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Abstract Root zone soil moisture (RZSM) is cru-
cial for agricultural water management and land 
surface processes. The 1 km soil water index (SWI) 
dataset from Copernicus Global Land services, with 
eight fixed characteristic time lengths (T), requires 
root zone depth optimization (Topt) and is limited 
in use due to its low spatial resolution. To estimate 
RZSM at 100-m resolution, we integrate the depth 
specificity of SWI and employed random forest 
(RF) downscaling. Topographic synthetic aperture 
radar (SAR) and optical datasets were utilized to 
develop three RF models (RF1: SAR, RF2: optical, 
RF3: SAR + optical). At the DEMMIN experimental 

site in northeastern Germany, Topt (in days) varies 
from 20 to 60 for depths of 10 to 30  cm, increas-
ing to 100 for 40–60  cm. RF3 outperformed other 
models with 1 km test data. Following residual cor-
rection, all high-resolution predictions exhibited 
strong spatial accuracy (R ≥ 0.94). Both products 
(1 km and 100 m) agreed well with observed RZSM 
during summer but overestimated in winter. Mean 
R between observed RZSM and 1 km (100 m; RF1, 
RF2, and RF3) SWI ranges from 0.74 (0.67, 0.76, 
and 0.68) to 0.90 (0.88, 0.81, and 0.82), with the 
lowest and highest R achieved at 10 cm and 30 cm 
depths, respectively. The average RMSE using 1 km 
(100  m; RF1, RF2, and RF3) SWI increased from 
2.20 Vol.% (2.28, 2.28, and 2.35) at 30 cm to 3.40 
Vol.% (3.50, 3.70, and 3.60) at 60 cm. These negli-
gible accuracy differences underpin the potential of 
the proposed method to estimate RZSM for precise 
local applications, e.g., irrigation management.

Keywords Soil water index · Synthetic aperture 
radar · Random forest downscaling · DEMMIN · 
Irrigation management

Introduction

Soil moisture is a relevant parameter of the surface 
energy balance and is crucial for environmental appli-
cations such as drought monitoring, water resources 
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management, and flood prediction (Babaeian et  al., 
2019). Soil moisture steers crop production in agri-
cultural water management (Pawar & Khanna, 2018). 
The depletion of soil moisture can cause conditions in 
the soil, which hampers crop growth, reduces yield, 
and poses a threat to food security (Xing et al., 2022). 
Traditionally, soil moisture is monitored using in situ 
measurements, which offers accurate estimates of 
soil moisture with high temporal resolution. How-
ever, despite the accuracy, this method is costly and 
laborious and suffers from low spatial representation 
(Rasheed et al., 2022). Numerous remote sensing sat-
ellite platforms launched in the last decades allowed 
for supplying the demand for economically feasible 
soil moisture information at a global scale with a tem-
poral frequency of up to a few days (Prajapati et al., 
2018; Zawadzki & Kędzior, 2016).

In recent years, there have been many substantial 
advances in active and passive remote sensing 
for the spatial mapping of soil moisture (Ustin & 
Middleton, 2021). However, these measurements are 
limited to surface soil moisture (SSM) (5–10  cm) 
(Li et al., 2023) and do not account for soil moisture 
in deeper layers (e.g., root zone soil moisture; 
RZSM), which is more critical for plant growth than 
SSM (Guo et  al., 2023; Li et  al., 2023). Therefore, 
algorithms were developed to accurately simulate 
the diffusion process of water and estimate a profile 
soil moisture, i.e., relating (remotely sensed) SSM 
and RZSM (Albergel et al., 2020; Ford et al., 2014; 
Li et al., 2023).

Numerous methods have been used to estimate 
RZSM from SSM, including data assimilation 
(Maggioni et al., 2013; Reichle et al., 2019), physical 
methods (Manfreda et  al., 2014), neural networks 
(Grillakis et al., 2021), and deep learning algorithms 
(Babaeian et al., 2021). Data assimilation techniques 
are widely used to estimate RZSM at a large scale, 
which estimate RZSM by integrating the SSM 
observations into land surface models. The ensemble 
Kalman filter (EnKF) is one of the most widely used 
data assimilation techniques to estimate RZSM. The 
increasing availability of multiscale SSM datasets 
and improvement in EnKF methods over the years 
have strengthened this approach. However, EnKF 
is not only computationally expensive but also has 
limitations for nonlinear relationships between model 
states and observations (Clark et al., 2008; Yu et al., 

2019). The most well-known application of data 
assimilation for RZSM is the soil moisture active 
and passive (SMAP) L4 product. It applies SMAP 
brightness temperature observations using EnKF to 
NASA’s land surface model (Reichle et  al., 2019) 
providing global RZSM of 0–100 cm, at 9 km spatial 
resolution every 3 h. However, SMAP L4 aggregates 
soil moisture in the top 100  cm as RZSM and 
cannot directly provide RZSM dynamics at 0–30 cm 
which in turn mainly represents crop root layer for 
agricultural areas. Alternatively, reanalysis datasets, 
such as ERA5-Land (E5L) by the European Centre 
for Medium-Range Weather Forecasts (ECMWF), 
provide hourly RZSM at various depths with a spatial 
resolution of 10  km. Despite the high quality and 
decent resolution of E5L, the data becomes available 
only after a delay of 2 to 3  months, impeding its 
immediate application, e.g., in drought-related 
scenarios and for precision agriculture (Yang et  al., 
2022).

The exponential filter (EF) method proposed by 
Wagner (1998) transforms observed SSM series 
to dynamic signals representing soil moisture at 
deeper depths. Based on this transformation, the 
resulting soil water index (SWI) is linked to RZSM. 
The increase in optical and microwave satellite 
sensors can provide multisource SSM, facilitat-
ing near real-time RZSM simulations from the EF 
method. EF is simple and effective and requires 
only one key parameter, i.e., characteristic time 
length (T), and has been widely used to accurately 
simulate RZSM (Albergel et  al., 2008; Ford et  al., 
2014; Pablos et  al., 2018). The value of T reflects 
the combined effect of local conditions (soil and 
climatic variables) on the temporal persistence of 
soil moisture (Ceballos et  al., 2005; Wang et  al., 
2017). To calculate SWI using the EF, an opti-
mum T (Topt) is required, which is usually obtained 
through observed soil moisture at different depths. 
Under humid environmental conditions, a higher 
Topt can generally be expected at greater soil depths. 
However, there is conflicting evidence regarding the 
relationship between Topt and soil texture (Wang 
et al., 2017). Previous studies (Albergel et al., 2008; 
Ceballos et  al., 2005; Ford et  al., 2014) have also 
demonstrated that Topt is affected by several cli-
matic and environmental factors, so it is necessary 
to understand local controls on Topt.
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Daily SWI data from Copernicus Global Land 
Services (CGLS) are produced by fusing SSM esti-
mations from 25 km Metop ASCAT and Sentinel-1 
sensors at a spatial resolution of 1 km over Europe 
(B Bauer-Marschallinger et  al., 2018). This SWI 
product is generated from a recursive formulation 
of EF (Albergel et al., 2008) using a two-layer water 
balance model (Paulik et al., 2014) with eight fixed 
T lengths (2, 5, 10, 15, 20, 40, 60, and 100) and pro-
vided within 2 days of observation. Previous stud-
ies have shown the applicability of this product for 
hydrology, agricultural management, and ecosystem 
health (Fathololoumi et  al., 2022). Madelon et  al. 
(2023) evaluated several high and coarse-resolution 
datasets against in  situ SSM observations over six 
regions and concluded that 1  km CGLS SWI and 
level-2 SMAP product (SMAP_L2_SM_SP) pro-
vided better estimates and temporal agreement 
than other high-resolution datasets. However, due 
to the strong spatial heterogeneity of soils and soil 
moisture, the continental information of SWI at 
1  km resolution cannot be generalized at the local 
scale (Fathololoumi et  al., 2022). Therefore, the 
depth specificity of CGLS SWI at finer resolution 
is of paramount importance for local RZSM esti-
mations at different depths for precise agricultural 
monitoring.

Several downscaling methods have been proposed 
to obtain soil moisture with finer resolution. These 
methods include statistical downscaling (Chauhan 
et  al., 2003; Piles et  al., 2010), the disaggregation 
based on physical and theoretical changes in scale 
(Merlin et  al., 2008), and machine learning (Im 
et  al., 2016; Ke et  al., 2016). The statistical and 
physical methods lack the ability to accurately 
describe the complicated relationships between 
soil moisture and auxiliary variables due to their 
inability to handle nonlinear relationships (Zhao 
et  al., 2017). Machine learning methods (e.g., RF 
or neural network) have been widely used to obtain 
fine-resolution remote sensing products due to their 
ability to handle nonlinear relationships between 
auxiliary and prediction variables. Vegetation 
indices and the albedo, derived from remotely 
sensed optical/thermal data and topographical 
parameters, are good indicators for downscaling 
coarse-resolution soil moisture products (Peng et al., 

2017). However, optical or thermal remote sensing 
data are limited to clear sky conditions due to their 
unavailability under cloud cover conditions. Several 
researchers have combined different synthetic 
aperture radar (SAR) data with optical data as input 
to machine learning algorithms for fine-resolution 
soil moisture mapping. SAR data is available in all-
weather conditions and sensitive to surface water 
content (Bai et al., 2019). The normalized difference 
vegetation index (NDVI) and SAR backscatter have 
been combined for SSM mapping using support 
vector regression (SVR) (Holtgrave et  al., 2018) 
and artificial neural network (ANN) (El Hajj et  al., 
2019). Downscaling methods based on active SAR 
sensors such as Sentinel-1 usually leveraged linear 
or nonlinear relationship between SAR backscatter 
and soil moisture data in time series. However, 
backscatter from active SAR sensors is greatly 
influenced by surface roughness and vegetation 
limiting their applications in most areas (Reuß et al., 
2024). Nonetheless, these are considered time-
invariant for longer time series (He et al., 2018).

Previous studies have largely focused on the 
use of vegetation indices and topographic and 
thermal characteristics to establish the relationship 
with soil moisture (Fathololoumi et  al., 2020; 
Lv et  al., 2021; Montzka et  al., 2018; Peng et  al., 
2017). In addition, these studies have estimated 
soil moisture with greater than 500  m spatial 
resolution, but local applications require fine 
resolutions. There is only one previous study on 
the downscaling of CGLS SWI beyond 100  m 
resolution available (Fathololoumi et  al., 2022). 
They utilized optical images, environmental, and 
topographical parameters together with RF for 
downscaling and focused on soil moisture at 5  cm 
depth. To our knowledge, so far, no study has 
utilized the combined capability of SAR and optical 
data to downscale 1 km CGLS SWI to a resolution 
of < 500 m for assessing RZSM on cropland.

In order to fill this gap and to achieve local scale 
estimates of RZSM in regular intervals, we propose 
a downscaling procedure for CGLS 1  km SWI to 
100  m resolution at the example of an intensively 
used agricultural landscape in Mecklenburg-West-
ern Pomerania, Germany (DEMMIN). The objec-
tives of this study are as follows: (1) to calibrate 
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1 km CGLS SWI datasets against observed RZSM 
at depths ranging from 10 to 60  cm for select-
ing the depth-wise Topt, (2) to conduct a compara-
tive analysis to investigate the effect of SAR and 
optical features in downscaling the CGLS SWI at 
100 m spatial resolution using RF, and (3) to evalu-
ate the downscaled SWI against observed RZSM. 

For independent validation of Topt, E5L data was 
utilized. This study investigates the use of various 
input dataset combinations for RF-based downscal-
ing of the 1 km CGLS SWI dataset and the estima-
tion of high-resolution RZSM at different depths 
in agricultural landscapes under temperate climate 
conditions for the first time.

Fig. 1   a Location of the study area, b location of agrometeorological stations used in the study, c land cover map developed by 
European Space Agency (ESA) (Zanaga et al., 2021 ).
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Material and methods

Study area

The study was carried out in the DEMMIN study 
area in Mecklenburg-Western Pomerania, Germany 
(Fig.  1). The climate conditions in the study area 
are characterized by an average air temperature of 
8.3 °C and an annual precipitation of about 550 mm, 
classifying it as temperate Middle-European cli-
mate with perennial humidity (Borg, 2009). Out 
of the 1.34 million hectares of agricultural area in 
Mecklenburg-West Pomerania, which is about 57% 
of the total area, about 80% are used as cropland, 
while the remaining 20% are permanent grassland 
(Heupel et al., 2018). The dominated soils found in 
this region are mainly loamy sands and sandy loams 
(Hosseini et al., 2021).

Since 2001, DEMMIN has served as a calibration 
and validation test site for earth observation missions 
conducted by the German Aerospace Center (DLR). 
In Germany, the network of Terrestrial Environmental 
Observatories (TERENO) was established in 2008 
to facilitate long-term environmental research. 
DEMMIN experimental site has been an integral 
part of the TERENO network since 2011, specifically 
contributing to agricultural research and the 
integration of remote sensing data with in  situ 

measurements (Zacharias et al., 2011). With the same 
aims, DEMMIN contributes to the Joint Experiment 
for Crop Assessment and Monitoring (JECAM) by 
NASA (e.g., Hosseini et al. (2021)).

Ground data

From the TERENO network at DEMMIN (https:// 
www. tereno. net/) (Itzerott et  al., 2018), 11 
agrometeorological stations (Fig.  1) equipped with 
soil moisture sensors placed at 10 cm intervals from 
10 to 100  cm below the surface were selected for 
calibration and validation.

To account for RZSM, we collected soil moisture 
data within the depth range of 10 to 60 cm, recorded 
at 10  cm intervals available with the agrometeoro-
logical stations (Fig. 1) from 2018 to 2022. The data 
is available at 15-min intervals and was subsequently 
averaged to a daily scale. In general, the amount of 
data decreased with the increase in root zone depth. 
The highest and lowest data availability is at 20  cm 
and 60 cm depths, respectively. In terms of year-wise 
data availability, the year 2018 shows the highest 
count across all depths. Figure  2 presents the aver-
age RZSM at each depth across all stations from 2018 
to 2022. The figure illustrates the variations in soil 
moisture content at different soil depths. The standard 
deviation (SD) of soil moisture across depths from 

Fig. 2  Depth-distributed 
mean soil moisture from 
2018 to 2022, averaged 
across all 11 agrometeoro-
logical stations used in this 
study

https://www.tereno.net/
https://www.tereno.net/


 Environ Monit Assess (2024) 196:823823 Page 6 of 30

Vol:. (1234567890)

10 to 50 cm ranges from 1.35 to 2.53% (Vol.%). The 
highest SD was observed at 10 cm, while the lowest 
SD occurred at 50 cm. This trend indicates a decrease 
in soil moisture variability with increasing depth from 
10 to 50  cm. However, at 60  cm, the soil moisture 
variability increased again with SD of 2.38 (Vol.%), 
showing more variability than the depths from 20 to 
50 cm.

Datasets

Soil water index (SWI)

Daily 1 km SWI data with eight fixed T (2, 5, 10, 15, 
20, 40, 60, 100) (collectively referred as  SWIT-1  km) 
is derived from the fusion of SSM observations from 
Sentinel-1 C-band SAR and Metop ASCAT sensors 
called SCATSAR-SWI, described in detail in Bauer-
Marschallinger et  al., (2018, 2020). The data is 
available from the CGLS website (https:// land. coper 
nicus. eu/) since January 2015.

SWI attempts to estimate RZSM from observed 
SSM using EF proposed by Wagner et  al. (1999). 
The estimation of SWI is based on a two-layer water 
balance model, with topsoil representing the first 
layer (~ 5 cm) and the second layer extending from the 
bottom of the first layer. It assumes RZSM is linked 
to SSM, and any wetting and drying in the surface 
influences the RZSM. The recursive formulation 
of EF by Albergel et  al. (2008) was used to derive 
 SWIT-1 km datasets and gives as

where tn and tn-1 are the observation time of current 
and previous normalized SSM (ms) measurements 
in Julian days, respectively.  SWItn and  SWItn-1 are 
estimated RZSM at time tn and tn-1, respectively, and 
Ktn is gained at time tn and is given as

The formulation is initiated using K0 = 1, 
 SWI0 =  ms(t0). The parameter T is an empirical 
parameter, and it represents a characteristic time 
length (referred to in days). It regulates the degree 

(1)SWItn = SWItn−1 + Ktn(mstn − SWItn−1)

(2)Ktn =
Ktn−1

Ktn−1 + e
−(

tn−tn−1

T
)

of smoothing in the SSM series and determines the 
response time to changes in the surface wetness 
conditions.

We obtained daily CGLS  SWIT-1  km data from 
2018 to 2022 along with a surface state flag (SSF) to 
remove the SSM measurement made under freezing 
conditions. This is due to the decrease in the radar 
backscatter signal under frozen conditions, resulting 
in unrealistic SSM values (Wagner, 1998).

SAR data

Sentinel-1 is a part of the ESA Copernicus program, 
which consists of two satellites, A and B. Both sat-
ellites operate in opposite sun-synchronous orbits at 
an altitude of 693 km and carry a C-band active SAR 
sensor (5.405 GHz). They offer reliable observations 
in all weather conditions. We acquired C-band Sen-
tinel-1 level-1 ground range detection (GRD) images 
in dual polarization (VV and VH) in interferometric 
wide swath (IW) acquisition mode from Google Earth 
Engine (GEE) (https:// earth engine. google. com/). 
We used the GEE implementation provided by Mul-
lissa et al. (2021) to apply additional processing steps 
(speckle filtering), which are not available on the 
ingested Sentinel-1 imagery. Both satellites A and B 
have a similar orbit configuration. By using data from 
both satellites, the temporal resolution was increased 
from 12 to 6  days in a single pass (ascending or 
descending). This study also jointly used the obser-
vations from ascending and descending passes, which 
further increased the temporal resolution to ~ 3 days. 
The backscatter coefficient (σ0) data for both VV 
(σvv

0) and VH (σvH
0) polarizations were obtained dur-

ing both ascending and descending passes in 2018. 
The spatial resolution was originally 10 × 10  m but 
was resampled to 100  m using the nearest neighbor 
technique. We obtained σvH

0and σvv
0 from 121 Sen-

tinel-1 (A & B) acquisitions in both ascending and 
descending passes over the study area during 2018.

In addition to the σvv
0 and σvH

0, we also used 
calculated radar vegetation index (RVI). Kim and 
Van Zyl (2009) and Trudel et al. (2012) developed the 
radar vegetation index (RVI) for quad-polarized SAR 
data. Trudel et al. (2012) later adapted this index for 
dual-polarized SAR data, assuming that σHH

0≈σvv
0 

and σHv
0≈σHH

0. Kim et  al. (2012) have reported 

https://land.copernicus.eu/
https://land.copernicus.eu/
https://earthengine.google.com/
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that RVI is less sensitive to environmental changes 
making it useful for vegetation monitoring using SAR 
data. Recently, Kim and van Zyl (2004) proposed an 
adaptation of the modified index for Sentinel-1 (S1) 
data, given in Eq. 3.

Optical data

Sentinel-2 Multispectral Imager (MSI) Level-2A 
surface reflectance data was obtained from GEE. 
Sentinel-2 mission comprises of two identical 
optical satellites: Sentinel-2A and Sentinel-2B. 
The launch of both satellites Sentinel-2 A and B 
in 2015 and 2017, respectively, helped to half the 
revisit time of the Sentinel-2 mission from 10 to 
5 days. The Sentinel-2 provides multispectral data 
in 13 bands with a spatial resolution of 10, 20, 
and 60 m. Out of these 13 bands, bands 1, 9, and 
10 are dedicated for atmospheric correction and 
cloud screening. The optical data is challenged by 
cloud cover and cloud shadows, which affect its 
spatial coverage. For 2018, a total of 30 Sentinel-2 
acquisitions with at least 50% of cloud-free pixels 
were collected. Cloudy pixels were subsequently 
masked out using the cloud coverage band (QA60).

Several optical indices are used extensively for 
soil moisture retrieval (Hegazi et  al., 2023). The 
most common are normalized difference vegeta-
tion index (NDVI) (Merzlyak et al., 1999), normal-
ized difference water index (NDWI) (Gao, 1996), 
global vegetation moisture index (GVMI) (Ceccato 
et  al., 2002), and fraction vegetation cover (FVC) 
(Wakigari & Leconte, 2022). These indices were 
calculated using expressions 4 to 7. These indices 
were resampled to 100 m using the nearest neigh-
bor technique.

(3)RVI =
4 × �0

vH

�0

vH
+ �0

vv

(4)NDVI =
NIR − RED

NIR + RED

(5)NDWI =
NIR − SWIR1

NIR + SWIR2

RED (band 4), NIR (band 8), SWIR 1 (band 11), 
and SWIR 2 (band 12) were used to calculate these 
indices.

FVC is typically calculated from NDVI (Carlson 
& Ripley, 1997; Ermida et al., 2020). We used the 
relationship provided by Carlson and Ripley (1997) 
to calculate the FVC given in 7.

where  NDVIBare and  NDVIVeg correspond to the 
NDVI of completely bare and fully vegetated pixels, 
respectively. Previous studies have established 
 NDVIBare and  NDVIVeg values of 0.18 and 
0.85, respectively. However, some studies apply 
 NDVIVeg = 0.5; Jiménez-Muñoz et al. (2009) showed 
that for high-resolution data,  NDVIVeg ranges 
from 0.8 to 0.9. Pixels with values below 0.18 are 
considered completely bare, while those above 0.85 
are considered fully vegetated.

Topographical parameters

Surface topography is one of the most important vari-
ables affecting SWI. It serves as the primary factor influ-
encing the spatial variation of hydrological conditions, 
thereby controlling the spatial distribution of SWI. The 
flow of groundwater often aligns with the contours of 
surface topography, making topographic parameters 
essential for examining SWI spatial patterns (Raduła 
et  al., 2018). In this study, we used elevation, slope, 
aspect, and topographical wetness index (TWI) as topo-
graphic indices. The correlation between elevation and 
SWI is direct, as highlighted by Firozjaei et al. (2020). 
Also, higher slopes contribute to higher soil water con-
tent and vice versa (Magdić et al., 2022). Similarly, the 
aspect has a certain influence on the distribution of soil 
moisture and is also closely related to surface topogra-
phy and vegetation cover (Chen et al., 2019).

TWI is used in hydrological analysis to describe an 
area’s tendency to accumulate water. It quantifies the 
influence of topography on runoff production (Fatho-
loloumi et  al., 2022). TWI was calculated using a 
specific catchment area (SCA) and slope angle (φ) as 
follows:

(6)GVMI =
(NIR + 0.1) − (SWIR + 0.02)

(NIR + 0.1) + (SWIR + 0.02)

(7)FVC =

(

NDVI − NDVIBare

NDVIVeg − NDVIBare

)2
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We obtained the 1 arc second (~ 30 m) Digital 
Elevation Model (DEM) of the Shuttle Radar 
Topography Mission (SRTM) from GEE and 
subsequently calculated the slope, aspect, and TWI 
using System for Automated Geoscientific Analyses 
(SAGA) platform (Conrad et  al., 2015). Afterwards, 
these indices were resampled to 100 m using the 
nearest neighbor technique to match the spatial 
resolution with other datasets.

ERA5‑Land reanalysis data

ERA5-Land (E5L) serves as a dataset that specifically 
focuses on the land component of the ERA5 climate 
reanalysis. This dataset was obtained through the 
downscaled ERA5 reanalysis data-driven ECMWF 
land surface model TESSEL and was made accessible 
by ECMWF (Wu et  al., 2021). Covering the period 
from 1981 to the present, the E5L offers important 
environmental variables (available at https:// cds. 
clima te. coper nicus. eu/ cdsapp# !/ home). E5L soil 
moisture dataset offers a comprehensive four-layer 
soil moisture dataset (Layer 1, 0 to 7  cm; Layer 2, 
7 to 28 cm; Layer 3, 28 to 100 cm; Layer 4, 100 to 
268 cm), characterized by high spatial and temporal 
resolution (0.1° and 1 h).

Due to the focus of this study in the root zone 
depth range from 10 to 60  cm, we obtained hourly 
E5L soil moisture data for Layer 2 and Layer 3, cov-
ering the period from 2018 to 2022. Subsequently, 
we aggregated the hourly data to calculate the daily 
average soil moisture for Layers 2 and 3. This E5L 
RZSM was utilized to validate the Topt calibration of 
 SWIT-1 km conducted against in situ data.

Methodology

Calibration of time length

Before starting the downscaling process of  SWIT-1 km 
for high-resolution RZSM at different depths, the 

(8)TWI = ln

(

SCA

tan�

) first step is to calibrate the  SWIT-1  km dataset with 
eight T values to obtain Topt for each depth of the 
study area. The calibration of T was performed using 
in  situ RZSM data available at depths ranging from 
10 to 60 cm, with a 10 cm interval against  SWIT-1 km. 
The selection of Topt requires long-term  SWIT-1  km 
and observed RZSM observations. Therefore, we 
used the observed RZSM and  SWIT-1  km dataset at 
the agrometeorological stations from 2018 to 2022. 
The selection of in  situ data at each depth follows 
the criterion that at least 100 concurrent daily values 
must be available for both the observed RZSM and 
 SWIT-1 km time series. Monthly aggregates were used 
to minimize the impact of outliers in the daily data 
of both the observed and  SWIT-1 km datasets (Grillakis 
et  al., 2021). Pearson’s correlation coefficient (R) 
was then calculated by comparing the depth-wise 
observed RZSM with  SWIT-1 km for each station. The 
depth-wise Topt of each station was then determined 
based on the highest R obtained. Subsequently, the 
overall Topt for each depth was selected based on the 
mode value of Topt from all stations in the study area. 
Further validation of Topt was done by repeating the 
same methodology using E5L Layers 2 and 3 RZSM 
against  SWIT-1 km at agrometeorological sites.

The SWI is a relative soil moisture given in per-
centage ranges between 0 (dry) and 100 (wet), while 
in situ measurements are expressed in the volumetric 
units (Vol.%). For meaningful comparison between 
SWI and in  situ RZSM, the SWI is converted to 
 SWI*, to have the same mean and standard deviation 
of ground observations (Vol.%). Various methods are 
available for the rescaling of SWI to  SWI*, such as 
linear regression (Jackson et  al., 2010), linear trans-
formation (Brocca et al., 2010), and cumulative den-
sity function (CDF) matching (Brocca et  al., 2011). 
However, none of these methods significantly alters 
the correlation coefficient (Paulik et  al., 2014). We 
employed linear transformation using Eq. 9.

where SM and SD (SM) are the mean and standard 
deviation of ground soil moisture observations, 
respectively. Similarly, SWIT  and SD  (SWIT) are 
the mean and standard deviation of  SWIT-1  km, 
respectively.

(9)SWIT × (t) =
SWIT (t) − SWIT

SD
(

SWIT
) × SD(SM) + SM

https://cds.climate.copernicus.eu/cdsapp#!/home
https://cds.climate.copernicus.eu/cdsapp#!/home
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Random forest–based downscaling

RF is a machine learning method that can be used 
for both classification and regression tasks (Breiman 
et al., 1984). It creates an ensemble of decision trees, 
where in each tree, a random subset of the features 
is selected for splitting at each node, and the best 
split is chosen based on a certain criterion (e.g., Gini 
impurity). Using a high number of decision trees can 
reduce the generalization error and help overcome 
issues of overfitting due to correlated variables (Liaw 
& Wiener, 2002). The predictions of the trees are 
then combined, usually by taking the mean or mode 
of the individual tree predictions, to produce the final 
estimate. RF is a widely used and convenient machine 
learning algorithm with a high accuracy for downs-
caling purposes as previously shown by Liu et  al. 
(2020). The spatial downscaling method is based on 
the relationship between  SWIT-1  km and surface and 
environmental variables as detailed in Table 1.

The relationship between  SWIT-1  km and surface 
and environmental features (Table  1) at coarser 
resolutions is established. Subsequently, this rela-
tionship is applied to higher-resolution surface and 
environmental features data. The downscaling was 
undertaken for the  SWIT-1  km based on Topt results 

(Table 2). The downscaling process was performed 
for the year 2018 because of the highest availability 
of ground observations.

The specific steps for downscaling the SWI used 
in this study are as follows:

1. The surface and environmental parameters were 
resampled to 1 km to match the spatial resolution 
of  SWIT-1  km after masking out areas other than 
crop and grassland using the ESA land cover 
map.

2. We randomly split the dataset, with 70% for the 
training and the remaining 30% for the validation 
of the model.

3. The model developed in step 2 was applied to 
high-resolution (100  m) auxiliary parameters to 
predict the high-resolution  PreSWIT-100 m.

4. The improvement in spatial distribution of RF 
downscaling after residual correction is common 
in precipitation and soil moisture downscaling 
(Tang et al., 2021). Residual correction is also a 
necessary step for correcting the prediction error 
in data-driven downscaling methods (Zhu et  al., 
2023). Hence, the  PreSWIT-100 m (step 3) was res-
ampled to 1 km and subtracted from the original 
 SWIT-1 km to calculate residuals  (Residual-1 km).

Table 1  List of optical, 
SAR, and topographical 
variables utilized for 
downscaling

Datasets Variable name Code Software/platform

Optical Normalized difference vegetation index NDVI GEE
Normalized difference water index NDWI GEE
Global vegetation moisture index GVMI GEE
Fraction vegetation cover FVC GEE

SAR VV backscatter coefficient VV GEE
VH backscatter coefficient VH GEE
Radar vegetation index RVI GEE

Topographical Elevation Elevation SRTM
Slope Slope SAGA 
Aspect Aspect SAGA 
Topographical wetness index TWI SAGA 

Table 2  Selected Topt for 
each soil depth

Depth (cm) 10 20 30 40 50 60

Topt (days) 20 40 60 100 100 100
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5. The Residual-1  km was resampled to 100  m and 
added to  PreSWIT-100 m, and the final  SWIT-100 m 
was estimated at 100 m resolution.

6. The final residual corrected  SWIT-100 m map was 
converted to  SWI*

T-100  m (Vol.%) and evaluated 
against observed RZSM measured at different 
depths.

The flowchart of the downscaling methods is pre-
sented in Fig. 3.

The use of SAR data in the downscaling process 
would increase the applicability due to cloud inde-
pendence, and it can effectively address gaps in opti-
cal coverage. In addition, the effect of the remotely 
sensed variables, i.e., Sentinel-based features, on the 
downscaling of  SWIT-1  km with respect to Topt could 
be significant, and the spatial distribution of down-
scaled  SWIT-100 m can also provide additional insight 

into the usefulness of these optical and SAR variables 
in downscaling. Therefore, three sets of RF mod-
els for comparative analysis were established. RF1 
vs RF2 and RF1 vs RF3 and RF2 vs RF3 were used 
to show the effects of the SAR and optical variables 
independently and together. These RF models are 
given as follows:

SWIT = RF1 (σvv
0, σvH

0, RVI, elevation, slope, 
aspect, TWI).

SWIT = RF2 (NDVI, NDWI, GVMI, FVC, eleva-
tion, slope, aspect, TWI).

SWIT = RF3 (σvv
0, σvH

0, RVI, NDVI, FVC, NDVI, 
NDWI, GVMI, FVC, elevation, slope, aspect, TWI).

The RF algorithm includes the variable impor-
tance function to evaluate the contribution of 
each variable to the model’s performance. This 
is achieved by using out-of-bag (OOB) samples, 
where the value of each variable is randomly 

Fig. 3  Workflow adopted for downscaling of  SWIT-1  km. 
 SWIT-1  km, 1  km SWI dataset; RF, random forest; S1, Senti-
nel-1; S2, Sentinel-2; FVC, fractional vegetation cover; NDVI, 
normalized difference vegetation index; NDWI, normalized dif-
ference water index; GVMI, global vegetation moisture index; 
RVI, radar vegetation index; σvv

0, backscatter coefficient in VV 

polarization; σvH
0, backscatter coefficient in VH polarization; 

SRTM, Shuttle Radar Topographic Mission; TWI, topographi-
cal wetness index;  PreSWIT-100  m, predicted SWI at 100  m 
before residual correction;  SWIT-100 m, downscale SWI at 100 m 
resolution after residual correction; RZSM, root zone soil mois-
ture;  SWI*

T-100 m,  SWIT-100 m converted to Vol.%
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permuted, while others remain unchanged. The 
resulting prediction error (mean square error 
(MSE) for regression) across all trees is averaged 
to determine the importance of each variable (Liaw 
& Wiener, 2002). Importance is measured by the 

percentage increase in the MSE when a variable is 
permuted, indicating its impact on the accuracy of 
the model. In general, higher MSE values indicate 
a higher importance of the predictor, enhancing the 
prediction accuracy of the RF model.

Fig. 4  a Box plots showing station-wise correlation coefficient 
between  SWI*

T-1  km and depth-wise observed RZSM data. b 
Histogram distribution of correlation coefficients presented in 

Fig. 4a. R , Pearson’s correlation coefficient;   SWI*
T-1 km, con-

verted 1 km SWI dataset; RZSM, root zone soil moisture.

Fig. 5  Topt against soil 
depth. The point size 
reflects the number of sta-
tions (frequency) resulting 
in the same Topt. The dotted 
line shows the linear model 
fitted between average Topt 
and soil depth. Topt, opti-
mized time length
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Evaluation metrics

Two evaluation metrics were used, i.e., the correla-
tion coefficient (R) (Eq. 10) and the root mean square 
error (RMSE) (Eq.  11). Firstly, we used R between 
converted  SWI*

T-1  km (Vol.%) and observed RZSM 
for calibration of T. Secondly, we evaluated the per-
formance of each RF model on the test set and high-
resolution predictions  (SWIT-100 m) against  SWIT-1 km. 
Finally, the converted  SWI*

T-1  km and  SWI*
T-100  m 

datasets were compared against observed RZSM from 
ground stations.

Pi
e and Pi

o represent the estimated and measured 
values of the i-th sample, respectively. Po

i
 and Pe

i
 

represent the mean of the measured and estimated 
time series values in the comparison.
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(11)RMSE =
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i
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i
)2

Results

Depth-wise optimum time length

The average R between  SWI*
T-1  km and available 

observed RZSM at different depths in the study area 
is 0.59 and is greater than 0.5 for 70% of the time 
series (Fig. 4).

The Topt increases with soil depth (Fig.  5). A 
significant positive relationship was observed 
between average Topt and average soil depth with 
a coefficient of determination (R2) equal to 0.61 
(p-value = 2.952e − 13). The specific selected Topt for 
each depth is provided in Table  2, derived from the 
depth-wise frequency of Topt, as presented in Fig. 5.

Topt optimized time length (20, 40, 60, 100).
As the depth of the soil increases, the Topt 

value exhibits an increasing trend, notably from 
10 to 30  cm. Additionally, within 40–60  cm, Topt 
consistently resulted in 100. This observation 
indicates a decreasing variability in soil moisture 
with an increase in soil depth (Albergel et al., 2013).

To further validate the selected Topt for each depth, 
we applied daily Layers 2 and 3 RZSM from E5L. 
Employing the same methodology, we compared 
E5L and  SWIT-1  km datasets at agrometeorological 
locations. All stations resulted in Topt = 40  days for 
Layer 2 and Topt = 100  days for Layer 3, indicating 
high consistency of Topt derived from E5L 
observation data (Table 2).

Performance of different downscaling models

Table  3 shows the R and RMSE on test sets of 
RF models for downscaling of selected  SWIT-1  km 
(Topt, 20, 40, 60, 100). Over the range of Topt (20 to 
100  days), RF3 consistently outperformed RF1 and 
RF2 in terms of accuracy. Among the RF models, 
RF1 which used SAR and topographical variables, 
R decreased from 0.61 to 0.50 as Topt increased from 
20 to 100  days. Contrarily, RF2 established using 
optical instead of SAR variables exhibited an increase 
in R from 0.65 (Topt = 20) to 0.67 (Topt = 100). RF2 
consistently outperformed RF1, and the correlation 
coefficient difference between RF1 and RF2 increased 
with increasing Topt. The combined use of SAR 
and optical data (RF3) produces better results than 
RF1 and RF2, also with a declining trend from 0.84 
(Topt = 20) to 0.79 (Topt = 100). However, this decrease 

Table 3  Performance of RF models on test sets for downscal-
ing  SWIT-1 km with selected Topt (Table 2)

Topt (days) RF models R RMSE (%)

20 RF1 0.61 12.21
RF2 0.65 11.20
RF3 0.84 8.40

40 RF1 0.54 12.45
RF2 0.67 9.80
RF3 0.82 8.33

60 RF1 0.51 11.80
RF2 0.67 9.90
RF3 0.81 7.97

100 RF1 0.50 9.70
RF2 0.67 9.10
RF3 0.79 6.60
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in R with RF3 is not as pronounced as with RF1, 
possibly due to the addition of optical variables.

RF random forest, SWIT‑1 km 1 km SWI dataset, Topt 
optimized time length.

Analogously, RF3 revealed the lowest RMSE. The 
decrease in RMSE with increased Topt is related to the 
decrease of variability and smoother time series of 
soil moisture with an increase in the depth of the soil.

Feature importance

The NDWI exhibited the highest importance among 
variables (Fig.  6). This consistently persisted across 
the Topt values; NDWI’s importance increased 
slightly from 0.18 to 0.21 with an increase in Topt 
from 20 to 100  days. Among the SAR variables 
used in this study, σvv

0 had the highest importance, 
ranking as the second most important variable after 
NDWI with Topt = 20  days. However, its importance 
declined from 0.17 to 0.1 as Topt increase to 100 days. 
The decreasing importance of σvv

0 with increasing 
is linked to soil layer depth, while the importance of 
σvH

0 remains consistent. This figure also shows that 
the importance of optical variables, excluding the 
FVC, increased with the increase of Topt, whereas the 
importance of SAR features decreased. This decline 
in the importance of SAR variables is also reflected in 

the performance of the RF models (Table 3). Specifi-
cally, as the importance of SAR variables decreased 
with increasing Topt, the accuracy trend of RF1 mod-
els follows a similar pattern with the decline in R. In 
contrast, the R achieved using RF2 increased slightly 
from 0.65 to 0.67.

Additionally, from optical variables, NDWI 
and GVMI were found to be more important than 
NDVI. RVI and FVC had consistent but lower 
importance compared to other optical and SAR 
variables. Moreover, the importance of topographical 
parameters used were approximately similar and were 
not significant contributors to the performance of the 
RF models, which is likely due to the lower elevation 
gradient in DEMMIN.

Spatial distribution and comparison of downscaled 
SWI

Figure 12 (Appendix) displays the spatial distribution 
of  SWIT-1  km and  SWIT-100  m with Topt (Table  2), on 
26 June 2018. In addition, Fig. 7 presents the close-
in views (black rectangle) to show the detailed spatial 
comparison between  SWIT-1  km and  SWIT-100  m with 
Topt = 20  days. The date was chosen to ensure mini-
mum cloud-affected Sentinel-2 acquisition for spatial 
comparison of all RF models. The spatial distribution 

Fig. 6  Importance of vari-
ables used in RF3 model for 
downscaling of  SWIT-1 km 
based on Topta 20 days, b 
40 days, c 60 days, and d 
100 days. RF, random for-
est;  SWIT-1 km, 1 km SWI 
dataset; Topt, optimized time 
length; MSE, mean square 
error
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of downscaled  SWIT-100  m is similar to the original 
 SWIT-1 km, with more detailed information due to the 
increase in spatial resolution from 1  km to 100  m. 
The blank pixels indicate areas not covered by crops 
or grasslands.

Overall results show good spatial agreement 
between coarse and high-resolution downscaled 
results. However, the downscaled high-resolution 
results using RF1 and RF3 exhibit overestimation and 
underestimation at higher and lower values, respec-
tively. Additionally, the RF1 and RF3 maps exhibit 
greater heterogeneity compared to the RF2 maps 

(Table  4). This is particularly evident at lower Topt 
(i.e., 20 and 40 days), due to the greater importance 
of σvv

0 (Fig. 6) at these Topt values. Figure 8 provides 
a closer look at  SWIT-100 m with Topt = 20 days, at three 
specific locations spanning from north to south within 
the study area. It is worth noting that these locations 
are not detectable at 1  km resolution due to spatial 
aggregation. In addition, Fig. 8 also shows σvv

0 values 
at these locations. The pixels where  SWIT-100 m from 
RF1 and RF3 are overestimated correspond to higher 
σvv

0 values, while locations with underestimations 
correspond to lower σvv

0 values.

Fig. 7  SWIT-1km and downscaled  SWIT-100m with Topt = 20 
days using RF models used in this study. The black rectangles 
show the close in views of  SWIT-1km and  SWIT-100m. RF, ran-

dom forest;  SWIT-1km, 1 km SWI dataset;  SWIT-100m, 100 m 
downscaled SWI; Topt, optimized time length
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Spatial validation of downscaled SWI

The spatial validation of the downscaled  SWIT-100  m 
was carried out by evaluating the pixel’s values of 
 SWIT-1  km and downscaled  SWIT-100  m at agromete-
orological stations and presented in Fig. 9 as Taylor 
diagram (Taylor, 2001). This diagram combines R, 
centered RMSE, and standard deviation. The predic-
tions that agree well lie nearest the purple observed 
point. The diagram shows that the R value between 
 SWIT-1  km and  SWIT-100  m was approximately over 
0.90 at each agrometeorological station.

Table  4 presents a comparison of the mean and 
standard deviation (SD) of  SWIT-1  km and high-res-
olution  SWIT-100  m at agrometeorological stations 
(Fig.  1). The table also includes the R and RMSE 
between  SWIT-1  km and  SWIT-100  m at these loca-
tions. For comparing the RF models, we used only 
the acquisition dates (Supplementary Table  S1) of 
SAR data used in RF3 to present the results of RF1 in 
Table 4. Nevertheless, the overall results align simi-
larly. The slight difference between  SWIT-1 km values 
in RF2 and RF3 is due to the closer alignment of 
Sentinel-1 acquisition dates with the Sentinel-2 data 
used for training RF3. The mean values of SWI at 
Topt = 20  days with 1  km (100  m) spatial resolution 
were 50.2 (51.3), 50.1 (50.3), and 50.2 (50.9) with 
RF1, RF2, and RF3, respectively. A similar trend is 
evident with other Topt values. The difference between 
1 km and 100 m mean values is lower with RF2 as 
compared to the RF1 and RF3. The small difference 
between original and downscaled results indicates a 

higher performance of the model. RF2 showed bet-
ter performance on high-resolution prediction after 
the residual correction compared to RF1 and RF3. 
Similarly, RF3 provided an improvement over RF1. 
The SD values of SWI at 1 km (100 m) spatial resolu-
tion with Topt = 20 days were 17.8 (19.4), 17.7 (18.5), 
and 17.8 (20.3) with RF1, RF2, and RF3, respec-
tively. Across all three RF models and Topt values, 
 SWIT-100 m maps at 100 m spatial resolution exhibited 
higher SDs compared to  SWIT-1 km maps. The differ-
ence between SD values  SWIT-100  m and  SWIT-1  km 
indicated greater spatial detail, variation, and hetero-
geneity with  SWIT-100 m as indicated in Fig. 12. RF3 
showed higher spatial heterogeneity compared to 
RF1 and RF2 as presented in Table 4 with greater SD 
compared to RF1 and RF2.

The results in Table  4 also indicate high spatial 
accuracy (R ≥ 0.94) with all RF models. The spatial 
accuracy assessment reveals that RF2 slightly 
outperformed RF1 and RF3. The performance 
difference is higher at Topt of 20 and 40  days. 
However, RF1 and RF3 exhibited more spatial 
heterogeneity and variation compared to RF2 as 
presented in Fig.  12. The results show that the use 
of optical and SAR data together is more of a spatial 
improvement on RF1. RF3 provided better spatial 
accuracy and comparison with  SWIT-1  km than RF1. 
Table  3 indicates a decrease in RMSE with an 
increase in Topt. The lowest RMSE values 4% and 
4.17% were achieved with Topt = 100 for RF2 and RF3, 
respectively, attributed to lower variability of RZSM 
with soil depth as previously mentioned. The spatial 

Table 4  Mean and standard 
deviation of  SWIT-1 km and 
RF downscaled  SWIT-100 m 
at agrometeorological 
locations. The R and RMSE 
between  SWIT-1 km and 
 SWIT-100 m are also provided

Topt(days) Mean (%) SD (%) R RMSE (%) Models
1 km 100 m 1 km 100 m

20 50.2 51.3 17.8 19.4 0.94 6.63 RF1
50.1 50.3 17.7 18.5 0.96 4.96 RF2
50.2 50.9 17.8 20.3 0.95 5.64 RF3

40 51.9 52.9 17.5 18.5 0.94 5.91 RF1
51.8 52.4 17.4 18.0 0.96 4.80 RF2
51.9 52.6 17.5 19.6 0.95 5.23 RF3

60 53.8 54.5 16.5 17.2 0.94 5.17 RF1
53.7 54.1 16.5 16.8 0.96 4.47 RF2
53.8 54.2 16.5 18.2 0.95 4.78 RF3

100 56.9 57.2 13.8 14.1 0.94 4.89 RF1
56.9 57.3 13.8 13.9 0.96 4.00 RF2
56.9 57.3 13.8 15.1 0.95 4.18 RF3
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accuracy and distribution of RF1 are comparable to 
those of RF2 and RF3 after residual correction. This 
is important in the context of uninterrupted  SWIT-1 km 
downscaling due to the availability of Sentinel-1 data 
in all weather conditions.

RF random forest, SWIT‑1  km 1  km SWI dataset, 
SWIT‑100  m 100  m downscaled SWI, Topt optimized 
time length.

Fig. 8  Zoom in views of  SWIT-100m with Topt = 20, using RF models at three locations (red, black, and pink rectangles) along with 
σvv

0. RF, random forest;  SWIT-1km, 1 km SWI dataset;  SWIT-100m, 100 m downscaled SWI; Topt, optimized time length
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Fig. 9  Spatial validation 
of different RF downscaled 
 SWIT-100m at agrometeoro-
logical stations. The black 
and brown dotted lines 
represent R and centered 
RMSE, respectively. RF, 
random forest;  SWIT-100m, 
100 m downscaled SWI; 
Topt: optimized time length

Fig. 10  Box plots from station-wise R between in situ RZSM 
and  SWI*

T (1 km and 100 m) with Topt. The black line in the 
middle indicates the median R, while black dots indicate outli-

ers. RZSM, root zone soil moisture;  SWI*
T-1km, converted 1 km 

SWI dataset;  SWI*
T-100m, converted downscaled 100 m SWI; 

Topt, optimized time length
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Estimation and validation of root zone soil moisture

The  SWI* values (in Vol.%) were calculated using 
the Topt datasets of  SWIT-1  km and RF downscaled 
 SWIT-100 m, at 1 km and 100 m, respectively, referred 
as  SWI*

T-1 km and  SWI*
T-100 m. Figures 10 and 11 dis-

play the depth-wise in situ validation (R and RMSE) 
at available agrometeorological stations during 2018, 
comparing observed RZSM and  SWI*. The red dots 
represent the mean R and RMSE calculated by aver-
aging the R and RMSE of individual stations. Fig-
ure 13 (Appendix) presents the depth-wise temporal 
comparison between observed RZSM and  SWI*

T-1 km 
and  SWIT-100 m for individual stations with available 
data during 2018.

The value of R increases between 10 and 40  cm 
from a level of R = 0.65 to R > 0.8 (indicated by the 
means and medians). The median values are gen-
erally at the same level (R > 0.80) in deeper layers 
(> 30  cm); however, means are obviously decreased 
by outliers. The highest and lowest mean R values 
were achieved at 10 cm and 30 cm, respectively. The 

lower R compared to other depths is due to the inad-
equate capture of sudden changes in the observed 
RZSM at the 10 cm depth (Fig. 13 in the Appendix).

RF2 resulted in slightly better agreement with 
observed RZSM measurements as compared to 
RF1 and RF3, between 10 and 30 cm. RF2 achieved 
mean R 0.76 (10  cm) and 0.88 (30  cm) within 
agrometeorological stations as compared to RF3 
(10 cm: 0.68; 30 cm: 0.82) and RF1 (10 cm: 0.67; 
30 cm: 0.81). The mean R of RF3 and RF1 at soil 
depths of 10 to 30  cm across agrometeorological 
stations is comparable. However, at depths of 40 to 
60 cm, RF3 exhibits slightly superior performance, 
achieving accuracy comparable to that of RF2 in 
terms of mean R results.  SWI*

T-1  km outperforms 
 SWI*

T-100  m at depths of 20  cm and 30  cm depths, 
while  SWI*

T-100  m has slightly better accuracy in 
terms of mean R at 40 cm and 50 cm soil depths.

The RMSE between the observed RZSM and 
 SWI*

T (1  km and 100  m) varies between 0.96 
(Vol.%) (at 20  cm) and 8.2 (Vol.%) (at 60  cm), 
with its variability among agrometeorological 

Fig. 11  Box plots from station-wise RMSE between in  situ 
RZSM and  SWI*

T (1 km and 100 m) with Topt. The black line 
in the middle indicates the median RMSE, while black dots 

indicate outliers. RZSM, root zone soil moisture;  SWI*
T-1km, 

converted 1 km SWI dataset;  SWI*
T-100m, converted down-

scaled 100 m SWI; Topt, optimized time length
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stations increasing as the depth exceeds beyond 
30  cm (Fig.  11). Consequently, from 10 to 30  cm, 
the mean and median R values demonstrate 
closer agreement, while beyond 30  cm, the mean 
RMSE is influenced by the variability of results 
among agrometeorological stations. RMSE 
(Vol.%) between observed RZSM and  SWI*

T-1  km 
 (SWI*

T-100  m: RF1, RF2, RF3) ranges from 1.61 
(1.85, 1.90, 2.06) to 3.47 (3.46, 3.96, 3.69) at 10 cm 
across agrometeorological stations, whereas at 
60  cm, the RMSE (Vol.%) varies from 1.63 (1.97, 
2.05, 1.88) to 7.1 (6.9, 8.20, 7.54).  SWI*

T-1  km 
demonstrates slightly higher agreement compared to 
the downscaled  SWIT-100 m, exhibiting a marginally 
lower RMSE. The RMSE difference between 
 SWI*

T-1  km and  SWI*
T-100  m, where the RF model 

with the lowest RMSE is considered at each depth, 
ranges from 0.03 to 0.17 (Vol.%). This difference 
decreases as soil depth increases.

The temporal comparison (Supplementary Figure 
S1) between mean observed RZSM and  SWI*

T 
(1  km and 100  m) at agrometeorological locations 
shows good agreement, especially within the 20  cm 
and 30  cm depths and during the summer months. 
However, during the winter period, both tend to 
overestimate the observed RZSM.

Discussion

Local RZSM estimation and monitoring using 
satellite data is challenging due to the inability of 
this method to directly derive high-resolution RZSM. 
This work proposed a rapid scheme for the estimation 
of high-resolution RZSM at different depths using 
readily available  SWIT-1  km. In the following, we 
discuss the control of Topt, and the depth specificity 
of  SWIT-1 km on RZSM estimation is explored below, 
highlighting their importance in the context of our 
proposed method and in comparison with previous 
studies. In addition, we discuss the effectiveness of 
optical and SAR variables for RF downscaling and 
examine their role in the improvement of RZSM 
accuracy and resolution. Afterwards, we compare 
the estimated RZSM and accuracy with the results of 
previous studies. Finally, we discuss the advantages 
of our approach, including its effectiveness and 
accessibility, as well as its limitations and areas for 
improvement in the future.

Optimum time length and depth specificity

The calibration and validation of the T parameter 
associated with the  SWIT-1  km dataset to select 
Topt is the first step to attain good performance in 
estimating RZSM. The calibration of eight T values 
associated with  SWIT-km dataset against in situ RZSM 
demonstrated decent performance with R ranges 
between − 0.38 and 0.97 with an average value of 
0.59 (Fig.  4). However, these results for DEMMIN 
are consistent with previous studies (C Albergel 
et al., 2012; Grillakis et al., 2021; Paulik et al., 2014) 
conducted in different regions and with different 
datasets, ranging in depth from localized point 
measurements to broader satellite-derived data. Also, 
the observed increased trend in Topt values with an 
increase in soil depth (Fig. 5 and Table 2) agrees with 
previous studies (Albergel et al., 2009; Brocca et al., 
2009, 2010; Ceballos et al., 2005; Paulik et al., 2014) 
that were conducted at different spatial resolutions 
in different soil climatic regions and demonstrated 
variability in Topt within the same soil depth range.

The consistent accuracy levels underpin that the 
EF approach with the single parameter T is easy to 
calibrate. However, Topt variations challenge physical 
explanations (Albergel et  al., 2008; Ceballos et  al., 
2005). For instance, Brocca et al. (2010) selected Topt 
values of 19.5, 23, and 29 days for soil depths of 10, 
20, and 40  cm, respectively, in the Mediterranean 
climate with a mean annual rainfall of 950  mm. 
We also selected Topt of 20  days for 10  cm, while 
Topt values for 20  cm and 40  cm exceeded those 
elaborated by Brocca et al. (2010). This may be due to 
comparatively lower mean annual rainfall at Demmin 
(500–600  mm), which is associated with higher 
Topt (Albergel et  al., 2008; Wang et  al., 2017; Yang 
et  al., 2022), and the use of discrete fixed intervals 
of T with CGLS  SWIT-1 km dataset. Another possible 
reason is the presence of vegetation which generally 
increases Topt (T. Wang et al., 2017). From the model 
perspective, higher Topt values indicate that RZSM at 
time tn relies less on SSM at tn but more on previous 
RZSM at tn-1(Yang et  al., 2022). The selected Topt 
values in this study are closer to those found by 
Ceballos et  al. (2005) in the Duero basin (Spain). 
They reported Topt values of 40 days and 60 days for 
soil layers 0–25  cm and 50–100  cm, respectively. 
The Duero basin shares similar characteristics with 
DEMMIN, including mean annual rainfall ranging 
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between 300 and 600 mm and sandy to sandy loam 
soil texture (Martínez-Fernández et al., 2021).

Grillakis et al. (2021) compared the SWI calculated 
from the ESA Climate Change Initiative (CCI) with 
the in  situ measurements from 353 International 
Soil Moisture Network (ISMN) locations (Dorigo 
et  al., 2011). They obtained Topt values ranging 
from 7 to 46 for median and an average depth of 
35  cm and 22  cm, respectively. In addition, the 
presented study demonstrated the applicability of the 
calibration approach used in this study by the overall 
performance of the  SWIT-1 km against in situ RZSM.

Effect of optical and SAR variables for RF 
downscaling

The feature importance results indicate that NDWI 
is more important for the performance of the RF 
models in downscaling SWI than other SAR and 
optical variables (Fig. 6). This is consistent with the 
findings by Hegazi et  al. (2023), who reported that 
NDWI is more sensitive than NDVI and GVMI, 
and in combination, these indices outperform the 
single Sentinel-2 bands. This is because indices are 
calculated by combining two or more bands (Hegazi 
et  al., 2023). RF modeling at lower depths with 
Topt of 20 and 40  days indicates that σvv

0 was more 
important than NDVI. This is because backscatter 
coefficients are more sensitive to SSM and roughness, 
which have a greater impact at shallower depths. As 
depth increases, the influence of surface conditions 
diminishes, reducing the relevance of the backscatter 
coefficient. This observation confirms previous 
studies (Baghdadi et  al., 2017; Hajj et  al., 2017) 
that have also reported the ability of SAR data, 
particularly σvv

0 in estimating surface water content. 
Moreover, the importance of σvv

0 was also found to 
be more influential than σvH

0. For instance, Baghdadi 
et al. (2017) found that σvv

0 is more sensitive to soil 
moisture t and less effected by vegetation and surface 
roughness as compared to σvH

0. In response to the 
decrease in importance of σvv

0, the importance of 
GVMI slightly increased. However, the importance 
of NDVI was the same level of variable importance 
but was more than σvv

0, with an increase in Topt to 
100 days.

The spatial accuracy of the high-resolution 
 SWIT-100 m obtained with RF1 and RF3 was slightly 
lower than achieved with RF2 (Table  4), most 

likely due to the influence of surface roughness on 
the backscatter coefficient (Fig.  8). The use of the 
backscatter coefficient in RF1 and RF3 resulted in 
higher SD than RF2. The higher SD in high-resolution 
prediction indicates greater spatial variation and 
heterogeneity (Fathololoumi et al., 2022). The effect 
of surface roughness for soil moisture downscaling 
using high-resolution SAR backscatter data is also 
reported in other studies (Bryant et  al., 2007; Peng 
et  al., 2017). This effect was not present at 1  km 
resolution, possibly due to narrow value ranges 
related to smoothing effects of the applied spatial 
aggregation. This effect is more pronounced in RF1 
than RF3 (Fig.  8), because the inclusion of optical 
vegetation indices improved the spatial accuracy of 
RF3. The latter underlines the value of the NDVI for 
reducing uncertainty introduced by surface roughness 
when only SAR data are utilized for downscaling 
as previously also indicated by Hajj et  al. (2017).
Vegetation indices further express different vegetation 
conditions and are recommended to downscale soil 
moisture (Bai et al., 2019) and to further enhance the 
accuracy of downscaling process when synergistically 
using SAR and optical data.

Root zone soil moisture estimation and comparison

The comparison between  SWI*
T at 1 km and 100 m 

resolution and the in  situ depth-wise RZSM shows 
that  SWI*

T-1  km exhibits slightly better agreement 
with observed RZSM from 10 to 40  cm. This can 
simply be attributed to the tendency of downscaled 
results to retain the characteristics of the predictors 
used, leading to some missed temporal changes 
(Qu et  al., 2021). Merlin et  al. (2013) also reported 
that high-resolution soil moisture may not always 
provide better accuracy than coarse resolution due 
to landscape heterogeneity. The results in this study 
illustrated that  SWI*

T both spatial resolutions are in 
better agreement and representative with observed 
RZSM values at 20  cm and 30  cm. In contrast, 
deeper observations show higher variability of R 
and RMSE among agrometeorological stations. 
Brocca et al. (2010) similarly reported a decline in R 
from 0.67 (10  cm) to 0.61 (40  cm) between RZSM 
and the 25 km  SW*

T dataset obtained from ASCAT 
backscatter observations. Furthermore, the average 
RMSE for RF-based downscaled  SWI*

T-100  m at 
20 cm ranges from 2 (Vol.%) to 2.23 (Vol.%). These 
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results resemble those obtained by Ceballos et  al. 
(2005), who found an RMSE of 2.4 (Vol.%) for the 
0–25 cm layer. Moreover, the average R obtained with 
 SWI*

T-100 m among agrometeorological sites at 20 cm 
depth was ~ 0.80, in turn agreeing with the findings 
of Brocca et  al. (2009), who reported a comparable 
mean R of 0.81 for  SW*

T in representing RZSM at a 
depth of 15 cm.

The mean  SWI*
T (1 km and 100 m) and observed 

RZSM across agrometeorological locations showed 
higher agreement during the summer season. Both 
datasets exhibited an overestimation of the in  situ 
data in winter. Similarly, Fathololoumi et  al. (2022) 
received increased RMSE during the cold season 
between 30  m resolution CGLS SWI and SSM in 
their analysis in the USA, France, and Iran.

Advantages and limitations

The CGLS  SWIT-1 km offers a solution in regions with 
reduced availability of in  situ RZSM observations. 
The long-term spatial information on soil moisture 
can aid in identifying areas experiencing agricultural 
drought due to soil moisture shortage (Piedallu 
et  al., 2013). To monitor local RZSM variations, 
downscaled  SWIT-100 m data can provide more spatial 
details and localized information. Under smart 
agricultural initiatives, such estimation schemes can 
be effectively utilized to monitor agricultural water 
demand, e.g., for irrigation monitoring or scheduling.

The outstanding temporal and spatial resolution 
of SAR data from Sentinel satellites provides 
consistency in the availability of high-resolution 
SWI datasets. However, while the combined use 
of optical and SAR data offers superior results, it 
may not always be readily available. The temporal 
and spatial reconstruction of missing information 
in optical data offers an opportunity to combine 
optical and SAR data at a higher temporal resolution, 
utilizing the capabilities of both sensors to obtain 
high-resolution and accurate results (Q. Wang et al., 
2023). Additionally, this approach could allow the 
incorporation of other high-resolution optical and 
thermal satellite data such as Landsat, which has a 
lower temporal resolution (~ 16  days) compared to 
Sentinel-2.

The CGLS  SWIT-1  km with eight fixed T values 
may not always accurately represent the dynamic 
nature of soil moisture at lesser depths. Although 

only one parameter T is needed to calibrate EF, 
saving computational time, the physical explanation 
of T needs further consideration. The parameter T has 
been found to be related to the factors that influence 
soil moisture dynamics, such as evapotranspiration, 
hydraulic properties, soil thickness, and strata 
(Ceballos et al., 2005). In addition, the use of the high 
resolution of environmental, topographic, and soil 
property variables for pixel-wise T calibration can 
further optimize the variability caused by topography, 
soil, and hydraulic properties in the region (Yang 
et  al., 2022). Taking these factors into account will 
further improve the reliability of the calibration 
process for the CGLS  SWIT-1 km dataset. Furthermore, 
we used constant Topt values across the entire study 
area to estimate RZSM at specific soil depths ranging 
from 10 to 60 cm. However, using constant Topt may 
lead to over-smoothing in the estimated values, as 
observed in our estimates at 10  cm depth as well 
(Fig.  13 in the Appendix). The use of variable Topt 
can improve accuracy in the estimation of RZSM 
observations as reported by Herbert et al. (2020).

We utilized the 1  km CGLS SWI, derived from 
the fusion of 25  km ASCAT and 1  km Sentinel-1 
SSM (Bauer-Marschallinger et  al., 2020), which 
is available for Europe, while the global product, 
based solely on ASCAT SSM, is available at 
12.5  km resolution. However, 1  km data is still not 
sufficient for localized agricultural applications such 
as irrigation management and water stress yield. 
Further downscaling of the improved 1 km resolution 
data may preserve boxy artifacts introduced 
during the initial spatial resolution improvement, a 
common issue highlighted by Merlin et  al. (2013). 
Nonetheless, Ojha et  al. (2019) have reported that 
high spatial resolution predictions achieved through 
sequential downscaling can capture the heterogeneity 
in soil moisture estimates. The decision to use 1 km 
improved CGLS SWI data was made because the 
calibration of Topt values requires high-quality and 
representative in  situ data, which in this study was 
limited to DEMMIN. Using the 10  km resolution 
data would restrict the availability of SWI data for 
the calibration of Topt. Additionally, the accuracy 
achieved in this study demonstrates the robustness of 
the methods used. Furthermore, the method employed 
in this study is simple and can be applied to other 
areas using the 10 km global SWI product to estimate 
high-resolution RZSM at different soil depths.
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In situ observations, such as those found in regions 
like DEMMIN, are crucial for the further transfer of the 
method. However, in regions where in situ data is una-
vailable, reanalysis products such as ERA5 and Global 
Land Data Assimilation System (GLDAS) could be 
considered. Despite their potential, these datasets have 
inherent limitations. The coarser spatial resolution may 
hinder the accurate capture of localized soil moisture 
variations, especially in areas with heterogeneous land-
scapes. Secondly, it is crucial to carefully select data-
sets based on their performance in specific regions, as 
there may be performance differences (Zheng et  al., 
2022). Therefore, although these datasets provide a 
valuable workaround, it is still crucial to address these 
limitations to ensure the accuracy and reliability of soil 
moisture estimation. This is particularly important in 
applications crucial for agricultural management, such 
as irrigation monitoring and scheduling.

Conclusions

The presented study demonstrates the utilization of 
various input dataset combinations for RF-based 
downscaling of the 1  km CGLS SWI dataset and 
the estimation of high-resolution RZSM at different 
depths at the example of the intensively used 
agricultural landscape in Mecklenburg-Western 
Pomerania, Germany (DEMMIN).

The eight different T values provided with the 
CGLS  SWIT-1  km dataset offered the opportunity for 
the selection of Topt that represents the RZSM at spe-
cific depths. CGLS  SWIT-1 km data showed reasonable 
agreement with the observed RZSM across all depths 
(R > 0.5 for 70% of the time series at agrometeoro-
logical stations). As expected, increases of Topt with 
root zone depth indicate the downward directed pro-
cesses in soil moisture dynamics in the root zone of 
the observed agricultural landscape.

To generate high-resolution RZSM from CGLS 
 SWIT-1 km data, RF was trained using multisource geo-
data from optical (Sentinel-2), SAR (Sentinel-1), and 
topographic (SRTM) variables. The results showed 
that the RF downscaling method has strong applica-
bility in the area and downscaled results after residual 
correction include more spatial details and can bet-
ter represent the spatial distribution of RZSM. Vari-
able importance analysis, combined with performance 

assessments, highlighted the significant role of remote 
sensing features. NDWI was consistently identified as 
the most critical feature across all soil depths. At shal-
lower depths, the backscatter coefficient in VV polari-
zation (σvv

0) demonstrated considerable importance. 
Conversely, as soil depth increased, the significance of 
optical variables became more pronounced, indicating 
their growing influence on RF modeling with increas-
ing soil depth. Overall, it can be concluded that incor-
porating both optical and SAR data leads to better pre-
dictions on test sets and outperforms their individual 
use in RF training. Validation of the RZSM was per-
formed against a wide range of ground observations at 
11 agrometeorological sites and showed good accuracy, 
notably at 20  cm and 30  cm depths, exhibiting con-
sistent correlation across agrometeorological stations 
with lower RMSE values. The downscaled  SWIT-100 m 
provides higher spatial detail with negligible accuracy 
differences. These findings collectively emphasize 
the utility and accuracy of CGLS  SWIT-100  m datasets 
for RZSM monitoring and underscore the potential of 
high-resolution data for improving agricultural and 
hydrological management practices.
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Appendix

Fig. 12  Spatial distribution of the  SWIT-1 km (a:d) and downscaled  SWIT-100 m with Topt; RF1(e:h), RF2 (i:l), and RF3 (m:p) on 26 
June 2018. RF, random forest;  SWIT-1 km, 1 km SWI dataset; Topt, optimized T 
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Fig. 13  Temporal comparison between in situ SM and SWI.* (1 km and 100 m) at each depth for available station in 2018
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Fig. 13  (continued)
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Fig. 13  (continued)
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