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Abstract
Site-specific estimation of lime requirement requires high-resolution maps of soil organic 
carbon (SOC), clay and pH. These maps can be generated with digital soil mapping models 
fitted on covariates observed by proximal soil sensors. However, the quality of the derived 
maps depends on the applied methodology. We assessed the effects of (i) training sam-
ple size (5–100); (ii) sampling design (simple random sampling (SRS), conditioned Latin 
hypercube sampling (cLHS) and k-means sampling (KM)); and (iii) prediction model 
(multiple linear regression (MLR) and random forest (RF)) on the prediction performance 
for the above mentioned three soil properties. The case study is based on conditional geo-
statistical simulations using 250 soil samples from a 51 ha field in Eastern Germany. Lin’s 
concordance correlation coefficient (CCC) and root-mean-square error (RMSE) were used 
to evaluate model performances. Results show that with increasing training sample sizes, 
relative improvements of RMSE and CCC decreased exponentially. We found the lowest 
median RMSE values with 100 training observations i.e., 1.73%, 0.21% and 0.3 for clay, 
SOC and pH, respectively. However, already with a sample size of 10, models of moderate 
quality (CCC > 0.65) were obtained for all three soil properties. cLHS and KM performed 
significantly better than SRS. MLR showed lower median RMSE values than RF for SOC 
and pH for smaller sample sizes, but RF outperformed MLR if at least 25–30 or 75–100 
soil samples were used for SOC or pH, respectively. For clay, the median RMSE was lower 
with RF, regardless of sample size.

Keywords Variable rate soil liming · Digital soil mapping · Training sample size · 
Precision agriculture · Sampling designs · Proximal soil sensing

Introduction

Precision agriculture (PA) strives to increase crop yields and economic productivity while 
reducing negative environmental impacts through spatially optimized field management 
(Gebbers & Adamchuk, 2010; Stoorvogel et al., 2015). A key focus in precision agriculture 
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is the variable-rate application of lime (VRL) because soil fertility is largely controlled 
by its acidity (Holland et  al., 2018). VRL is important as the optimal lime requirement 
can change every few meters due to small-scale soil variability within a field (Vogel et al., 
2022). The lime requirement is ideally calculated from soil pH, clay- and soil organic car-
bon (SOC) content to take the soil buffer capacity into account (Rühlmann et  al., 2021; 
Söderström et  al., 2016). Hence, high-resolution maps of pH, clay and SOC content are 
required for effective implementation of VRL. Numerous studies have demonstrated how 
combinations of different on-the-go proximal soil sensors can be used to create such high-
resolution soil maps (Bönecke et al., 2021; Kuang et al., 2014; Lund et al., 2005; Vogel 
et  al., 2022). Despite this, sensor-based VRL is rarely adopted by farmers (Erickson & 
Lowenberg-Deboer, 2022). Most arable fields are still limed uniformly or managed on 
larger zones.

A major challenge for the adoption of sensor-based VRL lies in the high initial costs 
of creating the soil maps (Lowenberg-DeBoer, 2019). Consequently, making VRL more 
attractive to farmers is a matter of reducing its cost. While measurements of proximal soil 
sensors are cheap compared to conventional wet chemistry soil analysis (Adamchuk et al., 
2004), most sensors do not measure the target soil properties directly but deliver so-called 
covariates which are related to the target soil properties. Following the principles of digi-
tal soil mapping (DSM), the relationship between a soil property and covariates can be 
exploited via a prediction model (McBratney et  al., 2003). Yet, the training of a predic-
tion model requires a certain number of training soil samples that have to be analyzed in 
the laboratory. Since laboratory analyses are expensive, the size of the training sample set 
should be kept small. Nonetheless, the sample set should not be too small either, as this 
would result in poorly fitted prediction models (Lucà et al., 2017; Ramirez-Lopez et al., 
2014). Currently, there is a lack of clear guidelines on how many training samples are ide-
ally needed in the context of sensor-based PA. Therefore, in practice, the number of soil 
samples is often determined by what a client is willing to pay and not necessarily by what 
is appropriate.

The above indicates that further research is needed to determine adequate training 
sample sizes for sensor-based soil mapping. Logically, larger training sample sizes result 
in more accurate predictions but the relationship between the training sample size and 
model accuracy seems to be non-linear and tends to saturate with increasing sample size 
(Chen et al., 2021; Lucà et al., 2017; Ramirez-Lopez et al., 2014). The point at which the 
model accuracy plateaus and after which no meaningful model improvements are achieved 
depends on several factors, such as the spatial extent of the study area (Ramirez-Lopez 
et al., 2014), the spatial variability, the target soil property, the deployed prediction model 
or the explanatory power and the dimensionality of the available covariates (Sun et  al., 
2022). Therefore, the optimal sample size is case-dependent but more research could assist 
in finding adequate training sample sizes.

Besides the sample size, attention should also be paid to the sampling design and pre-
diction model, as the right combination of these aspects may help increase the prediction 
accuracy while reducing the number of necessary training samples. Sampling designs 
have shown a considerable influence on prediction performances (Biswas & Zhang, 2018). 
In the context of DSM, it is usually desired that a sampling design spreads soil samples 
equally in the geographical space or that the whole range of values of the covariate space 
are covered (Brus, 2019; Brus et  al., 2006). However, recent studies indicate that cover-
age of the covariate space is more important than geographical coverage when covariates 
with significant explanatory power are available (Biswas & Zhang, 2018; Wadoux et al., 
2019). Several sampling designs have been developed for achieving an optimal spread in 
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the covariate space but most commonly used are conditioned Latin hypercube sampling 
(cLHS) (Minasny & McBratney, 2006) and k-means sampling (KM) (Brus, 2019). In con-
trast, simple random sampling (SRS) is neither optimized to cover the geographical nor the 
covariate space but can function as a baseline performance.

Sampling designs are often not fully deterministic but have a random component in 
their sampling procedure. This means that when the sampling is repeated, it may not select 
the exact same sampling sites again. Consequently, the new underlying training data would 
generate different prediction models, leading to varying model performances. Wadoux and 
Brus (2021) showed that it is therefore crucial to repeat the sampling when comparing 
the performance of competing sampling designs. This approach enables the comparison 
of sampling designs based on summary measures of model performances across multiple 
repetitions. SRS is a fully randomized sampling design but also cLHS and to some extent 
KM have a random component in their sampling procedure. Some studies that did not 
repeat the sampling seemed to favor cLHS as being most effective for DSM (Castro-Franco 
et al., 2015; Schmidt et al., 2014) but according to Wadoux and Brus (2021) these may be 
incidental outcomes, as studies with a repetitive design contested the efficiency of cLHS 
compared to KM or even SRS (Ma et  al., 2020; Wadoux & Brus, 2021; Wadoux et  al., 
2019). Finally, Ng et al. (2018) and Wang et al. (2021) also used a repetitive study design, 
in which both cLHS and KM proved to be effective. These conflicting results indicate that 
there is still much uncertainty about the effectiveness of different spatial sampling designs.

In the context of sensor-based VRL, primarily linear regression models have been uti-
lized for predicting the required soil properties (Bönecke et al., 2021; Schirrmann et al., 
2011; Vogel et al., 2022). Nonetheless, machine learning techniques like Random Forest 
(RF) could enhance the prediction accuracy, due to their ability to deal with non-linear 
relationships and interactions (Chen et al., 2022). However, such machine learning algo-
rithms typically require larger training sample sizes to fit models that generalize well.

The main objective of this study was to assess which combination of spatial sampling 
design and prediction model yields sufficiently high prediction accuracies for mapping 
clay, SOC and pH in an agricultural field, while using as few soil samples as possible. For 
this, a repetitive sampling procedure was implemented to investigate the combined effects 
of: (i) training sample size; (ii) spatial sampling design; and (iii) prediction model.

Materials and methodology

Study area

The test field is located in the Eastern part of Brandenburg, Germany (Fig. 1) and has a 
size of approximately 51 ha. The area was strongly influenced by recurring glacial depo-
sition and aeolian processes during the peri- and interglaciation, which led to predomi-
nantly sandy soils. Nonetheless, on a smaller spatial scale, soils may show considerable 
heterogeneity due to diverse and alternating geomorphic processes (Vogel et  al., 2022). 
The elevation of the test field ranges from 48 to 70 m a.s.l. The study area is located in the 
transitional zone between oceanic and continental climate, leading to rather dry conditions 
compared to the rest of Germany. It has an average annual rainfall of 550 mm, which is 
relatively evenly distributed throughout the year. The annual mean temperature is 9  °C, 
with January being the coldest month with a mean of 0 °C and July the warmest with a 
mean of 20 °C.
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Reference soil samples

In May 2020, 250 reference soil samples were taken from the topsoil (0–30 cm) on a trian-
gular pattern with 50 m distance to the nearest six neighbors. Each soil sample was com-
posed of subsamples taken in a radius of 9 m around the center. The composite soil sam-
ples had a total weight of approximately 1 kg. These samples were oven-dried at 75 °C, 
sieved to < 2 mm and then analyzed in the laboratory on soil organic carbon (SOC) content 
(g g −1), clay content (g g −1) and pH value.

The pH value was measured in 10 g of soil and 25 ml of 0.01 M  CaCl2 solution accord-
ing to DIN ISO 10390 with a glass electrode after an equilibration time of 60 min. The par-
ticle size distribution of the < 2 mm fraction was determined according to DIN ISO 11277 
by wet sieving and sedimentation after removal of organic matter with  H2O2 and dispersion 
by 0.2 N  Na4P2O7. SOC was analyzed by elementary analysis using the dry combustion 
method (DIN ISO 10694) after removing the inorganic carbon with hydrochloric acid. All 
the data used for this study will be freely available by the end of the I4S Project but can be 
granted on request before. Summary statistics can be found in Table 1.

Fig. 1  Location of the test field on a Berlin and Brandenburg elevation map (m a.s.l.), Germany (left) and a 
satellite basemap with reference sample points (n = 250) indicated as black dots (right)

Table 1  Summary statistic of the 
non-interpolated reference soil 
samples and covariates, where 
SD is the standard deviation

Property Min Max Mean Median SD

Reference soil samples
 pH 5.10 7.50 6.30 6.37 0.50
 Clay 1.20 16.20 5.40 4.60 2.78
 SOC 0.41 3.16 1.02 0.85 0.49

Covariates
 pH sensor 5.72 7.75 6.81 6.77 0.32
 Red 199.70 247.00 236.10 236.60 14.18
 Altitude 48.28 69.67 55.44 54.21 4.19
 Moisture 14.45 51.33 30.92 29.91 5.89
 ER 26.50 985.20 279.60 262.40 165.70
 Gamma 0.76 1.60 1.18 1.18 0.14
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Geostatistical simulation

A sampling design may select sample-sites at any point in the geographical domain of the 
study area. Yet, the soil attributes are only known at the 250 sample locations (Fig.  1), 
meaning that for the majority of the study area, the values of the soil attributes were 
unknown. Therefore, geostatistical simulations were used to stochastically simulate the 
unknown values and generate so-called ‘possible realities’. Each simulation functioned 
then as a distinct reference map. This permitted the repetition of the sampling selection 
to create multiple training sample sets from every reference map (“Experimental design” 
Section).

The simulations were generated with the sequential Gaussian simulation algorithm 
(Goovaerts, 1997). In this algorithm, given a semivariogram (Fig. 2) and a list of locations, 
the soil property is simulated sequentially for each location of the map based on a random 
draw from its conditional probability distribution. The conditional probability distribution 
is assumed to be normal distributed and derived from kriging and previously simulated 
values in the local neighborhood. Stationarity and isotropy were assumed, meaning that 
the geostatistical model had a constant mean and a semivariance that only depends on the 
Euclidean distance between locations. Note, that one may be tempted to use ordinary krig-
ing to predict the expected value for each unknown location to generate only one single 
reference map instead of using multiple simulations. However, ordinary kriging would dis-
regard the actual existing short-distance soil variation and would generate a reference soil 
map that is much smoother i.e., has much less short-distance variability, than the reality 
(Goovaerts, 1997). Using such a smoothed map as reference map in an experimental set-
ting would ultimately result in overoptimistic performances. In contrast, with sequential 
Gaussian simulation, the spatial variability as assessed through the semivariogram is pre-
served. Yet, it requires that a set of multiple simulations is analyzed, as the unknown reality 
is treated as one of an infinite number of possible realities (Goovaerts, 1997; Heuvelink, 
2018; Pebesma, 2004). A similar approach with geostatistical simulations can be found in 
Heuvelink et al. (2010).

For pH, SOC and clay, 100 sequential Gaussian simulations were created based on the 
250 reference soil samples. The raster size was 8 × 8 m leading to an overall population of 
N = 8,035 locations per simulation. The simulations were executed using the package gstat 
(Pebesma, 2022) in the statistical language R (R Core Team, 2021a). Examples of these 
simulations for all three target soil properties can be seen in Fig. 3.

Fig. 2  Semivariograms of pH, clay and SOC used for sequential Gaussian simulation of maps of soil prop-
erties
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Covariates

The covariates were obtained by two mobile multi-sensor platforms: the Veris® Mobile 
Sensor Platform 3 (MSP3) (VERIS Technologies, Salinas, KS, USA) and the Geophilus 
platform (Lück & Rühlmann, 2013). The combination of these two multi-sensor platforms 
was established in previous projects within the context of VRL. We refer to Bönecke et al. 
(2021) for more technical background information about the sensors.

In August 2021, 998 measurements were taken along transects by Veris MSP3 and on 
the same day, 14,288 measurements were obtained by the Geophilus platform (Fig. 4). As 
can be seen in Fig. 4, some areas along the transects of the Veris MSP3 were undersam-
pled due to measurement errors, such as when a sensor was blocked by stones or organic 
material.

The Veris MSP3 was mounted with multiple proximal soil sensors. This includes 
an optical soil sensor (OpticMapper) measuring the reflectance with a photodiode at 
660 nm (red) and at 940 nm, and a soil pH manager using two ion-selective antimony 
electrodes to measure the pH value. The pH was measured on naturally moisturized soil 
and partly from tap water used to clean the antimony electrodes. The Veris MSP3 was 
additionally mounted with the capacitance sensor of the Veris iScan that was measur-
ing the volumetric soil moisture (%) (Fig. 5a–c). Note that the pH measured by the pH 
manager is only a proxy of the standard lab-measured pH value, as different measuring 
devices are used and external environmental factors may confound the in-situ measure-
ments (Vogel et al., 2023). Hence, the pH measurements obtained by the Veris MSP3 

Fig. 3  Three example realizations from the 100 sequential Gaussian simulations of pH, clay and SOC
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are usually not used as the direct target variable but serve as covariate (Lund et  al., 
2005). In the following, it is referred to as sensor pH, to distinguish it from the pH 
obtained from the reference soil samples.

The Geophilus platform consists of a multiple rolling electrodes array to measure appar-
ent electrical resistivity (ER in Ω·m) of different soil depths and a gamma sensor, detecting 
total counts of gamma-ray activity of the topsoil. ER measurements were discarded when 
the frequency of the measured voltage deviated from the frequency of the inserted current 
by a set threshold of + / − 30 Hz. Additionally, the altitude (m a.s.l.) was taken from a dif-
ferential global navigation satellite system (dGNSS) (Fig. 5d–f).

Summary statistics of the measurements of each sensor are given in Table 1. All pro-
duced covariates were interpolated using ordinary kriging to raster maps with 8 m × 8 m 
spatial resolution. Furthermore, the min. to max. kriging standard deviation  (stdkrig) was 
given to indicate the uncertainty of the maps (Fig. 5).

Fig. 4  Measurement locations along transects in the study field taken with the Geophilus platform (a) and 
Veris MSP3 (b), visualized on a satellite basemap

Fig. 5  Interpolated maps of covariates produced by the proximal soil sensors. Covariates used for the analy-
sis include red (reflectance at 660 nm, dimensionless) (a), sensor pH (b), soil moisture (%) (c), ER (Ω·m) 
(d), gamma total counts (dimensionless) (e) and altitude (m a.s.l.) (f)



1536 Precision Agriculture (2024) 25:1529–1555

1 3

Measurements of soil reflectance at 940  nm and soil electrical conductivity by Veris 
MSP3 were not included in the final covariate space for the analysis. These were removed 
in the pre-processing because they had a large correlation with red and ER, respectively. 
The decision to drop these covariates was based on what we expected to have greater 
explanatory power, with knowledge from prior studies within the same project (e.g. 
Bönecke et al., 2021; Vogel et al., 2022). Not accounting for multicollinearity might ham-
per the effectiveness of sampling designs that use the covariate space because it gives less 
weight to covariates that have no or less correlation with other covariates (Brus, 2019).

Experimental design

The workflow of the study is given in Fig. 6. The sensor-based covariate maps and the 100 
sequential Gaussian simulations of clay, SOC and pH were used as inputs. Three sampling 
designs, SRS, cLHS and KM, repeatedly selected samples from the simulated reference 
maps to create multiple training sample sets of different sample sizes for each individual 
simulated reference map. The sample sizes ranged from 5 to 30, with small sample size 

Fig. 6  Workflow of the study, showing the used methods and different steps
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increments and from 30 to 100 with larger increments. Smaller sample sizes were overrep-
resented because usually smaller sample sizes are used in practical agriculture due to finan-
cial constraints (e.g. Adamchuk et al., 2011; Bönecke et al., 2021). Furthermore, the used 
proximal soil sensor combinations (covariates) were optimized on the target soil properties 
(Bönecke et al., 2021).

The sample selection used to generate the training sample sets was repeated 150 times 
for each sample size, sampling design and simulation. Every training sample set was then 
used to fit random forest (RF) and multiple linear regression (MLR) models for pH, clay 
and SOC predictions. This led to a total number of 900,000 individual prediction maps for 
each target soil property (10 training sample sizes × 3 sampling designs × 2 prediction mod-
els × 150 sampling repetitions × 100 simulations).

Finally, the results were compared to a uniform management approach, where the mean 
value of the field is assumed to be representative of the entire field. The average value 
of pH, clay and SOC was calculated from all 100 aggregated Gaussian simulations. With 
this approach, the within-field variability is not taken into account. Nonetheless, the uni-
form management approach is still commonly used in practice in which the mean value is 
approximated based on a composite sample.

Since each Gaussian simulation is treated as one simulated reality of the target soil 
property, the entire map can be used for validation. Thus, the prediction map is validated 
by comparing it to the simulation. Normally, it is not advised to use training samples for 
validation (Piikki et al., 2021) but since the used training sample sets are only a very small 
subsample compared to the overall population (n <  < N; n ≤ 100, N = 8,035), this should 
not lead to overoptimistic results. As validation metrics, the root-mean-square error 
(RMSE), mean error (ME) and Lin’s concordance correlation coefficient (CCC) was used.

Sampling designs

SRS is the most straightforward sampling design and does not require any prior knowledge 
about the study area nor expertise in its deployment. Each soil sampling location is drawn 
independently from the area and all locations have equal probability to be chosen. The per-
formance of SRS can be used as a baseline when compared with the performance of the 
other two purposive sampling designs, because if a sampling design is not better than SRS, 
there would be no justification to use it.

cLHS (Minasny & McBratney, 2006) is an adaptation of the classic Latin hypercube 
sampling algorithm, specifically designed for soil mapping studies. It stratifies the covari-
ate space by dividing the domain of each of the c covariates into n equally sized marginal 
strata based on its cumulative distribution, where n is also the sample size. The goal is to 
cover each stratum for every covariate with one sample and simultaneously preserve the 
correlation between covariates similar to that of the original covariate space. This is done 
by minimizing the weighted sum of two objective functions:

where zij is the number of samples in stratum i for covariate j. Further, apq and bpq are ele-
ments of a correlation matrix from the original data and the sampled sites, respectively, and 
are determined for each covariate combination p and q. cLHS was executed using the clhs 
R package (Roudier, 2021), in which the objective function is minimized through a heuris-
tic search algorithm based on simulated annealing. Default weight values (w1 = w2 = 1) and 

(1)O = w1

∑n

i=1

∑c

j=1
|zij − 1| + w2

∑c

p=1

∑c

q=1
|apq − bpq|
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10,000 iterations were used. As simulated annealing is a probabilistic numerical optimiza-
tion algorithm, it does not always come up with the same and best solution i.e., the global 
optimum (Bertsimas & Tsitsiklis, 1993). Therefore, O and the associated selected sample 
sites are not fixed, leading to a random component within cLHS.

In KM, the dataset is stratified by building k clusters using the k-means algorithm, 
where k is equal to the sample size (Brus, 2019). The clusters are built based on the simi-
larity of the data in the covariate space. This means that a data point belongs to the cluster 
whose centroid is the nearest in terms of the Euclidean distance. The initial centroids are 
set randomly but they are repeatedly recomputed and adjusted until the squared sum of 
distances between the data points and the cluster centroids are minimized as given by the 
objective function J:

where δij is a binary variable that is 1 if sample vi belongs to a cluster and 0 if not. Moreo-
ver, dj is the centroid of the cluster. The k-means algorithm may also not always be able to 
determine the global optimum i.e., the condition with the lowest value for J, as the final 
clusters depend on the random selections at the initialization phase. The risk to end up in 
a local optimum can be minimized by restarting the clustering several times with different 
initial clusters and taking the outcome with the lowest value of the objective function (Har-
tigan & Wong, 1979; Steinley, 2003). In this study, KM returned the same or very few dif-
ferent sample configurations, meaning that it most likely often found the global optimum. 
However, this was not necessarily desired in our study design, as this would mean that the 
performance of KM would be judged based on one or few sample configurations. There-
fore, two sources of randomization were artificially introduced. Firstly, the older Lloyd ver-
sion (Lloyd, 1982) was used, in which the random initial clustering is not repeated. Sec-
ondly, KM was modified by not taking the centroid as the representative sample itself but 
by randomly selecting one of the nine nearest samples (in terms of covariate space) or the 
centroid. The clustering of the data was conducted via the kmeans function of the stats R 
package (R Core Team, 2021b) and with standardized covariates.

Prediction models

Machine learning techniques have manifested themselves as state-of-the-art for DSM mod-
eling, as they are able to deal with non-linear relationships and untangle complex patterns 
within the data (Chen et al., 2022). RF is a tree-based machine learning technique, in which 
through averaging of an ensemble of regression trees a prediction value is derived (Brei-
man, 2001). It showed advantages over conventional spatial models (Hengl et al., 2018). It 
is often not recommended to use data-driven machine learning models when only very few 
training data are available, as may often be the case in practical PA. Nonetheless, RF was 
used in this study due to the fact that Schmidt et al. (2014) and Ma et al. (2020) obtained 
satisfactory prediction accuracy with RF for a small sample size of 20. Furthermore, the 
goal of this study was also to observe the limitations of the methods at very small sample 
sizes. RF modeling was done with the randomForest R package (Liaw & Wiener, 2022).

Despite the popularity of machine learning techniques, linear models are still in many 
cases used for DSM (Chen et al., 2022). Almost all studies in the context of sensor-based 
VRL used linear models (Bönecke et al., 2021; Lund et al., 2005; Vogel et al., 2022). For 
this study, covariates were selected once beforehand based on the original dataset. This was 

(2)J =
�N

i=1

�k

j=1
�ij(‖vi − dj‖2)
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done through a backward elimination with a significance threshold of 0.025 for the t-test 
but no sample size correction was applied to account for spatial autocorrelation. SOC and 
ER were log-transformed prior to fitting a MLR to linearize non-linear relationships and 
better meet the assumption of residuals being normally distributed. This resulted in clay 
being predicted by log(ER), gamma and sensor pH, SOC being predicted by log(ER), sen-
sor pH, altitude and red, and lastly pH being predicted by sensor pH and log(ER). Before 
calculating the validation metrics, the predicted log(SOC) values were back-transformed to 
express the RMSE and ME in terms of SOC. A ‘smearing’ retransformation (Duan, 1983) 
was used to correct for the bias that would be incurred by a ‘naive’ back-transform based 
on the inverse of the logarithm.

Validation metrics

Root-mean-square error (RMSE) is the most commonly used validation metrics in the 
context of DSM (Piikki et al., 2021). It indicates the deviation between the predicted and 
validation value i.e., the prediction error. Thereby, it considers both systematic and random 
prediction errors and is non-negative:

where ŷ(li) and y(li) are the predicted and observed soil property at location li, respectively.
As mentioned before, a larger training sample size is expected to improve model perfor-

mance. To measure the relative improvement, the information gain (IG) was introduced. IG 
indicates the relative improvement of the median RMSE in percent over all geostatistical 
simulations and iterations that can be obtained with one extra soil sample. It is calculated 
by the difference between a larger sample size set compared to the previous sample size set 
divided by the difference of soil samples.

The mean error (ME) indicates the systematic error (Piikki et al., 2021) and can have 
negative and positive values:

The RMSE and ME cannot be used to compare the prediction performance of the dif-
ferent soil properties because they present the error in the associated measurement unit. 
Hence, a dimensionless, scaled performance index is required. Several of these indices are 
available (Piikki et al., 2021). Among them, the concordance correlation coefficient (CCC) 
(Lin, 1989) offers the advantage to account for random as well as systematic errors:

where ρ is the Pearson correlation coefficient between the predicted and reference value. 
Correspondingly, ŝ  2 (predicted) and s2 (reference) are the variances and x̂ (predicted) and 
x (reference) are the mean values. Therefore, bias and precision are considered simultane-
ously. CCC ranges from -1 to 1, where a higher value represents better agreement. Viscarra 
Rossel et al. (2016) defined as approximate benchmarks that a CCC <  = 0.65 denotes poor 

(3)RMSE =

√
1

N

∑N

i=1
(̂y(li) − y(li))

2
,

(4)ME =
1

N

∑N

i=1
ŷ(li) − y(li)

(5)
CCC =

2�̂ss

ŝ2 + s2 +
(
x̂ − x

)2
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agreement, 0.80 >  = CCC > 0.65 moderate agreement, 0.90 >  = CCC > 0.80 substantial 
agreement and CCC > 0.90 excellent agreement.

Results

Effect of sample size

For all three target soil properties, RMSE and CCC strongly depended on the sample 
size. As expected, larger sample sizes led to a decrease in the median RMSE (Fig. 7a–c, 
Tables 2, 3) and an increase in the median CCC (Fig. 7 d–f, Table 4). Simultaneously, the 
SD of the RMSE distribution decreased with increasing sample size (Fig. 8, Tables 2, 3). 
The median RMSE decreased between sample size 5 to 100 by 29% for clay, 53% for SOC 
and 27% for pH. The RMSE values with 100 samples were 1.73 for clay, 0.21 for SOC and 
0.3 for pH.

Despite this constant improvement, the relative improvement, as seen from the IG, 
decreased with increasing sample size (Figs. 7, 8, Tables 2, 3). The IGs from sample size 
5 to 10 ranged from 0.57% to 6.23% for clay, 3.29% to 12.94% for SOC and 0.92% to 4.3% 
for pH. In contrast, the maximum IGs achieved with 75 to 100 soil samples were 0.071%, 
0.13% and 0.1% for clay, SOC and pH, respectively. This is further reflected in the flatten-
ing, i.e. saturation, of the curve in Fig. 7.

Fig. 7  Median RMSE and CCC at each sample size for the predictive models and sampling designs for Clay 
(a, d), SOC (b, e) and pH (c, f)
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For all three target soil properties, the sensor-based predictions outperformed the uni-
form estimations by far with at least 10 training samples (Fig.  7). When using only 30 
training samples, the median RMSE was in comparison to the uniform approach approxi-
mately 20%, 50% and 25% lower for clay, SOC and pH, respectively.

The ME, given in Table  5 in the Appendix, indicated bias in some circumstances 
for small sample sizes between 5 and 10. However, with increasing sample size ME 
approached zero in most cases.

Effect of prediction model

The saturation of the model improvement, seen from the flattening of the graph in 
Fig. 7, was more pronounced for MLR models than for RF models. After some point, 
MLR plateaued completely and the sample size did not noticeably affect model perfor-
mance anymore. On the other hand, RF models significantly benefited from additional 

Table 2  Median RMSE and IG using MLR for clay, SOC and pH for all sampling designs and sample sizes

Sample size

5 10 15 20 25 30 40 50 75 100

Median (RMSE)
 Clay
  cLHS 2.508 2.093 1.986 1.928 1.905 1.882 1.857 1.844 1.825 1.815
  KM 2.619 2.235 2.021 1.944 1.911 1.889 1.862 1.846 1.824 1.814
  SRS 3.224 2.221 2.033 1.967 1.931 1.900 1.871 1.855 1.831 1.821

 SOC
  cLHS 0.423 0.277 0.257 0.248 0.242 0.238 0.235 0.232 0.229 0.228
  KM 0.538 0.307 0.265 0.256 0.251 0.243 0.235 0.232 0.230 0.229
  SRS 0.698 0.312 0.271 0.255 0.249 0.243 0.238 0.235 0.231 0.229

 pH
  cLHS 0.383 0.345 0.333 0.327 0.323 0.321 0.319 0.317 0.314 0.313
  KM 0.401 0.356 0.335 0.328 0.324 0.321 0.318 0.316 0.314 0.313
  SRS 0.448 0.352 0.338 0.330 0.326 0.323 0.320 0.318 0.316 0.314

IG (%)
 Clay
  cLHS – 3.313 1.017 0.582 0.237 0.247 0.133 0.071 0.041 0.022
  KM – 2.929 1.914 0.770 0.338 0.232 0.142 0.083 0.048 0.022
  SRS – 6.227 1.688 0.650 0.369 0.317 0.153 0.085 0.051 0.022

 SOC
  cLHS – 6.903 1.444 0.700 0.484 0.331 0.126 0.128 0.052 0.017
  KM – 8.587 2.736 0.679 0.391 0.637 0.329 0.128 0.034 0.017
  SRS – 11.060 2.628 1.181 0.471 0.482 0.206 0.126 0.068 0.035

 pH
  cLHS – 2.022 0.670 0.345 0.249 0.126 0.081 0.056 0.031 0.015
  KM – 2.274 1.137 0.451 0.235 0.189 0.093 0.055 0.030 0.016
  SRS – 4.289 0.805 0.479 0.222 0.193 0.102 0.060 0.030 0.018
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soil samples even at larger sample sizes. This behavior is especially characterized by the 
IG (Table 2, 3). Between sample size 75 to 100, IG for MLR was between 0.015% to 
0.035%, whereas for RF it was between 0.063% to 0.128%. Yet, for MLR, values below 
0.1% were already achieved at sample size 50, 75 and 40 for clay, SOC and pH, respec-
tively. Consequently, RF continuously improved its performance substantially and did 
not plateau completely. At smaller sample sizes, the results were less straightforward 
and dependent on the soil property. Judging from the median RMSE, in case of clay, RF 
performed best regardless of the sample size. However, for SOC and especially for pH, 
lower median RMSE values were obtained with MLR. Nonetheless, RF outperformed 
MLR at a sample size of 40 for SOC and 75 for pH. When looking at the mean RMSE, 
RF performed better than MLR at sample size 5 for all soil properties (Tables 6, 7). The 
small mismatch at sample size 5 between median and mean RMSE is due to the high SD 
of MLR models at this sample size (Tables 6, 7). With increasing sample size, the SD of 
MLR decreased rapidly, so that it eventually was similar for MLR and RF.

Table 3  Median RMSE and IG using RF for clay, SOC and pH for all sampling designs and sample sizes

Sample size

5 10 15 20 25 30 40 50 75 100

Median (RMSE)
 Clay
  cLHS 2.186 2.004 1.933 1.891 1.866 1.849 1.823 1.802 1.765 1.737
  KM 2.063 2.004 1.950 1.914 1.892 1.871 1.830 1.804 1.758 1.727
  SRS 2.417 2.089 1.990 1.924 1.899 1.875 1.839 1.818 1.780 1.750

 SOC
  cLHS 0.339 0.284 0.270 0.256 0.243 0.238 0.227 0.222 0.211 0.205
  KM 0.362 0.281 0.279 0.273 0.258 0.242 0.227 0.219 0.210 0.204
  SRS 0.425 0.329 0.286 0.262 0.253 0.245 0.233 0.227 0.215 0.208

 pH
  cLHS 0.418 0.380 0.358 0.347 0.339 0.333 0.325 0.319 0.310 0.303
  KM 0.420 0.385 0.367 0.350 0.342 0.334 0.322 0.317 0.307 0.300
  SRS 0.469 0.402 0.376 0.359 0.347 0.342 0.332 0.325 0.313 0.306

IG (%)
 Clay
  cLHS – 1.664 0.708 0.439 0.262 0.181 0.144 0.110 0.083 0.063
  KM – 0.574 0.540 0.373 0.221 0.231 0.218 0.139 0.104 0.071
  SRS – 2.715 0.941 0.665 0.266 0.243 0.197 0.110 0.085 0.067

 SOC
  cLHS – 3.278 0.953 1.066 0.993 0.398 0.484 0.214 0.204 0.104
  KM – 4.472 0.093 0.486 1.091 1.228 0.637 0.315 0.165 0.120
  SRS – 4.511 2.635 1.711 0.671 0.645 0.470 0.279 0.202 0.128

 pH
  cLHS – 1.783 1.178 0.613 0.465 0.375 0.225 0.183 0.118 0.091
  KM – 1.647 0.963 0.895 0.501 0.449 0.341 0.168 0.124 0.101
  SRS – 2.881 1.304 0.869 0.666 0.329 0.271 0.212 0.146 0.089
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Furthermore, we observed a small mismatch between median CCC and median 
RMSE results (Tables  2, 3, 4). Especially at smaller sample sizes (5 to 40), CCC 
tended to be higher i.e. better for MLR compared to RF. In the case of clay, CCC was 
larger for MLR than RF, while RMSE showed the opposite. Hence, around 30 to 40 
samples were needed before RF scored better CCC values than MLR.

In general, CCC values already indicated moderate agreement (CCC > 0.65) 
at a small sample size of around 10 for all soil properties with most combinations 
(Fig.  7d–f, Table  4). However, neither for clay nor pH, models of substantially high 
quality (CCC > 0.8) were achieved regardless of the sample size, whereas excellent 
agreement (CCC > 0.9) was found for SOC when using 100 samples and RF.

ME values (Table 5), deviated more from zero for MLR at sample size 5. However, 
with increasing sample size ME was rather unaffected by the prediction model.

Table 4  Median CCC using MLR and RF for clay, SOC and pH for all sampling designs and sample sizes

Sample size

5 10 15 20 25 30 40 50 75 100

MLR
 Clay
  cLHS 0.594 0.677 0.700 0.710 0.719 0.720 0.726 0.728 0.732 0.734
  KM 0.621 0.665 0.692 0.707 0.713 0.718 0.727 0.731 0.732 0.732
  SRS 0.458 0.642 0.685 0.705 0.709 0.715 0.724 0.724 0.730 0.732

 SOC
  cLHS 0.666 0.831 0.849 0.860 0.868 0.870 0.873 0.875 0.878 0.879
  KM 0.501 0.819 0.847 0.841 0.846 0.858 0.872 0.875 0.874 0.874
  SRS 0.367 0.786 0.835 0.855 0.861 0.864 0.872 0.873 0.875 0.879

 pH
  cLHS 0.678 0.721 0.735 0.744 0.748 0.750 0.754 0.753 0.756 0.757
  KM 0.655 0.716 0.730 0.739 0.744 0.749 0.753 0.753 0.755 0.756
  SRS 0.599 0.715 0.730 0.742 0.744 0.748 0.750 0.753 0.754 0.756

RF
 Clay
  cLHS 0.516 0.625 0.671 0.694 0.712 0.719 0.730 0.738 0.752 0.761
  KM 0.595 0.634 0.663 0.684 0.697 0.709 0.732 0.740 0.755 0.764
  SRS 0.380 0.581 0.636 0.680 0.693 0.703 0.724 0.730 0.746 0.757

 SOC
  cLHS 0.632 0.771 0.800 0.827 0.853 0.860 0.878 0.883 0.899 0.904
  KM 0.568 0.787 0.779 0.789 0.821 0.853 0.879 0.888 0.899 0.905
  SRS 0.371 0.668 0.777 0.825 0.842 0.852 0.869 0.878 0.894 0.901

 pH
  cLHS 0.436 0.562 0.636 0.668 0.690 0.706 0.726 0.739 0.759 0.772
  KM 0.417 0.541 0.604 0.654 0.677 0.698 0.729 0.739 0.761 0.776
  SRS 0.293 0.514 0.590 0.640 0.673 0.685 0.708 0.726 0.751 0.765
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Effect of sampling design

The RMSE of the prediction models varied between the sampling designs applied. Gen-
erally, SRS received a higher RMSE and lower CCC value compared to cLHS and KM 
across almost all sample sizes and target soil properties (Figs. 7, 8, Tables 2, 3, 4). This 
difference was especially manifested at smaller sample sizes, where SRS performed very 
poorly. At larger sample sizes, the difference decreased and in the case of MLR, the perfor-
mance of all three sampling designs was nearly the same once the plateau of the graph was 
reached. For example, at sample size 5 the median RMSE of SRS was around 17.4% larger 
than of cLHS and KM, whereas at sample size 100 it was only 0.8% larger.

Based on all sample sizes and soil properties, neither KM nor cLHS clearly outper-
formed each other, although dissimilarities in their performance can be seen. However, 
these differences seemed to have no general pattern. The only visual trend was that KM 
seemed to perform better at larger sample sizes but was less coherent and stable at smaller 
sample sizes (Figs. 7, 8). On a few occasions such as for SOC at sample size 20 to 25, this 
led to even poorer performances than SRS. In general, the difference between KM and 
cLHS was low.

Fig. 8  Distribution of the RMSE over all repetitions at each sample size for all sampling designs. Indicated 
for clay (a–b), SOC (c–d) and pH (e–f), for MLR (a, c, e) and RF (b, d, f)
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There was no clear dependency between the sampling design and ME (Table  5) 
apart from KM for clay. In this case, slightly positive biases were found for both RF 
and MLR.

Discussion

Effect of sample size and prediction model

As expected, the accuracy of the predictions was largely determined by the training 
sample size and to a certain smaller degree by the prediction model. It can generally 
be inferred that ‘the larger the training sample size the better the prediction’, although 
the relative improvement decreased as the sample size got bigger. Furthermore, MLR 
tended to perform better at lower sample sizes, while RF was more powerful at larger 
sample sizes. However, the best model performance also depended strongly on the tar-
get soil property and the validation metric considered. In some cases, RMSE favored 
RF over MLR while the opposite was found for CCC. A similar discrepancy was 
reported in Somarathna et  al. (2017) for several machine learning models, including 
RF. At sample size 5, ME values indicated considerable bias. This is likely due to a 
few extreme values (Fig. 8) because after a sample size of 10 and larger, bias mostly 
disappeared.

Judging from both RMSE and CCC, a sample size of around 30 to 40 was needed 
before RF outperformed MLR for clay and SOC. This is unsurprising as RF is able to 
deal with non-linear relationships and interactions (Chen et al., 2022) but it simulta-
neously relies on more data to fit a richer model. For pH, the outcome was different. 
MLR clearly outperformed RF. One reason may be that fewer covariates were consid-
ered in the fitting of the MLR model. Further, it is known from prior studies that the 
sensor output of the ion-selective pH electrodes (sensor pH) used in the Veris MSP3 
has a strong linear correlation with the standard laboratory pH value (Bönecke et al., 
2021; Lund et al., 2005; Schirrmann et al., 2011). Hence, MLR was much more pow-
erful at small sample sizes compared to RF. However, with at least 75 samples, RF 
also outperformed MLR for pH. Yet, it has to be noted that we did a variable selection 
beforehand with the original reference dataset, which is impossible in practice. If all 
covariates would be considered simultaneously in an MLR, most likely worse results 
would be found at lower sample sizes. Therefore, there is a need to define relevant var-
iables for MLR from multiple campaigns to come up with robust mechanistic models.

The advantage of machine learning techniques like RF over linear models is not sur-
prising when a sufficient number of data points is available for training (Hengl et al., 
2018). However, our results show that RF can also perform well at relatively small 
sample sizes, where the use of machine learning models would normally not be recom-
mended. Our findings are in accordance with those reported in Schmidt et al. (2014) 
and Ma et al. (2020), which also observed an adequate fit with RF compared to other 
models, when using only 20 soil samples.

The prediction models may be further improved by adding a spatial component such 
as in regression kriging (Hengl et al., 2004). However, this requires a large dataset to 
fit a residual variogram (Webster & Oliver, 2007) and the added value might be small 
because of weak residual spatial autocorrelation (Heuvelink & Webster, 2022).
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Effect of sampling design

The sampling design significantly affected the accuracy of the prediction models. Both 
KM and cLHS proved to be beneficial for modeling, due to their superiority over SRS. 
This confirms the importance of having a wide coverage of the covariate space. From the 
results, it is not possible to either favor KM or cLHS. There was only a minor apparent 
trend that corresponds to findings in Ng et  al. (2018) and Wang et  al. (2021): KM was 
more likely to perform better at larger sample sizes but cLHS was generally robust over 
all sample sizes. Nonetheless, the fluctuating behavior of KM at lower sample sizes might 
be explained by its more deterministic sample selection. This led to less variation between 
the selected training samples to build up its training sample sets. Therefore, the models 
relied more or less on the same training samples in the fitting process at specific training 
sample sizes. In some cases, these may by accident, have been less optimal. Moreover, this 
likely explains why a slightly positive bias can be found for clay when using KM. A simi-
lar behavior of KM can be found in Wadoux et al. (2019). By slightly adapting the KM to 
introduce randomization (“Sampling designs” Section), it was attempted to counteract this 
behavior but it could not be eliminated entirely. Note, that the modification may also have 
affected the prediction performance to some unknown extent.

The strong performance of cLHS was surprising because a similar methodology and rec-
ommendations from Wadoux et al. (2019), Ma et al. (2020) and Wadoux and Brus (2021) 
were adopted but fundamentally different results with regards to cLHS were obtained. In 
those studies, cLHS did not perform significantly better than SRS, suggesting that other 
sampling designs such as KM should be preferred within DSM. Our results do not fully 
support this conclusion. At no sample size was the average performance of cLHS worse 
than that of SRS. More recently, other studies showed similar results (Brus, 2022; Wang 
et al., 2022), further strengthening that cLHS may indeed be a useful sampling design for 
soil mapping.

When comparing other case studies, sampling designs performed inconsistently, even 
though similar methodologies were used (Brus, 2022; Ma et  al., 2020; Ng et  al., 2018; 
Wadoux & Brus, 2021; Wadoux et  al., 2019; Wang et  al., 2021). Hence, more research 
about the reasons that determine the success of a sampling design is needed. Additionally, 
modifications of KM and cLHS algorithms may be tested to further improve performances. 
This might include different weights for the optimization criterion in cLHS.

Implications for precision liming

The use of sensor-based DSM resulted in far better predictions compared to the still com-
monly used uniform approach (Fig. 7). A relatively small number of soil samples (> 10) 
were sufficient to outperform the uniform approach. With 20–30 soil samples the differ-
ence was already very pronounced. This underlines the effectiveness and potential benefit 
of deploying sensor-based soil mapping for VRL.

The RMSE curve of MLR leveled off at medium training sample sizes, after which 
no significant further model improvements were achieved. Hence, RF generated the 
best prediction models with a medium to large sized training sample set. Since the RF 
curve did not completely level it appears that RF models would still improve at even 
larger sample sizes than evaluated in this study. Given that no economic analysis was 
included, it is not possible to evaluate to which point the model improvement justifies 



1547Precision Agriculture (2024) 25:1529–1555 

1 3

the associated extra sampling costs. While more training samples always proved to be 
better, the sharp decrease in relative model improvement makes it contestable if very 
large sample sizes are necessary. It appears that the improvement for sample sizes > 40 
is probably not large enough to have significance on liming recommendations and thus 
yield, when considering the extra sampling costs and low IG. Bönecke et  al. (2021) 
raised the question if it is possible to reduce the number of training samples per field to 
a maximum of 5 to 10 for the same proximal soil sensor combination in order to reduce 
laboratory costs. Figure 8 shows that reasonable results can be obtained in some cases 
at such a small sample size but the risk to receive an insufficient prediction model is 
very high due to the high standard deviation of the RMSE for very small sample sizes. 
Even though not considered in this study, a larger sample size is also advisable to allow 
validation (e.g. leave-one-out cross-validation) to verify the accuracy of the predicted 
soil maps. Therefore, using only a few samples (< 10) in order to cut costs should be 
avoided. Only a few extra soil samples would already substantially increase model 
accuracy and robustness. Nonetheless, for our study field, relatively stable results for 
SOC and clay were obtained with 20 to 40 soil samples and even fewer than 20 for pH.

Limitations and future research

For future studies on sample size optimization in the context of sensor-based PA, it 
might be beneficial to include an economic analysis. In order to come up with an opti-
mal sample size, the sampling costs have to be weighed against the expected yield loss 
resulting from incorrect liming recommendations caused by prediction errors (Lowen-
berg-DeBoer, 2019). Moreover, the use of proximal soil sensors per se is already asso-
ciated with higher costs.

It has to be emphasized that the present results are based on a single case study and 
restricted in their validity to the specific sensor combination used in this study. When using 
other sensors, very different outcomes may be observed. One would expect that more train-
ing data are needed for accurate prediction when the covariate space has a large dimen-
sionality. For example, other studies, in which multiple bands within the whole visible and 
near-infrared spectrum were used, indicate that much larger training sample sizes are desir-
able (Debaene et al., 2014; Lucà et al., 2017). Additionally, the effect of spatial factors such 
as field size and soil variability cannot be considered within a single field. It is expected 
that a larger sample size is needed for bigger fields, because bigger fields tend to have more 
soil variation (Chen et al., 2021; Ng et al., 2018).

Since a geostatistical simulation was used instead of a complete dataset with real 
values, our final results also depend on the assumed validity of the geostatistical 
model. Hence, the absolute values of RMSE and CCC have to be interpreted with care 
(Ma et  al., 2020; Wadoux & Brus, 2021). Yet, the RMSE of e.g., pH is similar with 
results reported in the literature in which an RMSE of 0.28 to 0.55 (Lund et al., 2005) 
or 0.37 (Bönecke et al., 2021) was found when using the Veris MSP3 at training sam-
ple sizes of around 30. The study indicates that the use of geostatistical simulations 
for sampling designs are a reasonable alternative for small scale study areas with mod-
erately sized datasets. However, the implications of using geostatistical simulations 
based on a real dataset compared to using the dataset directly as in Ng et al. (2018), 
Wadoux et al. (2019) or Wadoux and Brus (2021) could be subject of further research.
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Conclusion

By assessing the impact of training sample size, spatial sampling design and predic-
tion model on sensor-based soil mapping of clay, SOC and pH, it was observed that 
while increasing the training sample sizes improved the prediction accuracy, the rela-
tive improvement decreased continuously. The plateauing improvement in accuracy was 
more pronounced with MLR compared to RF. Hence, RF performed considerably better 
at larger sample sizes. Yet, MLR showed advantages at smaller sample sizes. The results 
suggest that a sample size ranging between 10 to 40 training samples appears reasonable 
for the employed sensor combination. With MLR, prediction models of moderate qual-
ity (CCC > 0.65) were already fitted using only 10 training samples for all three target 
soil properties. Nonetheless, 10 training samples are the lowest boundary, as slightly 
more training data ensures better model quality and stability. At smaller training sample 
sizes (< 10), the probability to receive insufficient prediction models is very high due 
to the large standard deviation of the RMSE. Models of excellent quality (CCC > 0.9) 
were only obtained for SOC at a sample size of 100 with RF. cLHS and KM proved 
to be effective sampling designs compared to SRS but neither cLHS nor KM clearly 
outperformed each other. In contrast to other studies, cLHS performed better than SRS. 
While a sampling design and prediction model can enhance the prediction accuracy, 
having a larger sample size proved to be the most crucial factor for accuracy at the low 
to medium sample size range. Sensor-based soil mapping yielded much better results 
compared to a uniform approach, almost regardless of sample size, sampling design and 
prediction model.

Note that these recommendations are derived from a single case study and restricted 
to the used sensor combination. Nonetheless, the results may help improve current prac-
tices in sensor-based precision liming or site-specific soil management in general. For 
more general conclusions, more studies are needed from different soilscapes and fields 
of different soil variability or size.

Appendix

See Tables 5, 6, 7.
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Table 6  Mean RMSE and mean SD of RMSE using MLR for clay, SOC and pH for all sampling designs 
and sample sizes

Sample size

5 10 15 20 25 30 40 50 75 100

Mean (RMSE)
 Clay
  cLHS 2.812 2.152 2.021 1.953 1.924 1.895 1.864 1.848 1.826 1.814
  KM 2.783 2.313 2.069 1.970 1.930 1.902 1.870 1.851 1.825 1.813
  SRS 4.400 2.398 2.104 2.014 1.963 1.923 1.883 1.863 1.835 1.823

 SOC
  cLHS 1.098 0.292 0.264 0.253 0.246 0.240 0.237 0.234 0.230 0.228
  KM 1.795 0.331 0.276 0.261 0.256 0.249 0.239 0.234 0.231 0.230
  SRS 2.244 0.388 0.289 0.265 0.256 0.249 0.241 0.237 0.234 0.230

 pH
  cLHS 0.416 0.353 0.338 0.330 0.325 0.323 0.319 0.318 0.315 0.314
  KM 0.424 0.366 0.341 0.331 0.326 0.322 0.319 0.317 0.315 0.313
  SRS 0.565 0.383 0.351 0.337 0.330 0.326 0.321 0.319 0.316 0.315

Mean SD (RMSE)
 Clay
  cLHS 1.334 0.266 0.169 0.125 0.105 0.086 0.067 0.058 0.047 0.043
  KM 0.727 0.366 0.206 0.134 0.108 0.090 0.070 0.059 0.047 0.042
  SRS 3.504 0.618 0.283 0.194 0.150 0.115 0.082 0.069 0.053 0.047

 SOC
  cLHS 2.658 0.068 0.034 0.024 0.019 0.015 0.013 0.012 0.009 0.008
  KM 3.800 0.096 0.043 0.036 0.028 0.026 0.017 0.013 0.010 0.009
  SRS 4.260 0.440 0.127 0.042 0.031 0.025 0.017 0.014 0.013 0.010

 pH
  cLHS 0.120 0.035 0.024 0.018 0.014 0.013 0.010 0.009 0.008 0.008
  KM 0.092 0.046 0.026 0.018 0.015 0.012 0.010 0.009 0.008 0.007
  SRS 0.371 0.109 0.059 0.031 0.019 0.016 0.012 0.011 0.009 0.008
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Table 7  Mean RMSE and mean SD of RMSE using RF for clay, SOC and pH for all sampling designs and 
sample sizes

Sample size

5 10 15 20 25 30 40 50 75 100

Mean (RMSE)
 Clay
  cLHS 2.229 2.035 1.954 1.906 1.877 1.858 1.828 1.807 1.767 1.739
  KM 2.109 2.035 1.970 1.929 1.904 1.880 1.837 1.809 1.760 1.728
  SRS 2.469 2.150 2.040 1.960 1.928 1.899 1.850 1.825 1.784 1.753

 SOC
  cLHS 0.342 0.291 0.273 0.260 0.247 0.242 0.229 0.224 0.211 0.206
  KM 0.358 0.291 0.281 0.276 0.266 0.251 0.233 0.222 0.211 0.205
  SRS 0.423 0.345 0.308 0.282 0.265 0.256 0.239 0.231 0.218 0.210

 pH
  cLHS 0.426 0.384 0.361 0.349 0.341 0.334 0.326 0.320 0.310 0.303
  KM 0.428 0.389 0.370 0.353 0.344 0.335 0.324 0.318 0.308 0.300
  SRS 0.482 0.418 0.387 0.368 0.352 0.345 0.334 0.327 0.314 0.307

Mean SD (RMSE)
 Clay
  cLHS 0.271 0.169 0.120 0.097 0.084 0.075 0.062 0.056 0.048 0.043
  KM 0.219 0.167 0.124 0.103 0.090 0.082 0.066 0.059 0.047 0.042
  SRS 0.403 0.270 0.208 0.156 0.140 0.119 0.083 0.066 0.054 0.048

 SOC
  cLHS 0.058 0.040 0.029 0.025 0.021 0.019 0.014 0.012 0.008 0.007
  KM 0.041 0.047 0.033 0.035 0.034 0.030 0.023 0.013 0.008 0.007
  SRS 0.092 0.077 0.070 0.055 0.045 0.039 0.023 0.020 0.014 0.011

 pH
  cLHS 0.046 0.029 0.022 0.019 0.017 0.015 0.013 0.011 0.009 0.008
  KM 0.044 0.031 0.026 0.022 0.018 0.016 0.013 0.011 0.009 0.008
  SRS 0.080 0.062 0.048 0.039 0.029 0.023 0.017 0.013 0.011 0.009
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