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Evaluating diagnostic test accuracy during epidemics is difficult due to an urgent need for test
availability, changing disease prevalence and pathogen characteristics, and constantly evolving
testing aims and applications. Based on lessons learned during the SARS-CoV-2 pandemic, we
introduce a framework for rapid diagnostic test development, evaluation, and validation during
outbreaks of emerging infections. The framework is based on the feedback loop between test
accuracy evaluation, modelling studies for public health decision-making, and impact of public health
interventions. We suggest that building on this feedback loop can help future diagnostic test
evaluation platforms better address the requirements of both patient care and public health.

Newly emerging infectious agents present a particular challenge for
diagnostic test development and evaluation. These agents often surface in
the formof an outbreak, an epidemic or a pandemic with high urgency for
targeted infection control, but minimal knowledge about the infectious
agents themselves. Rapid availability of diagnostic tests, along with
information on their accuracy, however limited, is critical in these
situations.

Traditional diagnostic study designs and quality assessment tools
developed for individual patient care, as proposed in existing guidelines for
diagnostic tests1–3, are difficult to apply in a volatile environment in which
there are continuously evolving research questions, infectious agents, and
intervention options. These challenges were particularly apparent during
the SARS-CoV-2pandemic,where the quality of diagnostic studies available
in the field was generally limited. The Cochrane review on rapid, point-of-
care (POC) antigen andmolecular-based tests for diagnosing SARS-CoV-2
infection found ahigh risk of bias indifferent domains in 66 of the 78 studies
considered (85%)4. Themost frequent potential source of biaswas identified
in the reference standard domain, including potential of imperfect gold/
reference standard bias, incorporation bias, and diagnostic review bias (an
explanation of these biases is given in Table 1). In the Cochrane review on
antibody tests for identification of current and past infection with SARS-
CoV-25, the most frequent potential source of bias was identified in the
patient selection domain, due to selection or spectrumbias (48 of 54 studies,
89%). A particular issue is that biases with regard to the reference standard
or the index test can lead to an overestimation or underestimation of sen-
sitivity and specificity.

In both application fields, the differences between the diagnostic test
accuracy estimates reported by themanufacturers and those estimated later
in the Cochrane meta-analyses were enormous. The mean sensitivity
reported bymanufacturers for antigen tests was 89% (as of 22/06/2022)6. In
comparison, the sensitivity estimated in the meta-analysis on antigen tests4

was 72% in symptomatic and 58% in asymptomatic individuals. This dis-
crepancy shows that the timely evaluation of newly developed laboratory
tests under real-life conditions is crucial and should be planned and started
before market launch.

This Perspective article is the result of an interdisciplinary workshop
which we conducted as part of a research project funded by the German
Research Foundation. This brought together expertise from all disciplines
relevant to diagnostic test development and evaluation, ranging from
molecular test development to public-health decision-making. Firstly, the
project members gave presentations on the respective sub-areas of the
project to create a common basis for the following moderated panel dis-
cussions, integrating the expertise and experience from the individual
workshop participants. Subsequently, a previously created draft of the fra-
mework was further developed and the next steps were planned. We
describe the challenges and potential solutions that were discussed for
implementing state-of–the-art diagnostic test development and evaluation
processes, based on accuracy studies performed at different phases of an
epidemic or pandemic.

This Perspective is divided into three key sections. First, we discuss the
relevance of diagnostic studies for public health decision-making based on
mathematical models. Second, we describe the challenges in developing
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diagnostic tests and propose study designs to accelerate the evaluation of
their diagnostic accuracy. Third, considering the challenges mentioned
above, we propose a unified framework for rapid diagnostic test develop-
ment and clinical evaluation. This highlights that multiple and perhaps
different study designs will be necessary to build a convincing portfolio of
evidence for various stakeholders during outbreaks of emerging infections.

Diagnostic tests and testing strategies during the COVID-19
pandemic
For SARS-CoV-2, three types of tests can be distinguished according to their
target: the polymerase chain reaction (PCR) test, the antigen test and the
antibody test. ThePCRtestdetects viral particles, the antigen test viral surface
proteins and the antibody test SARS-CoV-2 specific antibodies. POC tests
refer to those that can be evaluated directly on site. They are available for all
three test types.While PCR and antibody tests are usually only performed by
trained staff in hospitals and testing centers or similar, there are antigen tests
for trained staff (rapid antigen test) but also as a home testing kit (antigen
self-test, freely accessible)7. The cost of testing varied widely across phases of
the pandemic, countries, type of test, and manufacturer. Rapid antigen tests
now cost $1 in the United States of America (USA), PCR tests cost $5, and
antibody tests cost $50 (test kit only with no personnel costs or similar;
average approximate based on internet research and Du et al.8). PCR and
antigen tests use nasal or throat swabs as specimen material, antibody tests
use a blood sample. The PCR test takes up to 48 h to give results, whilst the
antigen and the antibody test give results within 15min. All tests are per-
formed once, and a second test is often performed to confirm the test result
(e.g., a PCR test to confirm a positive antigen test). A recently published
network meta-analysis showed a mean sensitivity of 93% and specificity of
98% forPCRtests, 75%sensitivity and99%specificity for antigen tests9, anda
Cochrane review reported a sensitivity and specificity of 94.3%and 99.8% for
total antibody tests10. Throughout the pandemic, these tests were used in
different combinations as part of various population-level testing strategies.
Rapid antigen tests were used as part of screening and isolation programmes
to detect asymptomatic infections in the community, and especially in key
workers and workplaces. This was often combined with follow-up testing
with PCR tests to minimise unnecessary isolation due to false positives.

Different testing strategies were used to fulfil various aims, e.g. full
population screening programmes to break infection chains and studies
such as the Real-time Assessment of Community Transmission (REACT)
study for high-quality, real-time surveillance. Their strategies characteristics
and costs differed accordingly. No public data on costs is available for most
of these strategies, butmodelling studies have been used to assess their cost-
effectiveness under certain assumptions, taking the context in which the
testing strategies were used into account and synthesizing all available
evidence8,11–13.

Population-level information as a key input for public health
decision-making
While diagnostic tests are usually developed for individual diagnosis and
patient care, their results also play a crucial role in public health decision-
making. Population-level case data, collected based on the number of
positive diagnostic tests in surveillance systems worldwide, are a central
input parameter for decision-making processes in public health policy.
Casesmight in this situation represent different outcomes of contactwith an
infectious agent (e.g., infections or deaths), and also different types of
measures of this contact (e.g., incident or cumulative cases derived from
seroprevalence studies).

Surveillance systems for infectious diseases provide reports on the
number of cases associated with specific pathogens using standardized case
definitions based onpre-defined rules (including diagnostic test results) and
legal obligations. These surveillance systems run constantly for notifiable
diseases associated with high public health risks14. Surveillance-related case
data (based on diagnostic test results) are directly used for public health
decision-making. They enable the development and parameterization of
infectious disease models (e.g., for early warning and monitoring) and forT
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decision-analytic models (e.g., for assessing the benefit-harm, cost-
effectiveness or other trade-offs when guiding public health interven-
tions). This is especially true in epidemic or pandemic situations when
reducingharmat apopulation level becomes a crucial aspectof the decision-
making philosophy15,16, and high consequence decisions must be made
under uncertainty and time pressure. In such scenarios, two fundamental
and extremely relevant quantities are some measure of the presence of the
infection in the population (e.g., prevalence or incidence data) and a mea-
sure of existing immunity to the infection in the population, i.e.
seroprevalence data.

An important decision supported by dynamic infectious disease
modelling studies focusing on predicting infection dynamics is the timing of
interventions. Interventions are most effective when deployed in time17 and
may cease to be effective if implemented too late18. Therefore, it is imperative
that decisions about implementing interventions are made in a timely
manner and sometimes with incomplete evidence, but with all relevant
information being collected and reported appropriately. Monitoring
population-level data fromas soon as possible is essential since it canbeused
to set thresholds for starting interventions19 and determine when inter-
vention measures are no longer necessary and can be ended20.

Due to reportingdelays and the fact that thedecision-makingprocess is
not instantaneous, decisions can come too late when relying solely on
current population-level data. This is where infectious disease modelling
comes in. Models help decision-makers obtain reasonable estimates of how
the epidemic is likely to progress and what impact different interventions
may have. This enables timely and informed decision-making21–23. Com-
bined with benefit-harm and health economic models to account for
unintended effects and costs of interventions, infectious disease models
enable decision-makers to make optimal decisions given the available evi-
dence and resources24–26.

The points discussed above are exemplifiedby decision-making during
the SARS-CoV-2 pandemic. Even during the early phases of the pandemic,
decisions about interventions weremade from population-level data. In the
United Kingdom (UK), the timing of the first nationwide lockdown was
determined based on the predicted number of people treated for SARS-
CoV-2 in intensive care units (ICUs)19. In Australia, more targeted lock-
downs were implemented based on regional prevalence data27,28, and local
lockdowns were also implemented in the UK during later phases of the
pandemic29. Prevalence data became even more important when contact
tracing and test-intervention strategies were implemented, because the
predictive value of diagnostic tests depends on the infection prevalence. As
vaccines became available, subpopulationsmost at risk of severeCOVID-19
were prioritised and given the opportunity to be vaccinated first30,31. In
Germany, vaccination and testing control rules for access to parts of public
life varied from region to region. Again, the region-specific thresholds were
basedon thenumberofhospitalisedpatients testingpositive for SARS-CoV-
2 in the respective region32.

Mathematical models were used throughout to support the decision-
making process. The threshold for applying the first nationwide lockdown
in theUKwas set based on the number of people estimated to be potentially
needing ICU treatment based on differentmodelling scenarios19. InAustria,
the decision to prioritise vaccinating elderly and vulnerable groups was
based on decision-analytic modelling aiming to minimise hospitalisations
and deaths33. In general, infectious disease and decision-analytic models
contributed substantially to the type and intensity of interventions
implemented34–36. Once tests becamewidely available, theywere also used to
devise effective mass testing and isolating strategies37,38.

The current pandemic has thus demonstrated the need for accurate
and timely population-level case data and clinical case data (requiring dif-
ferent diagnostic tests and testing strategies), to allow public health policy
decisions to be as well-informed as possible. Diagnostic tests, as the primary
tool to obtain these population-level data, are therefore at the heart of all
modelling efforts during an epidemic or pandemic, and early and precise
knowledge about their accuracy is crucial for interpreting and further
applying these case data.

Challenges for diagnostic test evaluation in an epidemic setting
Diagnostic tests developed for emerging infections should serve various
purposes, including individual clinical diagnosis, screening, and surveil-
lance. These purposes demand distinct strategies and, in theory, require
separate approval mechanisms39. However, test development, evaluation of
technical validity, clinical validity and utility, as well as test validation cur-
rently do not account for the different uses in a generalized way. The
challenges and potential solutions in this article and the framework pro-
posed therein have been described with all these purposes in mind and are
summarised in Box 1.

In the initial phase of an outbreak of an emerging infection, the main
focus of diagnostic test development is providing a diagnostic test that can
identify infected individualswithhigh sensitivity, so that they canbe isolated
and treated as soon as possible. This is especially important because the
effectiveness of contact tracing depends directly on the quality and time-
liness of case identification. Of course, a high specificity is also important, to
prevent unnecessary isolation or treatment. This is usually achieved by
direct detection of the pathogen, e.g., by molecular genetic tools such as
PCR, microscopy, antigen tests or cultivation of the microorganisms
involved. Later, a better understanding of the immune protection caused by
contact with the agent is required, leading to the development of indirect
pathogen detection tools such as antibody tests. Here, sensitivity and spe-
cificity are equally important to evaluate proxies of long-term immune
protection and to detect past low severity infections which would have been
missed otherwise. However, from the perspective of population-level
modelling, someaccuracymaybe sacrificed if the truediagnostic accuracyof
the test is known so that aggregate correction methods can be applied.
Knowledge of the specificity of the direct detection tools developed earlier
can also come into play in the case of reported reinfections, when it becomes
important to understand whether these are true reinfections or due to false
positives in a time of intensified testing. High specificity is also important
once treatment options are available, but possibly come with relevant side
effects, high costs or limited availability. Different population-level uses also
require different diagnostic characteristics. Although PCR tests with a
noticeable delay between testing and communication of results were used
for population-level testing during the early phases of the COVID-19
pandemic, tests used forpopulation screeninggenerallyneed tobe easily and
quickly administered as POC tests, and lower accuracies, especially in
specificity, are accepted as a trade-off for this. However, relatively high
sensitivity is still important tomake testing-and-isolation strategies effective.
Deficiencies in specificity may be compensated for by confirmatory follow-
up testing with highly specific tests to minimise unnecessary isolation.
Furthermore, target populations, testing aims and prioritised estimators
(e.g. sensitivity or specificity) can change rapidly, necessitating constant test
evaluation and re-evaluation.

During an epidemic or pandemic, direct and indirect tests are thus used
for different purposes and require different study designs, with different
sample size calculations and study populations, to provide critical infor-
mation with high precision and validity.

During epidemics with emerging infections, all new tests must, in
general, quickly go through three steps: the test must be developed, its
clinical performance assessed, and then information on its performance
incorporated into infectious disease modelling to inform public health
decision-making. Each step has potential sources of various biases that
must be considered. Next we describe potential challenges during these
steps and how these challenges might affect the submission process to
regulatory agencies, also considering the perspective of test developers from
industry.

Diagnostic test development
Diagnostic tests for emerging infections typically are in the in vitro diag-
nostic (IVD) test category, as they examine human body specimens (e.g.,
nasopharyngeal swabs, nasal swabs, blood or saliva39). IVDs are generally
considered medical devices40. Consequently, their development has to
adhere to the rules of regulatory agencies and a pre-defined complex legal

https://doi.org/10.1038/s43856-024-00691-9 Perspective

Communications Medicine |           (2024) 4:263 3

www.nature.com/commsmed


framework. Currently, the EuropeanUnion (EU) IVDRegulation 2017/746
covers IVD medical devices, and focuses on a legislative process that
prioritises individual safety, whichmeans that different types of clinical data
must be collected before submission. If a test is deemed capable of distin-
guishing infected individuals fromnon-infected ones, it has to be shownnot
to produce a one-off result41.

There are several phase models for the development of diagnostic tests
described in the literature. We discuss using the frequently used four-phase
model2,42,43. The four phases for this are: I, evaluation of analytical perfor-
mance; II, diagnostic accuracy estimationanddeterminationof threshold; III,
clinical performance estimation; and IV, evaluation together with diagnostic
and/or therapeutic measures with regard to a patient-relevant endpoint.

Inter-rater agreement, analytical sensitivity (minimally detectable
levels)41 and cross-reactivity have to be investigated in the phase I studies
to verify the technical validity, repeatability and reproducibility of
laboratory tests (on a lot-to-lot, instrument group, and day-to-day basis).
However, in the early phase of an epidemic or pandemic, there are often
not enough samples from infected individuals. Sharing data and using a
common infrastructure by, for instance, collecting samples at national
reference centres, could solve this problem, if they are made accessible to
IVD developers. A possible limitation of this approach is the risk of
spectrum bias due to the particular mix of individuals, e.g. there may be
more severe cases in the samples than in the population. Furthermore,
regulatory agencies do not allow the use of (frozen) biobank samples for
approval.

After having shown good technical performance, clinical performance
in phase II and III studies must be demonstrated. An integral part of
assessing the sensitivity and specificity of a continuous diagnostic test is the
determination of the threshold at which it should be used41. This must be

fixed beforemoving on to diagnostic test evaluation, to avoid bias caused by
a data-driven threshold selection44,45. The optimal threshold for a diagnostic
test depends on the prevalence and consequences associated with
misclassification38,46, whichmay both change over time. Thus a new study is
needed every time the threshold changes, requiring extensive resources
(particularly time and money).

Phase II studies are initial, so-called proof-of-concept studies covering
clinical performance and are often carried out in a two-gate design47, where
sensitivity is estimated in diseased individuals and specificity in healthy
samples from a different source. However, this design can lead to spectrum
bias (Table 1). Sensitivity and specificity have been shown to be generally
overestimated in such studies47. Likewise, a meta-analysis showed that a
two-gate case-control design can lead to an overestimation of diagnostic
accuracy48. Inmost situations outside an epidemic or pandemic, individuals
tested are symptomatic and suspect they have the infection of interest, if the
test is to be used to guide therapy or decide about isolation.However, during
epidemics or pandemics, tested individuals can also be asymptomatic if the
test is intended as a contact tracing or screening test41. In both cases, real-
world samples may not be as perfect as in a laboratory situation41 because
testing can also be performed at POC, in the community, at the workplace,
school, orhome39.A testmay require different performance characteristics if
it is thefirst test in line, used to triagewhowill be tested further, compared to
when the test is used to confirm infection. For instance, in a confirmation
setting,most individualswhoclearly donothave the infectionof interestwill
be excluded41.

Diagnostic test evaluation
IVDsmust be evaluated in phase III diagnostic accuracy studies that ideally
start by including all individuals who will be tested in clinical practice to

Box 1 | Summary of discussed challenges and proposed solutions

There is a lack of samples from infected individuals for phase I test
development studies during the early phases of an epidemic or
pandemic.

• Joint data collection and sharing infrastructure can be used to
make infected samples available to test developers.

Thresholdselection fordiagnostic testsmustbedone inadvance,
but the optimal threshold depends on ever-changing disease pre-
valences and consequences of misclassification.

• A limited pool of promising thresholds can be evaluated
simultaneously.

• Mixture modelling without defining a threshold can be used.
• Prevalence-specific thresholds canbedevelopedanddefineda-priori.

Often-used two-gate designs for phase II studies likely lead to
overestimation of diagnostic test accuracy.

• Seamless enrichment designs, whereby proof-of-concept and
confirmation are performed together as one study, can be used.

Tests used as reference standards are themselves imperfect.
• The use of follow-up data or composite reference standards that

use all tests or clinical criteria available for diagnosis can alleviate
this issue. However, one should bemindful of incorporation bias if
the test under evaluation is part of the composite reference
standard.

The need for tests to be developed and evaluated rapidly to be
used as part of public health interventions conflicts with the thor-
ough study processes required to ensure transparency, reproduci-
bility, and privacy.

• Adaptive study designs can shorten time-to-market while main-
taining the rigour of a high-quality study.

Rapidly changing disease prevalences during recruitment may
make a priori sample size calculations inappropriate.

• Estimates of changing prevalence obtained via predictive model-
ling can be incorporated into the design of the study.

Requirements such as sample size, properties of reference test,
and inclusion criteria differ by country, increasing study
complexity.

• Careful upfront planning of multi-centre studies within a network
such as the European Centre for Disease Control or a European
Society of Clinical Microbiology and Infectious Diseases study
group can keep complexity to a minimum.

Diagnostic tests have different roles and target populations
during different stages of an epidemic, requiring different perfor-
mance characteristics and necessitating constant evaluation and
re-evaluation.

• Adaptive designs allow for sample size re-estimation and addi-
tional recruitment during the study to handle changing target
populations.

• A longitudinal panel to be tested regularly using the test under eva-
luation can facilitate and expedite recruitment into diagnostic
studies.

• A platform comparable to the REACT study or the ONS panel in the
UK can be extended to make use of data from hospitals, health
insurance companies, or public health agencies in diagnostic
studies.

• Value-of-informationanalysesbasedon infectiousdiseasemodelling
can help guide selection of optimal performance characteristics
taking into account the purpose of the test being evaluated.
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avoid selection bias (all-comer studies). Individuals fulfilling the inclusion
criteria should be enrolled consecutively, without judging how likely this
person is to test positive or negative41. In suchprospective diagnostic studies,
to minimise variability and thus increase statistical power, all study parti-
cipants ideally undergo all tests under investigation (index tests) as well as
the reference standard to assign their final diagnosis.

The reference standard must be sufficiently reliable to differentiate
between people with and without the target condition, but it is usually not
perfect41. This imperfectness has to be taken into account when interpreting
the results. Suppose a POC antigen test for SARS-CoV-2 is evaluatedwith a
PCR test as reference standard resulting in a sensitivity of 90%.This doesnot
mean that 90% of people with SARS-CoV-2 will be detected but that the
POC test will be positive in 90% of cases with a positive PCR test. Solutions
to this may include follow-up data or composite reference standards, which
use all tests or clinical criteria available for a diagnosis. However, if the test
under evaluation is part of this composite reference standard, this may lead
to incorporation bias49.

Depending on the phase of the epidemic or pandemic, recruitment
speed can vary considerably due to changes in incidence. The guideline on
clinical evaluation of diagnostic agents of the European Medicine Agency2

demands sample size specification in a confirmatory diagnostic accuracy
study in the study protocol. The required sample size is highly dependent on
the prevalence of the target condition, which may change during the
recruitment phase,making a priori sample size calculations inappropriate at
the time of recruitment.

Submission to regulatory agencies
Studies for industry face rigorous regulatory and ethics requirements as
clinical trials follow strict processes and regulatory guidelines which are
assessed in the regulatory submission process and are potentially controlled
by audits. Clinical studies must be transparent, traceable and reproducible.
Special attentionmust be paid to data quality and privacy. This leads to very
detailed study preparation, documentation, quality control, and long and
less flexible study processes.

When the SARS-CoV-2 pandemic began, the need for diagnostic tests
grewwith the rising number of cases. Regulatory bodies (like theU.S. Food&
Drug Administration, FDA) established country-specific emergency use
authorization guidelines50,51to make it easier and faster to bring a test for
SARS-CoV-2 to themarket andmake it accessible during the pandemic. The
WHO declared the end of the COVID-19 pandemic as a Public Health
Emergencyon5May202352.However, theFDAdidnot set a specific enddate
for the use of diagnostic tests authorized under Emergency Use Authoriza-
tion (EUA), and they still remain valid under section 564 of the Federal Food,
Drug, and Cosmetic Act, enabling uninterrupted use of EUA-authorized
COVID-19 testsuntil furthernotice of regulatory transition requirements53,54.

Submission process requirements such as sample size, inclusion
criteria for subjects, and properties of the reference test differ
between countries and may change during an epidemic or pandemic.
Therefore, it is not always possible for a single study to be the basis
for submissions to different countries or certificates, and several
studies must be planned.

The different and changing requirements are not the only
challenges submission teams face. The changing prevalence of
infection makes adequate project management and timeline planning
difficult. Recruitment of positive cases fulfilling the recruitment
requirements can be slow which leads to a longer study duration and,
subsequently, longer time to market. New mutations make re-
evaluations of statistical properties necessary. Considering regulatory
changes during pandemics and possible mutations, (pre)planning
such a study is complicated and time-consuming.

Potential solutions for the challenges presented
The challenges discussed previously are multidimensional but can be
addressed by three countermeasures in several areas. First, test developers
should use methodological approaches to address study designs and

statistical analyses, increasing study efficiency and reducing the risk of bias.
Second, strategic approaches and regulatory guidance for the industry
should be deployed to clearly define opportunities but also limitations in the
development and approval process. Third, results and feedback from
population-level mathematical modelling should inform test development
and validation for deriving optimal study designs based on formal value-of-
information analyses.

Methodological solutions. Methodological solutions fall into two
categories; statistical methods to control bias, and those to increase speed
and efficiency.

The different biases in diagnostic studies have been described exten-
sively, both in general55–57 and also specifically in the context of the SARS-
CoV-2 pandemic58 and POC tests for respiratory pathogens59. From a
methodological standpoint, the problem of bias can be addressed in two
ways: either by choosing a study design in the planning stage thatminimises
the risk of bias, or by using analyticalmethods that correct for potential bias.

An excellent overview of how to avoid bias through an appropriate
design canbe found inPavlou et al.60. Important for theplanningphase is the
work of Shan et al.61, whopresent an approach to calculate the sample size in
the presence of verification bias (i.e., partial or differential verification bias).

In terms of bias reduction methods during the analysis phase, most
studies focus on the correction of verification bias. Bayesian approaches are
mainlyproposed fordifferential verificationbias62,63, while there are a variety
of methods for partial verification bias64.

Time tomarket has to be reduced significantly in pandemics to find an
optimal trade-off between misclassification and missed opportunities for
action. From a statistical point of view, the methods and processes must be
reconsidered. One possibility to improve study designs and statistical ana-
lysis is adaptive designs, that can increase efficiency. These approaches have
been long established in therapeutic studies and are also anchored in
guidelines3,65. With adaptive designs, it is possible to make pre-specified
modifications during the study. For example, inclusion and exclusion cri-
teria can be changed, the trial can be terminated early due to futility or
efficacy, or the sample size can be recalculated. The characteristics and
typical adaptive designs have been very clearly summarised66. A review of
published studies with adaptive designs showed that the pharmaceutical
industry in particular increasingly uses simple adaptive designs, with more
complex adaptive designs still being rare67.

In diagnostic studies, however, experience in using adaptive designs in
diagnostic clinical trials for submissions is limited. A summary of the cur-
rent state of research is available for diagnostic accuracy studies68, for ran-
domised test-treatment studies69 and for adaptive seamless designs70.
Methods for blinded and unblinded sample size re-calculations for diag-
nostic accuracy studies have been published recently71–73, as well as adaptive
designs for test-treatment studies74 and adaptive seamless designs. The
diagnostic industry heavily depends on regulatory guidelines worldwide. If
regulatory bodies emphasise more efficient diagnostic trials that include,
e.g., adaptive designs, the implementation of modern study designs will be
incentivised.

In the following, concrete possible solutions to the above-mentioned
challenges are explained as examples. For details, please refer to the corre-
sponding articles.

Firstly, the problem of setting a threshold in an early study that may
later turn out not to be optimal can be addressed by selecting a limited pool
of promising thresholds75. These are then evaluated simultaneously in the
validation study, with the type I error adjusted accordingly. Another
approach is to use mixture modelling without defining a threshold76.
Prevalence-specific cut-offs might be developed and defined a priori.

Secondly, if the testing strategy and thus the target population change
during the study, adaptive designs offer the possibility to re-estimate the
sample size in a blinded manner based on the prevalence estimated in the
interim analysis71.

Thirdly, a seamless enrichment design can be chosen to address the
problem of biased diagnostic accuracy in two-gate designs, in which proof-
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of-concept and confirmationare performed together inone study.However,
it is apparent that regulatory authorities are cautious of the possible short-
comingsof these innovativedesigns, anda lot ofworkneeds tobedone toget
them approved77. This, in turn, results in the manufacturers of diagnostic
tests being conservative in their study designs.

Solutions for political decision-making based on mathematical
modelling. The accuracy, accessibility, and costs of diagnostic tests all
play a role in decisions about testing programmes, and the decision on
whether, for instance, a more sensitive test with lower accessibility and
higher costs (in the context of SARS-CoV-2, e.g. a real-time PCR test)
should be administered with low frequency or a less sensitive test with
better accessibility and lower costs (in the context of SARS-CoV-2, e.g. a
rapid antigen test) should be administered with higher frequency is
context-specific. Mathematical models can and should support these
decisions in real-time, as was the case during the COVID-19 pandemic78.

When considering model input data, one key aspect that has to be
taken into account bymodelling studies is the deliberate parameterizationof
accuracy for case numbers based directly or indirectly on the results of a
diagnostic test79. This typically includes incidence rates as well as ser-
oprevalence estimates. Knowledge about the diagnostic accuracy of the tests
is critical as biased estimates of sensitivity and specificity can lead to biased
estimates in modelling results used for health decision making. The text-
book example for this is an overestimation of the specificity of an antibody
test used for seroprevalence studies in low-prevalence settingswhich leads to
anoverestimationof theproportionof thepopulationwhichhashadalready
contact with the emerging infectious agent. As a consequence, population
immunitywould be overestimated, underestimating the risk associatedwith
an uncontrolled spread in the population. If true diagnostic accuracy is
known, population-level estimates on e.g. seroprevalence can be corrected,
either before the modelling study or within the modelling framework80. If it
is not known that the proposed diagnostic accuracy is biased,modelling can
help in detecting implausibilities, especially if parameterfitting is carried out
regularly.Here,modelling can informdiagnostic test evaluationwith respect
to potential biases, but also in the context of value of information analyses.
During the first three months of the SARS-CoV-2 pandemic, only a min-
ority of modelling studies in the field accounted for test accuracy estimates;
the remaining used incidence and later seroprevalence data as if they
represented the ground truth. This approach would be appropriate if inci-
dence or seroprevalence data were already corrected for imperfect test
accuracy estimates. However, in this case, the correction procedure should

still be reported in themodelling study to enable a transparent evaluation of
model parameterization, and the model(s) should be reparametrized once
updated informationondiagnostic test accuracy is available. Earlier decision
making based on updated information increases the impact of these deci-
sions on population health (Fig. 1). Decisions just a few weeks or even a
couple of days earlier can make a huge difference, offering a critical time
window for accelerated diagnostic studies. Fig. 2 shows the sensitivity of
model-based assessments of interventions to diagnostic test accuracy
parameters. The results show that even relatively small biases in the esti-
mation of test accuracy (much smaller than those found in the Cochrane
reviews) for an antibody test used to derive the proportion of undetected
cases in a population have an enormous effect on the predicted further
course of the epidemic (themechanism for this impact is that theproportion
of undetected cases is used to correct reported case numbers before they are
used to calibrate transmissibility estimates and other parameters). The
results are enough to change public health decision-making from, for
example, not implementing population-level contact reductionmeasures to
introducing a hard lockdown if the defined outcome of interest crosses a set
decision-analytic threshold.

Longitudinal panels as a platform for diagnostic accuracy studies.
Given the rapidly changing research questions during an epidemic or pan-
demic, there is ahugepractical challenge in settingupdiagnostic studies even
with themodern study designs described above, because the acceptable time
spans for recruiting study participants and for conducting the actual studies
are very short. The availability of a study platform that allows immediate
initiation of diagnostic studies reflecting the current research question and
infectiondynamics is indispensable for timely studies in thefield.Oneway to
ensure this is the sustainable implementation of a longitudinal panel within
existing cohorts (e.g., as theNAKOHealth Study81) that is tested regularly for
the presence or absence of the pathogen by a defined test (or several) under
evaluation. Another approach is to use data fromhospitals, health insurance
or public health agencies. For example, a platform comparable to the UK
Office for National Statistics (ONS) panel82 or the REACT study83 can be
built and used to evaluate the tests or testing strategies under study, and for
real-time communication of the results of the respective tests representing
current or past infection dynamics. In this setting, flexible and fast study
designs can fulfil both, equally important, purposes at the same time.

Feedback triangle at the centre of a unified framework. As discussed
above, the development and evaluation of diagnostic tests in an epidemic

Fig. 1 | Model-based demonstration of effect of
delays in implementing public health interven-
tions on number of individuals needing treatment
during an epidemic. Time course of the number of
individuals requiring intensive care therapy if mea-
sures are taken at different time points to reduce the
effective reproduction number below 1 (reproduc-
tion number (R) at the start set to R = 2, reduced to
R = 0.9 after 7, 14, 21, 28 days). Assumptions of the
Susceptible-Exposed-Infectious-Recovered (SEIR)
model: pre-infection time: 3 days, infectious time:
7 days, proportion of individuals requiring intensive
care unit out of all infectious patients: 2%, length of
stay in intensive care unit: 15 days, population size:
80.000.000, number of susceptible individuals at the
start: 79.950.000, number of exposed individuals at
start: 40.000, number of infectious individuals at the
start: 10.000, number of immune individuals at the
start: 0, number of individuals requiring intensive
care at the start: 0.
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or pandemic setting is closely linked to modelling studies used to inform
political and public health decision-making. This link is at the centre of
the unified framework we propose based on experiences during the
SARS-CoV-2 pandemic (Fig. 3). The execution of diagnostic studies for
new tests or new application areas of existing tests depends heavily on
current test strategies and those potentially applied in the future. Results
from diagnostic studies are a direct input in mathematical modelling
studies, and in turn results from these models are used for decision-
making based on a defined decision-making framework. However,
modelling studies can also give crucial feedback to those responsible for
planning and analysing diagnostic accuracy studies. Here, so-called
value-of-information analyses can help identify those gaps in knowledge
regarding diagnostic test accuracy that need to be tackled first or require
the greatest attention84. This can directly affect sample size estimations,
for instance ifmore precision is needed to estimate the test’s specificity (as

is often the case with antibody tests). Therefore, the optimal strategy to
deal with these constant feedback loops is to establish continuous col-
laboration between the disciplines representing the three parts of this
loop (in green in Fig. 3). This collaboration platform can use the long-
itudinal panel with complementary perspectives described above to
create a unified diagnostic test development and evaluation framework
during an epidemic or pandemic. The modern study designs and bias
reduction methods described above can be applied to obtain the best
potentially available evidence about diagnostic test accuracy in different
settings. When creating such a framework for developing and evaluating
diagnostic tests and considering the corresponding results in modelling
studies, both infection-specific (e.g. transmission rates, case fatality
ratios) and test-specific characteristics (e.g. test type, costs, availability)
must be considered, especially for the collection of population-level data
from testing programmes.

Fig. 3 | Feedback loop at core of proposed frame-
work. Schematic representation of the feedback
triangle (in green) between diagnostic test accuracy
results, the parametrization ofmodelling studies and
their results, the consequences for decision analysis,
and the test strategy chosen based on these decisions.

Fig. 2 | Example model forecasts of number of
individuals needing treatment during an epi-
demic, under varying assumptions about anti-
body test specificity during parameterisation.
Forecast for number of individuals requiring
intensive care therapy if measures as described for
Fig. 1 are taken after 28 days, with the model para-
metrised using different assumptions for antibody
test specificity. SEIR model with Infectious com-
partment split into ‘Detected’ and ‘Undetected’
compartments. Parametrisation as described in
Fig. 1, but with 2% of detected infectious cases
requiring intensive care. Proportion of detection
obtained from data from the ‘Heinsberg’ ser-
oprevalence study86, corrected for antibody test
sensitivity of 0.9, and specificity of 0.9, 0.93,
0.96, 0.99, 1.
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Diagnostic test-intervention studies using a cluster-randomised
approach. In many situations, diagnostic test accuracy estimates should
only be seen as surrogate information since the actual outcome of interest
during an ever-changing pandemic, especially in the later phases, is the
effect of an application of this test on clinical or population-level out-
comes. Here, it is possible, as has been discussed during the SARS-CoV-2
pandemic, to take a step further and move test evaluation to phase IV or
diagnostic test-intervention studies. In this phase, individuals or clusters
of individuals are randomised to a diagnostic strategy (e.g., regular testing
of the entire population or testing only in case of symptoms). The relevant
clinical endpoint is then compared between randomised groups42. Thus,
the test strategy is treated as an intervention evaluated for its effectiveness
and safety. Diagnostic test accuracy helps to reach this endpoint but is not
the only factor under evaluation. The practicability of the strategy, as well
as real-world effectiveness and interaction with other interventions (e.g.,
the case isolation and quarantine of close contacts), are also assessed
indirectly in this approach. In a dynamic infectious disease setting where
an intervention can have indirect effects on people other than the target
population, only cluster-randomised approaches allow for a reasonable
estimation of population-level effects of the intervention under study. In
infectious disease epidemiology, similar designs are applied when
assessing the effectiveness of vaccination programs on a population level,
often combined with a staggered entry approach to allow all clusters to
benefit from the intervention over time (so-called stepped-wedge design).
During the pandemic, small-scale pilot studies were discussed, trying to
mirror such an approach in a non-randomisedway, often claiming to be a
natural experiment. However,most of themdid not follow guidelines and
recommendations available for diagnostic test-intervention studies that
would have improved the quality of the results and their usefulness for
evidence-based public health. Rigorous application of cluster-
randomised diagnostic test-intervention studies to implement testing
strategies can support decision-making processes in the later stages of an
epidemic or pandemic.

Conclusion
The development and evaluation of diagnostic tests for emerging infectious
agents during an epidemic or pandemic comewithmany serious challenges.
We propose integrating diagnostic studies in a unified framework repre-
senting the triangle of diagnostic test evaluation, predictive or decision-
analytic public health modelling and the testing strategy applied in this
population. This framework can usemodern, flexible and fast study designs
and should incorporate a longitudinal panel as a continuous study platform.
Diagnostic test-intervention studies need to be planned early and should be
used for evidence-based public health during later phases of an epidemic or
pandemic, when research questions become more complicated and testing
strategies serve as interventions to counteract infectious disease dynamics.
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