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Abstract
Purpose Morphological imaging using MRI is essential for brain tumour diagnostics. Dynamic susceptibility contrast (DSC) 
perfusion-weighted MRI (PWI), as well as amino acid PET, may provide additional information in ambiguous cases. Since 
PWI is often unavailable in patients referred for amino acid PET, we explored whether maps of relative cerebral blood volume 
(rCBV) in brain tumours can be extracted from the early phase of PET using O-(2-18F-fluoroethyl)-L-tyrosine (18F-FET).
Procedure Using a hybrid brain PET/MRI scanner, PWI and dynamic 18F-FET PET were performed in 33 patients with 
cerebral glioma and four patients with highly vascularized meningioma. The time interval from 0 to 2 min p.i. was selected 
to best reflect the blood pool phase in 18F-FET PET. For each patient, maps of MR-rCBV, early 18F-FET PET (0–2 min p.i.) 
and late 18F-FET PET (20–40 min p.i.) were generated and coregistered. Volumes of interest were placed on the tumour 
(VOI-TU) and normal-appearing brain (VOI-REF). The correlation between tumour-to-brain ratios (TBR) of the different 
parameters was analysed. In addition, three independent observers evaluated MR-rCBV and early 18F-FET maps (18F-FET-
rCBV) for concordance in signal intensity, tumour extent and intratumoural distribution.
Results TBRs calculated from MR-rCBV and 18F-FET-rCBV showed a significant correlation (r = 0.89, p < 0.001), while 
there was no correlation between late 18F-FET PET and MR-rCBV (r = 0.24, p = 0.16) and 18F-FET-rCBV (r = 0.27, p = 
0.11). Visual rating yielded widely agreeing findings or only minor differences between MR-rCBV maps and 18F-FET-rCBV 
maps in 93 % of the tumours (range of three independent raters 91–94%, kappa among raters 0.78–1.0).
Conclusion Early 18F-FET maps (0–2 min p.i.) in gliomas provide similar information to MR-rCBV maps and may be helpful 
when PWI is not possible or available. Further studies in gliomas are needed to evaluate whether 18F-FET-rCBV provides 
the same clinical information as MR-rCBV.
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Background

Standard imaging of brain tumours includes anatomical 
MRI with T1-weighted images pre (T1) and post-contrast 
enhancement (T1c) and T2-weighted/FLAIR images [1]. 
Differentiating tumour progression (TP) from treatment-
related changes (TRC) after surgery, radiotherapy and 
chemotherapy, however, may be challenging because 
contrast enhancement in MRI is not specific to neoplastic 
tissue [1, 2].

In order to improve diagnostic accuracy in pretreated 
and recurrent brain tumours, dynamic susceptibility con-
trast (DSC) perfusion-weighted MRI (PWI) is frequently 
performed using the relative cerebral blood volume (rCBV) 
as the most sensitive parameter for vascularity [2]. Another 
important approach to differentiate TP and TRC is PET 
using radiolabelled amino acids, as recommended by the 
PET Response Assessment in Neuro-Oncology (RANO 
working group) [3]. Both methods provide information on 
tumour biology that is complementary to morphological 
MRI and are especially helpful in the differentiation of TP 
and TRC in pretreated gliomas [4–6].
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Since rCBV and amino acid uptake represent different 
physiological parameters, the extent and regional distribu-
tion of the signal changes differ substantially [4, 5, 7–10]. 
Whether the combination of rCBV mapping and amino acid 
PET imaging increases accuracy in differentiating TP or 
TRC or whether a sequential use of both techniques is more 
reasonable remains a controversial question [11–14].

In our department, PET data using the amino acid PET 
tracer O-(2-18F-fluoroethyl)-L-tyrosine (18F-FET) are avail-
able for several thousand patients, but data on rCBV map-
ping using PWI are frequently not available [15]. Of note, 
PET has long been used to measure rCBV in both normal 
and abnormal tissue, including cancer [16]. The optimal way 
to measure rCBV using PET is with 15O-labelled carbon 
monoxide [17]. In principle, however, rCBV can be meas-
ured with any PET radiotracer administered intravenously 
as long as data acquisition begins at the time of injection 
and the tracer is slowly extracted from the blood pool [16]. 
Dynamic acquisition is part of the standard protocol used 
at the Forschungszentrum Jülich, and time-activity curves 
in the tumour provide additional information for grading 
and for differential diagnosis of brain lesions [18–23]. We 
hypothesized that the first minutes of the dynamic PET scans 
available from the existing database contain the data neces-
sary to evaluate rCBV.

The aim of this study was to explore whether imaging of 
early-phase 18F-FET uptake after injection in patients with 
brain tumours provides information similar to that of MR-
rCBV provided by DSC PWI. This could provide an option 
to evaluate the additive value of 18F-FET-rCBV when com-
bined with late 18F-FET uptake in different diagnostic ques-
tions. For this purpose, the data of patients who underwent 
simultaneous PWI and dynamic 18F-FET PET in a previous 
hybrid PET MRI study were analysed retrospectively [5]. 
Other studies have used the term “early 18F-FET PET” to 
describe the early phase of amino acid uptake from 5–15 min 
after injection [24–26]. In order to avoid confusion, we refer 
to 18F-FET imaging in the immediate phase after injection 
(0–2 min) in the following as 18F-FET-rCBV.

Methods

Patient Population

Thirty-three patients with histologically characterized gli-
oma, according to the classification of the World Health 
Organization (WHO) of Tumours of the Central Nervous 
System of 2007 [27], investigated using a hybrid PET/MR 
scanner between February 2011 and January 2013, were 
included in this study. A newer tumour classification is not 
available for this patient collective but is not relevant to the 
question investigated. Three patients had a WHO grade II 

astrocytoma, four patients had a WHO grade III anaplastic 
astrocytoma, two patients had a WHO grade II oligoastro-
cytoma, three patients had a WHO grade III anaplastic oli-
goastrocytoma, four patients had a WHO grade oligoden-
droglioma, one patient had a WHO grade III ependymoma, 
and 16 patients had a WHO grade IV glioblastoma (n=21 
untreated, n=12 pretreated, 17 women and 16 men, mean 
age 48, age range 25–75 years) [27]. In addition, data from 
four patients with highly vascularized meningiomas in MR-
rCBV were included to determine the optimal time window 
for rCBV assessment in 18F-FET PET. The clinical data of 
the patients and the results of the different imaging param-
eters are shown in Supplemental Tables 1 and 2. The patient 
data were part of a previously published study investigating 
the relationship between MR-rCBV and late 18F-FET uptake 
[5]. The Ethics Committee of the University of Düsseldorf 
approved the hybrid PET-MRI investigations (study numbers 
3167 and 2438). All subjects gave written informed consent 
for their participation prior to the study.

MR Imaging

MRI was performed using a Siemens 3T Magnetom Trio 
MR scanner. Anatomical MRI included a T1-weighted 
MPRAGE sequence (T1), T2-weighted FLAIR sequence 
(FLAIR) and contrast-enhanced T1-weighted MPRAGE 
sequence (T1c) conducted 3 min after injection of the con-
trast agent gadoteric acid (DOTAREM; Guerbet) with a dose 
of 0.1–0.2 mmol/kg body weight. A dynamic susceptibility-
weighted contrast-enhanced T2* sequence (DSC) measur-
ing the first pass of a contrast agent bolus (single shot echo 
planar imaging sequence (EPI) was used for PWI: dynamic 
interscan interval = 1500 ms; echo time (TE) =32 ms; flip 
angle = 90°, image matrix = 128 × 128, field of view FOV 
= 230 mm × 230 mm, slice thickness 5 mm). The contrast 
agent was injected with a power injector Injektron 82 MRT 
(Medtron AG) via an 18–20-gauge intravenous catheter at a 
dose of 0.1 mmol/kg body weight (flow rate, 5 ml/s). Para-
metric rCBV maps were created from DSC MRI data using 
the software Stroketool version 2.7 [28].

PET Imaging

The amino acid 18F-FET was produced and applied as 
described previously [29]. Dynamic PET scans were 
acquired for 40 min after the manual intravenous injection 
of a bolus of approximately 3 MBq 18F-FET/ kg body weight 
followed by flush of 10 ml saline solution. PET imaging was 
performed simultaneously with MR imaging using a brain 
PET insert. The brain PET is a compact cylinder that fits 
in the bore of the Siemens 3T Magnetom Trio MR scanner 
(axial FOV of 19.2 cm, optimum spatial resolution of 3-mm 
full-width at half maximum) [30]. The list mode PET data 
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were reconstructed into 14 time frames (5 × 1 min, 5 × 3 
min and 4 × 5 min) using OP-OSEM. Data were corrected 
for random, scattered coincidences, deadtime and attenua-
tion. Attenuation correction was based on a template-based 
approach [31]. The reconstructed dynamic dataset was 
smoothened using a 3-mm 3D Gaussian filter kernel. 18F-
FET uptake in the tissue was expressed as a standardized 
uptake value (SUV) by dividing the radioactivity concentra-
tion (kBq/ml) in the tissue by the radioactivity injected per 
gramme of body weight. 18F-FET PET images from 20 to 40 
min p.i. were summed up for standard late imaging.

To identify the optimal time window of the blood pool 
phase in 18F-FET PET, an averaged time-activity curve 
(TAC) of 18F-FET uptake in four highly vascularized men-
ingiomas was generated (Supplemental Figure 1). The time 
window of 0–2 min after injection captured the early peak 
after tracer injection and was defined as best reflecting the 
blood pool phase in 18F-FET PET. Consequently, this time 
window was used for the generation of 18F-FET-rCBV maps 
(0–2 min p.i.).

Data Analysis

Prior to further processing, the anatomical MRI, MR-rCBV 
maps, 18F-FET PET rCBV maps and late 18F-FET PET 
images were coregistered using the software PMOD (ver-
sion 4.102; PMOD Ltd.). Together with anatomical MRI 
(T1, T1c, FLAIR), late 18F-FET PET images were used to 
identify the gross tumour region.

Spherical VOIs with a diameter of 16 mm were placed 
in the centre of the most pronounced signal changes in the 
gross tumour region in the MR-rCBV maps, as described 
previously [32]. In cases where the MR-rCBV maps did not 
show relevant signal alterations in the gross tumour area, 
anatomical MRI and late 18F-FET PET were used to define 
the centre of the tumour VOI. Particular care was taken to 
avoid large vessels in the VOIs. From these tumour VOIs, 
the mean MR-rCBV, mean 18F-FET PET rCBV and mean 
late 18F-FET uptake were determined. A larger reference 
VOI with a diameter of 30 mm was placed in the normal-
appearing brain tissue in the hemisphere contralateral to the 
gross tumour region at the level of the ventricles, includ-
ing both white and grey matter. The location of the VOI 
was checked in all other images to ensure a representative 
background and to avoid artefacts (e.g. large vessels). Mean 
tumour-to-brain ratios (TBRs) were calculated by dividing 
the mean value of the respective parameter in the tumour 
VOI by the corresponding mean value of the reference VOI 
[33–35]. Additionally, a histogram analysis was performed 
in 4 representative glioma patients (Pat. 10, 20, 21 and 23). 
In these patients, additional banana shaped ROI’s were 
placed in the grey matter and in the white matter at the level 
of the centrum semiovale.

Visual Comparison of MR‑rCBV  and18F‑FET‑rCBV 
Maps

Maps of MR-rCBV-maps and 18F-FET-rCBV were com-
pared visually in terms of signal intensity, extent and 
regional variability. The comparison was made by three 
independent investigators experienced in reading MR-
rCBV and 18F-FET PET scans (K-JL, PL and CF). Each 
investigator assigned the signal abnormalities in the 
tumour area in the different maps to one of the following 
categories: (1) widely agreeing, (2) minor differences, (3) 
major differences and (4) disagreeing results. Furthermore, 
MR-rCBV-maps and 18F-FET-rCBV maps were compared 
with standard late 18F-FET images (20–40’).

Statistics

The Pearson correlation analysis was used for correction 
analysis. Probability values less than 0.05 were considered 
statistically significant. Bland–Altman analysis was performed 
to compare rCBV measured with MR-rCBV and 18F-FET-
rCBV. The Cohen’s κ coefficient was used to measure the 
degree of inter-rater agreement for visual comparison and the 
assignment of MR-rCBV and 18F-FET-rCBV maps to differ-
ent categories of similarity: κ values between 0 and 0.20 were 
considered to indicate a positive but slight agreement, between 
0.21 and 0.40 a fair agreement, between 0.41 and 0.60 a good 
agreement, between 0.61 and 0.80 a very good agreement and 
greater than 0.80 an excellent agreement.

Results

Pearson Correlation Analysis

The TBRs of MR-rCBV and 18F-FET-rCBV of gliomas 
showed a significant correlation (r = 0.89, p < 0.001) (Fig-
ure 1). In contrast, there was no correlation between TBRs of 
MR-rCBV and late 18F-FET uptake (r = 0.24, p = 0.16) (Fig-
ure 2) and no correlation between TBRs of 18F-FET-rCBV 
and standard late 18F-FET uptake (r = 0.27, p = 0.11).

Bland–Altman Analysis

Bland–Altman analysis revealed that measuring rCBV 
with MR-rCBV and 18F-FET-rCBV showed a general good 
agreement between the two methods with the mean dif-
ference = −0.4 indicating a small bias to higher values 
in 18F-FET-rCBV compared to MR-rCBV and especially 
one outlier with very high values in both modalities (Sup-
plemental Figure 2).
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Visual Evaluation and Inter‑rater Agreement

Visual rating yielded broadly consistent or minor differ-
ences (category 1 and 2) in the tumour regions between the 
MR-rCBV and 18F-FET-rCBV maps in 93 % of the cases 

(range 91–94%). The evaluation of the inter-rater agree-
ment showed an excellent agreement between the raters, 
with a mean κ value of 0.85 (range, 0.78–1.0).

Figures  3, 4, 5 and 6 show representative examples 
of contrast-enhanced T1-weighted MRI, MR-rCBV, 

Fig. 1  Statistically significant 
correlation between MR-rCBV 
(TBR) and 18F-FET PET-rCBV 
(TBR) in 37 brain tumours (33 
patients with cerebral gliomas 
and four patients with menin-
giomas) indicating comparable 
findings

Fig. 2  Relationship of MR-
rCBV (TBR) and late 18F-FET 
uptake (TBR, 20–40 min p.i.) 
in 37 brain tumours (33 patients 
with cerebral gliomas and four 
patients with meningiomas). 
No correlation was observed 
between the two parameters



40 Molecular Imaging and Biology (2024) 26:36–44

1 3

18F-FET-rCBV maps and standard late 18F-FET PET images 
in patients with cerebral gliomas. Figure 3 demonstrates the 
case of a glioblastoma patient with a pronounced signal in 
MR-rCBV, 18F-FET-rCBV and late 18F-FET PET. Figures 4 
and 5 show a glioblastoma and an oligodendroglioma WHO 
grade II with pronounced 18F-FET PET uptake but only a 

moderately increased signal in MR-rCBV and 18F-FET-
rCBV. Figure 6 shows images of a patient with an anaplastic 
astrocytoma WHO grade III with contrast enhancement in 
T1-weighted MRI but no signal in MR-rCBV and 18F-FET-
rCBV and late 18F-FET PET. In all cases, the findings of 
MR-rCBV and 18F-FET-rCBV are highly comparable.

Fig. 3  Contrast-enhanced 
T1-weighted MRI (MR-T1c), 
MR-rCBV, 18F-FET-rCBV and 
late 18F-FET PET (from left to 
right) in a patient with a newly 
diagnosed glioblastoma. There 
is a ring-enhancing lesion in the 
right parietal cortex showing a 
pronounced signal in MR-rCBV, 
18F-FET-rCBV and late 18F-FET 
PET. The findings of MR-rCBV 
and 18F-FET-rCBV are very 
similar

Fig. 4  Contrast-enhanced T1-weighted MRI (MR-T1c), MR-rCBV, 
18F-FET-rCBV and late 18F-FET PET (from left to right) in a patient 
with a newly diagnosed glioblastoma. There is a contrast-enhancing 
lesion in the left frontoparietal cortex showing a pronounced signal 

on late 18F-FET PET (red arrows) but only a discrete signal in MR-
rCBV and 18F-FET-rCBV. The findings of MR-rCBV and 18F-FET-
rCBV are very similar

Fig. 5  Contrast-enhanced T1-weighted MRI (MR-T1c), MR-rCBV, 
18F-FET-rCBV and late 18F-FET PET (from left to right) in a patient 
with an untreated oligodendroglioma WHO grade II. There is no rel-
evant contrast enhancement in MRI but pronounced tracer uptake in 

the right parietal cortex in late 18F-FET PET (red arrow). In contrast, 
there is only a weak signal in MR-rCBV and 18F-FET-rCBV. The 
findings of MR-rCBV and 18F-FET-rCBV are very similar
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Histogram Analysis

The histograms for MR-rCBV and 18F-FET-rCBV in the 
tumour and grey and white matter of 4 representative gli-
oma patients are shown in Supplemental Figure 3. Both 
MR-rCBV and 18F-FET-rCBV showed a good separation of 
tumour and grey and white matter.

Discussion

This study demonstrates that imaging of 18F-FET uptake 
within the first 2 min after injection in patients with brain 
tumours provides information similar to that obtained with 
MR-rCBV. Although rCBV maps provided by DSC PWI 
cannot be considered a gold standard in the same way as 
PET using 15O-labelled carbon monoxide [17], it constitutes 
a robust marker for rCBV that is widely used and accepted in 
clinical practice [1]. However, PWI is often not available in 
patients referred for 18F-FET PET or, depending on the loca-
tion of the tumour, is prone to susceptibility artefacts. Here, 
rCBV extracted from 18F-FET PET might be a useful alter-
native. Since a number of centres have collected dynamic 
data sets with amino acid PET in several thousand patients 
over the past 20 years, this would allow to retrospectively 
investigate the benefit of combining rCBV and amino acid 
uptake in different clinical settings. This includes molecu-
lar characterization of untreated brain tumours, differentia-
tion of tumour progression and therapy-related changes and 
therapy monitoring. This approach is not limited to 18F-FET 
PET but should be equally applicable to other amino acid 
tracers such as 3,4-dihydroxy-6-[18F]-fluoro-L-phenylala-
nine (FDOPA) or anti-1-amino-3-[18F]fluorocyclobutane-
1-carboxylic acid (FACBC or fluciclovine) [36].

Regarding the use of 18F-FET PET to estimate rCBV, 
some basic aspects have to be discussed.

In our standard 18F-FET PET protocol, the tracer is 
injected manually as an intravenous bolus, which is more 
susceptible to delay and dispersion compared to the bolus 
generated by the power injector required for DSC. In order 
to determine the optimal time interval to image 18F-FET-
rCBV, we analysed the time-activity curves of four highly 
vascularized meningiomas, which exhibited a strong signal 
in MR-rCBV maps in a previous study [5]. The mean time-
activity curves of the meningiomas showed an early peak 
in the time interval 0–2 min post-injection, which appeared 
to be well suited for rCBV evaluation (Supplemental Fig-
ure 1). 18F-FET is an amino acid that is transported into the 
brain and into brain tumour tissue by facilitated transport 
via large neutral amino acid transporters (subtypes LAT1 
and LAT2) [37]. First-pass extraction of 18F-FET is low, and 
the peak of the time-activity curve in malignant gliomas is 
usually later than 5 min after injection and later than 40 min 
in lower-grade gliomas [19]. Therefore, it is very unlikely 
that the tracer signal during the first 2 min after injection 
originates from a compartment other than the vascular 
pool. In line with this assumption, there is a clear visualiza-
tion of the large vessels, such as the sagittal sinus, in the 
18F-FET-rCBV maps from this time window (Figures 3, 4, 
5 and 6). Although disruption of the blood–brain barrier in 
the tumour area may cause an non-specific signal, the fact 
that there is a low 18F-FET-rCBV signal in several contrast-
enhancing tumours in this series of patients indicates that 
18F-FET-rCBV is unlikely to influenced by blood–brain bar-
rier integrity.

Furthermore, no correlation between the TBRs of 
18F-FET-rCBV and the TBRs of late 18F-FET uptake (Fig-
ure 2) was observed, which indicates a difference between 
the two measurements and is in line with previous publi-
cations demonstrating that late amino acid uptake is more 
strongly correlated with cell density than with tumour vas-
cularity [5, 38, 39].

Fig. 6  Contrast-enhanced T1-weighted MRI  (MR-T1c), MR-rCBV, 
18F-FET-rCBV and late 18F-FET PET (from left to right) in a patient 
with an anaplastic astrocytoma (WHO grade III) after radio- and 
chemotherapy showing left temporo-occipital contrast enhancement 

on MR-T1c but no signal on MR-rCBV, 18F-FET-rCBV and late 18F-
FET PET. The findings of MR-rCBV and 18F-FET-rCBV are very 
similar
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Visual rating by different raters yielded widely agree-
ing findings or minor differences between MR-rCBV and 
18F-FET-rCBV maps in 93 % of the cases. Small differences 
between the images are to be expected, especially since MR-
rCBV is a parametric image calculated from the time-activ-
ity curve in individual pixels and may be more susceptible 
to artefacts than a tracer distribution image. The histograms 
for MR-rCBV and 18F-FET-rCBV in the tumour and grey 
and white matter of 4 representative glioma patients were 
comparable and showed a good separation of tumour and 
grey and white matter (Supplemental Figure 3), which is in 
line with the visual impression.

Finally, some limitations of this study have to be consid-
ered. Firstly, the number of patients is too small to enable 
final conclusions to be drawn. Furthermore, the compara-
bility of the MR-rCBV and FET-rCBV maps is limited by 
principal differences in the underlying imaging technologies. 
This leads to different kinds of artefacts, which have to be 
considered by the raters in their interpretation of the images. 
Consequently, the complementary value of rCBV and late 
18F-FET in brain tumour diagnosis needs to be investigated 
in larger collectives of patients. A recent study reported 
promising results in this regard, demonstrating increased 
diagnostic accuracy by combining 18F-FET PET and perfu-
sion- and diffusion-weighted MRI in patients with suspected 
glioma recurrence [13]. Furthermore, the patient collective 
is too small to analyse an influence additional factor such as 
contrast enhancement in MRI or gender as demonstrated for 
late 18F-FET uptake [40]. These aspects should be further 
investigated in future studies.

Conclusion

The present study suggests that 18F-FET PET imaging in the 
first 2 min after tracer injection yields rCBV maps compa-
rable to those obtained by PWI. Thus, 18F-FET-rCBV data 
may be used instead of MR-rCBV when PWI is not possible, 
not available or if the tumour is located in brain regions that 
are prone to susceptibility artefacts that would ordinarily 
hamper the generation and interpretation of MR-rCBV maps. 
The described method makes it possible to retrospectively 
investigate the clinical significance of the combination of 
rCBV and late amino acid uptake from existing large data 
sets.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s11307- 023- 01861-2.
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