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Abstract: Protein glycation is a ubiquitous non-enzymatic post-translational modification, formed by
reaction of protein amino and guanidino groups with carbonyl compounds, presumably reducing
sugars and α-dicarbonyls. Resulting advanced glycation end products (AGEs) represent a highly
heterogeneous group of compounds, deleterious in mammals due to their pro-inflammatory effect,
and impact in pathogenesis of diabetes mellitus, Alzheimer’s disease and ageing. The body
of information on the mechanisms and pathways of AGE formation, acquired during the
last decades, clearly indicates a certain site-specificity of glycation. It makes characterization
of individual glycation sites a critical pre-requisite for understanding in vivo mechanisms of
AGE formation and developing adequate nutritional and therapeutic approaches to reduce it
in humans. In this context, proteomics is the methodology of choice to address site-specific
molecular changes related to protein glycation. Therefore, here we summarize the methods of
Maillard proteomics, specifically focusing on the techniques providing comprehensive structural and
quantitative characterization of glycated proteome. Further, we address the novel break-through areas,
recently established in the field of Maillard research, i.e., in vitro models based on synthetic peptides,
site-based diagnostics of metabolism-related diseases (e.g., diabetes mellitus), proteomics of
anti-glycative defense, and dynamics of plant glycated proteome during ageing and response to
environmental stress.

Keywords: advanced glycation end products (AGEs); bottom-up proteomics; glycation; glyoxalase;
model synthetic peptides; plant glycation; post-translational modifications; proteomics

1. Introduction

Glycation is referred to as the reaction of proteins with reducing sugars and dicarbonyl products
of their degradation [1], and is often termed as Maillard reaction of proteins [2]. In its early steps,
amino groups of polypeptides readily react with aldoses and ketoses yielding Amadori [3] and
Heyns [4] compounds, respectively, via corresponding Schiff base intermediates (Figure 1a) [5].
The further degradation of these early glycation products yields a heterogeneous group of advanced
glycation end-products (AGEs, Figure 1b), predominantly via glycoxidative pathway [6]. Alternatively,
AGEs can be formed by reaction of α-dicarbonyls, such as glyoxal (GO), methylglyoxal (MGO) and
3-deoxyglucosone (3-DG), with lysyl and arginyl residues of proteins [7]. These highly-reactive
intermediates are continuously generated in living organisms via oxidative degradation of sugars [7,8],
lipid catabolism [9], polyol pathway [10] and non-enzymatic conversion of triosophosphate
intermediates of glycolysis [11] (Figure 1a). Thus, the products of early and advanced glycation
represent two derivative groups, differing in their structure, origin and physiological effects.
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Figure 1. Pathways of early and advanced glycation (oxidative glycosylation [12], Namiki pathway 
[13], enolization [14], oxidative [15] and non-oxidative (enolization and dehydration stages are not 
mentioned) [16] degradation of early glycation products, polyol pathway [17] and lipid 
peroxidation [18] (a) and structures of major AGEs detected in vivo and in thermally processed 
foods (b)). R1, R2, R3, R4, R5, polypeptide chains; R1′, R2′, R3′, fatty acid residues; R1′′ = H, R2′′ = H for 
glyoxal; R1′′ = H, R2′′ = CH3 for methylglyoxal; R1′′ = H, R2′′ = C4H9O3 for 3-DG. * Ketoses form 
so-called Heyns products. 

Indeed, during the last decades, deleterious effects of various AGEs (in contrast to early 
glycation products) in human organism were characterized in much detail [19–22], although 
protective and anti-oxidant activities were reported for some protein Maillard reaction products as 
well [23]. The most negative role of AGEs in human physiology is typically attributed to their 
pronounced pro-inflammatory effect, mediated by membrane or soluble receptors [24–26]. The 
most well-characterized representatives of this group are so-called receptors to advanced glycation 
end products (RAGEs), multiligand molecules, belonging to the immunoglobulin superfamily [27]. 
The surface ligation of RAGEs by AGEs results in activation of the transcription factor NF-κB, 
enhanced expression of adhesion molecules, and development of inflammation [27–30]. 

From the biochemical point of view, AGEs are the normal products of animal and plant 
metabolism, and their accumulation accompanies development and ageing, as well as multiple 
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Indeed, during the last decades, deleterious effects of various AGEs (in contrast to early
glycation products) in human organism were characterized in much detail [19–22], although protective
and anti-oxidant activities were reported for some protein Maillard reaction products as well [23].
The most negative role of AGEs in human physiology is typically attributed to their pronounced
pro-inflammatory effect, mediated by membrane or soluble receptors [24–26]. The most
well-characterized representatives of this group are so-called receptors to advanced glycation end
products (RAGEs), multiligand molecules, belonging to the immunoglobulin superfamily [27].
The surface ligation of RAGEs by AGEs results in activation of the transcription factor NF-κB, enhanced
expression of adhesion molecules, and development of inflammation [27–30].
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From the biochemical point of view, AGEs are the normal products of animal and
plant metabolism, and their accumulation accompanies development and ageing, as well as multiple
metabolic disorders [31,32]. However, in mammals, and, especially in humans, consumption with
food is the principle root of AGE accumulation. Accordingly, adequate and reliable estimation
of AGE contents is one of the most important problems to be solved by modern food chemistry,
as it provides a direct access to risk assessment for possible inflammation-related diseases [33].
Although in earlier works, analyses of AGE contents were performed by enzyme-linked immunoassays
(ELISA) [34,35], currently, chromatographic methods are recognized to be the most suitable for
AGE analytics. Based on experimental data, snapshots of relative AGE contents in different
foods can be obtained and organized in some systematic and well-accessible way (for example,
see https://lemchem.file3.wcms.tu-dresden.de/).

In this context, due to outstanding robustness and reliability of this approach,
exhaustive enzymatic hydrolysis of proteins and quantification of AGEs by liquid
chromatography-tandem mass spectrometry (LC-MS/MS) became a gold standard in analysis of
glycation products [36,37]. Enzymatic hydrolysis is usually performed as a multi-step procedure
comprising a sequential treatment with several proteases (e.g., pronase E, leucine aminopeptidase,
and carboxypeptidase Y, as proposed by Glomb and co-workers [36]). This procedure provides
sufficient stability of imidazolone AGEs, as well as carboxymethylated and carboxyethylated
derivatives [36]. However, when only acid- and temperature-stable derivatives are to be analyzed,
conventional acid hydrolysis is sufficient to obtain reliable results [38]. The analysis of hydrolyzates
typically relies on reversed phase chromatography (RPC) with or without application of ion pair
(IP) reagents, and on-line mass spectrometric [37] or fluorescence detection [36]. To increase sensitivity
of analysis, and to improve chromatographic behavior of analytes, different derivatization strategies
can be applied [39–42]. Analysis of protein hydrolyzates can be complemented by profiling of free
glycation adducts [31], that might provide a deeper insight in catabolism of glycated proteins. As was
mentioned above, triple quadrupole (QqQ) instrumentation and tandem mass spectrometry (MS/MS)
in a multiple reaction monitoring (MRM) mode is the most widely spread technique for analysis
of glycation adducts [43]. However, ion trap (IT) [44] and quadrupole-time of flight (QqTOF) [45]
mass analyzers can be employed as well. Absolute quantification of individual glycation adducts
typically relies on standard isotope dilution [46] or standard addition techniques [36]. Although the
latter approach requires higher sample amounts and longer analysis times, it delivers precise and
reproducible results with fewer costs [36]. To get a deeper insight in mechanistic aspects of the
Maillard reaction, analysis of glycation adducts can be complemented by analysis of their precursors,
i.e., carbonyl compounds—carbohydrates [47] and α-dicarbonyls [48–50].

Although LC-MS/MS of glycation adducts is an excellent tool for comparison of different AGE
sources or physiological states, this approach does not deliver any information about modified proteins
and exact affected sites therein. However, as both formation and degradation of glycation products,
at least to some extent, is dependent from protein sequence and structure [51–53], this information
is strongly mandatory for understanding of the changes in protein functionality, related to glycation.
In this context, proteomics is a powerful analytical tool, giving a direct access to identification and
quantification of individual glycation sites.

Therefore, in the first part of this review we comprehensively discuss existing mass spectrometric
techniques used for characterization of glycated proteins and promising in food safety applications and
clinical diagnostics. Further, in the second part of this work, we address the novel trends in the study
of glycated proteome: (i) model synthetic peptides as the tools of proteomic research; (ii) individual
glycation sites as prospective clinical biomarkers; (iii) proteomics of anti-glycative defense; and (iv)
glycation of plant proteins during ageing and under environmental stress conditions.

https://lemchem.file3.wcms.tu-dresden.de/
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2. Part 1. Probing the Structure of Glycated Proteins by Mass Spectrometry

Analysis of post-translational modifications (PTMs) in proteins is a challenging task.
Indeed, due to a high variability in modification levels at individual amino acid residues, it requires
high dynamic range and sensitivity of MS instrumentation [54]. Thereby, due to a higher numbers
of potential reactive sites, the patterns of non-enzymatic modifications are typically more complex,
in comparison to those formed by enzyme-dependent mechanisms [55]. Finally, in comparison to other
non-enzymatic modifications, glycation brings further challenges: (i) formation of isomeric products
(e.g., glucose-derived Amadori and fructose-derived Heyns compounds) [51,56–58]; (ii) extremely high
heterogeneity of appearing AGE structures [32]; (iii) occurrence of multiple diverse modifications in
one protein molecule [59,60]; and (iv) even alternative modification of the same amino acid residue [32].
Hence, only limited characterization of protein glycation is possible on the level of intact protein,
whereas comprehensive evaluation of modification patterns typically requires enzymatic digestion
and tandem mass spectrometric analysis of resulted mixtures of proteolytic peptides.

2.1. Analysis of Intact Proteins

Analysis of intact proteins might be useful in estimation of an overall glycation load within a
certain population of molecules [61]. For such experiments, however, resolving power of a mass
spectrometer plays a crucial role [62]. Therefore, time of flight (TOF) mass analyzers in combination
with matrix assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI) are
successfully applied to analysis of biomolecules since late 1980s [63].

2.1.1. MALDI-TOF-MS of Intact Glycated Proteins

As was shown in the early works of Lapolla’s and Boratynski’s groups [64,65], formation of
Amadori compounds can be clearly seen in MALDI-TOF spectra by characteristic shifts in
molecular weights of target proteins and, hence, m/z of corresponding MS signals (e.g., +162 m/z
for Nε-(fructosyl)lysine moiety). Indeed, even a relatively low resolution, achieved in the
linear mode, allows determination the number of attached sugar moieties [66,67]. In the
first line, it could be observed with in vitro glycated bovine serum albumin (BSA) [65,68–71],
bovine pancreatic ribonuclease [68], and lysozyme [72]. Later, this concept was extended to hemoglobin
(HbA) [73], α-lactalbumin (α-La) and β-lactoglobulin (β-Lg) [74], human serum albumin (HAS) [75],
γB-crystallin [76], ribonuclease A (RNase A) [77], and horse myoglobin [78]. Recently, using
MALDI-TOF-MS, Chaudhury et al. described in vitro modification of γB-crystallin with one
hexose moiety, and reported formation of dimeric cross-links (as confirmed by polyacrylamide gel
electrophoresis is sodium dodecyl sulfate (SDS-PAGE) and size-exclusion chromatography) upon
the incubation for 60 days at 37 ◦C. According to the authors, it could impact in development of
diabetic cataract in mammals [76]. In contrast, depending from glycation agent used, one RNase
A molecule could react with 5–15 sugars equivalents, that resulted in complete inactivation of the
enzyme and disruption of its interaction with ribonuclease inhibitor (RI) and DNA [77]. In vitro
glycation of a total hemoglobin preparation revealed different glycation levels for individual variants,
that resulted in a complex glycation profile [73]. Similarly, Pischetsrieder and co-workers demonstrated
formation of hexose and lactose adducts of whey proteins during their heating (60 ◦C) in the
model system mimicking lactose-free milk (α-La 1.3 g/L, β-Lg 3.2 g/L) in presence of glucose,
galactose (both 22.0 g/L), and lactose (5.1 g/L) in phosphate-buffered saline [74].

In the next logical step, the described analytical strategy was successfully transferred to in vivo
glycation systems [72,79–83]. Apparently, the changes in overall protein glycation status can be
potentially used as diagnostically valuable markers. Thus, Lapolla and co-workers compared
well- and bad-controlled type 2 diabetes mellitus (T2DM) patients with normoglycemic controls
in terms of the number of fructosamine residues attached to HSA [66] and hemoglobin [84] in
blood samples. Remarkably, for analysis of glycated hemoglobin, MALDI-TOF-MS provided a much
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higher sample throughput in comparison to conventional high-performance liquid chromatography
(HPLC)-based protocols [79,85]. Recently, this diagnostic approach was extended to mitochondrial
proteins from peripheral blood mononuclear cells [86]. Analogously, early glycation was characterized
in placenta protein of T2DM patients [87], whereas formation of albumin-bound AGEs was addressed
in uremia [88]. In all cases, T2DM was associated with a higher numbers of glycated adducts and a
higher abundance of accordingly modified proteins.

A surface-enhanced laser desorption/ionization mass spectrometry (SELDI-MS), relying on
selective affinity-based retention of specific molecules on an affinity chip, integrated with MALDI target,
represents a promising alternative to gel-based techniques [89], and is mostly used for analysis of low
molecular weight proteins [90]. Recently, Nedic et al. reported an application of SELDI to the analysis
of serum fractions obtained by boronic acid- and lectin-affinity chromatography [91]. SELDI was
also successfully used for characterization of glyoxal-derived modifications of bovine erythrocyte
superoxide dismutase [92], for identification of inflammatory biomarkers, and for characterization
of innate immunity in atrophic nonunion fracture [90]. The main advantage of this technique is
high sensitivity, i.e., the ability to detect analytes, present in rather low concentrations [93]. It can be
achieved by decreasing noise intensity due to additional purification of immobilized proteins prior to
MS analysis [91].

2.1.2. ESI-MS of Intact Glycated Proteins

Electrospray ionization (ESI) is another soft ionization technique, routinely applied to
determination of protein molecular weights [94]. Under acidic conditions, used for ESI-MS in
positive ion mode, proteins are polycations, and their ESI mass spectra are characterized with
abundant charge series [95]. Deconvolution of charge series (i.e., complete resolving of individual
adducts with different charge) is the prerequisite for correct determination of molecular weight [94].
Therefore, ESI-MS experiments with intact proteins rely on high resolution mass spectrometry
(HR-MS) and instruments with a high resolving power, i.e., quadrupole-time of flight (QqTOF) [61,96],
furrier transform-ion cyclotron resonance (FT-ICR) [97], and Orbitrap-based [98] mass analyzers.
Thereby, samples can be injected in the mass spectrometer without separation (so-called flow injection
analysis, FIA) [61,97,99–101], or after separation, which can be performed off-line or on-line [102–105].

Generally, FIA is applicable to simple mixtures or in vitro incubations with individual proteins [61].
For example, Stefanowicz and co-workers used this approach for monitoring of lysozyme glycation
at 50 ◦C [100,106]. Further, the combination of deuterium–hydrogen exchange (DHX) and mass
spectrometry (MS) was successfully applied to address the influence of glycation on high pressure
denaturation (HPD) of proteins [97]. However, complex samples require additional affinity
enrichment [102] or off-line pre-fractionation, which can rely, for example, on cation exchange
chromatography (EXC) [102,105,107]. Individual fractions can be concentrated under reduced pressure
and analyzed by ESI-MS operated in positive ion mode [102,104,105]. Remarkably, for highly
abundant proteins, such as hemoglobin and albumin, ESI-MS analysis of biological samples can
be performed without separation. Indeed, although ESI-MS is highly prone to matrix effects [108],
reliable quantification of such proteins can be achieved. For example, according to Roberts et al.,
matrix effects can be effectively minimized (up to the degree compatible with acquisition of MS data)
by a 500-fold dilution of sample in an acidic denaturing solvent [99]. Alternatively, protein mixtures
can be separated by reversed-phase high performance liquid chromatography (RP-HPLC) on C4
columns [109] coupled to mass spectrometer on-line. Analogously, capillary zone electrophoresis
(CZE) was applied to separation of individual HSA forms including native, oxidized, and glycated
species [101], whereas microfluidic capillary electrophoresis coupled on-line to ESI-MS is a promising
tool for determination of glycated hemoglobin and albumin in human blood [96].
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Summarizing, although analysis of glycation on the level of intact protein represents a promising
tool in medical diagnostics, this approach delivers only general information about the overall glycation
levels of major proteins. Thus, it does not provide any insight in specific affected amino acid residues
in individual polypeptides. This information, however, is required for understanding the mechanisms
behind disease pathogenesis [96,99,110] and drug activity [109]. Therefore, analysis of specific glycation
sites seems to be a promising strategy to understand the mechanisms of protein glycation in vivo and
its biological role. In this context, proteomics is the methodology of choice to achieve these aims.

2.2. Proteomics Approach in Glycation Research

Proteomics aims qualitative and quantitative characterization of all proteins represented in
certain cell, tissue, or organism [111–113]. Thus, it provides annotation of generated MS signals to
individual proteins, and, if necessary, quantitative assessment of signal intensities and abundances of
related analytes either on the absolute or relative basis [112,114–116]. Sequence annotation of individual
proteins can rely on: (i) tandem mass spectrometric (MS/MS) analysis of protein quasi-molecular
ions (top-down approach) [117–119]; or (ii) limited hydrolysis of proteins or their complex mixtures
with subsequent sequence assignment of resulted cleavage peptides by tandem mass spectrometry
(bottom-up approach) [83,120,121].

2.2.1. Top-Down Proteomic Strategy

Top-down proteomics (TDP) typically relies on isolation of full protein quasi-molecular ions
by trapping techniques on the level of mass analyzer, with their subsequent MS/MS analysis.
Thus, the whole procedure does not include an enzymatic digestion step [122–124]. This workflow
allows identification and quantification of individual post-translational modifications (PTMs),
unique proteoforms (e.g., proteins with post-translational modifications or having slightly
different sequence), sequence variations, positional isomers, and specific products derived by
alternative splicing [111,118,125–127]. Most often, proteins are ionized by ESI and trapped in a Fourier
transform-ion cyclotron resonance (FT-ICR) or quadrupole ion trap (QIT) mass analyzers [117,128]
with fragmentation, based on electron capture dissociation (ECD) or electron transfer dissociation
(ETD) [119,126,129]. Less commonly, top-down experiments are based on MALDI-TOF/TOF analyzers
and post-source decay fragmentation [127]. Generally, ESI is a preferred technique, since it produces
multiply-charged precursor ions for more efficient dissociation of large protein ions and provides more
MS/MS options than MALDI which mainly produces singly-charged species.

To a large extent, top-down proteomics can be considered as a strategy, complementary
to the conventional bottom-up approach, especially useful in analysis of small proteins with a
limited numbers of specific sites of protease cleavage and present in high concentrations [116,119].
Therefore, pre-separation by RP-HPLC or gel electrophoresis is conventionally applied [118,119].
Moreover, selection of protein solubilization conditions, compatible with purification, separation and
ionization in MS source, is rather challenging [127], and might require application of
detergents [127,130], concentrated acids [128], or use of sophisticated multi-dimensional separation
techniques such as gel-eluted liquid fraction entrapment electrophoresis (GELFrEE) coupled to
LC-MS/MS [124,126,130].

Generally, TDP is the method of choice for identification, characterization and quantification
of individual proteoforms as potential clinical biomarkers [118,126]. For example, TDP is able
to distinguish glycated isoforms of HSA, HbA and apolipoprotein I (Apo-I) from corresponding
unmodified analogs [118], that is critically important for a reliable distinguishing of T2DM patients
from normoglycemic individuals. It can be efficiently applied in a “single drop” LC-MS/MS analysis
of multiple biomarkers of hyperglycemia, oxidative stress, and cardiovascular risks [118].
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2.2.2. Bottom-Up Proteomic Strategy

In contrast to TDP approach, the bottom-up proteomic (BUP) strategy can be applied to
protein mixtures of any composition and complexity [114]. It relies on: (i) separation of proteins;
(ii) limited proteolysis; (iii) separation of resulted cleavage peptides; (iv) their identification by tandem
mass spectrometry (MS/MS); and (v) annotation of individual protein sequence tags [123,131–133].
In application to sugar-modified proteins, BUP provides detailed information about glycoprotein
profile and gives an access to specific mapping of glycosylation sites [134]. As this methodology
typically relies at least on two separation steps (on a protein and/or peptide level prior to separation
by mass-to-charge ratio), it allows higher proteome discovery rates and sensitivities in comparison
to TDP [114,123,133,135,136]. However, due to a high specificity of endoproteases used for digestion,
sequence coverage of individual proteins might strongly depend from their sequences [137–139].
Moreover, only relatively small portion of identified proteolytic peptides is represented by unique
sequence tags, whereas the most of them can be annotated to several proteins [137,138,140,141].
Besides, degradation of labile PTMs during proteolysis (personal observation of the authors) and
strong matrix effects represent serious challenges in BUP [142,143]. To some extent, these complications
can be overcome by so-called middle-down approach, i.e., MS/MS analysis of proteolytic fragments
with the molecular weights of 3–20 kDa [136], obtained by protein hydrolysis with highly-specific
endoproteases (characterized with a low number of unique cleavage sites, recognized in substrate
polypeptides, e.g., GluC or AspN) [67,123,136].

Limited Enzymatic Proteolysis

In this context, correct selection of proteolytic enzymes is critical for success of the whole
BUP experiment. Accordingly, a wide range of proteases of various specificity were proposed during
the last decade (Table 1): trypsin [144,145], chymotrypsin [146,147], LysC [137,148], AspN [67,74],
GluC [149,150], endopeptidase Arg C [137], pepsin [151], proteinase K [152], and papain [153].
Due to its moderately high specificity (C-terminally from K and R residues) and convenient size of
resulting hydrolytic peptides (0.5–3.0 kDa) [154], trypsin remains the most widely used protease [155].
Commercially produced proteomics grade trypsin is chemically modified, to inhibit its autocatalytic
activity and to ensure high specificity of cleavage [155]. Therefore, tryptic digestion typically results
in relatively high sequence coverage rates (up to about 90% for HSA) [148], which can be further
increased when trypsin is combined with other proteases [83,114].
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Table 1. Digestion strategies used in analysis of protein glycation.

# Object Analyzed
Adducts

Methodology
Ref.

Technique Protein Isolation Denaturing Buffer
or Detergent

Reduction
Alkylation Protease Chromatographic

System MS

1 HSA Fru-Lys cap-HPLC-MS PEG 6000, affinity
chromato-graphy

0.5 M tris-HCl, 2.75
mmol/L EDTA, 6 mol/L
guanidine-HCl, pH 8.1

DTT/IA trypsin

C18
A: 2% ACN, 0.1% aq.
FA B: 98% aq. ACN,

0.1% FA

ESI-IT-TOF-MS [83]

2 plasma
proteins Fru-Lys nano-UHPLC-MS - 1% (w/v) SDS TCEP/IA trypsin

RP, nanoAcquity UPLC
BEH130

A: 0.1% aq. FA
B: 0.1% FA in ACN

ESI-LTQ-Orbitrap [115]

3 HSA Fru-Lys nano-HPLC-MS - 76% acetonitrile - trypsin
RP, C18

A: 0.2% aq. FA
B: 0.2% FA in ACN

ESI-QqTOF,
ESI-QqQ [120]

4 HSA AGEs HPLC-MS,
MALDI-MS - - DTT trypsin

RP, C18
A: 0.1% aq. TFA

B: 0.1% TFA in ACN

ESI-IT,
MALDI-TOF [156]

5 RNase AGEs HPLC-MS -
0.1 mol/L MOPS buffer,
6 mol/L urea, 1 mmol/L

EDTA
DTT trypsin

RP, C18
A: 0.1% aq. TFA/FA

B: 0.1% TFA/FA
in ACN

ESI-QqTOF,
ESI-QqQ [157]

6 HSA Fru-Lys nano-HPLC-MS centrifugal conc. - DTT/IA chymo-trypsin
RP, C18

A: 0.1% aq. FA
B: 0.1% FA in ACN

ESI-QqTOF [146]

7 HSA Fru-Lys 2D-nano-HPLC-MS PEG 6000, affinity
chromato-graphy

0.5 mol/L tris-HCl,
2.75 mol/L EDTA,

6 mol/L guanidine-HCl,
pH 8.1

DTT/IA Glu-C

RP, BetaBasic C18
A: 0.1% aq. FA/

2% ACN,
B: 98% ACN, 0.1% FA

ESI-IT-TOF [83]

8 β-Lg AGEs UHPLC-MS - - DTT (after
hydrolysis) Glu-C

RP, C18
A: 0.1% aq. FA

B: ACN
ESI-QqLIT [149]

9 insulin Fru-Lys MALDI-MS - 4 mol/L urea DTT/ IA Glu-C - MALDI-TOF [158]

10 HSA Fru-Lys MALDI-MS - 6 mol/L guanidine-HCl,
pH 8.5, 100 mmol/L ABC DTT/IA Glu-C - MALDI-TOF [148]



Int. J. Mol. Sci. 2017, 18, 2677 9 of 45

Table 1. Cont.

# Object Analyzed
Adducts

Methodology
Ref.

Technique Protein Isolation Denaturing Buffer
or Detergent

Reduction
Alkylation Protease Chromatographic

System MS

11 HSA Fru-Lys MALDI-MS - 6 mol/L guanidine-HCl,
pH 8.5, 100 mmol/L ABC DTT/IA Lys-C - MALDI-TOF [148]

12 HSA AGEs HPLC-MS,
MALDI-MS - - DTT Lys-C

RP, C18
A: 0.1% aq. TFA

B: 0.1% TFA in ACN
ESI-IT, MALDI [156]

13 α-La,
β-Lg AGEs MALDI-MS - - DTT (after

hydrolysis) Asp-N - MALDI-TOF [159]

14 plasma
proteins Fru-Lys nano-HPLC-MS BAC

8 mol/L urea, 0.5
mmol/L EDTA, 100

mmol/L ABC
DTT/IA Arg-C

RP, C18
A: 0.2% aq. HOAc, or
0.05% aq. TFA or 0.1%

aq. TFA
B: 90% ACN

ESI-LIT [160]

15 ubiquitin Fru-Lys cap-HPLC/off-line
FIA-MS - - - pepsin

RP, C18
A: 0.1% aq. TFA

B: 0.1% TFA in ACN
ESI-FT–ICR [151]

16 HSA AGEs HPLC-MS - - - proteina-se
K

RP, C18
A: 0.1% aq. TFA

B: 0.1% TFA in ACN
ESI-QIT [152]

17
IgG,

plasma
proteins

Fru-Lys MALDI-MS ultra-filtration - - papain - MALDI-TOF [153]

ABC, ammonium bicarbonate buffer; ACN, acetonitrile; Fru-Lys, Nε-(fructosyl)lysine; HOAc, acetic acid; IgG, immunoglobulin G; PEG, polyethylene glycol;
TCEP, tris-(2-carboxyethyl)-phosphine hydrochloride.
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It is important to mention that PTMs in general and glycation in particular are known to
reduce efficiency of enzymatic proteolysis [139,161]. Thus, tryptic digestion of glycated HSA
yielded only one third of the total number of tryptic peptides, obtained with unglycated protein
under the same conditions [139]. Thereby, the percentage of peptides containing missed cleavage
trypsin sites increased [139]. Interestingly, according to our experience, proteomic grade trypsin of
different producers has different reactivity towards modified lysyl and arginyl residues in proteins.
Thus, Promega trypsin, often used in quantitative proteomic applications [162,163], is much more
reactive than the product of Serva, typically applied in discovery proteomics [164,165], and yields a
less number of missed cleavage peptides. Moreover, according to our observations, Promega trypsin
results in cleavage of Amadori moieties and, therefore, reduced recoveries of glycated peptides.

Most often, BUP relies on two main workflows, i.e., gel- and liquid chromatography (LC)-based
strategies (Figure 2) [2,166]. In terms of the gel-based approach, protein mixtures can be separated
by polyacrylamide gel electrophoresis in sodium dodecyl sulfate (SDS-PAGE) [87,167,168] or
by two-dimensional gel electrophoresis (2D-GE) [169–173], with subsequent digestion of the
proteins representing individual electrophoretic zones followed by MS or/and MS/MS analysis
of resulted hydrolysates. In contrast, LC-based approach relies on limited enzymatic proteolysis of
complex protein mixtures (such as cell lysates or tissue extracts) with subsequent separation of resulted
hydrolytic peptides by RP-HPLC [52,174,175] or capillary electrophoresis (CE) [176,177] with on-line
mass spectrometric detection [114,177].

The gel-based strategy typically employs MS-compatible visualization techniques.
Thus, most often, it relies on Coomassie brilliant blue dye [171–173], whereas improved sensitivities
and specificities of analysis can be achieved by silver staining (without addition of glutaric
aldehyde) [178,179] and application of sample-specific fluorescent dyes, e.g., cyanines 2, 3 and 5
(Cy2, Cy3, and Cy5, respectively) as a part of the difference gel electrophoresis (DIGE) workflow [180].
For identification, the visualized electrophoretic zones (representing individual proteins or relatively
simple protein mixtures) are excised, destained, and immobilized proteins are dehydrated by
acetonitrile [171,181] prior to in-gel reduction of disulfides, alkylation of resulted sulfhydryls [87],
and enzymatic in-gel digestion with subsequent identification of proteolytic peptides by MALDI- [167]
or LC-ESI-MS [182].

Although in-solution digestion seems to be an easy procedure, finding a compromise between the
completeness of hydrolysis and compatibility of the procedure with mass spectrometric analysis,
might be a challenging task [114]. Indeed, to achieve a quantitative cleavage of all possible
endoprotease sites (also located in hydrophobic parts of polypeptide chain), the protein sample needs
to be completely solubilized and unfolded. For this, addition of detergents and chaotropic agents
(e.g., urea and thiourea) is strongly mandatory [114,175]. After the completion of hydrolysis, urea and
thiourea can be easily removed from the digestion mixture by reversed phase solid phase extraction
(RP-SPE) [52]. However, conventional detergents, such as SDS and Triton X100, are efficiently retained
on reversed phase, co-elute with proteolytic peptides, and interfere with their detection, representing
the most serious challenge in LC-based proteomics [183].

Fortunately, this limitation can be overcome by application of degradable detergents,
recently introduced in proteomics laboratory praxis [114]. Such compounds can be
destroyed after enzymatic hydrolysis and removed by SPE afterwards. Currently, several
commercial products, delivering reliable and reproducible results are available: anionic acid
labile surfactant (AALS) from Progenta [53,175], acid labile RapiGest SF Surfactant from Waters
Corporation [184,185]. Additionally, acid cleavable detergents ProteaseMax (Promega) [186],
PPS Silent Surfactant (Expedeon) [187], and Invitrosol (Invitrogen) [188] might be used in
analysis of post-translationally modified proteins. Interestingly, application of boronic acid affinity
chromatography (BAC) as an orthogonal separation technique prior to nanoRP-HPLC allows
application of non-degradable detergents, such as SDS [115,174,189]. Indeed, SDS is not retained
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on the affinity column and is quantitatively washed out during the BAC procedure, not interfering
with subsequent MS analysis [189].Int. J. Mol. Sci. 2017, 18, x FOR PEER REVIEW  11 of 45 
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Figure 2. The overview of the gel- and LC-based workflows in bottom-up proteomics. The scissors
denote enzymatic proteolysis.

After addition of a buffer containing chaotropic agent and detergents (often referred to as shotgun
or lysis buffer) and complete solubilization of the sample, reduction of disulfides and alkylation of
sulfhydryls is performed as described above [114]. Thereby, tris-(2-carboxyethyl)-phosphine
hydrochloride (TCEP), β-mercaptoethanol, dithiothreitol (DTT) or dithioerithritol (DTE)
serve as reducing agents, whereas alkylation usually relies on iodoacetamide [172,174].
Alternatively, maleimide derivatives [190,191], acrylamide [192], 4-vinylpyridine [193,194],
iodoacetic acid [195,196], and chloroacetamide [197,198] can be used as alkylation agents. It is
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important to keep in mind that the pH of the digestion buffer needs to be adjusted to the optima of
corresponding enzymes (Table 1), and its molarity needs to ensure a complete buffering of the sample.
For example, 50–100 mmol/L ammonium bicarbonate buffers with pH 8.0 are ideal for in-solution
tryptic hydrolysis [155,167,174].

During the last decade, multiple approaches to increase digest completeness in parallel to
minimization of proteolysis times were introduced. Thus, an ultrafast tryptic digestion procedure,
requiring only five minutes directly prior to LC-MS/MS experiments, was proposed by
Wang et al. [121]. An alternative approach relies on a hydrolysis reactor containing immobilized trypsin.
In this design, the enzyme can be conjugated to magnetic nanoparticles, modified with a
polyamidoamine dendrimer, via a DNA linker [199]. This setup allowed digestion of glycated
hemoglobin with sequence coverage of up to 88%, with just a negligible loss of enzymatic activity over
a period of two weeks.

Application of Gel-Based Proteomics in Maillard Research

Currently, two-dimensional gel electrophoresis (2D-GE) is the “working horse” of the gel-based
proteomics [114]. Thereby, individual electrophoretic zones typically contain only few proteins.
Therefore, corresponding enzymatic digests demonstrate relatively low complexity [2,167,170], and can
be analyzed by mass fingerprint analysis (sometimes also referred to as peptide mapping) using
MALDI-TOF-MS in a reflectron mode [87]. This MS technique is traditionally used for sequence
confirmation of individual proteins and verification of predicted PTM patterns [114]. In particular,
glycation sites can be assigned by a comparison with databases containing specific mass increments,
characteristic for individual products, as was exemplified in experiments with placenta homogenates
from pregnant women with gestational diabetes mellitus (DM) [87]. The same strategy can be
applied to in vitro glycation systems. Thus, Pischetsrieder and co-workers described an integrated
SDS-PAGE/MALDI-TOF-MS approach for milk samples heated during different times [167]. It allowed
assignment and relative quantification of oxidation and glycation sites in β-lactoglobulin. The same
approach could provide insight in the protein damage (e.g., deamidation and lactosylation) occurring
in ultra-heated milk during storage [169] and identification of lactose-derived modification sites in
α-lactalbumin [170]. Further, by this approach, Calvano et al. confirmed modified milk proteins and
peptides as the indicators of powdered milk in food [171].

However, despite of ease in handling and a high-throughput of MALDI-TOF-MS, it might be
insufficient for comprehensive and reliable identification of all proteins co-migrating in SDS-PAGE,
especially, when it is not pre-faced by isoelectrofocusing [87]. Therefore, MALDI-TOF/TOF
instrumentation, relying on post-source decay and collision-activated dissociation (CAD)
fragmentation capabilities, provides much more reliable tandem mass spectrometric data [200].

Application of LC-Based Proteomics in Maillard Research

The LC-MS-based bottom-up techniques for analysis of protein mixtures are usually referred to
as “shotgun proteomics” [114]. Thereby, the proteins are digested without any separation, which is
applied only at the step of proteolytic peptides. Identification typically relies on comparison of
all acquired MS/MS spectra with in silico calculated proteome databases, with consideration of
enzyme specificity [114,201–203]. Typically, shotgun techniques have higher analytical resolution in
comparison to those based exclusively on protein separation. Indeed, even such a powerful method as
2D-GE in combination with highly-sensitive visualization techniques yields maximally about 1500
individual signals (so-called “spots”, each of which can represent, however, several non-separated
proteins) [204]. In contrast, RP-HPLC and ultra-high performance liquid chromatography (UHPLC)
techniques provide much better resolution and higher identification rates. Thus, recently, Köcher and
co-workers reported 2761 proteins identified in one shotgun experiment [205].

To achieve the highest possible sensitivity of analysis, LC separation typically relies on
nano-flow RP-HPLC/UHPLC on C18 silica-based or polymeric columns with the internal diameters
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(i.d.) of 75–100 µm [137,146]. In classical shotgun experiments, column effluents are directly
transferred in an ESI source of a highly sensitive hybrid QqTOF [206], QqQ [207,208], QqQ-LIT [209],
IT-TOF [210], LIT [211], FT-ICR [212], LIT-Orbitrap [213], Q-Orbitrap [214] and Q-Orbitrap-qIT [215]
mass spectrometers. Off-line LC-MS coupling, e.g., by transfer of effluent fractions to a MALDI target
with a subsequent MALDI-TOF/TOF-MS analysis, can be considered as an alternative to conventional
shotgun experiments [216].

Hyphenated LC-based techniques relying on data-dependent [32] and data-independent [217]
acquisition algorithms (DDA and DIA, respectively) were successfully employed in glycation research,
and proved to be much more powerful tools in comparison to gel-based approaches [156,218,219].
For example, glycation sites in HSA of DM patients were successfully identified by LC-IT-TOF-MS [83].
Analogously, glycation patterns of heterologically expressed recombinant HSA were addressed
by nano-scaled liquid chromatography (nanoLC)-QqTOF-MS [146]. Remarkably, the shotgun
approach can be applied to analysis of peptide mixtures, obtained by in-gel digestion of individual
electrophoretic zones. For example, using nanoRP-HPLC-ESI-QqTOF- and ESI-QqQ-MS, Marvin et al.
identified about 40 sites in six milk proteins and proposed α-lactoalbumin as a marker of lactosylation
in milk [172].

Similar to gel-based proteomics, LC-based approach can allow both identification
and quantification, or can be focused only on one of these aspects. When identification of
protein glycation sites is the main scope of research (so-called “discovery proteomics”), the overall
analytical resolution, i.e., the total number of identified features, is of the major importance. In the
most easy and straightforward way it can be increased by application of longer columns and
gradients times, providing high peak capacity [220]. However, the coverage of modified proteome
can be further increased by implementation of additional separation procedures, introduced in the
general proteomics workflow as enrichment, depletion, or pre-fractionation steps [137,221–223].
Such multi-dimensional workflows allow reduction of matrix effects and, hence, provide better
sensitivity [108]. Moreover, when the DDA approach is used, decrease of sample complexity allows
overcoming of so-called “undersampling effect”, i.e., limitation of the identification event number by
the duration of instrument duty cycle [224,225].

For early glycated species, enrichment by BAC is the method of choice [226,227]. Although this
procedure can be applied both to protein mixtures and products of their enzymatic hydrolysis,
enrichment on the level of digests was shown to be advantageous [52,219]. During the
recent decade, the power of this method was confirmed with in vitro glycated proteins [219,222,228],
human plasma [115,137,174,189] and even plant tissues [32]. To achieve higher recoveries of
glycated peptides, two-step elution with warm (37 ◦C) aq. acetic acid (0.1 and 0.2 mol/L) proved
to be most suitable (Figure 3) [219]. After a solid phase extraction (SPE)-based pre-cleaning step,
samples are typically freeze-dried, reconstituted in 3% acetonitrile in 0.1% (v/v) aq. formic acid,
and analyzed with nanoU(H)PLC-ESI-MS [115]. Interestingly, to address a low-abundant part of the
glycated proteome, BAC-based enrichment can be efficiently combined with immunoaffinity depletion
technique [114,137] and selective precipitation of target proteins [83,114,227]. As the most generalized
and characteristic example, can serve the work of Zhang et al. (2011), who depleted human plasma
for the twelve most highly abundant proteins prior to the enzymatic digestion, multi-dimensional LC
separation and MS analysis, which resulted in identification of thousands glycation sites [52].

Due to a high structural heterogeneity, enrichment of AGEs is a challenging task. In the
most easy and straightforward way, it can be accomplished for individual AGE classes by affinity
chromatography on immobilized specific antibodies (immunoaffinity approach) or immobilized
RAGEs [2,229]. As proteins, modified with Nε-(carboxymethyl)lysine (CML) and pentosidine,
bind to sepharose 4B-linked lysozyme [229], appropriate methods can be established as well.
Alternatively, AGEs and advanced lipoxidation end products (ALEs) can be enriched by
magnetic beads functionalized with the RAGE VC1 domain [230]. Recently Prassana et al.
reported enrichment of AGE-modified peptides containing CML, Nε-(carboxyethyl)lysine (CEL),
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1-(4-amino-4-carboxybutyl)-2-imino-5-oxo-imidazolidine, glyoxal-derived hydroimidazolone (Glarg),
Nδ-(5-methyl-4-oxo-5-hydroimidazo-linone-2-yl)ornithine, methylglyoxal-derived hydroimidazolone
1 (MG-H1), tetrahydropyrimidine (THP), 3-deoxyglucosone-derived hydroimidazolone (3-DG-H),
and imidazolone B by immobilized metal affinity chromatography Cu(II)-IMAC [231].Int. J. Mol. Sci. 2017, 18, x FOR PEER REVIEW  14 of 45 
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Pre-fractionation is another strategy to increase analytical resolution in PTM-proteomics [232].
Typically it relies on separation techniques, orthogonal to RPC [233]. In the most common way, it can
be accomplished by EXC, performed either off-line or on-line to the second dimension (RP-HPLC).
Moreover, as was demonstrated by Metz and co-workers, this technique can be successfully combined
with immunoaffinity chromatography, RPC and BAC in one analytical workflow. It provided excellent
identification rates for glycation sites (3742 proteins represented by 7749 Amadori peptides) [52].
Alternatively, hydrophilic interaction liquid chromatography (HILIC) can be used as a pre-fractionation
step [165], that was recently applied to identification of AGE-modified sites in human plasma [234]
and Arabidopsis thaliana proteins [223].

It is important to note, that fractionation can be also performed on the level of mass analyzer.
This approach, usually termed as gas phase fractionation (GPF), relies on multiple measurements
of the same sample using different m/z ranges, defined by multipole devices [19,235]. During the
last decade, this technique proved to be an efficient tool in discovery proteomics: it increases the
numbers of identified peptides and, hence, sequence coverage of annotated proteins [19,115,223].
To increase the number of glycated peptides, identified in each experimental group, all positive hits can
be cross-annotated between the samples. In the most easy way it can be done by exact m/z, charge and
tR [53]. A more sophisticated approach relies on time-based inclusion lists, based on targeted discovery
experiments [165].

In discovery proteomics, efficiency of fragmentation in DDA or DIA experiments directly
affects protein identification rates and coverage of glycated proteome [236]. Although most of
the commercially produced mass spectrometers have only one fragmentation capability CAD,
different combinations of CAD (performed either in trap or RF-only quadrupole collision cell) with
ECD and ETD, respectively [114] are available in new state-of-the-art instruments. This also provides
higher quantification accuracy, access to complementary ion information and improved proteome
coverage [237].

For early glycated proteins, CAD provides important structural information, which can be
obtained in neutral loss, product and precursor ion experiments. Thus, Gadgil et al. identified 31
glycated lysyl residues in HSA by characteristic hexose-related neutral losses of 162 Da in MS/MS



Int. J. Mol. Sci. 2017, 18, 2677 15 of 45

spectra of tryptic Amadori peptides [238]. Further exploration of such MS/MS spectra revealed intense
signals, corresponding to losses of water and formaldehyde [239,240], which are not only diagnostic
for Amadori or Heyns moieties, but can be also used for sequencing of proteolytic peptides [241].
Remarkably, corresponding immonium-related ions can serve as diagnostic fragments in specific
precursor ion scanning experiments performed with characteristic signals of early and advanced
glycation products [239,242,243]. Alternatively, other MS/MS techniques, such as neutral loss triggered
MS3 (NLMS3) and multi-stage activation (MSA, i.e., sequentially applied CAD and ETD) were
successfully employed for characterization of glycation in enzymatic digests [2,228]. Thereby, both
NLMS3 and MSA experiments rely on characteristic water and formaldehyde neutral losses [244],
or the loss of the whole glycation moiety [221]. Interestingly, comparison of NLMS3 and MSA revealed
higher glycation discovery rates with the latter approach: for example, Pepaj et al. discovered 21 and
31 glycated peptides with these methods, respectively [228].

As ETD and ECD yield c and z ions exclusively by backbone fragmentation [114,240,245],
these techniques are well-applicable to analysis of labile PTMs. Indeed, such modifications which
remains unaffected under these conditions [114] and result in significantly higher identification
rates in comparison to CAD [246]. Thereby, to suppress unmodified quasi-molecular ions and
to change fragmentation patterns in favor of modified c and z-ions, double resonance (DR)-ECD
was successfully applied. However, as the charge reduced species dominate during ionization,
the fragmentation efficiency of ETD is lower in comparison to ECD. This can be, however, circumvented
by the MSA approach [247].

Quantitative analysis of glycated peptides relies either on labeling or label-free techniques.
Thus, 18O-labeling of HSA peptides was successfully applied for characterization of glycation
dynamics [59,248] and early diagnostics of T2DM [249]. Another informative labeling technique
relies on incubation with [13C6]glucose under the conditions mimicking in vivo glycation [131,151,221].
In terms of this approach, relative quantification relied on doublet signals representing in vivo glycation
with [12C6]glucose and in vitro incorporation of [13C6]glucose [131,151,250]. Finally, standard isotope
dilution techniques might rely on synthetic 13C,15N-labeled peptides, spiked to plasma samples for
a high-throughput characterization of their glycated profiles by multiple reaction monitoring [189].
In contrast, label-free quantification approach is a fast and efficient technique to compare relative
abundances of glycated proteins or individual glycation sites therein by intensities of corresponding
peptide signals. This methodology is less cost intensive in comparison to labeling techniques,
reliable and can be easily applied to analysis of low abundant peptides [114].

3. Part 2. New Prospectives in Maillard Proteomics

The late 1990s–early 2000s were the period of establishing principle glycation
mechanisms [41,251–254] and glycation adduct patterns in foods [255] and clinical pathology [36,256].
Besides, the patterns of in vitro and in vivo glycation sites were characterized in multiple proteins,
and even whole proteomes [52]. It was accompanied with establishing of highly-effective
peptide synthesis workflows and development of new mass spectrometers (e.g., Orbitrap-based
hybrids [215] and new generation of QqTOF instruments) and data acquisition algorithms
(e.g., data-independent acquisition, known as MSE [257] and SWATH [258]). Finally, high-throughput
proteomic platforms, search engines and data-interpretation pipelines were introduces in this
time [59,223]. Altogether, these factors played a crucial role in a rapid development of several
new fields in protein glycation research, which are methodologically based on bottom-up
proteomics techniques. In this section, we address some of them: (i) application of synthetic peptides
as the models in glycation experiments; (ii) diagnostic approaches based on glycation at specific sites;
(iii) proteomics of anti-glycative defense; and (iv) analysis of plant glycated proteome.
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3.1. Synthetic Peptides as Model Systems in Maillard Proteomics

The knowledge about specific glycation sites in proteins is a pre-requisite for understanding their
functional changes related to the Maillard reaction [259]. However, as individual proteins can contain
dozens of potential glycation sites [60], and modification levels at each of them might be affected by
protein sequence and structure [52,53], characterization of specifically modified amino acid residues in
proteins is a challenging task. In contrast, although amino acid-based systems represent convenient
and informative glycation models [260,261], they, however, do not consider inter-residue interactions.
Obviously, for understanding of the mechanisms, underlying the product patterns, formed at
individual sites, less complex models (considering, however, the neighboring residue effects)
are required. In this context, synthetic peptides represent an ideal experimental approach to address
the mechanisms of glycation, kinetics of AGE formation and degradation, as well as the influence of
neighboring residues on these aspects. Obviously, by means of this tool, more reliable approximations
on the protein level can be done. Therefore, the peptide-based approach is useful for establishing new
analytical techniques, promising in medical diagnostics and food safety analysis [151,174,219,262].

The history of the peptide-based Maillard research comes back to the early 1990s, when Smith
and Thornalley proposed the simplest dipeptide hippuryl-lysine model to monitor the degradation
of Amadori products accompanied with formation of CML [263,264]. Later, longer peptides
(representing artificial [265–268] and natural [266,269–271] protein sequences) were employed
to address kinetic and mechanistic aspects of glycation adduct formation, structure of novel
products [265–268,272], and influence of reaction conditions on AGE patterns [269,273–275].
To understand the mechanisms of AGE formation in such in vitro glycation model systems, and to
dissect individual pathways of advanced glycation, analysis of peptide products can be complemented
by quantification of carbohydrate [47] and α-dicarbonyl [276] intermediates. In such cases,
analysis of carbohydrates relies on sequential derivatization with methoxyamine hydrochloride (MOA)
and N-methyl-N-(trimethylsilyl) trifluoroacetamide (MSTFA), followed with GC-EI-MS relying on
well-standardized methods [47], whereas the α-dicarbonyl patterns are typically addressed by liquid
chromatography with ultraviolet detection (LC-UV), LS-MS or LC-MS/MS after derivatization of the
α-dicarbonyl moieties with o-phenylenediamine (oPDA) [49,277].

A deeper insight in the pathways of the protein Maillard reaction can be obtained by means
of model synthetic glycated peptides, used as the objects of kinetics studies and standards for
structure elucidation [267]. Thus, Amadori peptides can be obtained by liquid phase [278,279]
or solid phase [280] peptide synthesis. Due to its higher throughput and well-established
robotized workflows, solid phase peptide synthesis (SPPS) seems to be advantageous. In the most
direct way, glycation moiety can be introduced in a resin-bound peptide by global post-synthetic
glycation after a specific cleavage of orthogonal protection group (typically allyloxycarbonyl
or methyl trityl) at the ε-amino function of lysyl residue to be modified [281,282] (Figure 4).
Thereby, derivatization might relay on direct glycation with reducing sugars, dissolved in DMF [281] or
methanol [279]. Alternatively, glycation moiety can be introduced by the Lobry de Bruyn reaction with
acetonide-protected hexodiulose (2,3:4,5-di-O-isopropylidene-aldehydo-β-D-arabino-hexos-2-ulo-2,
6-pyranose) in presence of cyanoborohydride in methanol-isopropanol-water mixture (2:2:1 by volume)
(Figure 4) [282]. Alternatively, protected hexodiulose can be reacted with a Fmoc-derivative of
α-Boc-protected lysine [283], that gives an access to a building block strategy for the synthesis
of glycated peptides [280]. Amadori- or Heyns-modified peptides can be easily purified by ion
pair-reversed phase chromatography (IP-RP-HPLC) [284]. Analogously, AGE-modified peptides,
containing the AGEs most abundant in human tissues and foods (CML, CEL, MG-H1, 2, and 3, Glarg,
Nδ-(carboxymethyl)arginine (CMA) and Nδ-(carboxyethyl)arginine (CEA)) were synthesized by global
post-synthetic derivatization [243] or building block strategy [23,285].

Synthesis of glycated peptides in high yields and purities gave an access to the mechanisms and
kinetics of early glycation, Amadori degradation, and AGE formation [243,267]. Moreover, model
reactions with defined sets of synthetic peptides provide a possibility to address the effects of
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individual neighboring residues on glycation rates and product patterns. Thus, histidyl imidazole
groups and anionic residues, located in close proximity to the glycation site, catalyze Amadori
rearrangement [51,286] and increase stability of resulting early glycation products [267]. Formation of
arginine-derived hydroimidazolones and their hydrolysis products (CMA and CEA) also depends
from the residues in the i + 4 position relative to the glycation site [268]. The effects of glycation on
protein structure was addressed: the analysis of glycated α-helical peptides representing bovine serum
albumin (BSA) sequence clearly indicated distortion of the helix, magnifying the impact of glycation on
protein structure and, hence, potentially on their function [287]. On the other hand, a cross-linking AGE
glyoxal-derived lysine dimer (GOLD) did not affect the structure of synthetic collagen fibrils [271]. It is
important to mention, that synthetic peptide models represent ideal test-systems for probing potentially
anti-glycative agents, which can be spiked to peptide-containing incubation mixtures with reducing
sugars or α-dicarbonyls before assessment of Maillard reaction by electron spin resonance [288].
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Figure 4. Synthesis of Amadori-modified peptides by global glycation approach and building
block strategy. After selective deprotection of the site to be glycated, Amadori moiety can
be introduced directly by incubation with reducing sugar [273] or via the Lobry de Bruyn
reaction with acetonide-protected hexodiulose (2,3:4,5-di-O-isopropylidene-aldehydo-β-D-arabino-
hexos-2-ulo-2,6-pyranose) in presence of cyanoborohydride in methanol-isopropanol-water mixture
(2:2:1 by volume) [274]. Alternatively, glycated moiety can be introduced with an acetonide-protected
Nε-Boc-Nε-fructosyl-Nα-Fmoc-lysine building block [272].

Besides kinetic studies and pathway characterization, synthetic glycated peptides can be
employed for development of new analytical techniques. In the first line, such peptides might
be useful in interpretation of MS/MS fragmentation patterns, validation of quantitative methods,
and establishing of new diagnostic approaches [219,239,289]. In this context, simple models
with defined amino acid composition allow disclosing the pathways of their fragmentation under
CAD conditions, which are rather complex due to simultaneous cleavage of the peptide backbone and
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sugar moieties [278]. Indeed, due to a relatively low energy of the bonds within carbohydrate moiety,
the CAD-MS/MS spectra of glucose-derived Amadori peptides are strongly dominated by the
sugar-related neutral losses of water and formaldehyde, represented in the spectra by oxonium,
pyrylium and furylium ions (loss of 18/36, 54 and 84 u, respectively, Figure 5) [239]. It corresponds
well to the fragmentation patterns observed at the amino acid level in experiments with free
fructosamine-modified lysine [290]. Interestingly, glycation products, derived from isomeric aldoses
and ketoses, can be distinguished by these signals: for example, fructose-derived Heyns products can
be unambiguously identified by characteristic 2-hydroxymethylpyrylium, pyrylium, and furylium ions
(−54, −84, and −96 u, respectively, Figure 5) [239]. Importantly, the fragment ion series are dominated
by corresponding neutral losses as well, whereas original b and y ions, containing sugar moiety,
are typically not detectable under CAD conditions. Therefore, peptide sequence can be reliably derived
from pyrylium and furylium fragment ion series [291]. Moreover, characteristic immonium-related
furylium and pyrylium derivatives of Amadori peptides at m/z 162.1 and 192.1 were successfully
applied to development of a specific precursor ion scanning method, applicable for discovery of
glycation sites in proteins [239]. Unfortunately, this approach is limited to monosaccharide-derived
modifications, and is not applicable to lactose-derived early glycation products [240,292]. However, for
ADP-ribose-derived glycation products, a characteristic loss of adenosine monophosphate (AMP) at
m/z 348.08 could be observed [293]. In contrast to CAD, ECD or ETD techniques result in specific
cleavage of the peptide backbone between amide nitrogen and Cα, whereas the side chain Amadori
and Heyns moieties remain unaffected [239,294,295]. Thereby, the sequences of glycated peptides
can be assigned by c- and z-ion series [289,296]. Finally, these observations with fragmentation of
glycated peptides resulted in development of new analytical approaches, such as MSA experiments,
comprising CAD- and ETD-based scans [52].
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Amadori (a); and fructose-derived Heyns (b) peptides, represented by characteristic signals,
corresponding to oxonium (-H2O and -2H2O), pyrylium (-3H2O) and furylium/immonium
(-3H2O-HCHO) ions. The Heyns products can be distinguished by the presence of
2(hydroxymethyl)pyrylium (2-HNP) ion and specific mass increment of the Heyns-derived furylium
signal (96 u).
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In contrast to Amadori and Heyns compounds, CAD-MS/MS spectra of AGE peptides dominate
with the fragments, related to backbone cleavage (i.e., b and y ions) [242], although the side
chains of some intermediates, such as CMA and CEA, are involved in fragmentation as well [266].
A pronounced backbone fragmentation results in reliable sequence assignment by fragmentation
patterns and confident annotation of proteins by database analysis with proteomics search engines [32].
The annotations can be additionally validated by characteristic modification-specific signals in
tandem mass spectra of AGE peptides [242,243]. Thus, the presence of imidazolone AGEs
(Glarg and MG-Hs) in peptide sequence can be confirmed by abundant series of internal fragments,
accompanied with less intense ammonia losses, which can be considered as diagnostic for the
peptides containing basic heterocyclic AGEs [243]. Additionally, identity of these modifications
can be confirmed by indicative signals at m/z 152.1 and 166.1, for Glarg- and MG-H, respectively [243].
These arginine immonium ion-related products of an intra-molecular SN-reaction [297] are related
to the signal at m/z 112, known to be indicative for arginine-containing peptides [298]. It is
worth mentioning, that these signals are present in the fragmentation patterns of glyoxal- and
methylglyoxal-derived dihydroxyimidazolidines (G-DHI and MG-DHI), the precursors of Glarg
and MG-H, respectively [243,260]. This allows their distinguishing from CMA and CEA modifications,
isomeric to G-DHI and MG-DHI, respectively. For CML and CEL, known as the major lysine-derived
AGEs in vivo [16,299], characteristic α-amino-ε-caprolactam and tetrahydropyridine immonium
related ions were detected at the m/z 142.1 and 187.1 (CML) and 156.1 and 201.1 (CEL),
respectively [242].

To summarize, peptide-based glycation models represent a powerful tool for dissection of
glycation pathways and characterization of the products formed. It allows simulation of different
glycation systems, such as food cooking [267,268], mammalian [51], or even plant [32] organisms.
Accordingly, increasing application of these techniques in food chemistry, diagnostics, and plant
biology can be expected.

3.2. Individual Glycation Sites in Human Proteins as the Markers of Diabetes Mellitus

As has been well-known since the late 1960s, the levels of glycated blood proteins correlate
with the concentrations of glucose in plasma [300], although a clear evidence for a causative role
of glycation for long term complications of metabolic diseases has not yet been reported [301].
Thus, hemoglobin isoform HbA1c, glycated at the N-terminal valine of its â chain, is a well-known
diagnostic marker of diabetes mellitus (DM) [302]. Indeed, its only glycation site delivers reliable
information about average blood glucose levels over approximately three months, being an important
marker of a long-term glycemic control [302]. To address the changes in blood glucose profile
over shorter periods of time, glycated HSA can be used as a marker. Accordingly, various
spectroscopic, chromatographic and immunochemical methods for quantification of glycated HSA
were established during the last decades [115,303]. Among them, immunoassays appear to be the most
promising for diagnostics [34,304,305]. However, all clinically approved approaches deliver only global
glycation rates, whereas individual lysyl residues are highly variable in their reactivities towards
glucose [306]. At least to some extent, it can be explained by dependence of glycation levels from
sequence [52] and structure [53,287,307] consensus moieties. Therefore, averaged abundance of all
58 potential HSA glycation sites, delivered by conventional techniques, might be less informative in
comparison to quantification of glycation levels at individual lysyl residues [115]. Moreover, due to
different half-lives of individual plasma proteins (varying 2–21 days [308–314]), individual glycation
sites could provide information about the levels of blood glucose over any desired period of time.
Hence, these approach might be able to deliver not only the information about efficiency of therapy as
a glycemic control tool, but also to be a diagnostic marker, recognizing fluctuations of blood glucose
levels during the onset of disease [315,316].

Indeed, Zhang et al. reported multiple glycation sites in the proteins of human plasma and
erythrocyte membranes [52,137]. Thereby, the authors demonstrated higher numbers of glycated
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residues in the proteins obtained from T2DM and impaired glucose tolerance (IGT) patients
(especially in erythrocyte membranes), in comparison to normoglycaemic controls. This fact might
be related to the longer life span of red blood cells. Thereby, the analysis of glycation consensus
motifs revealed alanine, valine, leucine and serine as the most common residues in close proximity to
glycation sites [137]. Label-free quantification of the 18 most abundant Amadori peptides, detected in
tryptic digests of T2DM and normoglycemic plasma, revealed higher abundances of some of them in
diabetic patients, whereas two peptides were unique for disease [291]. This observation brought us to
the assumption of possible DM biomarker properties of individual glycation sites.

To proof this concept, we compared their abundances in small cohorts of T2DM patients and
normoglycemic individuals [115]. For this, we established an untargeted workflow, relying on BAC,
coupled off-line to RP-nanoUHPLC-HR-MS (Figure 6). Thereby, tandem mass spectra were acquired
with an LTQ-Orbitrap-MS instrument operated in a DDA mode and searched against human database.
After manual confirmation of all positive hits, label-free quantification was performed by integration
of characteristic extracted ion chromatograms. By this procedure, glycation sites could be assigned to
those: (i) found only in T2DM samples; (ii) significantly up-regulated in the diabetic group; and (iii)
demonstrating no significant changes between groups, the first two of which represented prospective
biomarkers [115].
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To address the biomarker potential of the discovered candidates, we decided to switch to
high-throughput absolute quantification. For this, we established two strategies based on a stable
isotope dilution approach (Figure 6). The first one was based on 13C,15N-labeled glycated peptides,
synthesized by glycation on solid phase [281], purified [284], and spiked to digested plasma
prior to RP-HPLC-MS/MS analysis in multiple reaction monitoring (MRM) mode using two
specific Q1/Q3 mass range combinations (transitions) [189]. Alternatively, internal standards were
spiked directly to blood plasma, i.e., before tryptic digestion [174]. In this case, analysis relied
on so-called bi-labeled dabsylated peptides [262], obtained by a solid phase peptide synthesis
(SPPS) using the Fmoc strategy and pre-synthesized Amadori-modified building block [280].
Both strategies confirmed biomarker properties of the target peptides, and yielded comparable results.
Remarkably, the efficiency of our proteomics-based strategy can be increased by simultaneous
consideration of non-plasma biomarkers. Thus, Spiller and co-workers reported a combination of K141
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of haptoglobin and HbA1c, which provided identification of diabetes with a sensitivity, specificity and
accuracy of 94%, 98%, and 96%, respectively [317]. Recently, a new high-throughput LC-MS/MS
MRM method for quantification of HSA glycation site at K525 was proposed [120]. The corresponding
tryptic peptide 525KQTALVELVK is the most abundant species in plasma digests and can be quantified
without enrichment. The authors highlighted a strong correlation of this single-site marker with HbA1c.
Based on their data, the authors propose a 11% cut-off for the levels of glycated K525 in HSA,
which increases the similarity of its behavior with HbA1c [120].

Similar to early glycation, profiles of plasma AGEs were comprehensively addressed during
last years. Recently, we have proposed precursor ion scanning methods for modification-specific
signals (at m/z 187.1, 201.1, 152.1, 166.1 for CML, CEL, Glarg and MG-H, respectively)
as a promising approaches for a comprehensive detection of AGE-modified sites in plasma
proteins [242,243]. Thereby, the positive hits, discovered with this method were further evaluated by
targeted DDA experiments, and sequence information for the peptides, containing specific AGEs,
could be obtained. Applied to pooled T2DM plasma, this workflow revealed 21 carboxymethylation
sites in 17 proteins including HSA [242]. Analogously, Schmidt and coauthors reported detection
of 44 peptides, containing arginine-derived AGEs and representing 42 plasma proteins [243].
As some AGE-modified tryptic peptides (e.g., amide AGEs) can be considered as prospective
T2DM biomarkers [19], precursor ion scanning for the characteristic immonium ion-related species
might have a valuable diagnostic potential. Accordingly, the levels of Nε-(carboxymethyl)valine-
and Nε-(carboxyethyl)valine-containing peptides of β-hemoglobin correlate well with severity of
diabetes [184]. Moreover, recently five lysyl sites responsive to glycation (Amadori and CML
modifications) were identified by targeted Sequential Window Acquisition of all Theoretical
Mass Spectra (SWATH) analysis and confirmed as potential novel markers of diabetes [258].
Finally, Greifenhagen and coauthors reported LC-MS-based detection of 42 AGE modification sites
in 22 high to medium abundant plasma proteins of diabetic patients, possible biomarker behavior of
which needs to be characterized [234].

3.3. Proteomics in the Study of Anti-Glycative Defense

Most glycation pathways lead to generation of reactive dicarbonyl intermediates (e.g., GO, MGO,
and 3-DG), enhanced formation of which ultimately causes dicarbonyl stress and related protein
damage [318]. In agreement with this, the levels of á-dicarbonyls were shown to be increased in
plasma and tissues of DM [319] and renal failure [320] patients. Expectedly, increased levels of
MGO-derived protein modifications were also observed in ageing human tissues, for example, in lens
of aged individuals [321]. Therefore, investigation of anti-Glycative defense pathways, such as
glyoxalase system, becomes increasingly important when biology and biochemistry of in vivo tissue
ageing is addressed.

The glyoxalase system plays a crucial role in glutathione (GSH) homeostasis both under normal
and pathological conditions. It metabolizes reactive dicarbonyl compounds (RCCs), such as GO and,
mostly, MGO, to less reactive and, hence, less harmful products [322]. Besides small amounts of
reduced glutathione (GSH), it comprises two enzymes, namely glyoxalase 1 (Glo1) and glyoxalase
2 (Glo2), which catalyze conversion of MGO in S-D-lactoylglutathione and its subsequent cleavage with
formation of D-lactate, respectively [323]. These enzyme activities prevent accumulation of reactive
dicarbonyls in cells (especially under oxidative stress) and protect organism from development of
carbonyl stress [324], thereby suppressing dicarbonyl-mediated glycation reactions [325] and playing
a key role in cellular anti-glycation defense [326]. Accordingly, these enzymes can be expected to be
protective in diseases, known to be accompanied with carbonyl stress [327].

Indeed, during the last decade, activity of glyoxalase pathway in presence of pathologies, such as
DM and neurodegenerative disorders (e.g., Parkinson’s and Alzheimer’s diseases), and its influence
on dicarbonyl proteome were studied comprehensively [327,328]. The term “dicarbonyl proteome”
(DCP) was introduced by Rabbani and Thornalley to define collectively the proteins inactivated by
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MGO in physiological systems [329], for example, due to high MGO-dependent glycation levels
in DM patients [323]. According to the currently available data, DCP includes at least albumin,
hemoglobin, co-repressor protein sina3A, type IV collagen, áA lens crystallin, HIF1á (hypoxia-inducible
factor 1á) co-activator protein p300, 20S proteasome subunits, mitochondrial proteins extracellular
matrix proteins, lens crystallins and other high- and low-abundant proteins [326]. For example,
according to the results of a comprehensive LC-ESI-HR-MS-based profiling, performed with cytosolic
protein extracts of human endothelial cells, 344 of 1366 identified proteins contained MG-H or
corresponding dihydroxyimidazolidine moieties [330].

It is important to note, that in the plant kingdom, glyoxalase system plays an important role
as well. Thus, its impact in plant response to abiotic stress was clearly demonstrated in numerous
proteomic studies [331]. For example, both activity and expression levels of Glo 1 demonstrated a
stressor-dependent increase, when the mechanisms of salt tolerance of Aeluropus lagopoides (a halophyte
C4 plant) were addressed by the bottom-up proteomic approach [332]. The similar effects could
be observed under experimental drought conditions. For instance, application of differentially
concentrated mannitol solutions to a basal part of rice leaf for 48 h resulted in induction of Glo1
expression [333]. Analogously, analysis of drought responsive proteome of sunflower leaves and leaf
protein soluble fraction of wild watermelon demonstrated a similar alteration in the tissue levels of
Glo1 product [334,335]. Heavy metal stress was also shown to induce expression of glyoxalases [331].
For example, application of high Cu(II) amounts to germinating rice seeds and roots revealed a strong
up-regulation of both glyoxalases [336,337]. The same was observed when rice seeds were exposed
to Cd(II) [338], although, in some cases, the activities of Glo1 and Glo2 were compromised [339],
most probably, due to involvement of glutathione in phytochelatine biosynthesis. Interestingly,
application of selenium attenuated this effect [339].

3.4. Glycation of Plant Proteins as the Marker of Ageing and Environmental Stress

Although AGEs are recognized as the markers of ageing, sub-clinical inflammation, and diabetic
complications since several decades [340–342], their formation in plants was addressed only recently.
Thus, in the beginning of the last decade, Sebekova and co-workers reported higher contents of AGEs in
blood of vegetarians in comparison to omnivorous individuals [343]. Logically, this observation raised a
question about formation of glycation products in raw plant-derived foods [344]. Further, this work was
extended to in vivo glycation in plants, which was first reported by Thornalley and co-workers [345].
Currently, the phenomenon of protein glycation in plant organisms is being elaborated in four principal
aspects: (i) molecular mechanisms of AGE formation; (ii) impact of AGEs in plant physiology; (iii) effect
of glycation on nutritional value of plant-derived foods; and (iv) mechanisms and pathways behind
anti-glycative defense [32,53,223].

First, the major methodological tool in plant glycation research was LC-MS/MS of exhaustive
protein hydrolysates, established in Thornalley’s group since two decades [256]. Thus, using a panel of
glycation and oxidation markers, Bechtold et al. confirmed the presence of glycated lysine and arginine
residues in Arabidopsis thaliana proteins [345]. Thereby, for the first time, glycation was considered in
the sense of plant response to environmental stress and proposed to be a factor of protein damage
in plants, as it was earlier described for mammals [346]. However, in the context of plant biology,
analysis of amino acid glycation adducts has some limitations. Indeed, it does not allow identification
of individual proteins, serving as the targets of glycation, and specific glycation sites therein. However,
as was earlier shown for mammals, this information is principle for understanding of physiological
effects of glycation [60].

Nevertheless, this pioneer work opened an intensive discussion about a possibility of a
diabetes-like state in plant tissue. Thus, Miyake and co-workers assume, that protein glycation in
plants might be much more pronounced in comparison to mammals, due to much stronger persistent
“hyperglycemia”, characteristic for these organisms [347–349]. Indeed, on the one hand, plant tissues
contain a tremendous variety of carbohydrates, many of which are present in high abundances and/or
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are potent glycation agents [32,223]. On the other hand, due to intensive photosynthesis and respiration,
the levels of oxidative processes are relatively high in plants [350]. Moreover, these organisms often
encounter with environmental stress, accompanied with overproduction of reactive oxygen species
(ROS) [351] and specifically hydroperoxides [352]. Therefore, high levels of lipid peroxidation [353]
and monosaccharide autoxidation, i.e., the process of metal-catalyzed oxidation of sugars in presence
of hydroperoxides [8], can be expected in plant systems. As both processes are accompanied with
generation of á-dicarbonyls, plants might be subjected to a severe dicarbonyl stress [354,355] over
the whole span of their life, and undergo intensive glycation. As both ROS generation and sugar
accumulation are increased under stress conditions [175], the enhancement of glycation under high
light stress conditions observed by Bechtold et al. [345] is in agreement with these considerations.

At the next step, plant glycation patterns were addressed at the level of proteome. The approach,
established in our group, relies on the bottom-up proteomic strategy and LC-MS and MS/MS analysis
in data-dependent acquisition (DDA) mode. In the first line, we considered the patterns of the
major AGEs, earlier identified in mammals and foods [251–253,261,274,285,356–359], and addressed
the sources of their formation in plants using a combination of in vivo and peptide-based in vitro
approaches [32]. For in vivo experiments, we established a workflow, comprising analysis of early and
advanced glycation end products, as well as sugar profiling and dicarbonyl analysis (Figure 7).
Thereby, for the first “proof of the concept” studies we considered only water-soluble proteins,
while later we extended our analysis to the total proteome [223]. Relying on this combined strategy,
we identified several specific features of plant glycation, clearly distinguishing it from the protein
Maillard reaction in mammals. Thus, early glycated protein sites could not also be detected
as AGE-modified, which might indicate a low impact of glycoxidation (Figure 1) in formation
of AGEs. In contrast, based on the interpretation of glycation patterns in the context of the
acquired metabolomic data (Figure 7), the autoxidative pathway seems to be the major route of
AGE formation in plants [32]. Secondly, the fact that relatively few pyrraline sites were found,
allows proposing non-oxidative pathway to be only a minor one. Finally, the numbers of plant
amino acid residues involved in formation of AGEs were at least five times higher in comparison to
the representation of Amadori and Heyns modification sites [32], which dramatically differs from,
for example, human plasma [52,137,234,242,243].
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Despite these differences, in respect of protein glycation, plants demonstrate clear similarities
with mammals. Thus, recently, existence of glycation hotspots, described earlier in mammalian
proteins [306,360], was confirmed in plants [53]. Hence, glycation can be considered as a universal
marker of ageing, characteristic for both plant and animal kingdoms. Additionally, both qualitative and
quantitative [223,345] AGE patterns were shown to be affected by environmental stress, as was earlier
described for mammals [361]. However, the most of the questions, concerning plant protein glycation
are still to be answered. Thus, the biological role of this process in plants is completely unknown.
In addition, involvement of glycation in the mechanisms of senescence and regulation of plant
development needs to be addressed. Taking into account high glycation levels, observed in
plant organisms, characterization of anti-glycative protective mechanisms is another important aspect
of the plant Maillard research [362,363].

4. Conclusions

During the recent decade, proteomics became one of the main tools in the protein
Maillard research. Generally, although exhaustive enzymatic hydrolysis and subsequent analysis of
glycation adducts by LC-MS/MS with stable isotope dilution became a gold standard in protein
AGE analytics, the knowledge about exact glycation targets and particular modification sites
therein seems to be critical for understanding the biochemical and physiological aspects of in vivo
Maillard reaction. The main reason for this is a large body of accumulated data, clearly indicating a
site-specific character of glycation. Indeed, identification of glycation hotspots both in animal and
plant proteins, differential reactivity of individual protein residues towards sugars and dicarbonyls,
positive correlation of glycation rates with ageing and stress response, biomarker behavior of strictly
particular glycation sites, and existence of well-tuned enzymatic and non-enzymatic anti-glycative
defense might indicate involvement of AGEs in regulation of vital processes in living organisms.
Therefore, characterization of responses of various human cells to glycation will remain the mainstream
of the medical Maillard research. However, understanding of the mechanisms underlying plant
glycation and resistance of plants to continuously enhanced glycation levels in combination with
adequate translational approaches might essentially improve treatment of glycation-related diseases.
In this context, the role of proteomics in Maillard reaction research, as a method providing
understanding of structure–function relationships, will continuously increase in future.
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Abbreviations

2D-GE two-dimensional gel electrophoresis
2-HNP 2(hydroxymethyl)pyrylium
3-DG 3-deoxyglucasone
3-DG-H 3-deoxyglucosone-derived hydroimidazolone
AALS anionic acid labile surfactant
α-La α-lactalbumin
ABC ammonium bicarbonate buffer
ACN acetonitrile
AGEs advanced glycation end-products
ALEs advanced lipoxidation end products
Apo-I apolipoprotein I
β-Lg β-lactoglobulin
BAC boronic acid affinity chromatography
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BSA bovine serum albumin
BUP bottom-up proteomic
CAD collision-activated dissociation
CE capillary electrophoresis;
CEA Nδ-(carboxyethyl)arginine
CEL Nε-(carboxyethyl)lysine
CMA Nδ-(carboxymethyl)arginine
CML Nε-(carboxymethyl)lysine
CZE capillary zone electrophoresis
DCP dicarbonyl proteome
DDA data-dependent acquisition
DHX deuterium–hydrogen exchange
DIA data-independent acquisition
DIGE difference gel electrophoresis
DM diabetes mellitus
DR double resonance
DTE dithioeritritol
DTT dithiothreitol
ECD electron capture dissociation
EI electron (impact) ionization
ESI electrospray ionization
ETD electron transfer dissociation
EXC cation exchange chromatography
FA formic acid
FIA flow injection analysis
Fmoc 9-fluorenylmethoxycarbonyl
FT-ICR Fourier transform-ion cyclotron resonance
Fru-Lys Nε-(fructosyl)lysine, Amadori compound
GC gas chromatography
G-DHI glyoxal-derived dihydroxyimidazolidine
GELFrEE gel-eluted liquid fraction entrapment electrophoresis

Glarg
1-(4-amino-4-carboxybutyl)-2-imino-5-oxo-imidazolidine,
glyoxal-derived hydroimidazolone

Glo1 glyoxalase 1
Glo2 glyoxalase 2
GO glyoxal
GOLD glyoxal-derived lysine dimer
GPF gas phase fractionation
GSH glutathione
HbA hemoglobin A
HbA1C glycated hemoglobin
HIF1α hypoxia-inducible factor 1α
HILIC hydrophilic interaction liquid chromatography
HOAc acetic acid
HPD high pressure denaturation
HPLC high-performance liquid chromatography
HR high resolution
HR-MS high resolution mass spectrometry
HSA human serum albumin
IA iodoacetamide
IgG immunoglobulin G
IGT impaired glucose tolerance
IMAC immobilized metal affinity chromatography
IP-RP-HPLC ion-pair reversed-phase high performance liquid chromatography
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IT ion trap
LC liquid chromatography
LC-MS/MS liquid chromatography-tandem mass spectrometry
LC-UV liquid chromatography with ultraviolet detection
LIT linear ion trap
MALDI matrix assisted laser desorption/ionization
MG-DHI methylglyoxal-derived dihydroxyimidazolidine

MG-H1
Nδ-(5-methyl-4-oxo-5-hydroimidazo-linone-2-yl)ornithine,
methylglyoxal-derived hydroimidazolone 1

MGO methylglyoxal
MOA methylhydroxylamine hydrochloride
MRM multiple reaction monitoring
MS mass spectrometry
MS/MS tandem mass spectrometry
MSA multi-stage activation
MSTFA N-methyl-N-(trimethylsylil)trifluoroacetamide
nanoLC nano-scaled liquid chromatography
NLMS3 neutral loss triggered MS3
oPDA o-phenylenediamine
PEG polyethylene glycol
PTMs post-translational modifications
q RF-only quadrupole
Q quadrupole mass analyzer
QIT quadrupole ion trap
QqQ triple quadrupole
QqTOF quadrupole-time of flight
RAGEs receptors to advanced glycation end products
RCCs reactive dicarbonyl compounds
RI ribonuclease inhibitor
RNase A ribonuclease A
ROS reactive oxygen species
RP-HPLC reversed-phase high performance liquid chromatography
RP-SPE reversed phase-solid phase extraction
SDS sodium dodecyl sulfate
SDS-PAGE polyacrylamide gel electrophoresis is sodium dodecyl sulfate
SELDI surface-enhanced laser desorption/ionization
SPE solid phase extraction.
SPPS solid phase peptide synthesis
SWATH Sequential Window Acquisition of all Theoretical Mass Spectra
T2DM type 2 diabetes mellitus
TCEP tris-(2-carboxyethyl)-phosphine hydrochloride
TDP top-down proteomics
THP tetrahydropyrimidine
TOF time of flight
UHPLC ultra-high performance liquid chromatography
v/v volume/volume
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65. Kańska, U.; Boratyński, J. Thermal glycation of proteins by D-glucose and D-fructose. Arch. Immunol.
Ther. Exp. 2002, 50, 61–66.

66. Lapolla, A.; Fedele, D.; Seraglia, R.; Catinella, S.; Baldo, L.; Aronica, R.; Traldi, P. A new effective method
for the evaluation of glycated intact plasma proteins in diabetic subjects. Diabetologia 1995, 38, 1076–1081.
[CrossRef] [PubMed]

67. Meltretter, J.; Pischetsrieder, M. Application of mass spectrometry for the detection of glycation and oxidation
products in milk proteins. Ann. N. Y. Acad. Sci. 2008, 1126, 134–140. [CrossRef] [PubMed]

68. Lapolla, A.; Fedele, D.; Seraglia, R.; Catinella, S.; Traldi, P. Matrix-assisted laser desorption/ionization
capabilities in the study of non-enzymatic protein glycation. Rapid Commun. Mass Spectrom. 1994, 8, 645–652.
[CrossRef] [PubMed]

69. Liu, W.; Cohenford, M.A.; Frost, L.; Seneviratne, C.; Dain, J.A. Inhibitory effect of gold nanoparticles on the
D-ribose glycation of bovine serum albumin. Int. J. Nanomed. 2014, 9, 5461–5469. [CrossRef] [PubMed]

70. Zhang, Q.; Tu, Z.; Wang, H.; Huang, X.; Shi, Y.; Sha, X.; Xiao, H. Improved glycation after ultrasonic
pretreatment revealed by high-performance liquid chromatography-linear ion trap/Orbitrap high-resolution
mass spectrometry. J. Agric. Food Chem. 2014, 62, 2522–2530. [CrossRef] [PubMed]

71. Ma, H.; Liu, W.; Frost, L.; Kirschenbaum, L.J.; Dain, J.A.; Seeram, N.P. Glucitol-core containing gallotannins
inhibit the formation of advanced glycation end-products mediated by their antioxidant potential. Food Funct.
2016, 7, 2213–2222. [CrossRef] [PubMed]

72. Lapolla, A.; Fedele, D.; Aronica, R.; Baldo, L.; D’Alpaos, M.; Seraglia, R.; Traldi, P. The in vitro glycation
of lysozyme and the influence of buffer concentration investigated by mass spectrometry. Rapid Commun.
Mass Spectrom. 1996, 10, 1512–1518. [CrossRef]

73. Lee, B.-S.; Jayathilaka, G.D.; Huang, J.-S.; Vida, L.N.; Honig, G.R.; Gupta, S. Analyses of in vitro nonenzymatic
glycation of normal and variant hemoglobins by MALDI-TOF mass spectrometry. J. Biomol. Tech. 2011, 22,
90–94. [PubMed]

74. Carulli, S.; Calvano, C.D.; Palmisano, F.; Pischetsrieder, M. MALDI-TOF MS characterization of glycation
products of whey proteins in a glucose/galactose model system and lactose-free milk. J. Agric. Food Chem.
2011, 59, 1793–1803. [CrossRef] [PubMed]

75. Paradela-Dobarro, B.; Rodiño-Janeiro, B.K.; Alonso, J.; Raposeiras-Roubín, S.; González-Peteiro, M.;
González-Juanatey, J.R.; Álvarez, E. Key structural and functional differences between early and advanced
glycation products. J. Mol. Endocrinol. 2016, 56, 23–37. [CrossRef] [PubMed]

76. Chaudhury, S.; Ghosh, P.; Parveen, S.; Dasgupta, S. Glycation of human γB-crystallin:
A biophysical investigation. Int. J. Biol. Macromol. 2017, 96, 392–402. [CrossRef] [PubMed]

77. Dinda, A.K.; Tripathy, D.R.; Dasgupta, S. Glycation of Ribonuclease A affects its enzymatic activity and DNA
binding ability. Biochimie 2015, 118, 162–172. [CrossRef] [PubMed]

78. Hrynets, Y.; Ndagijimana, M.; Betti, M. Rapid myoglobin aggregation through glucosamine-induced
α-dicarbonyl formation. PLoS ONE 2015, 10. [CrossRef] [PubMed]

79. Hattan, S.J.; Parker, K.C.; Vestal, M.L.; Yang, J.Y.; Herold, D.A.; Duncan, M.W. Analysis and quantitation of
glycated hemoglobin by matrix assisted laser desorption/ionization time of flight mass spectrometry. J. Am.
Soc. Mass Spectrom. 2016, 27, 532–541. [CrossRef] [PubMed]

80. D’Alessandro, A.; Mirasole, C.; Zolla, L. Haemoglobin glycation (Hb1Ac) increases during red blood cell
storage: A MALDI-TOF mass-spectrometry-based investigation. Vox Sang. 2013, 105, 177–180. [CrossRef]
[PubMed]

http://dx.doi.org/10.1016/j.foodchem.2016.08.088
http://www.ncbi.nlm.nih.gov/pubmed/27664609
http://dx.doi.org/10.15252/embj.201694818
http://www.ncbi.nlm.nih.gov/pubmed/27797822
http://dx.doi.org/10.3791/50635
http://www.ncbi.nlm.nih.gov/pubmed/24056304
http://dx.doi.org/10.1016/0925-4439(93)90118-K
http://dx.doi.org/10.1007/BF00402178
http://www.ncbi.nlm.nih.gov/pubmed/8591822
http://dx.doi.org/10.1196/annals.1433.022
http://www.ncbi.nlm.nih.gov/pubmed/18448807
http://dx.doi.org/10.1002/rcm.1290080815
http://www.ncbi.nlm.nih.gov/pubmed/7949331
http://dx.doi.org/10.2147/IJN.S70777
http://www.ncbi.nlm.nih.gov/pubmed/25473284
http://dx.doi.org/10.1021/jf5002765
http://www.ncbi.nlm.nih.gov/pubmed/24606342
http://dx.doi.org/10.1039/C6FO00169F
http://www.ncbi.nlm.nih.gov/pubmed/27101975
http://dx.doi.org/10.1002/(SICI)1097-0231(199609)10:12&lt;1512::AID-RCM667&gt;3.0.CO;2-O
http://www.ncbi.nlm.nih.gov/pubmed/21966256
http://dx.doi.org/10.1021/jf104131a
http://www.ncbi.nlm.nih.gov/pubmed/21319853
http://dx.doi.org/10.1530/JME-15-0031
http://www.ncbi.nlm.nih.gov/pubmed/26581238
http://dx.doi.org/10.1016/j.ijbiomac.2016.12.041
http://www.ncbi.nlm.nih.gov/pubmed/28013006
http://dx.doi.org/10.1016/j.biochi.2015.09.014
http://www.ncbi.nlm.nih.gov/pubmed/26365067
http://dx.doi.org/10.1371/journal.pone.0139022
http://www.ncbi.nlm.nih.gov/pubmed/26406447
http://dx.doi.org/10.1007/s13361-015-1316-6
http://www.ncbi.nlm.nih.gov/pubmed/26733405
http://dx.doi.org/10.1111/vox.12029
http://www.ncbi.nlm.nih.gov/pubmed/23521396


Int. J. Mol. Sci. 2017, 18, 2677 31 of 45

81. Traldi, P.; Castilho, G.; Sartori, C.H.; Machado-Lima, A.; Nakandakare, E.R.; Corrêa-Giannella, M.L.C.;
Roverso, M.; Porcu, S.; Lapolla, A.; Passarelli, M. Glycated human serum albumin isolated from
poorly controlled diabetic patients impairs cholesterol efflux from macrophages: An investigation by
mass spectrometry. Eur. J. Mass Spectrom. Chichester Engl. 2015, 21, 233–244. [CrossRef] [PubMed]

82. Machado-Lima, A.; Iborra, R.T.; Pinto, R.S.; Castilho, G.; Sartori, C.H.; Oliveira, E.R.; Okuda, L.S.;
Nakandakare, E.R.; Giannella-Neto, D.; Machado, U.F.; et al. In type 2 diabetes mellitus glycated albumin
alters macrophage gene expression impairing ABCA1-mediated cholesterol efflux. J. Cell. Physiol. 2015, 230,
1250–1257. [CrossRef] [PubMed]

83. Bai, X.; Wang, Z.; Huang, C.; Wang, Z.; Chi, L. Investigation of non-enzymatic glycosylation of human serum
albumin using ion trap-time of flight mass spectrometry. Molecules 2012, 17, 8782–8794. [CrossRef] [PubMed]

84. Lapolla, A.; Fedele, D.; Aronica, R.; Garbeglio, M.; D’Alpaos, M.; Seraglia, R.; Traldi, P. The
in vivo glyco-oxidation of α- and β-globins investigated by matrix-assisted laser desorption/ionization
mass spectrometry. Rapid Commun. Mass Spectrom. 1996, 10, 1133–1135. [CrossRef]

85. Biroccio, A.; Urbani, A.; Massoud, R.; di Ilio, C.; Sacchetta, P.; Bernardini, S.; Cortese, C.; Federici, G.
A quantitative method for the analysis of glycated and glutathionylated hemoglobin by matrix-assisted
laser desorption ionization-time of flight mass spectrometry. Anal. Biochem. 2005, 336, 279–288. [CrossRef]
[PubMed]

86. Porcu, S.; Lapolla, A.; Biasutto, L.; Zoratti, M.; Piarulli, F.; Eliana, G.; Basso, D.; Roverso, M.; Seraglia, R.
A preliminary fastview of mitochondrial protein profile from healthy and type 2 diabetic subjects. Eur. J.
Mass Spectrom. Chichester Engl. 2014, 20, 307–315. [CrossRef]

87. Lapolla, A.; Porcu, S.; Roverso, M.; Desoye, G.; Cosma, C.; Nardelli, G.B.; Bogana, G.; Carrozzini, M.; Traldi, P.
A preliminary investigation on placenta protein profile reveals only modest changes in well controlled
gestational diabetes mellitus. Eur. J. Mass Spectrom. Chichester Engl. 2013, 19, 211–223. [CrossRef]

88. Thornalley, P.J.; Argirova, M.; Ahmed, N.; Mann, V.M.; Argirov, O.; Dawnay, A. Mass spectrometric
monitoring of albumin in uremia. Kidney Int. 2000, 58, 2228–2234. [CrossRef] [PubMed]

89. Goswami, J. Different separation or experimental techniques for clinical chromatography: Small review.
J. Chromatogr. Sep. Tech. 2015. [CrossRef]

90. De Seny, D.; Cobraiville, G.; Leprince, P.; Fillet, M.; Collin, C.; Mathieu, M.; Hauzeur, J.-P.; Gangji, V.;
Malaise, M.G. Biomarkers of inflammation and innate immunity in atrophic nonunion fracture. J. Transl. Med.
2016, 14, 258. [CrossRef] [PubMed]
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