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Abstract: The relatively new research discipline of Eco-Metabolomics is the application of
metabolomics techniques to ecology with the aim to characterise biochemical interactions of
organisms across different spatial and temporal scales. Metabolomics is an untargeted biochemical
approach to measure many thousands of metabolites in different species, including plants and animals.
Changes in metabolite concentrations can provide mechanistic evidence for biochemical processes
that are relevant at ecological scales. These include physiological, phenotypic and morphological
responses of plants and communities to environmental changes and also interactions with other
organisms. Traditionally, research in biochemistry and ecology comes from two different directions
and is performed at distinct spatiotemporal scales. Biochemical studies most often focus on intrinsic
processes in individuals at physiological and cellular scales. Generally, they take a bottom-up
approach scaling up cellular processes from spatiotemporally fine to coarser scales. Ecological studies
usually focus on extrinsic processes acting upon organisms at population and community scales
and typically study top-down and bottom-up processes in combination. Eco-Metabolomics is a
transdisciplinary research discipline that links biochemistry and ecology and connects the distinct
spatiotemporal scales. In this review, we focus on approaches to study chemical and biochemical
interactions of plants at various ecological levels, mainly plant–organismal interactions, and discuss
related examples from other domains. We present recent developments and highlight advancements
in Eco-Metabolomics over the last decade from various angles. We further address the five key
challenges: (1) complex experimental designs and large variation of metabolite profiles; (2) feature
extraction; (3) metabolite identification; (4) statistical analyses; and (5) bioinformatics software tools
and workflows. The presented solutions to these challenges will advance connecting the distinct
spatiotemporal scales and bridging biochemistry and ecology.

Keywords: biochemistry; bioinformatics; ecology; ecometabolomics; metabolites

1. Introduction

Technological advances in chromatography coupled with mass spectrometry permit snapshots of
nearly all low molecular weight (typically 50–1000 Da) polar and semi-polar metabolites in organisms at
once, without targeting specific biochemical compounds [1]. This technology is called “metabolomics”
and is now used widely in biochemistry and biotechnology for various types of organisms, including
plants, soil microbiota and mammals [2–4]. There are several metabolomics acquisition techniques,
but liquid chromatography coupled with mass spectrometry (LC/MS), gas chromatography coupled
with MS (GC/MS) and nuclear magnetic resonance spectroscopy (NMR) are the most commonly used
methods (for explanation of the techniques, see [5–7]; Tables 1 and 2).

Metabolites are key components in both biochemical and ecological processes. To survive
and successfully reproduce in their natural habitats, organisms need to adjust their morphological
and physiological characteristics in response to varying environmental conditions, as well as to
interactions with other organisms [8]. These ecophysiological adjustments can be identified and
quantified using metabolomics techniques [9–13]. The great advantage of metabolomics is that it
can be applied to any species without prior knowledge of its biochemical or genetic composition.
This universality and the coverage of a wide range of bioactive compounds initiated a new research
field called “Eco-Metabolomics”—the application of metabolomics to ecology and, thus, understanding
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the biochemical mechanisms governing species interactions with the environment and with other
organisms [8,10–12,14].

It is estimated that there are between 200,000 and 1,000,000 metabolites in the plant kingdom,
of which about 51,000 (as listed in the KNApSAcK database 2018-02-14, [15]) have been found in
higher plants [15,16]. However, many of the known compounds have been identified only in model
organisms. Although metabolomics is one of many tools available in chemical ecology, its wide
compound coverage sets it apart from “classic” approaches. Metabolomics allows for new strategies to
discover novel compounds and their functioning in ecosystems particularly when including non-model
species [17,18].

Thus, there is a growing interest to apply Eco-Metabolomics to various levels of biodiversity
research, ranging from individuals, populations and communities to whole ecosystems. Metabolomics
allows the analysis of chemical variation among non-model organisms with regard to one or more
ecological factors. Moreover, it may result in the discovery of metabolomic traits that explain ecosystem
functioning or community assembly [2,19–21]. Eco-Metabolomics approaches promise to reveal the
biochemical basis of various ecological interactions. In ecology and biodiversity research, organisms are
often sampled from natural or semi-natural environments and, as a result, many large field experiments
have been set up. For example, biodiversity ecosystem functioning (BEF) experiments such as Cedar
Creek, BIODEPTH, the Jena Experiment or BEF-China comprise plant communities, varying in plant
species richness [22–25]. They are originally designed to investigate the relationship between plant
diversity and a wide range of ecosystem functions, but also address the effects of environmental factors
such as soil type, temperature, fertilization, disturbances and interacting organisms. The worldwide
CTFS-ForestGEO network has been established to understand the impact of climate change on forest
ecosystems [26]. With such large experimental facilities, basic ecological growth and performance
parameters, as well as physiological responses of plants to ecological factors are measured over long
time periods [27]. In addition, national and international networks and programmes such as the
US NSF National Ecological Observatory Network (NEON), the Nutrient Network (NutNet) or the
Long Term Ecological Research (LTER) sites have been set up to promote such research activities
worldwide [28–30]. Even though metabolomics analyses have not yet been included in most of
these and other ecological research projects, there is a huge potential to apply metabolomics in field
experiments with designed and controlled complexity.

Typically, these field experiments are accompanied by collections of large data sets that require
advanced biostatistical analyses. When metabolomics analyses are applied, the magnitude of the data
collection will increase considerably. In mass spectrometry (MS), data are comprised of thousands
of chemical features that are described by retention time (RT) and mass-to-charge-ratio (m/z) [31].
Moreover, metabolite matrices are merely starting points for sample classification and further structural
identification [1,32]. To identify the ecological function of metabolic shifts, further data are usually
included in the form of species-related traits and environmental variables. In this context, there is
an urgent need for sophisticated bioinformatics tools that help to characterize metabolic shifts in
organisms in response to various ecological interactions [33].

In this review, we focus on plants and their biochemical interactions at various ecological
levels. These include trophic and other interaction networks such as plant–plant, plant–herbivore,
plant–pathogen, plant–environment and plant–soil. We include examples of where metabolomics
has been applied to diversity research and also discuss related examples from other domains. First,
we analyse how ecology and biochemistry traditionally approach research from two different directions.
Then, we explore the importance of Eco-Metabolomics linking biochemistry and ecology. Finally,
we discuss current challenges and present recommendations.

2. What Is Eco-Metabolomics?

While there are many different definitions and views on Eco-Metabolomics, it can be understood
as the application of metabolomics techniques in ecological studies to characterise biochemical
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mechanisms underlying interactions of organisms with the environment and with other organisms
across different spatial and temporal scales. Metabolomics either characterises metabolites in a
sample following an untargeted approach without necessarily identifying metabolites (metabolic
fingerprinting) or uses semi-targeted approaches that focus on specific groups of metabolites or
specific pathways (metabolite profiling) [34]. Eco-Metabolomics employs both approaches to provide
biochemical evidence for ecological processes, e.g., plant growth, phenotypic responses, morphological
adaptations to environmental changes or responses to other organisms such as pathogens, herbivores,
competitors, parasites or symbiotic organisms at coarser scales of spatiotemporal complexity. The main
distinctions between Eco-Metabolomics and chemical ecology are the complex experiment designs,
especially with field experiments focusing on species interactions in communities and ecosystems and
the acquisition and concomitant analysis of a multitude of metabolites in a singular approach [17].
When compared to typical metabolomics, these characteristics and the use of non-model species reduce
the numbers of “true replicates” and cause additional random variation created by the variability in
genetic background and the natural environment.

3. Current Research

The term “Eco-Metabolomics” (or “Ecometabolomics”) is not yet well established in the scientific
community. However, there is a growing number of publications that use cognate terms either in
the abstract or as part of the keywords (Figure 1). To find studies related to “Eco-Metabolomics”,
search terms such as “metabolomics + ecology” or “metabolomics + diversity” were used in public
databases such as PubMed (Figure 1a). Tables 1 and 2 show an overview of some selected research
papers in the discipline of Eco-Metabolomics.

Figure 1. Search hits for terms related to Eco-Metabolomics in PubMed in the last decade: (a) search
hits by specific terms; (b) number of original research studies in Table 1 targeting a specific interaction
level; and (c) number of original research studies in Table 1 that used specific metabolomics
acquisition methods.
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Table 1. Overview of selected research studies in the field of Eco-Metabolomics in the last decade. The table was ordered by the columns “Approach”, “Interaction
level” and “Non-model species”. Bottom-up in the column “Approach” defines an approach typically taken by biochemists who infer from spatiotemporally fine
scales such as from molecular and physiological scales within plants to spatiotemporally coarser scales. Top-down defines an approach typically taken by ecologists
who infer from spatiotemporally coarse scales such as community and population scales to intrinsic scales within plants. “Interaction level” refers to the type of
ecological or biological interaction which has been analysed in the study. The column “Non-model species” refers to whether a model species such as A. thaliana,
rice or tomato was used in the study. The column “Experimental methodology” lists the type of environment in which the study was performed. “Metabolomics
acquisition method” refers to the type of metabolomics technology that was used in the study.

Reference Approach Interaction Level Non-Model
Species? Plant Species Studied Experimental

Methodology

Metabolomics
Acquisition
Method

Statistical Methods Bioinformatics
Tools Used

Compounds
Identified Key Results

[35] top-down plant–diversity yes

Bellis perennis
Knautia arvensis
Lotus corniculatus
Medicago x varia
Leontodon autumnalis

field GC/MS
FT-ICR-MS

GLM, PCA, ANOVA, HCA,
Kruskal–Wallis test yes

Negative effects of resource
competition with small-statured
species, modified metabolite
profiles in response to altered
resource availability with
tall species

[36] top-down plant–diversity yes

Festuca pratensis
Poa pratensis
Plantago lanceolata
Prunella vulgaris
Crepis biennis
Galium mollugo
Onobrychis viciifolia
Trifolium repens

semi-field plots FTIR LDA, Canonical variate
analysis, NMDS, HCA classes

Metabolic profiles of species can be
differentiated according to the
diversity level they grew in

[37] top-down plant–environment yes Lepidium latifolium field HPLC ANOVA, Tukey HSD SPSS yes

The species (also described as
“sleeper weed“) has biochemical
plasticity in response to
different environments

[38] top-down plant–environment yes Carex caryophyllea growth chamber LC/MS PCA, DCA,
Pearson correlation SIMCA-P, PC-ORD no

Interaction of genetic diversity and
resulting metabolite plasticity with
regard to soil type
and environment

[39] top-down plant–environment yes

Poa annua Poa cookii
Poa kerguelensis
Ranunculus biternatus
Ranunculus pseudotrullifolius
Ranunculus moseleyi
Pringlea antiscorbutica
Acaena magellanica
Taraxacum erythrospermum

field HPLC discriminant
analysis, ANOVA StatSoft yes Differences in amine composition

can be linked to environment
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Table 1. Cont.

Reference Approach Interaction Level Non-Model
Species? Plant Species Studied Experimental

Methodology

Metabolomics
Acquisition
Method

Statistical Methods Bioinformatics
Tools Used

Compounds
Identified Key Results

[40] top-down plant–environment yes

Artemisia biennis
Artemisia vulgaris
Bidens frondosa
Bidens tripartita
Senecio inaequidens
Senecio vulgaris
Senecio jacobaea
Solidago gigantea
Solidago virgaurea
Tanacetum parthenium
Tanacetum vulgare
Tragopogon dubius
Tragopogon pratensis

greenhouse LC/MS ANOVA, Spearman
correlation Metalign, R no

Exotic species have more and also
more unique metabolites when
compared to native congeners,
herbivore performance was lower
with exotics

[41] top-down plant–environment yes

Brachythecium rutabulum
Calliergonella cuspidata
Fissidens taxifolius
Grimmia pulvinata
Hypnum cupressiforme
Marchantia polymorpha
Plagiomnium undulatum
Polytrichum strictum
Rhytidiadelphus squarrosus

field LC/MS
dbRDA, HCA, ANOVA,
Tukey HSD, Pearson
correlation, Mantel test

R, CompassXPort,
CompassIsotopePattern,
CompassDataAnalysis,
ISAcreator,
Docker, Galaxy

no

Patterns in metabolite profiles of
bryophytes are connected to
phylogenetic history, seasonal
changes, ecological characteristics
and life strategies

[42] top-down plant–environment yes Myriophyllum spicatum field GC/MS t-test, PCA R, XCMS no
Metabolite profiles are related to
ontogenetic development, habitat
and nutrient status of lake

[43] top-down plant–environment yes
Quercus acutissima
Schima superba
Sapindus saponaria

field LC/MS-MS
HPLC

ANOVA, F-test,
NMDS, RDA R yes

Litter diversity effects on the
decomposition of leaf litter tannin
and polyphenols of three
tree species

[44] top-down plant–environment yes Erica multiflora field
CHNS-O
elemental
analyser NMR

MANOVA, PERMANOVA,
PCA, DA

TOPSPIN,
PRIMER, Statistica yes Stoichiometrical evidence for the

growth-rate hypothesis

[45] top-down plant–environment yes Quercus ilex field LC/MS
NMR CEM

PERMANOVA, ANOVA,
PCA, PLS-DA, GLM

R, TOPSPIN,
AMIX, Statistica classes

Drought shifts metabolism as
plants adapt metabolism and
folivory to prevent water loss

[46] top-down plant–herbivore yes

Inga marginata
Inga acreana
Inga auristellae
Inga tenuistipula
Inga umbellifera
Inga laurina

field LC/MS
PCA, HCA, PLS-DA,
Venn, ANOVA,
Kruskal–Wallis test

R, MetaboAnalyst no

Metabolomics and advances in
bioinformatics allow For
comprehensive examination of
shifts in foliar chemical defenses of
trees depending on leaf
development stage
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Table 1. Cont.

Reference Approach Interaction Level Non-Model
Species? Plant Species Studied Experimental

Methodology

Metabolomics
Acquisition
Method

Statistical Methods Bioinformatics
Tools Used

Compounds
Identified Key Results

[47] top-down plant–herbivore yes Bunias orientalis growth chamber LC/MS

linear (mixed effect) model,
ANOVA, NMDS, Mantel
test, Spearman rank
correlation, Shannon
diversity, Holm-Sidak,
Levene's test

R yes
(glucosinolates)

Genetic distances of 16 Bunias
orientalis populations correlated
with metabolite fingerprints;
invasion success is facilitated by
high metabolite variation and
diversity within populations
which play a role with reducing
herbivory to the herbovore
Mamestra brassicae

[48] top-down plant–herbivore yes Inga heterophylla
Inga capitata field GC/MS

LC/MS PCA, PLS-DA R, Metaboanalyst yes

interactions with natural enemies
play a significant role in
phenotypic divergence and
potentially in diversification and
coexistence of two tropical sister
species; defensive traits are
evolutionary labile

[49] top-down plant–herbivore yes Bunias orientalis glasshouse LC/MS
linear mixed model, REML,
Tukey-Kramer test,
PCA, ANOVA

SAS, R classes
(glucosinolates)

Native populations are better
defended against herbivory than
non-native populations

[50] top-down plant–herbivore yes 37 Inga species field LC/MS HCA, PCA, Bayesian R, MrBayes, MacClade classes

Species of Inga trees that co-occur
at local and regional spatial scales
are less similar in terms of their
metabolomes than by chance,
suggesting that interactions with
shared herbivores and pathogens
(whose host ranges are determined
by the trees’ metabolomes) select
for chemically diverse plant
assemblages, and hence facilitate
ecological coexistence in the tree
community (in this case among
congeneric trees)

[51] top-down plant–herbivore yes Barbarea vulgaris subsp. arcuata growth chamber LC/MS t-test, correlation,
regression, HCA, PCA MetAlign, Java, SAS, R yes + classes

Metabolite profiles differentiated
plants susceptible to the herbivore
Phyllotreta nemorum, the known
compounds hederagenin
cellobioside and oleanolic acid
cellobioside, as well as two other
saponins were correlated with
plant resistance

[52] top-down plant–herbivore yes Daucus carota growth chamber NMR
Pearson correlation,
ANOVA, PCA,
PLS-DA, OPLS-DA

TOPSPIN, SIMCA-P yes

Wild carrots are more resistant to
herbivores than cultivated species
+ identification of compounds that
are important for interaction
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Table 1. Cont.

Reference Approach Interaction Level Non-Model
Species? Plant Species Studied Experimental

Methodology

Metabolomics
Acquisition
Method

Statistical Methods Bioinformatics
Tools Used

Compounds
Identified Key Results

[53–55] top-down plant–herbivore yes

Pinus sylvestris ssp. nevadensis
Pinus sylvestris ssp. iberica
Pinus pinaster Pinus nigra
Pinus nevadensis

field LC/MS

Shapiro–Wilk, ANOVA,
Levene's test,
PERMANOVA, Tukey's
HSD, PCA, Euclidean
distance, PERMANOVA,
PLS-DA, HCA

R, MZmine no

The metabolomes of the tested
Pinus species were more dissimilar
to folivory in summer than in
winter possibly due to
drought conditions

[56] top-down plant–herbivore yes

46 tree species from four
genus-level clades, including
Eugenia (4 species),
Inga (14 species),
Ocotea (including Nectandra;
8 species) and Psychotria
(including Palicourea;
20 species)

field LC/MS
LC/MS-MS

Chemical structural
compositional similarity,
Bray-Curtis similarity,
Permutation test

GNPS, R
yes
(in Supporting
Information)

Interspecific differences, including
those among congeneric species of
trees, were much larger than
within species and chemical
structural similarity of ontogeny,
light environment and season.
Variation between metabolite
profiles permits niche segregation
among congeneric tree species
based on chemical defences.

[57] top-down plant–herbivore no Zea mays ssp. mays
Zea mays ssp. parviglumis glasshouse LC/MS linear mixed model,

ANOVA, PLS, MANOVA yes (BXDs)

Domesticated maize plants have
weakened chemical defences
against several herbivores when
compared to teosinte, the wild
maize ancestor

[58] top-down plant–herbivore no Nicotiana attenuata greenhouse LC/MS
LC/MS-MS

Coexpression
networks, PCA R, Cytoscape yes

Metabolic branch-specific
variations in natural accessions
identified by fragmentation
analysis, discovery and annotation
of ecologically
interesting compounds

[59] top-down plant–pathogen yes

Piper santi-felicis
Piper multiplinervium
Piper cenocladum
Piper reticulatum
Piper holdrigeanum
Piper auritum
Piper xanthostachym
Piper peltatum
Piper melanocladum

field NMR

Diversity indices, a priori
path models
(PROC CALIS), upfield and
downfield diversity

MestReNova, SAS classes

Elevated phytochemical diversity
in 9 Piper species has positive
effects on the diversity of
herbivores and reduces overall
herbivore damage. Metabolite
profiles provide mechanistic
evidence for the predominance of
specialized insect herbivores
on Piper

[60] top-down plant–plant yes Pinus halepensis
Quercus pubescens field GC/MS

ANOVA, Tukey test, t-test,
PCA, SIMPER,
Mann–Whitney test

R, PRIMER-E,
GraphPad no

Plants modulate their metabolism
(trade-off of allelopathy and
growth) according to level
of competition

[61] top-down plant–plant yes Plantago lanceolata greenhouse HPLC linear mixed model,
Tukey HSD R no

Phenotypic plasticity in response
to environmental variation rather
than genetic differentiation as a
response to plant diversity
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Table 1. Cont.

Reference Approach Interaction Level Non-Model
Species? Plant Species Studied Experimental

Methodology

Metabolomics
Acquisition
Method

Statistical Methods Bioinformatics
Tools Used

Compounds
Identified Key Results

[62] top-down plant–plant yes
Karenia brevis
Asterionellopsis glacialis
Thalassiosira pseudonana

cultures LC/MS NMR PCA, PLS-DA
Matlab, PLS_Toolbox,
SEQUEST,
NMRLab, MassLynx

yes

Allelochemicals target multiple
pathways in competitors, affecting
primary production and nutrient
cycling in ecosystems

[63] top-down plant–pollinator yes Silene otites field
semi-field plots GC/MS non-parametric ANOVA,

Tukey-Kramer post hoc test
Saturn Software,
MassFinder, Statistica yes

Diel variation in floral volatile
composition, emission patterns
correspond to olfactory ability and
activity times of insect pollinators

[64] top-down plant–soil yes Holcus lanatus
Alopecurus pratensis field LC/MS NMR

PERMANOVA, PCA,
PLS-DA, ANOVA,
Kolmogorov-Smirnov test

MZMINE, TOPSPIN,
AMIX, Statistica, R yes

Different responses of species to
environmental stresses, responses
opposite in shoots and roots

[65] top-down plant–soil yes Sambucus nigra field LC/MS
PERMANOVA, PCA,
PLS-DA, ANOVA,
Kolmogorov-Smirnov test

MZMINE, Statistica, R yes
Microbial communities in the
phyllosphere have impact on
metabolome of plants

[66] bottom-up plant–environment yes Pseudotsuga menziesii growth chamber GC/MS t-test SigmaPlot, Excel yes

Provenance-specific reactions to
environmental stress as outlined
with identifying
specific compounds

[67] bottom-up plant–environment yes Ostreococcus tauri cultures GC/MS none
Xcalibur, MET-IDEA,
Excel, AMDIS,
MS Search

yes
Metabolomes show diurnal
fluctuations + identification of
formerly unknown metabolites

[68] bottom-up plant–environment yes Echium plantagineum
Echium vulgare glasshouse LC/MS Logistic regression MassHunter,

Statistix, Excel yes Role of shikonins in relation to
plant phenological stage

[69] bottom-up plant–environment yes Cistus ladanifer field HPLC HCA, ANOVA - yes
Intra-population variation in the
metabolomes with regard
to environment

[70] bottom-up plant–environment no Synechococcus elongatus cultures LC/MS
LC/MS-MS

Pearson correlation,
Spearman correlation,
NMDS, ANOSIM

XCalibur, Excel, R,
Metlin, MetFrag, KEGG,
MetaboLights

yes
Exuded metabolites to the
environment have ecological
relevance on e.g., microbes

[71] bottom-up plant–environment no Zea mays greenhouse NMR ANOVA, PCA, HCA,
linear regression SIMCA-P+, SPSS yes Plastic responses of different maize

lines to temperature conditions

[72] bottom-up plant–environment no Solanum lycopersicum greenhouse LC/MS OPLS-DA, ANOVA SIMCA yes

Metabolome of tomato changes
with different salinity levels,
carotenoid accumulation with
higher salinity was observed
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Table 1. Cont.

Reference Approach Interaction Level Non-Model
Species? Plant Species Studied Experimental

Methodology

Metabolomics
Acquisition
Method

Statistical Methods Bioinformatics
Tools Used

Compounds
Identified Key Results

[73–75] bottom-up plant–fungus
plant–herbivore yes

Plantago major
Plantago lanceolata
Veronica chamaedrys
Medicago truncatula
Poa annua

growth chamber
climate chamber

GC/MS
LC/MS LC-FL
elemental
analyser

cluster heatmap average
linkage, HCA, Pearson
correlation, GLM,
Mann–Whitney U test,
Kruskal–Wallis test, Dunn
test, volcano plot, Chi2 test,
Venn-Euler diagram

MassHunter, Xcalibur,
XCMS, R, Excel, GLM,
Cluster, JavaTreeView,
MATLAB, KEGG

yes

There is a core-Metabolome across
species and a phytometabolome
which is species-specific as a
response to arbuscular mycorrhizal
fungus. Foliar metabolome
modifications are determined by
the developmental stage of
arbuscular mycorrhiza with
changes becoming more
pronounced over time and being
only partly phosphate-mediated.
Specific effects of jasmonic acid
and salicylic acid on metabolite
pattern in leaf tissue and
phloem exudates.

[76] bottom-up plant–herbivore yes Solanum dulcamara greenhouse LC/MS

Friedman ANOVA,
Wilcoxon signed-rank test,
Pearson's correlation test
and heatmap

MetaboAnalyst 3.0 yes

Variation in steroidal
glycoalkaloids (GAs) correlated
with slug preference; accessions
with high GA levels were
consistently less damaged by slugs.
One, strongly preferred, accession
with particularly low GA levels
contained high levels of
structurally related steroidal
compounds. These were
conjugated with uronic acid
instead of the glycoside moieties
common for Solanum GAs.

[77] bottom-up plant–herbivore yes Plantago lanceolata growth chamber LC/MS
GC/MS

GLM, Kruskal–Wallis test,
PCA, Mann–Whitney U
test, volcano plot, Chi2 test,
Venn-Euler diagram

MassHunter, Xcalibur,
XCMS, R, Excel,
MATLAB, VennMaster

yes

Metabolic fingerprints were
considerably affected especially by
generalist and phytohormone
treatments, but less by mechanical
damage and specialist herbivory.
Responses to generalists partly
overlapped with the changes due
to jasmonic acid, but many
additional peaks were
up-regulated. Many features were
co-induced by jasmonic and
salicylic acid.
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Table 1. Cont.

Reference Approach Interaction Level Non-Model
Species? Plant Species Studied Experimental

Methodology

Metabolomics
Acquisition
Method

Statistical Methods Bioinformatics
Tools Used

Compounds
Identified Key Results

[78] bottom-up plant–herbivore yes Brassica oleracea greenhouse LC/MS
LC/MS-MS PCA, PLS-DA Metaboanalyst 3.0 yes

Results showed that Xcc infection
causes dynamic changes in the
metabolome of B. oleracea.
Repression pattern of the
metabolites implicated in the
response follows complex
dynamics during infection
progression indicating a complex
temporal response. Specific
metabolic pathways such as
alkaloids, coumarins or
sphingolipids are identified as
candidates in the
infection response

[79] bottom-up plant–herbivore no Oryza sativa growth chamber LC/MS
LC/MS-MS ANOVA, LSD, PCA, t-test MetaboAnalyst, Excel yes

Identification of formerly
unknown compounds in rice in
response to herbivory

[80] bottom-up plant–herbivore no Brassica oleracea climate chamber
HPLC CHN
elemental
analyser

ANOVA, LSD test, t-test PASWStatistics yes
Responses of herbivores and their
interactions with host plants are
depending on drought stress

[81] bottom-up plant–herbivore no Nicotiana attenuata climate chamber LC/MS
PCA, Shapiro–Wilk test,
t-test, linear mixed
model, REML

MetaboAnalyst, R yes Damage-induced defence may
undergo circadian fluctuation

[82] bottom-up plant–herbivore no Arabidopsis thaliana growth chamber GC/MS
LC/MS

Kruskal–Wallis,
Tukey HSD,
Mann–Whitney U test,
t-test, Spearman
correlation, GLM, PCA,
OPLS-DA, ANOVA

XCalibur, Agilent
MassHunter, SIMCA, R yes Systemic plant responses to

nematode and aphid interferences

[83] bottom-up plant–herbivore no Arabidopsis thaliana growth chamber
GC/MS
elemental
analyser

PCA, PLS-DA,
two-way ANOVA XCalibur, R yes

Effects of aphid shoot feeding on
root metabolite profiles depend on
fertilization, leading to contrasting
effects on nematodes

[84] bottom-up plant–herbivore no Nicotiana tabacum growth chamber NMR GC/MS PCA, OPLS-DA SIMCA-P+ yes
Conclusions for plant defence
mechanisms following infection of
leafy gall

[85] bottom-up plant–plant yes Populus alba Populus tremula field LC/MS
PCA, ANOVA, LSD test,
Mann–Whitney U test,
Mantel test

Markerlynx XS, SPSS yes Linking chemical traits to
genotypic evolution

[86] bottom-up plant–plant yes Chaetoceros socialis cultures LC/MS Mann–Whitney U test,
Spearman correlation, PCA

Statistica, MarkerLynx
XS, Excel no

linking metabolite profiles to
phenotypic differences, phylogeny
and temperature regimes

[87] bottom-up plant–plant yes Heracleum mantegazzianum greenhouse LC/MS
linear mixed models,
variance component
analysis, OPLS, ANOVA,

R, MetAlign, SIMCA-P yes
Intraspecific variability is
important with allelopathy +
identification of some compounds
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Table 2. List of related review papers that deal with specific questions related to Eco-Metabolomics. The table was ordered by means of the columns “Approach”,
“Spatiotemporal scales covered” and “Interaction level”. Bottom-up in the column “Approach” defines an approach typically taken by biochemists who infer from
spatiotemporally fine scales such as from molecular and physiological scales within plants to spatiotemporally coarser scales. Top-down defines an approach
typically taken by ecologists who infer from spatiotemporally coarse scales such as community and population scales to intrinsic scales within plants. The column
“Spatiotemporal scales covered” list the scale levels which have been covered. “Interaction level” refers to the type of ecological or biological interaction which
have been covered in the review paper. “Metabolomics acquisition methods” refers to the type of metabolomics technology that have been described in the paper.
The column “Contribution of metabolomics” list the value that metabolomics contributes to research.

Reference Approach Spatiotemporal Scales Covered Interaction Level Metabolomics
Acquisition Methods Contribution of Metabolomics

[88] top-down
Community
Population
Individual

plant–herbivore
plant–pathogen -

Multitrophic interactions within a web of species interactions are mediated by
phytochemicals that can be determined with metabolomics.
These phytochemicals influence and trigger immune responses in both plants and
herbivores/pathogens.

[89] top-down
Community
Population
Individual

plant–herbivore plant–pathogen
plant–plant

NMR
LC/MS, LC/MS-MS

Metabolomics can reveal cryptic biochemical traits that mediate interactions of
plants with other organisms; emphasis on species coexistence, lineage
diversification and character evolution and potential of metabolomics

[90] top-down

Community
Population
Individual
Physiology
Molecular

plant–plant plant–community GC/MS
Central role of metabolomic traits that can describe species coexistence chemically,
Metabolomics can be used to detect the genetic identity of neighbours if they have
common history of coexistence

[91] top-down
Landscape
Community
Population

plant–environment
plant–community plant–plant - Metabolomics and chemical/ecophysiological interactions can be used to describe

plant traits and phenotypic plasticity

[92] top-down

Landscape
Community
Population
Individual
Physiology
Molecular

plant–environment

LC/MS
GC/MS
NMR
HPLC

Climate change acts on various scales on plants and affects their phenotypic
plasticity, genotypic evolution, migration and local extinction of populations and
result in biogeochemical and biophysical feedbacks: The potential of
metabolomics are highlighted

[93] bottom-up
top-down

Community
Population
Individual
Physiology

rhizosphere community
plant–plant plant–herbivore
plant–pathogen
plant–community

GC/MS
LC/MS
NMR

Metabolomics can help to understand interactions of plant roots and organisms in
the rhizosphere

[94] top-down
bottom-up

Community
Population
Individual

plant–plant plant–herbivore
plant–community

FTIR
NMR
UV

Metabolomics can provide new insight into ecological processes such as
interactions of plant with pollution, biotic and environmental stress

[95] top-down
bottom-up

Community
Population
Individual
Physiology
Molecular

plant–environment

GC/MS
LC/MS
NMR
HPLC
Fluorescence
microimaging

Metabolomic approaches (untarged + targeted) can provide powerful insights at
various scales
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Table 2. Cont.

Reference Approach Spatiotemporal Scales Covered Interaction Level Metabolomics
Acquisition Methods Contribution of Metabolomics

[96] top-down
bottom-up

Landscape
Community
Population

plant–environment
GC/MS
LC/MS
NMR

Metabolite profiles of model species can be used to determine ability of plant to
recover from stress but also for stress-buffering capacities of ecosystems

[10] top-down
bottom-up

Population
Individual
Physiology

plant–environment
plant–herbivory

LC/MS
GC/MS
FT-ICR
NMR

Ecophysiological responses of plants to temperature, water, nutrients,
light/circadian rhythm, atmospheric gases, seasonality; differentiation of aquatic
and terrestrial organisms; emphasis on field studies and variation; biotic
interactions

[97] bottom-up

Community
Population
Individual
Physiology

plant–plant -

With plant–plant interactions, especially competition, sensing of compounds
through light-quality signals, nutrient levels, soluble root exudates and volatile
organic compounds emitted by neighbouring plants both above- and
below-ground is vital

[98] bottom-up

Community
Population
Individual
Physiology
Molecular

rhizosphere community -
Metabolic pathways of microbes in the rhizosphere can be modelled with
meta-genomic sequencing data and systems biology approaches. Systems biology
approaches enable scale-independent thinking.

[7] bottom-up Individual
Physiology plant–environment

NMR
LC/MS, LC/MS-MS
GC/MS
FT-ICR
DIMS

Potential and challenges of environmental metabolomics with emphasis on
analytical techniques

[99] bottom-up Individual
Physiology plant–fungus GC/MS

LC/MS

Mycorrhiza-mediated changes in foliar metabolome are highly species-specific
and cover many different compound classes; changes can confer protection
against abiotic stresses and have consequences on numerous biotic interactions

[100] bottom-up Individual
Physiology plant–herbivore GC/MS

LC/MS
Role of system-wide untargeted metabolomics analysis for plant–herbivore
interactions with emphasis on analytical and statistical methods

[101] bottom-up Individual
Physiology plant–pathogen NMR Application of NMR in metabolomics and its role in detecting host plant

resistance to pathogens

[102] bottom-up
Individual
Physiology
Molecular

plant–environment
plant–herbivore plant–pathogen

GC/MS
LC/MS, LC/MS-MS
NMR

Metabolomics can provide detailed insights into ecological interaction processes;
Targeted and comparative metabolomics can reveal new and important
compounds involved with these interactions; general analytical and statistical
approaches are discussed

[103] bottom-up
Individual
Physiology
Molecular

plant–environment plant–plant
plant–herbivory plant–pathogen
systems biology

GC/MS
LC/MS
NMR

General contribution of metabolomics from a systems biological view point

[104] bottom-up
Individual
Physiology
Molecular

plant–pathogen plant–mutualist
plant–microbes

GC/MS
LC/MS
FIE-MS
FT-ICR-MS

Metabolomics can provide improved spatial and temporal separation of
biotrophic interaction processes between plants and pathogenic +
mutualistic fungi

[105] bottom-up
Individual
Physiology
Molecular

plant–environment

GC/MS
LC/MS
NMR
LIF

Ecophysiological responses of plants to drought, cold stress, salinity + integration
of several Omics
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Table 2. Cont.

Reference Approach Spatiotemporal Scales Covered Interaction Level Metabolomics
Acquisition Methods Contribution of Metabolomics

[106] bottom-up

Landscape
Community
Population
Individual
Physiology
Molecular

plant–environment systems
biology

GC-MS
LC/MS
UPLC
Proteomics

Practical applications necessitate in-depth understanding of the physiology of
single plant species; Metabolomics is one key technology to translate this
knowledge to complex ecosystems; Correlation networks are one way to
determine multi-scale interactions

[107] bottom-up

Landscape
Population
Individual
Physiology

plant–environment -

Metabolomics can identify biomarkers and contaminants involved with
environmental pollution; Metabolomics can be used to develop policies and
management for sustainable environments; The concept of scaling and levels of
biological organisation are discussed

[108] bottom-up
Population
Individual
Physiology

plant–environment
LC/MS
GC/MS
NMR

General overview on experimental design, extraction methods, analytical
instrumentation and statistical methods used in environmental metabolomics and
pipeline how to detect biomarkers

[109] bottom-up

Population
Individual
Physiology
Molecular

plant–herbivore

LC/MS
GC/MS
NMR
FTIR

Metabolomics is a research domain linking genotypes to phenotypes, describing
metabolites that are important in plant herbivore interactions
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We found 53 Eco-Metabolomics studies that performed experiments at various interaction levels
(Figure 1b and Table 1). In total, 57% of these studies were performed with cultures or in chambers or
greenhouses and 45% followed a bottom-up approach (Table 1, see Section 4). Overall, 43% performed
field experiments and 55% realized a top-down approach (Table 1, see Section 4). Especially these
latter studies used non-model species as study subjects. Most studies (85%) identified compounds
or compound classes or had an acquisition method that targeted specific compound classes (Table 1).
The most common metabolomics acquisition methods were LC/MS, GC/MS and NMR (Figure 1c).
Some studies used additional methods such as (U)HPLC without MS and elemental analysers to assist
metabolomics (Figure 1c).

4. Bridging the Gap between Biochemistry and Ecology

Traditionally, the fields of biochemistry and ecology operate at distinct spatiotemporal scales
with different biochemical resolution (Figure 2a). For example, initially, biochemistry and chemical
ecology explored the diversity of natural products with the goal to identify the specific compounds
that underlie isolated organismal interactions. This view has been challenged as many compounds
have been identified to be multifunctional across spatial and temporal scales and appear to be also
involved in multiple organismal interactions [17]. In contrast, Eco-Metabolomics is an integrative
multidisciplinary research discipline that has emerged to conciliate these different scales.

As illustrated by [92], climate change has impacts on multiple scales. Altered temperature and
moisture conditions can modify gene expression and the biochemistry of plants, which act at different
scales within the species (Figure 2a). At these intrinsic scales, biochemical responses can be detected
by measuring changes in metabolite levels [95]. At the same time, the different individual responses
of plant species in the community modify species composition acting at population and community
scales [110,111]. An outcome can be species migration, which is apparent at spatiotemporally coarse
scales ranging from a few up to several hundred kilometres (Figure 2a). Finally, all these different
kinds of changes affect ecosystem services and thus indirectly human well-being [107]. In each of these
processes, metabolite profiles can be used to measure plant responses with different biochemical
resolution [112]. They can also be used to identify biochemical traits that can serve as marker,
e.g., for phenotypic plasticity, chemical interactions with other organisms or resolving the invasive
potential of exotic plants [37,47,110]. Thus, Eco-Metabolomics is a discipline which allows researchers
to describe interactions between processes acting at different spatiotemporal scales. Because it uses
metabolites for mechanistically describing these processes, it can be seen as the mediator between
different research approaches [94]. Bioinformatics and biostatistical tools are important during the
entire data processing and data analysis pipeline [46].

In the following, two different approaches are presented. The “bottom-up” approach is typically
taken by biochemists who infer from spatiotemporally fine scales within plants (e.g., processes in
cells, physiological traits, growth) to spatiotemporally coarser scales (e.g., population fitness, biomass,
yield of crops) (Figure 2a,b). By contrast, the “top-down” approach is typically taken by ecological
studies that infer from spatiotemporally coarse scales (e.g., interaction processes at population and
community scales) to spatiotemporally finer scales (e.g., identifying morphological, physiological and
biochemical traits of plants). Table 1 lists studies and orders them according to the approach taken.

4.1. The Bottom-Up Approach, Inferring from Cellular to Individual Spatiotemporal Scales

Traditionally, biochemistry mainly targets intrinsic processes in individual organisms.
For example, the role of biochemical compounds is elucidated in biological pathways acting at the
cellular scale or physiological processes on the scales of organs of well-known model species (Figure 2a).
In Eco-Metabolomics, both systemic and intrinsic physiological responses to environmental factors
are studied in model and non-model species (Figure 2a,b). To understand the relevance of these
biochemical responses it is pivotal to identify metabolites that are modulated under certain conditions
or that distinguish individuals or species interacting at population and community scales [6,112].
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Such metabolites can describe processes at spatiotemporally coarser scales such as changes in yield
and biomass of crops, or pinpoint changes in species interactions at population and community scales.

Figure 2. Spatiotemporal scales and the central position of Eco-Metabolomics as a mediator between
biochemical and ecological scales. (a) Spatiotemporal scales and levels of complexity. The different
spatiotemporal scales are listed in the centre. Exemplary mechanistic processes and their association with
particular spatiotemporal scales are listed on the left. Exemplary organisational entities and their association
with spatiotemporal scales are listed on the right. (b) Central position of the organism metabolome and
some interactions acting at different spatiotemporal scales. Figures modified after references [14,107].

For example, [72] investigated how the metabolome of tomato fruits changes with different salinity
levels and observed carotenoid accumulation with higher salinity. [71] found plastic responses of
leaves of different maize lines to different temperature conditions and identified metabolites associated
with heat and cold stress. Similarly, foliar metabolic changes related to drought stress were studied
in Arabidopsis thaliana [13]. Symbiotic interactions between several plant species and an arbuscular
mycorrhizal fungi (AMF) have been studied by [74]. They annotated foliar metabolites that are shared
between species, those that are species-specific as well as overlapping leaf metabolic responses to
AMF. [84] described allelochemicals in tobacco that are produced in leafy galls induced by a fungal
pathogen. Moreover, [82] analysed plant metabolome changes in response to nematode and aphid
interferences in roots and shoots and found that the responses highly depend on the fertilization status
of the plant [83].

The examples above demonstrate that a bottom-up research approach is common in biochemistry
(Figure 2a,b). Here, metabolites are studied and conclusions are drawn from intrinsic processes (e.g., genes,
metabolites and pathways). These are then related to higher levels of organisation, usually from plant
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cells or organs to individuals or from individuals up to plant populations. At fine scales, the complexity
of biological mechanisms is large and turn-over of processes such as translation into molecules, enzymatic
activity, biochemical pathways and cell cycles occur within seconds to a few hours [107].

To control for this complexity, biochemical research is typically carried out with model
species (e.g., A. thaliana, Medicago, tobacco or tomato). The increasing knowledge of the role of
metabolites in these model species also allows the analysis of non-model species which are more
commonly used in Eco-Metabolomics. This often goes along with more complex experimental designs.
For example, [80] realized a three-factorial approach. They studied the responses of Brassica oleracea to
leaf age, herbivory and drought stress. Similarly, [83] studied interference of two herbivores (one aphid
and one nematode species) and two fertilization conditions simultaneously. [68] performed a glasshouse
experiment with two Echium species and identified root shikonins at the physiological level to play an
important role with plant phenological stage at the population scale (refer also Table 1 for more examples).

Many of the above studies used untargeted approaches to determine the different states of
organisms. However, metabolomics techniques can also be efficiently used for the identification of true
mediators of interactions [102]. If there is already some knowledge of the chemical properties, targeted
profiling can be used to identify candidate metabolites. Their function can be confirmed by bioassays
as e.g., demonstrated by the identification of the first sex-pheromone of unicellular diatoms [113].

4.2. The Top-Down Approach, Inferring from Coarse to Fine Spatiotemporal Scales

By contrast, in ecological experiments, environmental effects and biotic interactions of organisms
are studied. This is achieved at spatiotemporally coarse scales, e.g., at the population scale (in which
intraspecific differences are mainly studied) or at the community scale (where responses of different
plant species in an ecosystem are studied) [110]. Processes at these scales occur over a time-span of
hours (e.g., along with diurnal cycles) up to several years (e.g., species migration and community
changes as a response to climate change). At these coarse scales, complexity of interactions between
organisms is expected to be larger than intrinsic biological mechanisms (Figure 2b) [107].

Only a few studies analysed metabolites at the community scale, which is probably due to the
complexity and the large number of profiles necessary to be acquired. For example, in an analysis of
community assembly, [50] found that 37 species of Inga trees share herbivores and pathogens at local
and regional spatial scales. Their results showed that these interactions are also important for niche
differentiation of different congeneric Inga species in the community. [56] found that biochemically
diverse assemblages facilitate ecological coexistence and that interspecific variation permits niche
segregation among congeneric tree species based on chemical defences. Other studies reported
that metabolite profiles depend on the diversity level, strength of competition and neighbouring
plants [35,36,60] (Table 1). In a case study with soil bacterial communities, [114] showed that there are
metabolic relationships between soil species richness, niche breadth and distribution. It is increasingly
acknowledged that the rhizosphere comprises a highly diverse community of micro-organisms which
interact with root exudates [93]. We expect that comparable studies analysing rhizosphere metabolomes
interacting with plants will yield similarly novel insights and may use comparable methodological
approaches as with, e.g., community metabolomics of microbe colonies [115].

At the population scale, typically several individuals of one species are studied with regard to
environmental or organismal changes. [38] showed in a field experiment with wild Carex caryophyllea
that differences in foliar metabolite profiles can be linked to genetic diversity, edaphic conditions and
growth-related traits. [64] revealed that the shoots and roots of the two grasses Holcus lanatus and
Alopecurus pratensis responded differently to drought and warming. In a different experiment with the
shrub Sambucus nigra, these authors showed that there are specific interactions between plants and the
microbial community in the phyllosphere [65]. In a greenhouse experiment, [40] found that exotic species
have more, and also more unique, metabolites when compared to native congeners. They experimentally
assessed that a generalist herbivore species performs worse on exotics. Thus, the authors provided
evidence for a hypothesis in invasion biology—the “Novel weapons hypothesis” [116].
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In contrast to biochemistry, in ecology, a top-down research approach is common (Figure 2a).
Complex ecological processes are broken down into smaller sets and studied individually to reveal
cryptic biochemical traits that act upon the different species [89]. In this context, highly specific
metabolites (sometimes also referred to as biomarkers) may serve as proxies for “eco-chemical”
traits and allow for a functional classification based on metabolites [117]. Whereas in biochemistry
compounds play a pivotal role in identifying mechanistic components of processes, in ecology this
role is traditionally fulfilled by traits, e.g., morphological, physiological or phenological characteristics
of individual plants. Some Eco-Metabolomics studies found biochemical traits that describe,
for example, relationships with plant phenological stage [68], foliar chemical defences of trees [46,54]
or plant defence traits in native and non-native populations [49,76]. More examples on how to use
Eco-Metabolomics to find “eco-chemical” traits that describe ecological processes such as species
coexistence, (multi-)trophic interactions and phenotypic plasticity can be found in the reviews
of [90,91,112] (Table 2).

5. Current Challenges

To identify the specific compounds which have an impact in ecology, it is necessary to “scale up”
from biochemical to ecological scales. For example, some insects are capable of smelling volatiles
emitted by flowers over long distances [118], and fruit bats as well as frugivorous primates use fruit
odours to detect ripe fruits [119–121]. Thus, the production of volatiles in plants can have great
impact on pollination [122,123] and dispersal [124,125]. To identify volatiles, metabolomics techniques
such as GC/MS can be used. However, within the plethora of substances that are produced during
plant–animal interactions, it is still a challenge to pinpoint the compounds, or combinations thereof,
which employ key ecological functions [118,122,126,127].

When compared to other analytical techniques, NMR has the advantage of covering both polar
and non-polar metabolites and allows their identification by comparing resonance frequencies and
line shapes in the spectra wit spectral libraries [20,128]. Data processing is very complex as raw data
have to be pre-processed, e.g., into so-called bucketing tables. Due to the numerous approaches
to generate these bucketing tables [129,130] and the high number of different tools and approaches
available for these processing steps [131,132], NMR data processing and metabolite identification
remain very challenging.

Similarly, in Eco-Metabolomics, there is also the challenge to “scale down” from ecological to
biochemical scales, i.e., to find important (sets of) metabolites in different organisms (“eco-chemical
traits”, see above) that can be linked to particular ecological interactions. As organisms in ecosystems
produce a multitude of different metabolites, appropriate experimental designs and biostatistical
methods are necessary to select the candidates that e.g., underlie diversity [35] or can be attributed to
specific interactions [52,80].

Eco-Metabolomics can also be applied to both sides of the organismal interaction, for example
between plants and herbivores. By defining the concept of the “metabolic interface” between plants
and caterpillars, [133] could identify coumaroylquinic acids. This group of bioactive compounds
was enriched in both jasmonic-acid induced plants and caterpillars feeding on them. By going up
the trophic chain, they are likely to affect higher trophic organisms, e.g., the larvae of endoparasitic
wasps [134], which feed on the caterpillar’s fatbody and have no direct contact to the plant.

For top-down approaches in Eco-Metabolomics, identification of single metabolites is often not
feasible. Here, a global analysis of samples such as metabolic fingerprint analysis is performed
in which sets of features are analysed instead of singular features [34,135,136]. Generally, metabolic
fingerprints are generated for metabolites that are shared between or which are distinct for the different
species [137,138].

In a three-day workshop held at the German Centre for Integrative Biodiversity Research
(iDiv) Halle-Jena-Leipzig from 16 to 18 October 2017, the authors collected current challenges in
Eco-Metabolomics (Table 1). In a collaborative effort, the participants identified five key challenges
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that many Eco-Metabolomics studies had to solve prior to making conclusion. These challenges are
presented as follows.

5.1. Complex Experimental Designs and Large Variation of Metabolite Profiles

Experiments with model species such as A. thaliana are usually carried out with known genotypes
under well-controlled conditions in green houses and growth chambers (Table 1). By contrast,
typical Eco-Metabolomics studies often require more complex experimental designs as they are
often carried out under field conditions and with non-model species [6,105] (Table 1). As a result,
metabolite profiles obtained in many Eco-Metabolomics experiments are further modulated by
different genetic backgrounds and life-stages of the individuals, by short- and long-term environmental
fluctuations, such as season and weather patterns, and also by varying histories of biotic interactions.
Thus, the variability among metabolite profiles within treatment groups is usually much larger than in
conventional metabolomics studies (Table 1).

To assess the level of variation within treatment groups (groups of replicates), large-scale
experiments may require conducting a pilot study. For Eco-Metabolomics, this is still uncommon
(Table 1). However, pilot studies allow for an estimation of the number of samples needed (and thus,
number of necessary metabolite profiles to be acquired) to verify effect sizes in a statistically clean
way [139]. There are freely available R packages (pwr or MBESS) and templates to support scientists
with the corresponding statistics [140].

Many ecological experiments that target population and community scales are designed in such
a way that the highest number of replications are created at the level where the largest variability
among samples is expected [139,141,142]. As variability often increases with spatial or temporal
scales, sampling campaigns with a multi-level block design and randomized positioning of samples
in the blocks are realised [141]. Eco-Metabolomics experiments realising a top-down approach
and covering spatiotemporally coarse scales are usually designed similarly complex (e.g., [56];
Table 1). With bottom-up approaches, which are often carried out in glasshouses or growth chambers,
establishing the appropriate number of controls is also vital in order to ensure effect sizes between
control and treatments (Table 1).

Metabolite profiles are generally acquired under as stable conditions as possible. The sampling is
typically performed within a short time interval at a defined time of the day to avoid fluctuations due
to e.g., circadian rhythms. Similar weather conditions are preferred, i.e., with sunlight and no rainfall
prior to and during sampling as they are known to influence nutrient uptake and concentrations of
metabolites [143–145]. Just as with conventional metabolomics studies, any metabolic activity in the
samples needs to be inactivated as rapidly and efficiently as possible. If samples are collected without
access to liquid nitrogen and immediate sample storage at −80 ◦C, as is often the case with ecological field
studies, alternative protocols for sampling and storage are used, e.g., use of dry ice in field boxes [146].

Many top-down approaches that operate at spatiotemporally coarse scales aim at masking the
complexity of intrinsic biological mechanisms (Figure 2a) by analysing mechanisms of biological
organisation which are mediated by sets of “eco-chemicals” [36,45,89]. The processing of samples
and the general metabolite acquisition strategy is often very specific to the underlying research
question (Table 1). Large sampling campaigns at community and population scales often require
samples to be pooled and homogenised (e.g., leaves from one plant individual are pooled into one
sample) [142,147]—a strategy that is not (yet) followed by many studies (Table 1). Using pooled samples
improves the reproducibility of measurements by diminishing spatial heterogeneities, but sometimes
impedes detailed insights at spatiotemporally fine scales. This necessitates different experimental
designs or methodologies (see below).

More specific interactions, such as those between plants and herbivores or pathogens, are usually
analysed at population or individual scales. Here, it is important to increase the spatial resolution and
obtain detailed insights on intrinsic biological mechanisms in both plants and associated organisms
(Table 1). Studies that pursue a bottom-up approach restrict the sampling of plant material to the
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specific organs that are affected by the plant–organism interaction (e.g., plant leaves, mycorrhizal
roots) [40,51,75,76]. Furthermore, considering alternative approaches such as MALDI-TOF-MS or
fluorescence imaging, which are not covered in this review, can provide detailed insights into
(sub-)cellular localization of specific metabolites that underlie plant–enemy interactions [95,148,149].

There are m/z or RT shifts within the subject samples due to matrix effects and within the
instrument run due to batch effects. Quality control (QC) of the analytical setup and interspersal of QC
and mixed-QC samples is necessary to detect and correct these shifts—a strategy which has not yet
been implemented in many Eco-Metabolomics studies [147] (Table 1). To correct for shifts, a regression
can be performed between peaks in each sample [150]. In general, instrumental configuration and the
type of separation technique influence the analytical reproducibility of metabolomics experiments
for both MS and NMR platforms [128,151,152]. As with conventional metabolomics experiments,
analytical normalization strategies including a reasonable number of blanks are to be employed to
separate batch-to-batch effects in instrumental analysis and variances during sampling [153,154].

5.2. Feature Extraction

From the raw metabolite profiles, metabolite features need to be extracted using bioinformatics
tools. In this review, we focus on XCMS and OpenMS (see [155,156]) even though we found many
studies that used other tools and algorithms that are available to process and align raw metabolite
data (Tables 1 and 3; [132,157]). Bioinformatical operations on the raw data, such as peak detection,
feature extraction, feature alignment and retention time shift correction were initially designed for
data generated on model organisms. For Eco-Metabolomics data, feature extraction and alignment
need to be optimized to deal with different organisms, multi-factorial experiment designs and the
resulting large variability of samples.

Mass spectrometry raw data are usually processed by optimizing parameter settings such as
signal-to-noise thresholds and maximal m/z deviations for peak detection for the particular analytical
setup. Entering optimized parameters will help peak detection algorithms to separate peaks from
the noise reliably, align corresponding features across samples in a correct manner and assign unique
feature identifiers [155]. In addition, performing mathematical transformations (e.g., log or sqrt)
on the feature matrix may be necessary to reach a semi-normal distribution of values as far as
possible [139,158]. In OpenMS, the tool TOPPView can be used to guide the manual parameter
optimization by visualizing the results of the feature detection step (“FeatureFinderMetabo”) [159].
Different layers, corresponding to features extracted using different parameter settings, can be
compared to separate features reliably [160].

However, when compared to conventional metabolomics experiments, Eco-Metabolomics
experiments with complex designs may require different parameter settings for feature
alignment—called “grouping” in XCMS or “feature linking” in OpenMS—to correctly match extracted
features between different samples [31,161]. Although parameter selection depends on experimental
design, level of variability and the type of analytical platform used, many Eco-Metabolomics studies
that used XCMS applied the following settings appropriate for LC/MS profiles and the centWave
algorithm (Table 1). The parameter “minfrac” specifies for each feature the minimum fraction of
occurrence in a class (e.g., treatment group) to be valid was chosen between 0.3 and 0.6 to address
the large variability between the different kinds of samples. Furthermore, parameter values for
“ppm” (describes the maximum tolerated m/z deviation) were often chosen between 5 and 30 of
(parameter “ppm” in XCMS), values for “bw” (bandwidth, accounting for slight retention time
deviations, for grouping features) between 3 and 5, and values for “snthresh” (signal-to-noise
cut-off) between 2 and 5. For GC/MS, larger values for “ppm” and “bw” may be required for
Eco-Metabolomics applications.

For certain experimental designs, it could be reasonable to perform the grouping step in XCMS
for each block separately and to merge the resulting peak tables afterwards. Block here refers to the
arrangement of experimental units in a statistical test. According to the guidelines on good scientific
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practices, one should never perform grouping according to the treatment groups among the differences in
metabolite composition are tested. Integrating areas of missing peaks between samples (e.g., using the
method “fillPeaks” in XCMS) is expected to not work reliably due to the large variability between different
groups of samples (species, treatments, sampling times). In OpenMS, linking is rather flexible and can
be adjusted to fit the experimental design [156]. Multiple linking steps can be performed consecutively.
For example, all samples from two groups or treatments can be linked separately followed by linking both
groups to obtain their consensus features. Using TOPPView, these can again be visualized and evaluated
using different parameter settings for RT and m/z distances [160].

LC/MS and GC/MS feature matrices usually include redundant information in the form
of adducts, isotopes and in-source fragments. These are important for metabolite identification
(see below), but can also lead to collinearity of features (linear relationships of features or fragments
that belong to the same feature in the peak table). Collinearity may be a problem with some subsequent
statistical analyses. For instance, in the R package CAMERA [162], collinearity can be reduced by
aggregating features that were categorized by CAMERA into the same pseudo compound group. [163]
proposed the function “getReducedPeaklist” to CAMERA (version 1.33.3 or later) that can be used
instead of the regular “getPeaklist” function.

5.3. Metabolite Identification

With many acquisition methods, the identification of features is still a challenge [7]. In addition,
in Eco-Metabolomics, non-model organisms are used that have a high number of truly novel
compounds, called “unknown unknowns” [164]. The gold standard for compound identification
is the comparison of the obtained MS data with that of a reference standard. However, for the novel
compounds detected in the non-model species, there is a dire lack of reference standards. Moreover,
it may be challenging to purify sufficient amounts of unknown compounds to sufficient levels of purity
for structural identification, e.g., with NMR. It is currently debated, if computational methods may
compensate for the lack of purified references [165]. Depending on the acquisition method, different
identification pipelines were developed by Eco-Metabolomics studies (Table 1).

With GC/MS, usually very robust capillary columns and precise ionization sources are used.
This allows for rather predictable retention times and reliable spectral information and has enabled
the set-up and use of large libraries such as NIST, MoNA or the Golm Metabolome Database
(GMD) [5,166,167]. As a result, metabolite identification is more reliable when compared to LC/MS
(see below). Identification of “unknown unknowns” is facilitated by using blind source separation and
strategies that avoid hard chromatographic segmentation [168,169].

As LC/MS data are populated with different adducts, isotopes and in-source fragments, they are
composed of many redundant features belonging to the same metabolite [170]. For peak grouping and
annotation, many algorithms depend on the input of known m/z distances between common adducts,
fragments and multiply charged ions. Despite the large number of bioinformatics tools and spectral
libraries to annotate and identify metabolites (Table 3), the LC/MS-MS data processing pipeline is still
very complex and time-consuming because it still involves extensive manual data inspection [6,11].
For metabolite identification, comparison to purified standard spectra in reference libraries is often
necessary. The use of molecular networks, libraries such as the Global Natural Products Social
(GNPS) Molecular Networking database and structural matching tools allow to compare the structural
similarity of “unknown unknowns” with fragments of similar compounds that share a subset of the
same sub-structures [171]. Furthermore, in this context, retention time prediction has been proposed
as an additional, orthogonal property for the filtering of candidate compounds [172–176].
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Table 3. List of bioinformatics tools applicable to use in Eco-Metabolomics.

Bioinformatics Tool Reference Metabolomics Acquisition
Methods Covered Main Functionality

AMDIS [177] GC/MS Spectrum deconvolution, identification
BATMAN [178] NMR Identification and quantification of metabolites in deconvoluted NMR data
CAMERA [162] GC/MS, LC/MS Feature annotation, feature alignment, RT correction, isotope cluster validation
CFM-ID [179] LC/MS-MS Identification, Spectrum prediction
CSI:FingerID [180] LC/MS-MS Identification
Galaxy-M [181] LC/MS Workflow system for metabolomics data analysis
GNPS [171] LC/MS-MS Retrieval of online dereplicated and crowdsourced MS/MS spectra
iMet [182] LC/MS-MS Identification
MetaboAnalyst [183] NMR, LC/MS, GC/MS User interface for the processing and analysis of metabolomics data
MetFamily [184] GC/MS, LC/MS Clustering of MS features to metabolite families
MetFrag [185] LC/MS-MS Identification of MS features by their MS-MS spectra
MS2LDA [186] LC/MS-MS Decomposition of MS/MS spectra to co-occurring fragments/neutral losses
MS-Dial [187] LC/MS-MS, GC-MS Processing, deconvolution and analysis of MS data
mzMatch [188] GC/MS, LC/MS Tool chain for the processing of metabolomics data
MZmine 2 [189] LC/MS Framework for the processing and analysis of MS data
OpenMS [156] GC/MS, LC/MS Feature extraction and data analysis
NMRProcFlow [190] NMR Processing and visualization of 1D NMR data
SIRIUS [191] LC/MS Annotation of sum formulas using MS/MS spectra and isotope patterns
Workflow4Metabolomics [192] NMR, LC/MS, GC/MS Automatic processing, annotation and analysis of metabolomics data
XCMS [155] GC/MS, LC/MS Feature extraction
XCMS Online [193] GC/MS, LC/MS User interface for processing and analysis of metabolomics data

Many bioinformatics tools that perform in-silico prediction have been trained with known
compounds mostly from model species such as A. thaliana or tomato [170,194]. Recent developments
in computational annotation tools such as MetFrag and MetFamily enable to match measured spectra
with reference spectra of compound classes. This allows for a more “fuzzy” match of features
with similar spectra that enable more confident annotations of “unknown unknowns” [170,195].
In many cases, this “fuzzy” annotation may be sufficient for ecologists to explain certain biological
observations, for example differences in herbivore resistance. More targeted analyses should follow to
identify which of the compounds in a compound family, e.g., specific flavonoids, employ the causal
agent for the effect. Machine learning approaches have additionally increased confidence of in-silico
prediction of “unknown unknowns” with tools such as CFM-ID [179] and CSI:FingerID [180] (Table 3).
Linking targeted spectral libraries with computational dereplication methods has been suggested to
identify metabolites in non-model vs. model species [194,196,197].

5.4. Statistical Analyses

In Eco-Metabolomics, multi-factorial experiment designs and untargeted approaches leading
to large data matrices with thousands of features necessitate appropriate statistical methods.
Eco-Metabolomics studies listed in Table 1 used a plethora of different statistical methods.
With targeted approaches, single features are usually compared between groups of samples
with univariate statistical tests. The applicability of statistical tests depends on the number of
predictors, the number of factor levels, the type of data (independent vs. dependent data) and
the distribution of the data (e.g., normal vs. non-normal distribution, or homo- vs. heteroscedasticity).
For Eco-Metabolomics studies, the non-parametric Kruskal–Wallis and Mann–Whitney U tests, as well
as the parametric ANOVA have been successfully applied (Table 1). Nested designs are typically
analysed with linear mixed effects models (lme), which allow to account for random factors and to find
the correct error terms for the different hierarchical levels. If needed, post-hoc tests such as Tukey’s HSD
can be applied to calculate p-values between different groups. However, when multiple metabolites
or features are subjected to statistical analyses, false positives are a major concern (i.e., when the null
hypothesis has been wrongly rejected). The Bonferroni correction (controlling the family wise error
rate) or the Benjamini–Hochberg method (controlling the false discovery rate) were recommended
by [198,199] for metabolomics in general. Several Eco-Metabolomics studies successfully applied the
Holm–Sidak method and the Levene’s test for multi comparison correction [47,53,200,201] (Table 1).

To investigate multiple predictors, as well as to control for confounding parameters and
replicate samples in a single approach, linear (mixed effect) models can also applied to multivariate
data [4,47,202]. Beside tests for statistical significance, fold changes can be calculated for individual
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metabolites or features to indicate how strong their intensities differ between groups [198].
For metabolomics data, results from appropriate statistical tests can be combined with fold change
analyses to judge which metabolites or features are interesting for further analyses [199].

With untargeted approaches, feature matrices sometimes have thousands of features and more
complex statistical analyses are necessary due to the dimensionality of the data and the research
questions. Principal Coordinate Analysis (PCoA) and (Non-metric) Multidimensional Scaling
((N)MDS) are two of the most frequent types of multivariate analysis used to compare metabolite
profiles between samples and to select sets of metabolite candidates [203,204] (Table 1). The most
interesting metabolites are often those with the largest differences between (several) groups. These are
determined by performing post-hoc tests such as the non-parametric PERMANOVA (PERmutational
Multivariate ANalysis Of VAriance) [198,205] (Table 1).

However, in Eco-Metabolomics there are often two or more data matrices, typically the feature
table containing the biochemical information of the metabolite profiles and another matrix with
many ecological parameters [141]. Here, ordination methods such as Redundancy Analysis (RDA),
distance-based RDA (dbRDA) as well as Discriminant Analysis (DA) (esp. Linear DA), Orthogonal
Partial Least Squares (OPLS), Hierarchical Clustering (HCA), classification and machine learning such
as Random Forests (RF) and Support Vector Machines (SVM) are often applied to analyse two or more
data tables conjointly. In this context, inclusion of meta-data from databases (see below) and data from,
e.g., elemental analysers, can help to associate sets of metabolites with ecosystem functioning and to
describe metabolomic traits [206] (Table 1; Figure 1c).

5.5. Bioinformatics Software Tools and Workflows

In many cases, bioinformatics software tools, data processing workflows and databases used in
metabolomics were optimized for model species or were developed for clinical use cases. Thus, they are
not directly applicable to Eco-Metabolomics studies. For non-bioinformaticians it is often hard to decide
which software tools and which data sources are appropriate to the idiosyncratic Eco-Metabolomics
experiments. Table 3 lists an overview of bioinformatics tools applicable to Eco-Metabolomics. Further
information can be found in [132,157].

A major challenge in Eco-Metabolomics is that data repositories and libraries for both ecological
and biochemical data are often fragmented. Some are not publicly accessible as they are owned by
institutes or commercial parties. Furthermore, primary data are not always shared with the scientific
community, are restricted to project members or are lost after a paper has been published [207].
Many biochemical databases such as PubChem or KEGG mainly contain chemical structures and
information of model species. Databases such as KNApSAcK or NPASS can be used as a source
of information regarding species-metabolite relations for non-model species [208,209]. Metabolic
relationships and biochemical traits can be retrieved with databases such as MetaCyc [210], GMD [166]
or BioCyc [211]. However, currently they do not allow for scaling up to processes at ecological scales.

Many Eco-Metabolomics studies rely on ecological data sources that are fragmented among
countries or restricted to local floras (Table 1). The Plant Trait Database (TRY) agglomerates
ecological traits of many different types of organisms globally and can also be used as a source
in Eco-Metabolomics [212]. However, there remains the need for federated trait databases that
aggregate the information from the many small local databases [213]. Even though there are no
dedicated repositories for Eco-Metabolomics primary data, existing repositories such as MetaboLights,
MetabolomicsWorkbench, MetabolomeExpress or GNPS are still rarely used to store raw profiles and
to document meta-data [171,214–216] (Table 1).

Quality assurance and full reproducibility of the study are pivotal for good scientific practice [150].
In biochemistry, there are strict rules on analytical reproducibility of experiments. These have
been part of good scientific practice and quality assurance for a long time [150]. For data
processing and computational analyses, reproducibility is not always simple to achieve [207,217].
This is in part due to the complexity of biological and ecological systems [218], the diversity of
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technological platforms applied in metabolomics [136,219,220] and the large number of available
bioinformatics tools. For example, [132] list more than 130 open bioinformatics tools, and many
labs also use proprietary vendor software [221,222] (Table 3). To make it easier to discover related
Eco-Metabolomics studies and to replicate experimental set-ups, it is recommended that data sets,
meta-data and the corresponding bioinformatics data processing pipelines are shared with the scientific
community [33,223]. Here, the FAIR guiding principles are a set of fundamental rules that contribute
to good data management and stewardship (long-term care) [207]. The FAIR acronym stands for
Findability, Accessibility, Interoperability and Reusability of data (Table 4) and following these rules
can make Eco-Metabolomics data sets available to a broader scientific audience [207].

Table 4. FAIR criteria for the reuse of data as described in [207].

Criteria Summary of Execution

Findability
(meta)data are assigned globally unique and
persistent identifiers which are registered and
indexed in searchable resources

Accessibility
(meta)data are retrievable by their identifier with an
open and free protocol, metadata are still accessible
even when data is no longer available

Interoperability

(meta)data use formal, accessible, shared and broadly
applicable language and have vocabularies that
follow FAIR principles and include qualified
references to other (meta)data

Reusability

(meta)data are associated with accurate and relevant
attributes, with detailed provenance, with an
accessible license and meet domain-relevant
community-standards

In the last years, bioinformatics workflow platforms have been set up to cover all the required
steps of the data processing pipeline, beginning with data download from a public repository,
data quality control [224] and the various biostatistical analyses (see above). It is vital to reproduce
the data processing pipeline to allow the scientific community to get reliable insight at any level
of the study [225]. Currently, scientists often struggle with repeating certain steps due to the
technical complexity of the software used. In recent years, the Galaxy workflow platform has
become increasingly popular with many “omics” technologies [226]. For Eco-Metabolomics, several
existing dedicated metabolomics workflow platforms can be used, such as the Galaxy workflow
systems, Workflow4Metabolomics [192] and Galaxy-M [181] as well as the KNIME workflow system
which already has some mass spectrometry related OpenMS modules integrated [227,228]. However,
these workflow platforms need to be improved to also contain dedicated Eco-Metabolomics modules
to facilitate data processing for non-bioinformaticians [33].

6. Possible Limitations in Eco-Metabolomics

As normally metabolites in organisms are in a known steady-state level (homeostasis), deviations
can be measured using metabolomics techniques. In systems biology these deviations are the basis
for modelling and allow to scale up from spatiotemporally fine to coarser scales [106]. However,
comparing metabolite profiles from samples collected in the morning with profiles from samples
taken in the evening from identical plant individuals may result in largely different profiles as
shown, e.g., for Arabidopsis, Silene and CAM plants [21,63,144,145,229]. Thus, a metabolite profile
is always static and is merely a snapshot of biochemistry at a fixed point in time. Furthermore,
as the biotic environment can mitigate the effects of, for example, climate change, it is important in
Eco-Metabolomics to not only measure profiles of individuals of target species, but also to consider
other plants in the community and the properties of the surrounding ecosystem [96]. As endophytic
microorganisms can colonise internal tissues of host plants, they can influence metabolite profiles
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of plants and may even contribute exogenous metabolites [230]. Endophytes can form various
relationships with their host plants, which can be detrimental (e.g., pathogenic fungi), but also
beneficial to both partners (e.g., symbiotic, mutualistic or commensalistic) [230,231]. This sometimes
makes it challenging to draw conclusions from spatiotemporally fine to coarser scales, which are
nonetheless very important to estimate impacts on ecosystem services [157].

While the sensitivity of analytical platforms can be a “blessing” in bottom-up approaches in
biochemistry, and has enabled many detailed insights into processes within organisms that would not
have been possible to be detected otherwise, it could also be a “curse” with top-down approaches [94].
In ecology, the sensitivity of metabolite profiles may include undesired short-term fluctuations
(e.g., unsteady weather conditions) and, thus often necessitates to take many metabolite profiles
and to measure additional non-biochemical traits of plants and environmental conditions to rule out
side-effects or to correct for shifts and fluctuations [94]. In ecology, there are many statistical methods
that were designed explicitly for dealing with large variability [141]. However, biostatistics cannot
compensate for poor experimental designs. It is also important to consider that biochemical traits
may not be involved in every type of ecological interactions [94]. For these reasons it is of uttermost
importance for top-down Eco-Metabolomics studies, that a sharp research question or hypothesis is
defined even before the samples are taken.

No single analytical method can cover all metabolites at once. Indeed, the metabolite coverage
highly depends on the extraction method and type of instrumentation used. It is beyond the scope of
this review to list the strengths and weaknesses of the various types of acquisition methods. We refer
the interested reader to other review papers, e.g., [5,7,8,14,94,170] (refer also to Table 2).

7. Future Directions in Eco-Metabolomics

We argue that Eco-Metabolomics provides novel approaches to answer fundamental ecological
questions. For example, many processes in ecology are driven by interactions, such as those between
soil microbes and plants, which are invisible to the human eye [232]. In ecology, organismal interactions,
or linkages, can be visualized with, e.g., Structural Equation Modelling (SEM), which can model
relationships between multivariate data with cause–effect equations at different scales [233–238].
As metabolites are mediators in these processes, they have the potential to be used for SEM [239–242].
As SEM is similar to approaches taken in systems biology, where processes in cells are modelled [106],
we suggest that SEM are used as a tool in Eco-Metabolomics in the future. This will allow measuring
the number and strengths of ecological linkages and, thus, visualising the various types of biochemical
interactions organisms realize in ecosystems. Furthermore, latent variables in SEMs may be used to
construct “eco-chemical” traits that explain part of the functioning of ecosystems.

We have discussed that with the top-down approaches commonly used in Eco-Metabolomics it
is often not feasible to identify singular metabolites. Rather identifying sets of metabolite features,
annotating compound classes and linking them to ecological function are some of the main objectives.
The answers obtained by these types of studies can be used to derive and construct new questions
and hypotheses that are of vital interest for biochemistry. Thus, after identifying basic ecological
relationships, the results can be used for “zooming in” and performing bottom-up approaches that
give new detailed insights into ecological processes mediated by metabolites. However, it should be
considered that metabolomics in principle is a hypothesis generating approach. If the goal of the study
is to pinpoint specific metabolites responsible for ecological interactions, top-down studies must be
followed by manipulative experiments.

In this review, we have discussed two approaches to answer fundamental ecological questions.
Both bottom-up and top-down approaches have unique strengths and challenges and can contribute
greatly to science. We conclude that experimental designs will likely get more complex in the future
and that more factors will be incorporated in the studies. Furthermore, to increase the metabolite
coverage, a combination of several extraction methods and analytical platforms may even be used
in the future. There has also been a shift towards the use of non-model species with both types of
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approaches. The challenges we identified in this review are not limited to the plant domain. In fact,
other domains such as metabolomics analyses of wild animals have similar challenges, e.g., dealing
with “unknown unknowns” and with non-model species.

We ascertained that the term “Eco-Metabolomics” is not used widely by the scientific community.
Publishing Eco-Metabolomics primary data in repositories once studies have been published will
greatly contribute to make Eco-Metabolomics available to a broader scientific audience and will
allow metadata studies that re-analyse results from the various Eco-Metabolomics studies in the
future. However, there is still the need for a better integration between spatiotemporal scales, a closer
collaboration between researchers to improve databases for both non-model species and spectral
information and, thus, also among scientists around the world.
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