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ABSTRACT: The entropy of mixing of a multicomponent system of
particles is a simple expression of the molar fractions for the equilibrium
state, but its intermediate values for transient (nonequilibrium) states can
not be calculated directly from the particle coordinates so far. We propose a
simple expression for the configurational entropy of mixing based solely on
the set of instantaneous coordinates, which is suitable for the on-the-fly
determination of the degree of mixing along a molecular dynamics trajectory.
We illustrate the applicability of our scheme with the example of several
molecular mixtures that exhibit fast and slow mixing and demixing processes
within a molecular dynamics simulation.

Entropy is the basic thermodynamic driving force,
complementary to the enthalpy, which determines the

spontaneous evolution of all processes in nature. As one of the
most fundamental thermodynamic quantities, it is relevant in
all areas of natural sciences. Within “molecular” chemistry,
some of the many relevant applications of entropy as a
thermodynamic driving force are solution processes and phase
transitions/phase equilibria. Traditionally, the entropy is
defined either via its total differential as the reversibly
exchanged reduced heat, dS = δQrev/T, or on the absolute
scale via the statistical weight of a macrostate, S = kB ln Ω. One
of the elementary processes driven directly by entropy is the
mixing of noninteracting particles of two species A and B,
starting from two separated pure phases. The difference in
Entropy between the mixed and separated state is commonly
known as entropy of mixing, ΔS = S(mixed) − S(separated).
In a system composed of N(A) particles of species A and N(B)

particles of species B, the molar entropy of mixing is given as

= +S R x x x x( ln ln )A A B B( ) ( ) ( ) ( ) (1)

with the molar fractions x(λ) = N(λ)/(N(A) + N(B)) and the
universal gas constant R. eq 1 constitutes the equilibrium value
of the entropy of mixing for a fully mixed phase, and is
therefore not directly applicable to nonequilibrium states of a
system. A formally very similar idea in the field of information
theory was pioneered by Shannon1 in view of quantifying the
amount of information on a data stream.
Surprisingly, no explicit and simple way has been published

so far to express the entropy of mixing of a system of several
components based on the instantaneous particle coordinates
directly, i.e. in a form that allows a direct measure of the
temporal evolution of the configurational entropy of mixing
during a simulation. While the topic of the entropy of mixing
has attracted considerable interest over recent years, all existing

approaches are based on the starting point from statistical
thermodynamics. The entropy is expressed as an absolute
function via either the statistical weight or the partition
function of a configuration, yielding the entropy of mixing as
the differences of the corresponding absolute values of pure
and actual phases. An excellent recent work by Desgranges2

illustrates the principal power of this idea; they used a Monte
Carlo approach to compute the statistical weight Ω, and
further used an extended Wang−Landau approach to compute
partition function of binary mixtures.3 The pioneering work on
this fundamental path was done by Lazaridis4,5 and Berens,6

and further developed by Peter.7 A particular aspect of this
approach is that it can be formulated using binary correlation
functions to express the entropy of mixing. For a truly ergodic
system, such correlation functions could be computed using
one single configuration, but for most actual simulations, an
ensemble average at equilibrium would be required. A related
yet complementary interesting approach is the kth nearest
neighbor method of entropy estimation, recently reviewed by
Fogolari et al.8 This concept is equally able to quantify the
configurational entropy on the basis of a Shannon-type
expression ρ(r)ln(ρ(r)). There is actually a certain disagree-
ment in the literature about the question whether the
conventional expression x ln(x) or the Flory−Huggins formula
x ln(V) is more accurate for computing the entropy of mixing
of actual polymers; according to Lazaridis, the conventional
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expression turns out to yield better results.4,5 A complementary
idea was followed by Garces,9 who determined clusters of
particles in the mixture and derived an entropy expression from
their probabilities. One of the more fundamental approaches
was developed by Lin,10 based on computing the partition
function of a system via its vibrational density of states from
the atomic velocity autocorrelation functions, and deriving the
entropy of mixing from the partition function. This approach
was applied successfully11 and extended further by Caro.12

Detmar et al.13 found, that the displacement parameter of a
Monte Carlo simulation is linearly tied to the residual entropy
of a binary mixture. This makes the estimation of entropy
exceedingly simple for Monte Carlo simulations, under the
common condition that their phase space sampling is
converged - in other words, at equilibrium. In order to show
the validity of their method, Detmar et al. used Widoms
insertion14 to calculate the chemical potential and from that
the residual entropy of the system. A more frequently used
analysis tool to describe the chemical environment in
molecular simulations are pair correlation functions (also
known as radial distribution functions). Minimum distance
distribution functions, a special type, have recently been
exploited to quantify the local structure around complex
solutes and accumulation or exclusion characteristics.15 A
complementary mainly experimental tool are partition
coefficients which measure the concentration ratio of a solute
between two solvents.16 These partition coefficients can be
determined directly from molecular simulation.17,18 An
interesting recent development by Brehm19 is based on a
related expression for microheterogeneities via histogram-
based evaluation of local density fluctuations. Economou used
them for the determination of Gibbs energies of solvation20

and Huyskens was able to derive a closed expression for the
partition coefficients of alkanes/alkanoles in water based on
thermodynamic considerations of mobile disorder.21 It should
be noted that this topic is of high industrial relevance, there is a
well established annual competition organized by industry
(“Industrial Simulation Challenge”22), where properties of
fluids like the heat of mixing, liquid−liquid interfaces and
partition coefficients of unknown systems are predicted by
several simulation teams.23,24

However, while all these approaches are of course valid and
useful, they are not directly applicable to a given moment
within a molecular simulation for answering the simple
question whether the components are well mixed or not, i.e.
whether the entropy of mixing of a particular set of
configurations is rather close to zero (separated state) or
close to the maximum value (corresponding to full mixing),
given by the expression in eq 1.
In this letter, we propose a novel scheme for the explicit

calculation of the instantaneous entropy of mixing of a
molecular system based directly on the atomic coordinates.
The scheme is simple and fast, and does not require any level
of additional simulation (such as the calculation of partition
functions, autocorrelation functions, or variations of lattice
occupation numbers).
To illustrate the idea of our scheme, we start by a model

system of a large number of red and blue particles distributed
randomly in a box (see Figure 1).
The total volume can be divided into N small elementary

volumes Vα (blue boxes in Figure 1) which are assumed to
contain a sufficiently large number of particles. As entropy is an
extensive quantity, the total entropy of mixing of the entire

system ΔS can be written as the sum over the entropies of
mixing ΔSα of the elementary volumes α. Now, we assume that
the individual elementary volumes are sufficiently small, so that
each subsystem can be considered to be in local equilibrium,
which in turn enables the application of eq 1 for each
individual elementary volume Vα:

=S S
(2)

= +
=

S
R
N

x x x xln ln
N

A A B B

1

( ) ( ) ( ) ( )

(3)

Here, xα
(A) is the molar fraction of species A in the

elementary volume element Vα. If all elementary volumes
have the same molar fractions x(A) and x(B), then eq 3 evolves
to eq 1, i.e. the system is at equilibrium (fully mixed). In the
other extreme of fully separated phases, all elementary volumes
will have xα

(A)=1, xα
(B)=0 or vice versa, leading to ΔS = 0. Hence,

this expression captures the essential features of the
instantaneous entropy of mixing in a multicomponent system,
i.e. eq 3 is able to describe the evolution from nonequilibrium
to equilibrium states numerically.
While this model derivation is in principle valid, it is difficult

to apply it to real-world simulations, since the basic
assumptions (large total number of particles, large number of
elementary volumes, sufficiently large number of particles in
each elementary volume) can normally not be satisfied
simultaneously.
Our novel scheme starts here. Instead of repartitioning the

total volume in finite elementary volumes with constant molar
fractions xα

(A) and xα
(B), we switch to defining molar f raction

distributions x(A)(r) and x(B)(r). A reproduction of the model
system (Figure 1) would be achieved by defining
x(A)(r∈Vα)=xα

(A). Instead, we define the molar fraction
distributions based solely on the partial densities of the two
species ρ(A)(r) and ρ(B)(r) via

=
+

x r
r

r r
( )

( )

( ) ( )
A

A

A B
( )

( )

( ) ( ) (4)

The key is now to define the partial densities ρ(A)(r) and
ρ(B)(r) via the actual atomic coordinates of the particles. To
this aim, we replace each particle i by a density distribution
localized around the coordinate of the particle Ri. We have
chosen to use a Gaussian function according to

Figure 1. Model system consisting of a binary mixture of particles
(red and blue). The total box is split into small elementary volumes
Vα (blue boxes).
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with a specific broadening parameter σ which will be discussed
later. In this equation, the particle coordinates Ri can be taken
directly from a single frame of a molecular dynamics trajectory,
i.e. the resulting molar fraction distributions x(A)(r) and x(B)(r)
in eq 4 are actually functions of the simulation time. Now it is
straightforward to generalize the entropy of mixing ΔSα of an
elementary volume element α to a global entropy distribution
ΔS(r) according to

= +S R
V

x x x xr r r r r( ) ( ( )ln ( ) ( )ln ( ))A A B B( ) ( ) ( ) ( )
(7)

This entropy distribution is a continuous function defined
throughout the simulation box, and based on the instantaneous
particle coordinates Ri. The total entropy of mixing of the
entire system is then given as

=S r S rd ( )
V

3
(8)

This integral is computed using a numerical integration
library (integrals.jl25 making use of the HCubature26

algorithm), a Julia implementatiton of a multidimensional
integration package with an adaptive local resolution. The
integration is performed for each neighboring pair of particles
and can be restricted to a very local environment, since the
integrand is of very small support (either the partial molar
fractions x(i)(r) or their logarithm quickly decay to zero).
This explicit expression for the entropy of mixing ΔS of a

molecular system, eq 8 in combination with eq 4, 5, and 6,
represents the essence of our letter. Our scheme provides a
simple, fast, and direct approach to compute the entropy of
mixing based on the instantaneous atomic coordinates Ri(t)

along the trajectory of a molecular dynamics simulation run.
All other thermodynamic effects on the entropy (such as the
entropy variation due to changes in pressure/volume/vibra-
tional frequencies/···) are automatically excluded from this
expression; its numeric range is limited to the interval
[0; Δ(theo)S] with the theoretical equilibrium entropy of mixing
Δ(theo)S according to eq 1. While we have limited our
derivation to two different species, the generalization to an
arbitrary number of different compounds is straightforward.
Note that the derivation presented here contains a “free”

parameter σ, corresponding to the Gaussian broadening of
each particle. The actual broadening could of course be
realized by other suitable functions, such as exponentials,
Lorentzian functions, error functions or also Heaviside
functions. The choice of the broadening function shape and
the broadening parameter σ will have a certain influence on the
numerical results from our approach; here we have chosen to
stick to the simplest solution, i.e. Gaussian broadening and a
broadening coefficient σ chosen close to the van-der-Waals-
radius of the corresponding atom. The effect of this choice is
presently investigated in more detail and will be published
soon.
We have illustrated the individual steps to follow within our

scheme for the calculation of the entropy of mixing for two
species in Figure 2, using the example of a one-dimensional
chain of particles, which are placed at integer coordinates. Two
distinct model situations are generated, i.e. with two distinct
particle arrangements (left vs right column in Figure 2). The
first situation (left) represents two pure phases with a localized
interface at coordinate 4.5 (arbitrary units). The second
situation (right) represents a gradually more mixed phase.
The entropy distribution resulting from the application of

our scheme, eq 4-8is shown as the black function in Figure 2.
Clearly, only the respective interface regions between red and
blue particles generate a significant contribution to the entropy
distribution. Already two adjacent particles of the same species
result in a vanishing molar fraction density of the other species

Figure 2. Illustration of the individual steps of our scheme. Shown is the transition from two distinct arrangements (left vs right plots) of particles
(red/blue spheres, placed at integer coordinates) to broadened particle densities (ρ(A)(r), ρ(B)(r), top left and top right), then to molar fraction
distributions (x(A)(r), x(B)(r), bottom figures) and the resulting distribution of the entropy of mixing ΔS(r) (black line in the bottom figures). Only
the interface area between the A and B species generates a sizable contribution to the entropy distribution. Note that for clarity ΔS(r) is plotted in
units of R/V.
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and thus to a vanishing entropy distribution in that area.
Alternating −A−B−A−B− arrangements, however, result in a
molar fraction density oscillating around 0.5 and thus in a
larger entropy distribution.
The entropy of mixing is maximum for a perfectly mixed

state. In our model system with N(A) = N(B), this corresponds
to an alternating particle arrangement, −A−B−A−B−, with an
entropy of mixing of ΔS = R ln 2 according to eq 1. The
maximum value that our expression for the entropy of mixing
may achieve is slightly lower than this theoretical value. The
reason for this is that the Gaussian delocalization of each
particle results in molar fraction densities oscillating around 0.5
and thus an entropy distribution somewhat below the ideal
limit. The magnitude of this effect can be controlled via the
particle broadening according to eq 5: the more the individual
particles are delocalized, the more the molar fraction
distribution will approach a value of 0.5.
Note that the precise shape of all functions shown here

depends to some degree on the broadening function and the
broadening parameter σ. This more technical aspect will be
addressed in a forthcoming publication. However, we have
observed that the qualitative results for the entropy
distribution only depend weakly on these parameters. An
additional interesting point is the reaction of our entropy
distribution to a spatial separation of the two phases. It turns
out that the contribution of the interface region to the entropy
of mixing is considerably reduced, but does not vanish. This
point is illustrated in the Supporting Information.
Our goal is to provide an efficient tool for the character-

ization of liquid mixtures. We have thus applied eq 8 to an
actual molecular dynamics simulation, specifically a binary
water/methanol mixture ( = =x x 0.5H O CH OH2 3

) at T = 300 K.
The simulation was started with completely separated phases
(see the illustration in Figure 3 and converged to a visually well
mixed state at around 500 ps simulation time. During this

mixing process, we have computed the instantaneous entropy
of mixing (see Figure 3) for every 100th trajectory step
(0.1 ps). The initial value of the entropy of mixing of 0.2 R for
the separated phases reflects the finite size of our simulation
box: While two strictly separated phases of infinite size would
yield a value of exactly ΔS = 0, the layered structure of our
computational setup implies a considerable “mixing” of the two
species already in the initial “separated” state.
During the MD simulation, the diffusion of water and

methanol molecules leads to visually observable configurations
of increasingly mixed state. Our expression for the entropy of
mixing is nicely able to quantify this increase in mixing, as
illustrated in Figure 3. The evolution of the entropy of mixing
shows a certain amount of numerical noise, but can be fitted to
an exponential function ΔS(t) = ΔS0 + ΔS∞(1−exp(−t/τ)),
which converges to ΔS0 + ΔS∞ = 0.58 R. The theoretical value
for the equilibrium entropy of mixing of ΔtheoS = R ln 2 ≈
0.69 R is not fully reached. This reflects the limits of our
numerical scheme, in particular the effect of the finite
broadening parameter σ in eq 5. A large value for σ would
result in a closer agreement between ΔS0 + ΔS∞ and ΔtheoS,
but at the cost of a higher initial entropy value in the separated
state. Even for a perfectly mixed molecular configuration, our
molar fraction densities x(A)(r) and x(B)(r) exhibit peaks (and
minima respectively) at the molecular coordinates, which has
been illustrated in Figure 2. Consequently, ΔS deviates
numerically from the theoretical value. The optimal choice
for the broadening parameter σ is to some degree system-
depedendent and must be adjusted individually for a given
simulation. We are presently investigating the dependence of
ΔS0 and ΔS∞ on the choice of σ, in view of providing a
practical guide for the optimal numerical choice of this
parameter.
Another question is to which extent the system size

influences our numerical results. We have therefore performed
a simulation of the same water−methanol system with a 8-fold
larger system. The resulting entropy evolution is shown in
Figure 4. It turns out that the numerical value for ΔS converges

at virtually the same value as for the smaller system (0.54R),
illustrating a very modest system size dependence of our
approach. The fact that the value is still below the equilibrium
value of an ideally mixed system corresponds to the tendency
of this particular system to exhibit local density fluctuations, i.e.
regions/clusters with increased methanol concentration. This
partial microphase separation could be confirmed visually by
inspecting the trajectory.

Figure 3. Evolution of the entropy of mixing during the mixing
process of water and methanol at 300 K (solid line: exponential fit).
Snapshots of the simulation box at t = 0 ps and t = 500 ps are shown
below (gray, methanol; red, water). Note that ΔS(t) is plotted in units
of R.

Figure 4. Entropy of mixing (water and methanol at 300 K) for an 8-
fold larger system compared to Figure 3.
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Complementary to the mixing process (of water and
methanol), we have also studied the demixing process of two
immiscible liquids, here water and trichloromethane at 300 K.
The simulation was started from a random distribution of the
molecules in the simulation box, while all other settings were
kept the same as in the previous mixing simulation. Figure 5

shows the evolution of the entropy of mixing computed along
the entire molecular dynamics trajectory according to eq 8. At
the initial mixed state, the entropy is high and close to its
theoretical maximum of ΔS = R ln 2. As trichloromethane and
water molecules diffuse and gradually form separated phases,
the entropy of mixing decreases exponentially and converges to
0.2 R after about 0.5 ns. This value is the same as for the
separated state of water and methanol (see Figure 3). Again,
the theoretical limit of ΔS = 0 is not reached due to the finite
size of the two phases. The exponential fit yields a
characteristic demixing time of τ ≈ 170 ps, which reflects
the strongly immiscible nature of these two solvents.
Also in this case, we have checked the dependence on

system size by repeating the water−trichloromethane demixing
simulation for an 8-fold larger system (results shown in Figure
6). It turns out that the mixing entropy of the demixing process
converges to a lower final value for the larger system. This
behavior is expected, since under periodic boundary
conditions, the smaller system corresponds to the larger
system in a state with eight trichloromethane clusters, hence a
lesser degree of phase separation.
In both the mixing and the demixing processes, entropy

fluctuations by up to 0.1 R are observed at time scales of few
femtoseconds. These are caused by translational and rotational
motions of individual molecules in the simulation trajectory,
where even small geometric changes can influence the
instantaneous entropy value. These fluctuations are analogous
to those of other observables (e.g., the potential energy) during

an MD simulation. We are presently investigating amplitude
and frequency spectrum of these entropy fluctuations and their
relation to system size, particle size and temperature in more
detail. It is an interesting question whether these entropy
fluctuations can be exploited within the fluctuation−
dissipation theorem for the characterization of a canonically
conjugated observable; formally, this observable should be the
temperature itself (since =( ) TU

S V
).

Beyond the validation of our expression for the entropy of
mixing for these two pairs of elementary solvents, we have
applied our scheme to a more complex system with a less
obvious behavior, specifically a hexane/perfluorohexane
mixture. Perfluorinated molecules constitute an own class of
philicity, complementary to the better known hydrophilicity
and lipophilicity categories.27−32 Experimentally, this binary
system is mixed at temperatures above the upper critical
solution temperature (UCST) of 296 K and phase-separated
below.33−35 From a simulation perspective, we have chosen
both a temperature close to the UCST (T = 300 K, initially
phase-separated) as well as a significantly lower one (T = 200
K, initially mixed) in order to see how the entropy of mixing
describes these situations. Figure 7 shows characteristic
snapshots of our molecular dynamics simulations along with
the evolution of ΔS(t), again in units of R for the sake of
clarity.
The evolution of the entropy of mixing of the hexane/

perfluorohexane mixture for both temperatures is shown in
Figure 7. The blue curve (T = 300 K, initially phase-separated)
shows a straight exponential increase from a typical phase-
separated entropy value of 0.2 R, and converges to 0.5 R,
which is somewhat below the theoretical limit of 0.69 R, and
also below the value that we obtained previously for the
mixtures of small solvents (water, methanol). We believe that
this deviation is most likely due to the proximity of our
simulated temperature (T = 300 K) to the UCST
(experimentally, TUCST = 296 K) and a thus a consequence
of incomplete mixing. The characteristic time scale of mixing is
about τ = 100 ps. The illustrations of the simulation boxes
(images below the plot) show the transition from a fully
separated to a mostly mixed phase, confirming the numerical
results for ΔS.
The entropy of mixing at the lower temperature (red curve

in Figure 7) starts at an initially higher entropy than the
converged value for the phase-separated system at T = 300 K
and decreases slowly. The corresponding characteristic time
scale of demixing is therefore quite large and can only be
estimated from the present simulation (τ ≈ 10 ns), also

Figure 5. Evolution of the instantaneous entropy of mixing during the
demixing process of water and trichloromethane at 300 K, along with
an exponential fit, all in units of R. Snapshots of the simulation box at
the beginning and end of the demixing process are also shown (red,
water; gray, trichloromethane).

Figure 6. Entropy of demixing (water−trichlormethane, at 300K) for
an 8-fold larger system compared to Figure 5.
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because there is a considerable amplitude of numerical noise.
Interestingly, the initial entropy of mixing (ΔS(t = 0) ≈
0.55 R) is almost identical to the values obtained in the
simulations of the much smaller molecular systems (water,
methanol, trichloromethane). This illustrates the colligative
nature of the entropy of mixing.
The images with the conformational snapshots for the

T = 200 K simulation (top of Figure 7) correspond to the

structures at t = 0 and t = 1 ns. A slight tendency for the onset
of phase separation is visible, but this tendency is difficult to
describe other than qualitatively. Our method for the
quantitative characterization of the entropy of mixing,
however, allows for an explicit numerical description of the
state of (de)mixing, which is inaccessible to the eye. It should
be noted that despite the slow decay of ΔS(t), the entropy
change of about 0.1 R after 1 ns corresponds to about 25% of
the total variability between fully mixed and fully separated
phases. This illustrates the potential for characterization of our
entropy expression for complex molecular systems.

In conclusion, we have developed and validated a general-
use expression for the entropy of mixing of a molecular system
of several components. The expression is straightforward to
implement and will soon be available for routine analysis
within established simulation packages.36 A quantitative
description (with physical units) of the instantaneous degree
of mixing during a molecular simulation is achieved while only
atomic coordinates are required for the evaluation of the
entropy. It should be noted that partial density fluctuations and
binary particle correlations are not explicitly needed as
functions, but they are incorporated indirectly through the
particle coordinates and their evolution. We have introduced a
spatial broadening parameter which has a minor numerical
influence and can be adjusted to the molecular size of the
particles. Our approach is therefore applicable to any
nonequilibrium situation and can be used to characterize the
time scale of entropic processes, but of course also to
benchmark the convergence of a simulation from an ergodicity
perspective. Possible applications include simple and complex
liquids such as solutions of ions and molecules, but also liquid/
liquid and liquid/solid interfaces (including e.g. protein/water/
salt interfaces) where it corresponds to the interfacial entropy.
A natural perspective of our entropy expression is the

characterization of solubilities and partition coefficients, with
particular focus on the concept of (poly-) philicity,27−32 but
also the solution of small atoms/molecules in complex liquids
and their structural/dynamical effects such as the Hofmeister
series37,38 and the understanding of the solubility of “difficult”
solutes such as cellulose.39−42
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