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Positive feedbacks and alternative stable
states in forest leaf types
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Philipp Brun 3, Niklaus E. Zimmermann 3, Jingjing Liang 4,
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Paloma Ruiz-Benito15, Miguel Angel de Zavala 15, GFBI consortium* &
Thomas W. Crowther 1

The emergence of alternative stable states in forest systems has significant
implications for the functioning and structure of the terrestrial biosphere, yet
empirical evidence remains scarce. Here, we combine global forest biodi-
versity observations and simulations to test for alternative stable states in the
presence of evergreen and deciduous forest types. We reveal a bimodal dis-
tribution of forest leaf types across temperate regions of the Northern
Hemisphere that cannot be explained by the environment alone, suggesting
signatures of alternative forest states. Moreover, we empirically demonstrate
the existence of positive feedbacks in tree growth, recruitment and mortality,
with trees having 4–43% higher growth rates, 14–17% higher survival rates and
4–7 times higher recruitment rates when they are surrounded by trees of their
own leaf type. Simulations show that the observed positive feedbacks are
necessary and sufficient to generate alternative forest states, which also lead to
dependency on history (hysteresis) during ecosystem transition from ever-
green to deciduous forests and vice versa. We identify hotspots of bistable
forest types in evergreen-deciduous ecotones, which are likely driven by soil-
related positive feedbacks. These findings are integral to predicting the dis-
tribution of forest biomes, and aid to our understanding of biodiversity, car-
bon turnover, and terrestrial climate feedbacks.

Alternative stable states exist in ecological, climatic, and social
systems1–3. In such systems, feedbacksmaintain the state of the system
unless gradual forcing or perturbations become too large and cause
abrupt, critical transitions between stable states2. An important
example of alternative biome states is the forest versus savanna dis-
tinction, whereby fire feedbacks play a key role in maintaining one or
the other state4,5. Yet, it remains unclear whether different tree func-
tional groups form alternative stable states within forest systems, and

what feedbacksmight drive them, limiting our capacity to predict state
changes that affect terrestrial carbon turnover, water dynamics and
nutrient cycling6.

Forests are either deciduous or evergreen or amix of the two7, and
the distribution of these forest leaf types underlies dynamic global
vegetation models8–10. Deciduous trees that shed all leaves during
unfavorable periods differ from evergreen trees in a variety of ecolo-
gically- and climate-relevant leaf traits, such as life span, nutrient
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concentration, and photosynthesis, respiration, and decomposition
rates7,11,12. Whether evergreen and deciduous forests form alternative
stable states or not thus fundamentally determines the potential
abundance of forest leaf types13,14, affecting global conservation and
restoration efforts, the structure and function of forest ecosystems12,15,16

and the global climate system9,17.
The global distribution of leaf phenology strategies (evergreen

versus deciduous) is strongly linked to environmental conditions, with
evergreen species being most abundant in warm, a-seasonal, and
humid regions (broadleaf evergreen) or cold and nutrient-poor
regions (needleleaf evergreen)7,18,19. However, evidence suggests that
biological feedbacks within forest stands may also drive leaf phenol-
ogy strategies, whereby the dominant type in a community may favor
the establishment and survival of its own type (the con-phenological
feedback)10,14,20. For example, many evergreen trees (especially con-
ifers) have an advantage over deciduous species in nutrient-poor and
acidic soils7,20. High concentrations of tannins and phenols as well as
lowN concentration in evergreen leaves decrease the soil pH and rates
of leaf decomposition, further limiting soil fertility and, in turn,
favoring the dominance of evergreen species7,21,22. Similarly, deciduous
treesmay also favor their own phenology type by shedding less tannic,
nutrient-rich leaves that can quickly be decomposed23. Furthermore,
the dominance of either leaf type can lead to an accumulation of ‘con-
phenological’ seeds and seedlings, which may strengthen the positive
feedback24. If these positive feedbacks are strong enough, they can
generate alternative stable states of evergreen anddeciduous forests25,
with strong implications for the resilience of ecosystem structure and
functioning1.

Although positive feedbacks have been proposed by theoretical
studies to stabilize alternative stable states of leaf phenology
strategies21,26, empirical evidence for this hypothesis is still scarce. This
is partly due to trees’ slow growth and turnover rates, which compli-
cate the acquisition of time-series data across multiple generations —
essential for testing alternative stable states in forest ecosystems14. In
addition, multiple competing hypotheses24,27–29 limit the empirical

testing of alternative stable states. Further, we lack a spatial under-
standing of where alternative forest phenological states are likely to be
present, and what specific factors might drive these biogeographic
patterns.

Emerging approaches reveal how different criteria can be used to
empirically test their presence14,30. For instance, if phenological
alternative-stable-states exist, then most forests should be dominated
by either evergreen or deciduous trees, with mixed forests being rarer
than predicted by chance31. Therefore, bimodal patterns of forest
types should represent signatures of alternative stable states if
the effects of other confounding processes that can also
generate bimodality, such as environmental filtering andmonoculture
plantation27,28, are controlled for30. As such, the presence of alternative
stable states can be tested using multiple distinct lines of evidence30,31:
(i) the frequency distribution of observed leaf phenology strategies is
bimodal, and this cannot be explained by environment or manage-
ment alone. (ii) Demographic positive feedbacks in recruitment,
growth and survival lead to the promotion of the same leaf phenology
type. (iii) The observed feedback is strong enough to generate and
maintain bimodality through time under environmental heterogeneity
and demographic stochasticity. (iv) Dependency on initial conditions
(hysteresis) exists during transition from one stable state to another.
When these four criteria align, this provides evidence that the bimodal
distribution is the result of alternative stable states, stabilized through
feedback processes.

We here use a combination of empirical data analysis and data-
driven simulations to (a) test these four criteria for the existence of
alternative stable states in leaf phenology, and (b) quantify the spatial
extent of this phenomenon.We reveal bimodality in the distribution of
forest leaf phenology types, even after accounting for environmental
filtering and monoculture plantations, and quantify the con-
phenological demographic feedbacks underpinning these bimodal
patterns. We also show that the observed feedbacks are necessary and
sufficient to generate and maintain alternative stable states of leaf
phenology, which lead to hysteresis during ecosystem transition. Our
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Fig. 1 | Bimodal patterns of forest types at the continental and global scale.
A The spatial distribution of 45,276 forest inventory sites from the FIA was used for
the continental analysis. The continuous color scale represents the relative abun-
dance of evergreen trees within a plot (red = 100% deciduous; blue = 100% ever-
green). B Histogram of the observed plot-level evergreen percentage across the
mainland US. The black dots and error bars show the medians and 2.5–97.5%
quantiles of the null model predictions driven by environmental filtering (zero
adjusted Poisson distribution). C Spearman’s rank correlation coefficient between

evergreen abundance and deciduous abundance in the observed data (red bar)
versus the simulated results of the null model (black histogram).D The location of
815,578 forest plots from the global GFBI database.E andF are the sameas panelsB,
and C, but for the global data. Hartigan’s dip test52 showed significant multi-
modality (here is bimodality) in the observed values in panels B (n = 45,276, one-
sided p-value < 0.001) and E (n = 815,578, one-sided p-value < 0.001). Source data
are provided as a Source Data file.
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spatial models further revealed hotspots of alternative stable states
in evergreen-deciduous ecotones across temperate regions of the
Northern Hemisphere.

Results
Bimodal patterns of forest types
To test whether bimodal patterns exist at the continental and global
scale andwhether environmentalfiltering is sufficient to explain these
patterns, we used forest plot data from the Forest Inventory
and Analysis (FIA) Program32 of the US and the Global Forest
Biodiversity Initiative (GFBI)33. Species-level leaf phenology classifi-
cation (evergreen versus deciduous) came from the TRY database34,
and we computed the plot-level relative abundance of leaf phenology
strategies based on the stem density (number of stems per plot) of
each type. To control for the effects of human management, we
removed managed plots from the FIA data and monoculture plots
(containing <2 species) from the GFBI data. The remaining data show
clear bimodality in leaf phenology strategies, both at the continental
and global scale (Fig. 1B, E).

To control for the effects of environmental filtering, we fitted
generalized additive models (GAMs)35 to each phenological type. We
modeled plot-level evergreen/deciduous stem density as a function
of the ten leading environmental principal components, covering
impacts of climate, topography andhuman activity.We then sampled
random evergreen and deciduous stem densities for each plot
from the distribution expected under plot-specific environmental
conditions using the GAMs, and computed the relative evergreen
abundance in each plot (Fig. 1B, E). The data-model comparison
shows that environmental filtering alone is not sufficient to repro-
duce the magnitude of bimodality at both the continental and global
scale (Fig. 1B, E).

The alternative stable state hypothesis further predicts that the
absolute abundances of evergreen and deciduous trees at the plot
level are more negatively correlated than what would be expected if
only environmental filtering were to drive leaf-type abundances.
Indeed, the negative correlation between both leaf strategies was
much larger in the observed data than in the ensemble of modeled
abundances (p <0.001, Fig. 1C, F), suggesting that factors apart from
environmental filtering drive leaf type distributions. This pattern
remained similar when correcting for overdispersion and when
applying the same analysis to European forest inventory data (Fig. S3).
Together, these results show that both environmental variables and
overdispersion cannot fully explain leaf-type variation at the con-
tinental and global scale, instead pointing toward other mechanisms
that drive alternative stable states of forest leaf phenology.

Strong positive feedbacks in forest con-phenological
demography
To explore whether demographic positive feedbacks drive the
observed bimodal patterns, we modeled tree mortality, growth, and
recruitment using 45,276 repeatedlymeasured forest inventory plots
across the mainland US. We used GAMs to incorporate and control
for the influence of environmental covariates, allowing us to separate
the influence of ecological feedbacks from potential covariation with
the environment. After controlling for environmental covariates,
stand conditions, and tree size, the results showed strong positive
con-phenological feedbacks, that is, trees perform better when sur-
roundedby their ownphenological strategies. In particular, we found
that a deciduous tree has a 14 ± 1% (mean ± 95% CI) higher probability
of survival than an evergreen tree when both are growing in a forest
dominated by deciduous trees, while an evergreen tree has a 17 ± 1%
higher survival probability than a deciduous tree when both
are growing in an evergreen-dominated forest (Figs. 2A and S3).
Similarly, we found that, in evergreen-dominated forests, evergreen
trees grew 43 ± 4% faster than deciduous trees, whereas in deciduous
forests, deciduous trees grew 4 ± 3% faster than evergreen trees
(Figs. 2B and S3). Furthermore, in evergreen forests, recruitment of
evergreen trees was much higher than that of deciduous trees and
vice versa (Figs. 2C, S3). Species-level analyses confirmed this,
showing con-phenological facilitation of recruitment and survival
among the 20 most abundant evergreen and deciduous tree species
in the US (Fig. S4). Demographic models refit to ecoregions of the
eastern US showed robust positive demographic feedbacks at
the sub-regional scale (Fig. S5). The same patterns were found for
European forest data (Fig. S6). These results support the existence
of con-phenological feedback, which may explain bimodality of
phenological strategies.

Effect of demographic feedbacks on forest succession
To understand if the con-phenological demographic feedbacks
observed over relatively short time scales have the potential to gen-
erate alternative stable states over long timescales, we ran a set of
forest demographic simulations. Specifically, we ran two groups of
simulations based on empirically fitted GAMs for growth, recruitment,
and mortality30. The first group of simulations allowed us to test
whether this feedback can generate alternative stable states from
uniformlymixed forests over long time periods (i.e., overmultiple tree
generations), and the second group tests whether the feedback can
maintain alternative stable states.

The results showed that null model simulations could not gen-
erate and maintain a bimodal distribution of evergreen versus
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Fig. 2 | Observed positive feedback in con-phenological demographics in the
mainland US. A Survival probability of an individual deciduous tree (DE, red) or
evergreen tree (EV, blue) within a purely evergreen or deciduous forest stand.
B Individual deciduous or evergreen tree growth (stem diameter increment in cm
per year) when the surrounding trees are purely evergreen or deciduous.
C Recruitment rates of deciduous or evergreen trees in deciduous or evergreen

dominated forest plots. All plotted data are 100 samples drawn from the 95% CI of
the corresponding full model (n = 45,276), controlling for environmental condi-
tions and stand structure. Results are presented as boxplots (medians as centre
with 25th and 75th percentile as bounds). The differences between all compared
pairs are highly significant (one-sided t-test p-value < 0.001, n = 100). Source data
are provided as a Source Data file.
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deciduous forests. In contrast, simulations driven by feedback models
reproduced the observed bimodal pattern of forest leaf phenology
(Fig. 3A–D). We then extended these demographic simulations to the
20most abundant evergreen and deciduous species in the US to show
that the feedbackmodel couldmaintainbimodal patterns, whereas the
null model couldn’t (Fig. S10). These findings suggest that positive
demographic feedbacks are sufficient to generate and maintain alter-
native stable states under demographic stochasticity, environmental
heterogeneity, and disturbances.

Hysteresis
The presence of alternative stable states in forest leaf phenology
strategies predicts that hysteresis will occur during the transition of
phenology strategies along environmental gradients. In temperate
regions, mean annual temperature (MAT) has been well documented
to drive the transition from evergreen forests (mostly needleleaf) to
deciduous forests (mostly broadleaf)7,36. To test whether hysteresis
occurs during the transition from one dominant phenology type to
the other in response to temperature, we ran a third group of simu-
lations implemented along a gradient of MAT (−2 °C to +23 °C, the
empirical range of MAT in forests across the mainland US). We split
the MAT gradient into 12 sections and initialized 1000 forests plots
for each section as either evergreen-dominated (800 purely ever-
green plots + 200 purely deciduous plots), or deciduous-dominated
(800 purely deciduous plots + 200 purely evergreen plots). We
simulated both ‘null’ (excluding feedback predictors) and ‘feedback’
scenarios for 2000 years to minimize the influence of demographic
lags on the model outcome. The feedback simulations accurately
predicted the observed decrease in evergreen dominance with
increasing MAT7,37 and revealed clear signs of hysteresis, with the
final leaf phenology type of forest plots under any given MAT
strongly depending on the initial phenological status (Fig. 3D).
Within eachMAT group, the relative abundance of evergreen species
was higher under the evergreen-dominated initialization than under
the deciduous-dominated initialization. In contrast, null simulations
didn’t show significant initialization-dependent differences in final
abundances, indicating con-phenological feedback as the primary
driver of hysteresis (Fig. 3C).

Spatial extent of alternative stable states in forest systems
Alternative stable states in leaf phenological strategies are region-
specific, as environmental filtering may limit certain regions to only
one leaf type7,38. To generate a spatial understanding of the potential
presence of alternative stable states, we developed a random forest
model (seeworkflow in Fig. S8).We partitioned the global forest zones
using a ‘fishing net’with 10 arc-min (~20 km) grid size. For each cluster,
we used forest composition information of all plots to calculate a
bimodality index (BI), which helped quantify bimodality in the leaf
phenology distribution (Fig. 4A). The BI ranges from −1 to 1, and we
empirically derived bimodality cutoffs, with BIs < −0.22 representing
deciduous-dominated clusters, BIs > 0.22 representing evergreen-
dominated clusters, and BIs of −0.22–0.22 representing bimodal
clusters (Fig. 4C).

To extrapolate the BI across the Northern Hemisphere, we trained
a random forest model, including 62 environmental predictors cov-
ering spatial variation in climate, soil, topography, vegetation and
human impact (Fig. 4). The random forest models explained 71%
(coefficient of determination based on 10-fold cross validation) of the
global variation in the bimodality of leaf phenology. Spatially buffered
leave-one-out cross-validation showed that performance of the ran-
dom forest model remained satisfactory (R2 = 0.52) at a 500 km buffer
radius, atwhich scale no spatial autocorrelation inmodel residuals was
detected anymore (Fig. S12). The maps show that bimodal forests
mainly occur in ecotones between evergreen and deciduous forests
and at the poleward range limits of forest ecosystems (Fig. 4A, B).

An alternative approach using environmental instead of spatial clus-
ters showed consistent patterns (72% agreement between models,
Figs. S8 & S16). The models thus capture phenological bimodality
observed in well-studied ecotones like hemlock vs. maple forests in
northern Michigan39, US (predicted BI = −0.11), evergreen-oak vs.
deciduous forests in the Sierra Madre37, Mexico (predicted BI = 0.10)
and evergreen conifer vs. deciduous lime forests in southern Sweden40

(predicted BI = 0.20).
Global variation in leaf phenological bimodality was best

explained by climatic variables, such as mean annual temperature and
temperature of the coldest quarter, while soil conditions played a
subordinate role (Figs. 5A, S23A & S24A). Yet, within bimodal clusters,
soil pH was the most important driver of the relative proportion of
evergreen trees in a plot, followed by soil nitrogen and annual pre-
cipitation (Figs. 5B, S23C & S24C). In both evergreen and deciduous
dominated clusters where there are no alternative stable states pre-
sent, climatic factors were more important than soil factors in
explaining relative evergreen abundance (Figs. 5B, S23C & S24C). A
principal-component-based analysis showed the same patterns
(Fig. S11), supporting that soil conditions, particularly soil pH, play an
important role in driving variation of forest phenological composition
in bimodal clusters.

Discussion
The spatial distribution of evergreen and deciduous forests, as well as
the factors governing their formation, have long been of great interest
to ecologists7,20. To test for the existence of alternative stable states in
leaf phenological types and explore the involved mechanisms,
numerous theoretical studies have simulated positive feedback loops
between evergreen conifers, deciduous species, and their physical
environment, including soil nutrients, water availability, and climatic
conditions10,18,41. Building upon this foundational research, we found
multiple lines of empirical evidence to suggest that the global dis-
tribution of deciduous and evergreen tree species is partially under-
pinned by ecological feedbacks that drive forest ecosystems towards
alternative stable states. The strong bimodality in the distribution of
deciduous and evergreen species can be observed even after con-
trolling for environmental filtering and overdispersion (Fig. 1), sug-
gesting that each leaf phenology type favors their own forest type via
positive feedback. In addition, we found higher growth, survival and
recruitment rates of deciduous trees in deciduous stands than in
stands dominated by evergreen species, and vice versa (Fig. 2).
Moreover, we were only able to reproduce the bimodal pattern in
empirically derived dynamical models when incorporating the feed-
backs. These ecological feedbacks are therefore likely to gradually
shift the distribution of forest types towards distinct alternative stable
states in certain environmental envelopes across the global forest
system.

Accounting for such biological feedbacks is particularly relevant
for biogeochemical modeling efforts that aim to represent the func-
tional variation in forest types across the globe. For example, to pre-
dict the presenceof forest functional types, dynamic global vegetation
models currently use deterministic climate limits to predefine the area
where functional types can establish and then allow functional types
that pass the climatic filter to coexist and compete for resources8,9.
Historic community composition, however, is ignored when predict-
ing the dominant functional type of an area8,9. Ourmodels support this
approach in that climatic constraints strongly drive the global dis-
tribution of forest types. Yet, we also reveal that, even under the same
climate conditions, the initial leaf phenology type of an ecosystem can
affect its final stable state (Fig. 3E, F), highlighting the importance of
including historic ecosystem status in dynamic global vegetation
models.

Our data and spatialmodels indicate hotspots of leaf phenological
alternative stable states in ecotones and the poleward range limits of
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forests (Fig. 4B). Ecotones between evergreen- and deciduous-
dominated regions are typically characterized by environmental con-
ditions that allow both leaf phenology strategies to coexist, thus
allowing each type to form patches (Fig. 4C middle panel) via soil-
related positive feedbacks5,26,37. Studies on alternative stable states of
forest vs. savanna systems have also shown that bistable regions are
located in-between forest- and savanna-dominated areas4,5. The causes
behind the presence of bimodal clusters at poleward tree range limits,
however, remain elusive and warrant further investigation. The
dependence of forest composition in these bimodal regions on the

initial ecosystem state cautions against simply using environmental
conditions to predict forest types in these areas.

At the global scale, the distribution of evergreen, deciduous, and
bistable forests is mainly determined by climatic variables. In contrast,
within bistable forest clusters, soil chemical variables best explained
variation in leaf phenology composition. This suggests that soil-related
positive feedbacks shape the bimodal patterns, supporting our
hypothesis that trees facilitate establishment of their own phenology
type by regulating soil properties like pH and nutrient content. Trees
can modify the soil pH via their litterfall, and a soil pH around 4.5 has

0.0 0.2 0.4 0.6 0.8 1.0

0
10

0
20

0
30

0
40

0
50

0

Relative Abundance Evergreen Trees

N
um

be
r o

f F
or

es
ts

Null Simulation 2 C

0.0 0.2 0.4 0.6 0.8 1.0

0
10

0
20

0
30

0
40

0
50

0

Relative Abundance Evergreen Trees

Feedback Simulation 2 D

0.0 0.2 0.4 0.6 0.8 1.0

0
10

0
20

0
30

0
40

0
50

0
60

0

Relative Abundance Evergreen Trees

N
um

be
r o

f F
or

es
ts

Null Simulation 1 A

0.0 0.2 0.4 0.6 0.8 1.0

0
10

0
20

0
30

0
40

0
50

0
60

0

Relative Abundance Evergreen Trees

Feedback Simulation 1 B

Simulation 3: hysteresis analysis

Simulation 2: succession with bimodal initialization

Simulation 1: succession with uniform initialization

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

initially EV
initially DE

R
el

at
iv

e 
Ab

un
da

nc
e 

Ev
er

gr
ee

n 
Tr

ee
s

Null Simulation 3

Mean Annual Temperature (°C)

E

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 Feedback Simulation 3

Mean Annual Temperature (°C)

F

Article https://doi.org/10.1038/s41467-024-48676-5

Nature Communications |         (2024) 15:4658 5



been suggested as a critical threshold for transitions in soil properties
and ecosystem states7,42. Our analysis supports this idea, showing that
forest phenological composition changes abruptly at soil pH values of
4.5–5.0 (Fig. S14).

While ourfindings provide valuable insights into alternative forest
states, it is important to address several potential limitations:
1. Human influence: The possibility that humanmanagement28, such

as monoculture plantations, might induce bimodal patterns can-
not be entirely dismissed. However, even after excluding plots
with signs of recent human disturbances like harvesting or

monoculture presence, the distribution of leaf types remained
bimodally distributed (Figs. 1 & S3). Additionally, the positive
demographic feedback observed in multi-year forest inventory
data suggests that human interference alone does not account for
these patterns (Figs. 2 & S6).

2. Categorization of leaf phenotypes: The oversimplification in
classifying species strictly as evergreen or deciduous ignores the
variety in leaf-shedding behaviors among species. For instance,
trees that shed leaves for two months were classified similarly to
those shedding for 10 months. However, our analysis confirmed

Fig. 3 | Three pairs of feedback simulations versus null simulations.Histograms
in A–D represent the relative evergreen abundance within 1000 simulated forest
plots after 2000 years. The color scale represents the percentage of evergreen
forest within a plot (red, 100% deciduous; blue, 100% evergreen). A, Outcome of
null demographic simulations with uniform initialization, from growth, recruit-
ment, andmortality models fit without con-phenological feedback predictors. The
inset in (A) shows the initial uniform distribution of relative evergreen abundance
across the 1000 plots. The uniform distribution shifts to evergreen-dominated
forests after 2000 years. B, Outcome of demographic simulations with uniform
initialization from demographic models fit with con-phenological predictors. Most
plots are dominated by either of the two leaf phenology strategies (bimodal dis-
tribution). COutcome of null demographic simulations with bimodal initialization,

from growth, recruitment, and mortality models fit without con-phenological
feedback predictors. The inset in panel C shows the initial bimodal distribution of
forest composition. As in panel A, the bimodal distribution shifts to evergreen-
dominated forests after 2000 years. D Outcome of demographic simulations with
bimodal initialization from demographic models fit with con-phenological pre-
dictors. Most plots are dominated by either of the two leaf phenology strategies.
E,FHysteresis simulations alongmeanannual temperature gradients,where80%of
forest plots (800 of 1000) were initially dominated by evergreen trees (EV, blue
line) or deciduous trees (DE, red line). Demographic simulations were run either
without feedback predictors (E) or with feedback predictors (F). Shaded regions
represent the 95%CI of themean relative abundanceof evergreen trees across each
set of simulations (n = 1000). Source data are provided as a Source Data file.
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Fig. 4 | Hemisphere-wide patterns of forest types. A Empirical map of bimodality
in forest types generated fromGFBi data. Colors reflect the value of the bimodality
index (BI),with red representingBIs < −0.22 (deciduous-dominated forest clusters),
blue representing BIs > 0.22 (evergreen-dominated forest clusters), yellow repre-
senting BIs from −0.22 – 0 (bistable-deciduous forest clusters) and cyan repre-
senting BIs from 0–0.22 (bistable-evergreen forest clusters). B Projected map of
bimodality in forest types across theNorthernHemisphere based on random forest

modelling. Colors reflect theprojected value of the bimodality index (BI), and share
the same scale as in A. Predictions in B were made for forest regions (1) above 15
degrees northern latitude, where > 98% of the GFBi data are located, (2) whose
environmental conditions well represented by our training data (> 90% interpola-
tion, see Fig. S9A). C Relative frequencies of plot-level relative evergreen abun-
dance in deciduous-dominated, bistable-deciduous, bistable-evergreen and
evergreen-dominated regions. Source data are provided as a Source Data file.
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that treating deciduousness as either a continuous or categorical
trait does not alter its bimodal distribution among species
(Fig. S33 & Fig. 1).

3. Geographic limitations: Our study is constrained by the risks of
extrapolating findings to tropical regions and the Southern
Hemisphere due to data scarcity. Therefore, wehave confined our
predictions and conclusions to forest regions primarily in the
Northern Hemisphere above 15 degrees latitude, where over
98% of our dataset originates, primarily from North America and
Europe. This limitation helps minimize risks but does not com-
pletely eliminate the possibility of geographic extrapolation
errors in regions like Siberia andAsia,where tree speciesmayhave
different evolutionary histories.

4. Data Interpolation: The soil layers included in our random forest
models were interpolated from point observations and may thus
correlate with climate variables. Although our model predictions
are not affected by multicollinearity43, this could influence the
variable importance of climate and soil features. However, re-
examining this using the World Soil Information Service (WOSIS)
dataset44, which includes local soil observations, confirmed that
soil chemical variables more accurately explain variations in leaf
phenology within bistable forest clusters than climate variables
(Figs. S22–24).

5. Simulation limitations: Our 2000-year simulations were based on
5-year demographic trends from the FIA data, which may not
capture long-term outcomes. However, the simulations, whether
including or excluding feedbacks, start to diverge after only a few
years (Figs. S17–19), providing evidence that short-term trends
reflect longer-term patterns. Furthermore, our feedback model
simulations did not include specific feedback mechanisms
like plant-soil interactions but instead used plot-level relative

evergreen abundance as a predictor for frequency-dependent
feedback. This approach supports the notion that positive
feedback can sustain bimodality, thoughmore empirical research
is needed to pinpoint specific feedback mechanisms.

In conclusion, our study reveals complementary lines of evidence
to support the existence of alternative stable states and highlights
regions in which bimodality in forest types is likely to occur. Given the
close connection between forest types and ecosystembiogeochemical
processes, our findings can improve our understanding of the occur-
rence of evergreen and deciduous forests, terrestrial carbon seques-
tration, and ecosystem feedbacks to the climate system.

Methods
Data preprocessing
Forest inventory data. Data for the North American continental ana-
lysis came from the US Forest Service’s Forest Inventory and Analysis
database v.9 (FIA)32. To eliminate the effects of management, we
excluded plantations and actively managed or harvested forest plots
from the analysis. To reduce the effects of small plots (plots with few
trees are more likely to have only one leaf phenology type), we only
included plots with at least ten individual trees.We also excluded plots
where >50% of trees had died between census intervals30 to exclude
effects of major pest outbreaks or other disturbances. We assigned all
observed trees as evergreen or deciduous based on species-level or
genus-level leaf phenology data from the TRYdatabase34.We only kept
plots for which information on leaf phenology strategy was available
for > 90% of trees (weighted by basal area). Our final FIA dataset
included 45,276 unique forest sites, each with ~5-yr census intervals
(the average time period for these observations is 2010 ~ 2015), along
with information on environmental covariates.
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Fig. 5 | Determinant analysis showing the variable importance based on ran-
dom forest models. Seven key covariates of forest leaf phenology composition
wereused to train the random forestmodels,wherebywe ran eachmodel 100 times
on 100 bootstrapping training sets and then computed the mean and standard
deviation of the variable permutation importance. A, Variable permutation
importance (mean ± std, n = 100, individual data points are overlayed on the bar
charts) for global random forest analysis using the bimodality index as response
variable. Variables along y-axis in A are ordered by their mean importance. The

continuous color scale represents the variable importance from high (yellow) to
low (dark blue). B, Variable permutation importance (mean ± std, n = 100) for
random forest analysis of plots within deciduous-dominated forests (left panel),
bimodal forests (middle panel, including both bistable-deciduous and bistable
evergreen forests) and evergreen-dominated forests (rightpanel). Analyses inpanel
B all use plot-level relative evergreen abundance as response variable. Source data
are provided as a Source Data file.
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For the analysis of European forests, we used inventory data
from Germany, Spain, Sweden, Finland, and Belgium from the
FunDivEUROPE45 database and data from Switzerland from the Swiss
Federal Institute for Forest, Snow and Landscape Research (WSL). As
for the FIA analysis, leaf phenology type (evergreen versus deciduous)
was assigned to each tree, and only plots for which leaf phenology
information was available for >90% of the total basal area were kept.
Due to the lack of management information for many plots, we
accounted for the potential impact of human management on the
establishment of monocultures by excluding plots 1) with fewer than
ten tree individuals, 2) with only one species, 3) in which the relative
basal area of a specieswas larger than90%of the total cumulative basal
area of all individuals in that plot. Our final European dataset included
15,431 unique forest sites, each with ~10-yr census intervals, along with
information on environmental covariates.

Data for the global analysis came from the Global Forest Biodi-
versity Initiative (GFBi)33. Similarly, leaf phenology information was
assigned to each tree, and only plots for which leaf phenology infor-
mation was available for >90% of the total basal area were kept. The
samefilter as in the FunDivEUROPEdatawereapplied to control for the
effects of management and plot size. Most GFBi plots were only
measured once, and for plots with timeseries data, the latest obser-
vation year was included in the analysis. The final GFBi dataset inclu-
ded 815,578 unique forest plots. The area of all plots is standardized to
one hectare.

For all datasets, we computed two types of plot-level relative
evergreen abundance (relEV) using stem density and basal area:

relEVarea =
basalAreaEvergreen

basalAreaEvergreen +basalAreaDeciduous
ð1Þ

relEVdensity =
stemDensityEvergreen

stemDensityEvergreen + stemDensityDeciduous
ð2Þ

The individual-based relative evergreen abundance (relEVdensity)
was used in the analysis presented in Fig. 1 and Fig. S3, which compares
stem densities between the null model and the observations. All other
analyses use area-based relative evergreen abundance (relEVarea). The
two abundance types are highly similar (R2 = 0.93, Fig. S7), and thus
result in the same patterns.

Environmental covariates.We extracted spatial data on 62 commonly
used environmental covariates, reflecting variations in climate, soil,
topography, and human characteristics (see Table. S2). These covari-
ates were used to train spatial random forest models for mapping. Of
these variables, 53 were used to control for environmental filtering
when testing for alternative stable states in leaf phenology strategies,
excluding nine soil-related factors such as nitrogen density, C:N ratio,
clay content, and soil pH, which are likely to drive positive feedbacks
and generate alternative stable states. All covariate layers were stan-
dardized to EPSG:4326 (WGS84) projection at 30 arc-sec resolution
(~1 km2 at the equator). To reduce feature dimensionality, we con-
ducted a principal component analysis on the 53 environmental cov-
ariates and selected the first ten principal components which captured
80% of the variation in the original 53 covariates. A summary of the
leading ten principal components can be found in Fig. S10. These ten
principal components were then used as predictors in all statistical
models of tree growth, recruitment and survival for both the FIA and
GFBi datasets.

Bimodality testing
If alternative stable states exist, the distribution of relative evergreen
abundance should be bimodal. However, bimodal patterns can also
result fromenvironmental effects on the abundances of individual tree

types or simply be due to overdispersion in the distribution of trees. If
the bimodal patterns are purely driven by environmental conditions
without overdispersion or biotic interactions such as con-phenological
feedback, then a Poisson distribution should well depict the distribu-
tion of tree density, assuming that trees are independent from
each other.

To control for the effect of environmental filtering, we fit gen-
eralized additivemodels for location, scale and shape (GAMLSS) to the
plot-level absolute abundance of evergreen and deciduous trees,
respectively, using a zero-adjusted Poisson distribution (Fig. 1) via the
‘gamlss’ and ‘gamlss.dist’ packages46 within R v.4.1.2. All parameters of
the distribution were modelled via smoothing functions of the ten
environmental principal components.

From our fitted models, we randomly extracted evergreen and
deciduous abundances in each plot based on the plot-specific envir-
onmental conditions, using the functions “rZAP” for a zero-adjusted
Poisson distribution. With those randomly drawn abundances we cal-
culated the relative evergreen abundance in eachplot, using only plots
with at least ten trees, and generated a relative evergreen abundance
distribution across plots as done for the observed data. By repeating
this 1000 times, weobtained 1000 simulations of the expected relative
evergreen abundance distribution, that now include environmental
information (Poisson) at the plot spatial scale. By binning the relative
abundance distribution, we could calculate the 2.5% and 97.5% quan-
tiles for the frequency of each bin according to our 1000 simulations.
We chose a bin width of 0.05 and compared the observed frequency in
each bin to the predicted frequency. If the observed frequencies in the
outer bins (0–0.05 and 0.95–1) are higher than the predicted fre-
quencies (above the respective 97.5% quantile from model simula-
tions), this indicates that other factors apart from environmental
parameters shape the observed bimodality.

If the abundances of evergreen anddeciduous trees showpositive
feedback, evergreen and deciduous plot-level abundances should be
more anticorrelated than predicted by environment only. We used
Spearman’s Rank correlation coefficient47 and compared the correla-
tion in our observed data to the distribution of correlation coefficients
obtained from the 1000 random draws from the models. If the
observed correlation is more negative than the correlations obtained
from those random draws (Fig. S3), this suggests that environmental
conditions alone are not sufficient to explain the relationship between
evergreen and deciduous forests.

Testing whether demographic positive feedback can reinforce
evergreen or deciduous-dominated states
Demographic processes of growth, recruitment, and mortality of
evergreen and deciduous trees fundamentally determine changes in
forest leaf phenology composition. We used GAMs to model each of
these processes as a function of environmental factors, individual tree
and stand characteristics (tree size, stand stemdensity and stand basal
area) and the relative evergreen abundance in the forest (our feedback
predictor), to quantify the influence of con-phenological frequency
dependence. To explore the sign and magnitude of con-phenological
neighborhood effects, we kept all predictors except relative evergreen
abundance constant and used the model to make predictions along
gradients of relative evergreen abundance.

We used the FIA data for demographic modelling, because it has
repeated measurements for each plot. Methods used to develop the
following demographic models and simulations were adapted from
Averill et al.30.

Modelling tree recruitment. We fit separate GAMs to model recruit-
ment of evergreen and deciduous trees at the plot level across the
most recent 5-yr time interval for each forest site using a Poisson dis-
tribution. We defined recruits of each leaf phenology type as all cor-
responding individuals in the current census, which were not present
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in the previous census. We modelled recruitment of evergreen or
deciduous trees as a function of plot basal area, stem density, basal
area of con-phenological trees, the ten environmental principal com-
ponents, and the relEV within a plot (i.e., the con-phenological feed-
back predictor). We included the basal area of con-phenological trees
within the plot as a term in addition to the con-phenological predictor
to account for the fact that recruitment generally increases with the
abundance of a focal species or the same phenological strategies
within a given site. We included spatial clusters (extracted from a
global ‘fishing net’ at 20 km resolution) as a random effect to control
for potential spatial autocorrelation. For all continuous predictors, we
fit splines with a penalized thin-plate spline regression method with a
basis dimension of 5 to avoid overfitting. To elucidate differences in
evergreen and deciduous recruitment in respective forest types, we
used the fitted recruitment GAMs to predict evergreen/deciduous
recruitment in an evergreen-dominated forest (relEV = 0.9) and a
deciduous-dominated forest (relEV = 0.1) (Fig. 2C). All environmental
covariates and stand properties were held at mean values, with only
the relEV varying.

Modelling tree growth. We fit separate GAMs tomodel evergreen and
deciduous tree growth at the individual tree level across the most
recent 5-yr time intervals for each forest site. Within each model, we
modelled current tree diameter as a function of an individual tree’s
previous diameter, total plot basal area, plot stem density, the ten
environmental principal components, and the relative evergreen
abundance within a plot (i.e., the con-phenological feedback pre-
dictor). We included spatial clusters (extracted from a global ‘fishing
net’ at 20 km resolution) as a random effect to control for potential
spatial autocorrelation. Again, for all continuous predictors, we fit
splines with a penalized thin-plate spline regression method with a
basis dimension of 5 to avoid overfitting. We then used the fitted
growth GAMs to predict evergreen/deciduous growth in an evergreen-
dominated forest (relEV= 1) and adeciduous-dominated forest (relEV=
0) (Fig. 2B), holding all environmental covariates and stand properties
at their mean values.

Modelling tree mortality/survival. We fit separate GAMs to model
evergreen and deciduous tree mortality at the individual tree level
across the most recent 5-yr time interval for each forest site. Within
eachmodel, wemodelled treemortality probability as a function of an
individual tree’s previous diameter, total plot basal area, plot stem
density, the ten environmental principal components and the relative
evergreen abundancewithin aplot (i.e., the con-phenological feedback
predictor). We included spatial clusters (extracted from a global
‘fishing net’ at 20 km resolution) as a random effect to control for
potential spatial autocorrelation and used penalized thin-plate spline
with a basis dimension of 5 for all continuous predictors. Results are
visualized as survival probability (1 – mortality probability). We then
used the fitted mortality GAMs to predict evergreen/deciduous survi-
val in an evergreen-dominated forest (relEV = 1) and a deciduous-
dominated forest (relEV = 0) (Fig. 2A), holding all environmental cov-
ariates and stand properties at their mean values.

Demographic simulation 1: testing whether demographic positive
feedbacks can generate alternative stable states. The positive con-
phenological neighborhood effectsmight not be sufficient to generate
and maintain alternative stable states under demographic stochasti-
city, environmental variance, and disturbances. To test whether the
observed demographic positive feedbacks are strong enough to gen-
erate andmaintain the magnitude of bimodal patterns, we ran a series
of demographic simulations based on empirically fit GAMs for growth,
recruitment and mortality mentioned above. We initialized 1000 for-
est plots with varying relEV uniformly drawn fromand allowed them to
grow for 2000 years. We initialized each plot with 20 trees, each of

which with a diameter at breast height of 12.7 cm (the smallest tree
measured in the FIA surveys). We ran two sets of simulations, both of
which used the same GAMs of growth, mortality, and recruitment
described above, with the ‘null’model excluding the con-phenological
feedback as predictor (i.e., relEV), and the ‘feedback’ model including
this potential feedback. The null model is required to test whether
factors other than positive feedbacks, such as demographic lags, dis-
turbance, or environmental heterogeneity, can generate bimodal
patterns in leaf phenology strategies, whereas the feedback model
allows testing whether con-phenological feedbacks are sufficient to
generate and maintain alternative stable states.

Simulated plot area was identical to the respective FIA survey plot
area. We included stand-replacing disturbances (e.g., fire, hurricanes,
etc.) at a probability of 0.0036 per year. This probably was based on
the overall North American stand-replacing disturbance probability
(0.009 per year) minus the stand replacement that is due to man-
agement (0.0054 per year)48. When disturbance occurred in a stand,
the model reset to assume the initial 20 trees per plot. The model
randomly assigned leaf phenology status to regenerating trees based
on the stands’ initial relEV before disturbance. We incorporated
environmental heterogeneity by randomly drawing plot-level envir-
onmental conditions from observed values across forest plots used to
fit the GAM models.

Our exploration within the feedback model did not target any
specific feedback mechanisms, such as plant-soil or plant-
microclimate feedback. Rather, we accounted for potential positive
frequency-dependent feedbacks by including the effects of plot-level
relEV on tree demography and forest succession. Essentially, the
positive frequency-dependent feedbacks indicate that a higher pro-
portion of evergreen trees will foster more evergreen-dominated for-
ests, and the same holds for deciduous trees.

In the realmof dynamicmodels, a standardmethod for simulating
feedback requires the integration of the variable of interest into their
dynamic equations, symbolized as dx

dt ∼ f xð Þ. In parallel, models able to
induce bifurcation points also need to be nonlinear (introducing this
feedback in a nonlinear manner). This way, these equations confront
the two lines of complexity required for understanding feedbacks as
generators of bifurcations (nonlinear relationships involving the vari-
able of interest both as cause and consequence)49.

We simulated this feedback through a set of equations relating
growth, recruitment, and mortality to evergreen abundance. As men-
tioned above,weutilizedgeneralized additivemodels tofit tree growth,
recruitment, and survival as functions of the environment, stand
properties, and relEV. Consequently, the functions can be represented
as: growth=recruitment=survival ∼ f ðrelEV , . . .Þ. In each time step of
the feedback simulation, evergreen abundance in a plot may change
due to recruitment, growth and mortality of trees within that plot,
hence: dðrelEV Þdt ∼ f 1 growth,recruitment,survivalð Þ∼ f 2ðrelEV Þ.

This approach accomplishes adding a feedback, as it maintains
the form dðrelEV Þ

dt ∼ f relEVð Þ. Moreover, all equations are grounded in
generalized additive models, which are nonlinear.

Demographic simulation 2: testing whether demographic positive
feedbacks can maintain alternative stable states. To test whether
feedbacks can maintain alternative stable states, we ran the second
group of simulations with the same setting as for the demographic
simulation 1, but with a bimodal initialization. Specifically, we initi-
alized the 1000 forest plots as 500 purely evergreen forests and 500
purely deciduous plots to mimic the extreme bimodal scenario.

Demographic simulation 3: testing for hysteresis during phenolo-
gical transition across soil pH gradients. The existence of hysteresis
during ecosystem transition along environmental gradients is one of
the key signals for the presence of alternative stable states. To test for
hysteresis, we first fit GAM demographic models (recruitment, growth

Article https://doi.org/10.1038/s41467-024-48676-5

Nature Communications |         (2024) 15:4658 9



and mortality) for both evergreen and deciduous trees using the
method described above, but added mean annual temperature (MAT)
as an extra predictor, as it is a major driver of the transition between
evergreen and deciduous forests7,50. Based on these GAMs, we ran two
sets of demographic simulations (as in the demographic simulation 1)
across a gradient of MAT from −2 °C to 23 °C, which is the empirical
range of MAT in forest plots included in the US FIA dataset. In the first
set of simulations, we assumed that 80% of forest plots (800 of 1000)
are initially covered 100% with evergreen trees, while the remaining
20% (200 plots) were simulated to consist solely of deciduous trees. In
the second set of simulations, 800 forest plots were initialized as
purely deciduous plots and the remainder as purely evergreen plots.
We ran each set of simulations under both ‘null’ model (excluding
feedback predictors) and ‘feedback’ scenarios, and for 2000 years to
minimize the influence of demographic lags on model outcomes.

Random forest modelling to map bimodality in leaf phenology
strategies
To quantify the extent of bimodality in the distribution of leaf phenol-
ogy strategies, as well as the spatial variation therein, we developed two
independent random forest models with different plot-partitioning
methods for global projection (see graphic demonstration in Fig. S8). In
the first partitioning method (“spatial clustering” approach), we parti-
tioned the global forest zones using a ‘fishing net’ with 10 arc-min
(~20 km) grid size. We removed clusters with fewer than 10 forest plots,
resulting in 14,931 clusters. For each cluster, we aggregated forest
composition information of all 1-hectare GFBi forest plots to calculate a
bimodality index (BI), which allowed us to quantify bimodality in the
leaf phenology distribution across plots. In the second partitioning
method (“environmental clustering” approach), we implemented
K-means clustering51 to group forest plots into 15,000 clusters (close to
the sample size of spatial clustering) based on the leading 3 environ-
mental principal components of each plot. We removed clusters with
fewer than 10 forest plots, resulting in 14,858 clusters. Similarly, for each
cluster, we aggregated plot-level relative evergreen abundance to cal-
culate the BI.

The spatial clustering approach represents patterns resulting
from spatial processes, but cannot account for residual environmental
variation within clusters. By contrast, the environmental clustering
approach ensures that each cluster consists of environmentally
homogenous plots, while plots within clusters are not necessarily in
spatial proximity. Correlationbetween the predictions from the spatial
random forests and the predictions from the environmental random
forest models revealed high agreement between the two approaches,
with an R2 of 0.72. The use of both methods allows us to test for the
sensitivity of the inferred patterns to these methodological con-
siderations, ultimately increasing our confidence in the global
predictions.

To calculate the BI, we first calculatedHartigan’s dip test52 statistic
D for the distribution of relative evergreen abundance in a grid using
the ‘diptest’ R package, which represents the maximum distance of an
empirical distribution to the best fitting unimodal distribution. We
then computed the adapted dip statistic52 as:

D0 =
ffiffiffi

n
p

D ð3Þ

where n represents the sample size and D the dip test statistic. This
metric is negatively correlated with the P values of the dip-test,
because the larger the statistical distance of a distribution from
unimodality, the less likely the distribution is to be unimodal. When n
tends to large values, D0 > 0.546 indicates significant multimodality
(p < 0.05). For our data, in which grid cells ary inn, we choseD0 >0:5 as
the threshold because all grids with D0 >0:5 have p<0:05. D0 can only
differentiate bimodal fromunimodaldistributions, but cannot indicate
which side a unimodal distribution is skewed toward, which is

important in our case as we were interested in whether evergreen or
deciduous trees dominate in case of a unimodal distribution. There-
fore, we also calculated the skewness S for the distribution of relative
evergreen abundance. In a unimodal distribution, S<0 represents
evergreen dominance, whereas S>0 represents deciduous dom-
inance. The bimodality index BI was then defined as:

BI = � e�aD0b
× sign Sð Þ ð4Þ

where a and b are parameters to control the range of BI. We set a to 6
and b to 2, so that the BI across all grids ranged from −1 to 1, whereby
BIs < −0.22 represent deciduous-dominated grids, BIs from −0.22 to 0
represent bistable deciduous grids, BIs from 0 to 0.22 represent
bistable evergreen grids, and BIs > 0.22 represent evergreen-
dominated grids. The ±0.22 cutoff was directly computed from the
cutoff of D0 (0.5) using Eq. (4). Different combinations of a and b will
give different ranges of BI as well as different threshold values, but will
not change the final patterns. To predict spatial variation in BI, we then
trained random forest models using 62 environmental predictors,
covering climate, soil, topography, vegetation and human activity
characteristics (Table. S2). Finally, we predicted the BI (using EPSG
8857 equal-earth projection) across global forest regions in which
environmental conditions were well represented by our training data
(>90% interpolation).

The relative importance of climate versus soil feedbacks
The observed positive feedbacks that generate and maintain alter-
native stable states likely affect leaf phenology strategies at the local
scale where trees facilitate the establishment of their own phenology
type by engineering soil conditions. By contrast, the large-scale dis-
tribution of leaf phenology is largely constrained by climate and the
physiological limits of evergreen and deciduous trees7. We, therefore,
hypothesized that (1) at large spatial scales (e.g., global), climatic fac-
tors are the main drivers of the presence or absence of alternative
stable states in ecosystems, (2) at local scales, i.e., within grid cells with
bimodal leaf phenology distributions, soil properties that might drive
the positive feedbacks co-explain variation in the relative abundance
of evergreen forests, and (3) in evergreen- or deciduous-dominated
grids without bimodal leaf phenology distributions, climatic factors
again are more important than edaphic factors.

To test these hypotheses, we trained two sets of random forest
models using the spatially partitioned GFBi data. The first random
forest model predicted forest bimodality as a function of seven key
determinants, namelymean annual temperature, annual precipitation,
mean temperature of the coldest quarter, precipitation of the driest
quarter, soil pH 0 to 100 cm, soil nitrogen density and soil C:N, at the
global scale. The second set of models predicted relative evergreen
abundance within plots as a function of the seven determinants for
either all plots within bimodal (BI = −0.22–0.22), evergreen-dominated
(BI > 0.22) or deciduous-dominated (BI < −0.22) forest grids (from the
“spatial clustering” approach). For eachmodel, we then calculated the
permutation importance of each variable. We trained these models
using 100 bootstrap samples, with a sampling proportion of 33%
relative to the training data, and then checked the permutation
importance (mean± SD) of each variable used in the random forest
models (Fig. 5).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The GFBi data is available upon request via Science-i (https://science-i.
org/) or the GFBI website (https://www.gfbinitiative.org/). The FIA
data are publicly available from the FIA datamart (https://apps.fs.usda.
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gov/fia/datamart/). The FunDivEUROPE data is available upon request
via http://project.fundiveurope.eu. All environmental covariates are
publicly available and detailed in Table S2. Source data to reproduce
the figures are provided as a Source Data file53 (https://zenodo.org/
records/11048857).

Code availability
The code used for this study is available at https://github.com/
Yibiaozou/AltSS_ForestLeafPhenology and Zenodo54 (https://doi.org/
10.5281/zenodo.11035706).

References
1. Scheffer, M., Carpenter, S., Foley, J. A., Folke, C. & Walker, B. Cat-

astrophic shifts in ecosystems. Nature 413, 591–596 (2001).
2. Scheffer, M. Critical Transitions in Nature and Society. (Princeton

University Press, 2009).
3. Yang, L. et al. Sociocultural determinants of global mask-wearing

behavior. Proc. Natl Acad. Sci. 119, e2213525119 (2022).
4. Staver, A. C., Archibald, S. & Levin, S. The global extent and

determinants of savanna and forest as alternative biome states.
Science 334, 230–232 (2011).

5. Aleman, J. C. et al. Floristic evidence for alternative biome states in
tropical Africa. Proc. Natl Acad. Sci. 117, 28183–28190 (2020).

6. Bonan, G. B. Forests and climate change: forcings, feedbacks, and
the climate benefits of forests. Science 320, 1444 (2008).

7. Givnish, T. J. Adaptive significance of evergreen vs. deciduous
leaves: solving the triple paradox. Silva Fennica 36, 703–743
(2002).

8. Sitch, S. et al. Evaluation of ecosystem dynamics, plant geography
and terrestrial carbon cycling in the LPJ dynamic global vegetation
model. Glob. Change Biol. 9, 161–185 (2003).

9. Fisher, R. A. et al. Vegetation demographics in Earth System Mod-
els: A review of progress and priorities. Glob. Change Biol. 24,
35–54 (2018).

10. Weng, E., Farrior, C. E., Dybzinski, R. & Pacala, S. W. Predicting
vegetation type through physiological and environmental interac-
tions with leaf traits: evergreen and deciduous forests in an earth
system modeling framework. Glob. Chang Biol. 23, 2482–2498
(2017).

11. Wright, I. J. et al. The worldwide leaf economics spectrum. Nature
428, 821–827 (2004).

12. Reich, P. B.,Walters, M. B. & Ellsworth, D. S. Leaf life-span in relation
to leaf, plant, and stand characteristics among diverse ecosystems.
Ecol. Monogr. 62, 365–392 (1992).

13. Scheffer, M., Hirota, M., Holmgren,M., VanNes, E. H. &Chapin, F. S.
Thresholds for boreal biome transitions. Proc. Natl Acad. Sci. 109,
21384 (2012).

14. Pausas, J. G. & Bond, W. J. Alternative biome states in terrestrial
ecosystems. Trends Plant Sci. 25, 250–263 (2020).

15. Reich, P. & Bolstad, P. In Productivity of Evergreen and Deciduous
Temperate Forests 245–283 (2001).

16. Reich, P. B., Rich, R. L., Lu, X., Wang, Y.-P. & Oleksyn, J. Biogeo-
graphic variation in evergreenconifer needle longevity and impacts
on boreal forest carbon cycle projections. Proc. Natl Acad. Sci. 111,
13703 (2014).

17. Pedlar, J. H. et al. Placing forestry in the assisted migration debate.
Bioscience 62, 835–842 (2012).

18. Bonan, G. B. Environmental factors and ecological processes con-
trolling vegetation patterns in boreal forests. Landsc. Ecol. 3,
111–130 (1989).

19. Ma, H. et al. The global biogeography of tree leaf form and habit.
Nat. Plants 9, 1795–1809 (2023).

20. Monk, C. D. An ecological significance of evergreenness. Ecology
47, 504–505 (1966).

21. Gower, S. T. & Son, Y. Differences in soil and leaf litterfall nitrogen
dynamics for five forest plantations. Soil Sci. Soc. Am. J. 56,
1959–1966 (1992).

22. Reich, P. B. et al. Linking litter calcium, earthworms and soil prop-
erties: a common garden test with 14 tree species. Ecol. Lett. 8,
811–818 (2005).

23. Chabot, B. F. & Hicks, D. J. The ecology of leaf life spans. Annu. Rev.
Ecol. Syst. 13, 229–259 (1982).

24. Molofsky, J. & Bever, J. D. A novel theory to explain species
diversity in landscapes: positive frequencydependence andhabitat
suitability. Proc. R. Soc. Lond. Ser. B: Biol. Sci. 269, 2389–2393
(2002).

25. Kéfi, S., Holmgren,M. & Scheffer, M.When can positive interactions
cause alternative stable states in ecosystems? Funct. Ecol. 30,
88–97 (2016).

26. Pastor, J. & Post,W.M. Responseof northern forests toCO2-induced
climate change. Nature 334, 55–58 (1988).

27. Cadotte, M. W. & Tucker, C. M. Should environmental filtering be
abandoned? Trends Ecol. Evol. 32, 429–437 (2017).

28. Liu, C. L. C., Kuchma, O. & Krutovsky, K. V. Mixed-species versus
monocultures in plantation forestry: Development, benefits, eco-
system services and perspectives for the future. Glob. Ecol. Con-
serv. 15, e00419 (2018).

29. Hillebrand, H. et al. Thresholds for ecological responses to global
change do not emerge from empirical data. Nat. Ecol. Evol. 4,
1502–1509 (2020).

30. Averill, C. et al. Alternative stable states of the forest mycobiome
are maintained through positive feedbacks. Nat. Ecol. Evol. 6,
375–382 (2022).

31. Beisner, B. E., Haydon, D. T. & Cuddington, K. Alternative stable
states in ecology. Front. Ecol. Environ. 1, 376–382 (2003).

32. Gray, A., Brandeis, T., Shaw, J., McWilliams, W. & Miles, P. Forest
Inventory and Analysis Database of the United States of America
(FIA). Biodivers. Ecol. 4, 225–231 (2012).

33. Liang, J. et al. Positive biodiversity-productivity relationship pre-
dominant in global forests. Science 354, aaf8957 (2016).

34. Kattge, J. et al. TRY plant trait database – enhanced coverage and
open access. Glob. Change Biol. 26, 119–188 (2020).

35. Stasinopoulos, D. M. & Rigby, R. A. Generalized Additive Models for
Location Scale and Shape (GAMLSS) in R. J. Stat. Softw. 23,
1–46 (2007).

36. Kikuzawa, K., Onoda, Y., Wright, I. J. & Reich, P. B. Mechanisms
underlying global temperature-related patterns in leaf longevity.
Glob. Ecol. Biogeogr. 22, 982–993 (2013).

37. Goldberg, D. E. The distribution of evergreen and deciduous trees
relative to soil type: an example from the SierraMadre, Mexico, and
a general model. Ecology 63, 942–951 (1982).

38. Kikuzawa, K. A cost-benefit analysis of leaf habit and leaf longevity
of trees and their geographical pattern. Am. Naturalist 138,
1250–1263 (1991).

39. Frelich, L. E., Calcote, R. R., Davis, M. B. & Pastor, J. Patch formation
and maintenance in an old-growth Hemlock-Hardwood forest.
Ecology 74, 513–527 (1993).

40. Fulton, M. R. & Prentice, I. C. Edaphic controls on the boreonemoral
forest mosaic. Oikos 78, 291–298 (1997).

41. Pastor, J. & Post, W. M. Influence of climate, soil moisture, and
succession on forest carbon and nitrogen cycles. Biogeochemistry
2, 3–27 (1986).

42. Desie, E., Muys, B., Jansen, B., Vesterdal, L. & Vancampenhout, K.
Pedogenic threshold in acidity explains context-dependent tree
species effects on soil carbon. Front. Forests Glob. Change 4,
679813 (2021).

43. Strobl, C., Boulesteix, A.-L., Kneib, T., Augustin, T. & Zeileis, A.
Conditional variable importance for random forests. BMC Bioin-
forma. 9, 307 (2008).

Article https://doi.org/10.1038/s41467-024-48676-5

Nature Communications |         (2024) 15:4658 11

https://apps.fs.usda.gov/fia/datamart/
http://project.fundiveurope.eu/
https://zenodo.org/records/11048857
https://zenodo.org/records/11048857
https://github.com/Yibiaozou/AltSS_ForestLeafPhenology
https://github.com/Yibiaozou/AltSS_ForestLeafPhenology
https://doi.org/10.5281/zenodo.11035706
https://doi.org/10.5281/zenodo.11035706


44. Batjes, N. H., Ribeiro, E. & van Oostrum, A. Standardised soil profile
data to support global mapping and modelling (WoSIS snapshot
2019). Earth Syst. Sci. Data 12, 299–320 (2020).

45. Baeten, L. et al. A novel comparative research platform designed to
determine the functional significance of tree species diversity in
European forests. Perspect. Plant Ecol., Evol. Syst. 15, 281–291
(2013).

46. Rigby, R. A. & Stasinopoulos, D. M. Generalized additive models for
location, scale and shape. Journal of the Royal Statistical Society:
Series C (Applied Statistics 54, 507–554 (2005).

47. Dodge, Y. In The Concise Encyclopedia of Statistics 502–505
(Springer New York, 2008).

48. Masek, J. G. et al. North American forest disturbance mapped from
a decadal Landsat record. Remote Sens. Environ. 112, 2914–2926
(2008).

49. Strogatz, S. a. Nonlinear dynamics and chaos: with applications to
physics, biology, chemistry, and engineering. (Second edition.
Boulder, CO: Westview Press, a member of the Perseus Books
Group, [2015], 2015).

50. Reich, P. B. et al. Even modest climate change may lead to major
transitions in boreal forests. Nature 608, 540–545 (2022).

51. Hartigan, J. A. & Wong, M. A. Algorithm AS 136: A K-means clus-
tering algorithm. J. R. Stat. Soc. Ser. C. (Appl. Stat.) 28, 100–108
(1979).

52. Hartigan, J. A. & Hartigan, P. M. The dip test of unimodality. Ann.
Stat. 13, 70–84 (1985).

53. Zou, Y. Dataset for “Alternative stable states of forest types” [Data
set]. Zenodo. https://doi.org/10.5281/zenodo.11048857 (2024).

54. Zou, Y. Yibiaozou/AltSS_ForestLeafPhenology: Alternative stable
states of global forest types (AltSS_LP_NC). Zenodo. https://doi.
org/10.5281/zenodo.11035706 (2024).

Acknowledgements
Wewarmly thank allmembers of theCrowther lab team, including those
not listed as coauthors, for their invaluable support. The collaboration
and development of the manuscript were supported by the web-based
science platform, science-i.org. We thank the Global Forest Biodiversity
Initiative (GFBI) for establishing the data standards and collaborative
framework. This work was supported by grants to TWC from the Bernina
Foundation and DOB Ecology, and CMZ from the Ambizione Fellowship
program (#PZ00P3_193646). MB was supported by a Ramón y Cajal
grant (RYC2021-031797-I) from the Spanish Ministry of Sciences. The
European forest inventory data was provided by the FunDivEUROPE
project, which received funding from the European Union Seventh Fra-
mework Programme (FP7/2007-2013) under grant agreement no 265171.
We thank the Swiss Federal Institute for Forest, Snow and Landscape
Research (WSL), Birmensdorf, and Dr. Christian Temperli for providing
Swiss National Forest Inventory (LFI) data for the periods 1983-85, 1993-
95, 2004-06, and 2009-2017. This study was also supported by the TRY
initiative that is maintained by the Max Planck Institute for Bio-
geochemistry in Jena, Germany, and currently supported by DIVERSI-
TAS/Future Earth and the German Centre for Integrative Biodiversity
Research (iDiv) Halle-Jena-Leipzig. National Natural Science Foundation
of China (31800374). The ReVaTene dataset is funded by the Education
and Research Ministry of Côte d’Ivoire, as part of the Debt Reduction-
Development Contracts (C2Ds) managed by IRD. JCS considers this
work a contribution to his VILLUM Investigator project “Biodiversity
Dynamics in a Changing World”, funded by VILLUM FONDEN (grant
16549), and Center for Ecological Dynamics in a Novel Biosphere
(ECONOVO), funded by the Danish National Research Foundation (grant
DNRF173). AFS considers this work a contribution to his UFRN project
PVA12722-2015, and is thankful to Solon J. Longhi for data sharing

(Conselho Nacional de Desenvolvimento Científico e Tecnológico
520053/1998-2). ALG considers this work a contribution to his IFFSC
project (FAPESC, SDE, IMA, and CNPq grants). VS thanks for support to
APVV 20-0168 from the Slovak Research and Development Agency. We
are thankful to the State of São Paulo Research Foundation (FAPESP) for
supporting theAtlantic Forest plots through the BIOTA/FAPESP Program
(Project Functional Gradient 2003/12595-7, 2010/20811-7 & ECOFOR
2012/51872-5), and the Brazilian National Research Council (CNPq grant
403710/2012-0). FCT – Portuguese Foundation for Science and Tech-
nology, project UIDB/04033/2020 and ICNF-Instituto da Conservação
da Natureza. RAINFOR plots here were supported by amajor grant from
the Gordon and Betty Moore Foundation. We also thank NERC for long-
term support of RAINFOR and ForestPlots.net (including NE/X014347/1,
NE/N012542/1, NE/N012542/1, NE/X014347/1) and additional sources to
O.L.P. including the ERC (Advanced Grant 291585, T-FORCES). P.R.B.
and M.A.Z. acknowledge funding from the CLIMB-FOREST Horizon
Europe Project (No 101059888) that was funded by the European Union.

Author contributions
Y.Z. conceived, developed, and wrote the paper with assistance from
C.M.Z. and T.W.C., Y.Z. performed the analyses with assistance from
C.A., C.M.Z., H.M., J.M.,M.B. and L.M. T.W.C. and L.B.M. helpedwith data
coordination. The members of the GFBi consortium provided the global
forest inventory data. All authors reviewed and provided input on the
manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-024-48676-5.

Correspondence and requests for materials should be addressed to
Yibiao Zou.

Peer review information Nature Communications thanks the anon-
ymous reviewers for their contribution to the peer review of this work. A
peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2024

Article https://doi.org/10.1038/s41467-024-48676-5

Nature Communications |         (2024) 15:4658 12

https://doi.org/10.5281/zenodo.11048857
https://doi.org/10.5281/zenodo.11035706
https://doi.org/10.5281/zenodo.11035706
https://doi.org/10.1038/s41467-024-48676-5
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


1Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Universitätsstrasse 16, 8092 Zurich, Switzerland. 2Department of Global
Ecology, Carnegie Institution for Science, Stanford, CA, USA. 3Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903
Birmensdorf, Switzerland. 4Department of Forestry andNatural Resources, PurdueUniversity,West Lafayette, IN, USA. 5Department of Agricultural and Forest
Sciences and Engineering, University of Lleida, Lleida, Spain. 6Forest Science and Technology Centre of Catalonia (CTFC), Solsona, Spain. 7Wageningen
University and Research, Wageningen, The Netherlands. 8Department of Forest Resources, University of Minnesota, St. Paul, MN, USA. 9Hawkesbury Institute
for the Environment, Western Sydney University, Penrith, NSW, Australia. 10Institute for Global Change Biology, and School for Environment and Sustain-
ability, University of Michigan, Ann Arbor, MI, USA. 11Plant Physiology work group, Estonian University of Life Sciences, Tartu, Estonia. 12Department of Forest
Resource Management, Swedish University of Agricultural Sciences, Umeå, Sweden. 13Forstliche Versuchs- und Forschungsanstalt Baden-Württemberg,
Freiburg im Breisgau, Germany. 14NBN Trust, Nottingham, UK. 15Universidad de Alcalá, Alcala de Henares, Spain. e-mail: yibiao.zou@usys.ethz.ch

GFBI consortium

Meinrad Abegg3, Yves C. Adou Yao16, Giorgio Alberti17,18, Angelica M. Almeyda Zambrano19, Braulio Vilchez Alvarado20,
Esteban Alvarez-Dávila21, Patricia Alvarez-Loayza22, Luciana F. Alves23, Christian Ammer24, Clara Antón-Fernández25,
Alejandro Araujo-Murakami26, Luzmila Arroyo26, Valerio Avitabile27, Gerardo A. Aymard28,29, Timothy R. Baker30,
Radomir Bałazy31, Olaf Banki32, Jorcely G. Barroso33, Meredith L. Bastian34,35, Jean-Francois Bastin36, Luca Birigazzi37,
Philippe Birnbaum38,39,40, Robert Bitariho41, Pascal Boeckx42, Frans Bongers7, Olivier Bouriaud43, PedroH. S. Brancalion44,
Susanne Brandl45, Francis Q. Brearley46, Roel Brienen30, Eben N. Broadbent47, Helge Bruelheide48,49, Filippo Bussotti50,
Roberto Cazzolla Gatti51, Ricardo G. César44, Goran Cesljar52, Robin Chazdon53,54, Han Y. H. Chen55, Chelsea Chisholm1,
Hyunkook Cho56, Emil Cienciala57,58, Connie Clark59, David Clark60, Gabriel D. Colletta61, David A. Coomes62,
Fernando Cornejo Valverde63, José J. Corral-Rivas64, Philip M. Crim65,66, Jonathan R. Cumming65,
Selvadurai Dayanandan67, André L. de Gasper68, Mathieu Decuyper69, Géraldine Derroire70, Ben DeVries71,
Ilija Djordjevic72, Jiri Dolezal73,74, Aurélie Dourdain70, Nestor Laurier EngoneObiang75, Brian J. Enquist76,77, Teresa J. Eyre78,
Adandé Belarmain Fandohan79, Tom M. Fayle80,81, Ted R. Feldpausch82, Leandro V. Ferreira83, Leena Finér84,
Markus Fischer85, Christine Fletcher86, Jonas Fridman87, Lorenzo Frizzera88, Javier G. P. Gamarra89, Damiano Gianelle88,
Henry B. Glick90, David J. Harris91, Andrew Hector92, Andreas Hemp93, Geerten Hengeveld7, Bruno Hérault94,95,
John L. Herbohn54, Martin Herold96, Annika Hillers97,98, Eurídice N. Honorio Coronado99, Cang Hui100,101,
Thomas Ibanez102, Amaral Iêda103, Nobuo Imai104, Andrzej M. Jagodziński105,106, Bogdan Jaroszewicz107,
Vivian Kvist Johannsen108, Carlos A. Joly109, Tommaso Jucker110, Ilbin Jung56, Viktor Karminov111, Kuswata Kartawinata112,
Elizabeth Kearsley113, David Kenfack114, Deborah K. Kennard115, Sebastian Kepfer-Rojas108, Gunnar Keppel116,
Mohammed Latif Khan117, Timothy J. Killeen26, Hyun Seok Kim118,119,120,121, Kanehiro Kitayama122, Michael Köhl123,
Henn Korjus124, Florian Kraxner125, Diana Laarmann124, Mait Lang124, Simon L. Lewis30,126, Huicui Lu127, Natalia V. Lukina128,
Brian S. Maitner76, Yadvinder Malhi129, Eric Marcon130, Beatriz Schwantes Marimon131, Ben Hur Marimon-Junior131,
Andrew R. Marshall54,132,133, Emanuel H. Martin134, Dmitry Kucher135, Jorge A. Meave136, Omar Melo-Cruz137,
Casimiro Mendoza138, Cory Merow53, Abel Monteagudo Mendoza139,140, Vanessa S. Moreno44, Sharif A. Mukul141,142,
Philip Mundhenk123, María Guadalupe Nava-Miranda143,144, David Neill145, Victor J. Neldner78, Radovan V. Nevenic72,
Michael R. Ngugi78, Pascal A. Niklaus146, Jacek Oleksyn105, Petr Ontikov111, Edgar Ortiz-Malavasi20, Yude Pan147,
Alain Paquette148, Alexander Parada-Gutierrez26, Elena I. Parfenova149, Minjee Park4,118, Marc Parren150,
Narayanaswamy Parthasarathy151, Pablo L. Peri152, Sebastian Pfautsch153, Oliver L. Phillips30, Nicolas Picard154,
Maria Teresa T. F. Piedade155, Daniel Piotto156, Nigel C. A. Pitman112, Irina Polo157, Lourens Poorter7, Axel D. Poulsen91,
John R. Poulsen59,158, Hans Pretzsch159, Freddy Ramirez Arevalo160, Zorayda Restrepo-Correa161, Mirco Rodeghiero88,162,
Samir G. Rolim156, Anand Roopsind163, Francesco Rovero164,165, Ervan Rutishauser166, Purabi Saikia167, Christian Salas-
Eljatib168,169,170, Philippe Saner171, Peter Schall24, Mart-Jan Schelhaas7, Dmitry Schepaschenko125,172, Michael Scherer-
Lorenzen173, Bernhard Schmid146, Jochen Schöngart155, Eric B. Searle148, Vladimír Seben174, Josep M. Serra-Diaz53,175,
Douglas Sheil150,176, Anatoly Z. Shvidenko125,128, Javier E. Silva-Espejo177, Marcos Silveira178, James Singh179, Plinio Sist94,
Ferry Slik180, Bonaventure Sonké181, Alexandre F. Souza182, Stanislaw Miscicki183, Krzysztof J. Stereńczak31, Jens-
Christian Svenning184, Miroslav Svoboda185, Ben Swanepoel186, Natalia Targhetta155, Nadja Tchebakova149, Hans ter
Steege32,187, Raquel Thomas188, Elena Tikhonova128, Peter M. Umunay189, Vladimir A. Usoltsev190, Renato Valencia191,
Fernando Valladares192, Fons van der Plas193, Tran Van Do194, Michael E. van Nuland195, Rodolfo M. Vasquez139,
Hans Verbeeck196, Helder Viana197,198, Alexander C. Vibrans68,199, Simone Vieira200, Klaus von Gadow201, Hua-
FengWang202, James V. Watson203, Gijsbert D. A. Werner204, Bertil Westerlund87, Susan K.Wiser205, FlorianWittmann206,
HannsjoergWoell207, VerginiaWortel208, Roderik Zagt209, Tomasz Zawiła-Niedźwiecki210, ChunyuZhang211, Xiuhai Zhao211,
Mo Zhou4, Zhi-Xin Zhu202 & Irie C. Zo-Bi95

16UFR Biosciences, University Félix Houphouët-Boigny, Abidjan, Côte d’Ivoire. 17Department of Agricultural, Food, Environmental and Animal Sciences,
University of Udine, Udine, Italy. 18Faculty of Science and Technology, Free University of Bolzano, Bolzano, Italy. 19Spatial Ecology and Conservation

Article https://doi.org/10.1038/s41467-024-48676-5

Nature Communications |         (2024) 15:4658 13

mailto:yibiao.zou@usys.ethz.ch


Laboratory, Department of Tourism, Recreation and Sport Management, University of Florida, Gainesville, FL 32611, USA. 20Forestry School, Tecnológico de
Costa Rica TEC, Cartago, Costa Rica. 21Fundacion ConVida, Universidad Nacional Abierta y a Distancia, UNAD,Medellin, Colombia. 22FieldMuseum of Natural
History, Chicago, USA. 23Center for Tropical Research, Institute of the Environment and Sustainability, UCLA, Los Angeles, CA, USA. 24Silviculture and Forest
Ecology of the Temperate Zones, University of Göttingen, Göttingen, Germany. 25Division of Forest and Forest Resources, Norwegian Institute of Bioeconomy
Research (NIBIO), Ås, Norway. 26Museo de Historia natural Noel kempff Mercado, Santa Cruz, Bolivia. 27European Commission, Joint Research Center,
Ispra, Italy. 28UNELLEZ-Guanare, ProgramadeCiencias del Agroy elMar, HerbarioUniversitario (PORT), Portuguesa, Venezuela. 29Compensation International
S. A. Ci Progress-GreenLife, Bogotá, DC, Colombia. 30School of Geography, University of Leeds, Leeds, UK. 31Department of Geomatics, Forest Research
Institute, Raszyn, Poland. 32Naturalis Biodiversity Center, Leiden, TheNetherlands. 33CentroMultidisciplinar, Universidade Federal do Acre, Rio Branco, Brazil.
34Proceedings of theNational Academyof Sciences,Washington, DC, USA. 35Department of Evolutionary Anthropology, DukeUniversity, Durham,NC27708,
USA. 36TERRA Teach and Research Centre, Gembloux Agro Bio-Tech, University of Liege, Liege, Belgium. 37Forestry Consultant, Via Unione Sovietica 105,
58100 Grosseto, Italy. 38Institut Agronomique néo-Calédonien (IAC), Nouméa, New Caledonia. 39AMAP, Univ Montpellier, Montpellier, France. 40CIRAD,
CNRS, INRAE, IRD, Montpellier, France. 41Institute of Tropical Forest Conservation, Mbarara University of Sciences and Technology, Mbarara, Uganda.
42Isotope Bioscience Laboratory - ISOFYS, Ghent University, Ghent, Belgium. 43Integrated Center for Research, Development and Innovation in Advanced
Materials, Nanotechnologies, and Distributed Systems for Fabrication and Control (MANSiD), Stefan cel Mare University of Suceava, Suceava, Romania.
44Department of Forest Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil. 45Bavarian State Institute of Forestry,
Freising, Germany. 46Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK. 47Spatial Ecology and Conservation Laboratory,
School of Forest Resources andConservation, University of Florida, Gainesville, FL 32611, USA. 48Institute of Biology,Geobotany andBotanical Garden,Martin
Luther University Halle-Wittenberg, Halle-, Wittenberg, Germany. 49German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig,
Leipzig, Germany. 50Department of Agriculture, Food, Environment and Forest (DAGRI), University of Firenze, Florence, Italy. 51Department of Biological,
Geological, and Environmental Sciences, University of Bologna, Bologna, Italy. 52Department of Spatial Regulation,GIS and Forest Policy, Instituteof Forestry,
Belgrade, Serbia. 53Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA. 54Forest Research Institute, University of the
Sunshine Coast, Sippy Downs, Queensland, QLD, Australia. 55Faculty of Natural Resources Management, Lakehead University, Thunder Bay, ON, Canada.
56Division of Forest Resources Information, Korea Forest Promotion Institute, Seoul, South Korea. 57IFER - Institute of Forest Ecosystem Research, Jilove u
Prahy, Czech Republic. 58Global Change Research Institute CAS, Brno, Czech Republic. 59Nicholas School of the Environment, Duke University, Durham,
NC, USA. 60Department of Biology, University of Missouri-St Louis, St. Louis, MO, USA. 61Programa de Pós-graduação em Biologia Vegetal, Instituto de
Biologia, Universidade Estadual de Campinas, Campinas, Brazil. 62Department of Plant Sciences and Conservation Research Institute, University of Cam-
bridge, Cambridge, UK. 63Andes to Amazon Biodiversity Program, Madre de Dios, Peru. 64Facultad de Ciencias Forestales y Ambientales, Universidad Juárez
del Estado deDurango, Durango, Mexico. 65Department of Biology, West Virginia University, Morgantown,WV, USA. 66Department of Physical and Biological
Sciences, TheCollege of Saint Rose, Albany, NY, USA. 67BiologyDepartment, Centre for Structural and Functional Genomics, ConcordiaUniversity,Montreal,
QC, Canada. 68Natural Science Department, Universidade Regional de Blumenau, Blumenau, Brazil. 69World Agroforestry (ICRAF), P.O. Box 30677, 00100
Nairobi, Kenya. 70Cirad, UMR EcoFoG (AgroParisTech, CNRS, INRAE, Université des Antilles, Université de la Guyane), Campus Agronomique, Kourou, French
Guiana. 71Department of Geographical Sciences, University ofMaryland, College Park,MD, USA. 72Institute of Forestry, Belgrade, Serbia. 73Institute of Botany,
The Czech Academy of Sciences, Třeboň, Czech Republic. 74Department of Botany, Faculty of Science, University of South Bohemia, České
Budějovice, Czech Republic. 75IRET, Herbier National duGabon (CENAREST), Libreville, Gabon. 76Department of Ecology and Evolutionary Biology, University
of Arizona, Tucson, AZ, USA. 77The Santa Fe Institute, Santa Fe, NM, USA. 78Queensland Herbarium, Department of Environment and Science, Toowong,
QLD, Australia. 79Ecole de Foresterie et Ingénierie du Bois, Université Nationale d’Agriculture, Kétou, Benin. 80School of Biological and Behavioural Sciences,
Queen Mary University of London, London, UK. 81Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech
Republic. 82Geography, College of Life and Environmental Sciences, University of Exeter, Exeter, UK. 83Museu Paraense Emílio Goeldi. Coordenação de
Ciências da Terra e Ecologia, Belém, Pará, Brasil. 84Natural Resources Institute Finland (Luke), Joensuu, Finland. 85Institute of Plant Sciences, University of
Bern, Bern, Switzerland. 86Forest Research InstituteMalaysia, Kuala Lumpur, Malaysia. 87Department of Forest Resource Management, Swedish University of
Agricultural Sciences SLU, Umea, Sweden. 88Research and Innovation Center, Fondazione Edmund Mach, San Michele All’adige, Italy. 89Forestry Division,
Food and Agriculture Organization of the United Nations, Rome, Italy. 90Glick Designs LLC, Hadley, MA, USA. 91Royal Botanic Garden Edinburgh,
Edinburgh, UK. 92Department of Plant Sciences, University of Oxford, Oxford, UK. 93Department of Plant Systematics, University of Bayreuth,
Bayreuth, Germany. 94Cirad, UPR Forêts et Sociétés, University of Montpellier, Montpellier, France. 95Department of Forestry and Environment, National
Polytechnic Institute (INP-HB), Yamoussoukro, Côte d’Ivoire. 96HelmholtzGeoResearchCenter (GFZ), Potsdam,Germany. 97Centre for Conservation Science,
The Royal Society for the Protection of Birds, Sandy, UK. 98WildChimpanzee Foundation, LiberiaOffice, Monrovia, Liberia. 99Instituto de Investigaciones de la
Amazonía Peruana, Iquitos, Peru. 100Centre for Invasion Biology, Department of Mathematical Sciences, Stellenbosch University, Stellenbosch, South Africa.
101Theoretical Ecology Unit, African Institute for Mathematical Sciences, Cape Town, South Africa. 102AMAP, Univ Montpellier, CIRAD, CNRS, INRAE, IRD,
Montpellier, France, Montpellier, France. 103National Institute of Amazonian Research, Manaus, Brazil. 104Department of Forest Science, Tokyo University of
Agriculture, Tokyo, Japan. 105Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland. 106PoznańUniversity of Life Sciences, Department of Game
Management and Forest Protection, Poznań, Poland. 107Faculty of Biology, Białowieża Geobotanical Station, University of Warsaw, Białowieża, Poland.
108Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark. 109Department of Plant Biology,
Institute of Biology, University of Campinas, UNICAMP, Campinas, Brazil. 110School of Biological Sciences, University of Bristol, Bristol, UK. 111Forestry Faculty,
Bauman Moscow State Technical University, Moscow, Russia. 112Field Museum of Natural History, Chicago, IL, USA. 113CAVElab-Computational and Applied
Vegetation Ecology, Department of Environment, Ghent University, Ghent, Belgium. 114CTFS-ForestGEO, Smithsonian Tropical Research Institute,
Balboa, Panama. 115Department of Physical and Environmental Sciences, Colorado Mesa University, Grand Junction, CO, USA. 116UniSA STEM and Future
Industries Institute, University of South Australia, Adelaide, SA, Australia. 117Department of Botany, Dr Harisingh Gour Vishwavidyalaya (A Central University),
Sagar 470003, India. 118Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, South Korea. 119Interdisciplinary Program in
Agricultural and ForestMeteorology, Seoul National University, Seoul, SouthKorea. 120National Center for AgroMeteorology, Seoul, South Korea. 121Research
Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea. 122Graduate School of Agriculture, Kyoto University, Kyoto, Japan.
123Institute for World Forestry, University of Hamburg, Hamburg, Germany. 124Institute of Forestry and Engineering, Estonian University of Life Sciences,
Tartu, Estonia. 125Ecosystems Services and Management, International Institute for Applied Systems Analysis, Laxenburg, Austria. 126Department of Geo-
graphy, University College London, London, UK. 127Faculty of Forestry, Qingdao Agricultural University, Qingdao, China. 128Center for Forest Ecology and
Productivity, Russian Academy of Sciences, Moscow, Russia. 129School of Geography, University of Oxford, Oxford, UK. 130AgroParisTech, UMR-AMAP, Cirad,
CNRS, INRA, IRD, Université de Montpellier, Montpellier, France. 131Departamento de Ciências Biológicas, Universidade do Estado de Mato Grosso, Nova

Article https://doi.org/10.1038/s41467-024-48676-5

Nature Communications |         (2024) 15:4658 14



Xavantina, Brazil. 132Department of Environment and Geography, University of York, York, UK. 133Flamingo Land Ltd, Kirby Misperton, UK. 134Department of
Wildlife Management, College of African Wildlife Management, Mweka, Tanzania. 135Peoples Friendship University of Russia (RUDN University),
Moscow, Russia. 136Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma deMéxico, Mexico City, Mexico.
137Universidad del Tolima, Ibagué, Colombia. 138Universidad Mayor de San Simón, Escuela de Ciencias Forestales, Colegio de Profesionales Forestales de
Cochabamba, Cochabamba, Bolivia. 139Jardín Botánico de Missouri, Pasco, Peru. 140Universidad Nacional de San Antonio Abad del Cusco, Cusco, Peru.
141Department of Environment and Development Studies, United International University, Dhaka 1212 Bangladesh, Sippy Downs, Queensland Bangladesh.
142Centre for Research on Land-use Sustainability, Dhaka, Bangladesh. 143Colegio de Ciencias y Humanidades. Universidad Juárez del Estado de Durango,
Durango,Mexico. 144Programadedoctorado en Ingeniería para el desarrollo rural y civil. Escuela deDoctorado Internacional de laUniversidaddeSantiago de
Compostela (EDIUS), Santiago de Compostela, Spain. 145Universidad Estatal Amazónica, Puyo, Pastaza, Ecuador. 146Department of Geography, Remote
Sensing Laboratories, University of Zürich, Zurich, Switzerland. 147Climate, Fire, and Carbon Cycle Sciences, USDA Forest Service, Durham, NC, USA.
148Centre for Forest Research, Université duQuébec àMontréal, Montréal, QC, Canada. 149V. N. Sukachev Institute of Forest, FRC KSC, Siberian Branch of the
Russian Academy of Sciences, Krasnoyarsk, Russia. 150Forest Ecology and Forest Management Group, Wageningen University & Research, Wageningen, The
Netherlands. 151Department of Ecology and Environmental Sciences, Pondicherry University, Puducherry, India. 152Instituto Nacional de Tecnología Agro-
pecuaria (INTA), Universidad Nacional de la Patagonia Austral (UNPA), Consejo Nacional de Investigaciones Científicas y Tecnicas (CONICET), Río
Gallegos, Argentina. 153School of Social Sciences (Urban Studies), Western Sydney University, Penrith, NSW, Australia. 154Forestry Department, Food and
Agriculture Organization of the United Nations, Rome, Italy. 155Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil. 156Laboratório de Dendrologia e
Silvicultura Tropical, Centro de Formação em Ciências Agroflorestais, Universidade Federal do Sul da Bahia, Itabuna, Brazil. 157Jardín Botánico de Medellín,
Medellin, Colombia. 158TheNatureConservancy, 2424 SpruceSt., Boulder, CO80302,USA. 159Chair for ForestGrowth and Yield Science, TUMSchool for Life
Sciences, Technical University of Munich, Munich, Germany. 160Universidad Nacional de la Amazonía Peruana, Iquitos, Peru. 161Servicios Ecosistémicos y
CambioClimático (SECC), FundaciónConVida&CorporaciónCOL-TREE,Medellín, Colombia. 162CentroAgricoltura, Alimenti, Ambiente, University of Trento,
San Michele All’adige, Italy. 163Department of Biological Sciences, Boise State University, Boise, ID, USA. 164Department of Biology, University of Florence,
Florence, Italy. 165Tropical Biodiversity, MUSE - Museo delle Scienze, Trento, Italy. 166Info Flora, Geneva, Switzerland. 167Department of Environmental
Sciences, Central University of Jharkhand, Ranchi, Jharkhand, India. 168Centro de Modelación y Monitoreo de Ecosistemas, Universidad Mayor,
Santiago, Chile. 169Vicerrectoria de Investigacion y Postgrado, Universidad de La Frontera, Temuco, Chile. 170Depto. de Silvicultura y Conservacion de la
Naturaleza, Universidad de Chile, Temuco, Chile. 171Datascientist.ch, Wallisellen, Switzerland. 172Peoples Friendship University of Russia (RUDN University), 6
Miklukho-Maklaya St., Moscow 117198, Russia. 173Geobotany, Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany. 174National Forest
Centre, Forest Research Institute Zvolen, Zvolen, Slovakia. 175Université de Lorraine, AgroParisTech, INRAE, Silva, Nancy, France. 176Faculty of Environmental
Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway. 177Departamento de Biología, Universidad de la Serena, La
Serena, Chile. 178Centro de Ciências Biológicas e da Natureza, Universidade Federal do Acre, Rio Branco, Acre, Brazil. 179Guyana Forestry Commission,
Georgetown, FrenchGuiana. 180Environmental and Life Sciences, Faculty of Science, Universiti Brunei Darussalam, Bandar Seri Begawan, Brunei Darussalam.
181Plant Systematic and Ecology Laboratory, Department of Biology, Higher Teachers’ Training College, University of Yaoundé I, Yaoundé, Cameroon.
182Departamento de Ecologia, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil. 183Department of Forest Management,
Dendrometry and Forest Economics, Warsaw University of Life Sciences, Warsaw, Poland. 184Center for Ecological Dynamics in a Novel Biosphere (ECON-
OVO), Department of Biology, Aarhus University, NyMunkegade 114, DK-8000 Aarhus, Denmark. 185Faculty of Forestry andWood Sciences, Czech University
of Life Sciences, Prague, Czech Republic. 186Wildlife Conservation Society, New York, NY, USA. 187Quantitative Biodiversity Dynamics, Dept. of Biology,
Utrecht University, Utrecht, TheNetherlands. 188Iwokrama International Centre for Rain Forest Conservation andDevelopment, Kurupukari, Guyana. 189School
of Forestry and Environmental Studies, Yale University, New Haven, CT, USA. 190Botanical Garden of Ural Branch of Russian Academy of Sciences, Ural State
Forest Engineering University, Yekaterinburg, Russia. 191Pontificia Universidad Católica del Ecuador, Quito, Ecuador. 192LINCGlobal, Museo Nacional de
Ciencias Naturales, CSIC, Madrid, Spain. 193Plant Ecology and Nature Conservation Group, Wageningen University, P.O. Box 47 Wageningen 6700 AA, The
Netherlands. 194Silviculture Research Institute, Vietnamese Academy of Forest Sciences, Hanoi, Vietnam. 195Department of Biology, Stanford University,
Stanford, CA, USA. 196Q-ForestLab, Department of Environment, Ghent University, Ghent, Belgium. 197Centre for the Research and Technology of Agro-
Environmental and Biological Sciences, CITAB, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados 5000-801, Vila Real, Viseu, Portugal.
198Department of Ecology and Sustainable Agriculture, Agricultural High School, Polytechnic Institute of Viseu, 3500-606 Viseu, Portugal. 199Department of
Forest EngineeringUniversidadeRegional deBlumenau, Blumenau, Brazil. 200Environmental Studies andResearchCenter, University ofCampinas, UNICAMP,
Campinas, Brazil. 201Department of Forest andWoodScience, University of Stellenbosch, Stellenbosch, SouthAfrica. 202Key Laboratory of Tropical Biological
Resources,Ministry of Education, School of Life andPharmaceutical Sciences,HainanUniversity,Haikou,China. 203Divisionof Forestry andNatural Resources,
West Virginia University, Morgantown, WV, USA. 204Department of Zoology, University of Oxford, Oxford, UK. 205Manaaki Whenua–Landcare Research,
Lincoln, New Zealand. 206Department of Wetland Ecology, Institute for Geography and Geoecology, Karlsruhe Institute for Technology, Karlsruhe, Germany.
207Independent Researcher, Sommersbergseestrasse, 8990 Bad Aussee, Austria. 208Centre for Agricultural Research in Suriname (CELOS),
Paramaribo, Suriname. 209Tropenbos International, Wageningen, The Netherlands. 210Polish State Forests, Coordination Center for Environmental Projects,
Warsaw, Poland. 211Research Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University,
Beijing, China.

Article https://doi.org/10.1038/s41467-024-48676-5

Nature Communications |         (2024) 15:4658 15


	Positive feedbacks and alternative stable states in forest leaf�types
	Results
	Bimodal patterns of forest�types
	Strong positive feedbacks in forest con-phenological demography
	Effect of demographic feedbacks on forest succession
	Hysteresis
	Spatial extent of alternative stable states in forest systems

	Discussion
	Methods
	Data preprocessing
	Forest inventory�data
	Environmental covariates
	Bimodality testing
	Testing whether demographic positive feedback can reinforce evergreen or deciduous-dominated�states
	Modelling tree recruitment
	Modelling tree�growth
	Modelling tree mortality/survival
	Demographic simulation 1: testing whether demographic positive feedbacks can generate alternative stable�states
	Demographic simulation 2: testing whether demographic positive feedbacks can maintain alternative stable�states
	Demographic simulation 3: testing for hysteresis during phenological transition across soil pH gradients
	Random forest modelling to map bimodality in leaf phenology strategies
	The relative importance of climate versus soil feedbacks
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




