
Robot Trajectory Optimization for Relaxed Effective Tasks

DISSERTATION

zur Erlangung des akademischen Grades

Doktoringenieur (Dr.-Ing.)

angenommen durch die Fakultät für Informatik

der Otto-von-Guericke-Universität Magdeburg

von Dipl.-Ing. Sergey Alatartsev

geb. am 08.12.1988 in Chita, USSR

Gutachterinnen/Gutachter

Prof. Dr. Frank Ortmeier
Prof. Dr. Dmitry Berenson
Prof. Dr. Iacopo Gentilini
Prof. Dr. Nikos Aspragathos

Magdeburg, den 07.07.2015

Alatartsev, Sergey:
Robot Trajectory Optimization for Relaxed Effective Tasks
Dissertation, University of Magdeburg, 2015.

Ehrenerklärung

Ich versichere hiermit, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Dritter und
ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe; verwendete
fremde und eigene Quellen sind als solche kenntlich gemacht. Insbesondere habe ich
nicht die Hilfe eines kommerziellen Promotionsberaters in Anspruch genommen. Dritte
haben von mir weder unmittelbar noch mittelbar geldwerte Leistungen für Arbeiten
erhalten, die im Zusammenhang mit dem Inhalt der vorgelegten Dissertation stehen.

Ich habe insbesondere nicht wissentlich:

– Ergebnisse erfunden oder widersprüchliche Ergebnisse verschwiegen,
– statistische Verfahren absichtlich missbraucht, um Daten in ungerechtfertigter

Weise zu interpretieren,
– fremde Ergebnisse oder Veröffentlichungen plagiiert,
– fremde Forschungsergebnisse verzerrt wiedergegeben.

Mir ist bekannt, dass Verstöße gegen das Urheberrecht Unterlassungs- und Schaden-
sersatzansprüche des Urhebers sowie eine strafrechtliche Ahndung durch die Strafver-
folgungsbehörden begründen kann. Die Arbeit wurde bisher weder im Inland noch im
Ausland in gleicher oder ähnlicher Form als Dissertation eingereicht und ist als Ganzes
auch noch nicht veröffentlicht.

Magdeburg, 07.07.2015

Sergey Alatartsev

Zusammenfassung

Industrielle Roboter sind flexible Maschinen, die aktuell in den verschiedensten Produk-
tionsbereichen eingesetzt werden. Ihr Arbeitsablauf besteht hauptsächlich aus zwei ab-
wechselnden Phasen. Die erste Phase berechnet effektive Bewegungen, die erforderlich
sind, um eine Aufgabe auszuführen, wie z.B. Schweißen. In der zweiten Phase werden un-
terstützende Bewegungen bestimmt, welche für die Bewegung zwischen zwei Aufgaben
benötigt werden. Insbesondere in der ersten Phase ist es jedoch möglich, dass z.B.
das Werkzeug des Roboters einen gewissen Abstands- oder Winkelspielraum während
des Schweißens haben darf. Diese Freiheit wird häufig vernachlässigt und Roboter sind
manuell nach Intuition des Programmierers programmiert. Dennoch kann dieser Spiel-
raum als ein zusätzlicher Freiheitsgrad für die Optimierung der Robotertrajektorie ver-
wendet werden. In dieser Arbeit stellen wir eine Formalisierung dieser Freiheit für ef-
fektive Aufgaben vor. Wir bezeichnen eine effektive Aufgabe mit einer formalisierten
Ausführungsfreiheit als eine gelockerte effektive Aufgabe.

Eine unendliche Anzahl an Möglichkeiten zu haben, eine Aufgabe auszuführen, lässt
verschiedene Forschungsfragen aufkommen: (i) wie ist eine Eingangspunktsequenz für
gelockerte effektive Aufgaben zu optimieren? (ii) wie sind Anfangskonfigurationen des
Roboters für diese Aufgaben zu finden? (iii) wie ist eine Roboter-Trajektorie für eine
bestimmte gelockerte Aufgabe zu optimieren? Wir stellen ein Konzept vor, welches die
drei Problemstellungen in drei voneinander separaten Komponenten zu lösen vermag.
In Kombination miteinander oder mit anderen dem Stand der Technik entsprechenden
Ansätzen angewendet, ist die Berechnung der optimierten Roboter-Trajektorie möglich.

Die erste Komponente betrachtet das Problem, eine Sequenz für effektive Aufgaben
und ihre Eingangspunkte zu finden. Dieses Problem ist als “Traveling Salesman Problem
with Neighborhoods” (TSPN) bekannt, bei dem eine Tour durch eine Menge an Bereichen
gefunden werden soll. Wir stellen “Constricting Insertion Heuristics” für die Konstruktion
einer Tour und “Constricting 3-Opt” für die Optimierung der Tour vor. In der zweiten
Komponente muss der Bewegungspfad angepasst und Anfangskonfigurationen für den
Roboter gesucht werden. Dieses Problem ist als “Touring-a-Sequence-of-Polygons Prob-
lem”(TPP) bekannt, bei dem eine Tour durch eine gegebene Sequenz von Bereichen gefun-
den werden soll. Wir stellen eine Modifikation des“Rubber-Band Algorithmus”(RBA) vor
und bezeichnen diese Erweiterung als“Nested RBA”. Die Optimierung von Robotertrajek-
torien in der dritten Komponente ist ebenfalls als TPP dargestellt. Dennoch stellen wir im
Gegensatz zum klassischen RBA, bei dem Bereiche durch eine Polylinie beschränkt sind,
eine Erweiterung des RBA namens “Smoothed RBA” vor, bei dem Bereiche durch eine
glatte Kurve eingeschränkt sind, welche zu einer minimalen Kosten-Robotertrajektorie
führt.

Abstract

Industrial robots are flexible machines that are currently involved in multiple production
domains. Mainly their workflow consists of two alternating stages. The first stage is
effective movements that are required to perform a task, e.g., welding a seam. The
second stage is supporting movements that are needed to move from one effective task to
another, e.g., movements between welding seams. Many effective tasks allow a certain
freedom during their execution, e.g., the robot’s tool might have a certain deviation
during welding. This freedom is often ignored and robots are programmed manually
based on the programmer’s intuition. Nonetheless, this freedom can be used as an
extra degree of freedom for robot trajectory optimization. In this thesis, we propose
a formalization of this freedom for effective tasks. We refer to an effective task with a
formalized freedom of execution as a relaxed effective task.

Having an infinite number of ways to execute a task raises several research ques-
tions: (i) how to optimize a sequence of entry points for relaxed effective tasks? (ii)
how to find starting robot configurations for these tasks? (iii) how to optimize a robot
trajectory for a certain relaxed task? We propose a solution concept that decomposes
a problem containing all three questions into three components that can be applied in
combination with each other or with other state-of-the-art approaches.

The first component considers the problem of finding a sequence of effective tasks
and their entry points. This problem is modeled as the Traveling Salesman Problem
with Neighborhoods (TSPN) where a tour has to be found through a set of areas. We
propose a Constricting Insertion Heuristic for constructing a tour and a Constricting
3-Opt for improving the tour. In the second component, the problem of adapting a tour
for a robot to execute and searching for starting robot configurations is modeled as a
Touring-a-sequence-of-Polygons Problem (TPP) where a tour has to be found through
a given sequence of areas. We propose a modification of the Rubber-Band Algorithm
(RBA). We refer to this extension as a Nested RBA. Optimization of a robot trajectory
in the third component is also represented as a TPP. However, in contrast to the classic
RBA where areas are constricted with a polyline, we propose an extension of the RBA
called Smoothed RBA where areas are constricted with a smooth curve which leads to
a minimal cost robot trajectory.

Acknowledgements

This thesis would not be possible without many people. Firstly, I would like to express
my deepest gratitude to supervisor Prof. Frank Ortmeier who gave me a chance to
work in his department and provided the conditions in which it was possible to finish
this project. I would like to thank my reviewers and committee members: Prof. Nikos
Aspragathos, Prof. Dmitry Berenson, Prof. Iacopo Gentilini, Prof. Rudolf Kruse, Prof.
Stefan Schirra, and Jun.-Prof. Sebastian Zug for the time they invested in this thesis.

During this PhD project, I had the honor of working with many great people. It
is not enough space to list everyone, therefore, please excuse me if you cannot find your
name here. It was a pleasure to work with Marcus Augustine, who shared many stories
about Australia with me and introduced me to Flight of the Conchords. It was great
to share the office with Tanja Hebecker, who always gave me some time to shutdown
the computer. Matthias Güdemann supported me greatly at the very beginning of my
PhD and was very patient when correcting my first paper. Although he graduated
soon, he continued to support me throughout the whole PhD study and we had a
lot of fun during our cross-Russia travel. I want to express my deepest gratitude to
Michael Lipaczewski who helped me a lot in difficult life situations and proved to be a
very faithful friend and a very kind man. Davai-Davai, Michael! If there would exist
a best secretary award, I would definitely give it to Marianne Schulze who used her
expertise to make my life much easier. Also, I would like to thank Anton Belov for a
valuable help with trajectory optimization, Sebastian Stellmacher for his contribution
to sequencing approaches analysis, Kelsey Elder for her comments on the thesis. I
thank Anton Ivanov for the fun we had, and for his a very special point of view on life,
which heavily influenced my attitude to many things. Going to pre-PhD time, I would
like to express my gratitude to the people who taught me to express myself – Marina
Morozova, to work – Dmitry Makarov and to think – Valery Gordon. All these people
enriched my life in the past years.

And finally, very special thanks go to my parents Oleg and Svetlana who en-
couraged and supported me throughout all my life. Their influence on me is hard to
overestimate, as well as the one of my partner Vera Mersheeva. Besides, she was always
there when I needed her, she has made 3278 corrections to the thesis. I feel extremely
grateful for the hours of thesis discussions and support. At last, I am also grateful to
the shower at my apartment, as the vast majority of ideas I got there.

Contents

1 Introduction 1
1.1 Contribution . 4
1.2 Publication Note . 4

2 Problem Specification 7
2.1 Formal Definitions . 8

2.1.1 Task and Configuration Spaces 8
2.1.2 Robot Trajectory Definition . 9
2.1.3 Task Definition . 11
2.1.4 Effective Task Relaxation . 11

2.2 Objectives . 13
2.3 Thesis Problem . 15
2.4 Solution Concept . 16

2.4.1 Component1: Relaxed Effective Task Sequencing 18
2.4.2 Component2: Supporting Trajectory Optimization for a Relaxed

Effective Task Sequence . 18
2.4.3 Component3: Robot Trajectory Optimization for a Relaxed Ef-

fective Task . 19
2.5 Assumptions . 20

3 Related Work 21
3.1 Industrial Robot Programming . 22
3.2 Related Planning Problems in Robotics 23
3.3 Problems to Model Task Sequencing 25

3.3.1 Sequencing Primitive Tasks . 25
3.3.2 Sequencing Complex Tasks . 27

3.4 Robotic Task Sequencing Approaches 27
3.4.1 Sequencing Primitive Robotic Tasks 28
3.4.2 Sequencing Complex Tasks . 34

3.5 Robot Trajectory Optimization . 35
3.6 Conclusion . 36

4 Component1: Relaxed Effective Tasks Sequencing 39
4.1 Motivation . 40

xii Contents

4.2 Related Work . 41
4.3 Preliminaries . 42

4.3.1 Involved Sub-Problems . 42
4.3.2 Involved Sub-Algorithms . 43

4.3.2.1 Insertion Heuristic . 43
4.3.2.2 3-Opt Heuristic . 43
4.3.2.3 Rubber-Band Algorithm 44

4.4 Solution Approaches . 45
4.4.1 Constricting Insertion Heuristic 46
4.4.2 Constricting 3-Opt Heuristic . 49

4.5 Conclusion . 51

5 Component2: Entry Points Optimization for a Relaxed Effective Task
Sequence 53
5.1 Motivation . 54
5.2 Related Work . 54
5.3 Solution Approach . 56

5.3.1 Entry Point Container . 56
5.3.2 Problem Decomposition . 58
5.3.3 Optimization Approach . 59

5.3.3.1 Stage 1: Optimization of an Neighborhood 60
5.3.3.2 Stage 2: Optimization of an End-effector Pose 61
5.3.3.3 Stage 3: Optimization of a Robot Configuration 63

5.4 Conclusion . 65

6 Component3: Robot Trajectory Optimization for a Relaxed Effective
Task 67
6.1 Motivation . 68
6.2 Related Work . 68
6.3 Solution Approach . 69

6.3.1 Smoothed RBA . 70
6.3.2 C-space Trajectory Calculation 71

6.4 Conclusion . 73

7 Evaluation 75
7.1 Evaluation of the Component1 Approaches 75

7.1.1 Evaluated Algorithms . 76
7.1.2 Evaluation on Instances with Known Optimum 77
7.1.3 Evaluation on Instances with “Stretched” Ellipses 79
7.1.4 Evaluation on Instances for CETSP 81
7.1.5 Evaluating the Influence of the Precision Parameters 83

7.2 Evaluation of the Component2 Approaches 84
7.3 Evaluation of the Component3 Approach 90

7.3.1 Case Study: C-arm Robot for 3D-angiography 90

Contents xiii

7.3.2 Case Study: Plastic Cover . 92

8 Conclusion 97

9 Appendix A
Evaluation Results of Component3 101

Bibliography 105

1. Introduction

Please do not shoot the pianist.
He is doing his best.

Oscar Wilde

Industrialized countries with high labor costs have to rely on production automa-
tion to keep their competitive advantage. One of the most flexible and powerful automa-
tion technologies available today is industrial robotics. Equipped with the right tool,
standardized industrial robots can perform numerous production tasks. Since acquisi-
tion and programming of an industrial robot are very expensive, the feasibility of using
robots in production facilities depends on the efficiency with which the robot can per-
form its task. The more production steps a robot can perform in a given time interval,
the higher the production rates and, as a result, the faster the robot can compensate for
its initial acquisition and programming costs, and the higher the competitive advantage
it provides to the company. Therefore, robot trajectory optimization is one of the most
important problems in industrial robotics.

Virtually all robotic scenarios consist of two types of robotic movements. The
first category includes movements that are specifically required for a job, e.g., welding
a seam, deburring a sharp edge or cutting a shape. Typically these are the movements
during which tools (e.g., a welding torch) are applied. We call this category effective
movements or effective tasks. Another category – supporting movements or supporting
tasks – are the movements between effective tasks. Supporting movements are not
directly needed for a given job. However, they are necessary to sequence one effective
movement after another. For example, in seam welding, a supporting movement would
be to move the robot from one welding seam to another. An example of a simple
welding application is depicted in Figure 1.1. The two welding seams – (2) and (4) –
are effective movements, whereas (1), (3) and (5) are supporting movements, which are
only necessary to execute the effective movements.

2 1. Introduction

Figure 1.1: Example of the alternating effective and supporting movements

The major characteristics that affect the efficiency of a given robot are how fast
the robot can perform its effective tasks (effective movements), and how long it takes
the robot to move between effective tasks (supporting movements).

Conventional industrial programming can be compared to public tram connec-
tions. The tram infrastructure is created in the existing streets and often consists of
straight and circular segments. Path smoothing depends on the tram specification and
the environment. The path that a robot’s tool has to follow is also constructed from
the pattern pieces, e.g., linear or point-to-point movements. The connection points
between these pieces, e.g., point P2 in Figure 1.2, are smoothed by manually inserting
intermediate nodes, i.e., points P1 and P3 in Figure 1.2. The robot has to strictly follow
the defined geometry of the task similar to a tram that follows its rails.

The means of transportation have made a huge step forward, which is currently
used in entertainment sporting events. The most famous example is Formula 1 racing.
In this case, the time it takes to finish a track is important. Drivers apply known
techniques to make turns as efficiently as possible, e.g., at which point of time and
space to decelerate or accelerate. Unlike trams, a racing car makes full use of the whole
width of the track, see Figure 1.2.

At first sight, many tasks that a robot has to perform, e.g., welding or cutting a
line segment or a closed-contour, are similar to tram rails, as they have strictly defined
geometry. However, that is misleading. Industrial tasks often allow a certain freedom
during execution. For example, the orientation of the knife can have a certain deviation
during cutting. For spot drilling, orientation about the drilling axis is not important.
Due to the possibility of multiple ways of execution, industrial robot effective tasks are
more similar to racing tracks. Thus, we refer to the effective tasks that allow a certain
freedom for execution as relaxed effective tasks. However, this freedom is often ignored
and the robot path is chosen based on the programmer’s intuition [79][19].

3

Industrial Robot

Figure 1.2: Comparison of robot programming with means of transportation

Building a near-optimal trajectory for an industrial robot to perform a relaxed
effective task is a challenging problem. The first reason is that a relaxed effective task
often represents 6D volume that has to be followed by the tool. In addition, for a typical
industrial robot, there are often up to 8 different kinematic solutions to reach a certain
pose of its tool. Furthermore, a robot usually has to perform not just a single effective
task, but rather a set of them. Therefore, one also has to find their sequence and the
entry points of each task. This leads to large search space that is time consuming to
explore.

The task relaxation raises multiple research problems. In this thesis, we answer
the following two main questions:

• Given: a set of relaxed effective tasks. How to find a sequence of entry points for
the tasks such that it has the minimal trajectory cost of the supporting move-
ments?

• Given: a single relaxed effective task. How to find a path through the task for a
robot’s tool such that it has the minimal robot trajectory cost?

Summarizing, the goal of the thesis is to develop algorithms to optimize robot
trajectory by making use of the freedom for task execution. This will increase the
effectiveness of industrial robots and can even enable the use of industrial robots in new

4 1. Introduction

manufacturing processes where the costs of human labor are currently lower than or
equal to those of robots. It would reduce production costs, and thus give a competitive
advantage.

1.1 Contribution

This dissertation presents approaches for optimization of effective and supporting
robot trajectories. The main contributions are the following:

• Tour construction approach “Constricting Insertion Heuristic” for the Traveling
Salesman Problem with Neighborhoods for constructing an initial tour. A tour is
a sequence of effective tasks and their entry positions.

• Tour improvement approach “Constricting 3-Opt” for the Traveling Salesman
Problem with Neighborhoods that takes an initial tour as input and iteratively
improves it.

• Decomposition approach to optimize entry-points of a given relaxed effective task
sequence using robot trajectory costs.

• Approach to optimize robot trajectory for a given effective task based on exploit-
ing the freedom in the robot end-effector path.

1.2 Publication Note

Part of the work presented in this thesis has already been published. The concept
of robot trajectory description that allows multiple ways of execution was published
in [5]. The analysis and categorization of state-of-the-art approaches were presented
in [9]. The ideas of involving extra degrees of freedom available from the tasks were
first presented in [3]. Tour-construction and tour-improvement heuristics presented in
Chapter 4 were published in [6] and [7], respectively. Robot tour adaptation approach
from Chapter 5 first appeared in [4]. The problem of trajectory optimization for the
end-effector path that allows the freedom of execution in Chapter 6 was covered in [8].
The stated publications are listed below:

• 2015:

[9] Robotic Task Sequencing Problem: A Survey. Sergey Alatartsev, Sebas-
tian Stellmacher and Frank Ortmeier. In Journal of Intelligent & Robotic
Systems, Springer, 2015.

1.2. Publication Note 5

• 2014

[4] Improving the Sequence of Robotic Tasks with Freedom of Execution. Sergey
Alatartsev and Frank Ortmeier. In Proceedings of the International Confer-
ence on Intelligent Robots and Systems (IROS), USA, 2014

[8] Robot Trajectory Optimization for the Relaxed End-Effector Path. Sergey
Alatartsev, Anton Belov, Mykhaylo Nykolaychuk and Frank Ortmeier. In
Proceedings of the 11th International Conference on Informatics in Control,
Automation and Robotics (ICINCO), Austria, 2014

• 2013

[6] Constricting Insertion Heuristic for Traveling Salesman Problem with Neigh-
borhoods. Sergey Alatartsev, Marcus Augustine and Frank Ortmeier. In
Proceedings of the 23rd International Conference on Automated Planning
and Scheduling, (ICAPS), Italy, 2013

[7] On Optimizing a Sequence of Robotic Tasks. Sergey Alatartsev, Vera Mer-
sheeva, Marcus Augustine and Frank Ortmeier. In Proceedings of the In-
ternational Conference on Intelligent Robots and Systems (IROS), Japan,
2013

[3] Path planning for industrial robots among multiple under-specified tasks.
Sergey Alatartsev and Frank Ortmeier. In Proceedings of the Magdeburger-
Informatik-Tage 2. Doktorandentagung (MIT), Germany, 2013
Best-Upcoming-PhD-Thesis Award 2013

• 2012

[5] Trajectory Description Conception for Industrial Robots. Sergey Alatartsev,
Matthias Güdemann and Frank Ortmeier. In Proceedings of the 7th German
Conference on Robotics (ROBOTIK), Germany, 2012

2. Problem Specification

I keep six honest serving-men
(They taught me all I knew);
Their names are What and Why and When
And How and Where and Who.

Rudyard Kipling

In this chapter, we provide the background information required for this thesis.
This includes both frequently used terms, e.g., robotic spaces, kinematics and trajectory
definition, as well as proposed formalization of the tasks with freedom. We illustrate
the thesis objectives using the example from the cutting-deburring domain. Then a
solution concept and research problems are defined. As involving many degrees-of-
freedom causes a large search space that is computationally expensive to explore, we
have to set the scope of the thesis. To that end, we present assumptions that make a
solution feasible.

Formal definitions of robotic spaces, kinematics and formalization of task freedom
are presented in Section 2.1. Objectives that are covered in this thesis are discussed in
Section 2.2. The thesis problem is stated in Section 2.3. In Section 2.4, we present a
decomposition concept and possible solution strategies as well as sub-problem formal-
ization. The solution conception works under several assumptions that are discussed in
Section 2.5.

8 2. Problem Specification

2.1 Formal Definitions

2.1.1 Task and Configuration Spaces

An industrial robot consists of a kinematic chain, i.e., a sequence of connected
links. The last link of a kinematic chain is called end-effector. An end-effector can be
a drill, brush, camera, etc. An end-effector is often specified with a point called tool
center point (TCP), see Figure 2.1. For example, the tip of a drill or the focus point
of a camera are TCPs. We refer to the point where the end-effector is attached to the
robot as end of arm (EOA). Further, by referring to end-effector, we will refer to the
TCP.

Θ1

Θ2

Θ3

Θ4 Θ5 Θ6

Z

Y

X

α

γ

β

R

(x0,y0,z0,α,β,γ)

Φ1

Φ2 Φ3

Φ4

Φ5 Φ6

EOA

TCP

Figure 2.1: The T-space point is (x0, y0, z0, α, β, γ). It can be reached with two C-space
points, i.e., robot configurations: (Θ1,Θ2,Θ3,Θ4,Θ5,Θ6) and (Φ1,Φ2,Φ3,Φ4,Φ5,Φ6).
R is the length of tool.

In order to describe a robot pose two spaces are used: T-space for describing the
pose of the robot end-effector and C-space for describing the configuration of the robot.
Sometimes, C-space is also called joint or axis space.

Definition 1. T-space—task space SE(3)—is used to designate the position R3 and
the orientation of an end-effector SO(3), i.e., SE(3) = R3 × SO(3).

Normally, a T-space point is specified in homogeneous coordinates [62]:

M =

[
Rot3×3 Tr3×1

01×3 1

]
.

M is the T-space point that define the end-effector pose, where Rot is a 3× 3 rotation
matrix that stands for the end-effector orientation and Tr is a 3× 1 translation vector
that stands for the end-effector position.

2.1. Formal Definitions 9

Since description of the end-effector orientation with a matrix is not intuitive for
a human, often a shorter representation with Euler angles is used [28]. Euler angles
depict a sequence of rotations about the axes of coordinate system. For example, to
describe any rotation with Euler angles in 3D space, three angles are required, i.e., one
angle denotes rotation about one axis.

The T-space is used for describing the pose of a robot end-effector. In order to
describe the pose of the whole robot, i.e., the value of each angle of robot joints, the
C-space is used1.

Definition 2. C-space—configuration space C—is a set of possible robot configurations
(e.g., joint angles for revolute joints), i.e., C = Rn, where n is the number of the robot
degrees of freedom (DOF).

The relation between the T-space and the C-space is described with two mappings
called Forward and Inverse Kinematics [28].

Definition 3. Forward Kinematics (FK) takes the robot joint angles and calculates the
corresponding end-effector position and orientation, i.e., FK : C → SE(3).

Definition 4. Inverse Kinematics (IK) is a multivalued function that takes the end-
effector position and orientation and calculates the set of possible robot configurations,
i.e., IK : SE(3)→ Y , where Y ⊂ C.

Note that a T-space description is not unique, as often a robot can reach this
T-space point with several configurations. Often, up to 8 inverse kinematics solutions
exist for a standard 6-DOF PUMA-like industrial robot. An example of reaching one
T-space point with two robot configurations is shown in the Figure 2.1.

2.1.2 Robot Trajectory Definition

In order to make a movement, a robot has to follow a certain trajectory. A robot
trajectory is specified with a geometrical path and a motion law by which the path
must be tracked [18]. A general structure of robot trajectory is presented in Figure 2.2.

A path can be specified either for a whole robot, i.e., the robot joints, or for the
robot end-effector. A path for an end-effector is defined as follows:

Definition 5. An end-effector path PathEE(k) is a function that maps a value k ∈ [0, 1]
to a point in T-space, i.e., PathEE : [0, 1]→ SE(3).

By an end-effector path, we imply a path either (i) for a tool center point (TCP)
for the case when a robot is equipped with a tool or (ii) for an end of arm point (EOA)
when no tool is being mounted.

Another way to define a path for a robot to follow is to describe it in the C-space.
We call it a robot joint path or simply a robot path. In contrast to the end-effector
path, mapping is done to the C-space, i.e., robot joints angles. It is defined as follows:

1Standard industrial robots often have 6 degrees of freedom, therefore, C = R6

10 2. Problem Specification

T-space

C-space

PathEE + =

PathR
+ =

Forward

Kinematics

Inverse

Kinematics

MLEE PathEE(MLEE(t))

MLR PathR(MLR(t))

Trajectory

Trajectory

Figure 2.2: Overview of the robot trajectory calculation.

Definition 6. Robot path PathR(k) is a function that maps a value k ∈ [0, 1] to a point
in C-space, i.e., PathR : [0, 1]→ C.

Knowing only a path is not enough to describe a motion. One has to specify a
motion law that connects time and domain of the path. A motion law is defined as
follows:

Definition 7. A motion law is a function that maps a time value from [0, T] to a value
from [0, 1], i.e., ML : [0, T]→ [0, 1], where T is a desired motion duration.

A motion law can be applied to an end-effector path or to a robot joint path,
then we refer to it as MLEE or MLR, respectively. As a rule, retrograde motion is not
needed, therefore, a motion law is often a strictly monotonically increasing function.

After an end-effector path and a motion law are known, the end-effector trajectory
can be obtained as follows:

Definition 8. An end-effector trajectory is a composition of an end-effector path and
a motion law, i.e., TrajEE(t) = PathEE(MLEE(t)), where t ∈ [0, T].

An output of trajectory planning is a robot trajectory, as it uniquely describes
the motion of the robot. A robot trajectory is a tuple of trajectories for every robot
joint. It is defined as follows:

Definition 9. A robot trajectory is a composition of a robot path and a robot motion
law, i.e., TrajR(t) = PathR(MLR(t)), where t ∈ [0, T].

In practice, both end-effector and robot paths are often defined as a set of via-
points and then interpolated in the domain [0, 1] to reach continuity.

2.1. Formal Definitions 11

2.1.3 Task Definition

A robot movement should produce some useful outcome by performing certain
tasks. An effective task is a task where a robot performs domain-related work, e.g.,
welding, drilling, cutting or surface painting. Often we need to perform several effec-
tive tasks, e.g., welding a set of seams rather than a single long seam. This requires
a supporting task, i.e., a movement that a robot has to perform to move from one
effective task to another. In the literature, supporting tasks are sometimes also called
“intertasks” [57].

Effective and supporting tasks have different restrictions. In order to process
a certain effective task, a robot has to follow a predefined end-effector path with its
tool. In contrast, during performing a supporting task, a robot makes a point-to-point
movement or follows any other collision-free path. On the one hand, industrial processes
often have no special requirements for a certain motion law of a path for supporting
tasks. On the other hand, some effective tasks require a particular motion law. For
example, too fast movement of a tool in a milling task might damage the tool or the
object.

The geometry of effective tasks can be simple (e.g., welding a linear seam or
drilling a hole) or complex (e.g., painting a surface or milling an object). The geometry
of a simple task is already a path for a robot to follow. For complex tasks, e.g.,
surface painting, an infinite number of end-effector paths exist. Often, computationally
expensive techniques are required to obtain a low-cost path for an effective task with
complex geometry, e.g., to solve a coverage path planning problem for painting [41].

In this thesis, we assume that an end-effector path for an effective task geometry is
already calculated with a domain-dependent algorithm. Thus, from the robot’s perspec-
tive, an end-effector path defines an effective task, i.e., TaskEF = PathEE. Similarly, a
robot joint path defines a supporting task, i.e., TaskS = PathR.

2.1.4 Effective Task Relaxation

In contrast to supporting tasks, where a selected path is not critical for an ap-
plication process, a distinctive feature of effective tasks is that a robot has to follow a
predefined end-effector path with a predefined motion law. For example, welding a line
with constant velocity produces an even influence on a surface and any deviations from
the line or fluctuating velocity would violate the production process. The end-effector
path and the motion law depend on industrial process requirements. They are typically
provided without considering robot kinematics and, hence, often cause high jerks in the
robot’s joints. However, effective tasks often allow certain spatial freedom of execution
that can be used to find an end-effector path such that it leads to smooth C-space tra-
jectory. Typically this optimization criterion is defined as the cost of the corresponding
robot trajectory. In this thesis, we introduce the notion of a relaxed effective task that
describes such effective tasks where an end-effector path can have a certain deviation.

First, let us define a relaxation function that specifies the neighborhood area
around a certain point in T-space:

12 2. Problem Specification

Definition 10. A relaxation function Relaxation(P) maps a T-space point P to a
T-space subset, i.e., Relaxation : SE(3)→ Y , where Y ⊂ SE(3).

A relaxation function can map to any Y ⊂ SE(3), e.g., to a sphere, a cube, or
any other neighborhood up to 6D.

After defining a relaxation function, one can apply the relaxation to an effective
task. Based on this function, we define a relaxed effective task as follows:

Definition 11. A relaxed effective task TaskRel
EF (k) maps a value k ∈ [0, 1] to a certain

neighborhood of the T-space point TaskEF (k). It is defined as a function composition
TaskRel

EF = Relaxation ◦ TaskEF : [0, 1]→ Y , where Y ⊂ SE(3).

Similar to effective tasks, relaxed effective tasks can be specified with a finite num-
ber of via-volumes. These via-volumes are interpolated to reach continuous geometry.

For a relaxed effective task, there are an infinite number of admissible end-effector
paths, which are equivalent in performing the task. However, such paths are not equiv-
alent in robot kinematics and lead to different robot trajectories with different costs.

Further, we would need to know whether a point or a path belongs to a relaxed
effective task or not. It is derived according to the following two definitions:

Definition 12. We say that a T-space point P belongs to a TaskRel
EF , when ∃k ∈ [0, 1],

such that P ∈ TaskRel
EF (k).

Definition 13. We say that an end-effector path PathEE belongs to a relaxed effective
task TaskRel

EF , when for ∀k ∈ [0, 1] the obtained T-space point PathEE(k) is within the
neighborhood TaskRel

EF (k), i.e., PathEE(k) ∈ TaskRel
EF (k).

We assume that a path that belongs to a relaxed effective task is valid. It means
that the path can handle the relaxed effective task and does not harm the production
process.

There are numerous ways of relaxing an effective task. One possible example is
depicted in Figure 2.3. In the observed case, the neighborhood is defined as a circle
for task points position and a box for an orientation, i.e., ([al, au], [bl, bu], [cl, cu]) in the
coordinate system Xw, Yw, Zw. Figure 2.3 depicts the orientation of a point xnp, ynp, znp.
The dotted blue end-effector path PathEE is valid, as for all k ∈ [0, 1] a T-space point
PathEE(k) of this path is within a neighborhood TaskRel

EF (k).

The approaches proposed in this thesis do not depend on a way of relaxing effective
tasks. However, for simplicity of explanation we specify the orientation neighborhood
as a box ([al, au], [bl, bu], [cl, cu]), where:

• [al, au] represents the lower and upper bounds for the polar angle in spherical
coordinates; therefore, the maximum limit is [0◦, 180◦].

2.2. Objectives 13

k=0.5

k=1

k=0

Task
Rel

EF i

(k)Task
Rel

EF i
The neighborhood , k=1

Zw

YwXw

a
l

a
u

b
l

b
u

c
l

c
u

(xnp,ynp,znp)

Z

Y
X

Figure 2.3: Effective task TaskEF is depicted in red. Relaxed effective task TaskRel
EF

defines the neighborhood depicted in blue. PathEE is one of many possible end-effector
paths; it is depicted with a dotted blue curve. For simplicity, neighborhoods are depicted
only for k=0, 0.5, 1 and a possible relaxation of orientation is depicted for k=1.

• [bl, bu] represents the lower and upper bounds for the azimuthal angles in spherical
coordinates; therefore, the maximum limit is [0◦, 360◦].

• [cl, cu] represents the lower and upper bound for a desired orientation along the
tool axis; therefore, the maximum limits is [0◦, 360◦].

Note that orientation can be expressed not only in the world coordinates X, Y, Z
but also in the coordinates of a task. For this, a rotation matrix Mw should be specified:

Mw =

Xwx Ywx Zwx

Xwy Ywy Zwy

Xwz Ywz Zwz

 .
Mw is a rotation matrix that corresponds to orientation Xw, Yw, Zw of a neigh-

borhood in relation to the world coordinate system X, Y, Z.

2.2 Objectives

A scenario from plastic manufacturing is shown in Figure 2.4. This case study
is inspired by an industrial scenario based on a commercially available product2. It is
easier for the manufacturing process to produce a plastic detail as one piece using a
molding press machine, and then to cut out the holes, instead of producing a complex
piece at once. The job for a robot is to cut a number of holes out of a big plastic board
and deburr the outer border of the detail, i.e., delete the flashes. To do this, the robot
is equipped with a cutting knife.

The left part of Figure 2.4 shows an initial plastic detail. No parts are cut out and
the frame has a rugged shape. Such molding flashes appear due to the manufacturing

2KUKA Roboter application scenario: http://www.kuka-robotics.com/en/solutions/solutions
search/L R148 Deburring of plastic engine covers.htm

http://www.kuka-robotics.com/en/solutions/solutions_search/L_R148_Deburring_of_plastic_engine_covers.htm
http://www.kuka-robotics.com/en/solutions/solutions_search/L_R148_Deburring_of_plastic_engine_covers.htm

14 2. Problem Specification

process. When melted plastic is pressed into a form, it often leaves some pressing
brackets. This results in uneven, rough external contours. The right part of Figure 2.4
shows the workpiece after processing where all cuts have been made.

Task sequence Entry points

positions

Robot configuration Motion law

calculation

A B
C

A' B' C'

1 2 3

1 2 3

Entry points

orientation

0 Time

1

Supporting trajectory calculation

Effective task

path optimization

Effective trajectory calculation

Figure 2.4: Problem overview

The problem is to find trajectories for effective tasks to perform the cuttings and
for supporting tasks to move the robot from one effective task to another. Even this
simple scenario brings multiple sub-problems that have to be solved:

Task sequence: Many industrial tasks do not impose constraints on sequence
of execution, as tasks are independent from each other. For example, in our case
study, there are no requirements on performing cuttings in a certain order; therefore, a
sequence of effective tasks could be optimized.

Entry point position: Often an effective task itself provides some freedom. For
example, a line segment provides two variants of execution: from one end to another
and the other way around. In our scenario, effective tasks provide an infinite number of
possible entry points, as closed-contours can be started from any point. For other types
of tasks, an entry point can be within a 3D area, e.g., for a scenario where a robot has
to take a picture with a camera mounted on its end-effector.

Entry point orientation: The right orientation of a tool is critical for many
effective tasks. In our scenario, an incautiously chosen orientation can lead to damage
of the knife and the plastic detail, e.g., when more pressure would come to the knife’s
edge rather than its blade. In our case, an admissible orientation of effective tasks is

2.3. Thesis Problem 15

specified with neighborhoods of a box-like shape. This is an important degree of freedom
in robotics tasks as it allows a certain deviation, for example, in a plane perpendicular
or parallel to the direction of cutting.

Robot configuration: In most situations, there is no requirement to use cer-
tain solutions of inverse kinematics to perform cutting/drilling of contours/holes. In
general, a standard industrial robot can reach every 6D position with eight different
configurations (i.e., “elbow-up vs. elbow-down”, “in-front vs. overhead” and “forehand
vs. backhand”). However, a choice of configurations for each effective task significantly
affects the cost of supporting movements.

Motion law calculation: Motion law is applied for calculating trajectories of
both supporting and effective tasks. These task types require different approaches
for calculating a motion law. For supporting tasks, a motion law shape is domain-
independent and a motion law that leads to a synchronous trapezoid velocity profile
can be used. Effective tasks are sensitive to the end-effector path; therefore, a motion
law of an end-effector path should be optimized with respect to the end-effector path
geometry.

Effective task path optimization: Some of effective tasks require a strict
definition of motion law. These are mainly the tasks that interact with a working
object, e.g., welding or deburring, as a movement with a high velocity might not provide
a desired effect on the object or damage the tool or the object. Such strict motion law
dictates the performing time for an effective task. Nevertheless, by making use of the
effective task path freedom, it is possible to reduce other costs, for example trajectory
jerk, and make the movement smoother.

2.3 Thesis Problem

Summarizing the objectives stated above, the robot trajectory optimization prob-
lem considered in this thesis is formulated as follows:

Find minimal-time supporting C-space trajectories and minimal-jerk ef-
fective C-space trajectories by considering the spatial relaxation of effective
tasks and multiple figures of robot kinematics.

A trajectory for supporting movements can be calculated in two steps: (1) com-
puting a path by optimizing the task sequence, position and orientation of the entry
points, and the corresponding robot kinematics solution, and (2) applying a motion law
to the obtained path. A trajectory of an effective task can also be constructed in two
steps: (1) find an end-effector path that belongs to the task and starts from the given
position and orientation of the entry point as well as the predefined robot kinematics
solution, (2) apply a motion law to the obtained path.

16 2. Problem Specification

2.4 Solution Concept

Every sub-problem stated in Section 2.2, is computationally expensive to solve,
even apart from other sub-problems. The overall problem, i.e., robot trajectory opti-
mization problem, is even more complicated, as the sub-problems have to be considered
in synergy because they influence each other. For example, choice of a task sequence
depends on chosen entry points and vice-versa. Choosing an inverse kinematics solution
for a certain entry point position and orientation depends on the kinematics solutions
chosen for other tasks. A sequence of entry points influences a trajectory for the effec-
tive tasks. All of this adds up to a large search space that is computationally expensive
to explore. We suggest decomposing the problem into simpler components.

Decomposition

We propose a solution concept that decomposes the problem into two stages: first,
optimize supporting trajectories and then effective trajectories, see Figure 2.5.

The supporting task trajectory optimization consists of five sub-problems that
have to be resolved: find a task sequence, a position of each entry point, an orientation
of each entry point, robot configurations and a motion law. In this thesis, we do
not explicitly aim at optimizing a motion law, but rather apply a law that leads to a
trapezoidal velocity profile for the supporting trajectory and an arbitrarily shaped law
for effective tasks. The list of sub-problems is not complete, as there are other problems,
e.g., collision-free path calculation, path-smoothing. In this thesis, we concentrate only
on the described sub-problems.

We suggest decomposing this problem into two separate components. Component1
searches for a sequence and Cartesian entry points. It uses Euclidean distance as a
metric. Component2 takes the output from the Component1, i.e., a sequence of relaxed
tasks with entry points, and minimizes a robot trajectory cost metric by optimizing
a position, an orientation and a robot configuration for each entry point. A robot
trajectory cost metric can be time or distance traveled in C-space. A given motion
law is then applied to the calculated path in order to obtain a C-space trajectory
between the relaxed tasks. The output of Component2 is a C-space robot trajectory.
This decomposition of the supporting task trajectory optimization into Component1 and
Component2 allows us to compute a C-space trajectory more efficiently by sacrificing
some search space.

The effective task optimization is realized in Component3. Component3 aims at
optimizing a C-space trajectory cost for a given relaxed effective task with a C-space
entry point. At this stage, motion law can be given or optimized. In this thesis, we are
not focusing on optimizing of motion law, but rather assume it to be constant during
optimization. An optimization goal can be trajectory jerk or time. An output is a
C-space robot trajectory.

2.4. Solution Concept 17

Task sequence Entry points

positions

A B
C

A' B' C'

1 2 3

1 2 3

Entry points

positions

A B
C

A' B' C'

Entry points

orientation

Robot configuration Motion law

calculation

0 Time

1

Component1

Input: set of relaxed effective tasks

Output: sequence of relaxed effective tasks

 with Cartesian entry points

Optimize: Euclidean distance

Input: sequence of relaxed effective tasks

 with Cartesian entry points

Output: C-space entry points tour

Optimize: length / time

 of C-space trajectory

Motion law

calculation

0 Time

1Input: relaxed task with a C-space enry point

 and optionally exit point

Output: C-space robot trajectory

Optimize: trajectory jerk

Supporting trajectory optimization

Effective trajectory optimization

Effective task

path optimization

Component2

Component3

+or

Figure 2.5: Solution concept overview

Possible Solution Strategies

We envision several strategies that can be used to obtain a solution for the overall
problem by combining solutions for the sub-problem components. In this thesis, we
evaluate the following two strategies:

• Component1 → Component2 → Component3: all three stages are applied sequen-
tially, one after another. At first, a sequence of effective tasks is found, then a
supporting trajectory is calculated and finally, effective tasks are optimized.

• (Component1 + Component2) → Component3: a sequence search algorithm in
Component1 calls an optimization algorithm at Component2 as a cost function
instead of Euclidean distance. Component2 returns a value of a robot-oriented
metric: a time or a C-space distance. After a supporting trajectory is found,
effective tasks are optimized.

18 2. Problem Specification

Note that other variants of combining the components are also possible. For
example, one can first perform the effective trajectory optimization (Component3) and
then the supporting trajectory planning (Component1 and Component2). However, since
the result of Component3 optimization is a C-space robot trajectory, which uniquely
describes an effective task, applying Component3 first provides almost no freedom for
optimization of supporting tasks — only a sequence of effective tasks can be optimized.
In that case, a sequence can be found with any known Traveling Salesman Problem
approach. In this thesis, we are focusing on utilizing the effective task freedom and,
therefore, we do not consider a strategy where effective tasks are optimized first.

The mentioned components can also be used separately or in combination with
other approaches. For example, it is possible to apply another task sequencing algorithm
from [34] [85] [100], and then adapt a solution to a robot using Component2. It is possible
to optimize every effective task trajectory with Component3 and then find a sequence
with methods proposed in [102][16].

Below, we provide a mathematical definition of the problems solved in the afore-
mentioned components.

2.4.1 Component1: Relaxed Effective Task Sequencing

In this component, we optimize a sequence of relaxed effective tasks and entry
points positions for each task. Optimizing only a sequence will ignore the shape of the
tasks in the sequence. Use of a robot space metric is computationally expensive due to
multiple inverse kinematics calls. It would also lead to a bigger search space. Therefore,
in this package, information about a robot is omitted and Euclidean distance is used as
a cost metric. The problem is formulated as follows:

Given a set of n relaxed effective tasks Job = {TaskRel
EF1

, . . . , TaskRel
EFn},

find a minimal-cost cyclic tour T = (p1, . . . , pn+1) such that it visits TaskRel
EFi

in point pi, i.e., ∃k ∈ [0, 1] so that pi ∈ TaskRel
EFi(k).

2.4.2 Component2: Supporting Trajectory Optimization for a
Relaxed Effective Task Sequence

We assume that a given task sequence is already optimized and, therefore, the
order of the tasks in the sequence is not changed. The goal of Component2 is to find
a tuple of robot configurations such that they belong to the entry areas of the relaxed
effective tasks and have minimal-cost supporting trajectories between them. The cost
is based on C-space, e.g., distance traveled or time and, thus, this component is robot-
dependent. The problem is formulated as follows:

Given a sequence of n relaxed effective tasks Job = (TaskRel
EF1, . . . , Task

Rel
EFn),

find a minimal-cost cyclic C-space tour CT = (p1, . . . , pn+1) such that it vis-
its TaskRel

EFi in a point FK(pi), i.e., ∃k ∈ [0, 1] so that FK(pi) ∈ TaskRel
EFi(k).

2.4. Solution Concept 19

Relaxed Effective Tasks Entry volumes

drilling,

taking a picture,

spot welding, etc.

palletizing, cutting,

deburring, welding

a line or a curve, etc.

cutting, deburring,

welding a closed

curve, etc.

Type 2:

Type 1:

Type 3:

∀k∈[1,0]

k=1

k=0

k=0

k=1

Cost(A,B) = 0

A B

Figure 2.6: Task types and entrance volumes.

2.4.3 Component3: Robot Trajectory Optimization for a Re-
laxed Effective Task

After supporting movements are found, the trajectory of every effective task is
optimized. This step is robot-dependent, as it involves a cost from a robot C-space. An
optimization cost can be: energy, jerk or any domain-specific parameter. The problem
is formulated as follows:

Given a relaxed effective task TaskRel
EF , an end-effector motion law MLEE

and a trajectory duration T , find such a path PathEE belonging to the
TaskRel

EF that it leads to a minimal-cost robot C-space trajectory TrajR(t),
where trajectory IK(PathEE(MLEE(t)))→ TrajR(t), with t ∈ [0, T].

During optimization, it is important to verify that a C-space trajectory is feasi-
ble, i.e., maximal joint velocities, acceleration bounds and angular joint limits are not
violated.

20 2. Problem Specification

2.5 Assumptions

The proposed solution conception works under the assumption that the freedom
of task execution is defined depending on industrial process limitations and, therefore,
does not harm the quality of the performed work.

In the following, we assume that an effective task has an entry volume that is
the same as an exit volume. It is valid, for example, for closed-contour welding or
camera taking pictures scenarios (see Type 1 and 3 in Figure 2.6). However, in some
domains or applications, an entry volume can differ from an exit volume. For example,
in a palletizing scenario, an entry volume is a volume where a robot grasps an object,
whereas an exit volume is a goal location where it releases the object. Another example
is a scenario of welding an open-end curve which has two ways of execution: starting
from one end or another. Although it might seem that entry volumes differ from exit
volumes, a task from such a scenario can be decomposed into two separate tasks with
a cost for traveling between each other equal to zero. That would reduce the task to a
case with one entry-exit volume for each end. The search for entry points is then done
inside these entry volumes. It should be mentioned, that Component3 makes sense to
perform only for Type 2 and Type 3 as there is no effective movement in Type 1.

We assume that the working environment is not cluttered. Thus, explicit collision-
free planning can be omitted during optimization and applied afterwards.

In this thesis, the motion law and trajectory duration time for Component3 is given
and only the via-points are optimized. However, moving via-points leads to shorter or
longer final path, therefore, with a constant motion law the final velocity would be
lower or higher, respectively. We assume that this change of velocity is insignificant for
production process.

Note that we do not intend to solve tasks like painting, as this requires complex
path planning and optimization to meet an industrial process. We already assume that
a certain curve for performing a task is calculated with known approaches, and we
provide a certain relaxation to the task and use it to decrease the cost.

3. Related Work

Always listen to experts. They’ll tell
you what can’t be done and why.
Then do it.

Robert A. Heinlein

The problem solved in this thesis is closely related to (i) industrial robotics with
its degrees of freedom and limitations, (ii) tour-searching combinatorial problems and
(iii) trajectory optimization approaches. In this chapter, work related to this thesis is
presented.

This chapter is organized as follows. State-of-the-art approaches for industrial
robot programming and task sequencing features are presented in Section 3.1. In Sec-
tion 3.2, the difference between this thesis problem and related planning problems in
robotics are discussed. Task sequencing is usually modeled with tour-searching com-
binatorial problems that are presented in Section 3.3. Simple application of existing
solvers for tour-searching problems is not enough, as robot features are ignored. The
research approaches which adapt these solvers to robotics are discussed in Section 3.4.
Robot trajectory optimization is presented in Section 3.5. We conclude and summarize
the differences of this thesis to the discussed existing problems in Section 3.6.

22 3. Related Work

3.1 Industrial Robot Programming

A common workflow of industrial robots is to perform a sequence of tasks. Per-
forming a task sequence consists of two alternating stages: effective and supporting
movements/tasks. An effective movement is a stage where a task is performed, e.g.,
moving along a welding seam with a switched-on welding torch. A way how an effective
movement is executed highly depends on production process requirements. State-of-
the-art methods of how to program movements of a robot can be split into offline and
online approaches [19].

In online programming, a robot is directly taught a movement, which it has to
replicate later in production mode, e.g., with the lead-through method [89]. Accord-
ingly, a complete movement must be taught, e.g., movements along welding seams as
well as movements between seams. This is a time-consuming process, which requires a
lot of intuition and experience, if high-quality movements are desired. The quality of
a path depends only on the experience of a programmer and almost no optimization
approaches are involved [19, 79].

An offline approach is typically based on a simulation. A trajectory that has to
be executed by a real robot later in production is calculated or taught in a simulated
environment. With modern offline programming approaches, nowadays trajectories are
automatically generated from CAD data. Supporting movements often do not have
constraints on the execution except obstacle avoidance and are programmed manually
or calculated with collision-free path planners [60]. These approaches has some major
benefits, e.g., a possibility of testing a calculated path for potential collisions before real
execution – and, therefore, preventing an expensive hardware from being damaged.

Regardless of what kind of approach is used—offline or online—programming itself
is typically done in proprietary programming languages like Epson Robotics’ SPEL+,
ABB’s Rapid, Stäubli’s VAL3 or KUKA’s KRL [89]. Despite the fact that each of the
mentioned languages enables us to describe a very broad set of robot activities, they
have obvious disadvantages like a time consuming programming in the imperative style.
A movement is described with commands like: “move to point A linearly” or “make a
point-to-point movement to point B”. A complex task can include a large number of
via-points and, thus, can be challenging to describe. Commercial systems try to ease the
programming process by creating interfaces which eliminate the need of programmers
to write the code for every point directly. They provide an opportunity to choose a
needed action from a list and generate a required code. However, these systems are
application-specific [19]. The quality and optimality of the obtained movements highly
depends on the programmer’s skills.

Usually, industrial robots have to repeat the same task sequence multiple times
to produce a large batch of similar products. Therefore, it is important to minimize an
execution cost, as it greatly influences the production efficiency. A task sequence opti-
mization is either fully omitted in offline simulation environments (e.g., RobotWorks1)

1Compucraft Ltd, RobotWorks www.compucraftltd.com

3.2. Related Planning Problems in Robotics 23

or presented with limited functionality (e.g., customization for DELMIA2 adapted for
drilling applications3). The customization for DELMIA allows automatic sequencing of
drilling tasks but applies only a simple greedy algorithm, i.e., the next drilling task to
be added to a tour is the nearest task. This trivial algorithm does not provide good
results, as it often converges to a local minimum. In addition, tasks are specified with
one entry robot configuration.

3.2 Related Planning Problems in Robotics

In this section, we briefly outline related planning problems in the field of robotics.
We highlight the differences between them and the problem considered in the thesis.
The work presented in this thesis is not competing with related problems but it rather
can be easily integrated into existing architectures by extending the planning with an
additional degree of freedom.

Production Scheduling

The problem discussed in this thesis differs from the scheduling cell optimization
problem that is often mentioned in the economics domain, as they have different goals.
The scheduling cell optimization problem addresses optimization of a production facility,
i.e., how many robots should be used, how many parts comprise a detail to produce
and how to spread work evenly between robots in order to increase the overall cell
throughput. Due to the high computational complexity of the problem, collision factors
and kinematics are ignored. As a consequence, the goal is to compute such a solution
that minimizes the total Cartesian distance instead of a cost based on robot’s joints.
This kind of research is mostly concentrated on how to organize production processes,
instead of focusing on how to construct optimal movements for a single machine or a
robot [30]. This thesis concentrates on the motion of a robot, without involving the
information about a production process.

Multi-Robot Task Planning

In scenarios with multiple robots, tasks have to be distributed among the robots.
Most common methods are to divide tasks into clusters, one for each robot, and solve a
single-robot problem for each cluster, e.g., by a graph-based approach [68] or by using
Stochastic Clustering Auction technique [104]. More details on multi-robot planning
can be found in a survey by Portugal and Rocha [82]. In the remainder of this thesis,
we assume that clustering of tasks for multiple robots has been already performed. We
present an optimization approach for a single robot with a given set of tasks.

2Dassault Systemes http://www.3ds.com
3DELMIA V5 Robotic Drilling Application http://www.delfoi.com/web/products/delfoi products

/en GB/drilling-app/

24 3. Related Work

Task-Level Planning

In task-level planning, robot actions are specified by interactions between the
robot and objects. The goal of the task-level planning is to find a sequence of actions
which a robot has to perform in order to modify an environment from an initial state
to a goal state [68]. For example, a goal can be to construct a sequence of actions
in order to put an object from a box on a table. A solution for this example will
consist of the following actions: 1) “open the box”, 2) “grasp the object”, 3) “move
the object onto the table”, 4) “release the object”. Every single action is then planned
with domain-dependent planner. The data representation is often defined as an object-
oriented model [25][26]. This model includes relations between objects, categories and
physical laws. In this thesis, tasks have no logic or physic-based relations. Therefore,
there are no constraints on the order of tasks.

Online Control-Based Planning

A environment where a task sequence is executed can dynamically change. A
sensor will detect these changes and a control-based approach should quickly replan
execution of the tasks. One way to implement it is to organize a task sequence as a
stack and try to maintain its consistency online [69] For example, due to environment
or robot restrictions, a controller removes or adds a new task to a stack. In this thesis,
offline approaches for the known environment are presented. However, during trajectory
execution, online planners can be used for a quick replanning.

Manipulation Planning

Another well-known related planning problem in robotics is a manipulation plan-
ning problem. It occurs when a robot has to move an object to a specific location in
an environment. The goal of the manipulation planning is to find a sequence of actions
the robot has to perform in order to accomplish this task [62]. Further details on the
manipulation planning can be found in the following surveys [53] and [91]. In this the-
sis, we assume that the manipulation planning problem has already been solved and its
solution is a description of an effective task. As soon as a path for an effective task is
constructed, it can be optimized with the approach proposed in Chapter 6.

Collision-Free Path Planning

A significant amount of research has been focused on collision-free planning. The
goal of the collision-free planning is to calculate an optimal path between two robot
configurations. Optimality is expressed with multiple criteria that has to be minimized:
distance traveled, time and energy. Normally, the planning is done in C-space and a
path is obtained directly for the whole robot. For this problem, there are many heuris-
tics, graph-based algorithms and, in particular, tree-based approaches: Probabilistic
Roadmap (PRM) [55], Rapidly-growing Random Trees (RRT) [60] or Bidirectional
RRT (BiRRT), Artificial potential fields [70] or fields with application of annealing [32].

3.3. Problems to Model Task Sequencing 25

Sample-based techniques, e.g., RRT/BiRRT or PRM, work well with high-dimensional
spaces. Artificial potential fields are more popular for mobile applications. After a
collision-free path is obtained, it is smoothed and a predefined velocity profile is ap-
plied in order to obtain a robot trajectory [62]. For more details and a comparison
of collision-free planners see [39]. The approaches stated above allow us to calculate
collision-free paths between two robot configurations automatically. However, they do
not consider the optimization of a task sequence. Collision-free path planning is used
for calculation of supporting task movements. In this thesis, we consider that an en-
vironment is not cluttered and, therefore, the collision-free planning can be applied
afterwards.

3.3 Problems to Model Task Sequencing

Tour-searching combinatorial problems build a foundation for task sequencing in
robotics. In this section, related combinatorial problems are described. The main
parameters of the problems are illustrated in Figure 3.1.

Tasks can be represented as points or finite sets of points. We refer to this type
of tasks as primitive tasks. Tasks can also be modeled as areas, in that case we refer to
them as complex tasks. For primitive tasks, an output can be a sequence of the tasks or
a path going through the tasks. Among other information, a path includes information
about the order of the tasks. For complex tasks, knowledge about a sequence is not
enough, as it is also required to know from which entry point each task has to be started.
Therefore, a solution for the task sequencing problem with complex tasks is either a
sequence of entry points or a path which includes information about the entry points.

3.3.1 Sequencing Primitive Tasks

The most well known problem of searching for an optimal sequence is the Traveling
Salesman Problem (TSP) [10]. The goal of the TSP is to find a minimal-cost cyclic
tour through a set of points such that every point is visited once. It is an NP-hard
combinatorial optimization problem and has been well-known in industrial robotics for
many years. The cost between two points in TSP is the same for both directions.
If the distance between two points depends on the direction of traveling, then such
problem is called Asymmetric TSP (ATSP) [45]. An important extension of the ATSP
is inclusion of constraints on order, when a point “A” has to be visited before “B” in
a tour. This problem is referred to as Sequential Ordering Problem (SOP) [75]. A
Shortest Sequence Problem (SSP) is similar to the TSP, but with a difference that a
salesman does not have to return to a starting point [98]. If points from the SSP are
substituted with sets of points, then this problem is called SSP++. The goal of the
SSP++ is to find a minimal-cost tour that contains a point from every set of points
with no need to return to the starting point. A generalization similar to the SSP++
exist for the TSP. This problem is called Generalized TSP (GTSP) [94]. The goal of
the GTSP is to find a minimal-cost cyclic tour that contains a point from every set.
The GTSP is also known as TSP++, set TSP or One-of-a-Set TSP. A Multi-Goal Path

26 3. Related Work

TSP

Traveling Salesman

Problem

ATSP

cost(j, i)

cost(i, j)

Asymmetric TSP

SOP

"A before B"

A

B

cost(j, i)

cost(i, j)

Sequential Ordering

 Problem

SSP

Shortest Sequence

 Problem

TPP

1

2

3

4

5

Touring-a-sequence-of-Polygons

Problem

CETSP

Close-Enough TSP

TSPN

TSP with Neighborhoods

MTPGR

MTP for Goal Regions

GTSPN

Generalized TSPN

SSP++

Shortest Sequence

Problem++

GTSP

Generalized TSP

MTP

Multi-Goal Path

Planning Problem

Cluster Obstacle

Neighborhood to visit Tour / Path Goal / Entry point

Input: complex tasks

Input: primitive tasks

Figure 3.1: Problems to model task sequencing.

3.4. Robotic Task Sequencing Approaches 27

Planning Problem (MTP), a variant of the GTSP, was introduced by Wurll et al. [98]
especially for robotics. Every set here is a set of the inverse kinematics solutions for
a T-space goal point. The objective of the MTP is to calculate a minimal-cost cyclic
collision-free path that visits one point from each set.

3.3.2 Sequencing Complex Tasks

In case if tasks are not points but polygons and their sequence is given, then this
problem is known as a Touring-a-sequence-of-Polygons Problem (TPP) [33]. The goal
of the TPP is to find a minimal-cost cyclic tour that visits a predefined sequence of
regions. If points should be visited within a certain radius, then this TSP extension
is known as Close-Enough TSP (CETSP) [71]. In this problem, every point in 2D
space is represented as a disk. A more general problem is the TSP with Neighborhoods
(TSPN) [11]. The goal of the TSPN is to find a minimal-cost cyclic tour through a
set of regions (neighborhoods) such that every region is visited once. If neighborhoods
are clustered, then this problem is called Generalized Traveling Salesman Problem with
Neighborhoods (GTSPN) [96]. The goal of the GTSPN is to visit at least one neighbor-
hood from each cluster. In case if obstacles are integrated into the TSPN and areas are
convex polygons, then this problem is referred to as MTP for Goal Regions (MTPGR)
[38]. This problem is the most general and computationally difficult to be solved among
the aforementioned problems.

3.4 Robotic Task Sequencing Approaches
In this section, we discuss state-of-the-art approaches for sequencing of both prim-

itive and complex tasks in robotics. Researchers referred to this problem differently.
In general, there are two common names: task sequencing/scheduling [7, 57, 59] and
multi-goal path planning [38, 97]. Multi-goal planning considers obstacles in the en-
vironment, therefore, a collision-free path is the output. Task sequencing/scheduling
may consider obstacles [102] or may not [59, 103], therefore, the output could be either
a sequence or a path. In the following, we refer to the issue of optimizing robot site
in presence of multiple goals/tasks as the task sequencing problem. This problem is
relevant to both service and industrial robotics. However, it has greater impact for
industrial robotics, as in production environments the same tasks have to be repeated
multiple time. The summary of approaches for task sequencing is presented in Table 3.1.
The overall optimization process can involve large number of factors that influence the
sequence. Further, these factors are described in detail.

Multiple Inverse Kinematics Solutions

Often the articulated robot could reach a T-space point (e.g., drilling point) with
several C-space points (i.e., several robot configurations). Although this greatly in-
creases the search space and makes the sequencing problem more difficult to solve, it
brings a large potential for optimization. The freedom of choosing a robot configura-
tion is used to avoid collisions and reduce the duration of the movement. The column
labeled “Multiple IK” in Table 3.1 depicts the presence of this feature in the considered
approaches.

28 3. Related Work

Task Specification and Entry Points

Robot tasks vary by their complexity. Often they are modeled in a simple way as
T-space or C-space points. At a first glance, a simple task such as a hole drilling could be
represented with the appropriate robot configuration, i.e., C-space point. However, this
definition is too explicit, as the task could be reached with multiple configurations. In
that case a T-space point might be a sufficient representation. Nevertheless, the rotation
along the drilling axis is not important for the manufacturing process, thus it could be
also used for optimization, as it greatly influences the robot motion behavior. Therefore,
even simple robotics tasks usually bring multiple possibilities for optimization. Thus,
there is also a group of approaches that consider the task geometry and represent them
as 2D-3D areas, closed-contours, etc. In case if a task is complex, it is then required
to find the entry point. The columns labeled “Entry Point Optimization” and “Task
Specification” in Table 3.1 depicts what type of specification is used and either entry
points is required to be found.

Objective

The optimization objective in robotic task sequencing can be minimization of the
time, length of the Cartesian path of the end-effector or the C-space path as well as
specific industrial objectives. The motion time in the PTP movement is dictated by the
slowest joint velocity and acceleration. In the approaches, where the kinematics is not
considered, often the Cartesian path length has to be minimized. The objective could
be also dictated by the specificity of the manufacturing process, e.g., minimization of
the material distortion caused by welding [100] or minimization of the laser path length
[59].

Problem Models

When taking several features into account the researchers might obtain a too
complicated problem that is difficult or impossible to solve within a feasible amount of
time even using the heuristic approaches. Therefore, often complicated problems are
reduced to simpler problem models. That brings errors but makes the optimization
feasible. For example, when solving MTPGR, first TSPN can be solved and then
collision-free paths can be calculated [59]. When solving TSPN, at first the sequence
could be found (i.e., TSP) and after that the position of the points (i.e., TPP) [71].
Therefore, the actual problem obtained by combining several features is often different
to the sequencing problem that is solved at the end. See columns labeled “Actual
Problem” and “Solved as” in Table 3.1 respectively.

3.4.1 Sequencing Primitive Robotic Tasks

One of the first research works that discovered an application of TSP-like problems
in industrial robotics for point-to-point movements was done by Dubowsky et al. [34].
They modeled the problem of point-to-point movement as an ATSP instead of TSP,

3.4. Robotic Task Sequencing Approaches 29

Table 3.1: Overview of related state-of-the-art approaches. The“T-point”and“C-point”
stand for points in T-space and C-space, respectively. “Cart. path” and “C-path” is the
total distance of a path in Cartesian space and C-space, respectively.

In
p

u
t

A
p
p

ro
ac

h

E
n
tr

y
P

o
in

t
O

p
ti

m
iz

at
io

n

M
u

lt
ip

le
IK

Task
specification

Objective
Actual

problem
Solved

as

S
im

p
le

ta
sk

s

[34] − − T-point cycle time TSP, SOP ATSP, SOP
[1] − +a T-point cycle time GTSP TSP
[2] − +a T-point cycle time GTSP TSP
[35] − + T-point cycle time TSP TSP
[81] − + T-point cycle time MTP TSP
[98] − + T-point C-path MTP GTSP, SSP++
[93] − − C-point C-path MTP TSP
[97] − + T-point C-path MTP GTSP, SSP++
[86] − − C-point cycle time MTP TSP
[103] − + T-point cycle time GTSP TSP
[87] − + T-point cycle time MTP GTSP
[85] − − T-point Cart. path TSP TSP
[66] − + T-point C-path GTSP TSP
[46] − + T-point cycle time MTP TSP
[100] − − T-point complexb TSP TSP
[22] − + T-point cycle time MTP severalc

[16] − + T-point cycle time GTSP TSP
[99] − + T-point cycle time MTP TSP
[102] − + T-point cycle time MTP TSP
[52] − + T-point complexd MTP TSP
[61] − + T-point cycle time MTP TSP
[57] − + T-point complexe GTSP GTSP

C
om

p
le

x
ta

sk
s

[43] + − 2D/3D areas Cart. path TSPN TSPN
[38] + − Polygons Cart. path MTPGR MTPGR
[47] + + T-point+2Df cycle time MTPGR TSP
[44] + − 7D curves cycle time MTPGR TSPN
[37] + −g 3D volumes complexh MTPGR TSP
[59] + −g 3D volumes complexh TSPN TSP
[96] + + Rn areas Cart. path GTSPN GTSPN

THESIS + + Rn areas cycle time TSPN TSP + TPP

atwo IK solutions are considered
bcycle time and welding distortion
ca fixed, an unfixed(i.e., TSP) or a mixed sequence (i.e., SOP)
dcycle time and cost of a candidate manipulator
ecycle time and painting quality metric
fcertain freedom along Z axis and rotation around Z axis
gapplied afterwards
hLexicographical order of three criteria: minimal cycle time / minimal path length (scanner head)

/ minimal path length (laser end point)

30 3. Related Work

as in robotics, a cost between two points depends on the direction of a movement due
to gravity and kinematics. The general idea of the proposed method is to manipulate
weights in a cost matrix in order to satisfy desired precedence constraints. Scenarios
with no constraints or with partial constraints are also considered. Application of the
precedence constraints was motivated by an industrial scenario where at first a robot
has to pick up a detail from a conveyor and after that drill it. Cases where a robot
has to change its tool during the sequence execution were integrated into the planning
process. The branch-and-bound technique [64] was applied to obtain the exact ATSP
solution. The method proposed by Dubowsky et al. is independent from a particular
ATSP solving algorithm. The main limitation is that only a single inverse kinematics
solutions is taken into account. Therefore, an obtained sequence is far from being
optimal in real-life applications.

Abdel-Malek et al. [1] improved a manufacturing cell, where a TSP problem has
to be solved for a 3-DOF robot, while considering multiple solutions of the inverse
kinematics. The location of a robot’s base was optimized so that the cycle time is
minimized. For that, a grid search scheme was applied. It limits the problem to X
and Y coordinates, which means that the robot’s location cannot move vertically in a
cell. Every cell of the grid is evaluated with regard to cycle time as if the robot was
placed there. The position with the shortest cycle time is considered to be the optimal
location for the robot’s base in the given grid. However, there is a trade-off between
an accuracy and computation time when choosing the granularity of the grid. Later
Abdel-Malek et al. [2] extended the approach with support of several types of robots:
cartesian, cylindrical, spherical and articulated.

Edan et al. [35] proposed an approach for a robot task sequencing. It was moti-
vated by the fruit picking scenario. The main idea of the approach is straightforward:
calculate a cost matrix and then apply the Nearest Neighbor algorithm to solve the
TSP. The goal of the approach is to minimize the cycle time while considering both
robot kinematics and dynamics. It was suggested that the approach can also be applied
for a task-based robot choice. Since the algorithm requires a complete cost matrix, it
makes integration of collision-free planning unfeasible for real-life scenarios, due to the
need of extremely large computational time.

Zacharia et al. [103] presented a method based on the Genetic Algorithm (GA) and
involved multiple inverse kinematics solutions in the optimization process. The method
is capable of finding a task sequence for a 6-DOF robot in a feasible time. In order to
take multiple inverse kinematics solutions into account, an innovative encoding for the
GA was introduced. The GA chromosome consists of two parts. The first part encodes
a sequence and the second part encodes robot configurations for the corresponding
sequence.

Later Baizid et al. [16] extended the approach by Zacharia et al. [103] with a
robot base layout optimization. It was done by adding a third component into the
chromosome that denotes the position of a base. Although the heuristic approaches
applied in [103] [16] allow an efficient search space exploration, it does not guarantee to

3.4. Robotic Task Sequencing Approaches 31

find an optimal solution. Such iterative search heuristics can be stopped after exceeding
the maximal number of iterations. It does not reflect how far is the obtained solution
from optimum.

Reinhart et al. [85] proposed an algorithm for solving the sequencing problem
for open-end curves in remote-laser-welding applications. At first, every curve is rep-
resented with one point and a random tour through such points is constructed. Then
random a swap of points in the tour is performed to improve the tour. Later the di-
rections along the curves are randomly chosen. The algorithm randomly changes the
directions to obtain a better tour. Although, a certain improvement of the initial so-
lution can be obtained, random swaps efficiency should drop down with computation
time.

Loredo-Flores et al. [66] developed a GUI that allows users to manually create
a robot’s path. Later, the constructed sequence is optimized by GA and Simulated
Annealing (SA) approaches. The output is a sequence of robot configurations with the
objective to minimize the robot joint displacement, i.e., C-space distance.

Yang et al. [100] considered the task sequencing problem for welding applications
with an objective to minimize the time and the distortion of a welding process. The
general idea is to split tasks into two categories by their influence on the product quality,
i.e., welding deformation. A sequence of tasks from the category with minimal influence
is optimized by an Elastic Net Method (ENM) [81] so that the cycle time is minimized.
The category with high influence on deformation is optimized with a GA to minimize
the product distortion. The main idea of the ENM is to apply two forces on the net:
one is trying to keep the points closer to each other and another force attracts them
to the goal positions. When two optimized sequences are obtained, they are merged
with the nearest neighbor criterion. The proposed approach was evaluated in a 2D
environment, as the calculation of the distortion in 3D is a much more complicated
problem. However, the general ideas are domain-independent and, therefore, can be
reused in other domains.

Kolakowska et al. [57] motivated the robot task sequencing with a painting sce-
nario. The authors proposed an approach that aims at solving a task scheduling problem
and is completely independent from the task and motion planning stages. The main
contribution of the paper is the mathematical constraint model that can be further
used in any constraint solver. The proposed approach is efficient for scenarios with up
to 10 goals. The downside of applying an exact solver is the large computational time
for larger scenarios. Due to the large search space, the solver was not able to finish
calculation of solution for some scenarios within 40 hours.

Wurll et al. [98] introduced Multi-Goal Path Planning (MTP). A cost matrix for
the MTP is almost impossible to pre-calculate because distances should be obtained by
taking obstacles into account and collision-free planners are computationally expensive
algorithms. Therefore, the costs are unknown and have to be obtained during solving.
The solution process was split into three stages: controlling, path planning and shortest
sequence planning. Controlling is a stage where a decision is made, which pair of start

32 3. Related Work

and goal configurations should be sent to the path planning stage. They proposed
four different strategies for the controlling stage. A collision-free path between two
configurations is calculated in a C-space grid by using the best-first search method. In
the third stage, the approach uses a GA to solve the TSP. The proposed approach loops
in these three stages and guarantees that every newly obtained tour will be no worse
than the previous one. Later Wurll et al. [97] extended this approach by parallelization
of a bidirectional search to reduce computation time and used the A* search for collision-
avoidance method.

Petiot et al. [81] solved the task scheduling problem for industrial robots with
an ENM. The collision avoidance feature was integrated as another repulsive force into
the ENM, i.e., a penalty term in the ENM function. The limitation of this approach is
that obstacles must be convex and easily representable in the C-space. The algorithm
performs well on robots with small number of DOFs (e.g., with 2 or 3). But it is
difficult to generalize the approach for robots with high number of DOFs, as it becomes
computationally expensive to map obstacles to the robot configuration space.

Spitz et al. [93] proposed a general framework suitable for a variety of robots.
Domain specific knowledge could be integrated into the planner, as a local planner or
an extension of the roadmap created with PRM. Based on this roadmap, another graph
is created, which consists of only target points and all superfluous points are deleted. It
is then used for tour optimization with known TSP solvers. The method assumes that
task is reachable with one robot configuration that limits potential of optimization due
to committing the multiple inverse kinematic solutions of the manipulator.

Saha et al. [86] observed the problem of multi-goal planning among the robot
configurations. The use of C-space points instead of T-space points limited the potential
freedom for optimization. Therefore, the approach was improved by specifying the
input points in T-space [87]. Lower-bound approximation is used for computing the
optimal path (normally the shortest distance) and the call of the collision-free path
planner is delayed. A bidirectional tree-expansion PRM was used for collision-free
planning. For TSP solving the Prim’s algorithm was applied [27]. The main assumption
of this approach is that calculation of a sequence is computationally less expensive than
calculation of the collision-free movements. Therefore, collision-free paths are calculated
after the sequence is obtained. If the collision-free path cost is significantly higher than
the estimated cost, the sequence should be recalculated taking the newly obtained path
cost into account.

Gueta et al. [46] proposed a method for solving the TSP problem for goals located
on a revolvable table. The table and the robot are seen as one redundant system. The
goals are put into clusters and a sequence of these clusters is calculated with the 2-Opt
algorithm. Then for each cluster two goals are determined as connectors for the previous
and following clusters in the sequence. After that the TSP is solved with Lin–Kernighan
(LK) heuristic in each cluster. The distance between the goals is considered as a straight
line in C-space. The system redundancy is used to select such configurations of the robot
that allow to obtain a collision-free path.

3.4. Robotic Task Sequencing Approaches 33

Bu et al. [22] presented a method for the optimization of the robot base layout
and robotic task sequence. The objective is the minimization of the cycle time. The
input sequence could be either fixed (linear topology), unfixed (complete directed graph
topology) or fixed and unfixed sequence (mixed topology). The first step of the solution
process is to calculate the 5D space of the possible base locations, where 3D stands for
position, 1D stands for orientation around the base axis and 1D shows if the base
axis is upward or downward. Then this 5D space is divided into discrete grid cells.
Optimization of the sequence is done with an Ant Colony Algorithm (ACA) for each cell.
The next step is to find the local optimum for the robot base position and orientation
with the pattern search for each cell in relation to the costs of the obtained sequences.
Finally, the global optimum is the result of comparing all local optima. The approach
does not provide automatic smart technique for collision avoidance. Obstacle-avoidance
is organized in a way that when the collision occurs between the robot and a workpiece,
an intermediate frame should be added between the two target frames.

Xidias et al. [99] investigated the problem of determining the optimal sequence
of task points for an articulated robot with the obstacle avoidance feature in a 2D
environment. The problem is divided into the optimal sequencing problem – TSP
and the path planning problem. The objective is to obtain the shortest cycle time.
The proposed concept is an adaptation of the GA, proposed by Zacharia et al. [103].
Furthermore, they introduce the Bump Surface concept for collision checking. The
general idea of the Bump-surface is to represent the 2D working environment in a
unified way by mapping it into a 3D space. It is done by discretizing the 2D map into
a uniform grid of points and assigning a value from [0, 1] to each point. If the point
is outside the obstacle then the value is 0 and if it is inside then the value is from the
range (0, 1]. The search space is represented as one mathematical entity, a B-spline.
Therefore, the complexity of the problem does not depend on the complexity of the
environment (shape and location of obstacles). The limitation of this approach is that
the working environment is considered to be 2D.

Further, Zacharia et al. [102] extended two approaches: [103] by adding obstacle
avoidance and [99] by adapting it to the real-world 3D environment. The optimization
problem was solved with the GA. The chromosome was extended with the information
about the intermediate configurations required for collision-free movement. The search
space is represented with the Bump-surface as a single mathematical entity. The in-
novative characteristic of the proposed approach is that sequencing, motion planning
and obstacle avoidance are incorporated into the objective function. It leads to the
situation, when all paths (both collision and collision-free) are considered to be feasible
but collision-free paths are preferred by the search algorithm.

Huang et al. [52] observed the task of selecting a specific manipulator for the
particular multi-goal task planning in a system that consists of a robot arm and a
position table. The input parameters for the algorithm are the list of points and the
candidate manipulator specification (Denavit–Hartenberg parameters). They proposed
to decompose the problem into the three nested stages. Less computationally expensive
algorithms are chosen for the inner loops due to the fact that stages are nested in

34 3. Related Work

each other and, therefore, the inner loops have to be repeated more often than outer
loops. The output is the manipulator structural configuration as well as positions of
the manipulator and rotational table.

Lattanzi et al. [61] proposed the extension to the LK heuristic by integrating
collision-free planning into the cost function. As it is computationally expensive to
obtain a collision-free path for the whole robot, the collision-free path was calculated
only for the robot’s end-effector. The robot end-effector path between two Cartesian
points is the shortest (in terms of robot motion time) when the robot performs PTP
movement. It was necessary to make sure that this PTP movement does not cause
collision of the end-effector. PTP joint path is transferred into the end-effector path
with FK and represented as a poly-line. In case of a collision, an intermediate path-point
is inserted and PTP movement is recalculated. As LK is a tour improvement heuristic, it
was evaluated with different tour construction heuristics: the shortest/farthest insertion
and the greedy approach. The work was motivated by a visual inspection task in an
industrial setup.

3.4.2 Sequencing Complex Tasks

Within the last five years, the use of task shape potential for optimization at-
tracted a lot of attention. Further these approaches are discussed in detail.

Gentilini et al. [43] used TSPN for modeling the sequencing problem of camera
inspection tasks. The robot has to take a picture with a camera mounted on its end-
effector. The problem does not require a precise position but rather an area from which
the pictures have to be taken. TSPN problem was formulated as Mixed-Integer Non-
Linear Program (MINLP). It was shown that searching for an exact solution requires
unreasonable amount of time. Therefore, a heuristic was introduced to a MINLP solver
to speed up the calculation time. The method was evaluated on test instances with up
to 16 areas. The obtained solutions are very close to the optimum, i.e., the average
error is less than 0.6% on tests with up to 16 areas. The optimization process is based
on the Euclidean distance metric, thus the robot kinematics flexibility is not considered.

Sequencing of tasks with extra freedom was investigated by Kovács [59]. This
problem was motivated by a specific industrial application – robot remote laser welding.
An efficient combination of the TSP solver (Farthest Insertion Heuristic, Tabu search
and 2-Opt) and the path planning method was proposed. Collision-free path planning is
not considered during the sequencing, but rather done after the sequence is calculated.
The planning is done in Cartesian space and after that the solution is converted into the
robot configuration space by using inverse kinematics transformation. The minimization
objective is the lexicographical order of the three criteria: minimal cycle time / minimal
path length (scanner head) / minimal path length (laser end point).

Vicencio et al [96] proposed GTSPN problem. It is the extension of the well-known
TSPN problem, where the neighborhoods can be clustered and each cluster should be
visited one. The Hybrid Random-Key Genetic Algorithm (HRKGA) was proposed

3.5. Robot Trajectory Optimization 35

to solve the GTSPN. It was shown that HRKGA is capable of effective and efficient
solving of scenarios up to 300 neighborhoods. The algorithm was tested on 3D and 7D
instances.

Faigl et al. [38] presented the multi-goal path planning problem for goal regions
(MTPGR) in the polygonal domain. The areas could be arbitrary shapes and are
allowed to overlap. The proposed approach is based on self-organizing map (SOM)
algorithm and was evaluated in a 2D environment. The presented method appears to
be very efficient and is capable of solving test cases with up to 106 areas in less than 6
seconds.

Later Gueta et al. [47] extended the previously described approach [46] by repre-
senting the goals as T-space points with two parameters that provide additional free-
dom: 1) distance of the camera from the goal point along the approach vector and 2)
rotation about the approach vector. In addition, the tool attachment was optimized
using a Simulated Annealing (SA) method.

Gentilini et al. [44] used the TSPN to model the task sequencing problem of
the camera inspection tasks for the case when the inspected object is located on the
rotated table. The neighborhoods (sets of robot configurations for each goal placement)
are represented as curves in the seven-dimensional configuration space (6D is the robot
configuration space and 1D is added by the table rotation). The paper concentrates
on exploring the redundancy of the system, rather than kinematics, therefore, only
one configuration was chosen among the set of possible inverse kinematics solutions.
Due to the search space explosion, the exact methods are limited to a small amount of
goals. Therefore, the heuristic Hybrid Random-key Genetic Algorithm was applied. A
single/multiple query BiRRT was used to construct the roadmap that is further used
for collision-free planning.

Erdős et al. [37] proposed the improvement of the previous work of Kovács [59].
The objective was the same – minimization of the cycle time of the remote laser welding
operations. During the planning stage only the scanner-workpiece was checked for
collision, but not the whole robot. Due to the search space fast growth, collision-free
path planners for the whole robot have to be applied only after the sequence is obtained.

3.5 Robot Trajectory Optimization

Trajectory optimization is one of the well-known problem in robotic domain. The
comprehensive overview on state of the art in robot trajectory optimization can be
found in the survey [14]. In general case, the problem is to generate a trajectory be-
tween starting and goal robot configurations that satisfies the objectives the constraints.
The objective could be minimum time or jerk optimization. The constraints are often
imposed by the robotic kinematics, e.g., robot joint angular or velocity limits or task,
e.g., following a certain path.

In this thesis we solve the problem of following the relaxed effective task. The goal
is to choose such an end-effector path from the relaxed effective task that in conjunction

36 3. Related Work

with a given motion law leads to the minimal cost C-space trajectory. In the following,
we discuss commonalities and differences to the state-of-the-art problems.

The problem proposed in this thesis is different from the trajectory tracking prob-
lem [15], as we are concerned in making the end-effector trajectory more suitable for a
robot, rather than in a precise following of the given end-effector trajectory.

In general, smooth functions are used for the T-space path interpolation. For
example, Liu et al. [65] proposed the optimization method for calculating time-optimal
and jerk-continuous trajectories for robot manipulators. The T-space trajectory is
represented with Cubic spline, i.e., twice continuous differentiable. C-space trajectory
is multi-degree B-spline with bounded and continuous velocity, acceleration and jerks.
However, in contrast to the problem proposed in this thesis, it is assumed that via-points
should be visited strictly and no relaxation is allowed.

This thesis problem is different for trajectory optimization for the supporting
tasks. Supporting task allows for a lot of freedom while motion, often the linear move-
ment in C-space is used. It is the shortest movement of the robot between two config-
urations and called point-to-point (PTP) motion. In that case, often velocity profiles
for the robot joints are synchronized [28].

The trajectory planning problem for the C-space constrained trajectory between
two T-space points was addressed by Chettibi et al. [24]. The constraints represented
as upper and lower bounds were set in C-space, i.e., for every joint. Therefore, this
approach suits better trajectory optimization for the supporting tasks.

Another approach for industrial robot trajectory optimization was proposed by
Gasparetto et al. [42]. Their method does not require to specify desired trajectory
duration. Proposed method allows to minimize execution time and the jerk value. By
using weight coefficients, a balance between fast and smooth movement can be obtained.
Algorithm input is the T-space path, i.e., sequence of via-points. These via-points are
then converted to C-space path. Then C-space points are interpolated with cubic or
firth-order B-splines. Any suitable optimization technique could be applied to minimize
the cost function. The output of the algorithm is the vector of time intervals between
pairs of via-points.

Continuous end-effector path planning problem for the effective tasks instead of
a point-to-point movements was observed by Olabi et al. [77]. A robot has to strictly
follow the end-effector path and its motion-law was optimized. In our problem, we
do exactly the opposite – the path geometry is optimized, however, the motion-law is
followed strictly.

3.6 Conclusion

The majority of robotic task sequencing approaches considers tasks as primitive
goals represented as points in T-space or in C-space. Approaches that allow sequencing

3.6. Conclusion 37

of tasks with complex shapes are the most relevant to this thesis. However, these
approaches have several limitations.

Some approaches for complex task sequencing do not involve information about
robot kinematics, e.g., [38][43][96]. Other approaches either observe only one solution
out of a set of possible solutions, e.g., [44], or apply inverse kinematics after a sequence of
tasks is calculated [59][37]. In this thesis, we propose two strategies: one that postpones
selection of a robot’s configuration (i.e., Component1 → Component2) and one that
involves robot kinematics optimization into the planning stage (i.e., Component1 +
Component2).

Relevant research proposed only one approach to deal with multiple inverse kine-
matics solutions [47]. It makes optimization only in one neighborhood, where a neigh-
borhood is a T-point with a relaxation in a translation along approaching axis Z and
in a rotation around axis Z. In the thesis, effective tasks are relaxed with an infinite
number of neighborhoods.

The aforementioned approaches for the optimization of a robot’s trajectory often
ignore freedom of a path, i.e., freedom of the position and the orientation of each
point. Those approaches that exploit path freedom are either domain-specific or not
applicable for industrial applications. The idea proposed in this thesis extends their
scope of applications. The proposed problem definition is domain-independent and
formulated with no dependence on the solving approach. As a consequence, there are
no special requirements for constraints or a cost function.

4. Component1: Relaxed Effective
Tasks Sequencing

Business leads the traveling salesman here and there,
and there is not a good tour for all occurring cases; but
through an expedient choice and division of the tour so
much time can be won that we feel compelled to give
guidelines about this.

German handbook “Der Handlungsreisende”, 1832.1

In this chapter, we propose approaches to optimize a sequence and entry points
of relaxed effective tasks, see Figure 4.1. A formalization of this scenario leads to a
Traveling Salesman Problem with Neighborhoods (TSPN). TSPN is a generalization of
TSP where points are substituted with areas and the objective is to find a minimal-cost
tour through a set of regions, visiting each of them once. In the following, we present
two approaches for solving TSPN: Constricting Insertion Heuristic for tour construction
and Constricting 3-Opt for tour improvement.

The remainder of this chapter is organized as follows. We present the industrial
scenarios that motivate this chapter in Section 4.1. Section 4.2 outlines related work.
Preliminaries on applied sub-problems and algorithms are described in Section 4.3.
Proposed solution approaches are presented in Section 4.4.

1The translation from the German original was done by Linda Cook for the book “The Traveling
Salesman Problem: A Computational Study” by David L. Applegate et al.

40 4. Component1: Relaxed Effective Tasks Sequencing

Task sequence Entry points

positions

A B
C

A' B' C'

1 2 3

1 2 3

Component1

Input: set of relaxed effective tasks

Output: sequence of relaxed effective tasks

 with Cartesian entry points

Optimize: Euclidean distance

Figure 4.1: Overview of Component1.

4.1 Motivation

It is obvious that an efficient production process requires an optimized sequence
of effective tasks. If for every effective task, the entry point is fixed, the task sequencing
problem can be translated to the Traveling Salesman Problem (TSP) [10] which aims
at computing a minimal-cost cyclic tour that visits all points once. However, in reality,
many effective tasks do not require strong determinism and often allow certain degrees
of freedom. For example, in the application scenario in Section 2.2, it is not important
where individual cuttings should start and/or end. Therefore, the choice of an entry
point for each effective task significantly influences the cost of a task sequence.

There are many other examples apart from the stated cutting scenario that pro-
vide freedom of execution: robotic manufacturing of a toboggan1, laser-welding [59] or
an object observing task with a camera installed on a robot end-effector [43]. Often
an allowed deviation could be significant. For example, From et al [40] claimed that
deviation up to 20% of an end-effector orientation in a painting scenario does not affect
the quality of coating.

Every relaxed effective task is defined as an entry area. Therefore, in the follow-
ing notation, a relaxed end-effector task TaskRel

EF can be understood as an polyhedron
A ∈ SE(3). Therefore, the problem of sequencing relaxed effective tasks stated in Sec-
tion 2.4.1 can be formalized as the Traveling Salesman Problem with Neighborhoods as
follows:

Given a set of n polyhedra A = {A1, ..., An}, find a minimal-cost cyclic
tour T = (p1, ..., pn+1) such that it visits Ai in a point pi and p1 = pn+1.

In the remainder of this chapter, notation from the TSPN domain will be used.
In order to ease the explanation, we restrict ourselves to 2D space (i.e., R2) and use a
Euclidean distance function d(p, q) that defines the cost of moving between two points
p, q ∈ R2. Of course, generalization to higher dimensional spaces as well as other
distance functions is possible.

1Kuka Roboter: see http://www.kuka-robotics.com/en/solutions/solutions search/L R131
Deburring of plastic toboggans.htm, accessed on August 26, 2015

http://www.kuka-robotics.com/en/solutions/solutions_search/L_R131_Deburring_of_plastic_toboggans.htm
http://www.kuka-robotics.com/en/solutions/solutions_search/L_R131_Deburring_of_plastic_toboggans.htm

4.2. Related Work 41

4.2 Related Work

Heuristics for TSP-like problems can be split into two categories: construction
and improvement heuristics [54]. Construction heuristics construct a feasible solution.
Improvement heuristics start with a complete tour and try to reduce its cost by mod-
ifying it. The iterative improvement process stops when a stopping condition is met,
e.g., no more improvement is possible or a maximal number of iteration is reached.

The TSPN was originally introduced by Arkin and Hassin [11]. Later, it received
significant attention in the domain of approximation algorithms [12, 73]. Furthermore,
it has already been applied in the field of robotics. For example, Gentilini et al. [43]
applied this idea to a real-world use case where a robot with a hand-mounted camera
takes pictures of an object from different positions. They formulated this problem as a
TSPN and implemented a heuristic to speed up a Mixed-Integer Non-Linear Program-
ming solver. This method shows good, close to optimum results on instances with up
to 16 tasks. However, in some industrial domains2, 50 or even more tasks are common.

Mennell [71] proposed an approach for solving Close-Enough Traveling Salesman
Problem (CETSP) which is a special case of TSPN. Its goal is to find a minimal-cost
tour such that a salesman visits every point exactly once by moving within a certain
distance from it. Thus, an area describing the neighborhood of each point is a disk in
2D space. A generic three-stage approach was proposed: (1) find intersections between
disks, (2) represent every intersection area with a point and calculate a TSP tour, (3)
optimize the previously found point sequence with a TPP solving method. Multiple
variations and combinations of different algorithms for these stages were investigated.

Elbassioni et al. [36] proposed a method for a Discrete TSPN, similar to Gen-
eralized TSP (GTSP)3), where areas are replaced with sets of points and the goal is
to find a minimal-cost path visiting exactly one point from each set. First, areas are
sorted by their diameter. Then, for every area, starting from the area with the smallest
diameter, an inner area point is picked up. The algorithm selects a new point as close
as possible to the already chosen points. When all areas are assigned with inner points,
the algorithm optimizes the points allocation and computes a TSP tour. The authors
claim that the proposed method can also be applied for continuous TSPN (we refer to
this problem simply as TSPN) under an assumption that the new closest point can be
efficiently found in an infinite set of points.

The TSP got much larger attention from researchers than the TSPN. As a result,
a large number of effective algorithms exist for TSP. A naive idea would be to use
algorithms from the TSP domain for the TSPN. This could be done in several ways.

One approach is to convert a TSPN problem to a GTSP by replacing areas with
a sets of points and solve the obtained problem with a GTSP approach.. The objective

2Pan et al. [80] showed an example of welding applications with 500 goals for two robots (250 goals
for each).

3It is also referred to as One-of-a-Set TSP, Group TSP, Multiple Choice TSP or Covering Salesman
Problem.

42 4. Component1: Relaxed Effective Tasks Sequencing

is to find a minimum-cost path that passes through one point of each set. Oberlin
et al.[76] proposed to solve a GTSP by converting it to a TSP, solving the obtained
problem and transforming a TSP solution to a GTSP. Though this process is possible
in theory, it immensely increases the search space and becomes practically infeasible
[88]. Another drawback of representing a TSPN as a GTSP is the errors appearing due
to the discretization of areas.

Another way to apply algorithms from the TSP domain to TSPN is to represent
every area with one point. It transforms a TSPN into two subproblems: a TSP and
a Touring-a-sequence-of-Polygons Problem (TPP). TPP is an NP-hard problem where
the goal is to find the shortest path that passes through a given sequence of areas [33].
In this chapter, we present a method to solve TSPN based on this idea. In contrast
to other approaches, our heuristic simultaneously solves task sequencing (TSP) and
allocation of points inside areas (TPP).

4.3 Preliminaries

This section gives a brief introduction to formalization of relevant problems. It
also explains general ideas of existing algorithms that are used as a foundation for our
methods.

4.3.1 Involved Sub-Problems

The well-known Traveling Salesman Problem is formalized as follows:

Given a weighted undirected graph G = (V,E), where V is a set of n
vertices and E is a set of edges. The objective is to find a minimal-cost
cyclic tour T = (v1, ..., vn+1) that visits all vertices only once and v1 = vn+1.

Another related problem is the Touring-a-sequence-of-Polygons Problem. It is
defined as follows:

Given a sequence of n polygons A = (A1, ..., An), find a minimal-cost
cyclic tour T = (p1, ..., pn+1), such that it visits Ai in a point pi and p1 =
pn+1.

There are two types of TPP: floating and fixed. In the fixed TPP, start and end
points have to be defined and their positions are fixed. In the floating TPP, start and
end points are no longer required. The floating TPP is relevant to this paper and simply
referred to as TPP. Note that for TPP, an ordering of the polygons is required as an
input data. This order is not changed during tour calculation. In contrast to TPP, an
input of TSPN contains a set of polygons instead of their sequence.

4.3. Preliminaries 43

4.3.2 Involved Sub-Algorithms

Before presenting algorithms for TSPN, we provide an explanation of the TSP
and TPP existing heuristics which are involved in the TSPN methods.

4.3.2.1 Insertion Heuristic

One of the most well-known algorithms for tour-construction is Insertion Heuristic
(IH) [48]. The general structure is represented in Algorithm 4.1.

The algorithm is based on three strategies S1, S2 and S3. S1 denotes a strategy
to construct an initial tour. Often an initial tour is either a triangle tour (i.e., a tour
consisting of three points) or a tour that follows the points that form the convex hull
border of V . S2 is a strategy to choose a point v that is not yet in the tour T . S3 is a
way to choose a position in T where point v should be inserted. The strategies S2 and
S3 are repeated while T is a partial tour, i.e., not all the points of V are in the tour.

Algorithm 4.1: Insertion Heuristic

Input: Weighted graph G = {V,E}
Output: Tour T = (v1, ..., vn)

Initialize sub-tour T with strategy S1;
while T is a partial tour do

Choose vertex v /∈ T with strategy S2;
Add v to the tour T with strategy S3;

end
return T ;

After a complete tour is obtained, it is possible to apply tour-improvement heuris-
tics such as 2-Opt or 3-Opt [49]. The 2-Opt and 3-Opt are local search algorithms that
are certain cases of the K-exchange algorithm [63].

4.3.2.2 3-Opt Heuristic

The K-exchange algorithm was developed by Lin [63]. The basic idea is to se-
quentially select K edges from a tour and reconnect them in all possible ways. If a
reconnection causes a decrease of the tour cost, the algorithm starts from the begin-
ning; otherwise, the next K edges are selected. The algorithm stops when there are no
more exchanges that could improve the tour.

The evaluation in [54] shows that if K is greater than three, the effectiveness
of the approach decreases, i.e., the spent computational time is no longer pays off
for the gained cost improvements. Therefore, normally the value K=3 is used and
the corresponding method is referred to as 3-Opt [21]. Later 3-Opt received a lot of
attention and was successfully applied in different areas, e.g., the UAV routing problem
[72] or the Sequentially Ordered Problem [50].

44 4. Component1: Relaxed Effective Tasks Sequencing

��

��

������

��

���� ��

����

��

��

������

��

���� ��

����

��

��

������

��

���� ��

����
��	 �
	

Figure 4.2: Two possible replacements of edges (pi, pi+1), (pj, pj+1) and (pk, pk+1) in
3-Opt.

There are seven possible ways of reconnecting three edges in 3-Opt. It was shown
in [84] that only two ways of reconnecting should be considered to make an admissible
tour, see Figure 4.2. The decrease of a cost in 3-Opt that can be achieved after recon-
nection is calculated as the difference between the costs of newly added and deleted
edges.

4.3.2.3 Rubber-Band Algorithm

Rubber-Band Algorithm (RBA) is a method to solve the TPP was proposed by
Pan et al. [78]. The general structure of the RBA is presented in Algorithm 4.2.

Algorithm 4.2: Rubber-band algorithm

Input: Sequence of areas A = (A1, ..., An), accuracy ε
Output: Tour T = (p1, ..., pn)

1 Construct a sequence T = (p1, ..., pn) such that pi ∈ Ai;
2 while Desired accuracy ε is not reached do
3 foreach pi ∈ T do
4 pi ← argmin

pi∈∂Ai

(d(pi−1, pi), d(pi, pi+1));

5 end

6 end
7 return T ;

The RBA constructs a feasible tour T = (p1, ..., pn) by allocating points inside the
areas pi ∈ Ai and then iteratively improves it. Optimization is performed for one area
at a time in the same order as areas appear in the tour. A position of a point pi of area
Ai is improved by selecting another position new pi on the border ∂Ai of the area with
the minimal distance to its tour neighbors pi−1 and pi+1, see Figure 4.3 and line 4 in
Algorithm 4.2.

4.4. Solution Approaches 45

Ai-1

pi+1

Ai

new-pi

pi-1

Ai+1pi

Figure 4.3: Constricting point pi to its neighboring points pi−1 and pi+1. Edges before
the constriction are marked by solid lines. Edges after the constriction are marked by
dash lines.

One iteration of the improvement cycle is finished when this procedure is per-
formed for all areas. The RBA stops when a maximal number of iterations has been
performed or a desired accuracy ε was reached, i.e., the difference between tour lengths
on iteration j and j + 1 is less than ε.

Following the TPP definition, the solution of the problem is a tour consisting of
n+ 1 points. Note that Algorithm 4.2 returns a tour that consists of n points. It does
not contradict the definition, as it is easy to modify the tour by extending it with a
point pn+1 that is equal to p1. Therefore, tours provided by the RBA are correct.

4.4 Solution Approaches

TSPN can be understood as a generalization of TSP and TPP, see Table 4.1. We
rely on the idea, that by alternating TSP and TPP solving processes one can obtain
near-optimal solution for TSPN. The alternating of solving processes here means that
on every iteration of the TSP solving algorithm (i.e., IH or 3-Opt), points are constricted
to each other with TPP solving algorithm (i.e., RBA) to optimize their location in the
areas with respect to the obtained sequence.

Before starting with presenting the methods, an important note about the RBA
modification has to be made. As previously described, RBA takes two parameters as
an input: a sequence of areas A and an accuracy value ε. In the algorithm, an optimal
sequence of points T = (p1, ..., pn) is calculated by optimizing allocation of the points in
the areas. We introduce mRBA which is a small modification of RBA where a sequence
of points T is included as additional parameter in the input, i.e., line 1 in Algorithm
4.2 is omitted.

Searching for new pi is a geometrical task and could be performed with any ap-
proach. For some shapes, e.g., polygons, analytical solution is possible. We assume
that in general case, any metric could be involved and tasks might be arbitrary dimen-
sions and shape. In that case optimization techniques can be applied. One-dimensional
Golden search or Bisection method [83] can be used for one dimensional tasks, e.g.,
closed contours. Gradient descent, Pattern Search [51] or any other multi-dimensional

46 4. Component1: Relaxed Effective Tasks Sequencing

Problem Input Optimize Output

set of sequence sequence
TSP points of points

sequence location sequence
TPP of areas of points of points

set of location and sequence
TSPN areas sequence of points

Table 4.1: The differences between TSP, TPP and TSPN.

optimization approach can be used for multi-dimensional tasks. In the following realiza-
tion, Bisection method is used for closed-contour tasks. It searches in the curve domain
[0,1]. Optimization is done until accuracy µ is reached. Therefore, mRBA requires four
input parameters: A, P , ε and µ.

In the remainder of this section, we present two approaches: Constricting Insertion
Heuristic for tour construction and Constricting 3-Opt for tour improvement.

4.4.1 Constricting Insertion Heuristic

Constricting Insertion Heuristic is obtained from Insertion Heuristic by modifying
the strategies in Algorithm 4.1. Specialized implementation of the insertion strategies
makes CIH capable to solve TSPN efficiently. CIH is shown in detail in Algorithm 4.3.

Several functions are involved during calculation. Function Count(R) returns the
number of elements in the set R. Function Insert(T, p, i) inserts point p to the tour T
at the position after the element with index i. Function Remove(T, p) removes point
p from the tour T . Function ConvexHullBorderTour(P) returns a tour consisting of
points that form the border of the convex hull of the set P . One example of such output
is illustrated on part 2 in Figure 4.4. Function Length(T) takes a sequence of points T
and returns the tour length.

The algorithm takes a set of areas A as an input. In the line 1 of Algorithm 4.3,
set P is constructed in a way that point pi belongs to area Ai

4. In the lines 2 and 3 in
Algorithm 4.3 a set of points P is split into two subsets: T and R. T is a tour which
follows the points that form a convex hull border of P . R consists of all the remaining
points from P that are not in the border of convex hull.

It could be the case that all points from P belong to the border of the convex hull.
This check is performed in line 4 of Algorithm 4.3. In that case T is already the desired
sequence of areas to visit and mRBA is applied to find the optimal point allocation
within the obtained sequence.

In case if not all points from P belong to the border of the convex hull set, points
from the remainder R are selected one by one and inserted in the tour T . Line 9 in

4In the following test instances in evaluation, pi is a geometrical center of the ellipses.

4.4. Solution Approaches 47

Algorithm 4.3: Constricting Insertion Heuristic

Input: Set of areas A = {A1, ..., An}, desired accuracies ε, µ
Output: Tour T = (p1, ..., pn)

1 Construct a set P = {p1, ..., pn} so that pi ∈ Ai;
2 T ← ConvexHullBorderTour(P) ;
3 R← (P − ConvexHullBorderTour(P)) ;
4 if R = ∅ then
5 T ← mRBA(A, T, ε, µ);
6 return T ;

7 end
8 while R 6= ∅ do
9 ptemp ← argmin

pq

(d(pq, tj)), where pq ∈ R, tj ∈ T , q ∈ [1, Count(R)],

j ∈ [1, Count(T)];
10 L←∞;
11 Ttemp ← T ;
12 for i=1 to Count(T) do
13 Insert(Ttemp, ptemp, i);
14 Ttemp ← mRBA(A, Ttemp, ε, µ);
15 if Length(Ttemp) < L then
16 L← Length(Ttemp);
17 insert index← i;

18 end
19 Remove(Ttemp, ptemp);

20 end
21 Insert(T, ptemp, insert index);
22 Remove(R, ptemp);
23 T ← mRBA(A, T, ε, µ);

24 end
25 return T ;

Algorithm 4.3 reflects the strategy S2 where the point ptemp is chosen so that it is the
closest point to one of the points from T .

Strategy S3 (lines 10-23) in Algorithm 4.3 is a sequential insertion of ptemp to all
possible positions within tour T performing mRBA algorithm every time and measuring
the tour distance. After all combinations are checked, ptemp is inserted to the position
that gives a minimal increase of the tour length and mRBA is performed. Afterwards,
ptemp is deleted from the remainder set R. The algorithm stops when all points from R
are inserted to T . The obtained tour T is the desired tour.

48 4. Component1: Relaxed Effective Tasks Sequencing

1 2 3

4 5 6

1 2

3

45

6

7

8

9

10 11

12

Figure 4.4: Workflow of CIH on test instance “tspn2DE12 2”

Example of CIH Workflow

In the following, a test instance “tspn2DE12 2” developed by Genitili et al. [43]
for TSPN with 12 ellipses is solved by CIH. CIH is a tour construction heuristic and
starts from any arbitrary sub-tour. However, it is more efficient to take points that form
the border of the convex hull as an initial tour. Therefore, 6 points are added to the
tour on part 2 of Figure 4.4. If all points are inserted, their optimal sequence is found
and only their locations within the areas should be optimized by mRBA. However, in
this example 6 points are left. Therefore, new points 7–12 are added one by one to the
tour so that a point which is the nearest to the tour is picked up. The nearest distance
is denoted with an arrow in Figure 4.4. For example, on part 3 point 7 is picked up as
it is the nearest to the point 3 in the existing tour in part 2. Further, point 8 is added
to the tour, because it is the nearest point to the point 5, which is already in the tour.
The parts 2–6 in Figure 4.4 show how the algorithm adds new points to the tour one
after another.

Note that some iterations are combined at one part of Figure 4.4 (e.g, points 7
and 8 in part 3) as the picture was not changed visually.

CIH stops when there is no point left outside of the tour. In this example, an
optimal solution was obtained as it is illustrated on part 6 of Figure 4.4. An animated
process of CIH is presented online5.

Note that TSP tour-improvement heuristics could improve CIH solution for TSPN
by changing the sequence. However, this improvement may cause such a case that the

5CIH visualization: see https://cse.cs.ovgu.de/cse/robotics/tspn/, accessed on August 26, 2015

https://cse.cs.ovgu.de/cse/robotics/tspn/

4.4. Solution Approaches 49

Algorithm 4.4: Constricting 3-Opt

Input: Set of areas A = {A1, ..., An}, initial tour T ′ = (p′1, ..., p
′
n) (so that p′i ∈ Ai),

accuracies ε, µ
Output: Tour T = (p1, ..., pn)

1 T ← T ′;
2 LgthT ← Length(T);
3 candT ← null;
4 for i = 1; i ≤ n− 2; i++ do
5 for j = i+ 1; j ≤ n− 1; j++ do
6 for k = j + 1; k ≤ n; k++ do
7 candT←NewTour1 (T , LgthT , µ, i, j, k, n);
8 if candT 6= null then
9 if Length(candT) < LgthT then

10 T ← mRBA(A, candT , ε, µ);
11 GoTo(line 2);

12 end

13 end
14 candT←NewTour2 (T , LgthT , µ, i, j, k, n);
15 if candT 6= null then
16 if Length(candT) < LgthT then
17 T ← mRBA(A, candT , ε, µ);
18 GoTo(line 2);

19 end

20 end

21 end

22 end

23 end
24 return T ;

location of the points in the areas becomes not optimal in regard to the new obtained
sequence. Therefore, mRBA is applied afterwards.

4.4.2 Constricting 3-Opt Heuristic

In this section we describe the tour-improvement heuristic Constricting 3-Opt
(C3-Opt) for solving TSPN. It is an extension of the classic 3-Opt that is successfully
applied in the TSP domain. The main difference of C3-Opt to 3-Opt is that it also
involves a TPP solver (in our case RBA), i.e., it is able to calculate where the points
should be located inside the areas. In the original 3-Opt these points are fixed.

In general, tour-improvement heuristics are slower than tour-construction meth-
ods. The adaptation to TSPN also brings extra expenses of computational time. There-
fore, we provide a description of several techniques that allow speeding up calculation
time and minimizing risks of getting into local optima fast.

50 4. Component1: Relaxed Effective Tasks Sequencing

General structure of the C3-Opt is presented in Algorithm 4.4. The input of the
C3-Opt is a set of areas A, an initial tour T ′ and desired accuracies ε, µ. Three main
loops are started in lines 4–6. Indices i, j, k are used to select the edges that have
to be exchanged. C3-Opt uses the same two ways to reconnect the edges as in 3-Opt.
Therefore, the overall logic could be split into two segments denoting each reconnection
variant: the first is in lines 7–13 and the second is in lines 14–20. A candidate tour
candT is constructed with the function NewTour1 by applying the first variant of
reconnections to the original tour. If the candidate tour was successfully constructed,
i.e., candT is not empty (line 8), and it is shorter than the current tour T (line 9), then
the tour is optimized by the RBA algorithm. RBA does not change the sequence but
only optimizes locations of the points in the areas. The optimized tour becomes the
current tour T (line 10). The length of the reduced tour is saved in LgthT .

After that C3-Opt continues the optimization process with the first set of edges
as the original 3-Opt. Otherwise, it can miss some possible improvements occurred
after reconnection. Therefore, main loops are restarted in lines 11 and 18. The second
variant of reconnection (lines 14–20) has a similar logic. In contrast to the first variant,
it applies another tour construction function, NewTour2 , due to the alternative way of
reconnection of the tour (see Figure 4.2). In the next subsection, we will show how the
candidate tour is constructed. The algorithm stops when there are no more possible
reconnections. The output is the optimized tour T .

Construction of the Candidate Tour

3-Opt compares sums of the costs of the new and deleted edges to check whether
the exchange improved the solution or not. It is straightforward, as the costs of all other
edges are constant. However, in TSPN, points could change their locations within the
areas. Therefore, a new exchange could bring the improvement not only by changing
the sequence, but also by optimizing locations of the points inside the areas. A trivial
solution could be to apply RBA algorithm on the newly constructed tour. However, in
practice it leads fast to the local minimum. We propose another method: after adding
a new point Tlast to the tour, the location for the previously added point Tlast−1 should
be recalculated, i.e., function PointConstrict(Tlast−2, Alast−1, Tlast, µ) should be applied.
This method of tour constricting does not return the optimum point positions within
the areas, but only slightly improves the tour. In practice, this improvement prevents
the method to get to a local optimum fast.

The candidate tour for the first reconnection case (see Figure 4.2) is constructed
by the Algorithm 4.5. It copies the points from the current tour T one by one to the
new tour candT .

Points are added with the method AddPointAndConstrict . It adds point Th to the
end of the tour candT and then constricts the previously added point candT last−1 by
using PointConstrict(candT last−2, Alast−1, candT last, µ). When all the points are copied,
the algorithm returns the tour.

4.5. Conclusion 51

Algorithm 4.5: NewTour1 function
Input: T , LgthT , µ, i, j, k, n
Output: Tour candT

1 candT ← null;
2 for h = 1;h ≤ i;h++ do
3 candT ← AddPointAndConstrict(candT , Th, µ);
4 end
5 for h = j + 1;h ≤ k;h++ do
6 candT ← AddPointAndConstrict(candT , Th, µ);
7 end
8 for h = i+ 1;h ≤ j;h++ do
9 candT ← AddPointAndConstrict(candT , Th, µ);

10 end
11 if Length(candT) > LgthT then
12 candT ← null;
13 return candT ;

14 end
15 for h = k + 1;h ≤ n;h++ do
16 candT ← AddPointAndConstrict(candT , Th, µ);
17 end
18 PointConstrict(candTlast−1, Alast, candT1, µ);
19 return candT ;

Note that at some point in time the length of the candidate tour could exceed the
length of the current tour. In that case it makes no sense to perform further copying-
constricting actions and, therefore, the algorithm returns a null tour. This check could
be performed multiple times at any stage of creating a candidate tour. However, in
case of earlier or multiple appliances, the expenses of the check could exceed the benefit
from it. We propose to locate it after the third loop in the lines 11–14 of the Algorithm
4.5.

The algorithm NewTour2 for the second variant of reconnection is constructed in
the same way as NewTour1 ; the only difference is that points from pi+1 to pj should be
copied in reverse order.

4.5 Conclusion

In this chapter, solution methods for optimizing a sequence of relaxed effective
tasks are proposed. In order to find a solution, this problem is represented as a Traveling
Salesman Problem with Neighborhoods (TSPN). The developed solution approaches,
Constricting Insertion Heuristic and Constricting 3-Opt, are based on heuristics from
the TSP domain. The CIH is capable of constructing high-quality solutions even for
large TSPN instances. The obtained solutions can be improved further by using C3-Opt.
Although the proposed planning approaches are illustrated by their robotic application,

52 4. Component1: Relaxed Effective Tasks Sequencing

they are more general, as no domain-specific knowledge is involved, e.g., kinematics or
metrics in C-space. Therefore, these general approaches could be applied to any domain
that can be modeled as the TSPN, e.g., Unmanned Aerial Vehicle routing or integrated
circuit production planning. Another advantage of the proposed approaches is their
simplicity in terms of understanding and implementing.

5. Component2: Entry Points
Optimization for a Relaxed
Effective Task Sequence

Each of a set of brightly painted
hollow wooden dolls of varying sizes,
designed to fit inside each other.

A definition of “matryoshka” in
online Oxford Dictionaries

In this chapter, we consider a situation where a sequence of relaxed effective tasks
has already been calculated with any known algorithm or has been strictly defined by an
industrial process. In this case, the effective tasks can be relaxed and the robot-related
cost can be minimized. The proposed approach does not depend on the production
domain and could be combined with any algorithm for constructing an initial task
sequence. We propose an approach that improves a given relaxed effective task sequence
by optimizing entry points so that it leads to minimal-cost supporting trajectories
between them. The problem overview is presented in Figure 5.1.

The remainder of this chapter is organized as follows. The motivation and in-
troduction to the solution concept are presented in Section 5.1. Related problems and
state-of-the-art approaches are discussed in Section 5.2. Nested RBA and problem
decomposition are presented in Section 5.3. We conclude and summarize in Section 5.4.

54 5. Component2: Entry Points Optimization for a Relaxed Effective Task Sequence

Entry points

positions

A B
C

A' B' C'

Entry points

orientation

Robot configuration Motion law

calculation

0 Time

1Input: sequence of relaxed effective tasks

 with Cartesian entry points

Output: C-space entry points tour

Optimize: length / time

 of C-space trajectory

Component2

Figure 5.1: Component2 overview.

5.1 Motivation

An industrial robot’s workflow typically consists of a set of tasks that have to be
repeated multiple times. The efficiency with which the robot performs the sequence
of tasks is an important factor in most production domains. In most practical scenar-
ios, the majority of tasks have a certain freedom of execution, i.e., they are relaxed.
For example, a closed-contour welding task can often be started and finished at any
point of the curve. The sequence of the relaxed effective tasks can be found with the
approaches presented in Component1 in Chapter 4. These approaches use Euclidean
distance; therefore, the obtained tour is far from being optimal with respect to robot
costs, e.g., distance traveled in C-space or time.

In this chapter we propose a method that is able to automatically improve the
given sequence of relaxed effective tasks, by optimizing entry point position, orientation
and robot configuration. This problem requires a search to be performed in different
domains, i.e., find a neighborhood that contains an entry point, find a new position
and orientation of the entry point, as well as a robot configuration. The problem can
be modeled as the Touring-a-sequence-of-Polygons Problem (TPP) where a tour has
to be found through the sequence of polygons. In contrast, we do not have polygons,
but rather nested search domains. Therefore, the existing methods cannot be applied
directly, but have to be modified.

We propose using the main idea of the RBA algorithm and applying it to optimize
the points’ locations in nested domains. We refer to such modification of RBA as
Nested RBA. In contrast to classic RBA, where optimization is done sequentially for
every area, we have several optimization domains instead of a single area, i.e., entry
point position, entry point orientation and robot configuration. The choice of the entry
point position depends on the results of optimization of corresponding end-effector
orientation. The cost of end-effector orientation depends on the optimization results of
the inverse kinematics. Therefore, the optimization domains are nested in each other.

5.2 Related Work

A nested domain decomposition splits a problem into several nested domains
(subproblems) and then solves each subproblem with domain-specific approaches. Sub-
problems are interconnected and, therefore, during the solving process, solutions of

5.2. Related Work 55

subproblems are passed up and down between the different levels of nesting. Such solv-
ing strategy excludes the need to apply a metaheuristic for a whole search space and,
as it was mentioned, enables us to apply simpler planning methods specialized for the
domains.

Nested Domain Decomposition

The nested domain decomposition has already been applied in the field of robotics.
Smith et al. [92] used it for a multi-resolution planning for a hexapod robot ATHLETE,
developed for moon exploration by NASA. This problem has a large search space and,
therefore, the authors suggested to split the problem into nested domains. In the
outer domain, more global problems like route planning were solved. The inner domain
contained more local problems like moving a robot’s leg.

Another application of the nested domain technique in robotics was proposed by
Huang et al. [52]. They consider a problem of selecting a manipulator for a system
consisting of a robot arm and a position table to perform a given set of tasks. As it
is not possible to explore the whole search space in an admissible time, the authors
decomposed the problem into three nested domains: 1) manipulator selection (solved
by Multiple-Objective Particle Swarm Optimization), 2) layout design (solved by Par-
ticle Swarm Optimization) and 3) motion planning (solved by Nearest Neighborhood
Algorithm). Less computationally expensive algorithms are chosen for the inner loops
(i.e., domains 2 and 3) because the domains are nested in each other and, therefore, the
inner loops have to be repeated more often than the outer loops.

Path Planning with End-effector Pose Constraints

Often an end-effector pose (i.e., position and orientation) is strictly defined by a
programmer. Only few applications define not a single pose but rather a set of possible
poses. In the path planning domain, there exist several approaches to define possible
end-effector poses along a path and/or for a goal by using different constraints.

Stilman [95] represented a constrained task as a combination of a task frame, a
coordinate system and a motion constrained vector. The last one is a vector of binary
values that corresponds to each of the coordinate axis. A value of one means that an
end-effector movement should not change the corresponding coordinate. Later Berenson
et al. [17] proposed the concept of a Task Space Region (TSR). The idea is to represent
an end-effector goal in the T-space as a continuous region — a box that limits possible
translations and rotations. TSRs are also used to describe constraints on an end-effector
along a path.

Yao et al. [101] addressed a path planning problem with an objective to find a
goal configuration and a collision-free path while satisfying pose constraints. A starting
robot configuration and a goal pose are given. Constraints for the end-effector are
described with system of equations. For example, in oder to constrain the movement
of the end-effector to a plane, the equation of a plane is used. End-effector orientation
are described with fixed angle representation.

56 5. Component2: Entry Points Optimization for a Relaxed Effective Task Sequence

Cefalo et al. [23] proposed a collision-free planner that exploits a freedom of robot
kinematics redundancy to obtain cyclic motions under repetitive task constraints, i.e.,
a robot starts and finishes a task sequence in the same configuration. The proposed
algorithm can be reused for calculating a motion cost along closed contour tasks.

From et al. [40] proposed a fast method for minimizing displacements of a paint
gun. A freedom is given as a subset of paint gun orientations. Since a real-time behavior
was required, a simple T-space cost was used. As a consequence, robot kinematics was
not involved on the solving stage but was applied afterwards to an obtained solution.

We propose a way to describe a relaxed task that is inspired by Berenson’s TSR
[17] and Stilman’s approach [95] with several critical changes that allow us to describe
curve-like tasks efficiently. In [17], in order to describe a curve, one has to define many
TSRs. In our approach, a curve is described by a set of via-volumes that are then
interpolated in order to achieve continuity.

5.3 Solution Approach

In this section, we present a solution approach for the problem of entry point
optimization for a relaxed effective task sequence. In the following, we introduce a data
container which is further used to ease an explanation of the problem decomposition
concept and optimization approach.

5.3.1 Entry Point Container

A relaxed effective task provides a freedom in choice of a position and an orien-
tation that a robot’s tool can have when starting/following a task. Even though every
task has this freedom defined as described in Section 2.1.4, it is assigned with a partic-
ular entry point during the solving process. Let us define an entry point structure that
uniquely specifies a position and orientation of a tool. This entry point container will be
used further in optimization. It is specified as EPi = (TaskRel

EFi, k, x, y, z, a, b, c, confbest),
where:

• k ∈ [0, 1] is a parameter that is used to obtain a neighborhood of a task TaskRel
EFi,

• x, y, z is a position in the k-th neighborhood TaskRel
EFi(k),

• a, b, c is an orientation in the k-th neighborhood TaskRel
EFi(k),

• confbest is the minimal-cost robot configuration to reach an end-effector pose.

An entry point EPi allows us to obtain the information about a point that is
effected by a tool (i.e., x, y, z) from which a robot’s tool has to start-finish processing
the task TaskRel

EF . Furthermore, EPi specifies an end-effector orientation (i.e., a, b, c) and
a robot configuration (i.e., confbest). Entry point EPi of the task TaskRel

EF is visualized
in Figure 5.2.A.

5.3. Solution Approach 57

Note that an entry point and a robot end-effector pose are defined in different
coordinate systems. An entry point is defined in Xw, Yw, Zw coordinate system, i.e., in
relation to a task. However, a robot end-effector pose, i.e., an end of arm point, for
this entry point has to be defined in global coordinates. Further, we provide details on
calculation of an end-effector pose Goali in global coordinates X, Y, Z for a particular
entry point EPi. The position of the Goali is defined as point (xef , yef , zef) and orienta-
tion Xef , Yef , Zef , see Figure 5.2.B. Angles a and b are used to compute an approaching
vector of the end-effector, i.e., vector Zef . Angle c denotes a desired orientation along
the tool axis and allows us to calculate normal and sliding vectors of the end-effector,
i.e., vectors Xef , Yef .

The first step to get the end-effector Goali point is to calculate the corresponding
neighborhood TaskRel

EFi(k) for a certain k. Then calculate a rotation matrix for the
angles a, b, c of entry point EPi:

Mrot = RotZ(b) ·RotY (a) ·RotZ(c),

where a, b, c ∈ EPi. RotY and RotZ are the rotation matrices about the corresponding
axis in a three-dimensional space.

Next, calculate a robot end-effector position EF = (xef , yef , zef)T :

xef = x+R · sin(a) · cos(b)
yef = y +R · sin(a) · sin(b)
zef = z +R · cos(a),

where R is the length of a robot’s tool. For some tasks, it can be constant, e.g., cutting
or drilling, see Chapter 5, or it can vary, e.g., taking a picture, see Chapter 6.

Finally, calculate a T-space point Goali for a robot to reach:

Goali =

[
Mw 0
01×3 1

]
·
[
Mrot EF
01×3 1

]
·
[
RotX(180◦) 0

01×3 1

]
, (5.1)

where Mw defines a coordinate system in the neighborhood TaskRel
EFi(k).

RotX is a rotation matrix about X axis in three-dimensional space. Rotation on
180◦ is needed to direct the Zef from the end of arm to the task entry point. A function
that returns the end-effector pose Goali for a particular entry point EPi is denoted as:
GetGoal(EPi)→ Goali.

The described concept of entry point has redundant information, as it is possible to
save only a robot configuration confbest. End-effector position (x, y, z) and orientation
(a, b, c) can be obtained with forward kinematics.

The previously described transformations show how to calculate a robot end-
effector goal for a particular entry point container.

58 5. Component2: Entry Points Optimization for a Relaxed Effective Task Sequence

Z
Y

X

(xef,yef,zef)

(x,y,z)

Mw

A B

Zw

YwXw

a

b

Zw

YwXw

Entry point EPi for the neighborhood Robot pose for the entry point EPi for the neighborhood

(x,y,z)

(k)TaskRelEF i
(k)TaskRelEF i

R

Xef

Yef

Zef

Figure 5.2: Robot pose is visualized for the entry point
EPi = (TaskRel

EFi(k), k, x, y, z, a, b, c, confbest) of the task neighborhood TaskRel
EFi(k).

Angle c is omitted for simplicity.

5.3.2 Problem Decomposition

The problem of optimizing entry points for the given relaxed effective task se-
quence is computationally difficult to solve, as it leads to a large and multidimensional
search space. We propose to apply a hierarchical optimization approach. It performs
a fast local search on every nested stage instead of applying time-consuming global
optimization techniques to the whole problem.

We split the optimization process into the following nested stages:

Stage 1: Optimize parameter k ∈ [0, 1] for a relaxed effective task TaskRel
EFi

such that a neighborhood TaskRel
EFi(k) contains an entry point with near-optimal

position and orientation.

Stage 2: Optimize a position (x, y, z) and an orientation (a, b, c) of an entry point
EPi in the task neighborhood TaskRel

EFi(k) obtained in Stage 1.

Stage 3: Optimize a robot configuration confbest for the position (x, y, z) and ori-
entation (a, b, c) (obtained in Stage 2) that belongs to the neighborhood TaskRel

EFi(k)
obtained in Stage 1.

Each outer stage depends on results of optimization on the inner stage, see Fig-
ure 5.3. In other words, in order to optimize the entry point of an area with respect
to preceding and succeeding areas, one has to find a neighborhood (parameter k) that
contains a near-optimal entry point. The cost of a certain neighborhood of the relaxed
effective task depends on the chosen position (x, y, z) and orientation (a, b, c) of an
end-effector. The cost of a position and an orientation depends on an inverse kine-
matics solution for this entry point. The cost of a kinematics solution in a particular
entry point depends on possible kinematics solutions in entry points of preceding and
succeeding tasks.

5.3. Solution Approach 59

Main loop

Task
Rel

EF i

Figure 5.3: Three nested stages for optimizing a entry points for the sequence of relaxed
effective task. The figure depicts a particular case where the approach calculates the
cost for a neighborhood TaskRel

EFi(k + ∆k), a position (x, y, z) and orientation Euler
angles a, b, c+ ∆c in this position.

During the optimization process, an outer stage executes an inner stage multiple
times. For example, while searching for the near-optimal position and orientation of
the end-effector (Stage 2) in a certain neighborhood, the costs of multiple position
and orientation tuples have to be compared. For each of them, inverse kinematics
optimization (Stage 3) has to be performed.

We applied the Pattern search [51] for optimization on the Stages 1 and 2. The
Dijkstra algorithm or simple exhaustive search can be applied for the Stage 3.

5.3.3 Optimization Approach

The underlaying idea of our approach is based on the Rubber-band algorithm
(RBA) [78]. The RBA iterates over all areas and improves entry points, one at a time.
We propose the modification of RBA that instead of searching in one search domain,
does the search in several nested domains. We refer to this approach as Nested RBA.
Our modification of the RBA that takes a sequence of entry point EPS and outputs
an optimized EPS. As input our approach takes a sequence of relaxed effective tasks
Job = (TaskRel

EF1, ..., Task
Rel
EFn) defined as described in Chapter 2. Its output is an entry

point sequence EPS = (EP1, ..., EPn). A sequence EPS is initialized by selecting an
entry point EPi = (TaskRel

EFi, k, x, y, z, a, b, c, confbest) for every task TaskRel
EFi. Parame-

ters of EPi can be chosen randomly so that x, y, z, a, b, c are within a neighborhood
TaskRel

EF (k). Another way is to apply the algorithms from Chapter 4.

Afterwards, one has to calculate the best robot configuration confbest for every
EPi. It can be done by obtaining a list of possible robot configurations for each entry
point and constructing a graph, where every configuration from entry point EPi is
connected with every configuration from entry point EPi+1. The weights in the graph

60 5. Component2: Entry Points Optimization for a Relaxed Effective Task Sequence

can be time or C-space distances. Then a graph search algorithm obtains the shortest
path that visits only one configuration in every entry point. For this purpose, the
Djikstra algorithm is used. Although, this approach is capable of fixing configurations
in several entry points at once, it is time consuming. Since the Stage 3 is executed
more often than other stages, having there a slow algorithm dramatically increases the
computational time. Therefore, the Djikstra algorithm is applied only once to obtain
the cost of an initial solution.

Note that an entry point sequence EPS is transferred between all stages and
represents a container that accumulates all information about the end-effector poses
and robot configurations for a particular task sequence.

The overall workflow of the Nested RBA is shown in Algorithm 5.1. We iterate
over all entry points and improve the sequence EPS by optimizing the i-th entry point
in every iteration with a function OptimizeNeighborhood (lines 2–4, Algorithm 5.1).
This function receives a sequence EPS and an index i as an input and returns an
improved EPS and its cost. This approach is described in Section 5.3.2 (Stage 1).
The whole entry point sequence instead of a single point EPi is passed to this function
because information about other entry points is also required to calculate costs at the
Stages 1 and 3. A stopping condition for the man loop can be an elapsed computational
time, a desired precision of a solution or a maximum number of iterations.

Algorithm 5.1: Main loop of the Nested RBA

Input: Initial T-space tour T = (t1, ..., tn)
Output: C-space tour CT

1 while stopping condition is not satisfied do
2 for i← 1 to n do
3 EPS, cost ← OptimizeNeighborhood(EPS, i);
4 end

5 end
6 return EPS ;

In the following, the realization of the Nested RBA stages is described in detail.

5.3.3.1 Stage 1: Optimization of an Neighborhood

In this section, the OptimizeNeighborhood algorithm is described. Its goal is
to choose the best value of the parameter k for an entry point EPi. Its workflow is
presented in Algorithm 5.2.

At first, Stage 1 algorithm calculates a current cost costcur, initializes a step ∆k as
a value from (0, 1] and saves the initialEPi (lines 1–3, Algorithm 5.2). GetSequenceCost
is a user-defined cost function that represents the optimization criterion. It returns the
cost of the supporting movement in regard to a desired metric, e.g., time or traveled
distance in C-space. If the confbest of an entry point is not feasible for a robot to reach

5.3. Solution Approach 61

and, therefore, has a value null, then the function GetSequenceCost returns ∞. It
prevents from obtaining invalid tours with tasks that are not reachable by the robot.
The algorithm calculates the cost for the values: k + ∆k and k −∆k, see Stage 1 in
Figure 5.3 and lines 9 and 16 in Algorithm 5.2.

At each step, we call the OptimizePose algorithm (described in Stage 2 in Sec-
tion 5.3.2) to obtain the costs costk−∆ and costk+∆ as well as new entry point sequences
EPSk−∆ and EPSk+∆ (lines 10 and 17, Algorithm 5.2). Note that OptimizePose is
called with different EPSs, where the parameter k of EPi has different values: k + ∆k

and k −∆k. If one of these steps brings an improvement, then stop the algorithm and
return the improved entry point sequence and the new cost (lines 21 and 23, Algorithm
5.2). If these actions did not improve the cost then decrease the step ∆k (line 26,
Algorithm 5.2) and repeat the process.

The algorithm returns an entry point sequence when the first improvement was
found. However, an improvement might not be found even if the step ∆k was decreased
many times. This happens when local search strategies on the inner Stages 2 and 3
come to a local minimum and cannot improve the current cost any more. One way to
determine this is to compare costk−∆ and costk+∆ values between two iterations. When
there was no improvement, then a rollback for EPi should be made (line 29, Algorithm
5.2). This approach guarantees that during optimization the overall sequence cost will
decrease or stay the same.

5.3.3.2 Stage 2: Optimization of an End-effector Pose

This section covers details of the OptimizePose algorithm. This algorithm opti-
mizes position (x, y, z) and orientation angles (a, b, c) of an entry point EPi of a value
of the parameter k defined by the outer Stage 1. An output of the algorithm is an
optimized entry point sequence EPS and a new cost. In contrast to the Stage 1, where
optimization is done until the first improvement is found, the optimization of orien-
tation is performed until a stopping condition is met. A stopping condition can be
reaching a desired solution precision.

At first, OptimizePose initializes its main variables in lines 1–3 in Algorithm 5.3.
Initial values should belong to the corresponding neighborhood. For example, initial
values of orientation angles a, b, c can be computed as the middle angles of an orientation
window (see Section 5.3.1), e.g., a = al + (au − al)/2. An initial cost is calculated with
the algorithm OptimizeConfiguration described in Section 5.3.2. Finally, steps ∆x,
∆y, ∆z, ∆a, ∆b, ∆c are initialized. The size of a step depends on the allowed interval
of each angle of a current node point. For example, in our implementation, initially ∆a

is a half of the interval [al, au]. The steps ∆b and ∆c are obtained analogously.

The main idea of Stage 2 is to iteratively improve the position values and orien-
tation angles. Within one iteration (lines 4–18, Algorithm 5.3) six angle combinations
are checked, i.e., (a−∆a, b, c), (a+ ∆a, b, c), (a, b−∆b, c), (a, b+ ∆b, c), (a, b, c−∆c),
(a, b, c+ ∆c). Position values are checked analogically. In pseudocode, we show only
the case (a−∆a, b, c), as the steps for other combinations are similar.

62 5. Component2: Entry Points Optimization for a Relaxed Effective Task Sequence

Algorithm 5.2: OptimizeNeighborhood

Input: Entry point sequence EPS, current index i
Output: Improved entry point sequence EPS, cost of the improved EPS

1 costcur ← GetSequenceCost(EPS);
2 ∆k ← InitializeStep;
3 EPinitial ← EPi;

4 while true do

5 ktemp ← k;
6 if k − ∆k < 0 then
7 costk−∆ ← ∞;
8 else
9 k ← k − ∆k, where k ∈ EPi, EPi ∈ EPS;

10 EPSk−∆, costk−∆ ← OptimizePose(EPS, i);

11 end

12 k ← ktemp;
13 if k + ∆k > 1 then
14 costk−∆ ← ∞;
15 else
16 k ← k + ∆k, where k ∈ EPi, EPi ∈ EPS;
17 EPSk+∆, costk+∆ ← OptimizePose(EPS, i);

18 end

19 if (costk−∆ < costcur) or (costk+∆ < costcur) then
20 if costk−∆ < costk+∆ then
21 return EPSk−∆, costk−∆;
22 else
23 return EPSk+∆, costk+∆;
24 end

25 else
26 ∆k ← ∆k / 2;
27 end

28 if no changes in costk−∆, costk+∆ between iterations then
29 EPi ← EPinitial;
30 return EPS, costcur;

31 end

32 end

The angle a takes a value a − ∆a, whereas the other orientation angles b and
c keep their initial values. If the value a − ∆a is not within the range [al, au], then
the step ∆a is decreased (lines 14, Algorithm 5.3). Otherwise, an improved EPSa−∆

and its costa−∆ are obtained by optimizing a robot configuration with a function

5.3. Solution Approach 63

Algorithm 5.3: OptimizePose

Input: Entry point sequence EPS, current index i
Output: Improved entry point sequence EPS, cost of the improved EPS

1 x, y, z, a, b, c ← InitializeStartingV alues;
2 EPSbest, costcur ← OptimizeConfiguration(EPS, i);
3 ∆x,∆y,∆z,∆a,∆b,∆c ← InitializeSteps;

4 while stopping condition is not satisfied do
5 atemp ← a;
6 a← a−∆a, where a ∈ EPi, EPi ∈ EPS;

7 if (al < a) and (a < au) then
8 EPSa−∆, costa−∆ ← OptimizeConfiguration(EPS, i);
9 if costa−∆ < costcurr then

10 EPSbest ← EPSa−∆;
11 costcurr ← costa−∆;

12 end

13 else
14 ∆a ← ∆a / 2;
15 end
16 a← atemp;

...
17 Check (x+ ∆x, y, z), (x−∆x, y, z) (x, y −∆y, z), (x, y + ∆y, z),

(x, y, z −∆z), (x, y, z + ∆z), (a+ ∆a, b, c), (a, b−∆b, c), (a, b+ ∆b, c),
(a, b, c−∆c), (a, b, c+ ∆c) by analogy;
...

18 if no cost improvement then
19 ∆x,∆y,∆z,∆a,∆b,∆c ← ReduceSteps;
20 end

21 end
22 return EPSbest,costcur;

OptimizeConfiguration that is described in Section 5.3.3.3. If a newly obtained cost
is less than the initial cost, then save the new sequence and its cost (lines 9–11, Algo-
rithm 5.3). Then the angle a takes the initial value and the other five combinations are
checked. If none of the six combinations lead to an improvement, the steps ∆a, ∆d, ∆c,
are decreased (lines 19, Algorithm 5.3).

5.3.3.3 Stage 3: Optimization of a Robot Configuration

The goal of the Stage 3 is to choose a near-optimal robot configuration to reach
a position (x, y, z) and orientation angles a, b, c (given by the Stage 2) that belongs to
a neighborhood TaskRel

EF (k) (given by the Stage 1). Choosing the best configuration is

64 5. Component2: Entry Points Optimization for a Relaxed Effective Task Sequence

Algorithm 5.4: OptimizeConfiguration

Input: Entry point sequence EPS, current index i
Output: Improved entry point sequence EPS, cost of the improved EPS

1 Goali ← GetGoal(EPi);
2 IKS ← GetIK(Goali);

3 if IKS = ∅ then
4 return EPS, ∞;
5 end

6 costIKmin ← ∞;
7 foreach IKj ∈ IKS do
8 costIKtemp ← GetCost(IKj, confbest ∈ EPi−1) +

GetCost(IKj, confbest ∈ EPi+1);

9 if costIKtemp < costIKmin then
10 costIKmin ← costIKtemp;
11 confbest ← IKj, where confbest ∈ EPi, EPi ∈ EPS;

12 end

13 end
14 cost ← GetSequenceCost(EPS);
15 return EPS, cost;

nontrivial. Any change of a single entry point configuration affects the global cost of
the whole entry point sequence. Therefore, ideally configurations of all entry points
should be optimized at once, for example, with a Dijkstra algorithm.

Since the Stage 3 is executed more often than the other stages, having there a
global algorithm dramatically increases computational time. Therefore, a local strategy
that optimizes only confbest in the current entry point EPi is preferred.

The approach of the Stage 3 is implemented as a functionOptimizeConfiguration.
It takes an entry point sequence EPS and a current index i as an input and returns an
improved sequence EPS with a robot configuration confbest, optimized only for EPi,
and its cost. The main steps of the approach are presented in Algorithm 5.4. At first,
a function GetGoal calculates a T-space point Goali that is affected by an end-effector
in an entry point EPi according to Equation 5.1. A function GetIK solves an inverse
kinematics problem and obtains a set of possible robot configurations IKS for a robot
to reach the point Goali. If no inverse kinematics solution was found, i.e., the Goali is
not reachable by the robot, then the algorithm returns the initial EPS and the infinite
cost. The core goal of the algorithm is to choose such an IK solution from the IKS
that minimizes the cost of a trajectories between the point EPi and its neighboring
entry points EPi−1 and EPi+1. It is realized in lines 6–10 where a function GetCost
returns the cost between two robot configurations. Finally, when the best configuration
is chosen, the sequence cost is recalculated (line 11, Algorithm 5.4). Then an improved

5.4. Conclusion 65

sequence EPS with an optimized robot configuration confbest and its cost cost are
returned to the Stage 2.

5.4 Conclusion

This chapter considers the problem of improving a given relaxed effective task
sequence with respect to a robot-oriented cost. The goal is to optimize the entry
point of each relaxed effective task so that the cost of a robot supporting movement
is minimized. Entry points here denote the starting position, orientation and a robot
configuration for every task. We modeled this problem as the Touring-a-sequence-of-
Polygons Problem, where a tour has to be found through the sequence of polygons. In
contrast to the classic TPP, here we have to search in several nested domains, i.e., find
a neighborhood that contains the entry point, find the position and orientation of the
entry point and finally find the robot configuration. The main idea of the proposed
solving method is to decompose the problem into three nested stages and solve each of
them with local search techniques. Similar conceptions of problem decomposition were
previously successfully applied to the planning of a hexapod robot for NASA moon
exploration [92] and for industrial robot task sequencing [52]. We modify the Rubber-
band algorithm to be able to search in nested domains. We refer to the proposed domain
independent approach as Nested RBA.

6. Component3: Robot Trajectory
Optimization for a Relaxed
Effective Task

I will not follow where the path may
lead, but I will go where there is no
path, and I will leave a trail.

“Wind-Wafted Wild Flowers”
by Muriel Strode

After finding a sequence of Cartesian entry points using the methods presented in
Component1 and improving entry points using the method in Component2 with respect
to robot-related cost function, we obtain a supporting trajectory and starting robot
configurations for every relaxed effective task. At this point, the optimization of sup-
porting movements is finished. The next step is to optimize the robot trajectory for
every relaxed effective task. In this chapter, we present an RBA-based approach that
constricts the neighborhoods of the relaxed effective task with a smooth curve, i.e., an
end-effector path for a robot. The objective is to minimize robot trajectory cost.

The remainder of this chapter is organized as follows. The introduction and
motivation for the problem are presented in Section 6.1. Related problems are discussed
in Section 6.2. Our solution approach is presented in Section 6.3. The method to
calculate the trajectory from the given motion law is described in Section 6.3.2.

68 6. Component3: Robot Trajectory Optimization for a Relaxed Effective Task

Motion law

calculation

0 Time

1Input: relaxed task with a C-space enry point

 and optionally exit point

Output: C-space robot trajectory

Optimize: trajectory jerk

Effective task

path optimization

Component3

Figure 6.1: Component3 overview.

6.1 Motivation

The way to define a robot’s path for an effective task depends on the application
domain and task geometry. Therefore, a robot’s end-effector path and its motion law
are often defined in a strict way to meet the requirements of an industrial process. For
example, a robot has to weld a line and to maintain a certain velocity in order to have a
desired effect on a surface. As a consequence, the obtained robot trajectory is dictated
by the application scenario; however, the robot’s execution can be “awkward”, e.g., it
can cause high jerks in robot joints.

At the same time, effective tasks often allow some freedom of execution. For
example, laser-welding can be performed with one of several possible tool orientations
[59] and cutting can be performed with a set of possible tool positions and orientations
[4].

We present an approach to find such an end-effector path for a relaxed effective
task with a given C-space entry point (see Figure 6.1) that leads to a minimal cost robot
trajectory. A motion law is assumed to be given, e.g., it was imposed by an industrial
application or has already been computed and optimized. In order to solve this problem,
it is modeled as the TPP, see Figure 6.2. This is done by discretizing a given relaxed
effective task into a sequence of neighborhoods which have to be visited. We propose a
modification of the Rubber-band Algorithm to solve the TPP. The proposed heuristic
approach does not depend on a cost function and a way to define the relaxation of an
effective task.

In this chapter, we are focusing on continuous trajectories instead of point-to-point
trajectories, i.e., predefined motion law must be maintained throughout the whole path
and not only in its via-points. A trajectory cost is domain-dependent and can be, for
example, jerk, energy or material influence metric.

6.2 Related Work

There are several methods that also exploit a freedom of executing an effective
task in order to optimize a corresponding trajectory. In this section, we discuss them
in detail.

Generation of a C-space trajectory is computationally expensive when an end-
effector path consists of a large number of via-points. Aspragathos [13] described a

6.3. Solution Approach 69

technique to relax an end-effector path by using position deviation. He considered an
end-effector path optimization problem which utilizes an execution freedom to minimize
the number of via-points and, as a consequence, the number of IK calls. In contrast,
our problem formulation does not aim at minimizing a number of via-points but rather
at minimizing a cost of robot’s C-space trajectory by letting the via-points float in their
neighborhoods.

Another similar problem was proposed by Kolter et al. [58] who used cubic splines
to construct T-space smooth trajectories. All constraints are convex and are applied to
the via-points of a T-space path. The problem was solved with a general purpose convex
solver. The presented approach is powerful and can incorporate numerous objective
functions from the T-space, except minimization of the trajectory duration time. Cost
functions from the C-space can also be used but in this case Jacobian approximation
should be performed along the trajectory. As a consequence, only one of many IK
solutions is considered. The main limitation is that this technique is not suitable for
the scenarios where a path must go through non-convex narrow corridors in a robot
C-space. Such scenarios often appear in industrial robotics when effective tasks are
involved.

From et al. [40] described a freedom for the orientation of a paint gun by using
convex constraints. The proposed a real-time approach which calculates an optimal
paint gun orientation for each time step and a given constant velocity value. The
minimal cost here means that the displacements of a paint gun are minimized. The cost
function must be convex. The problem considered in this chapter is a generalization
of their problem, as the freedom is provided both for the end-effector orientation and
position. We do not require constraints or an objective function to be convex. There is
also no requirement that a velocity has to be a constant value, it can be an arbitrary
function.

6.3 Solution Approach

Exhaustive search strategies are impractical due to the large search space of the
robot trajectory optimization for the relaxed effective task. Convex solvers cannot be
applied, as we do not restrict problem constraints and a cost function to be convex. A
way to solve the problem is to apply a heuristic approach. Heuristics do not guarantee
finding the optimum, however, they can provide near-optimal solution to real-life sce-
narios in a reasonable time. We propose a heuristic search that is based on the RBA
[78] and on the Pattern Search (PS) [51]. We refer to this approach as Smoothed RBA.
In contrast to standard RBA, proposed modification of RBA constricts the areas not
with a polyline, but with a smooth curve. In addition, the cost is calculated for the
C-space trajectory but not for the spline in T-space. Therefore, during optimization,
moving one via-point of an end-effector trajectory requires not only to measure distance
to the neighboring points, but to recalculate full C-space trajectory instead. Further a
detailed explanation of the algorithm is given.

70 6. Component3: Robot Trajectory Optimization for a Relaxed Effective Task

k=1

k=0
k=0.5

k=0.75

k=0.25

Touring-a-sequence-of-Polygons Problem

k=1

k=0
k=0.5

k=0.75

k=0.25

Optimizing an end-effector path

for a relaxed effective task

Figure 6.2: A problem of optimizing an end-effector trajectory is represented as the
Touring-a-sequence-of-Polygons Problem by using discretization.

6.3.1 Smoothed RBA

First, we introduce a notion of a discretized relaxed effective task. A relaxed
effective task TaskRel

EF is a continuous function. Therefore, for optimization, the task
TaskRel

EF is discretized, i.e., only the key via-neighborhoods should be chosen. It can be
done by discretizing the domain of an effective task. For example, the domain param-
eter k can take values from the discrete set {0, 0.1, ..., 0.9, 1} instead of the continuous
interval [0, 1]. We denote to a discretized effective task as TaskRelD

EF .

Our algorithm requires the following parameters as an input: a discretized relaxed
effective task TaskRelD

EF , an end-effector motion law MLEF , a motion duration T and
a Frequency of the output trajectory. Note that motion duration time T depends on
the industrial domain and particular task. If it is too small the algorithm will not find
a solution because the limits of a robot joint velocity will be violated. The Smoothed
RBA output is an optimized continuous C-space trajectory TrajR. The main steps of
the optimization process are presented in Algorithm 6.1.

Initially, the algorithm gets a feasible discrete path PathDEF , so that it belongs to
the given relaxed effective task TaskRelD

EF . Then a C-space robot trajectory is calculated
with the algorithm GetTrajectory which is discussed further in Section 6.3.2. A robot
trajectory cost is calculated by the function GetCost according to Equation 7.1.

Smoothed RBA is an iterative approach. In each iteration, it runs through all the
points from the PathDEF and optimizes the position and the orientation of each point
one by one. The iterative process terminates when a stopping condition, e.g., a number
of iterations or elapsed calculation time, is satisfied.

Optimization for a single point can be done in a number of ways. In the current
implementation, PS is applied (lines 6–15 in Algorithm 6.1). At first, PS modifies the
T-space point Pi (line 7) by changing one of the point’s coordinates by a certain small
value. The PS loop terminates when no further modification is possible (line 6), i.e.,
all coordinates have already been modified and improvement was found. For every
new modification, a new path PathEFnew is obtained and a trajectory is recalculated
with the further described method GetTrajectory (line 8) and its cost is obtained (line

6.3. Solution Approach 71

Algorithm 6.1: Smoothed RBA

Input: TaskRelD
EF , MLEF , T , Frequency

Output: TrajR

1 Get a feasible initial path PathDEF ∈ TaskRelD
EF ;

2 TrajR ← GetTrajectory(PathDEF ,MLEF , T, Frequency);
3 cost← GetCost(TrajR) ;

4 while stopping condition is not satisfied do
5 foreach Pi ∈ PathDEF do
6 while Modifications are possible do
7 PathDEFnew ←Modify(PathDEF , Pi);
8 TrajRnew ← GetTrajectory(PathDEFnew,MLEF , T);
9 costnew ← GetCost(TrajRnew) ;

10 if costnew < cost then
11 PathDEF ← PathDEFnew;
12 cost← costnew;
13 TrajR ← TrajRnew;

14 end

15 end

16 end

17 end
18 return TrajR;

9). If the modification leads to the cost decrease (line 10), then save the PathEFnew,
costnew, TrajRnew (lines 11–13). The algorithm guarantees that the path worse than
the initial one will not be returned. Note, that the algorithm only varies the path of
the end-effector but keeps the motion law unchanged.

6.3.2 C-space Trajectory Calculation

In this section the way to calculate C-space trajectory is discussed. The C-space
trajectory TrajR is calculated with the method GetTrajectory. The straightforward
way to obtain a C-space trajectory is to map every point of the end-effector trajectory
to the robot configuration by calculating inverse kinematics. However, it requires a
large number of inverse kinematics calls that are normally computationally expensive.

At first, a discrete robotic path PathDR is obtained by calculating inverse kine-
matics for a discrete end-effector path PathDEF via-points, see line 1 in Algorithm 6.2.
Note, that only one of several possible solutions of inverse kinematics is chosen. For
example, “elbow-up” configuration for all the points from the PathDEF . Then PathDR is
interpolated into a continuous smooth robot path PathR with a smooth function with
a Parameterinit, an array consisting of values from the interval [0, 1] starting with 0
and increasing by a small step (line 3 in Algorithm 6.2).

In this work, cubic splines were applied for interpolation of the path and motion
law, as they are twice continuous differentiable and provide constant jerk. Higher order

72 6. Component3: Robot Trajectory Optimization for a Relaxed Effective Task

Algorithm 6.2: GetTrajectoryectory—C-space trajectory calculation

Input: PathDEF , MLEF , T , Frequency
Output: TrajR

1 PathDR ← IK(PathDEF);
2 Parameterinit ← GenerateParameterfrom[0, 1];

3 Pathtemp
R ← Interpolate(PathDR , Parameterinit);

4 for i← 0 to 1 with step 1/(Frequency×T) do
5 if i = 0 then

6 Conf1 ← Pathtemp
R (i);

7 Pose1 ← FK(Conf1);
8 Configurations.Append(Conf1);
9 Parameter.Append(0);

10 else

11 Conf2 ← Pathtemp
R (i);

12 Pose2 ← FK(Conf2);
13 Configurations.Append(Conf2);
14 Parameter.Append(d(Pose1, Pose2));
15 Conf1 ← Conf2;

16 end

17 end
18 Parameter ← Normalize(Parameter);
19 PathR ← Interpolate(Configurations, Parameter);
20 TrajR ← PathR(MLEF) ;
21 return TrajR;

splines generally suffer from unwanted high osculation and might lead to a retrograde
motion [67]. This allows to obtain smooth Pathtemp

R .

A loop in lines 4–17 of Algorithm 6.2 calculates a new interpolation parameter
Parameter in order to scale the PathR for computing a robot trajectory. The loop
iterates through the spline domain [0, 1] with a step size 1/(Frequency * T). In the first
iteration, it initiates variables for the last robot configuration Conf1, the last robot’s
pose Pose1, an array of considered configurations Configurations and a new parame-
ter Parameter. The robot’s pose is obtained by applying forward kinematics to the
configuration. An array Parameter consists of the distances between the consequent
positions of the end-effector. The sum of all values from Parameter equals the length of
the T-space path. In the remaining iterations, the algorithm computes the current con-
figuration Conf2, the corresponding pose Pose2 and extends the arrays Configurations
and Parameter with new values.

The final steps are as following. After obtaining the new Parameter array, its
elements are normalized so that their sum equals 1, i.e., each element is divided by the
sum of all elements. Then the algorithm constructs a new continuous robot path by
using interpolation with this normalized Parameter and the sequence of robot’s Config-

6.4. Conclusion 73

urations. This allows us to obtain a smooth robot path which leads to a monotonous
motion of the end-effector. Finally, a robot trajectory TrajR is calculated by applying
the motion law MLEF to the path PathR.

The described algorithm reduces the number of IK calls. In case if more control
on precision is desired, the number of via-points (size of an array Parameter) can be
increased.

6.4 Conclusion

In this chapter, we observed the problem of optimizing robot trajectory for a given
relaxed effective task. The motion law can be either dictated by a certain industrial
application, e.g., maintain certain velocity while welding, or it can be optimized with
known approaches. To solve the problem, we represent a continuous relaxed effective
task as a sequence of neighborhoods. In this way, the problem can be represented as a
Touring-a-sequence-of-Polygons Problem. Despite this discretization, we are still focus-
ing on continuous trajectory, and during optimization we make sure that a predefined
motion law is maintained through the whole continuous end-effector path. We propose
the algorithm Smoothed RBA which is based on an RBA, but instead of using a poly-
line to constrict areas, it uses a smooth curve for an end-effector path. The goal of
optimization is to reduce the C-space trajectory cost. The described solution method is
application-independent that does not impose any requirements on types of constraints
and a cost function, e.g., they can be non-convex.

7. Evaluation

Climate is what you expect,
weather is what you get.

Robert A. Heinlein

In this thesis, we presented approaches for (i) calculating a task sequence and the
corresponding entry points of the tasks, (ii) improving a task sequence with regard to
a robot cost metric, and (iii) optimizing a robot trajectory for a relaxed effective task.
In this chapter, an evaluation of the proposed approaches is presented.

7.1 Evaluation of the Component1 Approaches

This section presents an evaluation of the proposed task sequencing algorithms
on three sets of instances. We compare Constricting Insertion Heuristic (CIH), Con-
stricting 3-Opt (C3-Opt) and their variants with state-of-the-art approaches on three
set of instances: (i) 24 instances with known optimum, (ii) 18 instances with“stretched”
ellipses and (iii) 20 instances for the Close-Enough TSP (CETSP).

All the methods from Component1 proposed in this thesis were run on the following
hardware: Intel Core 2 Quad CPU, 2.83 GHz with 8 GB of RAM, running Microsoft
Windows Vista. A state-of-the art approach and a solver for optimal values were ran
by Gentilini et al. [43] using Intel Xeon, 3.33 GHz CPU with 12 GB of RAM, running
Fedora. Since the provided computational time was obtained in different conditions, it
cannot be compared directly.

76 7. Evaluation

7.1.1 Evaluated Algorithms

CIH and C3-Opt variants

A problem of task sequencing and entry point selection is modeled as a TSPN.
We split this problem into a TSP and a TPP that are then solved simultaneously. In
the following we present evaluation results for CIH and C3-Opt heuristics.

The CIH is a tour-construction heuristic which iteratively builds a solution that
can be improved further. We apply the 2-Opt and the 3-Opt algorithms as tour-
improvement methods for the TSP and mRBA for the TPP. We denote a combination
of 2-Opt and mRBA by 2-Impr. and a combination of 3-Opt and mRBA by 3-Impr.,
respectively. Starting points for the listed tour-construction heuristics were set to the
centers of ellipses.

The C3-Opt is a tour-improvement heuristic, and its efficiency depends on an
input tour. We evaluate three variants of the C3-Opt with different input tours:

• NN→C3-Opt, where the initial tour is generated by the Nearest Neighbor algo-
rithm (NN) which iteratively extends a solution with a point nearest to the last
added one.

• Rand→C3-Opt, where an initial tour is generated pseudo-randomly by inserting
areas in the order in which they are listed in the instance file.

• CIH→C3-Opt, where an initial tour is generated by CIH.

State-of-the-art algorithms

We compare the proposed algorithms with two state-of-the-art algorithms. The
first one was proposed by Gentilini et al.[43] who improved a Mixed-Integer NonLinear
Program (MINLP) solver by introducing a heuristic. In the following, we will refer to
this approach as Heuristic in Solver (HIS).

Another concept to compare with is an idea proposed by Mennell et al. [71]
where, first of all, every area is represented with a point and then sequentially TSP and
TPP are solved. The original approach called LK-SOCP uses the Lin-–Kernighan (LK)
heuristic for solving the TSP and a second-order cone program (SOCP) for the TPP.
In the following, we refer to this method as TSP→TPP. Our aim is not to replicate all
nuances of the original approach but rather to compare the concept of applying methods
for the TSP and TPP sequentially or in parallel. To make an unbiased comparison
between the CIH and the TSP→TPP, the same TPP solver is used, i.e., RBA. As a
TSP solver, the Nearest Neighbor (NN) algorithm improved with the 3-Opt method is
applied.

7.1. Evaluation of the Component1 Approaches 77

7.1.2 Evaluation on Instances with Known Optimum

Since heuristic approaches do not guarantee to find the optimal solution, one
should estimate how far from optimum the solutions found by a heuristic are. Therefore,
in this section, the proposed approaches are evaluated on test instances with known
optimal costs. This instances were developed by Gentilini et al. [43] and are available
on-line1 with a precise description. The set contains 24 instances with maximum number
of 16 areas. An example of an instance name is “tspn2DE7 N” that stands for a 2D
instance with 7 ellipses. Number N reflects a box size circumscribing an ellipse and
equals “1” or “2”. Ellipses with the box size “1” are larger than with box size “2”.

The evaluated approaches have the following values of the parameters. The accu-
racy µ for the CIH and the accuracy ε for the mRBA are set to 0.01. The C3-Opt was
executed with the following parameters: ε=20 and µ=20.

The results of the evaluation are presented in Table 7.1. For every instance, the
table contains an optimal cost as well as a deviation from the optimum and a run time
for each heuristic. The optimum value was calculated by Gentilini et al. [43].

Since both CIH and TSP→TPP are as tour construction heuristics, for both
of them, the tour-improvement heuristic 3-Impr. is applied during this evaluation.
However, on these test instances, the improvement algorithm has no effect for the
TSP→TPP. Therefore, we omit this column from the results table.

The average time for all instances is 650.42 ms for the HIS and only 11.97 ms
for the CIH. Even though these computational times cannot be compared directly,
as the methods were executed on different hardware, the difference is significant—the
CIH outperforms the HIS in 54 times on average. Although this number should not
be understood as an unbiased comparison, it shows that our algorithm achieved a
significant improvement in computational time.

The TSP→TPP found optimal solutions for 13 instances out of 24. The deviations
from optimum produced by the TSP→TPP are not caused by the TPP solver (except
“tspn2DE9 2”) but rather by a “bad” representation of the areas with initial points,
as the tours produced by the TSP solver are optimal. The HIS solved 15 instances
out of 24 to optimality with an average deviation of 0.15%. Though the underlaying
principal of the CIH is greediness, this method provides good results in practice. The
CIH obtained optimal costs on 20 tests out of 24. Application of the 3-Impr. decreased
the average deviation from 0.32% to 0.29%.

The use of the greedy NN heuristic to calculate an input tour for the C3-Opt led to
results worse than Rand→C3-Opt and CIH→C3-Opt. The average and the maximum
deviations are 0.19% and 2.39%, respectively. It could be explained by the fact that
the C3-Opt is a local search algorithm, therefore, it has no techniques to escape from a
local minimum established by the NN. The average computational time is 38.21ms.

1 STSPN Instances: http://wpweb2.tepper.cmu.edu/fmargot/ampl.html

78
7.

E
valu

ation

Table 7.1: Performance of the Component1 and state-of-the-art approaches on the instances with known optima.

Instance Optimal HIS TSP→TPP CIH CIH (3-Impr.) NN→C3-Opt Rand→C3-Opt CIH→C3-Opt
value deviation(%) t(ms) deviation(%) t(ms) deviation(%) t(ms) deviation(%) t(ms) deviation(%) t(ms) deviation(%) t(ms) deviation(%) t(ms)

tspn2DE5 1 191.255 0.00 140 0.00 0.24 0.00 0.87 0.00 1.23 1.46 0.69 0.00 1.19 0.00 1.38
tspn2DE5 2 219.307 0.00 130 0.00 0.23 0.00 0.57 0.00 0.67 0.00 0.56 0.00 1.29 0.00 0.84
tspn2DE6 1 202.995 0.00 240 0.00 0.41 0.00 0.93 0.00 1.08 0.00 1.09 0.00 1.83 0.00 1.47
tspn2DE6 2 248.860 0.00 180 0.00 0.38 0.00 0.82 0.00 0.98 0.00 0.69 0.00 1.62 0.00 1.32
tspn2DE7 1 201.492 0.00 300 0.00 0.63 0.02 3.46 0.02 3.94 0.00 2.95 0.00 2.58 0.02 4.50
tspn2DE7 2 239.788 0.00 250 0.98 0.61 0.00 1.78 0.00 2.04 0.00 2.27 0.00 5.86 0.00 2.87
tspn2DE8 1 190.243 0.00 370 0.07 0.57 0.00 0.42 0.00 0.74 0.00 2.92 0.00 7.90 0.00 2.67
tspn2DE8 2 229.150 0.01 400 0.00 0.87 0.00 3.49 0.00 4.11 0.00 3.43 0.00 4.69 0.00 5.36
tspn2DE9 1 259.290 0.00 400 4.23 1.34 0.00 5.78 0.00 6.81 0.00 8.00 0.00 11.47 0.00 8.79
tspn2DE9 2 262.815 0.00 410 2.05 1.16 0.00 4.58 0.00 5.30 0.00 6.12 0.01 13.62 0.00 7.78
tspn2DE10 1 225.126 0.00 410 0.15 1.30 0.00 5.84 0.00 6.83 0.00 9.01 0.00 10.89 0.00 11.31
tspn2DE10 2 273.192 0.21 350 0.21 1.55 0.00 5.08 0.00 6.18 0.00 16.66 0.00 17.48 0.00 10.97
tspn2DE11 1 247.886 0.75 630 0.69 2.19 0.00 8.02 0.00 9.82 0.69 18.79 0.00 24.94 0.00 16.12
tspn2DE11 2 258.003 0.00 390 0.00 2.20 0.00 7.37 0.00 9.04 0.00 25.65 0.00 24.08 0.00 15.46
tspn2DE12 1 265.858 0.00 550 0.00 2.38 0.00 9.54 0.00 11.52 0.00 25.40 0.00 63.28 0.00 21.14
tspn2DE12 2 312.493 0.50 860 2.62 2.21 0.00 11.89 0.00 13.75 0.00 66.01 0.00 72.10 0.00 23.96
tspn2DE13 1 278.876 0.00 1150 0.00 4.70 0.00 15.24 0.00 18.49 0.00 27.05 0.00 66.96 0.00 32.58
tspn2DE13 2 324.271 0.20 490 0.20 4.67 0.00 15.33 0.00 18.07 0.00 60.90 0.00 60.43 0.00 34.01
tspn2DE14 1 310.794 0.00 950 0.00 12.45 0.00 22.82 0.00 26.75 0.00 85.96 0.00 99.12 0.00 45.93
tspn2DE14 2 270.638 0.56 690 0.26 12.38 0.00 18.68 0.00 21.99 0.00 111.71 0.07 212.62 0.00 43.78
tspn2DE15 1 289.716 0.22 1080 0.00 4.69 0.00 28.28 0.00 34.44 0.00 38.49 0.00 196.19 0.00 60.44
tspn2DE15 2 293.357 0.01 1200 0.02 7.80 1.36 28.06 1.36 32.99 0.01 64.65 0.00 91.77 0.00 78.50
tspn2DE16 1 369.945 1.09 2840 0.00 26.90 6.26 26.92 5.44 36.35 2.39 192.27 0.00 172.19 0.00 152.94
tspn2DE16 2 295.130 0.00 1200 0.00 10.73 0.01 61.58 0.01 71.31 0.00 145.68 0.00 339.39 0.00 105.34
Average: 0.148 650.42 0.48 4.27 0.319 11.97 0.285 14.35 0.190 38.21 0.003 62.64 0.001 28.73
Max: 1.09 2840.00 4.23 26.90 6.26 61.58 5.44 71.31 2.39 192.27 0.07 339.39 0.02 152.94

7.1. Evaluation of the Component1 Approaches 79

The Rand→C3-Opt and the CIH→C3-Opt showed very close solution quality
results: an average deviation of 0.003% and 0.001%, respectively. The time with CIH
input tour is shorter than with Random tour (28.73ms versus 62.64ms). Both of these
variants outperformed the other algorithms in the solution quality.

7.1.3 Evaluation on Instances with “Stretched” Ellipses

In this test, we evaluate the efficiency of the CIH and the C3-Opt on larger
scenarios.

Since instances proposed by Gentilini et al.[43] have up to 16 areas, we generated
a set of instances with up to 60 “stretched” ellipses. The ellipses have different ratio
between their axis radii, i.e., stretched along one of the axis. The set contains 18
instances and is available on-line2.

The test instances are generated according to the following principle. At first,
coordinates of the centers of ellipses (xi, yi) are selected as a random integer number
that lies in the interval [0, 100]. A coefficient of elongation CE is a float number
chosen from the interval [A,B], where A and B are positive real numbers, with equal
probability for each value. To generate instances for this section, intervals [1,1], [1,5]
and [1,10] were used. A radius along X-axis is calculated as Rx = 100/N × 2× Rand,
where N is a desired number of areas in the test and Rand is a random real number
that lies in [0.1, 1]. A radius along the Y -axis is calculated as Ry = Rx × CE. With a
probability of 0.5, Rx and Ry are exchanged. This method allows us to generate test
instances with ellipses of different elongations along the axis. The name of an instance
“60 1 5” should be understood as a scenario with 60 ellipses which have one of the axis
radii stretched from 1 to 5 times in comparison to another axis radius.

Due to the sizes of the instances, it is infeasible to obtain the optimal cost. There-
fore, we evaluate the algorithms by comparing them with the best obtained value for
each single instance. The best obtained value is the minimal value among results of the
seven analyzed approaches.

The evaluated methods were executed with the following parameters: µ=0.01,
ε=0.01 for the CIH and ε=20 and µ=20 for the C3-Opt. The results of the evaluation are
presented in Table 7.2. The CIH (3-Impr.) found best values for 4 out of 18 instances.
The average deviation from the best obtained value is 4.67%. The TSP→TPP (3-Impr.)
reached the best found cost once. Although both the CIH (3-Impr.) and the TSP→TPP
call 3-Opt once, the CIH (3-Impr.) finishes its computations on average faster. The
reason is that in the TSP→TPP, the major time is spent on 3-Opt execution, as the
initial tour is far from being optimal. In contrast, in the CIH (3-Impr.), an initial tour
obtained by the CIH is close to optimum. Therefore, the 3-Opt makes less exchanges
and requires less time.

2TSPN Test Instances: see https://cse.cs.ovgu.de/cse/robotics/tspn/, accessed on August 26, 2015

https://cse.cs.ovgu.de/cse/robotics/tspn/

80
7.

E
valu

ation

Table 7.2: Performance of the Component1 and state-of-the-art approaches on test instances with “stretched” ellipses.

Best obtained TSP→TPP TSP→TPP CIH CIH (3-Impr.) NN→C3-Opt Rand→C3-Opt CIH→C3-Opt
Instance value (3-Impr.)

deviation(%) t(s) deviation(%) t(s) deviation(%) t(s) deviation(%) t(s) deviation(%) t(s) deviation(%) t(s) deviation(%) t(s)

20 1 1 318.904 0.56 0.02 0.56 0.03 2.39 0.09 1.82 0.13 0.62 0.22 0.00 0.74 0.00 0.37
20 1 5 312.915 0.18 0.02 0.18 0.03 3.30 0.08 3.30 0.09 0.00 0.43 0.00 1.44 0.00 0.39
20 1 10 252.350 17.92 0.06 15.21 0.07 0.00 0.14 0.00 0.14 1.40 1.29 1.10 0.70 0.00 0.22
30 1 1 383.578 0.06 0.28 0.06 0.38 1.44 0.22 1.37 0.27 0.77 1.96 0.00 3.94 0.00 2.13
30 1 5 316.854 10.71 0.55 8.49 0.76 0.00 0.31 0.00 0.36 1.08 6.90 0.11 12.15 0.00 0.96
30 1 10 306.338 11.66 0.49 8.66 0.59 0.00 0.44 0.00 0.49 0.12 3.57 1.50 6.08 0.00 1.05
40 1 1 416.556 1.99 1.87 1.99 2.04 3.58 0.42 2.29 0.80 0.00 28.93 0.00 51.89 0.46 8.33
40 1 5 366.637 4.59 1.57 0.59 1.96 0.53 0.75 0.53 0.91 3.77 12.42 0.00 45.46 0.53 2.94
40 1 10 311.714 15.53 1.11 15.45 1.48 0.00 0.91 0.00 1.08 4.55 38.34 0.31 52.75 0.00 3.11
50 1 1 438.215 0.24 1.95 0.00 2.39 3.10 0.82 1.51 2.39 0.01 54.17 0.00 158.94 0.03 64.49
50 1 5 435.158 5.97 2.84 5.04 3.85 6.97 1.34 6.32 2.02 0.23 103.14 0.65 247.36 0.00 51.63
50 1 10 391.303 14.26 4.00 10.09 4.76 2.44 1.66 1.70 2.82 0.00 135.43 0.85 208.36 0.26 45.37
60 1 1 559.042 0.81 9.65 0.81 12.42 8.87 1.23 6.48 7.00 0.41 154.66 0.00 265.01 1.00 143.74
60 1 5 550.121 6.67 10.97 5.94 14.02 2.93 1.69 2.71 4.23 2.27 151.88 0.00 473.45 0.41 101.05
60 1 10 482.289 11.55 10.23 9.02 12.08 7.85 1.86 6.73 3.39 2.20 179.61 0.00 467.24 0.21 126.04
70 1 1 599.819 5.54 26.47 5.54 29.20 5.74 2.19 4.95 9.07 4.82 419.90 0.20 544.83 0.00 270.63
70 1 5 564.303 4.79 30.65 4.79 37.05 7.60 2.59 3.92 13.27 0.52 717.22 0.00 959.91 0.78 200.96
70 1 10 447.452 16.07 24.63 14.09 29.74 9.28 3.30 9.03 11.79 5.17 634.06 0.00 906.24 2.08 217.23
Average: 7.17 7.08 5.92 8.49 3.67 1.11 2.93 3.35 1.55 146.90 0.26 244.81 0.32 68.92
Max: 17.92 30.65 15.45 37.05 9.28 3.30 9.03 13.27 5.17 717.22 1.50 959.91 2.08 270.63

7.1. Evaluation of the Component1 Approaches 81

The method of sequential solving of the TSP and then TPP (TSP→TPP) gives
worse results than the method of solving both at the same time (CIH or C3-Opt).
The reason is that during solving of a TSP, calculation the areas are represented as
points (e.g., geometrical centers of ellipses for the instances used in this evaluation) and
information about the overall shape is ignored. The obtained tour could be optimal,
but only with regard to the chosen points. Applying a TPP method afterwards will
improve the obtained solution by optimizing entry points inside the areas. But such
strategy does not consider how shapes of the areas affect a sequence in which the areas
are visited. Application of both methods at the same time, in contrast, means that
during the calculation of a TSP tour we also coherently optimize the point locations
inside the areas. Therefore, it enables consideration of certain information about shapes
of the areas during the process of TSP solving. Thus, a final sequence obtained by the
CIH is better than a sequence calculated by the TSP→TPP, even if the same algorithms
for a TSP and a TPP are applied in both strategies.

The NN→C3-Opt produced the worst results among all C3-Opt variants. Nev-
ertheless, these results are better than the ones obtained by the CIH and the CIH
(3-Impr.). The best results were achieved by the Rand→C3-Opt, however, it required
much more time than other approaches. A compromise between solution quality and
run time was demonstrated by the CIH→C3-Opt. It produces results only slightly worse
than the Rand→C3-Opt (deviation 0.32% versus 0.26%), but significantly outperforms
it in computational time (68.92 s versus 244.81 s).

The C3-Opt required more time for computation than the CIH but produces
better solutions. The CIH→C3-Opt was able to produce solutions for instances with
30 ellipses within 3 s, for 40 ellipses within 9 s and for 50 ellipses within 65 s. Note
that four new best known values were obtained by incorporating the Bisection method
into the CIH. The main advantage of the C3-Opt over the CIH is that it has no high
“jumps” of deviation and constantly produces good results.

7.1.4 Evaluation on Instances for CETSP

Even though our algorithms were developed for a more general problem (TSPN),
we also evaluate them on test instances for the CETSP developed by Mennell et al. [71]
and accessible online3. This test set contains 20 instances with up to 595 areas. Due to
large sizes of the instances, computation time of the NN→C3-Opt, Rand→C3-Opt and
CIH→C3-Opt increases dramatically and, therefore, these methods are not evaluated
on these instances.

The CIH heuristic was applied with and without a tour-improvement heuristic.
During this test, the 2-Impr. is applied for the improvement phase. The TSP tour-
improvement heuristic 3-Opt used for the previous evaluations within 3-Impr. was sub-
stituted with the 2-Opt, as the 2-Opt requires significantly shorter computational time.
For example, the instance “bubble5” was solved by CIH in 167.5 s and the obtained so-
lution was 19.72% worse than the best known solution, whereas solutions found by the

3 http://www.minlp.org/library/problem/index.php?i=65&lib=MINLP

82 7. Evaluation

Table 7.3: Performance of the CIH and CIH (2-Impr.) approaches on CETSP instances.

Best known CIH CIH (2-Impr.)
Instance N of areas value dev.(%) t(s) dev.(%) t(s)

concentricCircles1 17 53.158 0.00 0.01 0.00 0.02
concentricCircles2 37 153.132 5.32 0.38 5.32 0.40
concentricCircles3 61 271.076 4.15 1.88 4.15 1.92
concentricCircles4 105 454.457 4.71 9.23 3.13 9.56
concentricCircles5 149 645.381 6.26 28.02 5.35 29.13

Average 4.09 7.90 3.59 8.21

bubbles1 37 349.135 0.05 0.56 0.05 0.57
bubbles2 77 428.279 0.85 5.20 0.84 5.34
bubbles3 127 530.733 0.33 22.41 0.33 23.50
bubbles4 185 829.888 10.87 67.50 10.51 188.40
bubbles5 251 1062.335 19.72 167.45 18.82 179.25
bubbles6 325 1383.139 13.87 355.69 10.46 409.91
bubbles7 408 1720.214 19.52 693.41 15.64 819.52
bubbles8 497 2101.373 20.47 1263.88 17.74 1826.49
bubbles9 595 2426.274 27.18 2147.98 23.04 2803.94

Average 12.54 524.90 10.83 695.21

team1 100 100 307.337 2.61 10.62 2.61 10.71
team2 200 200 246.683 1.22 93.39 1.22 86.39
team3 300 300 466.241 12.20 258.50 12.20 836.56
team4 400 400 680.211 8.02 606.50 7.77 635.70
team5 499 499 702.823 11.50 1068.40 10.60 1418.90
team6 500 500 225.216 0.19 1168.12 0.17 1230.18

Average 5.96 534.25 5.76 703.07

2-Impr. and 3-Impr. were 18.82% worse (179.25 s) and only 16.78% worse (2975.2 s),
respectively. Such large difference in run time is caused by a larger number of possible
edge exchange combinations in 3-Opt and, thus, more possibilities for improvement.

The CIH is executed with accuracy µ=0.01. Since the larger test instances contain
up to 595 areas, two speed up techniques were introduced: (1) ptemp is selected randomly
in line 9 in Algorithm 4.3, and (2) accuracy ε is equal to 0.5 in line 14 in Algorithm 4.3
and 0.01 in all other mRBA calls.

Mennel et al. [71] evaluated 11 heuristics for the CETSP using the same instances.
These heuristics were developed specifically for the CETSP and, therefore, are based on
the fact that areas are represented as disks. This information about the shape allows
for developing very efficient methods that are, however, restricted to this problem. In
contrast, the CIH was developed for the TSPN and is capable of solving scenarios with
arbitrary shapes. Therefore, the comparison of the CIH and the heuristics of Mennel et
al. is a stress test for our heuristic and is highly biased in favor of the other heuristics.

7.1. Evaluation of the Component1 Approaches 83

The performance of the CIH in comparison with the best known solutions is shown in
Table 7.3.

Even in the unfavorable conditions, the CIH (2-Impr.) achieved the third best
result for the “bubble” instances 1–3 comparing to the heuristics of Mennel et al. Since
our algorithm is not tuned for the problem, its solution quality deviates more and more
from the other 11 heuristics with the number of areas larger than 100. Thus, the overall
performance of our heuristic on the “bubble” instances is on the 11th place. For the
“concentricCircle” instances, the CIH (2-Impr.) took the 7th place and the 8th place
for the “team” instances.

This evaluation shows that even though the CIH is a heuristic for the TSPN, a
more general problem, it is still capable of solving CETSP instances even better than
some specialized CETSP heuristics.

7.1.5 Evaluating the Influence of the Precision Parameters

The CIH and the C3-Opt efficiency depend on the two precision parameters ε and
µ. In order to evaluate it, we select the following values: 0.01, 1, 10, 20 and 30, and
assign them to ε and µ in all possible combinations. The solutions obtained by the CIH
and C3-Opt with these values are then optimized by the RBA. An initial solution for
the C3-Opt is constructed randomly. The evaluation is conducted on the benchmarks
from Section 7.1.2.

The results of the CIH are presented in Figure 7.1 and of the C3-Opt in Figure 7.2.
Obviously, the time to solve an instance increases with smaller values of precision pa-
rameters ε and µ. For the CIH, the average solving time varied from 4ms when ε=30,
µ=30 up to 18ms when ε=0.01, µ=0.01. For the C3-Opt, the average solving time
ranged from 44.94ms when ε=30, µ=30 to 167.25ms when ε=0.01, µ=0.01.

(ms)
cost

deviation, %
time, ms

Figure 7.1: CIH dependence of the time (left) and the cost given as a deviation from
the best solution (right) on precision parameters ε and µ

According to the results, change of parameter values causes a very insignificant
cost deviation. The reason is the fact that we applied the mRBA algorithm after the
CIH and the C3-Opt to minimize the error accumulation of the point location on the

84 7. Evaluation

(ms)
cost

deviation, %time, ms

Figure 7.2: C3-Opt dependence of the time (left) and the cost given as a deviation from
the best solution (right) on precision parameters ε and µ

ellipses borders, which appears with large precision values. For the CIH, the average
cost deviation grows slowly from 0.32% when ε=0.01, µ=0.01 up to 0.4% when ε=30
and µ=30. For the C3-Opt the average cost deviation ranges from 0.003% when ε=20,
µ=20 up to 0.05% when µ=0.1 and ε=10, 20 or 30.

The reported results show that both the CIH and the C3-Opt are very stable even
if the precision values are very inaccurate.

7.2 Evaluation of the Component2 Approaches

This section describes an evaluation of the Nested RBA, proposed for optimizing
the entry points for the relaxed effective task sequence. The objective is to obtain
minimal cost supporting trajectories between given effective tasks. The evaluation was
conducted on two test cases inspired by real-world applications: cutting holes in plastic
cover4 and dashboard casing5. A demo video is available on-line6. The robot layout is
depicted in Figure 7.4.

For the evaluation, we used a system with an Intel Core 2 Quad CPU, 2.83 GHz
with 8 GB RAM, running Ubuntu 12.04. The Nested RBA is implemented using Python
in OpenRAVE [31]. Inverse kinematics is calculated analytically with the IKfast gen-
erator for the KUKA KR30L16 robot. All robot configurations are checked for being
not in a collision with environment.

The two test scenarios have the following parameters. In a plastic cover case
study, a robot has to cut out 5 holes and to deburr the border of a plastic cover detail.
This results in 6 closed-contour effective tasks. The second case study is a dashboard
casing that consists of 15 closed-contour effective tasks. In both scenarios, it is possible
to perform cutting starting from any point within a closed-contour. A starting point
has also an orientation freedom for an end-effector. An orientation freedom is defined

4Plastic Cover cutting: http://www.youtube.com/watch?v=bS2ESlSvdEo
5Dashboard Casing: http://www.youtube.com/watch?v=p0CZnmmaspk
6Demo video: https://cse.cs.ovgu.de/cse/robotics/

7.2. Evaluation of the Component2 Approaches 85

60

30

10

Figure 7.3: Defined orientation window for a knife.

for the both case studies with following parameters: al=30, au=150, bl=−15, bu=15,
cl=−5, cu=5, and it is the same for all possible entry points of all tasks. This orientation
window is depicted in Figure 7.3. This definition of the orientation freedom represents
to the sphere segment areas for an end-effector to reach.

Figure 7.4: Evaluation was performed on two examples: plastic cover (left) and car
dashboard casing (right).

We evaluate a sequence with three metrics: Euclidean distance of an end-effector
path, Time and C-space distance. A Euclidean distance for an end-effector is measured
in meters and represents a Euclidean length of a tour consisting of end-effector positions
(i.e., point xef , yef , zef in Figure 5.2). For given Cartesian entry points, end-effector
orientation angles a, b, c are chosen as the middle values of the corresponding allowed
orientation window, i.e., intervals [al, au], [bl, bu] and [cl, cu], respectively. The Time
metric for a tour is the time in seconds required to perform all supporting movements. It
is obtained by the build-in OpenRAVE function RetimeActiveDOFTrajectory() using
the Parabolic Trajectory Retimer. The C-space distance is calculated as a Euclidean
distance between robot configurations, i.e., a distance between two 6D points. For
simplicity, it is calculated without joint weight coefficients [56]. However, as we show
further, using the Euclidean distance formula for C-space can effectively substitute

86 7. Evaluation

the Time metric in calculation. C-space distance for a tour is the sum of all C-space
distances for all supporting movements.

In the following, we evaluate three approaches:

• Component1: A sequence of tasks calculated by the CIH and improved by the
2-Opt [29] using the Euclidean distance for an end-effector.

• Component1 → Component2: A sequence and Cartesian entry points are calcu-
lated with the CIH and the obtained solution is improved with the 2-Opt. A
solution for the Component2 is calculated with the nested approach proposed in
Chapter 5.

• Component1+Component2: The CIH constructs a task sequence, but as a con-
stricting mechanism applies Component2 approach instead of the mRBA.

Since the components solve different problems, they are evaluated with regard
to different metrics. Solution quality of the approach Component1 is measured as the
Euclidean distance for an end-effector. Both Component1→Component2 and Compo-
nent1+Component2 are evaluated on the Time and C-space cost functions.

The achieved results are presented in Figure 7.5 and Table 7.4. Figure 7.5 depicts
the obtained robot’s paths

The approach Component1 outperforms Component1→Component2 and Compo-
nent1+Component2 with regard to the Cartesian distance metric. However, since it
internally uses only this metric, the approach achieves significantly worse results with
regard to the robot-based metrics (Time and C-space distance). The approach Compo-
nent1+Component2 outperformed Component1→Component2 on 0.47% (plastic cover,
C-space distance cost), 8.78% (dashboard, C-space distance cost), 3.96% (dashboard,
Time cost). However, it was worse on 3.69% on the plastic cover scenario with regard
to the Time metric.

A convergence rate is evaluated for the Component2. We report results in Fig-
ure 7.6 for up to 30 and 100 iterations for the plastic cover and dashboard casing
scenarios, respectively. The figure shows the decrease of a cost (C-space distance and
Time) with respect to the number of iterations. The first iterations often bring large
improvements. The algorithm only returns the solution that is better than current one
on every iteration. However, the improvement can be insignificantly small for multi-
ple iterations in a row. For example, iterations 35–60 in Dashboard Casing scenario
while Time optimization. Afterwards, the algorithm can significantly reduce the cost.
Therefore, the use of the difference between costs from two consequent iterations as a
stopping condition is undesirable. We recommend to use a maximum computational
time or a number of iterations for stopping condition.

The approach CIH from Component1 found solutions for the plastic cover sce-
nario in only 2 s and for the dashboard casing scenario in 28 s. It is explained by the
algorithm’s simplicity and the computationally cheap Cartesian cost function.

7.2. Evaluation of the Component2 Approaches 87

Table 7.4: Evaluation results on the plastic cover and dashboard casing scenarios.

Plastic cover, minimizing C-space distance:

Component1 Component1→Component2 Component1+Component2
value value improvement(%) value improvement(%)

Cartesian dist. (m) 1.899 2.036 -7.23 2.329 -22.65
Time (s) 4.063 2.224 45.26 2.350 42.16

C-space dist. (rad) 8.450 1.354 83.98 1.313 84.45

Calculation time (s) 2 20 787

Plastic cover, minimizing Time:

Component1 Component1→Component2 Component1+Component2
value value improvement(%) value improvement(%)

Cartesian dist. (m) 1.899 1.934 -1.85 2.069 -8.96
Time (s) 4.063 2.087 48.62 2.237 44.93

C-space dist. (rad) 8.450 1.761 79.15 3.075 63.60

Calculation time (s) 2 103 2158

Dashboard casing, minimizing C-space distance:

Component1 Component1→Component2 Component1+Component2
value value improvement(%) value improvement(%)

Cartesian dist. (m) 5.758 6.332 -9.96 7.130 -23.83
Time (s) 10.973 6.829 37.75 6.441 41.29

C-space dist. (rad) 24.459 6.401 73.82 4.255 82.60

Calculation time (s) 28 68 6907

Dashboard casing, minimizing Time:

Component1 Component1→Component2 Component1+Component2
value value improvement(%) value improvement(%)

Cartesian dist. (m) 5.758 5.885 -2.20 5.607 2.61
Time (s) 10.973 6.021 45.12 5.587 49.08

C-space dist. (rad) 24.459 8.063 67.03 7.285 70.21

Calculation time (s) 28 482 25622

88 7. Evaluation

Component1 + Component2

Component1

Component1 Component2

Figure 7.5: Obtained solutions for the two examples: car dashboard casing (right
side) and plastic cover (left side). The robot end-effector path is depicted in black
and task geometries are depicted in red. Both Component1→Component2 and Compo-
nent1+Component2 minimized traveled distance in C-space.

Component1→Component2 was slower than Component1 (i.e., CIH) and accom-
plished optimization for the plastic cover scenario for the C-space and Time metrics in
20 s and 103 s, respectively. The Dashboard scenario, was optimized in 68 s. and 482 s.
for the C-space and Time metrics, respectively.

The third evaluated approach, Component1+Component2, required much longer
computational time, due to the fact that at every decision step of the CIH, the problem
of the Component2 has to be solved. Therefore, solving of the plastic cover was finished
for the C-space and Time metrics in 787 s and 2158 s, respectively. Optimization for the
dashboard casing scenario required even more computational time: 6907 s. for C-space
distance cost and 25622 s. for the Time metric.

Use of the Time metric instead of the C-space distance metric increases the run
time, as it recalculates the robot trajectory multiple times. Since the two metrics—
distance traveled in joint space and the time—are interconnected, it is possible to use

7.2. Evaluation of the Component2 Approaches 89

Minimize: C-space distance Minimize: Time
P
la
s
ti
c

c
o
v
e
r

D
a
s
h
b
o
a
rd

c
a
s
in
g

cost, %cost, %

cost, % cost, %

Cartesian distance distance

Figure 7.6: Convergence rate for the Component1 approach. During one iteration, one
task is optimized.

the C-space metric in order to optimize the Time cost. Using the Time metric makes
sense for applications where execution time is critical. After optimizing C-space distance
or Time, a Cartesian end-effector path length increases on 2-10%. It means that a tool
center point has to follow a longer root than in the initial solution. However, since
optimality of the robotic costs (C-space and Time) is of a higher interest, T-space cost
increase is not important.

To summarize, the approach Component1→Component2 is the best compromise
between the short computational time of Component1 and the good solution quality of
Component1+Component2. Component1 is faster than the other two approaches because
it does not use robotic metrics. Component1+Component2 achieves better robot-based
costs due to the fact that its constricting function explores not only possible positions of
an entry point but also orientations and robot configurations, i.e., execute Component2
approach.

90 7. Evaluation

7.3 Evaluation of the Component3 Approach

In this section, we present an evaluation of the approach proposed for robot tra-
jectory optimization of a relaxed task. We illustrate the importance of the problem
with two robotic applications: a C-Arm robot performing a 3D-angiography and an in-
dustrial robot performing cutting-deburring tasks on the plastic cover from Section 7.2.

Proposed in Component3 approach was ran on the following hardware: Intel
Core i7 3.20 GHz with 32 GB of RAM, running Ubuntu 12.04. The approach was
implemented in Python in OpenRAVE. Inverse kinematics for KUKA KR30L16 was
calculated analytically by the IKfast generator.

For the evaluation, we used an industrial robot with 6 degrees of freedom. To
limit joints’ velocities and accelerations, we set the constraints listed in Table 7.5.

Table 7.5: Upper bounds for joints’ velocity and acceleration.

Joint’s Number
Maximum velocity

(Rad/s)
Maximum acceleration

(Rad/s2)
Joint 1 1.74 4.36
Joint 2 1.39 4.36
Joint 3 1.39 4.36
Joint 4 4.01 8.72
Joint 5 2.87 8.72
Joint 6 4.34 17.45

In this evaluation, we optimize the jerk of a robot’s C-space trajectory. We use
the following objective function which minimizes the maximum jerk values among all
joints throughout trajectory execution:

max
i∈[1,...,ndof]

(max
t∈[0,...,T]

(
∂3TrajRi

(t)

∂t3
))→ min , (7.1)

where ndof is the number of robot degrees of freedom, TrajRi
(t) is the C-space trajec-

tory of the i-th joint, T is the movement duration.

Jerk minimization reduces the error of a path tracker while movement execution.
In addition, trajectories with a small jerk reduce wear of the robot and, as a consequence,
increase its life span [90].

A motion law was optimized using an idea similar to the algorithm proposed
by Chettibi et al. [24]. We first generate nodes on the motion law curve with equal
distances between each other and then improve their positions with a Pattern Search.

7.3.1 Case Study: C-arm Robot for 3D-angiography

An angiography is a medical technique which is applied to visualize the inner
parts of a human body. It is often used to visualize veins and arteries. This is done by
injecting a radio-opaque contrast agent and then performing X-ray scans.

7.3. Evaluation of the Component3 Approach 91

Figure 7.7: Layout of the robot equipped with the C-arm.

A special type of angiography is a rotational angiography. To perform a rotational
angiography, an X-ray emitter is rotated around a patient focused on a point of interest.
It acquires multiple picture-scans taken from different position. These images are then
combined into a 3D volume. Rotational angiography is normally performed with a C-
arm. It is a rotational horseshoe-shaped device, equipped with an X-ray source and a
detector.

One disadvantage of a C-arm is that it is not mobile and often occupies a lot of
space in a surgery room. In order to increase mobility of C-arms so that they can cover
all parts of a patient’s body, they are mounted on industrial robots, see Figure 7.7 and
Figure 7.8. We consider only the degrees of freedom of the robot and omit degrees of
freedom of the C-arm for simplicity.

It is critical to know the exact position and time when each picture was taken.
Following an imprecise trajectory influences the quality of the final 3D volume, i.e.,
makes it blurry. The path of the X-ray source is specified for a certain task without
considering robot kinematics. One possible way to obtain a high-quality trajectory of
a source is to make the robot trajectory smooth by minimizing jerk in its joints.

This application scenario allows a certain freedom for a path. For example, a
source can be closer or further from a point of interest (in our scenario this deviation
is 0.02 m.). In addition, an approaching vector can have a deviation of several degrees,
e.g., 6◦ for our scenario. This freedom results in truncated-cone via-volumes, which a
C-arm source path has to visit. A path and its freedom are shown in Figure 7.8. In
any point of a via-volume, the approaching vector of a source is directed to a point of
interest called the isocenter. A similar freedom description was used for a laser-welding
application [59].

Two different velocity profiles are considered: a trapezoidal velocity profile (case
“A”) and minimal-jerk velocity profile optimized for an initial path (case “B”), see Fig-
ure 7.9. In the case “A”, a desired trapezoidal velocity allows us to take pictures with
a constant velocity in the middle segment of a path but this leads to an “awkward”

92 7. Evaluation

X-ray source

Detector

Isocenter

Via-volume

Figure 7.8: The path of the C-arm X-ray source is depicted with blue, the path of the
detector is red. The point of interest is the middle of the sphere. The relaxed path is
depicted with light-blue volumes.

robot C-space trajectory with high jerks, i.e., the cost of an initial trajectory, i.e., the
maximal jerk, is 123 Rad/s3. In the case “B”, a motion law was optimized to obtain a
minimal-jerk C-space trajectory for the initial path. The obtained velocity profiles are
depicted in Figure 7.9. A trajectory cost after motion law optimization for the case
“B” is 30.2 Rad/s3. Since C-arm robot movements are predefined and constant, it is
possible to calculate them offline, i.e., there is no restriction on run time.

The proposed approach Smoothed RBA significantly improved quality of initial
trajectory. After applying the proposed heuristic for 10 iterations, the cost was de-
creased to 26 Rad/s3 for the case “A” and to 17.5 Rad/s3 for the case “B”. Due to
multiple calls of inverse kinematics, the computational time is 63 min.

The rate of convergence is depicted in Figure 7.10. This study shows that the
end-effector path relaxation decreases a robot trajectory cost (maximal jerk) regardless
of whether a motion law was optimized or not. It is even more efficient to relax a path
in conjunction with the motion law optimization.

7.3.2 Case Study: Plastic Cover

After a sequence of tasks and entry points is calculated, optimization of each
effective task can be performed. In this section, we evaluate the Component3 approach
in the plastic cover scenario.

We perform the evaluation on two extreme effective tasks—a rectangle and a
circular task. A circle is a very smooth path for the robot’s tool center point to process.

7.3. Evaluation of the Component3 Approach 93

Unoptimized motion law Optimized motion law
M
o
ti
o
n

la
w

V
e
lo
c
it
y

0.0

0.2

0.4

0.6

0.8

1.0

Time (s)
0 2 4 6 8 10 12 14

P
a
th
p
a
ra
m
er

0.00

0.05

0.10

0.15

0.20

0.25

0 2 4 6 8 10 12 14

V
el
o
ci
ty
(m
/s
)

Time (s)

P
a
th
p
a
ra
m
er

0 2 4 6 8 10 12 14
0.0

0.2

0.4

0.6

0.8

1.0

Time (s)

V
el
o
ci
ty
(m
/s
)

0.00

0.05

0.10

0.15

0.20

0.25

0 2 4 6 8 10 12 14

Time (s)

Figure 7.9: Given motion laws and computed end-effector velocities.

It results in a smooth C-space trajectory with no high jerks. In contrast, a rectangle
shape has 4 corners where a knife must be turned very quickly at 90 degrees. In reality,
a velocity profile should be chosen in a such way that the TCP makes a stop at a
corner, then the direction of the knife is changed and the movement continues. We
present an extreme case where a TCP does not make a full stop, but rather continues
following a motion law that is “uncomfortable” for a robot to execute. It results in an
exceedingly high jerk in the 6th robot’s joint, as it has to rotate the knife in a corner
of a rectangle almost immediately. We show that even in this extreme case, relaxing
a task and applying the Component3 approach can minimize jerk value by distributing
the load to other joints.

Rectangular-shaped Effective Task

In the following Smoothed RBA from Component3 is evaluated on the Rectangular-
shaped effective task from the plastic cover case study.

We evaluate Smoothed RBA with two different motion laws, see Figure 9.1. The
first motion law leads to a trapezoidal velocity profile that is“uncomfortable” for a robot
to execute, therefore, the maximum robot trajectory jerk is 525.01 Rad/s3. Such high

94 7. Evaluation

Unoptimized motion law Optimized motion law

20

40

60

80

100

120

140

0
1 2 3 4 5 6 7 8 9 10

Number of iterations

M
a
x
im

a
l

je
rk

 (
R

a
d

/s
3

)

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10

Number of iterations

M
a
x
im

a
l

je
rk

 (
R

a
d

/s
3

)

Figure 7.10: Convergence rates of optimization for the given motion laws.

jerk is caused by a jerky rotation of the 6th joint in the corners of the rectangle. In the
second case, a motion law is optimized for the initial path with approach presented in
[24]. Motion law optimization required 361 s. The corresponding maximal jerk equals to
290.14 Rad/s3. The highest jerk jump happens on the 14 s of execution, see Figure 9.3.
Therefore, the motion law optimization algorithm decreases the velocity in the area
around 14 s, see Figure 9.1 The initial values joints’ angles for the unoptimized motion
law are depicted in Figure 9.3.

The method proposed for the Component3—Smoothed RBA—significantly im-
proved a value of maximal jerk for both motion laws. The results are shown in Fig-
ure 9.3. After performing an optimization, for the case with the unoptimized motion
law, the maximal jerk is 8.5 Rad/s3. For the case with the optimized motion law, the
jerk value is equal to 8.61 Rad/s3. The difference between the initial and optimized
end-effector paths are depicted in Figure 7.11.

Smoothed RBA was executed for 25 iterations for both: optimized and unopti-
mized motion law. The overall optimization required 8980 s.

Circle-shaped effective task

Similar to rectangular-shaped task, the evaluation is performed with two motion
laws, see Figure 9.2. The first motion law is unoptimized and maximal jerk of the
robot trajectory is 25.58 Rad/s3. In the second case, motion law was optimized for the
initial path. The highest value of a jerk appeared on 6-7 s., see Figure 9.4. Therefore,
the motion law optimization aimed at decreasing the velocity in these time points, see
Figure 9.2. The jerk of the robot trajectory for the optimized motion law is 4.18 Rad/s3.
The results achieved on this instance are reported in Figure 9.4.

For the case with the unoptimized motion law, Smoothed RBA reduced the max-
imal jerk value to 5.06 Rad/s3 and, for the case with the optimized motion law, to
2.96 Rad/s3.

7.3. Evaluation of the Component3 Approach 95

Figure 7.11: The initial path of the robot’s end-effector for the rectangular task is
designated with purple. The optimized path is blue.

Conclusion

It was shown that relaxing an effective task can lead to a significant reduction
of a trajectory cost, in particular, the maximal jerk. This improvement is achieved
regardless of whether the motion law was defined by an industrial process or was op-
timized for a given initial end-effector path. Moreover, even in extreme cases like a
rectangular-shaped task with an unoptimized motion law, the algorithm provides sig-
nificant improvements. During computation of these approaches, no rounding was done
to avoid the accumulating error [74]. The resulted were rounded only for the purpose
of better reading.

8. Conclusion

The typical workflow of an industrial robot consists of performing effective and sup-
porting tasks. Even though effective tasks are often strictly defined, in many cases
industrial processes allow some freedom of task execution. In this thesis, we proposed a
way to formalize this freedom and to make use of it for optimizing both supporting and
effective robot trajectories. Since the search space of the problem appeared to be very
large, we proposed an approach that decomposes the problem into three components
that can be applied in combination with each other or with other algorithms.

The problem Component1 uses a set of relaxed effective tasks as an input. Its
goal is to find a sequence of relaxed effective tasks and a Cartesian entry point for
each task such that the total Euclidean distance between the entry points is minimized.
The problem Component1 was solved by modeling it as a Traveling Salesman Problem
with Neighborhoods (TSPN). In order to solve the TSPN, it was decomposed into a
Traveling Salesman Problem (TSP) and a Traveling-a-sequence-of-Polygons Problem
(TPP). In contrast to state-of-the-art approaches, we proposed to solve the TPP for
every iteration of a TSP solver. Two approaches were proposed to find a solution
for the TSPN: Constricting Insertion Heuristic (CIH) and Constricting 3-Opt (C3-
Opt). We evaluated these approaches on three sets of instances: (i) instances with
known optimum, on which we presented a deviation from optimum, (ii) instances with
“stretched” ellipses on which we demonstrated how well the heuristics react on more
complicated areas, and (iii) instances for the Close-Enough TSP (CETSP), on which
we compared the proposed heuristics with approaches for a related problem. Since
the C3-Opt is a tour-improvement heuristic and its behavior depends on an initial
tour, we evaluated it in combination with three tour construction algorithms: random
tour generation, the nearest neighborhood algorithm and the CIH. The combination of
the CIH and the C3-Opt appeared to be a trade-off between solution quality and run
time. Both CIH and C3-Opt have an insignificant dependence on their parameters and
repeatedly provide good results. The proposed heuristics are simple to implement, have

98 8. Conclusion

a short computational time and can be efficiently used to solve the TSPN and, as a
consequence, sequencing of relaxed effective tasks.

In the problem Component2 a sequence of relaxed effective tasks is given. The goal
is to find a C-space tour such that the cost of the corresponding C-space trajectories
is minimized. In order to solve this problem, we modeled it as a TPP and solved
the TPP, taking into account domain-specific knowledge like a robot-based cost. The
existing methods for the TPP could not be applied directly because in this problem,
we have to find a tour not for polygons, but rather for relaxed effective tasks that
are multi-dimensional areas. The complexity of the problem grows even further, as
every potential entry point leads to several possible inverse kinematics solutions, and
the chosen inverse kinematics solution influences the global cost. Therefore, a solution
should be chosen based on inverse kinematics solutions in other areas. The TPP with
robot-based information is solved in multiple stages nested in each other where every
outer stage depends on the optimization results of its inner stage. We used the Rubber-
Band Algorithm (RBA) for optimization, but modified the local search techniques to
extend the algorithm for this problem. We refer to this RBA extension as Nested RBA.
The proposed approach was evaluated on scenarios from a cutting-deburring domain.
The results showed that improving a task sequence adapted for a robot by searching
for new entry points with our algorithm significantly reduces trajectory cost.

The result of solving the Component1 and the Component2 sequentially or in com-
bination is a sequence of C-space entry points with the minimal cost of the corresponding
supporting trajectory. The next step for solving the original problem of the thesis is to
optimize every effective trajectory.

The problem Component3 takes a relaxed effective task and a C-space entry point.
Its goal is to find an end-effector path that leads to a minimal cost C-space trajectory.
It is possible to model this problem as a TPP by discretizing the given relaxed effective
tasks into a sequence of volumes. We proposed a heuristic that is based on the RBA.
We refer to it as Smoothed RBA. It constricts volumes using a smooth curve instead
of a polyline. We evaluated the Smoothed RBA on two scenarios: a scenario from
the medical domain where a robot equipped with a C-arm performs a 3D-angiography
and on a cutting-deburring scenario where a robot cuts differently shaped contours.
The evaluation was made for two motion laws. The first one leads to a trapezoidal
velocity profile and is “uncomfortable” for a robot to execute, i.e., it causes high jerks
in a C-space trajectory. The second motion law was optimized to reduce the jerk.
The proposed Smoothed RBA heuristic significantly reduced the cost of the C-space
trajectory in both cases, regardless of whether the motion law was optimized or not.

Future work

Although the proposed approaches can significantly reduce the cost of a robot
trajectory, there is always room for future work. There are certain factors that motivate
future work: (i) improving solution quality, (ii) extending the areas of application, and
(iii) reducing computational time.

99

Improving solution quality

In this thesis, we decomposed effective and supporting movements. We assumed
that a robot’s tool makes a full stop in the entry point of a relaxed effective task. In
reality, it is possible that a robot does not make a full stop but continues performing an
effective task using the inertia of supporting movements. For example, after reaching
an entry point an end-effector with a knife can smoothly start cutting without stopping,
similar to trajectory of an airplane where it touches a runway while landing. Therefore,
simultaneous planning of effective and supporting tasks potentially reduces cost.

For closed-contour tasks, we assumed that the task must be performed without
interruption. However, in reality it is sometimes possible to interrupt the performance
of a task in order to execute another one, and to finish the first task later. Such paths
have better cost (see example in Figure 8.1). Nevertheless, this significantly increases
the search space, as task break points have to be considered. Since such situations are
domain specific, the feature of task interrupting was omitted in this thesis.

Task T without interruptions

T

Task T with an interruption

T

Figure 8.1: The distance of a supporting path (black) on the left picture is 50% longer
than on the right. Effective tasks are depicted in red. Points of task interruption are
depicted in green.

Component1 and Component2: In this thesis, the position of a robot’s base was
considered constant. However, the location of a robot’s base greatly influences the cost
of a C-space trajectory obtained for an end-effector path. In many applications, the
location of a robot’s base is not important, or at least can vary within a certain area.
A robot’s base can also be mounted on a moving platform, e.g., Kuka YouBot [20]. A
possible future direction is to involve this degree of freedom into the planning process.

Component3: One way to achieve better results is to generalize the problem further
by relaxing a motion law, as in the current problem formulation it is considered to be
given and fixed.

Extending the areas of application

Currently, we assumed that there are no precedence constraints between the tasks.
Nonetheless, there are industrial applications where a certain task has to be accom-
plished before another one. It was motivated by [34] who illustrated such constraint

100 8. Conclusion

with a case where a robot has to pickup items from a conveyor and drill them afterwards.
Adding partial order constraints into the planning process would give the programmer
better control of the optimization process.

We assumed that industrial environments are modeled in such a way that they
do not contain unnecessary obstacles. In this case, collision avoidance can be excluded
from the path planning process. Nonetheless, in complex environments, collision-free
planning is required, e.g., when a robot needs to perform spot-welding inside a car
frame or in the presence of other robots. In that case, the space where a robot can
move is highly limited. Involving a collision-free planner in the planning would increase
the application domain of the proposed approaches.

Reducing computational time

Currently in Component3 we choose evenly spread via-points and perform opti-
mization sequentially for each of the via-points inside the corresponding neighborhood.
However, changing the locations of two different via-points has different influences on
the cost of a robot trajectory. A possible direction for future work is to optimize first
positions of those via-points that decrease a trajectory cost the most. For example, for
a rectangular task, first the points located in the corners are preferred. However, it is
not so trivial because moving a corner point increases the distances to the neighboring
via-points in a path, thus increasing the jerk. Therefore, it might be a good idea to
optimize the certain tuples of via-points, e.g., a point in a corner, two points before and
two points after the corner point for a rectangular task.

9. Appendix A
Evaluation Results of Component3

Unoptimized motion law Optimized motion law

M
o
ti
o
n

la
w

V
e
lo
c
it
y

0 5 10 15 20 25 30 35 40
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

V
el
o
ci
ty
(m
/s
)

Time (s)
0 5 10 15 20 25 30 35 40

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

V
el
o
ci
ty
(m
/s
)

Time (s)

0 5 10 15 20 25 30 35 40
0.0

0.2

0.4

0.6

0.8

1.0

P
a
th
p
a
ra
m
er

Time (s)
0 5 10 15 20 25 30 35 40

0.0

0.2

0.4

0.6

0.8

1.0

P
a
th
p
a
ra
m
er

Time (s)

Figure 9.1: Rectangular task: motion law optimization

102
9. Appendix A

Evaluation Results of Component3

Unoptimized motion law Optimized motion law

M
o
ti
o
n

la
w

V
e
lo
c
it
y

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

P
a
th
p
a
ra
m
er

Time (s)

0 2 4 6 8 10
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Time (s)

V
el
o
ci
ty
(m
/s
)

0 2 4 6 8 10
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Time (s)

V
el
o
ci
ty
(m
/s
)

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

P
a
th
p
a
ra
m
er

Time (s)

Figure 9.2: Circle-shaped task: motion law optimization

103

Joints Angles Joints Jerks

In
it
ia
l
v
a
lu
e
s

U
n
o
p
ti
m
iz
e
d

M
o
ti
o
n

la
w

C
o
m
p
o
n
e
n
t
3
:

O
p
ti
m
iz
e
d

M
o
ti
o
n

la
w

C
o
m
p
o
n
e
n
t
3
:

Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6

0 5 10 15 20 25 30 35 40
− 600

− 400

− 200

0

200

400

600

Joints Jerks (Rad/s3) max: 525.01

Time (s)
0 5 10 15 20 25 30 35 40

− 4

− 3

− 2

− 1

0

1

2

3

4

5

Joints Angles (Rad)

Time (s)

Joints Jerks (Rad/s3) max: 8.5

Time (s)

0 5 10 15 20 25 30 35 40
− 10

− 5

0

5

10

0 5 10 15 20 25 30 35 40
− 4

− 3

− 2

− 1

0

1

2

3

4

5

Time (s)

Joints Angles (Rad)

Time (s)

Joints Jerks (Rad/s3) max: 8.61

0 5 10 15 20 25 30 35 40
− 10

− 5

0

5

10

Joints Angles (Rad)

Time (s)

0 5 10 15 20 25 30 35 40
− 4

− 3

− 2

− 1

0

1

2

3

4

5

Figure 9.3: Results achieved by the Smoothed RBA from Component3 on the instance
with a rectangle-shaped task.

104
9. Appendix A

Evaluation Results of Component3

Joints Angles Joints Jerks

In
it
ia
l
v
a
lu
e
s

U
n
o
p
ti
m
iz
e
d

M
o
ti
o
n

la
w

C
o
m
p
o
n
e
n
t
3
:

O
p
ti
m
iz
e
d

M
o
ti
o
n

la
w

C
o
m
p
o
n
e
n
t
3
:

Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6

0 2 4 6 8 10
− 30

− 20

− 10

0

10

20

30

Time (s)

Joints Jerks (Rad/s3) max: 25.58

0 2 4 6 8 10
− 4

− 3

− 2

− 1

0

1

2

3

4

5

Time (s)

Joints Angles (Rad)

0 2 4 6 8 10
− 4

− 3

− 2

− 1

0

1

2

3

4

5

Time (s)

Joints Angles (Rad)

0 2 4 6 8 10
− 6

− 4

− 2

0

2

4

6

Time (s)

Joints Jerks (Rad/s3) max: 5.06

0 2 4 6 8 10
− 3

− 2

− 1

0

1

2

3

Time (s)

Joints Jerks (Rad/s3) max: 2.96

0 2 4 6 8 10
− 4

− 3

− 2

− 1

0

1

2

3

4

5

Time (s)

Joints Angles (Rad)

Figure 9.4: Results achieved by the Smoothed RBA from Component3 on the instance
with a circle-shaped task

Bibliography

[1] L. L. Abdel-Malek and Z. Li. Robot location for minimum cycle time. Engineering
Costs and Production Economics, 17(1):29–34, 1989. (cited on Page 29 and 30)

[2] L. L. Abdel-Malek and Z. Li. The application of inverse kinematics in the optimum
sequencing of robot tasks. The International Journal Of Production Research, 28
(1):75–90, 1990. (cited on Page 29 and 30)

[3] S. Alatartsev and F. Ortmeier. Path planning for industrial robots among multiple
under-specified tasks. In Magdeburger-Informatik-Tage 2. Doktorandentagung,
2013. (cited on Page 4 and 5)

[4] S. Alatartsev and F. Ortmeier. Improving the sequence of robotic tasks with free-
dom of execution. In IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2014. (cited on Page 4, 5, and 68)

[5] S. Alatartsev, M. Güdemann, and F. Ortmeier. Trajectory description conception
for industrial robots. In German Conference on Robotics (ROBOTIK), pages 365–
370, 2012. (cited on Page 4 and 5)

[6] S. Alatartsev, M. Augustine, and F. Ortmeier. Constricting insertion heuristic
for traveling salesman problem with neighborhoods. In International Conference
on Automated Planning and Scheduling (ICAPS), 2013. (cited on Page 4 and 5)

[7] S. Alatartsev, V. Mersheeva, M. Augustine, and F. Ortmeier. On optimizing a
sequence of robotic tasks. In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2013. (cited on Page 4, 5, and 27)

[8] S. Alatartsev, A. Belov, M. Nykolaychuk, and F. Ortmeier. Robot trajectory
optimization for the relaxed end-effector path. In International Conference on
Informatics in Control, Automation and Robotics (ICINCO), 2014. (cited on

Page 4 and 5)

[9] S. Alatartsev, S. Stellmacher, and F. Ortmeier. Robotic task sequencing problem:
A survey. Journal of Intelligent and Robotic Systems, 2015. (cited on Page 4)

[10] D. L. Applegate, R. E. Bixby, V. Chvatal, and W. J. Cook. The traveling salesman
problem: a computational study. Princeton University Press, 2007. (cited on

Page 25 and 40)

106 Bibliography

[11] E. M. Arkin and R. Hassin. Approximation algorithms for the geometric covering
salesman problem. Discrete Applied Mathematics, 55:197–218, 1995. (cited on

Page 27 and 41)

[12] S. Arora. Approximation schemes for NP-hard geometric optimization problems:
A survey. Mathematical Programming, 97:43–69, 2003. (cited on Page 41)

[13] N. Aspragathos. Cartesian trajectory generation under bounded position devia-
tion. Mechanism and machine theory, 33(6), 1998. (cited on Page 68)

[14] A. A. Ata. Optimal trajectory planning of manipulators: A review. Journal of
Engineering Science and Technology, 1:32, 2007. (cited on Page 35)

[15] A. A. Ata and T. R. Myo. Optimal point-to-point trajectory tracking of redundant
manipulators using generalized pattern search. International Journal of Advanced
Robotic Systems, 2(3), 2005. (cited on Page 36)

[16] K. Baizid, R. Chellali, A. Yousnadj, A. Meddahi, and T. Bentaleb. Genetic
algorithms based method for time optimization in robotized site. In IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 1359–
1364, 2010. (cited on Page 18, 29, and 30)

[17] D. Berenson, S. Srinivasa, and J. Kuffner. Task space regions: A framework
for pose-constrained manipulation planning. International Journal of Robotics
Research (IJRR), 30(12):1435–1460, October 2011. (cited on Page 55 and 56)

[18] L. Biagiotti and C. Melchiorri. Trajectory Planning for Automatic Machines and
Robots. Springer Publishing Company, Incorporated, 2008. (cited on Page 9)

[19] G. Biggs and B. MacDonald. A survey of robot programming systems. In Aus-
tralasian Conference on Robotics and Automation, 2003. (cited on Page 2 and 22)

[20] R. Bischoff, U. Huggenberger, and E. Prassler. Kuka youbot-a mobile manipulator
for research and education. In IEEE International Conference on Robotics and
Automation (ICRA), 2011. (cited on Page 99)

[21] F. Bock. An algorithm for solving traveling-salesman and related network opti-
mization problems. In Unpublished manuscript associated with a talk presented at
the 14th ORSA National Meeting, 1958. (cited on Page 43)

[22] W. Bu, Z. Liu, and J. Tan. Industrial robot layout based on operation sequence
optimisation. International Journal of Production Research, 41:4125–4145, 2009.
(cited on Page 29 and 33)

[23] M. Cefalo, G. Oriolo, and M. Vendittelli. Planning safe cyclic motions under
repetitive task constraints. In IEEE International Conference on Robotics and
Automation (ICRA), 2013. (cited on Page 56)

Bibliography 107

[24] T. Chettibi, H. Lehtihet, M. Haddad, and S. Hanchi. Minimum cost trajectory
planning for industrial robots. European Journal of Mechanics-A/Solids, 23(4):
703–715, 2004. (cited on Page 36, 90, and 94)

[25] S. Y. Chien, L. Q. Xue, and M. Palakal. Task planning for a mobile robot in an
indoor environment using object-oriented domain information. IEEE Transac-
tions on Systems, Man, and Cybernetics, Part B: Cybernetics, 27(6):1007–1016,
1997. (cited on Page 24)

[26] Y. Chien, A. Hudli, and M. Palakal. Using many-sorted logic in the object-
oriented data model for fast robot task planning. Journal of Intelligent and
Robotic Systems, 23(1):1–25, 1998. (cited on Page 24)

[27] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
algorithms, volume 2. MIT press Cambridge, 2001. (cited on Page 32)

[28] J. Craig. Introduction to robotics: mechanics and control. Pearson, 2005. (cited

on Page 9 and 36)

[29] A. Croes. A method for solving traveling salesman problems. Operations Research,
5:791–812, 1958. (cited on Page 86)

[30] M. W. Dawande, H. N. Geismar, S. P. Sethi, and C. Sriskandarajah. Throughput
Optimization in Robotic Cells, volume 101 of International Series in Operations
Research & Management Science. Springer US, 2007. (cited on Page 23)

[31] R. Diankov and J. Kuffner. OpenRAVE: a planning architecture for autonomous
robotics. Technical Report CMU-RI-TR-08-34, Robotics Institute, Pittsburgh,
PA, July 2008. (cited on Page 84)

[32] N. S. F. Doria, E. O. Freire, and J. C. Basilio. An algorithm inspired by the deter-
ministic annealing approach to avoid local minima in artificial potential fields. In
International Conference on Advanced Robotics (ICAR), pages 1–6, 2013. (cited

on Page 24)

[33] M. Dror, A. Efrat, A. Lubiw, and J. S. B. Mitchell. Touring a sequence of
polygons. In Annual ACM symposium on Theory of Computing, pages 473–482.
ACM Press, 2003. (cited on Page 27 and 42)

[34] S. Dubowsky and T. Blubaugh. Planning time-optimal robotic manipulator mo-
tions and work places for point-to-point tasks. IEEE Transactions on Robotics
and Automation, 5:377–381, 1989. (cited on Page 18, 28, 29, and 99)

[35] Y. Edan, T. Flash, U. M. Peiper, I. Shmulevich, and Y. Sarig. Near-minimum-
time task planning for fruit-picking robots. IEEE Transactions on Robotics and
Automation, 7(1):48–56, 1991. (cited on Page 29 and 30)

108 Bibliography

[36] K. M. Elbassioni, A. V. Fishkin, and R. Sitters. Approximation algorithms for
the euclidean traveling salesman problem with discrete and continuous neighbor-
hoods. International Journal of Computational Geometry and Applications, pages
173–193, 2009. (cited on Page 41)

[37] G. Erdős, Z. Kemény, A. Kovács, and J. Váncza. Planning of remote laser welding
processes. In CIRP Conference on Manufacturing Systems, 2013. (cited on Page 29,

35, and 37)

[38] J. Faigl, V. Vonásek, and L. Preucil. A multi-goal path planning for goal regions
in the polygonal domain. In European Conference on Mobile Robots (ECMR),
2011. (cited on Page 27, 29, 35, and 37)

[39] C. Fragkopoulos, K. Abbas, A. Eldeep, and A. Graeser. Comparison of sampling
based motion planning algorithms specialized for robot manipulators. In German
Conference on Robotics (ROBOTIK), 2012. (cited on Page 25)

[40] P. J. From, J. Gunnar, and J. T. Gravdahl. Optimal paint gun orientation in spray
paint applications – experimental results. IEEE Transactions on Automation
Science and Engineering, 8(2):438–442, 2011. (cited on Page 40, 56, and 69)

[41] E. Galceran and M. Carreras. A survey on coverage path planning for robotics.
Robotics and Autonomous Systems, 61(12):1258–1276, 2013. (cited on Page 11)

[42] A. Gasparetto and V. Zanotto. Optimal trajectory planning for industrial robots.
Advances in Engineering Software, 41:548–556, 2010. (cited on Page 36)

[43] I. Gentilini, F. Margot, and K. Shimada. The travelling salesman problem with
neighbourhoods: MINLP solution. Optimization Methods and Software, pages
1–15, 2011. (cited on Page 29, 34, 37, 40, 41, 48, 75, 76, 77, and 79)

[44] I. Gentilini, K. Nagamatsu, and K. Shimada. Cycle time based multi-goal path
optimization for redundant robotic systems. In IEEE International Conference
on Intelligent Robots and Systems (IROS), 2013. (cited on Page 29, 35, and 37)

[45] F. Glover, G. Gutin, A. Yeo, and A. Zverovich. Construction heuristics for the
asymmetric TSP. European Journal of Operational Research, 129:555–568, 2001.
(cited on Page 25)

[46] L. B. Gueta, R. Chiba, J. Ota, T. Ueyama, and T. Arai. Coordinated motion
control of a robot arm and a positioning table with arrangement of multiple
goals. In IEEE International Conference on Robotics and Automation (ICRA),
pages 2252–2258, 2008. (cited on Page 29, 32, and 35)

[47] L. B. Gueta, J. Cheng, R. Chiba, T. Arai, T. Ueyama, and J. Ota. Multiple-goal
task realization utilizing redundant degrees of freedom of task and tool attachment
optimization. In IEEE International Conference on Robotics and Automation
(ICRA), pages 1714–1719, 2011. (cited on Page 29, 35, and 37)

Bibliography 109

[48] R. Hassin and A. Keinan. Greedy heuristics with regret, with application to the
cheapest insertion algorithm for the TSP. Operations Research Letters, 36(2):
243–246, 2008. (cited on Page 43)

[49] K. Helsgaun. An effective implementation of the Lin–Kernighan traveling sales-
man heuristic. European Journal of Operational Research, 126:106–130, 2000.
(cited on Page 43)

[50] I. T. Hernádvölgyi. Solving the sequential ordering problem with automatically
generated lower bounds. Operations Research Proceedings, pages 355–362, 2003.
(cited on Page 43)

[51] R. Hooke and T. A. Jeeves. Direct search solution of numerical and statistical
problems. Journal of the ACM (JACM), 8(2):212–229, 1961. (cited on Page 45,

59, and 69)

[52] Y. Huang, L. B. Gueta, R. Chiba, T. Arai, T. Ueyama, and J. Ota. Selection
of manipulator system for multiple-goal task by evaluating task completion time
and cost with computational time constraints. Advanced Robotics, 27(4):233–245,
2013. (cited on Page 29, 33, 55, and 65)

[53] P. Jiménez. Survey on model-based manipulation planning of deformable objects.
Robotics and computer-integrated manufacturing, 28(2):154–163, 2012. (cited on

Page 24)

[54] D. S. Johnson and L. A. McGeoch. Local search in combinatorial optimization.
John Wiley and Sons, London, 1997. (cited on Page 41 and 43)

[55] L. Kavraki, P. Svestka, J. Latombe, and M. Overmars. Probabilistic roadmaps for
path planning in high-dimensional configuration spaces. In IEEE International
Conference on Robotics and Automation (ICRA), pages 566–580, 1996. (cited on

Page 24)

[56] K. Klasing, D. Wollherr, and M. Buss. Joint dominance coefficients: A sensitivity-
based measure for ranking robotic degrees of freedom. In Advances in Robotics
Research, pages 1–10. Springer Berlin Heidelberg, 2009. (cited on Page 85)

[57] E. Kolakowska, S. F. Smith, and M. Kristiansen. Constraint optimization model
of a scheduling problem for a robotic arm in automatic systems. Robotics and
Autonomous Systems, 62(2):267–280, 2014. (cited on Page 11, 27, 29, and 31)

[58] J. Z. Kolter and A. Y. Ng. Task-space trajectories via cubic spline optimization.
In IEEE International Conference on Robotics and Automation (ICRA), 2009.
(cited on Page 69)

[59] A. Kovács. Task sequencing for remote laserwelding in the automotive industry.
In International Conference on Automated Planning and Scheduling (ICAPS),
2013. (cited on Page 27, 28, 29, 34, 35, 37, 40, 68, and 91)

110 Bibliography

[60] J. J. Kuffner and S. M. LaValle. RRT-Connect: An efficient approach to single-
query path planning. In IEEE International Conference on Robotics and Automa-
tion (ICRA), pages 995–1001, 2000. (cited on Page 22 and 24)

[61] L. Lattanzi and C. Cristalli. An efficient motion planning algorithm for robot
multi-goal tasks. In IEEE International Symposium on Industrial Electronics
(ISIE), 2013. (cited on Page 29 and 34)

[62] S. LaValle. Planning algorithms. Cambridge University Press, 2006. (cited on

Page 8, 24, and 25)

[63] S. Lin. Computer solutions of the traveling salesman problem. The Bell System
Technical Journal, 44:2245–2269, 1965. (cited on Page 43)

[64] J. D. Little, K. G. Murty, D. W. Sweeney, and C. Karel. An algorithm for the
traveling salesman problem. Operations research, 11(6):972–989, 1963. (cited on

Page 30)

[65] H. Liu, X. Lai, and W. Wu. Time-optimal and jerk-continuous trajectory plan-
ning for robot manipulators with kinematic constraints. Robotics and Computer-
Integrated Manufacturing, 29(2):309–317, 2013. (cited on Page 36)

[66] A. Loredo-Flores, E. J. González-Galván, J. J. Cervantes-Sánchez, and
A. Martinez-Soto. Optimization of industrial, vision-based, intuitively generated
robot point-allocating tasks using genetic algorithms. IEEE Transactions on Sys-
tems, Man, and Cybernetics, Part C: Applications and Reviews, 38(4):600–608,
2008. (cited on Page 29 and 31)

[67] S. Macfarlane and E. A. Croft. Jerk-bounded manipulator trajectory planning:
design for real-time applications. IEEE Transactions on Robotics and Automation,
19(1):42–52, 2003. (cited on Page 72)

[68] O. Maimon. The robot task-sequencing planning problem. Robotics and Au-
tomation, IEEE Transactions on, 6(6):760–765, 1990. (cited on Page 23 and 24)

[69] N. Mansard and F. Chaumette. Task sequencing for high-level sensor-based con-
trol. IEEE Transactions on Robotics, 23(1):60–72, 2007. (cited on Page 24)

[70] A. A. Masoud. A harmonic potential approach for simultaneous planning and
control of a generic UAV platform. Journal of Intelligent & Robotic Systems, 65
(1-4):153–173, 2012. (cited on Page 24)

[71] W. Mennell. Heuristics for solving three routing problems: close-enough traveling
salesman problem, close-enough vehicle routing problem, sequence-dependent team
orienteering problem. PhD thesis, University of Maryland, 2009. (cited on Page 27,

28, 41, 76, 81, and 82)

Bibliography 111

[72] V. Mersheeva and G. Friedrich. Routing for continuous monitoring by multiple
micro UAVs in disaster scenarios. In European Conference on Artificial Intelli-
gence (ECAI), pages 588–593, 2012. (cited on Page 43)

[73] J. S. Mitchell. A constant-factor approximation algorithm for TSP with pairwise-
disjoint connected neighborhoods in the plane. In Annual symposium on Compu-
tational geometry (SoCG), pages 183–191, 2010. (cited on Page 41)

[74] R. H. Mole. The curse of unintended rounding error: a case from the vehicle
scheduling literature. Journal of the Operational Research Society, pages 607–
613, 1983. (cited on Page 95)

[75] R. Montemanni, D. H. Smith, and L. M. Gambardella. A heuristic manipulation
technique for the sequential ordering problem. Computers & Operations Research,
35(12):3931 – 3944, 2008. (cited on Page 25)

[76] P. Oberlin, S. Rathinam, and S. Darbha. Today’s traveling salesman problem.
IEEE Robotics & Automation Magazine, 17(4):70–77, 2010. (cited on Page 42)

[77] A. Olabi, R. Béarée, O. Gibaru, and M. Damak. Feedrate planning for machining
with industrial six-axis robots. Control Engineering Practice, 18(5):471–482, 2010.
(cited on Page 36)

[78] X. Pan, F. Li, and R. Klette. Approximate shortest path algorithms for sequences
of pairwise disjoint simple polygons. In Canadian Conference on Computational
Geometry, pages 175–178, 2010. (cited on Page 44, 59, and 69)

[79] Z. Pan, J. Polden, N. Larkin, S. V. Duin, and J. Norrish. Recent progress on
programming methods for industrial robots. In Proceedings for the joint confer-
ence of 41st Internationel Symposium on Robotics and 6th German Conference
on Robotics, 2010. (cited on Page 2 and 22)

[80] Z. Pan, J. Polden, N. Larkin, S. Duin, and J. Norrish. Automated offline program-
ming for robotic welding system with high degree of freedoms. In Y. Wu, editor,
Advances in Computer, Communication, Control and Automation, volume 121 of
Lecture Notes in Electrical Engineering, pages 685–692. Springer Berlin Heidel-
berg, 2012. (cited on Page 41)

[81] J.-F. Petiot, P. Chedmail, and J.-Y. Hascoët. Contribution to the scheduling of
trajectories in robotics. Robotics and Computer-Integrated Manufacturing, 14(3):
237–251, 1998. (cited on Page 29, 31, and 32)

[82] D. Portugal and R. Rocha. A survey on multi-robot patrolling algorithms. In
Technological Innovation for Sustainability, pages 139–146. Springer, 2011. (cited

on Page 23)

112 Bibliography

[83] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical
recipes – the art of scientific computing. Cambridge: Cambridge University Press,
3rd edition, 2007. (cited on Page 45)

[84] C. Rego and F. Glover. The traveling salesman problem and Its variations, chapter
Local search and metaheuristics, pages 309–368. Kluwer Academic Publishers,
2002. (cited on Page 44)

[85] G. Reinhart, U. Munzert, and W. Vogl. A programming system for robot-based
remote-laser-welding with conventional optics. CIRP Annals-Manufacturing
Technology, 57:37 – 40, 2008. (cited on Page 18, 29, and 31)

[86] M. Saha, G. Sánchez-Ante, and J.-C. Latombe. Planning multi-goal tours for
robot arms. In International Conference on Robotics and Automation (ICRA),
volume 3, pages 3797–3803, 2003. (cited on Page 29 and 32)

[87] M. Saha, T. Roughgarden, J.-C. Latombe, and G. Sánchez-Ante. Planning tours
of robotic arms among partitioned goals. Robotics Research, 25:207 – 223, 2006.
(cited on Page 29 and 32)

[88] X. H. Shi, Y. C. Liang, H. P. Lee, C. Lu, and Q. X. Wang. Particle swarm
optimization-based algorithms for TSP and generalized TSP. Information Pro-
cessing Letters, 103(5):169–176, 2007. (cited on Page 42)

[89] B. Siciliano and O. Khatib, editors. Springer Handbook of Robotics. Springer
Verlag, Berlin, 2008. (cited on Page 22)

[90] D. Simon. The application of neural networks to optimal robot trajectory plan-
ning. Robotics and Autonomous Systems, 11:23–34, 1993. (cited on Page 90)

[91] C. Smith, Y. Karayiannidis, L. Nalpantidis, X. Gratal, P. Qi, D. V. Dimarogonas,
and D. Kragic. Dual arm manipulation – a survey. Robotics and Autonomous
Systems, 60(10):1340–1353, 2012. (cited on Page 24)

[92] T. B. Smith, J. Barreiro, D. E. Smith, V. SunSpiral, and D. Chavez-Clemente.
ATHLETEs feet: multi-resolution planning for a hexapod robot. In ICAPS:
Scheduling and Planning Applications Workshop (SPARK), 2008. (cited on Page 55

and 65)

[93] S. N. Spitz and A. A. G. Requicha. Multiple-goals path planning for coordi-
nate measuring machines. In IEEE International Conference on Robotics and
Automation (ICRA), pages 2322–2327, 2000. (cited on Page 29 and 32)

[94] S. Srivastava, S. Kumar, R. Garg, and P. Sen. Generalized traveling salesman
problem through n sets of nodes. In CORSE Journal, volume 7, pages 97–101,
1969. (cited on Page 25)

Bibliography 113

[95] M. Stilman. Task constrained motion planning in robot joint space. In IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 2007. (cited

on Page 55 and 56)

[96] K. Vicencio, B. Davis, and I. Gentilini. Multi-goal path planning based on the
generalized traveling salesman problem with neighborhoods. In IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), 2014. (cited on

Page 27, 29, 34, and 37)

[97] C. Wurll and D. Henrich. Point-to-point and multi-goal path planning for indus-
trial robots. Journal of Robotic Systems, 18(8):445–461, 2001. (cited on Page 27,

29, and 32)

[98] C. Wurll, D. Henrich, and H. Wörn. Multi-Goal Path Planning for Industrial
Robots. In International Conference on Robotics and Application, 1999. (cited

on Page 25, 27, 29, and 31)

[99] E. K. Xidias, P. T. Zacharia, and N. A. Aspragathos. Time-optimal task schedul-
ing for articulated manipulators in environments cluttered with obstacles. In
Robotica, volume 28, pages 427–440. Cambridge Univ Press, 2010. (cited on

Page 29 and 33)

[100] H. Yang and H. Shao. Distortion-oriented welding path optimization based on
elastic net method and genetic algorithm. Journal of Materials Processing Tech-
nology, 209(9):4407–4412, 2009. (cited on Page 18, 28, 29, and 31)

[101] Z. Yao and K. Gupta. Path planning with general end-effector constraints.
Robotics and Autonomous Systems, 55:316–327, April 2007. (cited on Page 55)

[102] P. Zacharia, E. Xidias, and N. Aspragathos. Task scheduling and motion planning
for an industrial manipulator. Robotics and Computer-Integrated Manufacturing,
29:449 – 462, 2013. (cited on Page 18, 27, 29, and 33)

[103] P. T. Zacharia and N. A. Aspragathos. Optimal robot task scheduling based on
genetic algorithms. Robotics and Computer-Integrated Manufacturing, 21:67–79,
2005. (cited on Page 27, 29, 30, and 33)

[104] K. Zhang, E. G. Collins Jr, and D. Shi. Centralized and distributed task allocation
in multi-robot teams via a stochastic clustering auction. ACM Transactions on
Autonomous and Adaptive Systems (TAAS), 7(2):21, 2012. (cited on Page 23)

	Contents
	1 Introduction
	1.1 Contribution
	1.2 Publication Note

	2 Problem Specification
	2.1 Formal Definitions
	2.1.1 Task and Configuration Spaces
	2.1.2 Robot Trajectory Definition
	2.1.3 Task Definition
	2.1.4 Effective Task Relaxation

	2.2 Objectives
	2.3 Thesis Problem
	2.4 Solution Concept
	2.4.1 Component1: Relaxed Effective Task Sequencing
	2.4.2 Component2: Supporting Trajectory Optimization for a Relaxed Effective Task Sequence
	2.4.3 Component3: Robot Trajectory Optimization for a Relaxed Effective Task

	2.5 Assumptions

	3 Related Work
	3.1 Industrial Robot Programming
	3.2 Related Planning Problems in Robotics
	3.3 Problems to Model Task Sequencing
	3.3.1 Sequencing Primitive Tasks
	3.3.2 Sequencing Complex Tasks

	3.4 Robotic Task Sequencing Approaches
	3.4.1 Sequencing Primitive Robotic Tasks
	3.4.2 Sequencing Complex Tasks

	3.5 Robot Trajectory Optimization
	3.6 Conclusion

	4 Component1: Relaxed Effective Tasks Sequencing
	4.1 Motivation
	4.2 Related Work
	4.3 Preliminaries
	4.3.1 Involved Sub-Problems
	4.3.2 Involved Sub-Algorithms
	4.3.2.1 Insertion Heuristic
	4.3.2.2 3-Opt Heuristic
	4.3.2.3 Rubber-Band Algorithm

	4.4 Solution Approaches
	4.4.1 Constricting Insertion Heuristic
	4.4.2 Constricting 3-Opt Heuristic

	4.5 Conclusion

	5 Component2: Entry Points Optimization for a Relaxed Effective Task Sequence
	5.1 Motivation
	5.2 Related Work
	5.3 Solution Approach
	5.3.1 Entry Point Container
	5.3.2 Problem Decomposition
	5.3.3 Optimization Approach
	5.3.3.1 Stage 1: Optimization of an Neighborhood
	5.3.3.2 Stage 2: Optimization of an End-effector Pose
	5.3.3.3 Stage 3: Optimization of a Robot Configuration

	5.4 Conclusion

	6 Component3: Robot Trajectory Optimization for a Relaxed Effective Task
	6.1 Motivation
	6.2 Related Work
	6.3 Solution Approach
	6.3.1 Smoothed RBA
	6.3.2 C-space Trajectory Calculation

	6.4 Conclusion

	7 Evaluation
	7.1 Evaluation of the Component1 Approaches
	7.1.1 Evaluated Algorithms
	7.1.2 Evaluation on Instances with Known Optimum
	7.1.3 Evaluation on Instances with “Stretched” Ellipses
	7.1.4 Evaluation on Instances for CETSP
	7.1.5 Evaluating the Influence of the Precision Parameters

	7.2 Evaluation of the Component2 Approaches
	7.3 Evaluation of the Component3 Approach
	7.3.1 Case Study: C-arm Robot for 3D-angiography
	7.3.2 Case Study: Plastic Cover

	8 Conclusion
	9 Appendix A Evaluation Results of Component3
	Bibliography

