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A B S T R A C T

A rapid, accurate and high-resolution characterization of soil properties is essential for a successful imple-
mentation of site-specific soil and crop management in precision agriculture. In recent years, proximal soil 
sensors have been developed as efficient tools for high-resolution soil mapping. Nevertheless, no single soil 
sensor is capable of accurately quantifying all agronomically relevant soil properties. By integrating multiple 
proximal sensing technologies in a single multi-sensor platform, measuring simultaneously and fusing the sensor 
data by applying state-of-the-art machine learning algorithms, a greater variety of soil properties can be 
determined and the performance of soil property estimations can be improved. To this end, a multi-sensor 
platform for on-the-go topsoil mapping called RapidMapper was developed. Currently, it integrates near 
infrared and gamma-ray spectroscopy, apparent electrical conductivity and pH potentiometry (ion-selective 
electrode) sensors. We evaluated RapidMapper’s functionality across various plots and fields in different regions 
of Germany. This paper focuses on data quality assessment for one multi-plot sensor test site and one agricultural 
field in northeast Germany. This includes analyzing sensor response across different soils, evaluating measure-
ment consistency over three years on the same field and comparing data with other platforms and against 
laboratory measurements. The evaluation demonstrated RapidMapper’s consistent mapping capabilities, high 
temporal consistency and strong agreement with similar devices.

1. Introduction

Soil is the key resource for crop production in agriculture. It is 
spatially and temporally variable within a field, as reflected through its 
soil properties. Characterization of the within-field soil variability is 
fundamental for a successful implementation of site-specific soil and 
crop management in precision agriculture, which aims to optimize plant 
production (Gebbers and Adamchuk, 2010; Hummel et al., 1996; Kuang 
et al., 2012).

The traditional method for quantifying soil variability is through soil 
sampling and laboratory analyses. However, the high costs involved 
result in low sampling densities, which limits an accurate quantification. 
Alternatively, various proximal soil sensors have been developed for 
measurement of soil properties at high spatial resolution, rapidly and 

cost-effectively on site (Adamchuk and Viscarra Rossel, 2010; Gebbers, 
2018; Ji et al., 2019; Munnaf et al., 2020; Viscarra Rossel et al., 2011).

Gebbers (2018) classifies currently discussed proximal soil sensors 
into the following main groups:

a) Electrical sensors: They estimate soil apparent electrical resistivity 
(ERa) / conductivity (ECa), or capacitance, which can be related to 
soil properties such as soil texture, organic matter content (SOM) / 
organic carbon content (SOC), moisture content (MC), salinity and/ 
or pH.

b) Optical sensors: They assess the interaction between electromagnetic 
waves in wavelength ranges from 350 to 25000 nm, and soil con-
stituents. These sensors include visible (Vis-), near infrared (NIR-) 
and mid-infrared (MIR) diffuse reflectance, laser-induced breakdown 
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spectroscopy (LIBS) and Raman spectroscopy. Soil texture, SOM/ 
SOC, cation exchange capacity (CEC), MC, pH, contamination by 
heavy metals and nutrients can affect this interaction.

c) Mechanical sensors: They measure either the forces required for 
dragging or pushing a tool through the soil, or the change in the level 
of noise caused by interaction between a tool and soil (acoustic 
sensors), or soil-air permeability (pneumatic sensors). These ap-
proaches can be applied for soil texture, mechanical resistance, and 
soil compaction determination.

d) Electrochemical sensors: They detect the activity of specific ions (e. 
g., H+, NO3

− , K+, Na+, Ca2+, etc.) by means of either ion-selective 
electrodes (ISE), or ion-selective field effect transistors (ISFET). 
These sensors can be used for determining soil chemical properties 
such as nutrient contents or pH.

e) Thermal sensors: They measure either absolute or relative tempera-
ture of soil.

f) Radiometric sensors: They use radioactive radiation (gamma, alpha, 
beta, neutron radiation) (Knödel et al., 2005). Active radiometric 
sensors use an artificial radiation source (e.g. Cs-137; X-ray fluo-
rescence spectrometers, neutron probes) for direct element detection 
while passive sensors (e.g. gamma-ray detectors) evaluate the natu-
ral radioactive radiation of the soil by means of different isotopes.

g) Others: Less common sensors such as capillary electrophoresis, gas 
sensors, nuclear magnetic resonance spectroscopy, biosensors.

Basically, more than one soil attribute can affect measurements of a 
distinct proximal soil sensor. This is called the matrix effect. The 
strength of the matrix effect depends on the selectivity of the sensor. 
There is often a tradeoff between the selectivity of a sensing principle 
and its performance in terms of speed, cost, simplicity, robustness etc. 
Many of the sensors suitable for proximal soil sensing lack selectivity. 
However, combining data from multiple sensors may address this issue; 
some sensors can complement each other, which may lead to a wider 
spectrum of detectable soil properties as well as more accurate and 
reliable predictions (Adamchuk and Viscarra Rossel, 2010; Javadi et al., 
2021; Ji et al., 2019; Munnaf et al., 2020; Xu et al., 2019a; Zhang and 
Hartemink, 2020).

Considering temporal dynamics of some soil properties (e.g., soil 
moisture and pH) in the field, the optimal way to collect sensor data that 
are supposed to be fused, would be conducting the measurements for all 
of them simultaneously. This requires an integration of different prox-
imal sensing technologies into a single multi-sensor platform. Sensor 
fusion might help to filter out the matrix effect, makes the measurements 
more time- and labor-efficient than doing them individually with each 
single sensor, and finally, reduces field traffic.

In recent years, various sensor combinations have been evaluated for 
soil sensing (Javadi et al., 2021; Ji et al., 2019; La et al., 2016; Mahmood 
et al., 2012; Mouazen et al., 2014; Vogel et al., 2022; Xu et al., 2019a; Xu 
et al., 2019b). However, most of these studies were conducted either in 
the laboratory or in the field using non-integrated sensor systems.

To the best of our knowledge, three manufacturers commercially 
offer mobile multi-sensor platforms for soil mapping: Veris Technologies 
(USA), Shibuya Seiki Co., Ltd. (Japan), and Geophilus GmbH 
(Germany).

Veris Technologies is offering two integrated systems, MSP and U3, 
which are based on ECa (using galvanic contact instrument), pH and 
two-wavelength optical sensing. The main difference between the two 
Veris platforms lies in their pH sensor modules. MSP uses the Soil pH 
Manager™, developed based on Adamchuk et al. (1999), for on-the-go 
pH measurements, whereas U3 uses a pH module for stop-and-go mea-
surements. A complete description of the MSP platform has been pre-
sented by Vogel et al. (2022). Inter alia, the Veris MSP has been 
successfully employed for predicting site‑specific lime requirements 
(Bönecke et al., 2021; Vogel et al., 2022).

The Shibuya platform (named as SAS, the current version is 
SAS3000; Kodaira and Shibusawa (2020)) includes a Vis-NIR 

spectrometer as its main sensor. However, calibrations are only avail-
able for Japanese soils (Kodaira and Shibusawa, 2013, 2020).

The Geophilus measurement system (Lueck and Ruehlmann, 2013) 
comprises a multi-depth electrical resistivity sensor and a gamma-ray 
sensor. The Geophilus system is mainly used for commercial mapping 
services provided by the company. It has been used successfully for soil 
texture mapping (Bönecke et al., 2021).

In this study, we present a recently developed, state-of-the-art multi- 
sensor platform for high-resolution topsoil mapping, the so-called Rap-
idMapper, which includes more and more advanced sensors than those 
of the aforementioned commercial systems. The main objective of the 
research presented here is to show how a combination of these − and 
potentially other − sensors can be achieved by deploying them on a 
single platform to secure their spatio-temporal alignment. We describe 
the platform’s technical setup and functionalities, and present tests on 
different soils across Germany. These include analyzing sensor response 
to different ambient conditions, evaluating measurement consistency 
over time and comparing data with other platforms and against labo-
ratory measurements.

2. Materials and methods

2.1. The mobile multi-sensor platform

Within the BonaRes project I4S: Intelligence for Soil (https://www. 
bonares.de/i4s), a multi-sensor platform, called RapidMapper, has 
been developed for on-the-go topsoil mapping. In the following sub-
sections, we describe the platform and its four proximal soil sensors.

2.1.1. The platform
The platform was designed in-house to serve as a scientific tool, 

which enables the deployment of several sensor technologies in an easy 
way. Thus, it offers extensive space for mounting different sensor 
modules. It has its own power supply and four wheels to make it inde-
pendent from the type of towing vehicle.

The platform (as shown in Fig. 1) is composed of two main chassis 
frames, one is fixed (relative to the ground) and the other one is movable 
(up- and downwards). It has been designed in this manner to toggle all 
sensors in parallel into travel or work mode. When the platform is in 
travel mode, the movable frame (indicated in dark blue color in Fig. 1) is 
in its highest position, and when it is in work mode, the frame is in its 
lowest position. It is moved by four linear actuators installed in the four 
corners of the platform (see the top view in Fig. 1B); and it is controlled 
either manually by push buttons on the control panel or by remote 
control.

Fig. 1 shows CAD models of the RapidMapper platform for both, 
travel and work mode. Its weight is about 800 kg (water tank empty). 
The overall dimensions as well as the main parts of the platform are 
specified in the figure. Parts such as: drawbar, which connects the 
platform to a towing vehicle, four linear actuators, which lift and lower 
the movable frame, wheels, the foldable frame which holds the gamma- 
ray sensor, two linear actuators, which fold and unfold the foldable 
frame, power generator, air compressor and accumulator, water tank, 
and differential global navigation satellite system (DGNSS) receiver, 
among others, are installed on the fixed frame. In contrast, operating 
parts including the rolling electrodes of the ECa system, the furrow 
opening “shoe” of the optical sensor, and the pH sensor module, which 
have to be in direct contact with the soil during measurements, are 
mounted to the movable frame.

The platform can be attached to and pulled by a tractor or an off-road 
vehicle via the drawbar (Figs. 1 and 2). To transport the platform to the 
field, we utilize a specialized trailer (Supplementary Fig. 1). For loading 
the platform, the rear of the trailer is hydraulically lowered, converting 
its rear door into a ramp (as shown in Supplementary Fig. 1). The 
platform is then carefully maneuvered into position at the rear of the 
tilted trailer, and a robust winch is employed to gradually and smoothly 
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Fig. 1. CAD models of the RapidMapper. A: the platform in travel mode, B: three-view orthographic projection of the travel mode, C: the platform in work mode, and 
D: three-view orthographic projection of the work mode; 1- Movable frame (up- and downward) – outlined by blue color; 2- Drawbar for connecting the platform to a 
vehicle (foldable); 3- Fixed frame; 4- Linear actuators for lifting and lowering the movable frame; 5- Front wheels; 6- Rolling electrodes of the EC system; 7- Rear 
wheels; 8- Furrow opening “shoe” for the optical sensor; 9- pH sensor; 10- Foldable frame (for installing the gamma-ray sensor); 11- Gamma-ray sensor; 12- Linear 
actuators for extending and retracting the foldable frame; 13- Power generator; 14- Air compressor; 15- Air accumulator; 16- Camera; 17- Fire extinguisher; 18- Box 
of the optical sensor module; 19- pH sensor module; 20- Water tank; 21- Keyboard; 22– Monitor; 23– Roof; 24- DGNSS receiver; 25- Control panel; 26- LED warning 
lights; 27- Box of the computer. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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pull it upwards until it rests securely on the trailer bed. This method 
eliminates the need for an external ramp and ensures a smooth loading 
process. Once the platform is properly positioned on the trailer bed, a 
series of ratchet straps are used to secure it to the trailer.

2.1.2. Geoelectric sensor
The soil apparent electrical resistivity (ERa) / conductivity (ECa) 

measuring system of the RapidMapper is based on the galvanic contact 
resistivity technique. The instrument is from the Geophilus GmbH, 
Caputh, Germany. ECa electrodes are arranged in a Wenner configura-
tion (Allred et al., 2008), including four rolling electrodes (discs) placed 
in line and spaced equidistant from each other (a = 1 m). Two outer 
electrodes (current electrodes) inject an alternating electrical current 
into the soil (2–200 V AC, max. 1 A, 190 Hz), and the two inner 

Fig. 1. (continued).

H. Tavakoli et al.                                                                                                                                                                                                                               Computers and Electronics in Agriculture 226 (2024) 109443 

4 



electrodes (potential electrodes) measure the resulting potential differ-
ence, which is recorded at a frequency of 1 Hz. According to Gebbers 
et al. (2009) the effective depth of investigation for the Wenner 
configuration is approximately equal to a/2. Thus, the system explores 
the soil ERa/ECa at about 0–50 cm.

The ERa/ECa is calculated as (Allred et al., 2008): 

ERa =
ΔV
I

2πa (1) 

ECa =
1000
ERa

(2) 

where ERa, ECa, ΔV, I, and a are apparent electrical resistivity (Ω⋅m), 
apparent electrical conductivity (mS/m), potential difference (V), cur-
rent (A), and inter-electrode spacing (m), respectively.

The measurements are conducted when the platform is in work mode 
and the rolling electrodes are moved into the soil. The discs are installed 
on telescopic profiles, so that the two outers can be extended (for work 
mode, Fig. 1D) or retracted (for travel mode, Fig. 1B).

2.1.3. Gamma-ray sensor
A passive gamma-ray spectrometer (model MS-2000-CsI-MTS, 

Medusa Radiometrics BV, Groningen, Netherlands) was integrated via 
a foldable frame that is (i) open towards the soil surface and (ii) is 
mounted in distance to the platform in order to avoid any attenuation of 
gamma-rays by the platform. The sensor is composed of a CsI (Caesium 
Iodide) scintillator crystal of 90 × 310 mm and a 2048-channel MCA 
(multichannel analyzer). Besides the total gamma-ray emission (total 
counts, TC), the system can detect the naturally occurring radionuclides, 
Potassium-40 (40K), Uranium-238 (238U) and Thorium-232 (232Th), as 
well as the human-made radionuclide, Caesium-137 (137Cs).

The spectrometer covers an energy spectrum of 0 to 3000 keV, 
however, only the range of 300 to 2900 keV is taken into account for the 
analysis. In work mode, the gamma-ray detector (Figs. 1 and 2) has a 
distance of 0.3 m from the soil surface. The data are recorded at a 

frequency of 1 Hz.

2.1.4. Optical sensor
To measure soil visible and near-infrared (Vis-NIR) diffuse reflec-

tance in the field, a furrow opening ‘shoe’, similar to that of the Veris 
OpticMapper (described by Vogel et al. (2022)), was attached to the 
RapidMapper (Figs. 1 and 2). The shoe was pulled through the soil while 
the platform moves, allowing the measurement of subsurface soil 
reflectance at a depth of 10 − 15 cm. As shown in Fig. 2, there is a 
sapphire window on the underside of the shoe, through which the soil is 
illuminated and the reflected light is detected.

Currently, a NIR spectrometer (model C11118GA, Hamamatsu 
Photonics K. K., Shizuoka Pref., Japan), which covers the nominal range 
of 860 − 2550 nm with an average spectral resolution of 15 nm, is used 
on the platform. Like the ERa/ECa and the gamma-ray sensor, the op-
tical sensor is recording data at a frequency of 1 Hz. To maintain the 
accuracy and consistency of NIR measurements, a diffuse reflectance 
calibration with a reflection reference must be carried out every 30 min.

2.1.5. pH sensor
The current pH module installed on the RapidMapper is used in a 

stop-and-go manner allowing pH measurements at different spatial 
resolutions. A mechanism was built (shown in Fig. 2), which allows the 
up and down movement of two ion-selective antimony pH electrodes by 
pneumatically operated actuators.

Antimony pH electrodes are particularly suitable for applications 
under harsh conditions like soil (Vonau et al., 2020) and thus, they are 
used on the platform. The electrodes are installed right after the NIR 
shoe, so that the pH measurements are made in the furrow opened by the 
shoe and in the same depth as the NIR data are collected. After each 
measurement, the electrodes are cleaned with tap water from a 400 L 
tank by two spray nozzles. The antimony electrodes are calibrated using 
standard pH buffer solutions of pH 4.0 and 7.0.

Fig. 2. Image of the RapidMapper platform in working mode.
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2.1.6. DGNSS receiver
A differential global navigation satellite system (DGNSS) receiver 

(model AgGPS 162, Trimble Inc., Westminster, Colorado, US) is inte-
grated to the platform to record geographical coordinates and elevation. 
The receiver provides a pass-to-pass accuracy of around 20 − 30 cm. The 
DGNSS data are recorded at a rate of 1 Hz. Position data is broadcasted 
to the sensor modules via a serial port splitter in order to ensure that 
each sensor receives an identical data stream.

2.1.7. Sensor data acquisition software
Software for instrument control and conducting measurements was 

implemented under MS Windows 7. For some sensors (NIR and pH), 
dynamic link libraries (DLLs) were available and we used them to 
develop C# programs. However, for the other sensors (geoelectric and 
gamma-ray), we were forced to use software from the sensor provider. 
Therefore, for each sensor module, there is a separate software, which 
runs independently.

The sensor modules’ software incorporates several key features, 
including a) controlling sensor operation remotely, enabling fine-tuning 
sensor parameters b) synchronized sensor and GNSS data logging, c) 
each sensor’s software receives GNSS data from its dedicated serial port 
– the GNSS data encompasses coordinated universal time (UTC), lati-
tude, longitude, and altitude, among other relevant parameters, d) real- 
time data visualization for field operators to gain immediate insights 
into sensor data quality, e) a calibration management section, if 
required, is integrated into the software, and f) real-time georeferenced 
sensor data storing on the local hard drive – separate file for each sensor 
module in a standardized ASCII format (e.g.,.csv or.txt). Our custom 
software solutions were developed using the C# programming language 
and the.NET Framework 4.8.

2.2. Sensor data (post-) processing

Data processing flow for each of the sensor modules is given below.
The gamma-ray sensor; The gamma-ray data is processed using the 

Gamman software (Version 1.42, Medusa Systems, The Netherlands). 
This process involves the following steps:

• Data points merging: To enhance the precision of radionuclide con-
centration estimates, we employ a repeated-fit approach that in-
volves merging multiple spectra prior to data analysis. By combining 
consecutive spectra, we accumulate a higher total gamma-ray count, 
which effectively reduces the uncertainties associated with radio-
nuclide quantification. However, this strategy trades off spatial res-
olution, as combining spectra reduces the granularity of spatial 
information. Additionally, auxiliary data, such as GNSS position, is 
also averaged to maintain consistency with the merged spectra

• Smoothing: To enhance the overall smoothness of the gamma-ray 
data, we may apply a moving or running average filter over data 
point measurements with a user-defined window size. This technique 
involves calculating the average of a specified number of data points 
within a sliding window and assigning this average value to the 
central data point. The window size determines the degree of 
smoothing, with larger window sizes producing smoother data.

• Gamma-ray analysis: Gamman utilizes the full spectrum analysis 
(FSA) technique to determine radionuclide concentrations from 
gamma-ray spectra. Gamma-ray analysis involves a two-step process: 
i) spectrum stabilization: Each multi-channel spectrum in the dataset 
is transformed to ensure that all peaks appear at their corresponding 
energy positions, ii) radionuclide quantification: Each stabilized 
spectrum is deconvolved to determine the concentrations of various 
radionuclides, including 40K, 238U, 232Th, and 137Cs in Bq/kg or ppm. 
For spectrum stabilization, Gamman automatically applies gain sta-
bilization to the imported spectra using the reference spectra pro-
vided in the calibration file. Beyond radionuclide concentrations, the 
gamma-ray analysis outcomes include total counts (TC) or count 

rate, standard deviations for the radionuclide concentrations, and 
the chi-squared (χ2), which is a measure of the goodness of fit in the 
deconvolution.

The optical sensor; once collected, NIR spectra undergo a series of 
processing steps:

• Calculation of reflectance: Reflectance is a measure of how much 
light is reflected by a surface. A perfectly reflecting surface would 
have a reflectance of 1, while a perfectly absorbing surface would 
have a reflectance of 0. Most real-world surfaces have reflectances 
between 0 and 1. The reflected light of soil is converted to reflectance 
using known reflection properties of a certified reflection standard 
(Spectralon) and through the following equation:

ρ =
R-Rd

Rs-Rd
× Cf (3) 

where ρ, R, Rd, Rs, and Cf are reflectance, soil reflection, dark reflection, 
reflection of the standard reference, and reference correction factor (for 
each wavelength).

• Filtering out noisy spectra: We eliminate spectra that show atypical 
characteristics or deviate significantly from the expected pattern of a 
typical soil NIR spectrum. To automate the process of spectra 
filtering, we developed an algorithm in MATLAB software (The 
MathWorks Inc., Natick, MA, USA) that effectively eliminates noisy 
spectra.

• Picking the median spectrum from each second of measurements: 
Depending on the integration time of the spectrometer and driving 
speed of the platform, a few spectra per second would be recorded. 
To ensure coincidence between the NIR measurements and the data 
from the other sensors and the GNSS, we select only the median 
spectrum from each individual second of measurements.

• Edge trimming: NIR spectrometers are generally less sensitive at the 
edges of their operating range. This means that there is less signal to 
noise at these wavelengths, which can lead to noisier data. This is 
particularly evident in field measurements acquired using the spec-
trometer integrated into the RapidMapper. Therefore, we eliminate 
the edges of spectra.

• Spectral pre-processing: Under the harsh measurement conditions in 
the field, various factors such as mechanical vibrations, sudden 
variation in topography etc. can distort spectra, introducing noise 
across the entire wavelength range (Mouazen et al., 2009). There-
fore, the spectra need to be pre-processed by approaches such as 
Savitzky–Golay smoothing (Savitzky and Golay, 1964), in order to 
eliminate the noises.

The geoelectric sensor; we employ equations (1) and (2) to transform 
the raw measurements obtained from the geoelectric system into 
apparent electrical conductivity values.

The pH sensor; to ensure data reliability, we implement a quality 
control procedure for pH measurements acquired using two antimony 
electrodes. At each measurement point, we compare the pH values ob-
tained from both electrodes. If the values are within a predefined 
tolerance range, we average them to derive a more accurate pH deter-
mination. However, if the difference between the electrode readings 
exceeds the tolerance limit, we discard the measurement as potentially 
erroneous.

Post-mapping; we visualize the data of all sensors using QGIS soft-
ware (QGIS.org, 2023) to graphically examine the distribution of the 
values and identify any potential errors or inconsistencies in the 
measurements.
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2.3. Soil mapping with the platform

2.3.1. Field campaign
The general functionality of the RapidMapper was evaluated in 

different soilscapes across Germany (Fig. 3). Table 1 summarizes key 
information about the test sites, including their size, reference soil 
groups and locations, as well as the dates of mapping. For the detailed 
data quality assessment, we focused on the Marquardt and the Booßen 
site. The Marquardt site is an eight-plot sensor test site that has been 
artificially constructed within the “Fieldlab for Digital Agriculture”, an 
experimental station of the Leibniz Institute for Agricultural Engineering 
and Bioeconomy (ATB), situated in Brandenburg (Germany). Each plot 
encompasses an area of 12 × 12 m and a depth of 30 cm. Four different 
soils, including sandy-low in SOM, sandy-rich in SOM, clayey-no SOM, 
and silty-no SOM, were introduced in two replications. The Booßen field 
test site is an agricultural field under conventional management in the 
east of Brandenburg exhibiting high spatial variability in soil properties. 
From this site, a high amount of sensor data exist that were collected 
over three consecutive years (Schmidinger et al., 2024; Vogel et al., 
2022).

The RapidMapper platform was pulled over the fields at an average 
speed of 2.5 km/h and along parallel transects.

2.3.2. Sensor data

2.3.2.1. The RapidMapper’s data. From the geoelectric sensor, soil 
apparent electrical conductivity (ECa, mS/m) values were directly ob-
tained. The gamma-ray raw measurements were processed using the 
GAMMAN software and concentrations of the radionuclides (in Bq/kg): 
Potassium-40 (40K), Uranium-238 (238U), Thorium-232 (232Th) and 
Caesium-137 (137Cs) were estimated based on respective calibration of 
the sensor by the manufacturer. Since the NIR spectra were noisy at the 
edges of the wavelength range, only the range of 900–2450 nm (with 1 
nm intervals) was used. From the pH sensor, the mean values of the pH 
measurements of the two ion-selective antimony electrodes were 
calculated.

2.3.2.2. Laboratory-based data. In September 2020, soil samples were 
collected across the Booßen field using a systematic sampling design 

(Fig. 3). Samples were taken from a depth of 0–30 cm along three par-
allel transects spaced 12 m apart. A total of 159 samples were collected 
at 15-meter intervals along transect. After being oven-dried at 75 ◦C and 
sieved to a particle diameter of less than 2 mm, the soil samples were 
scanned by the spectrometer described in section 2.1.4 for laboratory- 
based NIR analysis. Inside a light-controlled chamber, four halogen 
lamps positioned at a 45-degree angle provided uniform illumination for 
the samples. The final spectra had a range of 900 to 2450 nm with a 
resolution of 1 nm.

Fig. 3. Overview of the agricultural fields mapped by the RapidMapper platform in Germany. The geographical locations are shown on the left map. Black lines 
delineate the boundaries of each field. The red dashed frames highlight the two focus fields of this paper: The sensor test site in Marquardt with four different soils 
and the Booßen field including the study area and the locations of reference sampling points. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.)

Table 1 
Detailed information about the fields mapped by RapidMapper.

Study site Parent 
material
*

Reference 
soil 
groups**

Area 
(ha)

Location 
coordinates

Mapping 
date(s)

Marquardt Boulder 
clay 
covered 
by 
glacial 
sands

Cambisol, 
Luvisol

0.1 52◦27′25.4″N, 
12◦57′55.9″E

August 
2020

Booßen End 
moraine 
glacial 
till

Luvisol, 
(Calcaric) 
Regosol

40 52◦22′16.8″N, 
14◦28′21.1″E

April 2020 
− August 
2021 −
August 
2022

Bölingen Loess, 
Loess 
loam

Luvisol, 
Stagnosol

2.8 50◦34′1″N, 
7◦5′5″E

September 
2020

Görzig Loess (Gleyic) 
Chernozem

65 51◦39′50″N, 
11◦59′48″E

August 
2021

Suderburg Boulder 
clay 
covered 
by 
glacial 
sands

(Albic) 
(Stagnic) 
Cambisol, 
(Stagnic) 
Luvisol

15 52◦53′46.9″N, 
10◦26′44.0″E

February 
2021

Hermersdorf End 
moraine 
glacial 
till

Luvisol, 
(Calcaric) 
Regosol

1.6 52◦34′03.8″N, 
14◦10′59.8″E

September 
2022

* The parent material was obtained from (BGR) (2013).
** The reference soil groups were retrieved form Group (2015).
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2.3.2.3. Data from other sensor platforms. In August 2021, while con-
ducting the RapidMapper survey at the Booßen field, we also mapped 
the field using two separate platforms concurrently: The Veris MSP 
(described in Vogel et al. (2022)) and the Geophilus platform (Lueck and 
Ruehlmann, 2013). The Veris MSP platform utilizes a galvanic coupled 
resistivity instrument with six parallel rolling coulter electrodes. This 
instrument measures soil apparent electrical conductivity at two depths: 
Shallow (ECsh) with an effective exploration depth of 0–12 cm and deep 
(ECdp) with an effective exploration depth of 0–37 cm (Gebbers et al., 
2009; Vogel et al., 2022). The Geophilus platform features seven pairs of 
rolling electrodes that measure soil electrical conductivity at various 
effective depths down to 1.5 m. It also includes a gamma-ray sensor to 
detect the total gamma-ray counts emitted by the soil per second 
(Bönecke et al., 2021; Lueck and Ruehlmann, 2013). In this study, we 
focused only on the ECa data collected from the shallowest depth layer 
(0–25 cm) by the Geophilus system.

In 2017, the Booßen field was mapped for EC and gamma-ray radi-
ation using the Geophilus platform (Bönecke et al., 2021). Additionally, 
the Veris MSP captured EC, near-infrared (NIR), and pH measurements 
in 2017, followed by another campaign of EC and pH measurements in 
2018 (Vogel et al., 2022). The field NIR data ranged from 1100 to 2100 
nm, with an average resolution of about 5 nm.

In November 2020, we additionally compared RapidMapper’s 
gamma-ray sensor with a RSX-1 gamma-ray spectrometer (Radiation 
Solutions Inc., Canada) at the Booßen field. The RSX-1 has been 
demonstrably effective in a number of previous studies (Heggemann 
et al., 2017; Pätzold et al., 2020). It consisted of two 4.2 L thallium 
activated sodium iodide (NaI(Tl)) crystals mounted on a tractor’s three- 
point hitch using a steel frame. This instrument captured gamma-ray 
spectra at a rate of 1 Hz with 1024 channels. For comparison, we 
selected 36 representative points from the 159 sampling locations, 
ensuring coverage across the entire range of clay content and gamma- 
ray emission. At each of these points, both instruments performed sta-
tionary measurements for 60 s. This way, measurements were co-located 
and less noisy. For a more detailed description of the methodology, 
please refer to Pätzold et al. (2020).

2.3.3. RapidMapper’s functionality and data quality assessment
The functionality of the RapidMapper platform and the quality of its 

collected data were evaluated through:

i. General functionality assessment: Assessing the functionality of 
the platform for consistent mapping of various fields across 
Germany.

ii. Sensitivity assessment: Assessing the response of the sensors to 
different soils at the Marquardt sensor test site.

iii. Temporal consistency assessment: Measurements from the Boo-
ßen field taken in April 2020, August 2021, and August 2022 
were evaluated for consistency over time.

iv. Similar sensors’ comparison: RapidMapper’s ECa, gamma-ray 
and NIR sensors were compared with other devices using the 
same measurement principle. ECa measurements from Rap-
idMapper were compared to those from Veris MSP and Geophilus 
devices in the Booßen field (August 2021). Readings from Rap-
idMapper’s gamma-ray sensor were compared with those of a 
RSX-1 gamma-ray spectrometer (Radiation Solutions Inc., Can-
ada). NIR data collected by the RapidMapper in the Booßen field 
was compared to data from the Veris MSP.

v. In-situ vs. laboratory measurement’s comparison: NIR data 
collected in the field using RapidMapper was compared to labo-
ratory analysis results from the Booßen field using correlation 
analysis.

2.3.4. Data analysis
For the general functionality assessment: Visualization of the sen-

sors’ data for all the fields and campaigns was done.

For the sensitivity assessment: We investigated differences in Rap-
idMapper sensor readings across the plots of four different soil types at 
the Marquardt sensor test site using analysis of variance (ANOVA). The 
parameters analyzed included NIR total reflectance (calculated as the 
sum of reflectance values across the NIR spectra for each measurement 
point), gamma total counts, ECa, and pH value. Tukey’s Honest Signif-
icant Difference (HSD) test was used as a multiple comparison procedure 
to identify specific plots with significantly different readings. It is 
important to note that pH data was not analyzed with ANOVA because 
only one measurement per plot was available. The NIR spectra of the 
different soil types were also visualized.

For the temporal consistency assessment: To ensure consistent 
spatial comparisons across all measurement campaigns in the Booßen 
field, we restricted our analysis to the common area (intersection) where 
data was collected by all campaigns. Raster maps were generated for 
gamma-ray total counts and ECa data. To standardize the spatial reso-
lution of the raster graphing, sensor measurement points, which were 
not co-located, were interpolated to a regular grid of 6,818 points 
delimited by the intersection area. Additionally, we calculated Spear-
man’s rank correlation coefficient (ρ) to analyze the correlation between 
sensor variables (in the case of NIR data: total reflectance). The NIR 
spectra of the intersection area were also visualized.

For the similar sensors’ comparison: We calculated Spearman’s rank 
correlation coefficient (ρ) to assess the correlation between different 
sensors’ readings, and created raster maps for the ECa data from the 
different devices. Since the Geophilus platform measures apparent 
electrical resistivity, we converted its data to ECa for easier comparison. 
To simplify data interpretation and visualization, we scaled all ECa 
measurements from RapidMapper, Veris MSP, and Geophilus to have a 
zero mean and unit standard deviation, despite minor variations in their 
original ranges. Since original measurement points from the different 
systems were not co-located, we aligned the data spatially by creating a 
regular grid of 7,972 points within the 2021 RapidMapper survey area 
for each sensor’s ECa data.

For the in-situ vs. laboratory measurement’s comparison: We 
analyzed the correlation between lab and field NIR total reflectance data 
using Spearman’s rank correlation coefficient (ρ). The NIR data under-
went pre-processing. This included standardizing the reflectance data 
using standard normal variate (SNV) transformation and interpolating 
the RapidMapper and Veris MSP data for spatial alignment with the 
reference sampling locations (the 159 sampling points) using ordinary 
block kriging from the “gstat” library in R (Pebesma, 2004) with a block 
size of 10 × 10 m2. To expedite the interpolation process, we considered 
only the 500 reflectance measurement points that were spatially closest 
to each target point. A variogram was automatically fitted for each 
sensor variable using the ‘automap’ library of R (Hiemstra et al., 2009). 
This routine iterates over the variogram models (spherical, exponential, 
Gaussian, etc.) and selects the model that has the smallest residual sum 
of squares with the empirical variogram. The median NIR reflectance 
spectra (after SNV transformation) of the lab and field measurements 
were also visualized.

Data management and visualization were done in R (Team, 2019) 
using the ‘tidyverse’ packages (Wickham et al., 2019). The satellite 
images presented in this paper were acquired from Esri World Imagery 
Basemap using the ‘basemaps’ library of R (Schwalb-Willmann, 2024). 
All the data analyses were done on a single machine with the following 
specifications: Intel Core i7-10850H, 2.70 GHz, 6 cores, 12 logical 
processors; 16 GB RAM; Windows 10.

3. Results and discussion

3.1. Assessing the general functionality of the RapidMapper

The RapidMapper’s ability and consistency for soil mapping was 
successfully tested on 6 test sites across Germany from 2020 to 2022. 
Supplementary Fig. 2 visualizes sensor data collected for each field. 
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Additionally, Supplementary Fig. 3 presents the NIR reflectance spectra 
for the fields, which follow the typical soil spectrum format. Comparison 
of the spectra between the fields reveals significant variations, linked to 
differences in soil properties. This is exemplified by the spectra of the 
Marquardt field (Fig. 4), where four different soils with different prop-
erties led to distinct variations in the spectra.

Initial tests of the RapidMapper in the fields showed promising re-
sults. While the system allows for the simultaneous operation of multiple 
soil sensors, its complexity can lead to errors. Notably, using Microsoft 
Windows as the operating system appears to cause issues with the timing 
of commands being sent and data being received. Our field tests revealed 
that for the RapidMapper platform to function optimally, some level of 
field preparation is necessary. In particular, it is crucial to remove or 
chop plant residues in front of the NIR shoe for optimal performance. 
Our experience suggests that the geoelectric sensor’s readings are 
significantly impacted by very dry soil conditions. This is an important 
factor to consider when scheduling field campaigns.

3.2. Sensitivity assessment of the RapidMapper’s sensors

Fig. 4 presents visualizations from sensor data acquired by Rap-
idMapper in the Marquardt sensor test site. To summarize the sensor 
readings, we calculated mean values and standard errors for each sensor 
data. Additionally, for the NIR data, we calculated the mean values of 
total reflectance alongside visualizing the spectra. The data reveals a 
consistent pattern: Comparisons of both the mean sensor values (Fig. 4A) 
and the NIR spectra (Fig. 4B) show a clear reflection of the different soil 
properties of the four soil types in the sensor readings. This is true for all 
measurements except for pH, where the values across the four soils are 
relatively similar. However, this rather small pH variability of the plots 
was also reflected by standard lab-based pH measurements. For plots 
with repeated soil types, high similarity in sensor values and NIR spectra 
is evident.

Interestingly, both the mean total reflectance and the NIR spectra 
show a similar pattern: Plots with sandy-low in SOM soil and sandy-rich 
in SOM soil have nearly identical spectra shapes, with slightly higher 
reflectance in the sandy-low in SOM plots. This finding exemplifies the 
ability of NIR measurements to reflect soil texture and soil organic 
carbon, as a different SOM content is the primary difference between 
these two plots, which is visible in a decrease of the NIR reflectance 
(Nocita et al., 2015). In addition, as expected (Stenberg et al., 2010), 
clayey plots showed the lowest reflectance (highest absorbance).

Soil texture and gamma-ray emissions are linked, with higher clay 
content in most cases leading to increased gamma-ray total counts due 
to the presence of naturally occurring radioactive elements like potas-
sium (4⁰K) and thorium (232Th) within clay minerals (Gebbers, 2018; 
Heggemann et al., 2017). This typical relationship is evident in the 
RapidMapper gamma-ray measurements from the sensor test site, 
showing highest gamma total counts for the clayey soils and lowest total 
counts for the sandy soils (Fig. 4A). However, negative correlation be-
tween clay content and gamma-ray emission has also been reported 
(Heggemann et al., 2017; Pätzold et al., 2020).

Soil texture significantly impacts apparent electrical conductivity 
(ECa) (Allred et al., 2008; Gebbers, 2018). The RapidMapper’s ECa 
system reflects this, with sandy soils exhibiting the lowest conductivity, 
while clayey and silty soils show higher values (Fig. 4A). Nevertheless, 
the ECa values measured in this August 2020 campaign were generally 
low, likely due to the typically dry conditions associated with this sea-
son. Soil moisture content influences electrical conductivity, as higher 
moisture enhances the mobility and abundance of ions (dissolved salts), 
consequently raising the conductivity and vice versa (Hardie, 2020).

Minimal differences in pH measurements between plots with varying 
textures were observed, except for slightly lower pH values in clayey 
plots. Clayey soils have a large surface area due to tiny size of their 
particles. This allows them to hold onto charged particles (cations) more 
tightly, including positively charged hydrogen (H+) ions, which 

contribute to soil acidity. Consequently, soils with higher clay content 
tend to be more acidic (lower pH).

3.3. Temporal consistency assessment of RapidMapper’s measurements

We investigated the temporal consistency of RapidMapper’s mea-
surements by mapping the Booßen field in three consecutive years: 
2020, 2021, and 2022. Unfortunately, no pH data was collected in 2021 
(Supplementary Fig. 2). As the pH value is a dynamic soil property, we 
excluded it from the temporal consistency evaluation. Instead, we 
focused on ECa, gamma-ray, and NIR data, which should reflect more 
stable soil properties like texture and SOM. Fig. 5 illustrates the corre-
lation between the sensor data collected across the three years. Addi-
tionally, Fig. 6 presents the raster maps of gamma-ray and ECa data, and 
the NIR reflectance spectra acquired by RapidMapper for the three 
years.

For assessing the temporal consistency of measurements, in this 
section we compare correlations of the same variables across the three 
years. When comparing 2020 and 2021 campaigns, there were strong 
correlations for gamma-ray total counts (TC), 40K, 232Th, and ECa, good 
correlations for 238U, and weak correlation for 137Cs and NIR total 
reflectance. In the case of 2021 and 2022 campaigns, strong correlations 
for TC, 40K, 232Th, 238U, and ECa, good correlation for 137Cs, and weak 
correlations for NIR total reflectance were observed. Finally, compari-
son between 2020 and 2022 data revealed strong correlations for TC, 
40K, 232Th, 238U, and ECa, good correlations for NIR total reflectance, 
and weak correlation for pH and 137Cs.

As shown in Fig. 6A&B, the raster maps for gamma total count (TC) 
and ECa exhibited high similarity between the 2020 and 2021 cam-
paigns. In contrast, the 2022 data revealed lower similarity. This dif-
ference can likely be attributed to the very dry condition during the 
2022 campaign. As compared to gamma-ray and ECa data, temporal 
consistency of NIR data is weaker due to the higher sensitivity of NIR 
reflection to various factors like soil moisture content. However, the 
spectra from all the three campaigns maintained the characteristic shape 
of a typical soil NIR spectrum (Fig. 6C), indicating overall consistency in 
data acquisition.

Overall, the findings presented in this section support the temporal 
consistency of RapidMapper measurements from the Booßen field.

3.4. Similar sensors’ comparison

Comparison of raster maps generated from ECa data collected by 
RapidMapper, Veris MSP, and the Geophilus platform in Booßen (August 
2021) demonstrated strong concordance (Fig. 7), suggesting these in-
struments provide comparable measurements of soil electrical conduc-
tivity. Furthermore, strong correlations between ECa data of 
RapidMapper in 2020, 2021 and 2022 with ECa data from Veris MSP 
and Geophilus in 2017, 2018, and 2021, confirm this observation 
(Fig. 5). The consistent agreement across multiple instruments and years 
underpins the reliability of ECa data collected by RapidMapper.

Measurements from the two gamma-ray spectrometers at the Booßen 
site showed excellent agreement across the entire range of total counts 
(Fig. 8). This high level of coincidence demonstrates the effectiveness of 
RapidMapper’s gamma-ray sensor for soil sensing.

3.5. In-situ vs. Laboratory measurement’s comparison

This section compares NIR data collected in-situ by RapidMapper, 
Veris MSP, and laboratory analysis for the Booßen field. Compared to 
lab-based measurements, in-situ measurements are generally affected by 
the field conditions during the sensor measurement campaign such as: 
(i) different soil moisture contents and temperature (while in-situ NIR 
measurements were conducted on moist soil in the field, the laboratory 
analyses were conducted on dried samples), (ii) different measurement 
modus (in contrast to lab NIR measurements, on-the-go in-situ NIR 
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Fig. 4. RapidMapper’s sensor measurements from the four different soil types of the sensor test site in Marquardt. A: Mean and standard error for sensor readings of 
RapidMapper within each plot. Means followed by different letters indicate statistically significant differences according to the Tukey test (P-value ≤ 0.05). Note that 
there was one pH measurement value for each plot; therefore, ANOVA analysis was not conducted for this variable. B: NIR reflectance spectra acquired by Rap-
idMapper for each plot. The solid black curve denotes the median value of reflectance at each wavelength. The gray area describes the interquartile interval, with the 
lower and upper limits corresponding to the first and third quartiles, respectively. Numbers in red indicate the total count of measurement points (n). (For inter-
pretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5. Correlation matrices for sensor data collected from the Booßen field in three years. RapidMapper sensors are on the x-axis and sensor data from other sensor 
platforms are on the y-axis. Each cell displays Spearman’s correlation coefficient (ρ), ranging from − 1 (perfect negative correlation) in deep blue to 1 (perfect positive 
correlation) in deep red. Black cells represent the correlation of a variable with itself (always perfect, ρ = 1). The color intensity reflects the strength of the cor-
relation. We used just 159 sampling locations for this correlation matrix because the lab-based NIR data from these points was the most limited dataset. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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measurements are conducted during movement and can be affected by 
disturbing factors like mechanical vibration (Mouazen et al., 2009)). 
Despite these limitations, comparing these datasets can provide valuable 
insights into the quality of RapidMapper data. Section 3.3 demonstrated 
the challenges of comparing field NIR data from even the same NIR 
instrument across different years. However, this section explores a 
comparison between Veris MSP data (2017) and RapidMapper data 
collected in the Booßen field across multiple years (2020, 2021, and 

2022). This comparison, despite the inherent challenges, can offer in-
sights into the agreement of NIR measurements captured by different 
platforms in the same field.

Fig. 9 displays the median NIR reflectance spectra after SNV stan-
dardization for the laboratory and field measurements. Despite gener-
ally similar spectral patterns, particularly among field spectra, the 
laboratory and field spectra differ in the depth of the two valleys around 
1400 and 1900 nm. This variation can be attributed to the influence of 

Fig. 6. RapidMapper sensor measurements over three years in the Booßen field. A: Raster maps of gamma-ray total counts; B: Raster maps of apparent electrical 
conductivity (ECa); C: NIR reflectance spectra acquired by RapidMapper. The solid black curve denotes the median value of reflectance at each wavelength. The gray 
area describes the interquartile interval, with the lower and upper limits corresponding to the first and third quartiles, respectively. Numbers in red indicate the total 
count of measurement points (n). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

H. Tavakoli et al.                                                                                                                                                                                                                               Computers and Electronics in Agriculture 226 (2024) 109443 

12 



soil moisture content, since O–H groups, including water absorb light at 
these wavebands (Viscarra Rossel and Behrens, 2010). NIR data from 
dried lab samples exhibits higher contrast, leading to better quality. 
Encouragingly, field-moist data collected with the RapidMapper NIR 
also produces valid spectra due to the similarity in spectral patterns with 
the lab data.

Although total reflectance values alone may not provide a definitive 
assessment of NIR data, we selected this variable as a representative of 
the data for our correlation analysis. As shown in Fig. 5, the total 
reflectance of the NIR lab spectra showed a very strong correlation with 
field data from the 2020 survey, a good correlation with the 2022 data, 
and a weaker correlation with the 2021 data. The RapidMapper NIR 
total reflectance data from 2020 and 2021 showed a higher correlation 
with the Veris MSP data (2017) compared to the 2022 data of Rap-
idMapper Fig. 5.

This section compared NIR data from RapidMapper to those acquired 

by Veris MSP and laboratory measurements. While some similarities 
were observed, definitively assessing the data correspondence is chal-
lenging. Future works will involve developing soil property calibration 
models using this data, which may provide a more robust basis for 
comparison.

4. Conclusions

In this study, we introduced a newly developed multi-sensor plat-
form (called RapidMapper) for topsoil mapping. The platform is 
currently equipped with a suite of four sensors, including NIR and 
gamma-ray spectroscopy as well as geoelectric and pH potentiometry 
sensors. To evaluate the functionalities of the platform, we conducted 
field mappings on various soils in Germany. Furthermore, for a thorough 
assessment of the platform’s data quality, we selected two fields for in- 
depth analysis of RapidMapper’s performance. Data quality was evalu-
ated through a) an assessment of the general functionality for consistent 
mapping of various fields across Germany, b) a sensitivity assessment: 
the sensors response across different soil types was assessed, c) temporal 
consistency assessment: Verifying consistency of measurements on the 
same field over three years, d) similar sensors’ comparison: Comparing 
ECa, gamma-ray and NIR data from the platform with other devices, and 
e) in-situ vs. laboratory measurement’s comparison: Comparing field 
NIR data and laboratory measurements. The following conclusions can 

Fig. 7. Comparison between raster maps of soil apparent electrical conductivity (ECa) measurements of the RapidMapper, Veris MSP and Geophilus platforms, 
collected from the Booßen field in August 2021. Although all sensors directly measure soil ECa, slight differences in their ranges exist. To facilitate data interpre-
tation, each variable was scaled to have a mean of zero and a standard deviation of one.

Fig. 8. Correlation between total gamma-ray counts measured by two different 
gamma-ray spectrometers (RapidMapper’s Medusa MS-2000 vs. RSI RSX-1) at 
36 reference sampling locations within the Booßen field. R2: The coefficient of 
determination; RMSE: Root mean squared error; n: Number of count points. The 
gray and dashed line is the 1:1 line.

Fig. 9. The median NIR reflectance spectra obtained from laboratory and field 
measurements for the Booßen field. The field data includes measurements from 
RapidMapper across different years and Veris MSP in September 2017. All 
spectra have been normalized using the standard normal variate 
(SNV) technique.
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be drawn from this research:

• The platform demonstrated consistent mapping capabilities across 
diverse fields in Germany.

• Sensor readings accurately reflected soil property variations in 
different soils.

• RapidMapper measurements exhibited high temporal consistency on 
the same field over multiple years.

• Electrical conductivity (EC) and gamma-ray measurements by Rap-
idMapper showed strong agreement with those from other devices.

• Similarities were observed between the platform’s in-situ NIR data 
and that obtained from laboratory measurements.

• The strong concordance between RapidMapper’s data and that 
collected from other devices demonstrates the feasibility of merging 
data from diverse campaigns and instruments into a unified data-
base. With respect to the wide range of pedological conditions that 
exist, a large database is needed to build a site-independent soil 
property model. Such a model is needed when site-specific calibra-
tions are to be overcome.

• The RapidMapper’s initial field tests yielded positive outcomes. The 
platform enables the operation of several soil sensors in parallel. 
However, the complexity of the system makes it error prone. In 
particular, using MS Windows as the operating system generates 
problems with the timing of commands and data transfer.

• More fields with diverse soil conditions need to be mapped by the 
platform and soil property calibration models need to be built with 
the data to generalize our observations and further test its 
performance.
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curation, Formal analysis, Visualization, Writing – original draft. 
Sebastian Vogel: Methodology, Project administration, Supervision, 
Writing – review & editing. Marcel Oertel: Methodology, Software. 
Marc Zimne: Methodology, Visualization, Writing – review & editing. 
Michael Heisig: Software, Writing – review & editing. Anatolij Harder: 
Investigation, Methodology. Robert Wruck: Investigation, Methodol-
ogy. Stefan Pätzold: Data curation, Investigation, Writing – review & 
editing. Matthias Leenen: Data curation, Investigation. Robin Geb-
bers: Conceptualization, Methodology, Project administration, Super-
vision, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

The authors would like to acknowledge the Federal Ministry of Ed-
ucation and Research (BMBF) of Germany for funding the I4S project 
(grant number 031B1069A), and the project partners: Ferdinand-Braun- 
Institute, Hahn-Schickard-Society, Technical University Munich, Uni-
versity of Bonn, Martin-Luther-University, University of Potsdam, ZALF, 
BAM, Geophilus GmbH, for their valuable contributions to the project. 
We warmly thank the efforts of all colleagues who contributed to the 
development of the RapidMapper platform.

Appendix A. Supplementary material

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.compag.2024.109443.

References

Adamchuk, V.I., Morgan, M.T., Ess, D.R., 1999. An automated sampling system for 
measuring soil pH. Transactions of the ASAE 42, 885–892.

Adamchuk, V.I., Viscarra Rossel, R.A., 2010. Development of On-the-Go Proximal Soil 
Sensor Systems. In: Viscarra Rossel, R.A., McBratney, A.B., Minasny, B. (Eds.), 
Proximal Soil Sensing. Springer, Netherlands, Dordrecht, pp. 15–28.

Allred, B., Daniels, J.J., Ehsani, M.R., 2008. Handbook of Agricultural Geophysics CRC 
Press.
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Knödel, K., Krummel, H., Lange, G., 2005. Handbuch zur Erkundung des Untergrundes 
von Deponien und Altlasten, 2 ed. Springer, Berlin, Heidelberg, Berlin. 

Kodaira, M., Shibusawa, S., 2013. Using a mobile real-time soil visible-near infrared 
sensor for high resolution soil property mapping. Geoderma 199, 64–79.

Kodaira, M., Shibusawa, S., 2020. Mobile proximal sensing with visible and near infrared 
spectroscopy for digital soil mapping. Soil Systems 4, 40.

Kuang, B., Mahmood, H.S., Quraishi, M.Z., Hoogmoed, W.B., Mouazen, A.M., van 
Henten, E.J., 2012. Chapter four - Sensing Soil Properties in the Laboratory, In Situ, 
and On-Line: A Review. In: Sparks, D.L. (Ed.), Advances in Agronomy. Academic 
Press, pp. 155–223.

La, W.-J., A. Sudduth, K., Kim, H.-J., Chung, S.-O., 2016. Fusion of spectral and 
electrochemical sensor data for estimating soil macronutrients. Trans. ASABE 59, 
787–794.

Lueck, E., Ruehlmann, J., 2013. Resistivity mapping with GEOPHILUS ELECTRICUS — 
Information about lateral and vertical soil heterogeneity. Geoderma 199, 2–11.

Mahmood, H.S., Hoogmoed, W.B., van Henten, E.J., 2012. Sensor data fusion to predict 
multiple soil properties. Precis. Agric. 13, 628–645.

Mouazen, A.M., Maleki, M.R., Cockx, L., Van Meirvenne, M., Van Holm, L.H.J., 
Merckx, R., De Baerdemaeker, J., Ramon, H., 2009. Optimum three-point linkage set 
up for improving the quality of soil spectra and the accuracy of soil phosphorus 
measured using an on-line visible and near infrared sensor. Soil Tillage Res. 103, 
144–152.

Mouazen, A.M., Alhwaimel, S.A., Kuang, B., Waine, T., 2014. Multiple on-line soil 
sensors and data fusion approach for delineation of water holding capacity zones for 
site specific irrigation. Soil Tillage Res. 143, 95–105.

Munnaf, M.A., Haesaert, G., Van Meirvenne, M., Mouazen, A.M., 2020. Chapter Five - 
Site-Specific Seeding Using Multi-Sensor and Data Fusion Techniques: A review. In: 
Sparks, D.L. (Ed.), Advances in Agronomy. Academic Press, pp. 241–323.

Nocita, M., Stevens, A., van Wesemael, B., Aitkenhead, M., Bachmann, M., Barthès, B., 
Ben Dor, E., Brown, D.J., Clairotte, M., Csorba, A., Dardenne, P., Demattê, J.A.M., 
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