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Abstract
This study demonstrates how the spin quantumdynamics of a single Fe atom adsorbed onCu(001)
can be controlled andmanipulated by the vibrations of a nearby copper tip attached to a nano
cantilever by virtue of the dynamicmagnetic anisotropy. Themagnetic properties of the composite
system are obtained from ab initio calculations in completely relaxed geometries and turned out to be
dependent considerably on the tip-iron distance that changes as the vibrations set in. The level
populations, the spin dynamics interrelationwith the driving frequency, as well as quantum
information related quantities are exposed and analyzed.

1. Introduction

Microelectromechanical or nanoelectromechanical systems (NEMS) are at the verge of the classical–quantum
world [1–4] and can thus sense, possibly coupled, quantum–classical properties. For instance, tiny vibrating
cantilever were shown to detect a single spin [5]. The sensitivity depends on themean phonon numberwith the
cantilever dynamics turning quantum as the phonons number decreases. Related to these observations, thisfield
promises a new rout to quantum information nanomechanical devices. An example is the setup consisting of a
single nitrogen-vacancy (NV) center in a diamond nanocrystal deposited at the extremity of a SiC nanowire [6].
The quantumNV spin dynamics is observed to be coupled to the nanomechanical oscillator bymeans of the
time-resolved nanocrystal fluorescence and photon-correlationmeasurements. This dynamic can be influenced
by external fields such as a non-homogeneousmagnetic field. A clear advantage of utilizing the spin-degrees of
freedomof theNV is their long decoherence times even at room temperatures [7–12]. Further phenomena
emergewhen considering strongly coupled nonlinearNEMS inwhich case phenomena such as nonlinear
resonances can be exploited for the control of the energy transfer between the coupledNEMS [13–16].

In the present workwe propose a new type ofNEMSbased on a singlemagnetic Fe adatomdeposited on a
Cu(001) substrate. A proper choice of the driving frequency allows controlling the level populations in the
system. The proposed (scanning-tunnelingmicroscopy) STM-type or (atomic forcemicroscopy)AFM-type
setup is thus a hybrid systemutilizing the quantumnature of single adsorbed atoms ormolecules on the surface,
whichwere designed as studied in an impressively controllable way experimentally (for example in [17–19]). The
magnetic properties of Fe andCo adatoms on aCu2N/Cu(100)-c ´( )2 2 surfacewere determined
experimentally via x-raymagnetic dichroismmeasurements [20].

The possibly classical cantilever dissipative dynamics is coupled the quantum spin dynamics of the
adsorbates since, as demonstrated below, themagnetic anisotropy is affected by the tip-adsorbate distance, and
hence by the tip vibrationalmotion. This couplingmight be exploited to access the topology or the local
magnetic properties of spin systems [21].
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2. Theoretical framework

Specifically, we consider a singlemagnetic Fe atomdeposited on aCu(001) surface. A similar setup consisting of
Fe orMnon copper coated by an Cu N2 overlayer, was shown to have a largemagnetic anisotropy and relaxation
times [17, 22]. Our calculations are carried out in the presence of a tip apex as in AFMexperiments and reveal a
substantial dependence of themagnetic anisotropy on the distance between the tip and the Fe adatom. Thus, in
the proposed setup themagnetic properties of the single-atom are coupled to the oscillations of a nano-sized
cantilever carrying the tip apex (figure 1(a)). As the characteristic frequencies of such nano-mechanical
oscillators are known to reach the gigahertz regime [23], frequencies in the range of∼100 GHz become feasible
upon a further downscaling of the cantilever and can thusmatch the typical energy scale of the spin system
(which is in the range of fewmeV).

3. ab initio calculations

Ab initio density-functional calculations of the ground state and the energy difference upon changing the
magnetization axis of the Fe atomwere performed using the projector augmented-wave technique [24, 25], as
implemented in theVienna ab initio simulation package [26]. The calculations are based on density-functional
theorywith the generalized gradient approximation [27, 28].We used the samemethodology used in previous
calculations of themagnetic anisotropy of Co and Fe adatoms onRh(111), Pt(111) andCu(100) substrates
[29–31].We note in this context that STMexperiments were performed after the tip were in contact with the
surface, and hence the tip ismost likely covered by the surfacematerial [32]. In this case a tipwith surface atoms
is often used in computer calculations [33, 34].

Our computationalmodels consists 125 copper atoms representing the surface, the iron atom, and five
additional atoms for simulating the presence of a tip apex, as depicted infigure 1(b). The unit cell has a size of
12.87Å in the x and y directions (parallel to the surface), whereas the extent of the z direction (perpendicular to
the surface) amounts to 31.89Å. At this slab thickness, the interaction between the tip and the repeated image of
the surface is negligible. A cutoff energy of 300 eV is used. The calculations including spin–orbit coupling
require afine k-pointmesh for the Brillouin-zone integrations. Test calculations were performed for iron atom
on aCu(001) surface for three different k-point grids: ´ ´3 3 1, ´ ´3 3 2, and ´ ´5 5 1generated by the
Monkhorst–Pack scheme [35], in conjunctionwith amodest Gaussian smearingmethod. A ´ ´3 3 1grid
provided the best compromise between accuracy and computational efforts.

The calculations were performed in two steps. First the coordinates of the iron atomand the positions of the
atoms in the three topmost layers of the substrate (apart from the tip)were optimized using scalar-relativistic
calculations until the forces on all unconstrained atomswere converged to less than 0.01 eVÅ−1. In the second
step, the geometry and the electronic andmagnetic ground states resulting from the scalar-relativistic
calculations were used to initialize the relativistic calculations including spin–orbital coupling. Recent work [36]
demonstrated that relaxations of Fe andCo adatomonPt(111)with andwithout spin–orbit coupling are almost
identical.

After a geometry optimization of the full cluster (apart from the tip) for every position of the tip, we
computed themagnetic anisotropy energy as the difference of the respective ground state energies upon varying
themagnetization axis.We found that the dependence on the angle θmeasured from the Fe-tip axis is well
described by the lowest-order anisotropy term d qsin2 , as it is known for similar systems. The dependence on the
anglefmeasured along the plane on the other hand turned out to be rather weak. Furthermore, we analyzed the
spin density - ( ) ( )n nr r to investigate the degree of localization of themagnetization. The result is presented
infigure 2 for small values of the density in two characteristic planes along the symmetry directions.We

Figure 1. (a)The prototypicalmodel system for coupling the spin dynamics of a singlemagnetic Fe adatomon theCu(001) substrate
to themechanical vibrations of a nano-sized cantilever. (b)The cluster used to represent the copper substrate, the copper tip and the
Fe adatom.
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conclude that the Fe atom slightly polarizes the tip and the substrate below. Especially for the latter we observe
the typical behavior of a spin density associatedwith this kind of anisotropy.

However, themajor contribution to themagnetization is confinedwithin the direct vicinity of the Fe atom,
confirming that the effective surface spin can be interpreted as themagneticmoment of few atoms.

4.Modeling the spin dynamics

Infigure 2(b)we showour results for the dependence of themagnetic anisotropy parameter δ and of the
magneticmoments associatedwith the spin (mS), and the angularmomentum (mL) for four different values of
the distance a between the last tip atom and the iron atom. The spinmagneticmoment on the iron atomwithout
the tip-adatom interaction is 2.94 mB. This result agrees well with previous density functional calculations [37]. It
should be noted, that themagnetic anisotropy parameter δ for an atomon the surface is very sensitive to the
interatomic distances [38, 39] and the arrangement of the atom [29, 40]. It was demonstrated that the structural
relaxation of the adatom and the substrate reduces significantly themagnetic anisotropy energy [38, 39].
Therefore, compared to ab initio calculations for the Fe adatomon the ideal Cu(001) surface, ourmagnetic
anisotropy energy obtained in a fully relaxed geometry is several times less than the value presented in [41].

Based on thefitting functions displayed infigure 2(b)we are now able to formulate theHamiltonian
describing the effective surface angularmomentumwith the parametric dependence on a as

m d= - + -ˆ ( ) [ ( ) ( )] ˆ ( ) ˆ ( )H a g a g a B J a J . 1S L x zB 0
2

Weassume amagnetic fieldwith a strengthB0 is applied along the x axis. Approximating the total angular
momentumwith 2 turns out to be an adequate description and can be confirmed experimentally bymeans of
inelastic tunneling spectroscopy [17, 22]. The distance-dependent gyromagnetic ratios for spin (angular)
momentum ( )g aS ( ( )g aL ) account for the varyingmagnitude of the totalmagneticmoment (seefigure 2(b)), as
extracted fromour ab initio calculations.WefixB0 to the value of 4 T and take the ground state as the initial state.
As one can readily show for equation (1), the expectation valuewith respect to all eigenstates of Ĵy and Ĵz is
exactly zero. This holds true even for the case of the time-dependent Schrödinger equation, when
replacing  ( )a a t .

Tomap out the spin dynamics for a representative case we choose a by = Åa 40 and =B 40 T. The
energies of the eigenstates x ñ∣ n (on the ordinate axis) and the expectation values of Jx (abscissa) are shown in the
inset infigure 3. For a high density of phonons the spin dynamics originates from an oscillation of the tip apex
according to w= +( ) ( )a t a b tsin0 for >t 0 (we assume =( )a t a0 for t 0). This corresponds to a setup
where the system is initially in its ground state and is driven out of equilibriumby the cantilever oscillations for
>t 0. The oscillation amplitude is chosen as = Åb 0.9 .

Figure 2. (a)The spin density of Cu–Fe systemwithout tip (upper twofigures), andwith the tip situated 4.5 Å above the adsorbate
(lower twofigures).We show cuts of the spin density (unit:Å−3) along the planes passing through the Fe atom ( )0, 1, 0 (upper and
lower left) and ( )1, 1, 0 (upper and lower rightfigures). The number of atoms shownwere reduced to emphasize the C4v symmetry.
(b)The prefactor of the anisotropy (upper panel), themagneticmoment originating from the spin (middle panel), and from the
orbitalmoment (lower panel). A positive sign of themagnetic anisotropy parameter corresponds to a perpendicular easy axis. The
values fromour ab initio calculations (dots) are well described byGaussian-type fitting functions (full lines). The red and the green
curves correspond to the valueswhen integrating the spin density over a small sphere around the Fe atom,whereas the neighboring Cu
atoms have been also included for the blue and the orange curves.
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Before discussing the results, let us elaborate on the qualitative aspects of the dynamics. Since the spin is

driven by an effectively time-dependent anisotropy, i.e., the coupling to the operator Ĵz
2
, the induced transitions

allow for changing the spin projection á ñĴx only. Themagneticmomentμwill thus remain parallel to á ñĴx .
Therefore, only the longitudinal spin dynamics can be induced, limiting the transitions from the ground state to
only the two excited states thatmatch in symmetry.

Infigure 3we present the resulting spin dynamics in dependence onω. The colormap plot (lower right
figure) shows the population of the ground state (whichwe have chosen as the initial state). Interestingly, the
magneticmoment is hardly affected by the variation of themagnetic anisotropy for themajor part of the
frequency range. Apart from that, a couple of distinct lines indicate an optimal setting for the parameters to drive
the angularmomentum to some excited states. Amore detailed analysis reveals that the dynamics for the
frequencies indicated by the dashed lines (labeled by 1, 2, 3) exhibits almost Rabi-like transitions from the
ground state to a single excited state. This behavior can be explored further by a Floquet analysis.We therefore
expand the angularmomentumwave function as

å åx fñ = ñ = ñe

=

+

=

+

∣ ( ) ∣ ( ) ∣ ( ) ( )t c t c f te , 2
n

J

n n
n

J

n
t

n
1

2 1

1

2 1
i n

where en are the quasi energies and f ñ = ñe∣ ( ) ∣ ( )t f ten
t

n
i n the Floquet eigenvectors. Both can be obtained by

solving the eigenvalue problemof the time-evolution operator ( )U t , 0 at p w= ºt T 2 , since

ñ = ñeˆ ( )∣ ( ) ∣ ( ) ( )U T f f, 0 0 e 0 3n
T

n
i n

(note that + ñ = ñ∣ ( ) ∣ ( )f t T f tn n ). Before discussing the solution of equation (3), let us briefly revisit how the
dynamics shown infigure 3 can be explainedwithin the Floquet theory. Equation (2) expresses the expansion of
the time-dependent spin state in terms of the orthonormal Floquet states ñ∣ ( )f tn , with the projection coefficients
cn. For the case d=c cn n n n,0 0

, the projection x xá ñ( )∣ ( )t0 amounts to e- á ñ[ ] ( )∣ ( )t f f texp i 0n n n0 0 0
, such that the

population of the initial state remains one atmultiples ofT. Assuming on the other hand
d d= ( )c 2n n n n n, ,1 2

yields the stroboscopic time evolution

x x e eá ñ = -∣ ( )∣ ( ) ∣ [( ) ] ( )kT kT0 cos . 4n n
2 2

1 2

These two scenarios explain the dynamics observed infigure 3, where slow, Rabi-like population transfer (with a
frequency corresponding to the difference of two quasienergies) is overlayedwith fast oscillations (which
originate from the overlaps of the type á ñ( )∣ ( )f f t0n m and are thus periodic with the frequencyω). The
quasienergies obtained from equation (3) are presented in figure 4(a) (upper panel), alongwith the projection

x= á ñ∣ ∣ ∣ ( )∣ ( ) ∣c f0 0n n
2 2 (lower panel). As pointed out, the decisive factor for the depletion of the ground state is at

Figure 3.The population dynamics arising due to the periodic driving ( )a t . The lower panels show the initial configuration (left), and
the probability tomeasure the ground state as a function of the time and the driving frequencyω (right). The gray dashed lineswith
their respective labels 1, 2 and 3 denote three selected frequencies. The corresponding population and the spin dynamics are displayed
in the upper three panels.
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least two projection coefficients being different from zero. For this reason, we have ordered the quasienergies
according to themagnitude of ∣ ∣cn

2. As it turned out, only two of the Floquet states display a significant
contribution to the initial state. Therefore, only their projection is shown infigure 4(a). For the complete picture
of the behavior of the quasienergies however, the third state and its eigenvalue are included in the upper panel.

The vertical lines infigure 4(a) demonstrate that the scenario for the dynamics according to equation (4)
occurs only at the crossing points of the quasienergies, where (at least) two branches exchange their character,
that is themagnitude of their projection coefficients. Amore detailed analysis reveals that all crossings are
avoided crossings. The difference of the quasienergies becomes thus relatively small, leading to the slow
dynamics infigure 3. For the exemplary values ofω,figures 4(b) and (c) provides amagnification of the crossing
points and gives their width. Converting the quasienergy gap into a time scale results in exactly the characteristic
time of the slow dynamics infigure 3.

5. Entanglementmeasures

With cooling down the system, oscillations of the nanocantilever become inherently quantum. Thus the
nanocantilever can detect inter-level transitions of the single spin. This statement is generic for a broad class of
the nanomechanical systems and is valid for ourmodel as well. Ourmodel is exactly solvable (which is in fact its
merit) and allow to explore analytically the entanglement between the cantilever and the system. In contrast to
the above, wherewe investigated the case of amoderate elongations of the cantilever, leading to a nonlinear
coupling, we consider linear coupling only. In addition to the feasibility of analytical solutions, the quantum
fluctuations and the oscillations of the cantilever occur on a smaller scale, while large elongations are associated
with the classical casewhich is studied above.

In order to quantify the entanglement in the system,we explore vonNeumann entropy. In the quantum
information theory the vonNeumann entropy is known as the ‘entanglement entropy’ of the reduced density
matrix. The technical details of the vonNeumann entropy and hence of the reduced densitymatrix in our case
are given in the appendix.

Figure 4. (a)Upper panel: the quasienergies en (folded back to thefirst Brioullin zone, indicated by the black dashed line) as a function
of the driving frequencyω. The color coding corresponds to the projection of the eigenvectors ñ∣ ( )f 0n onto the initial state,
xá ñ∣ ( )∣ ( ) ∣f0 0n

2, which is displayed in the lower panel. The vertical gray lines connect the points where the projection approaches 1/2
with the avoided crossing points. (b)Azoomaround w = 0.704 meV , (c) w = 1.408meV and (d)w = 2.254 meV. The gapwidth of
the crossings is given in the inset.
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To construct a quantizedmodel, the tip-substrate distance is replaced by  + D å +a a a( ˆ ˆ )†a a a a a0 ,

where aˆ†a ( aâ ) is the creation (annihilation) operator of the cantilevermodes.Modern technologies enabled the
fabrication of dualmode (a = 1, 2) cantilevers, formore details see [42, 43].

The resultingHamiltonian, in lowest order in the oscillation amplitudeDa reads

å åm d= - + + W - D ¢ +
a

a a a
a

a a
=

ˆ [ ( ) ( )] ˆ ˆ ˆ ( ) ˆ ( ˆ ˆ ) ( )† †H g a g a B J a a a a J a a . 5S L B x z0 0 0 0
2

1,2

Similar to the classical case analyzed above, the transition operator Ĵz
2
allows the transition from the ground state

to two excited states only. Hence, theHamiltonian (5) can be reduced to a three-level system in spin space.We
assume that the cantilever frequencies W1,2 match the excitation energies w = -E E1,2 1,2 0.

We solve directly analytically for the Schrödinger equation

¶ Yñ
¶

= Yñ
∣ ˆ ∣ ( )
t

Hi , 6

using the following ansatz

Y ñ= ñ + - ñ + - ñ
+ ñ + ñ

∣ ( ) ( )∣ ( )∣ ( )∣
( )∣ ( )∣ ( )

t C t n n C t n n C t n n

C t n n C t n n

, , 1 1, , 2 , 1, 3

, , 4 , , 5 . 7
1 1 2 2 1 2 3 1 2

4 1 2 5 1 2

Here n n,1 2 quantify the number of phonons in the cavity with the frequencies W W,1 2. Taking into account
equations (6) and (7)we consider the resonance condition - » WE E2 1 1, - » WE E3 1 2. After standard
calculations we obtain

g
g

g

= - D +

-
+

+

-
+

+

⎫⎬⎭

( ) ( ){ ( ) ( )
( ) ( )

( ) ( ) ( )

C t t C n n t

C n n n t

n n

C n n n t

n n

exp i 0 cos

i
0 sin

i
0 sin

, 8

1 1 1 1 2

2 1 1 2

1 2

3 2 1 2

1 2

g

g

g

= - D - W -
+

+

+
+ +

+

+
+

+ -

⎧⎨⎩

⎫⎬⎭

( ) ( ( ) ) ( ) ( )

( )( ( ) )

( ) ( ( ) ) ( )

C t t
C n n n t

n n

C n n n t n

n n

C
n n

n n
n n t

exp i i
0 sin

0 cos

0 cos 1 . 9

2 2 1
1 1 1 2

1 2

2 1 1 2 2

1 2

3
1 2

1 2
1 2

In equations (8) and (9)we introduced the notationD = + W + WE n nm m 1 1 2 2. Further simplifications

enabling an analytical treatment are á ñ » á ñ º∣ ˆ ∣ ∣ ˆ ∣J J g2 1 3 1z z
2 2

0 giving rise to the effective coupling
constant g d= D ¢( )g a a0 0 .

While the solution equations (7)–(9) is obtained for afixed value of themagnetic field =B 40 T, it is valid for
an arbitrary field. Changing themagnetic field rescales the level spacing, thus leading to a slight rescaling of the
Rabi-like transition frequencies.

The quantities we are interested in, such as level populations *=( ) ( ) ( )I t C t C tn n n and vonNeumann
entropy r r= - ( ˆ ˆ )S tr ln (where *r = å ñáˆ ( ) ( )∣ ∣C t C t m nmn n m is the densitymatrix of the system) can be
calculated directly from (8) and (9). For this purposewe need to consider the averaging of equations (8) and (9)

over the phonon distribution functions for the coherent states =
l l-( )!

w expn n 2

n

1,2

1,2
1,2

1,2

1,2 . Here l1,2 is themean

phononnumber l  11,2 corresponding to the classical limit.
For the calculations of the average level populationswe perform summation over the phonon numbers n1

and n2:

å å
l l

= = =
l l

=

¥

=

¥ - -
( ) ∣ ( )∣ ∣ ( )∣

! !
∣ ( )∣ ( )I t C t w w C t

n n
C t

e e
. 10n n

n n
n n n

n n

n n

n
2

, 0

2 2 2

, 0

1 2

1 2

2

1 2

1 2

1 2

1 2 1 2

The coefficients ( )C tn have a sharpmaximumnear themean phononnumbers l  11,2 , and thewidthDn1,2 of
their distribution is rather small lD n1,2 1,2. This allows performing the summation analytically and obtaining
expressions for the level populations and for the vonNeumann entropy. The explicit expression is presented in
the appendix.

With the analytical solutions at hand, we can now study the population dynamics and the vonNeumann
entropy of the spin systemdue to the interactionwith the cantilever. Figure 5 depicts this dynamics with an
oscillation amplitude ofD = Åa 0.1 . Due to the strong dependence of the anisotropy d ( )a on the tip-sample

6

New J. Phys. 19 (2017) 073016 MSchüler et al



distance, the dynamics at =a 3.00 Å (figure 5(a)) and =a 4.00 Å (figure 5(b)) occurs on very different time
scales.We clearly see that quantum revivals in level populations are synchronizedwith the sudden death of von
Neumann entropy. This behavior ismore prominent in the case of a strong coupling (figure 5(a)). Obviously
with the increase of the phononnumberλ the period of quantum revivals becomes larger. In the limit of the
classical field l  1 the revival time tends to infinity.Meaning that the classical field like thermal bath
thermalizes the system and leads to irreversibility.

6. Conclusions

In summary, we performed ab initio calculations of themagnetic properties of a single Fe atomadsorbed on
Cu(001).We demonstrated that the electronic and themagnetic properties of adatoms are strongly affected by
the tip-surface distance. Based on these results we proposed a new type ofNEMS consisting of a singlemagnetic
Fe adatoms deposited on aCu(001) substrate and analyzed its fundamental properties and possible operation
scheme.
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Appendix. vonNeumann entropy

Using equations (8) and (9), a straightforward derivation yields the vonNeumann entropy

h h h h h h

l l l b g l a
g
l

l a b l a

l a b l a

=- - -

= = = =

á ñ= + - +

á ñ= á ñ

= - - +

á ñ= á ñ =

( ) ( [ ( )] ( ))

( ) ( )

( [ ( )] ( ))

( ) ( ) ( )

S

t
t

I t

I t I t

I t I t

ln ln ln ,

, 2 ,
2

,

1

2
1 exp 2 cos 1 cos 2 sin ;

1

4
1 exp 2 cos 1 cos 2 sin ;

0. A.1

1 1 2 2 3 3

1 2

1

2 3

4 5

Figure 5.Population dynamics (averaged over the phonon number) of the ground state (blue) and excited state (orange) alongwith
the vonNeuman entropy for differentmean photon numbersλ. In (a) the tip-sample distance isfixed at = Åa 3.00 , while in (b)

= Åa 4.00 .
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Here, we used the following notation in order to obtain a compact expression:

l a b l a

l a b l a

l
l a b l a

h
l

l a b l a

h

h

= + - +

= - +

= - + - +

= - - +

= + + + + - + + +

= + + - + - + + +

⎜ ⎟⎛
⎝

⎞
⎠

( [ ( )] ( ))

[ ( )] ( )

( [ ( )] ( ))

( [ ( )] ( ))

( ( ) ( ) )

( ( ) ( ) ) ( )

a

b

d

d a a b a d d

d a a b a d d

1

2
1 exp 2 cos 1 cos 2 sin ;

2

4
exp 2 cos 1 sin 2 sin ;

1
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1

4
1 exp 2 cos 1 cos 2 sin ;

1

16
1 exp 2 cos 1 cos 2 sin ;

1

4
1 2 9 32 6 1 2 1 2 ;

1

4
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