on themagnetic fieldB, so that
commensurability

= + + ( )( )( )t t 6ij i n j n

is valid for a lattice with n atoms in its unit cell.
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3. Results and discussion

Inwhat follows, we investigate and explain how lattice effectsmanifest themselves in theQHE.We start with the
instructive square lattice (section 3.1) and turn then to the triangular lattice (section 3.2) inwhich an
unconventionally quantizedHall conductivity shows up.

After revisiting the THEon a triangular lattice (section 3.3)we formulate the approximation for theHall
conductivity of both THE andQHE and check its validity for the honeycomb lattice (section 3.4).

3.1.QHEon a square lattice
The square lattice with lattice constant a is defined by its lattice vectors =a ea x1 and =a ea y2 . In Landau gauge,

=A eBy x, theQHEHamiltonian for this lattice takes thematrix form
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The coprime integers p and q define the strengthB of themagnetic field: = F Fp q 0 with F = Ba2. For the
most part of this Paperwe set p=1 because we aim at relating theQHE to the THE in SkXs; for the latter, p=1
corresponds to the topological charge of a skyrmion (section 3.3; the case >p 1 is briefly discussed in
section 3.1.5).

The restriction of the tij (equation (6)) compels to use a rectangular unit cell with lattice vectors =b ea x1 and
=b eaq y2 . Hence, themagnetic Brillouin zone covers q1 -th of the structural Brillouin zone.

3.1.1. LLs andHall conductivity
The band structure forB=0 (i.e., the zero-field band structure, depictedwithin the structural Brillouin zone in
figure 2(b))has amaximumat = +E t4 , aminimumat = -E t4 , and two energetically degenerate VHSs at

=E 0VHS (for >t 0); the latter appear as one pole in the density of states and are referred to as ‘theVHS’ in the
following.

For >B 0, the emerging LLs are symmetrically distributed about theVHS,which implies that for odd q one
LL shows up exactly at theVHS (q=13 infigure 3(a)). On top of this, the LLs exhibit q oscillations. The
amplitudes of these oscillations are largest for LLs close to theVHS; on the contrary, LLs close to the band edges
appear practically dispersionless. The positions (in reciprocal space) ofmaxima andminima of every second
band coincide.

The energy-resolvedHall conductivity sxy is zero at energies below the band bottom = -E t4 of the zero-
field band structure (figure 3(b)).With increasing energy, sxy decreases in steps of s º e h0

2 at each LL, which is
readily explained by their Chern numbers of−1. These steps complywith LLs of free electrons (section 2) and
are abrupt because the associated LLs are practically dispersionless.

The sizable oscillation amplitudes of the LLs near theVHS at =E 0VHS manifest themselves asmodulations
in s ;xy in otherwords, the jumps are not abrupt. This is explained by the Berry curvature which is
inhomogeneously distributedwithin the Brillouin zone, in contrast to the Berry curvature of free-electron LLs.
Nevertheless, the Chern numbers equal−1.

For odd q, the LL closest to theVHShas aChern number of -q 1: this causes a sizable jump and a change of
sign in sxy. For even q, the two LLs closest to theVHS touch each other and carry a joint Chern number of -q 2.
At even larger energies, sxy decreases and reaches zero at the top of the band structure ( = +E t4 ).

The overall shape of the energy-resolved conductivity is antisymmetric, which reflects the symmetric shape
of the zero-field band structure. Briefly summarizing at this point, LLs andHall conductivity show features that
are clearly attributed to lattice properties.

3.1.2. Fermion character and Berry curvature
To elaborate on the abovefindings we assume that the LLs can be separated into free-electron and lattice-
influenced ones. LLs of thefirst type are almost dispersionless, possess an almost constant Berry curvature W0,

4
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and haveChern numbers of−1. The second type shows up close toEVHS, with oscillations in both energy and
Berry curvature; the positions (in reciprocal space) of their extrema coincide with those of their Berry curvature.

Now,we discuss the Berry curvature distributions in detail. For this purposewe determine the fermion
character of the electrons at constant-energy cuts of the zero-field band structure.

At low energies (cut γ infigure 2) the dispersion is almost parabolic and the circular Fermi line encloses
occupied states. This electron pocket has positive curvature and is associatedwith a positive effectivemass m .
With increasing energy, the dispersion deviatesmore andmore from that of free electrons; the constant energy
contours becomewarped but the Fermi lines remain electronlike.

AtEVHS (cutβ) the Fermi line is a square; its vanishing curvature implies an infinite effectivemass.Hence,
the Lorentz force of an externalmagnetic field leaves the electronic states unaffected, which explains why the LLs
close toEVHS show oscillations that resemble the zero-field band structure (see figures 2(b) and 4(a)).

Figure 2.Band structure of a square lattice forB=0. The band structure, depicted in (b), is cut at constant energies a b, , and γ (close
ups in panel (a)). Atα, there is one closed hole pocket (marked red), whereas for γ there is one electron pocket (blue). At the vanHove
singularityβ, the band structure exhibits a Lifshitz transition and the fermion character (electron- versus holelike) changes. Energies
in units of the hopping strength t; a lattice constant.

Figure 3.QuantumHall effect on a square lattice for =p q 1 13. (a)Landau levels. The fermion character is indicated by color:
electronlike blue, holelike red (see alsofigure 2(a)). (b)Hall conductivity sxy . The conductivity decreases in steps of s- 0 at every LL.
An exception is the LL at the vanHove singularity (purple, atE=0) that carries a Chern number of - = +q 1 12; as a consequence,
sxy increases abruptly. Energies in units of the hopping strength t; s = e h0

2 .
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At higher energies, the Fermi line becomes circular again but holelike andwith negative curvature. The band
structure exhibits a Lifshitz transition [42] atEVHS, which is accompanied by a change of the fermion character:
from electronlike below theVHS (with a positive effectivemass m ) to holelike above theVHS (with
negative m ).

The Berry curvature of LLs at the band bottom and at the top of the bands is almost homogeneous, like those
of free-electron LLs. In contrast, LLs close to theVHS exhibit an inhomogeneous Berry curvature. W - W( )( ) kz

0

shows extrema at the band extrema; for <E 0 (electron pockets), it is negative at the bandmaxima and positive
at theminima. For >E 0 (hole pockets), this behavior is reversed.

Now,we explain the large Chern number of the LL close to theVHS for odd q. The Berry curvature [43]

åW =
á  ñ ´ «

-¹

( ) ( )∣ ( )∣ ( ) ( )
[ ( ) ( )]

k
k k k

k k

u H u n m

E E
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n
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2

of band n is dominated by contributions from the adjacent bands. Themaxima of band n coincide with the
minima of the adjacent band above, itsminima coincidewith themaxima of the adjacent band below.Viewing
these avoided crossings as split Dirac points suggests to describe each avoided crossing by a two-band
Hamiltonian

 w s s s= - + +( )H k k m ,x x y y z

inwhich ( )k k,x y is taken relative to the k of the respective extremum. The nonzero effectivemass m lifts the
linear band crossing at =k 0. Its sign determines the sign of the Berry curvature and, consequently, that of the
Chern number =  ( )C msgn 2 of the avoided crossing. Since the avoided crossings appear in even numbers,
the (total)Chern number of the LL is integer.

As argued before, the sign of m corresponds to the fermion character. Therefore, the fermion character
defines the sign of Berry curvature (minus W0). This argument fits to our numerical findings: below (above) the
VHS, i.e., in the electron (hole) regimewith  >m 0 (  <m 0), energymaxima coincide withminima (maxima)
of the Berry curvature. As a result, the Berry curvature contributions of themaxima andminima of the LL
oscillations cancel out and theChern number of−1 is that of free-electron LLs.

The above reasoning does not hold for the LL near theVHSbecause its Berry curvature is dictated by states
below and above theVHS. Therefore, the dispersionminima are electronlike, which leads to amaximumof the
Berry curvature. Themaxima are holelike and, thus, also coincide withmaxima of the Berry curvature (see
panels b and c offigure 4). In total, the Berry curvature of this particular LL is positive throughout the BZ.
Considering the two-bandmodel for this LL, each of the qminima and qmaxima induces aChern number of

+1 2. The total Chern number of the LL is thusC=q, fromwhich theChern number of−1 due to the
background W0 (free electrons) has to be subtracted.

In summary, we obtain an outstandingChern number of = -C q 1 for the LL at theVHS. A similar
reasoning for even q results in = -C q 2 for the LL pair close to theVHS. All other LLs carry theChern number
−1 of free-electron LLs because their Berry curvature is dictated by states with the same fermion character, with
the consequence thatminima andmaxima contributions due to band oscillations cancel out (see the top and the
bottomLL infigure 4(c)).

Figure 4. Landau level at the vanHove singularity of a square latticewith =p q 1 7. (a) Lattice-inducedmodulations of the
dispersion relation in the Brillouin zone (BZ) of the square lattice. Themagnetic BZ (green) covers q1 th of the original BZ and
contains qmodulation periods. (b)Dispersion relation (three-dimensional representation) andBerry curvature W - W( )z

0 (contour
plot) in one half of themagnetic BZ, normalized to the area of the Brillouin zone F (so that the average gives the Chern number of the
band). (c) Schematic presentation of the Berry curvature of the three Landau levels close to the vanHove singularity (dashed purple
line). Gray bands are projections onto the one-dimensional cut through themagnetic BZ. Extrema of the Berry curvature appear at
avoided crossings; its sign is distinguished by color (red: positive, blue: negative). Energies in units of the hopping strength t.
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3.1.3. An approximation for theHall conductivity
The above line of argument lends itself to formulate an approximation for derivingHall conductivities. This rule
of thumbonly requires knowledge of the zero-field band structure (B=0).

If a Fermi line encloses an area z z= +( )j 1 2 0 ( j integer, z = F q F,0 area of the Brillouin zone)
irrespective of the fermion character, a dispersionless LL is formed at the respective energy (figure 5(a)),
according toOnsager’s quantization scheme. All LLs carry Chern numbers of−1; an exception are the LLs close
to theVHSwhich carry a large Chern number. Recall that at theVHS theHall conductivity changes sign. This
rough picture yields quite a detailed energy dependence of theHall conductivity. Taking as an example a square
lattice, the approximated conductivity (opaque infigure 5(b))matches the numerically computed one (see
figure 3(b)).

The semiclassical expression [44]

s s
z
z

z
z

= -
⎛
⎝⎜

⎞
⎠⎟ ( )7xy 0

h

0

e

0

relates theHall conductivity with the number of enclosed states and their fermion character (bright in
figure 5(b); ze for electrons, zh for holes); it reproduces the overall shapewell but lacks quantization [45].

The above constructionworkswell for free-electron LLs.However, it appears questionable for LLs close to
theVHSbecause the Fermi lines are not closed (confer the Lifshitz transition at the constant-energy cutβ in
figure 2). Anyway, the rule describes the jump at theVHS if the fermion character is taken into account for the
enclosed area ζ (taken negative for electrons and positive for holes). This corresponds to a shift of+q at theVHS.
Other lattice-induced features are not taken into account, for example the dispersion of the LLs. Still, the
proposed approximation estimates well the overall shape of theHall conductivity.

3.1.4. Bulk-boundary correspondence
Wenow address the effect of theVHSon the topological edge states (TESs). Thewinding number of a band gap,
equation (2), tells howmanyTESs bridge this gap.

Starting from the band bottom for odd q (q=13 infigure 6(a)), the Chern number of−1 for each LL
decreases thewinding number by 1. Consequently, the number of TESs propagating to the left (with negative
velocity) increases by 1 per band gap. At theVHS, the TESs cling to the oscillating LLs. The large Chern number
in this region ‘compensates’ all left-propagating TESs and creates -( )q 1 2 right-propagating TESs (with
positive velocity). Approaching the top of the band structure, the number of TESs decreases until it reaches zero.

The same holds for even q (q=14 infigure 6(b)), with the exception that thewinding number of the band
gap at theVHS is zero.Hence, there are either noTESs at all or there are q 2 left- and q 2 right-propagating
TESs. The latter is the case here: edge states from the bottompenetrate the lower band of the pair atEVHS and

Figure 5.QuantumHall effect on a square latticewith =p q 1 13. (a)The density of states (DOS, light smooth curve) is quantized
into Landau levels (LLs; opaque peaks), each containing the same number of states. The LL at theVHS carries aChern number of
= - = +C q 1 12, the other ones = -C 1. The fermion character is indicated by the color (seefigure 2). (b)The enclosed area ζ

(proportional to the integratedDOS; light curves) is decomposedwith respect to the fermion character (ze: electronlike, negative; zh:
holelike, positive) and quantized (opaque). Energy in units of the hopping strength t.
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edge states from above penetrate the upper band of the pair; then they cling to the other band. TheHall
conductivity at EVHS vanishes although there are edge states.

3.1.5. Hierarchy of LLs
In the definition of theflux = F Fp q q,0 defines the number of atoms in themagnetic unit cell and,
therefore, fixes the number of LLs.While we focus on p=1 in this Paper, a few remarks on the case >p 1will
contribute to the discussion.

For >p 1, one observes the formation of LL groups ( =p q 3 16 infigure 7(b)), which is not described by
Onsager’s original quantization scheme. In an extended scheme p q is expressed as a continued fraction
[26, 48, 49]

=
+

+
+

p

q f

1
,

f1
1

f2
1

3

which establishes a hierarchy of LL groups. f1 is the number of LL groups of order 1, while the number of groups
of higher order can be calculated from the fi [49].With an unterminated continued fraction even irrational
values of p/q can be calculated.

Figure 6. Landau levels and topological edge states of a square latticewith (a) =p q 1 13 and (b) =p q 1 14. The spectral density
of a semi-infiniteHall bar is computed byGreen function renormalization [46, 47], the edge localization is coded by color (blue: bulk;
red: edge). Energies in units of the hopping strength t.

Figure 7.QuantumHall effect on a square lattice. (a) Landau levels for =p q 1 5. The fermion character is indicated by color
(electronlike blue, holelike red). (b) Landau levels for =p q 3 16. Chern numbers of the individual LLs are given in the columnCn,
Chern numbers of thefive groups in the column åCn. (c)Hall conductivity sxy for =p q 3 16 (opaque lines) and =p q 1 5 (light
lines). Energies in units of the hopping strength s =t e h, 0

2 .
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In our example

= =
+

p

q

3

16

1

5
,

1

3

=f 51 tells that the LLs are arranged into 5 groups offirst order (figure 7). These LL groups are related to those of
the case =p q 1 5 (reproduced in panel a). These bands split up in { }3, 3, 4, 3, 3 LLs (of second order). There
are no LLs of higher order because the continued fraction is terminated.

TheChern numbers of the first-order LL groups concurwithOnsager’s quantization scheme [30, 49, 50]; the
columnåCn infigure 7(b) can be produced from the approximation given in section 3.1.3. These groupChern
numbers are the sums of theChern numbers of the individual LLs; see the columnCn. Besides explicit
calculation, the latter can be obtained from theDiophantine equation [30, 49, 51].

The hierarchy of LLs and their Chern numbers dictate theHall conductivity; the first-order LL groups are
dominating the overall behavior (see opaque ( =p q 3 16) and transparent ( =p q 1 5) curves infigure 7(c)).

3.2.QHEon a triangular lattice
We turn briefly to the triangular lattice, extending the discussion of results given in [22]. Due to the hexagonal
symmetry of the triangular lattice theHall conductivity is unconventionally quantized, which is explained by the
zero-field band structure.

In the gauge = -( )A eB y x 3 x theHamiltonian reads

=

+ -

- +

-

- -
+

+
-
-

     

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟

( ) ( )

( ) ( )

( )

( )

( ) ( )

H t

h h h

h h h

h h

h h

h h h

0 ... 0

... 0 0

0 ... 0 0

0 0 0 ...

0 0 ...

,

q

q q

q q q

1 1

1 2 2

2 3

1 1

1

with thematrix elements

p f f f= + + = = + p+ - - +
⎛
⎝⎜

⎞
⎠⎟

( )( )( ) ( )h ak ak
p

q
j h h2 cos

3

2

1

2
2 , e ,j x y j j y x y

p
q j2 2 i 1

2

and

f fº º -
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

ak ak
exp i

3

2
, exp i

2
.x

x
y

y

The lattice vectors are =a ea y1 and = -( )a e ea 3 2x y2 .
TheQHE is preferably described in a rectangular cell, similar to that of the square lattice; this facilitates a

comparison of the two systems. Themagnetic Brillouin zonefits q-times into the structural Brillouin zone. The
bands show q oscillations that resemble the zero-field band structure (seefigures 8(a) and 9) and appearmost
pronounced near theVHS (figure 9(c)). There, theChern number reads -q 1. For a detailed discussionwe refer
to [22].

The zero-field band structure (figure 8(a)) has two electron pockets at energies between the band bottom
= -E t3 and theVHS at = -E t2 ;VHS otherwise it has one hole pocket (top of the bands at = +E t6 ). Due to

the different symmetry of the hexagonal lattice, theVHS is closer to the band bottom than to the top of the band;
thus, a LL is not pinned exactly to theVHS.Nevertheless, the LL closest to theVHS is formed by states with
positive and states with negative effectivemass, which causes the Berry curvature to be positive throughout the
BZ (figure 9(b)). This leads to the large Chern number of = -C q 1, as is the case for the square lattice.

The unconventional quantization of the conductivity shows up at energies below theVHS. There, each of the
two separated electron pockets has to fulfill Onsager’s quantization. Therefore, two LLs appear if
z z= +( )j2 1 2 0 ( j integer; figures 8(c) and (d)). The total Chern number of such a pair reads−2. As a result,
the conductivity shows steps of e h2 2 (figures 8(e) and (f)).

In summary, the interpretation of theQHEon the square lattice (section 3.1) can be carried over to the
triangular lattice. A difference appears at energies below theVHSbecause the LLs are asymmetrically distributed
about theVHS and two electron pockets (instead of one) showup.
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3.3. THE in SkXs
TheTHE in a SkX is closely related to theQHE [22]. A one-to-one correspondence has been established for
bands andChern numbers, except for energies close toVHSs. Nevertheless, even in this region theHall
conductivities of both effects are similar to each other in case of large skyrmions. The THE in SkXs is quantized,
like theQHE.

Themagnetic texture of a skyrmion (top hexagon infigure 1(c); notice that the spin in the center points in
positive z direction, what corresponds to a generatingmagnetic field in negative z direction) carries an integer
topological charge

òp
= =( )rN n r w

1

4
d ,

xy
Sk Sk

2

inwhichw is the vorticity. It acts on the electron spin via a Zeeman interaction. The corresponding Zeeman term
in theHamiltonian can be transformed into a Peierls termwhose effectivemagnetic field—the emergent field of
the skyrmion (bottomhexagon infigure 1(c))—acts on the electron charge. Thisfield is collinear with a nonzero
average and, therefore, theHall conductivity of the THE is similar to the conductivity of theQHEwith a
corresponding homogeneousmagnetic fieldwith = = p q N n n1Sk , where n is the number of atoms in
the skyrmion unit cell.

THE andQHEdiffer in the inhomogeneity of the emergent field (THE: inhomogeneous; QHE:
homogeneous). The inhomogeneity ‘bends’ the almost flat LLs of theQHE and redistributes their Berry
curvature. If it does not introduce level crossings, the Chern numbers remain unchanged.However near aVHS,
the LLs are so close to each other that a bending could alter theChern numbers and, thus, the conductivity.

Figure 9. Landau level near theVHS of the triangular lattice for q=8. (a)Oscillations of the Landau level represented in the structural
Brillouin zone (BZ, hexagon). Themagnetic Brillouin zone is depicted as green rectangle. (b)Three-dimensional representation of the
LL’s dispersion in one half of themagnetic BZ. Its Berry curvature W - W( )z

0 is shown as color scale at the bottom (normalized to the
area of the Brillouin zone F). Energies in units of the hopping strength t.

Figure 8.QuantumHall effect on a triangular lattice for =p q 1 14. (a) and (b)Zero-field band structurewith constant energy cuts
(a b g, , ); as figure 2. (c) Landau levels. The color represents the fermion character (blue electronlike, red holelike). (d)Density of
states (DOS; semitransparent for the zero-field band structure shown in panel (a)) andOnsager-quantized levels (opaque; Chern
numbers are indicated). The blue LLs appear in pairs carrying a total Chern number of−2. (e)Enclosed area in reciprocal space. The
sign encodes the fermion character (electronlike negative, holelike positive). (f)Hall conductivity. Energies in units of the hopping
strength s =t e h, 0

2 .
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Nevertheless, the total Chern number of a bundle of LLs near theVHS is conserved. As a consequence, the
conductivities of THE andQHE show the same global energy dependence.

Following [20], the spin-dependent electronic structure is described by the tight-bindingHamiltonian

å å s= + · ( ) ( )† †sH t c c m c c 8
ij

i j
i

i i i

(i and j site indices)with real nearest-neighbor hopping strength t. The second sumcouples the spins ( †ci and ci
are now two-component creation and annihilation operators) to the localmagnetic texture { }si of the SkX via a
Zeeman term; s is the vector of Paulimatrices.

The coupling strengthm to themagnetic texture is nowdiscussed for a skyrmion on a triangular structural
lattice with n=12 atoms in the (magnetic) unit cell and =N 1Sk . Form=0, the spin is not coupled to the
skyrmion texture and the bands are spin-degenerate. The band structure of the triangular lattice (figure 8(a)) is
back-folded into themagnetic Brillouin zone (figure 10(a)). The bands appear between = -E t3 and+ t6 ; a
vanHove singularity shows up at = -E t2VHS .

For nonzerom, the spins alignwith the skyrmion texture and the spin degeneracy of the bands is lifted
(figure 10(b)). Increasingm further, the bands are separated into two blocks: onewith spins parallel, the other
with spins anti-parallel to the skyrmion texture (panels c and d).While for =m t6 both blocks deviate in
details, in the limit m t both blocks exhibit identical, rigidly shifted dispersion relations. The band blocks,
withwidth t9 , are shifted bym.While the upper bands of each block arewell separated and quite dispersive,
around theVHSs at energies- t m2 the bandwidths and gaps are considerably smaller.

The band structures are invariant with respect to changes of the skyrmion helicity—when continuously
turning aNéel- into a Bloch-type skyrmion—and the skyrmion numberNSk (skyrmion and antiskyrmion).

For strong coupling ( m t ), the electrons’ spins are fully alignedwith the skyrmion texture. Thus, it is
sufficient to consider only one band block, which then describes spinless electrons; recall that this was also the
case for theQHEdiscussed above.However, the effect of the skyrmionmagnetic texture has to be taken into
account by a local gauge transformation to the reference framewhich is defined by the localmagneticmoments
[20, 22, 52, 53]. The transformation is presented in the appendix.

In this emergent-field picture the THE is described by coupling of the electron’s charge to amagnetic field in
z direction. In the limit of large skyrmions, themagnetic texture is quasicontinuous and the emergent field can
be understood as a real-space Berry curvaturewhich is proportional to the skyrmion density nSk (equation (1)).
For small skyrmions, however, the discrete skyrmion density is proportional to the local ‘spin chirality’, i.e., the
solid angle spread out by neighboring spins. In contrast to the homogeneousmagnetic field that causes aQHE,
the emergentmagnetic field for the THE is inhomogeneous (bottomhexagon infigure 1(c)). Yet, it is nonzero on
average, because it has to fulfill [52]

Figure 10.Band structure of a skyrmion crystal on a triangular latticewith n=12 sites permagnetic unit cell for selected coupling
strengthsm (in units of the hopping strength t; denoted at the top of each panel). For each band the alignment of the spin to the local
magnetic texture is indicated by color (parallel: blue; antiparallel: red). Energies in units of t.
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 òp
=( )( ) rB r N

1

2
d ,z

uc

2
Sk

so that both effects (QHE andTHE) can be compared.
The intimate relationof THEandQHEona lattice becomes evident for the edge states.Webriefly address edge

states of a skyrmion latticewithn=48 sites in themagnetic unit cell (figure 11), which corresponds to aQHEsystem
with =p q 1 48. The six topmost bands (blue)of the lower block are identified as LLs eachofwhich carries aChern
number of−1.Hence, thenumberof edge states (red)bridging the bandgaps increases by1withdecreasing energy.
This explains the quantized topologicalHall conductivity [20, 22].

3.4. Approximation for the topological and quantumHall conductivity
The above interpretation of theQHE (sections 3.1 and 3.2) suggests to formulate an approximation for the
energy dependence of the transverseHall conductivity, like in [44, 45]. This rule applies also to the THE in a SkX
for strong coupling to the skyrmion texture.

3.4.1. Formulation of the approximation
Consider a two-dimensional latticewhich either is subject to ahomogeneousmagneticfieldor hosts a crystal of
skyrmionswith topological chargeNSk. Its unit cell comprisesn atoms.ndetermines how the initialbbandsof the
zero-field band structure are quantized.The zero-fieldband structure hosts v vanHove singularities at energies

= ¼( )E i v, 1, ,i
VHS , givenby the symmetry of the structural lattice.
The approximation of the conductivity s ( )Exy proceeds as follows.

1. The zero-field band(s) is (are) quantized in accordance with Onsager’s quantization prescription. The
resulting LLs are assumed dispersionless. Their homogeneously distributed Berry curvature yields aChern
number of-NSk (+NSk) per band in the lower (upper) band block for the THE in a SkX. For theQHEwith a
uniform field one sets = ( )N BsignSk and treats only the lower block.

2. The conductivity is shifted at ( )E i
VHS by sN n vSk 0 for the lower and upper block, respectively, to account

for the lattice influence (s = e h0
2 ). For theQHE the shift is s( )B n vsign 0 .

This procedure yields the conductivities

ò ås q= ¢ - ¢ - ¢
-¥


⎢
⎣⎢

⎥
⎦⎥( ) ( ) ( ) ( )( )

( )

E
e

h
N n D E

v
E E E

1
d 9xy

E

i

v
i

o E

2

Sk VHS

for the lower (−) and the upper (+) band block.D(E) is the normalized density of states, ò ¢ ¢ =( )D E E bd , and
θ is theHeaviside function. o(E) counts the number of pockets atE and redefines the conventional floor
function:⌊ ⌋x o rounds down in steps of o, while the conventional⌊ ⌋x gives the next lower integer of x. Thus,
⌊ ⌋ ( )x o E accounts forOnsager’s quantization scheme, inwhich thewinding number at the next lowerEVHS

Figure 11.Bulk-boundary correspondence in a skyrmion crystal on a triangular structural lattice with n=48 sites in themagnetic
unit cell and =m t 5. The spectral density is depicted for bulk (blue) and edge (red) states in the energy range of well-separated bulk
bands (band 43 to 48). Each bulk state has a Chern number of−1, which reduces the winding numberwj ( = ¼j 43, , 48) and, thus,
the number of topological edge states in each band gap in steps of 1.

12

New J. Phys. 19 (2017) 063042 BGöbel et al



determines the offset of the integer quotient. An offset of o 2 has to be included to account for the 1/2 in the
Onsager scheme (LL formation if z z= +( )j 1 2 0) per electron- or hole-pocket.

Addition. For a SkX, the band energies have to be scaled by J( )cos 2ij to adjust the total bandwidth (see also
equation (A2) in the appendix). The average angle of neighboring spins can be approximated by
J p l= · a3 2ij . Here,λ is the pitch of the spin spirals whose superposition forms the SkX (see [9]). For large
skyrmions (l  a) the scaling factor approaches 1 and the scaling is irrelevant.

3.4.2. Application to the honeycomb lattice
As an illustration, we apply equation (9) to the honeycomb lattice. The two atoms in the structural unit cell yield
b=2 bands and aDOS that is symmetric about theVHS (panels a and b offigure 12). Considering q sites in each
of the sublattices yields =n q2 . TheQHEHamiltonian then reads inmatrix form

=

+ -

- +

- +

-

+

- +

+ -

       
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h g

g h

h

g

g h

g h

0 0 0 ... 0 0

0 0 ... 0 0 0

0 0 ... 0 0 0

0 0 0 ... 0 0 0
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To check the validity of the approximationwe compare theHall conductivities of the THE and of theQHE—
computed from the aboveHamiltonian—with that produced by equation (9) for n=72 and for large coupling
m. Since in all cases s ( )Exy is antisymmetric to the block center we show the THEdata only for the lower half and
QHEdata only for the upper half of the band block.

Figure 12.Deduction of the topological Hall conductivity and quantumHall conductivity from (a) band structure and (b) density of
states of a honeycomb lattice for zeromagneticfield. (c) Lower block of the topological Hall conductivity sxy versus Fermi energy for a
skyrmion crystal on a honeycomb lattice (red) andQHEwith uniformmagnetic field (blue) for n=72 sites in themagnetic unit cell.
For clarity, only the lower or upper halves are depicted. The topological Hall conductivity was computed for very strong coupling
( =m t900 ) and rigidly shifted bym. The approximation (equation (9)) produces the gray curve. Energies in units of the hopping
strength s =t e h, 0

2 .
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All three data sets agreewell, even the quantization plateaus are reproduced in awide energy range
(figure 12(c)). The quantumHall conductivity (blue)matches the approximation (gray). Deviations showup
close to theVHS atwhich sizablemodulations indicate dispersive LLs; recall that the LL dispersion is not taken
into account by the approximation. The jump itself is reproduced best for large n. For small n the jumpmay be
shifted in energy because it is not pinned to theVHS (see the triangular lattice in section 3.2). In the
approximation, however, the jump is introduced artificially atEVHS, what explains the deviation.

Larger deviations appear for the THE (red). Again, the plateaus are reproduced by the approximation but not
in great detail. The inhomogeneous emergent field of the skyrmion texture creates band bendings even for the
former dispersionless LLs of theQHE far off theVHSs. Therefore, the conductivity shows smallmodulations at
the plateau edges. In addition, lattice effects are significant atEVHS, as for theQHE; the jump is quite broad,
spread over several levels.

The THEdata have been scaled by J p=( ) ( )cos 2 cos 12ij (equation (A2) in the appendix), as explained in
the previous section (see ‘Addition’). This scaling is insignificant for skyrmions of size n=72, as can be seen by
theminimal shift ofEVHS (compare the sign change of the gray curve in the lower and upper halves of the block
infigure 12(c)).

Summarizing, the approximationworkswell at energies apart of VHSs: both the quantization steps and the
change of sign are reproduced forQHE andTHE.Close toVHSs the approximation of the THE improves with
skyrmion size.

4. Conclusion and outlook

In this Paperwe discussed theQHE and the THEon square, triangular, and honeycomb lattices, with a focus on
the energy dependence of the quantizedHall conductivities sxy . A sizable jump in sxy, which is accompanied by a
change of sign, is attributed to vanHove singularities of the zero-field band structure, as for theQHE in [32, 45].
We showed that this sign change can be traced back to a single bandwith a very large Chern number.While the
bands below and above a vanHove singularity have positive aswell as negative Berry curvature contributions,
they exclusively induce positive Berry curvature in the distinguished band in the vicinity of the singularity.

We pointed out that the THE is closely related to theQHE, because the emergentmagnetic field due to the
skyrmion texture is nonzero on average. Thus, the topologicalHall conductivity shows an energy dependence
similar to that of the quantumHall conductivity. To support our results we calculatedChern numbers and
winding numbers as well as the TESs.

Based on ourfindings we developed a handy approximation for theHall conductivity. This approximation is
in good agreementwith the quantumHall and topological Hall results. For theQHE, it only lacks effects of band
oscillations near the vanHove singularity. Our approximation gives non-specialists a rule of thumb to
determine the transverseHall conductivity of both effects for any structural lattice. It circumvents
computationally demanding calculations of the Berry curvature.

Concerning experiments, the prominent features of sxy—quantization, jump, and change of sign—are
preferably investigated in the THEof SkXs. SkXswith a skyrmion radius of about 1 nm (e.g., Fe/Ir(100), [54])
would act as gigantic emergentmagnetic fields of about 4000T [20]. This way, the predicted properties of the
QHE in lattices could be (indirectly) reviewed because of the relation of THE andQHE: results for the THE can
be carried over to theQHE and vice versa.

The THE can be studied inmetals which host a SkX phase, e.g.,MnSi [4], -Fe Co Six x1 [55], and FeGe [56].
Typically,finite temperatures and externalmagnetic fieldsB are necessary to stabilize a SkX phase. In samples
with negligible anomalousHall effect—another additional contribution to theHall conductivity, that is
significant for sizable intrinsic spin–orbit coupling—theHall conductivity sxy increases linearly withB ifB is
small. A transition froma topologically trivial phase to a SkX phasewould cause a sharp increase of sxy because
the THE sets in abruptly at the phase boundary [22]. This additional contribution depends on the lattice
geometry, as shown in this Paper. It changes signwhen the chemical potential passes a vanHove singularity,
which could be achieved by applying a gate voltage. At low temperatures, the THE signal exhibits its salient
features (quantization and change of sign)most clearly. Note that gating is limited to several hundred meV in
experiments. Thus, to experimentally verify the sign change, the ungated chemical potential should lie in the
vicinity of a vanHove singularity. This restriction is lifted for the detection of the quantization stepswhich occur
in the entire energy range.

Depending on the desired feature, different sizes of skyrmions are favorable in experiments: the change of
sign in sxy shows up sharply for large skyrmions, as the integrated density of states is well resembled by the
numerous LLs [22]. A compromise between sharpness of the sawtooth-shaped feature (favored by large
skyrmions) and signal strength (favored by small skyrmions) has to bemade, because a conductance rather than
a conductivity ismeasured in an experiment. Low-temperature SkXswith very small skyrmions are preferable to
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detect the unconventional quantization. The quantization plateaus of sxy are largest for small skyrmions [22]
and low temperatures prevent smoothening of the corresponding steps. The preparation of such SkXs is
challenging but feasible [54, 57–60].

A combined analysis of the anomalousHall effect and the THE seems to beworthwhile in the future. If
intrinsic spin–orbit coupling is sizable, the anomalous contribution to theHall effect has to be calculated to
extract the topological contribution from experimental data [16, 61, 62].

The skyrmion texture affectsmagnon transport as well. The transformation that produces the emergent field
for electrons leads to an emergent electrodynamics that transforms the Landau–Lifshitz–Gilbert equation into
theHamiltonian of a charged particle infictitious fields [63]. This suggests to apply the argumentation of this
Paper to analogs for the topologicalmagnonHall effect [64–66].

Our approximation suggests an expansion to SkXswith >∣ ∣N 1Sk , since the ratio p/q that defines the
magnetic field of theQHE is related to N nSk for the THE. Single skyrmions [67] aswell as crystals with a higher
skyrmion number [68] have already been simulated. The recently predicted antiferromagnetic skyrmions on
square lattices [69–71] lend themselves for studying the topological spinHall effect in detail or tofind away to
generate a nonzero THEbymaking the two skyrmion sublattices inequivalent.
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Appendix.Mapping the topological onto theQHE

The local gauge transformation addressed in section 3.3 ismediated by the gaugefield ( )A r that defines the
emergentmagnetic field = ´( ) ( ) ( )B r A r B r. is along the z direction and inhomogeneous. Its z
component [52]

=
¶
¶

´
¶
¶

⎛
⎝⎜

⎞
⎠⎟( ) ( ) · ( ) ( ) ( )( ) r s r

s r s r
B

x y

1

2
A1z

( = 1) is given by the topological charge density of a skyrmion (lower hexagon infigure 1(c)). Since the
emergent field couples to the charge but not to the spin of the electron, the gauge transformation recasts the
coupling of an electron’s spin to themagnetic texture as afictitious field acting on its charge. Both descriptions
are equivalent and yield identical results for the THE, in the limit  ¥m .

In a tight-bindingmodel, the gauge field introduces new effective hopping strengths
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i j

ld points along the hopping path from site i to site j t. ij
eff is the hopping strength in theQHEHamiltonian

å= †H t d d
ij

ij iQHE
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for theQHE, inwhich †di (di) is a creation (annihilation) operator. The effective hopping can be expressed as [20]
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with t from equation (8) and Jij the angle between the spins of site i and site j.With the corresponding polar
anglesji andjj, the phase reads
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