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Abstract

After obtaining an exact analytical time-varying solution for the Aharonov—Casher conducting ring
embedded in a textured static/dynamic electric field, we investigate the spin-resolved quantum
transport in the structure. It is shown that the interference patterns are governed by not only the
Aharonov—Casher geometry phase but also the instantaneous phase difference of spin precession
through different traveling paths. This dynamic phase is determined by the strength of the applied
electric field and can have substantial effects on the charge/spin conductances, especially in the weak
field regime as the period of spin precession comparable to that of the orbital motion. Our studies
suggest that alow-frequency normal electric field with moderate strength possesses more degrees of
freedom for manipulating the spin interference of incident electrons.

Introduction

How to control and engineer the spin degree of freedom at the mesoscopic scale is a crucial step for spintronic
devices [1-7]. It has been demonstrated that spins of conduction electrons can be manipulated by external gating
voltage through the Rashba spin—orbit interaction (RSOI) [8—15]. Such the electric field-tunable RSOI can be
achieved as well on the Aharonov—Casher (AC) effect [ 16] in mesoscopic ring structures [ 17—19]. Electron wave
that traverses the AC ring along clockwise and counterclockwise directions accumulates different phases, which
is reflected in the spin interference patterns of the conductance. By measuring interference patterns, the phase
difference can be detected experimentally. In particular, a spin geometric phase, which is robust against the spin
dephasing, can be distinguished [20, 21]. However, it should be noted that the spinor wavefunctions used to
investigate the spin interference effects in experiment and theory are not time-dependent even though the spin
precession in quantum transport is always there. The tilt angle between the mean axis of the spin precession and
the normal direction to the ring plane has been used to characterize the conductance [22-24].

In the present study, we revisit the AC ring in the presence of static/dynamic electric fields. By giving an exact
solution for traversing electrons at time ¢, a time-resolved spin precession is identified. We show that the
interference patterns are determined by not only the AC phase but also the instantaneous phase difference of
spin precessions through different traveling paths. Especially, such the time-resolved phase difference becomes
more pronounced as the strength and the frequency of the applied electric field decrease. The spin conductivity
and the bulk spin polarization (which describes the spin-dependent electronic transport in the ring) are found to
be strongly depend on the spin polarization orientation of incident electrons. Our results show that the AC ring
can actas a spin interferometer, but the electric field should be properly adjusted to optimize the spin
interference effects.

©2018 The Author(s). Published by IOP Publishing Ltd on behalf of Deutsche Physikalische Gesellschaft
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Figure 1. Schematic of a quantum AC ring symmetrically coupled to two leads in the presence of electric field E. A symmetrically
textured electric field is assumed for the sake of theoretical investigation as that in the [23].

Time-varying wavefunction

Let us begin with the Hamiltonian for electrons with effective mass M confined to a ring of radius a under a
(time-dependent) textured electric field E(t) = E,(t)é, + E,(t)&, (see figure 1)’

2
H:L(Pé—ﬂo'xE)

2M 2c
L pl,

= + 0,E, — 0,E,), 1
Y 2Mac( +E; — 0, E}) )]

where we have introduced the polar angle ¢ in cylindrical coordinatesand L, = —i%0/0¢. o; (with

i =r, ¢, z)arethespin Pauli operators that satisfy the commute relation [5;, 6;] = i€ 6y, and p = e/z /2Mc
is the magnetic moment. E,(t) and E,(¢) are assumed to be ¢-independent. The system then possesses the
cylindrical symmetry, i.e., [L,, H] = 0, whichleads to the conservation of orbital angular momentum.
Consequently, the invariant subspace can be labeled by certain eigenvalue n of L, and the non-autonomous
Hamiltonian becomes a linear function of the o,

H= 0, + ﬁwrar - ﬁwzaz )
2 2 2

with wy = %, w, = %Er, and w, = %EZ. To solve the Schrodinger equation, i/’i%hlf(t)) = H|¥(t))

without specifying the time-dependence of electric field E(t), we perform a gauge transformation [25, 26]

U, (t) = expliv,(t) o] exp[ivs (¢) o4l 3)
H — H = U, 'HU, — iU ' 0, /o, (4)
[2(6)) — [B(1)) = Uy '[¥(0)). ()

Under the best gauge conditions

dvy .
2— + w,sin 2v, = 0,
dr
dv,

WyCos 214c0s 2v, + w,sin 2vy + 2 1 sin 2v, = 0, (6)
t

we have then the diagonalized gauge Hamiltonian in the &, representation

- Ty g2 éwr'cos 2Vz5 @
2 2 sin2vy
Let |m) be the eigenstate of &, with eigenvalue m (= =1), the solution of the gauged Schrodinger equation can

be written explicitly as

B n(@, ) = €710 Dein|m) ©)
with O, ,,(¢) = %fot E, n(t")dt' and E,.(t) = %nz — %%;Zf being the energy eigenvalue of the gauge
Hamiltonian H. Based on the gauge transformation |¥(t)) = UgI\I/(t)>, the real time spin-resolved solution of
the original Schrodinger equation reads then

[0, (@, 1)) = e Omm®eind ™ D2 (3 g yelm'v:|m'), )
m/

3 . . . .
The correction term that contains o, is neglected in the case of large angular momentum.
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where
cos v,(t) sin v (¢) e
D2y, vl =| ’ (10)
‘ —sin v (t)e 20 cos v (t)
is the Wigner function. The energy of the system is given by
7w 7 .
E,m(t) = Tonz — mT(w, Sin 2v4cos 2v, — w,Cos 2v). (11)

Itis easy to check that | ¥, ,,,(¢, t)) are complete and orthogonal in the whole Hilbert space. The general
wavefunction of the ring can thus be expanded as, [¥(o, 1)) = 3=, . Cyml ¥, m(®, t)), where C,, ,, are time-
independent coefficients and completely determined by the initial conditions. It is worthy to note that
[T, (4, 1)) is quite general for the AC ring with any cylindrical symmetric electric field E(¢). In particular,
| W, (¢, 1)) can describe precisely and advantageously the spin precession in a static electric field (see below).
From the best gauge conditions, equation (6) with the initial values v4(0) and v,(0), the time-varying v,(t) and
v(t) can be worked out, and then all the properties of the system should be obtained.

To get a clear insight into the physical meanings of v4(¢) and v,(t), let us write down the expected value of spin
vector (o) by using the basis | ¥, (¢, 1)),

(0z) = m cos 2v(1), (12)
(0,) = —msin2v,(t)cos 2v, (1), (13)
(op) = msin 2v,(f)sin 2v,(¢), (14)

which indicate that v4(¢) describes the instantaneous tilt angle from the normal z-direction at time tand v, (¥)
characterizes the spin rotation angle around the z-axis. In figure 2, we plot (0,) and (o;) versus the magnitude E
of a static normal electric field E = E€, (here it should be noted that the energy E,, ,,, is time-independent even
though v4(f) and v,(f) are time-varying under the static electric field). As one can see that (o, ) is time-
independent, satisfying the conservation equation [o,, H] = 0. When the strength E of normal electric fields is
enhanced, (o;) (and (o)) becomes oscillating precessionally with the time ¢, which is quite different from the
previous (theoretical) spinor wavefunctions that deduce a time-independent expected value of (o) once the
electric field E is given [22, 23]. One can also notice in figure 2 that, as the normal electric field is enhanced, the
spin precession becomes faster and the precession axis tends to follow the direction of the effective magnetic field
(along the radial direction).

Quantum spin transport

Based on the wavefunction |, ,,(¢, t)), now we consider a ring symmetrically coupled to two equivalent contact
leads (see figure 1). In clear comparison to the spin interference patterns given by time-independent spinor
wavefunctions with the mean axis of the spin precession [22, 23], a perfect coupling between leads and ring is
assumed (i.e., fully transparent contacts and no backscattering effects) to the first order linear approximation.
Given an incident electron with energy Erand spin |s) = Ci|T) + C|||) (©,, Cs, = 1) from the leftlead,
depending on the spin alignment () and the direction of angular momentum (counterclockwise or clockwise
with A = =£1, respectively), the initial electronic state in the ringat ¢ = 0and t = 0 becomes a superposition of
the four wavefunctions |[¥,,» ,,(0, 0)) = >, C,, Drln{nz, [%5(0), v, (0)]|m’), where n,ﬁ is determined by solving
Ep = E,;) ,»(0) in equation (11) and does not require to be integer. Then, the incoming spin |s) entering the ring
at ¢ = 0 propagate precessionally along the four Feynman paths and interfere at ¢ = mafter time 7. To this end,
we calculate the quantum probability of transmission for the outgoing spin |s’) channel

T;' = | Z <5,|\I/n,,*l,m(77) T)> |2~ (15)

Ny,m

The zero-temperature charge and spin conductances are given, respectively, by the Landauer formula [27]
2 e2
G = 7<TT+ 1) and G, = Z(TT = ). (16)

The corresponding bulk spin polarization is defined by P, = G, /G, [28]. Clearly, we have now two important
but separated time scales: the Larmor frequency of spin precession and the frequency of orbital revolution
around the ring. By carrying out the tedious but straightforward algebra, we find the modulation of
conductances origins indeed from the phase difference (acquired by different Feynman paths), which is however
a composite of two terms as well: (i) the spin geometric phase accumulated by the change of spinor orientation
during transport that is determined by the mean spin precession angle, and (ii) the instantaneous spin precession
phase difference A v, at ¢ = wand t = 7through different traveling paths.
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Figure 2. Dynamical evolution of the spin state: (a) (;) and (b) (o), respectively, in the AC ring subjected to a static electric field
E = Eé,.Theinitial conditions are 1;(0) = —1/2 arctan(pEa//c) and v,(0) = 0.

Firstly, let us try to reproduce the charge conductance, for instance that in [22], based on equations (15) and
(16) by using the wavefunction |, ,,,(¢, 1)), but with a presupposed time-independent tilt angle
pEa

v(0) = —% arctan —— [22,23]. The numerical results are shown in figure 3 by the dash—dot line, which is in

good agreement with the analytical expression in the adiabatic limit (i.e., the Larmor frequency of spin
precession is much large than the frequency of orbital revolution), G, = %2 [1 — cos(my1 + Qp)]with

tan 21, = Qg. Here Qg representing the RSOI constant that has the same effect as the normal electric field E, in
the ACring. However, after consistently solving the coupled differential equations equation (6) with the initial
conditions 1, (0) = —% arctan %E” and v,(0) = 0(at ¢ = 0), we find that, as the electric field E, decreases, (i) the
mean axis of the spin precession tends to align itself in the normal direction of the ring plane and thus the
associated spin solid angle becomes smaller; (ii) whereas, the instantaneous spin-resolved phase difference

Av, (1) at ¢ = mbecomes more pronounced in weak electric field area, as the spin has a comparable precession
period to its orbital motion and the spin dephasing induced by the (fast) spin precession is strongly suppressed
(see the figure 3(b)). As a result, the adiabatic condition is broken and the dynamical modulation effect of spin
precession gets enhanced and the charge conductance possesses substantial deviation from the values only with
the AC geometry phase (see figure 3(a)). On the other hand, in the presence of strong electric fields, for example
the experimental set up in [20, 21], the spin precession is accelerated (see figure 2) and the instantaneous phase
difference Av,(7) becomes small and even random. The interference effect of the charge conductance is
dominated again by the AC phase. Such time-resolved spin precession effect also demonstrates itself in the spin
transport behavior. As shown in figures 4(a), depending on the spin state of the incident electron, the spin-
dependent transmission changes dramatically: one gets a large spin resistance for fully spin-polarized incoming

4
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Figure 3. The charge conductance with presupposed time-independent tilt angle v, (G’ with dash—dot line) or self-consistently solved
v (G with dash line) as a function of the strength E of normal electric field. The dash—dot curve shows good consistency with the
results in [22] except the area near E = 0. The instantaneous spin precession phase differences Av,at ¢ = wandt = 7are shown
below as the function of E. Here the incoming energy is Er = 5 eV.
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Figure 4. Numerical results for the spin conductance and the spin polarization by using the time-varying wavefunction equation (9).
G, GsT (P]),and GSl (le) correspond to the different incident spin state, C; = C| = V2 / 2,Cy = 1but C| = 0,and C; = O but
C, = 1,respectively. The inset shows the time evolution of (o,) (m = £1)with E = 10 hic/ pa. Here, Ep = 5 eV,

%(0) = —1/2arctan(“2%), and v,(0) = 0.

electron (i.e., nearly zero GST and G} in most areas of electric fields except |E,| < 1 /ic/pa), but the similar AC
oscillations of the spin conductance of the spin un-polarized incident electron. Furthermore, figures 4(a) clearly
indicates that the spin polarization of the incoming electron in the AC ring can be tuned by the normal electric
field (see also figures 4(b)). Unfortunately, the weakest RSOl realized experimentally in [20] was Qg = 0.25,
corresponding to E = 0.35 fic/ pa in our case, which is slightly higher than the point that the non-adiabatic
deviations become noticeable in figures 3. We expect a weaker RSOI to emphasize the spin precession effect in
the non-adiabatic regime in experiments.

The effect of an in-plane electric field is studied by tuning the tilt angle -y of a textured electric field
E = E(cosé, + sin~yé,). Itis clear that one cannot change the spin polarization orientation of incident z-
polarized electron by the AC ring in the presence of in-plane field E, only, being consistent with the constraint

condition [0;, H] = 0 undery = 0. However, as shown in figure 5, the angle -y is capable of controlling the
modulation of polarization of electron transmitted.
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Figure 5. The influence of the in-plane component of the textured electric field E = E(cosy€, + siny€,) on the spin polarization.
The amplitude E = 4 fic/ pua is fixed during the numerical calculation.
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Figure 6. Dynamic effects of the AC electric field E(t) = E cos(wt + ®)é, on the integral-averaged spin polarization. The amplitude
of the applied electric field is E = 5 hc/pa and the incoming energy reads Ep = 5 eV.

To complete the discussion of dynamic effects we investigate in the following an AC normal electric field
E(t) = E cos(wt + ®)é,. Considering that not a single electron but an electron current is injected into the ring,
the effective initial phase ® seen by each individual incident electrons at the left incoming contact changes
continuously with time, which would result in a periodic modulation in the outgoing transmission with
respected to the time (equivalently, the phase ®). Therefore, we take the time integral of charge/spin
conductances over a period interval 27r/w. It is found that the integral-averaged spin polarization (B,) of un-
polarized incoming electron current is zero. However, the numerical results reveal that the AC field is helpful to
improve the spin interference effect of the fully spin-polarized incoming electrons (see figure 6). Due to the
dynamic phase difference A v, the spin polarizations oscillate with the frequency of applied AC fields and tend
to be stabilized in the high frequency region.

Conclusion

In conclusion, for the quantum spin transport through an AC ring in the presence of cylindrical electric fields,
we have presented an exact time-dependent solution for the problem by using the algebra dynamic method and
focus on the time-resolved spin interference effect. It is revealed that, besides the spin geometry phase, the
instantaneous phase different of spin precession in different Feynman paths has big influence on the interference
patterns in the case of weak and/or low-frequency electric fields. We have also demonstrated the possibility to
control the spin polarization by the frequency, the strength, and the tilt angle of applied electric field. Our time-
dependent solutions are general and can be applied to the AC ring based spintronic devices with any type of
rotationally textured electric fields. In the non-ballistic regime, especially in the presence of significant disorder,
the momentum scattering reorients the direction of the spin precession axis resulting in a random effective
electric field and dynamic phase difference, which would lead to an average spin dephasing.

Acknowledgments

This work is supported by the National Natural Science Foundation of China (No. 11474138 and No.

11834005), the German Research Foundation (No. SFB 762), the Program for Changjiang Scholars and
Innovative Research Team in University (No. IRT-16R35), and the Fundamental Research Funds for the Central
Universities.




I0OP Publishing NewJ. Phys. 20 (2018) 093023 ClLietal

References

[1] FiederlingR, Keim M, Reuscher G, Ossau W, Schmidt G, Waag A and Molenkamp L W 1999 Nature 402 787
[2] MotsnyiV F, Safarov VI, De Boeck J, Das J, Van Roy W, Goovaerts E and Borghs G 2002 Appl. Phys. Lett. 81 265
[3] Popp M, Frustaglia D and Richter K 2003 Nanotechnology 14 347
[4] van’tErve O MJ, Kioseoglou G, Hanbicki A T, Li CH, Jonker B T, Mallory R, Yasar M and Petrou A 2004 Appl. Phys. Lett. 84 4334
[5] TosiLand Aligia A A 2011 Phys. Status Solidib 248 73240
[6] Jonker BT, Kioseoglou G, Hanbicki A T, Li C H and Thompson P E 2007 Nat. Phys. 3 542
[7] SuzukiT, Sasaki T, Oikawa T, Shiraishi M, Suzuki Y and Noguchi K 2011 Appl. Phys. Express 4023003
[8] Mishchenko E G, Shytov A V and Halperin B T 2004 Phys. Rev. Lett. 93 226602
[9] NittaJ, Meijer F E and Takayanagi H 1999 Appl. Phys. Lett. 75 695

[10] Balatsky AV and Altshuler BL 1993 Phys. Rev. Lett. 70 1678

[11] ChoiMY 1993 Phys. Rev. Lett. 712987

[12] Lucignano P, Giuliano D and Tagliacozzo A 2007 Phys. Rev. B 76 045324

[13] ZhuZ, WangY, Xia K, Xie X Cand Ma Z 2007 Phys. Rev. B76 125311

[14] Souma S and Nikolié¢ B K 2004 Phys. Rev. B70 195346

[15] Bercioux D and Lucignano P 2015 Rep. Prog. Phys. 78 106001

[16] AharonovY and Casher A 1984 Phys. Rev. Lett. 53 319

[17] Joibari FK, Blanter Y M and Bauer G EW 2013 Phys. Rev. B88 115410

[18] Bergsten T, Kobayashi T, Sekine Y and Nitta ] 2006 Phys. Rev. Lett. 97 196803

[19] Nitta ] and Bergsten T 2007 New J. Phys. 9 341

[20] Nagasawa F, TakagiJ, Kunihashi Y, Kohda M and Nitta ] 2012 Phys. Rev. Lett. 108 086801

[21] Nagasawa F, Frustaglia D, Saarikoski H, Richter K and Nitta ] 2013 Nat. Commun. 42526

[22] Frustaglia D and Richter K 2004 Phys. Rev. B 69 235310

[23] ShenSQ,LiZ]Jand MaZS2004 Appl. Phys. Lett. 84 996

[24] Richter K2012 Physics5 1224

[25] WangS]Jand Zuo W 1994 Phys. Lett. A196 13

[26] JiaCL,WangS]J, Luo H G and AnJ H 2004 J. Phys.:Condens. Matter 16 2043

[27] Landauer R 1957 IBM . Res. Dev. 1223

[28] Schmidt G 2005 J. Phys. D: Appl. Phys. 38 R107



https://doi.org/10.1038/45502
https://doi.org/10.1063/1.1491010
https://doi.org/10.1088/0957-4484/14/2/347
https://doi.org/10.1063/1.1758305
https://doi.org/10.1002/pssb.201046185
https://doi.org/10.1002/pssb.201046185
https://doi.org/10.1002/pssb.201046185
https://doi.org/10.1038/nphys673
https://doi.org/10.1143/APEX.4.023003
https://doi.org/10.1103/PhysRevLett.93.226602
https://doi.org/10.1063/1.124485
https://doi.org/10.1103/PhysRevLett.70.1678
https://doi.org/10.1103/PhysRevLett.71.2987
https://doi.org/10.1103/PhysRevB.76.045324
https://doi.org/10.1103/PhysRevB.76.125311
https://doi.org/10.1103/PhysRevB.70.195346
https://doi.org/10.1088/0034-4885/78/10/106001
https://doi.org/10.1103/PhysRevLett.53.319
https://doi.org/10.1103/PhysRevB.88.115410
https://doi.org/10.1103/PhysRevLett.97.196803
https://doi.org/10.1088/1367-2630/9/9/341
https://doi.org/10.1103/PhysRevLett.108.086801
https://doi.org/10.1038/ncomms3526
https://doi.org/10.1103/PhysRevB.69.235310
https://doi.org/10.1063/1.1644914
https://doi.org/10.1103/Physics.5.22
https://doi.org/10.1016/0375-9601(94)91035-9
https://doi.org/10.1088/0953-8984/16/12/013
https://doi.org/10.1147/rd.13.0223
https://doi.org/10.1088/0022-3727/38/7/R01

	Introduction
	Time-varying wavefunction
	Quantum spin transport
	Conclusion
	Acknowledgments
	References



