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Abstract: This paper presents a streamlined approach to describing potential habitats for red deer
(Cervus elaphus) in situations where in situ data collected through observations and monitoring are
absent or insufficient. The main objectives of this study were as follows: (a) to minimize the negative
effects of limited in situ data; (b) to identify landscape features with a functional relationship between
habitat quality and landscape structure; and (c) to use imprecise in situ data for statistical analyses to
specify these relationships. The test area was located in the eastern part of Mecklenburg-Western
Pomeriania (Germany). For this area, remotely sensed forest maps were used to determine landscape
metrics as independent variables. Dichotomous habitat suitability was determined based on hunting
distances over a five-year period. Ecological and biological habitat requirements of red deer were
derived from suitable landscape measures, which served as model inputs. Correlation analysis
identified the most relevant independent landscape metrics. Logistic regression then tested various
metric combinations at both class and landscape levels to assess habitat suitability. Within the model
variants, the contagion index, edge density, and percentage of forested area showed the largest
relative impact on habitat suitability. The approach can also be applied to other mammals, provided
there are appropriate structural preferences and empirical data on habitat suitability.

Keywords: habitat; modeling; red deer; Cervus elaphus; remote sensing; GIS; in situ; ground-truth;
landscape metrics; landscape structure; logistic regression; Landsat

1. Introduction

In times when humans are exerting increasing influence on natural ecosystems, the
protection of biodiversity requires a thorough understanding of the habitat requirements
of wild animals. Worldwide, landscapes are increasingly the result of intensive interac-
tion between natural processes and human land use [1]. Factors such as climate change,
ongoing urbanization, and industrial agriculture have profoundly altered the structure of
biotopes [2,3]. These dynamic changes present a scientific challenge in developing reliable
methods of assessing habitat quality. Modeling habitat suitability for wildlife is an essential
component of modern nature conservation and landscape management strategies. In partic-
ular, large mammals such as red deer (Cervus elaphus) require careful habitat identification
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and analysis to consider both their ecological needs and the often-competing interests of
forestry, agriculture, and hunting [4,5]. The increasing fragmentation of natural habitats
due to human activities is one of the major challenges for maintaining healthy red deer
populations as it significantly influences the animals’ movement patterns, behavior, and
habitat selection [6,7]. Several studies have shown links between structural and ecological
interactions and ecosystem quality for plants and animals at different spatial and temporal
scales [8]. However, although these interactions are understood, the available data for
assessing a site’s species are often inadequate [8]. One reason for this limitation is often
restricted access to the site-specific in situ data required for assessing habitat quality, along
with the availability of species-specific data. To address the lack of such data, suggested
assessing individual population status by integrating various types of information. While
some studies show that dominant species can control vegetation development, it is likely
that dominant herbivores and carnivores in Central Europe exert similar influence on their
habitats. Landscape structure can thus be viewed as an indicator of both natural and
anthropogenic patterns and processes at the landscape level [9,10]. Extracting information
to support decisions and actions for sustainable resource protection—where sustainable
land use is integrated with economic considerations—requires clear and comprehensible in-
formation for evaluating the respective land use. This operationalization can be achieved by
calculating landscape structure indicators or landscape metrics, which serve as indicators
for detecting environmental changes [11,12].

A monitoring system for estimating biodiversity and habitat quality requires area-
wide, up-to-date data; representative quantitative indicators; a data processing chain,
models for deriving indicators; and an evaluation system. Combining different data
sources is essential for identifying optimal sampling strategies. To adequately represent the
complexity of dynamic systems, various monitoring strategies must be integrated for data
collection [13].

Traditional approaches to habitat modeling are often based on field data collected
through telemetry studies, direct observations, or extensive fieldwork. These methods
provide valuable insights but are mostly limited to small geographic areas and involve
significant financial and logistical hurdles [14,15]. To address this challenge, the use of in
situ data, such as hunting bag statistics, has recently emerged as a cost-effective alternative.
Hunting data, which provide information on population distribution and density, are
increasingly used as an indicator of habitat preferences, especially in combination with
remote sensing data to enable large-scale modeling [16,17].

However, one of the major research gaps is the question of how reliable in situ data
such as hunting bag statistics actually are in reflecting habitat preferences, especially when
combined with medium-resolution remote sensing data. Studies show that although these
data provide useful information at the landscape level, they are often not detailed enough
to accurately reflect local habitat preferences [18,19]. Despite the increasing availability
of remote sensing data, the integration of these data into wildlife habitat modeling has
not yet been sufficiently researched, especially in highly fragmented and heterogeneous
landscapes, as is relevant for red deer [20]. Therefore, we test the data via a streamlined
modeling approach.

Another key challenge in modeling habitat suitability for red deer is the consideration
of different spatial scales. The habitat selection of red deer is influenced by both large-scale
landscape structures and microhabitats. Studies have shown that fragmentation, forest
edge density, and the mixing of forest and open land are crucial factors for the habitat use
and movement behavior of red deer [21,22]. These dynamic interactions between landscape
structure and habitat use are particularly relevant in areas with high human activity, where
red deer are often forced to use less optimal habitats [23]. In most parts of Germany, red
deer are restricted to designated core areas. Additionally, red deer primarily retreat to the
forest due to hunting pressure, despite being essentially an open-land animal. These factors
should be considered in the model evaluation process.
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Another important aspect that has been insufficiently studied so far is the seasonal
variability of habitat use. Red deer often follow the so-called “green wave”, a seasonal
migration that aims to always have access to the most nutrient-rich food sources [4]. This
aspect has often been neglected in habitat modeling, although considering seasonal changes
is essential for a complete understanding of habitat selection [24].

Therefore, the objectives of this study are as follows: (a) to predict potential habitats for
red deer (Cervus elaphus) in eastern Mecklenburg-Western Pomerania based on landscape
structure; (b) to mitigate the issue of insufficient habitat (in situ) data by converting hunting
bag statistics into a proxy for habitat suitability; (c) to develop a streamlined habitat model
by integrating various data sources, including remote sensing data, hunting bag statistics,
deer-related landscape structure analysis, and statistical modeling; (d) to identify structural
landscape properties that influence deer habitat quality and demonstrate how remote
sensing and in situ proxy data can be integrated to explore relationships between habitat
quality and landscape structure; and (e) to produce habitat suitability maps for land use
planning and landscape management.

2. Materials and Methods

The basic idea of our approach to modeling red deer habitats is to distinguish between
preferred and less-preferred habitats using landscape structural characteristics (landscape
metrics) as independent variables. For this purpose, a suitable dichotomous classification
procedure was developed using proxy habitat suitability data as the target variable and
suitable landscape metrics based on classified remote sensing data as independent variables.
An overview of this approach is shown in Figure 1, and the integrated data and quantified
metrics are shown in Tables A1 and A2.
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2.1. Content Background

Currently, red deer is one of the largest wildlife species in Central Europe [25–27].
There are approximately 210,000 red deer in Germany and 21,000 in Mecklenburg-Western
Pomerania, with abundance ranging from 0.2 to 10 or more animals per km2 [28]. The
species is controversial in society due to long-standing conflicts of interest between forestry,
hunting, and nature conservation [29]. Red deer are an important game species but also
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have a negative impact on forest regeneration [30]. Currently, hunters play a major role in
determining their distribution in Mecklenburg-Vorpommern [31]. In contrast to the German
states, red deer in Mecklenburg-Western Pomerania are free to choose their habitat [32],
which strongly influences their distribution. The rural structure, climatic conditions, abun-
dant food supply, and low human population density of Mecklenburg-Vorpommern favors
the maintenance of preferred red deer habitats. The preferred habitat of red deer is a large,
coherent landscape with a mosaic of forest habitats and open areas [33–35]. The habitat
requirements of red deer, as found in various literature sources, are summarized in Table 1.
The particular challenge in modeling wildlife, e.g., red deer habitats, is to combine these
very different and detailed requirements as an appropriate means of access to spatially
available data sources.

Table 1. Red deer habitat preferences derived from literature (modified after [36]).

Red Deer (Cervus elaphus)

Class Order Family Genus Population Size in Germany
Mammals Even-Toed Ungulates Cervidae Red Deer approx 210,000 Individuals

Ecological Influencing Habitat Factors Reference

General character: Ruminant animals, regurgitates food in remasticate to aid in digestion. [34]
Europe habitat regions: Temperate; terrestrial. [25,37]
Habitat features (usual residence): Forested areas, grasslands, agricultural fields, bog land. [33–35]
Elevation: 0–2500 m a.s.l. [34]
Food habitats: Herbivore, intermediate; feeding on mixed diet of browse and graze; primary food
sources: grasses, herbs, leaves, tree fruits (i.e., acorn, bark), field fruits (i.e., maize, potato); and in
winter: needles of conifers trees, grass, shrubs, shoots of trees.

[34,38]

Main home range components: Food, cover, water, space. [39]
Home range size (influencing factors): Official reed deer districts, seasonal changes, food supply,
sex, age. [40,41]

Habitat area: Male, 2400 ha; female, 1300 ha (Nationalpark “Vorpommersche
Boddenlandschaft”). [40,42]

2.2. Study Area

The study area covers the eastern part of the federal state of Mecklenburg-Western
Pomerania in northeastern Germany. This is due to the availability of habitats with rep-
resentative distribution data for red deer, collected by the state. It extends approximately
172 km from north to south and 170 km from east to west. The majority of land use is
agricultural (62.5%), followed by woodland (24.1%), settlements and transportation infras-
tructure (8%), and water (6%), including 1700 lakes [28]. Forested areas are embedded in
gently rolling lowlands. The forested areas are mostly distributed in rather small patches
with long forest edges. Agricultural fields are often interspersed with “kettle holes”, which
are rich in woodland. These provide shelter, forage, and resting places for deer, especially
in winter [41]. Commonly grown crops such as winter cereals, maize, and oilseed rape are
valuable food sources.

2.3. Data Basis
2.3.1. Remote Sensing Data

Our approach is based on the remote sensing-based Forest Cover Map product, which
captured tree canopy cover for the year 2000 [43]. This value-added product is based on
Landsat 7 ETM+ data. The Landsat satellite family is part of one of the longest historical
remote sensing missions from 1978 to the present. Although the Landsat-based global
forest cover is certainly not the most accurate data source for Germany, the easy availability
of Landsat data and derived products at no cost would allow analogous studies for other
areas and times with a quasi-automatic process line. For the present study, the global tree
canopy cover for the year 2000 was used to calculate landscape metrics and to identify
the habitat preferences of red deer. The use of forest cover data from the year 2000 is not
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considered a relevant uncertainty factor, as the rather large-scale forest open land structure
considered for these studies did not change significantly between 2000 and the time interval
of the hunting data from 2007–2011.

2.3.2. In Situ Data

Comprehensive and reliable explicit in situ red deer data (measured by telemetry, ra-
dio tagging, or camera trapping) to derive a classifier are not currently available. Therefore,
it was necessary to derive them from other indirect data sources. For this purpose, govern-
mentally collected data (hunting bags) of red deer for Mecklenburg-Western Pomerania
from 2007–2011 were used as a proxy. The hunting bag data were provided by the Min-
istry of Agriculture and Environment of Mecklenburg-Western Pomerania via the Thünen
Institute for Forest Ecosystems in Eberswalde [28]. The general assumption behind using
hunting bags is that a high rate of hunting success rate in a certain area indicates a high
deer density and thus preferred habitats [44].

Data pre-processing included spatial regionalization and harmonization of the data. To
this end, hunting bag data were linked to a specific municipality of Mecklenburg-Western
Pomerania and then predicted per km2 for all the hunting seasons from 2007 to 2011.
Finally, the data were merged with the geographic municipality dataset (VG250; scale of
1:250,000) of Mecklenburg-Western Pomerania [45]. The final dataset contains the number
of hunted individuals per km2 in the considered hunting period and ranges from 0 to
4.05 hunted deer/km2/year. It should be noted that hunting bags were not available for all
municipalities. Figure 2 visualizes the hunting data processed in this way.
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2.4. Model Development
2.4.1. Data Processing

For further data processing, the study area was covered with a vector grid (fishnet)
containing 171 rows and 173 columns with a cell size of 1 km × 1 km. The target resolution
of 1 km was chosen in view of the spatial requirements of the red deer (see Table 1) and the
size of the study area. This spatial environment was the setting for all of the subsequent
processing of geospatial data, either as a vector grid or as a corresponding raster layer.

As the analogous hunting bag data were available within the municipal boundaries
and not for all municipalities, they were adjusted to the target resolution, and data gaps
were filled via spatial interpolation using moving window technology [46]. First, an
overlay of hunt data and the fishnet was created. Moving window technology was applied
to the target area data with an analysis window of 5 km × 5 km using the mean values
to produce the final comprehensive habitat index map (Figure 1). Application of the
moving window algorithm simultaneously smoothed adjacent individual values and filled
in missing values (Figure 3). This avoids unnaturally sharp transitions in habitat quality
between immediately adjacent cells. The interpolated values are interpreted as predicted
relative habitat suitability values, with larger values indicating more-preferred habitats
and smaller values indicating less-preferred habitats. The original global forest cover was
interpolated analogously in the spatial extent, location, and resolution of the vector grid.
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2.4.2. Landscape Metrics

The known ecological and biological habitat requirements of red deer (Table 1) were
used to identify an initial set of landscape metrics to serve as numerical inputs to the
subsequent statistical model (habitat classifier) (Figure 1). Both class- and landscape-level
metrics were considered to account for local and regional aspects of landscape structure.
Rank correlation analysis was used to identify the landscape metrics that were most highly
correlated with hypothesized habitat quality. This eventually reduced the total number of
considered landscape metrics to six significant ones, three each at landscape and class level.
The landscape-level metrics considered include the following: (1) area-weighted mean
radius of gyration (GYRATE_AM), which measures the continuity of the patches; (2) the
contagion index (CONTAG), which indicates the aggregation of patches; and (3) effective
mesh size (MESH), which measures the percentage of cell adjacencies of patches within one
class. Among the class level metrics considered, there are the following: (4) edge density
(ED), which is the total length of all edge segments per hectare for the considered landscape;
(5) percentage of landscape (PLAND), which informs of the dominance of a certain patch
type; and (6) mean shape index (SHAPE_MN), which is a patch-level shape index averaged
over all patches in the landscape (see Table A2). The selection of these indices allows
for a transparent interpretation in terms of red deer structural habitat preferences and
potential practical habitat management. All calculated metrics were based on the binary
forest and non-forest information of the global forest cover image. This means that exactly
two different class levels are considered. Corresponding landscape metrics were assigned
to each 1 km × 1 km cell of the study area.

Landscape structure analyses were performed using FRGASTATS v4.2. software [47],
and subsequent statistical analyses were performed using IBM SPSS Statistics (version 22).
For more information on calculating the respective structural metrics, see McGarigal and
Marks [47].

2.4.3. Statistical Modeling

The statistical classifier used was the binary logistic regression. Logistic regression is
less demanding on the data than discriminant analysis or the other statistical classifiers.
Both continuous and discrete data can be used as independent variables. However, there is
a risk that multicollinearity of the inputs may affect the classification results in the long
term [48]. Multicollinearity occurs when input variables are correlated with each other. In
our model variants, therefore, only the least mutually correlated landscape metrics were
used as inputs to the logistic regression. In the case of two or more potential inputs, those
with the best interpretability of red deer habitat requirements were selected as independent
variables.

Overlaying the study area with a 1 km × 1 km vector grid resulted in a total of
29,583 cases. From the total dataset, sorted by the estimated habitat suitability derived
from the hunting bags, the lower and upper quartiles were then selected to create a new
dichotomous target variable called the habitat suitability index. This clearly distinguishes
between “preferred” habitats, coded 1, and “less-preferred” habitats, coded 0. As a signifi-
cant proportion of the cells are located outside of the study area, the actual number of cases
used for the statistical modeling was reduced to 5779.

To develop the final statistical model, four logistic regression models (variants 1–4)
were tested using the previously created dichotomous target variable and various combi-
nations of landscape metrics at both class and landscape levels as independent variables:
(1) metrics from the landscape level only; (2) metrics from class level only; (3) metrics from
both the landscape and the class level; and (4) a final reduced model containing only the
most influential standardized metrics. The final result was a classifier that covered both
local and landscape effects with a limited set of landscape metrics at both class and land-
scape level; additionally, it allowed for a clear interpretation of the input effects in relation
to the known ecological requirements of red deer. The goodness-of-fit of the logistic regres-
sion functions was assessed using the Nagelkerke R2 value and the Hosmer–Lemeshow
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statistics (especially when comparing model variants). When evaluating the statistical
results, it is important not only to compare the goodness-of-fit of the model variants but
also to determine the relative impact of each input. Therefore, the statistical significance of
individual regression coefficients was tested using the p-value of the Wald chi2 statistic. To
assess not only the statistical significance of individual inputs but also their actual impact,
particularly in model variants 3 and 4, standardized regression coefficients were calculated.

3. Results
3.1. Selection of Different Input Metrics and Reporting of Intermediate Results

The results for four all four variants (1–4) are presented, showing for each of the
independent input metrics-associated regression coefficient (B) the Wald chi2 statistics of
the regression coefficients and their associated p-values. For all four models, the p-values of
the regression coefficients are <0.05 = 5%, indicating statistical significance at the 5% level
of error, and the overall classification success is expressed by the overall classification rate
for each model.

3.2. Model Variant 1

Model variant 1 (Table 2) shows an overall classification rate of 63.7%; the Nagelkerke
R2 statistics is rather low, with a value of 0.101. The value of the Hosmer–Lemeshow
statistics has a value of 96.950. The binary classification was better at predicting the “less
preferred” habitats than the “preferred habitats” (68.1% versus 58.8%).

Table 2. Landscape-level input metrics and test statistics of the binary logistic regression model
variant 1 for the evaluation of habitat suitability for the test area, Mecklenburg-Western Pomerania,
Germany. The indicators were derived via the Forest Cover Map product based on Landsat 7 ETM+
data for the year 2000.

Binary Logistic Regression—Model Variant 1

Input Metrics B Wald Statistics p-Value of Wald Statistics Exp(B)

CONTAG −0.005 15.684 0.000 0.995

MESH −0.001 42.549 0.000 0.999

GYRATE_AM −0.002 24.592 0.000 0.998

Constant 3.546 108.777 0.000 34.691

All regression coefficients of model variant 1 have a negative sign, which results in
Exp(B) values < 1.0, thus indicating an inverse trend between increasing metric values and
the probability of predicting preferred habitat suitability. The structural characteristics
of the landscape expressed by CONTAG (aggregation of patches), MESH (relative patch
structure), and GYRATE_AM (continuity of patches) have a significant influence on red
deer habitat suitability.

3.3. Model Variant 2

Model variant 2 (Table 3) shows an overall classification rate of 68.4%, the Nagelkerke
R2 statistics shows a value of 0.183, and the Hosmer–Lemeshow goodness-of-fit reaches
a value of 190.577. The binary classification was better at predicting the “less preferred”
habitats than the “preferred habitats” (79.4% versus 58%).

The overall classification success and both goodness-of-fit statistics are better than for
variant 1. The regression coefficients for SHAPE_MN with a value of 0.797 and for PLAND
with a value of 0.033 are positive, thus indicating a parallel trend between the structural
characteristics expressed by these metrics and the prediction of habitat suitability. The
regression coefficient for ED is negative, with a value of −0.084, thus indicating an opposite
trend between prediction of habitat suitability and edge density.
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Table 3. Class-level input metrics and test statistics of the binary logistic regression model variant 2
for the evaluation of habitat suitability for the test area, Mecklenburg-Western Pomerania, Germany.
The indicators were derived via the Forest Cover Map product based on Landsat 7 ETM+ data for the
year 2000.

Binary Logistic Regression—Model Variant 2

Input Metrics B Wald Statistics p-Value of Wald
Statistics Exp(B)

SHAPE_MN 0.797 26.819 0.000 2.219

ED −0.084 38.346 0.000 0.919

PLAND 0.033 376.419 0.000 1.033

Constant −1.480 105.326 0.000 0.228

3.4. Model Variant 3

Model variant 3 (Table 4) achieves an overall classification rate of 71.4%, the Nagelk-
erke R2 statistics shows a value of 0.241, and the Hosmer–Lemeshow goodness-of-fit
reaches a value of 88.352. Both “less preferred” and “preferred habitats” are predicted with
slightly different success rates (74.3% vs. 68.6%).

Table 4. Landscape- and class-level input metrics and test statistics of the binary logistic regression
model variant 3 for the evaluation of habitat suitability for the test area. Mecklenburg-Western
Pomerania, Germany. The indicators were derived via the Forest Cover Map product based on
Landsat 7 ETM+ data for the year 2000.

Binary Logistic Regression—Model Variant 3

Input Metrics B Wald Statistics p-Value of Wald Statistics Exp(B)

SHAPE 1.351 58.803 0.000 3.863

ED 0.023 137.761 0.000 0.799

PLAND −0.224 194.256 0.000 1.023

CONATAG −0.043 78.489 0.000 0.958

MESH −0.004 13.278 0.000 1.002

GYRATE_AM 0.002 48.226 0.000 0.996

Constant 2.493 37.235 0.000 12.102

The overall classification success is better than for variants 1 and 2, indicating that the
inclusion of more-detailed structural information obviously leads to a better prediction
result. All six metrics contribute substantially to the classification success, although the
regression coefficients for PLAND (−0.224), CONTAG (−0.043), and the MESH (−0.004)
are negative, thus indicating an opposite trend between changed metric values and the
predicted habitat suitability. The results of this model variant seems reasonable, as it
considers structural properties at the landscape level (i.e., on a larger ecological scale) and
the class level (i.e., on a smaller ecological scale) to be important.

3.5. Deriving the Final Suitability Model

To select the predictor variables for variant 4, we used the three most influential
inputs from model variant 3 (Table 4). The actual effect of a factor cannot be deduced from
statistical significance alone. Therefore, the aim was to give equal consideration to statistical
significance, relative effect, and transparent interpretation when selecting the input metrics
for the logistic regression model. Model variant 3 showed that the combination of metrics
on class and landscape level gives the best classification result. However, the interpretation
of the six different, partly opposite effects is not entirely clear. To simplify the model and
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thus facilitate an easier interpretation, the regression coefficients of model variant 3 were
standardized according to the method proposed by Table 5 below.

Table 5. Landscape- and class-level input metrics and test statistics of the binary logistic regression
model (regression coefficients) of model variant 3 for the evaluation of habitat suitability for the test
area, Mecklenburg-Western Pomerania, Germany. The indicators were derived via the Forest Cover
Map product based on Landsat 7 ETM+ data for the year 2000.

Binary Logistic Regression—Model Variant 3

Input Variable Unstandardized Regression Coefficient Standardized Regression Coefficient

CONTAG −0.043 −0.266

MESH 0.002 0.143

GYRATE −0.004 −0.099

ED −0.224 −0.156

SHAPE 1.351 0.091

PLAND 0.023 0.143

The inputs with the largest relative effect are the landscape-level metrics CONTAG
and MESH and the class level metrics ED and PLAND. The CONTAG index has the largest
relative effect, with a value of −0.266, followed by ED for the forest class, with a value of
−0.156. MESH and PLAND have the same value of 0.143, both containing information on
the share of forest area. For ease of understanding, PLAND is preferred to MESH as the
input for a model with three input metrics on either the class or landscape level (variant 4).

3.6. Model Variant 4

The overall classification success of model variant 4 reaches 68.8%, which is slightly
lower than the success of model variant 3, but importantly, here, only three input variables
were used compared to the previous six. The Nagelkerke R2 statistics shows a value of
0.199; the Hosmer–Lemeshow goodness-of-fit statistics reaches a value of 70.525. The rate
of “preferred habitats” (67%) is close to the rate of 68.6% in model variant 3. This leads to
the conclusion that preferred habitats can be predicted with almost the same accuracy but
with fewer input variables.

Table 6 provides a comparison of the unstandardized and standardized regression
coefficients. It shows that the rank or importance of the variables changes but not their
overall effect. The CONTAG index increases from −0.027 to −0.166. Here, it has the
greatest relative importance but works in the opposite direction. It measures the extent to
which land cover types are aggregated or clumped. LAND is the least significant, with a
value of 0.026 for the unstandardized coefficient, but the second most important, with a
value of 0.164 for the standardized coefficient for the overall classification. In contrast, the
ED index decreases in its relative importance from −0.092 to −0.065.

Table 6. Landscape- and class-level input metrics and final test statistics of the binary logistic
regression model of model variant 3 for the importance of the variables for the test area, Mecklenburg-
Western Pomerania, Germany. The indicators were derived via the Forest Cover Map product based
on Landsat 7 ETM+ data for the year 2000.

Binary Logistic Regression—Model Variant 4

B Wald Statistic p-Value of Wald Chi-Square Statistics Exp(B) Standardized Regression Coefficient

CONATG −0.027 121.284 0.000 0.974 −0.166

ED −0.092 37.445 0.000 0.912 −0.065

PLAND 0.026 379.739 0.000 1.027 0.164

Constant 0.719 13.620 0.000 2.052
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The predicted values were used and exported to a GIS (Figure 4), where the distribu-
tion of “preferred” habitats is highlighted in light green, the “less preferred” habitats are
color-coded in yellow, and both are shown together with the forest cover map.
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4. Discussion

The results of the study on habitat modeling for red deer in Mecklenburg-Western
Pomerania provide valuable insights acquired by combining remote sensing data, landscape
metrics, and spatial and temporal inexact in situ data—in this case, hunting bag statistics.
This study represents an important approach to enabling predictive modeling despite
limited in situ data.

4.1. Discussion on the Importance of Proxy Data for Habitat Use Modeling

The integration of hunting data as proxy for habitat suitability has proven to be an
effective method of predicting the potential habitat preferences of red deer in the absence
of direct observation data. This is supported by the study by Chassagneux et al. [16], which
shows that hunting pressure and anthropogenic disturbance significantly influence the
movement behavior of red deer. This study showed that habitat suitability is lower in
areas with high hunting pressure, indicating that proxy data can function as a valid and
cost-effective alternative to expensive telemetry studies.

Another example is the work of Alves et al. [39], which uses methods such as scat
and track counting to determine the habitat use of red deer. They confirm that indirect
methods can provide valuable information on habitat preferences, especially in areas that
are difficult to access.
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4.2. Discussion on the Role of Remote Sensing

A key finding of this study is that remote sensing data provide an effective basis for
modeling large-scale mammalian habitats [18]. Despite the relatively coarse resolution of
the Landsat 7 ETM+ data (30 m), significant landscape patterns in the habitat use of red
deer could be identified. This highlights that remote sensing, even at medium resolution,
in combination with appropriate landscape metrics, can provide valuable information for
understanding animal behavior and habitat selection. For example, in a study by Oeser
et al. [49], the habitat dynamics of red deer and roe deer in Central Western Europe were
investigated using similar remote sensing techniques, with Landsat data being used to
analyze forest disturbance. The approach of combining low-resolution remote sensing
data with hunting or telemetry data is considered a valuable approach by several authors,
especially in regions with limited direct observation data. Furthermore, the study by
Kwong et al. [19] shows that remote sensing data combined with landscape metrics can
provide a robust basis for habitat modeling.

4.3. Discussion on Model Performance

Four different model variants were tested in the study, which differ in their combina-
tion of different metrics. Interestingly, model variant 3, which combined metrics at both
the landscape and class level, showed the highest prediction accuracy (71.4%). This shows
the importance of considering habitat structures at both the local and regional levels to
fully understand red deer behavior. In contrast, the simplified model variant 4, with only
three of the most influential metrics, achieved a prediction accuracy of 68.8%. This shows
that it is possible to reduce the number of variables without significantly losing model
accuracy. This reduction has the advantage that the model is easier to interpret and the most
important factors determining habitat selection can more easily be identified. Particularly
noteworthy is the importance of the contact index (CONTAG), which was identified as one
of the most important predictors in both models. Its negative influence underlines the red
deer’s preference for heterogeneous landscapes.

4.4. Discussion on Landscape Structures

The modeling was based on various landscape metrics, which were calculated at both
the class level (e.g., forest cover, edge density) and the landscape level (e.g., contagion index
(CONTAG), gyration radius (GYRATE_AM)). The importance of these metrics reflects the
structural preferences of the red deer.

The contact index, which measures the aggregation of landscape elements, has a nega-
tive influence on habitat preference. This could indicate that red deer prefer heterogeneous
landscapes with a mixture of forest and open land areas over heavily aggregated forest
areas. Edge density, a measure of the length of forest edges, also had a significant influence
on habitat use. Red deer frequently use forest edges as a transition between cover and
grazing, which explains the high relevance of this measure for habitat modeling. Landscape
structure—in particular, the fragmentation of forest areas and the spatial arrangement of
forest and open land—plays a central role in the habitat use of red deer. Studies show
that red deer have complex interactions with their environment, with landscape structure
having a significant influence on their movement patterns, resource use, and choice of
retreat areas.

The results of this study clearly show that the index describing the connectivity of
forest areas (CONTAG), the index describing fragmentation (MESH), and edge density
(ED) are significant predictors of red deer habitat suitability. These metrics are consistent
with the results of Walter et al. [7], which show that the size of the home range of red deer
is highly dependent on landscape composition and configuration. In more fragmented
landscapes, the freedom of movement of red deer is restricted, which, in turn, leads to
lower habitat suitability. Bevanda et al. [6] emphasize that fragmentation of forest areas
significantly increases the size of red deer home ranges as they are forced to travel greater
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distances to find sufficient food and cover. In more fragmented landscapes, red deer are
less able to find their preferred habitats, which can affect their fitness and survival.

Sigrist et al. [22] point out that fragmentation not only reduces food availability but
also the ability to seek shelter from predators and human disturbance. In fragmented
landscapes with high edge lengths, red deer are more exposed, which means that they have
to adapt their behavior more often by moving to less suitable areas.

Studies such as those by Oeser et al. [49] and Walter et al. [7] show that red deer are able
to use resources efficiently in well-connected landscapes, while also having smaller, better-
defined home ranges. Connectivity allows red deer to move freely between feeding and
shelter areas, increasing their fitness and survival, especially during challenging seasons
such as winter. Furthermore, Wu et al. [50] and Sun et al. [51] show that factors such as
proximity to water sources, the degree of cover provided by shrubs, and distance to roads
and villages are crucial for the habitat preferences of red deer.

The present results also show that human activities, especially habitat fragmentation
by agriculture and infrastructure, have a significant impact on habitat use. The negative
effects of fragmentation on habitat suitability observed in this study are consistent with the
results of Dechen Quinn et al. [52], who found that white-tailed deer have smaller home
ranges in more fragmented landscapes. This highlights the importance of maintaining con-
tiguous forest patches for the long-term survival of red deer populations. Walter et al. [7]
also emphasize that deer require larger home ranges in more fragmented areas to access
the resources they need. These findings are particularly relevant for landscape manage-
ment in Mecklenburg-Vorpommern, where fragmentation caused by human activities is
widespread.

4.5. Discussion on Seasonal Dynamics and Phenology

A very important result of this study is its calculation of seasonal habitat use dynamics.
As Mysterud et al. [4] and Sigrist et al. [22] show, red deer follow the “green wave” to
maximize access to nutrient-rich food during the growing season. This is particularly
relevant in fragmented areas where the availability of high-quality forage is subject to
seasonal fluctuations. The present study shows that seasonal variability in vegetation is a
crucial factor for habitat suitability, underlining the importance of a dynamic consideration
of habitat preferences. These findings are critical for management, particularly with regard
to the effects of climate change on vegetation patterns and availability.

5. Management Implications

The findings on the influence of landscape structure on red deer habitat use have
important implications for wildlife management. They suggest that maintaining contiguous
forest patches and reducing fragmentation are key strategies for improving habitat quality
for red deer.

Bevanda et al. [6] and Mysterud et al. [4] emphasize that management strategies
should aim to create corridors between fragments to improve connectivity and promote
the movement of red deer.

To minimize the negative influence of hunting pressure on red deer populations,
sustainable hunting management plans should be implemented. This includes regulating
hunting seasons to take into account reproductive cycles and introducing quotas to avoid
overhunting. According to Jarnemo et al. [40], heavily hunted populations tend to retreat
into remote, inaccessible areas. Better-coordinated hunting management could help prevent
the displacement of red deer from high-quality habitat and keep the population at a
healthy level.

A crucial factor in supporting the red deer is protecting key habitats such as dense
forests, wetlands, and wooded areas at higher elevations. These areas provide the red deer
with food and shelter from human disturbance. One way to protect these key habitats
is to establish buffer zones around them, where human activities such as agriculture,
forestry, and recreation are restricted. According to Oeser et al. [49], such buffer zones are
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particularly important for minimizing the impact of disturbance while providing the red
deer with the cover and security they need for reproduction and survival.

6. Conclusions

This study shows that combining remote sensing data and proxy data, such as hunting
bag statistics, is an effective way to model the habitat use of red deer in areas with limited
in situ data. The application of landscape metrics has shown that even data with a low
resolution, such as those from Landsat 7, can provide sufficient results. The importance
of landscape structure was emphasized by the analysis of metrics such as the contagion
index and edge density. These indices have a significant influence on habitat suitability
and confirm the red deer’s preference for heterogeneous, unfragmented landscapes. The
seasonal dynamics of vegetation—in particular, the availability of food resources—play
a crucial role in the habitat selection of red deer. This highlights the need to consider
seasonal and phenological changes in future management strategies. The integration of
hunting data as a proxy variable showed that this method is very reliable for identifying
preferred and less-preferred habitats. Hunting data could therefore be a cost-effective
alternative to direct telemetry studies, especially in regions that are difficult to access. These
research results suggest that the preservation of unfragmented forest areas and the creation
of corridors between habitat fragments are crucial for the long-term survival of red deer
populations. Landscape fragmentation has been shown to have a negative impact on the
animals’ freedom of movement and resource use.

Future studies should further explore the use of modern technologies such as high-
resolution remote sensing data to improve habitat modeling and better capture dynamic
changes in the landscape. The results of this work can be transferred to other large mammals
with similar ecological requirements.
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Appendix A

Table A1. Overview of the data used in this study for the region of Mecklenburg-Western Pomerania,
Germany.

Dataset Spatial Resolution Temporal Resolution [Year] Reference/Link

Forest Cover Map product based on
Landsat 7 ETM+ data 30 × 30 m 2000 [43]

Geographic municipality dataset
VG250 AKTIS, Federal Agency for
Cartography and Geodesy

1:250,000 2007 [45]

Hunting data

• High deer density and
preferred habitats.

• Number of hunted
individuals per km2.

2007/08–2011/12 [28]

Table A2. Derived landscape metrics for the quantification of landscape structure from Landsat
7 ETM+ data based on Fragsats V. 4.2. (For more information, see Mc Garigal and Marks, [47].)

Landscape Metrics Abbreviation Landscape/Class Level
of Quantification Description

Area-weighted mean radius
of gyration (GYRATE_AM) Landscape-level Measures the continuity of patches

Contagion index (CONTAG) Landscape-level Indicates the aggregation of patches

Effective mesh size (MESH) Landscape-level
Measures the percentage of cell
adjacencies of patches within
one class

Edge density (ED) Class-level
The total length of all edge segments
per hectare for the considered
landscape

Percentage of landscape (PLAND) Class-level Informs about the dominance of a
certain patch type

Mean shape index (SHAPE_MN) Class -level Patch-level shape index averaged
over all patches in the landscape
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