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A B S T R A C T

We prove existence results for the parabolic double phase obstacle problem: Find 𝑢 ∈ 𝐾 ⊂ 𝑋0
with 𝑢(⋅, 0) = 0 satisfying

0 ∈ 𝑢𝑡 + 𝐴𝑢 + 𝐹 (𝑢) + 𝜕𝐼𝐾 (𝑢) in 𝑋∗
0 ,

where 𝐴∶𝑋0 → 𝑋∗
0 given by

𝐴𝑢 ∶= −div
(

|∇𝑢|𝑝−2∇𝑢 + 𝜇(𝑥)|∇𝑢|𝑞−2∇𝑢
)

for 𝑢 ∈ 𝑋0,

is the double phase operator acting on 𝑋0 = 𝐿𝑝(0, 𝜏;𝑊 1,
0 (𝛺)) with 𝑊 1,

0 (𝛺) denoting the
associated Musielak–Orlicz Sobolev space with generalized homogeneous boundary values. The
obstacle is represented by the closed convex set 𝐾 with the obstacle function 𝜓 through

𝐾 = {𝑣 ∈ 𝑋0 ∶ 𝑣(𝑥, 𝑡) ≤ 𝜓(𝑥, 𝑡) for a.a. (𝑥, 𝑡) ∈ 𝑄 = 𝛺 × (0, 𝜏)}

and 𝐼𝐾 is the indicator function related to 𝐾 with 𝜕𝐼𝐾 denoting its subdifferential in the sense
of convex analysis.

. Introduction and main results

Let 𝛺 ⊂ R𝑁 be a bounded domain with Lipschitz boundary 𝜕𝛺 and 𝑄 = 𝛺 × (0, 𝜏), 𝜏 > 0, the space–time cylindrical domain. In
his paper we consider the following parabolic obstacle problem: Find 𝑢 ∈ 𝐾 ⊂ 𝑋0 with 𝑢(⋅, 0) = 0 such that

0 ∈ 𝑢𝑡 + 𝐴𝑢 + 𝐹 (𝑢) + 𝜕𝐼𝐾 (𝑢) in 𝑋∗
0 , (1.1)

here 𝐴∶𝑋0 → 𝑋∗
0 given by

𝐴𝑢 ∶= −div
(

|∇𝑢|𝑝−2∇𝑢 + 𝜇(𝑥)|∇𝑢|𝑞−2∇𝑢
)

for 𝑢 ∈ 𝑋0,

s the double phase operator acting on 𝑋0 = 𝐿𝑝(0, 𝜏;𝑊 1,
0 (𝛺)) with 𝑊 1,

0 (𝛺) denoting the associated Musielak–Orlicz Sobolev space
ith generalized homogeneous boundary values which is a closed subspace of the Musielak–Orlicz Sobolev space 𝑊 1, (𝛺) whose
recise definition is provided in Section 2. The obstacle is represented by the closed convex set 𝐾 with the obstacle function 𝜓
hrough

𝐾 = {𝑣 ∈ 𝑋0 ∶ 𝑣(𝑥, 𝑡) ≤ 𝜓(𝑥, 𝑡) for a.a. (𝑥, 𝑡) ∈ 𝑄}

nd 𝐼𝐾 is the indicator function related to 𝐾 with 𝜕𝐼𝐾 denoting its subdifferential in the sense of convex analysis. The time derivative
𝑡 ∶=

d𝑢(⋅,𝑡)
d𝑡 is understood as the distributional time-derivative of the vector space-valued function 𝑡 ↦ 𝑢(⋅, 𝑡) ∈ 𝑊 1,

0 (𝛺) with 𝑡 ∈ (0, 𝜏).
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By definition of the subdifferential 𝜕𝐼𝐾 , the obstacle problem (1.1) is equivalent to the following parabolic variational inequality:
Find 𝑢 ∈ 𝐾 with 𝑢(⋅, 0) = 0 such that

⟨𝑢𝑡 + 𝐴𝑢 + 𝐹 (𝑢), 𝑣 − 𝑢⟩ ≥ 0 for all 𝑣 ∈ 𝐾, (1.2)

here ⟨⋅, ⋅⟩ denotes the duality pairing between 𝑋0 and its dual 𝑋∗
0 , and 𝐹 is the Nemytskij operator generated by the nonlinearity

∶ 𝑄 × R → R through 𝐹 (𝑢)(𝑥, 𝑡) = 𝑓 (𝑥, 𝑡, 𝑢(𝑥, 𝑡)). Let us introduce the function spaces 𝑌0 and 𝑌 by means of 𝑋0 and 𝑋 =
𝐿𝑝(0, 𝜏;𝑊 1, (𝛺)), respectively, as follows

𝑌0 =
{

𝑢 ∈ 𝑋0 ∶ 𝑢𝑡 ∈ 𝑋∗
0
}

and 𝑌 =
{

𝑢 ∈ 𝑋 ∶ 𝑢𝑡 ∈ 𝑋∗} .

It will be seen that 𝑌0 and 𝑌 are separable, uniformly convex Banach spaces equipped with the norms

‖𝑢‖𝑌0 = ‖𝑢‖𝑋0
+ ‖𝑢𝑡‖𝑋∗

0
and ‖𝑢‖𝑌 = ‖𝑢‖𝑋 + ‖𝑢𝑡‖𝑋∗ ,

where ‖ ⋅ ‖𝑋0
, ‖ ⋅ ‖𝑋 are defined by

‖𝑢‖𝑋0
=
(

∫

𝜏

0
‖𝑢(⋅, 𝑡)‖𝑝𝑉0 d𝑡

)
1
𝑝
, ‖𝑢‖𝑋 =

(

∫

𝜏

0
‖𝑢(⋅, 𝑡)‖𝑝𝑉 d𝑡

)
1
𝑝
,

ith ‖ ⋅ ‖𝑉0 , ‖ ⋅ ‖𝑉 being the norms in 𝑉0 ∶= 𝑊 1,
0 (𝛺), 𝑉 ∶= 𝑊 1, (𝛺), respectively, and 𝑋∗

0 = 𝐿𝑝′ (0, 𝜏; (𝑊 1,
0 (𝛺))∗) and

∗ = 𝐿𝑝′ (0, 𝜏; (𝑊 1, (𝛺))∗) are equipped with the norms ‖ ⋅ ‖𝑋∗
0

and ‖ ⋅ ‖𝑋∗ , given by

‖𝑢‖𝑋∗
0
=
(

∫

𝜏

0
‖𝑢(⋅, 𝑡)‖𝑝

′

𝑉 ∗
0
d𝑡
)

1
𝑝′
, ‖𝑢‖𝑋 =

(

∫

𝜏

0
‖𝑢(⋅, 𝑡)‖𝑝

′

𝑉 ∗ d𝑡
)

1
𝑝′
,

with 1
𝑝 +

1
𝑝′ = 1. We assume the following hypotheses on the data of the variational inequality (1.2):

(H1) 2 ≤ 𝑝 < 𝑁 , 𝑝 < 𝑞 < 𝑝∗ = 𝑁𝑝
𝑁−𝑝 and 0 ≤ 𝜇(⋅) ∈ 𝐿∞(𝛺);

(H2) the obstacle function 𝜓 ∶𝑄 → R is supposed to satisfy

𝜓 ∈ 𝑌 , 𝜓(⋅, 0) ≥ 0 in 𝛺, 𝜓|𝛴 ≥ 0,

⟨𝜓𝑡 + 𝐴𝜓,𝜑⟩ ≥ 0 for all 𝜑 ∈ 𝑋0 with 𝜑 ≥ 0,

with 𝛴 being the lateral boundary of 𝑄;
(H3) 𝑓 ∶𝑄 × R → R is a Carathéodory function, that is, (𝑥, 𝑡) ↦ 𝑓 (𝑥, 𝑡, 𝑠) is measurable in 𝑄 for all 𝑠 ∈ R and 𝑠 ↦ 𝑓 (𝑥, 𝑡, 𝑠) is

continuous in R for a.a. (𝑥, 𝑡) ∈ 𝑄. Further, 𝑓 satisfies the following growth condition

|𝑓 (𝑥, 𝑡, 𝑠)| ≤ 𝛼(𝑥, 𝑡) + 𝛽|𝑠|𝑝−1 (1.3)

for a.a. (𝑥, 𝑡) ∈ 𝑄 and for all 𝑠 ∈ R where 𝛼 ∈ 𝐿𝑝′ (𝑄) as well as 𝛽 ≥ 0.

Definition 1.1. A function 𝑢 ∈ 𝑌0 ∩𝐾 is called a solution of the obstacle problem (1.1) (resp. (1.2)) if 𝑢(⋅, 0) = 0 and the variational
inequality

⟨𝑢𝑡, 𝑣 − 𝑢⟩ + ∫𝑄

(

|∇𝑢|𝑝−2∇𝑢 + 𝜇(𝑥)|∇𝑢|𝑞−2∇𝑢
)

⋅ (∇𝑣 − ∇𝑢) d𝑥d𝑡

+ ∫𝑄
𝐹 (𝑢)(𝑣 − 𝑢) d𝑥d𝑡 ≥ 0 for all 𝑣 ∈ 𝐾,

is satisfied.

The main result in this paper reads as follows.

Theorem 1.2. Assume hypotheses (H1)–(H3) and suppose that
1

‖𝑢‖𝑋0

⟨𝐴𝑢 + 𝐹 (𝑢), 𝑢⟩ → ∞ as ‖𝑢‖𝑋0
→ ∞ (1.4)

s satisfied. Then the parabolic obstacle problem (1.1) (resp. (1.2)) admits at least one solution 𝑢 ∈ 𝑌0.

The study of variational inequalities dates its origins back to the calculus of variations, however its systematic development only
egan in the 1960s, initiated by the works of Fichera [1] and Stampacchia [2,3], which was motivated by problems in mechanics, like
bstacle problems in elasticity. Following the groundbreaking contributions of Lions-Stampacchia [4], the exploration of variational
nequalities gained strong development, evolving into a significant domain within nonlinear analysis, calculus of variations,
ptimization theory, and various branches of mechanics, mathematical physics and engineering.

In recent years elliptic as well as parabolic problems governed by the double phase operator

𝐴𝑢 ∶= −div
(

|∇𝑢|𝑝−2∇𝑢 + 𝜇(𝑥)|∇𝑢|𝑞−2∇𝑢
)

2
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and variants of it have gained increasing importance due to its applications in various fields of applied sciences such as nonlinear
elasticity theory of composite materials (see e.g. Zhikov [5,6]), on transonic flows (see e.g. Bahrouni-Rădulescu-Repovš [7]),
on quantum physics (see e.g. Benci-D’Avenia-Fortunato-Pisani [8]), on stationary reaction diffusion systems (see e.g. Cherfils-
Il’yasov [9]), image noise removal and image processing (see e.g. Kbiri Alaoui-Nabil-Altanji [10], Charkaoui-Ben-Loghfyry-Zeng [11],
Chen-Levine [12], Harjulehto-Hästö [13], Harjulehto-Hästö-Latvala-Toivanen [14] and Li-Li-Pi [15]), or heat diffusion in materials
with heterogeneous thermal properties (see e.g. Arora-Shmarev [16]). A comprehensive review of the current state of the theory
concerning elliptic variational problems with nonstandard growth conditions including double phase problems is given in Mingione-
Rădulescu [17]. The ability to capture different behaviors of the specific medium in different regions makes the double phase
operator a powerful tool. The origin of the double phase operator is related with the following ’energy functional’

𝛷(𝑢) = ∫𝛺

(

|∇𝑢|𝑝 + 𝜇(𝑥)|∇𝑢|𝑞
)

d𝑥, 𝑢 ∈ 𝑊 1,
0 (𝛺),

which was first introduced by Zhikov (see [5,6]) to describe models for strongly anisotropic materials. It describes the phenomenon
that the energy density changes its ellipticity and growth properties according to the point 𝑥 ∈ 𝛺. In nonlinear elasticity theory the
functional 𝛷 can be used as a model for composite media with different hardening exponents p and q. The geometry of the mixture
of the two materials is then described by the zero set {𝑥 ∈ 𝛺∶𝜇(𝑥) = 0} of the modulating coefficient 𝑥 ↦ 𝜇(𝑥), where the transition
from q-growth to p-growth takes place. That is why 𝛷 is called double phase functional.

In order to get an idea of how the double phase integral is related to the double phase operator, let 𝛺 be some composite
material, which undergoes deformation by exerting an external force 𝑓 , which may nonlinearly depend on the deformation 𝑢(𝑥),
that is 𝑥↦ 𝑓 (𝑥, 𝑢(𝑥)). Then the total energy 𝐸 stored is mathematically described by

𝐸(𝑢) = ∫𝛺

(

1
𝑝
|∇𝑢|𝑝 + 1

𝑞
𝜇(𝑥)|∇𝑢|𝑞

)

d𝑥 + ∫𝛺
𝐺(𝑥, 𝑢) d𝑥, 𝑢 ∈ 𝑊 1,

0 (𝛺), (1.5)

where 𝐺(𝑥, 𝑢) = ∫ 𝑢0 𝑓 (𝑥, 𝑠) d𝑠 is the primitive of 𝑓 . Note that the first integral on the right-hand side of (1.5) is basically a multiple of
𝛷, which is immaterial with respect to the energy balance. According to fundamental physical principle, the deformation 𝑢 we are
looking for is obtained by minimizing the energy functional, that is, we need to solve the minimization problem: Find 𝑢 ∈ 𝑊 1,

0 (𝛺)
such that

𝐸(𝑢) = inf
𝑣∈𝑊 1,

0 (𝛺)
𝐸(𝑣).

Since 𝐸 ∶𝑊 1,
0 (𝛺) → R is a 𝐶1-functional, which – under certain growth restrictions on 𝑠 ↦ 𝑓 (𝑥, 𝑠) – is bounded below, coercive,

and weakly lower semicontinuous, such that a global minimizer exists. Therefore, a necessary condition is 𝐸′(𝑢) = 0, where 𝐸′

denotes the Frechet derivative of 𝐸, that is,

⟨𝐸′(𝑢), 𝜑⟩ = 0 for all 𝜑 ∈ 𝑊 1,
0 (𝛺), (1.6)

where here ⟨⋅, ⋅⟩ denotes the duality pairing between 𝑊 1,
0 (𝛺) and its dual space. Calculating the Frechet derivative (1.6) becomes

∫𝛺

(

|∇𝑢|𝑝−2∇𝑢 + 𝜇(𝑥)|∇𝑢|𝑞−2∇𝑢
)

⋅ ∇𝜑 d𝑥 + ∫𝛺
𝑓 (𝑥, 𝑢)𝜑 d𝑥 = 0

for all 𝜑 ∈ 𝑊 1,
0 (𝛺), which is nothing but the weak formulation of the following Dirichlet problem

𝐴𝑢 + 𝑓 (𝑥, 𝑢) = 0 in 𝛺, 𝑢 = 0 on 𝜕𝛺,

where 𝐴 is the double phase operator.
Now consider the problem of deformation of the composite material under an additional constraint given by an obstacle 𝐾 of

the form

𝐾 =
{

𝑣 ∈ 𝑊 1,
0 (𝛺)∶ 𝑣(𝑥) ≤ 𝜓(𝑥) for 𝑥 ∈ 𝛺

}

,

which means, we are looking for deformations 𝑢 that, in addition, satisfy 𝑢(𝑥) ≤ 𝜓(𝑥). In this situation the deformation is obtained
as the solution of the following minimization problem under constraint: Find 𝑢 ∈ 𝐾 such that

𝐸(𝑢) = inf
𝑣∈𝐾

𝐸(𝑣) = inf
𝑣∈𝑊 1,

0 (𝛺)
[𝐸(𝑣) + 𝐼𝐾 (𝑣)], (1.7)

where 𝐼𝐾 is the indicator function related to 𝐾. By standard variational calculus, a necessary condition for finding 𝑢 satisfying (1.7)
is the following variational inequality: Find 𝑢 ∈ 𝐾 such that

⟨𝐸′(𝑢), 𝑣 − 𝑢⟩ ≥ 0 for all 𝑣 ∈ 𝐾,

which is equivalent to the following elliptic double phase variational inequality

∫𝛺

(

|∇𝑢|𝑝−2∇𝑢 + 𝜇(𝑥)|∇𝑢|𝑞−2∇𝑢
)

⋅ ∇(𝑣 − 𝑢) d𝑥

+ 𝑓 (𝑥, 𝑢)(𝑣 − 𝑢) d𝑥 ≥ 0 for all 𝑣 ∈ 𝐾.
(1.8)
3

∫𝛺
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In this paper we consider the evolutionary counterpart of the elliptic double phase variational inequality (1.8), which is the
arabolic double phase variational inequality (1.2). Consider first the following Cauchy–Dirichlet problem for the parabolic double
hase equation

𝑢𝑡 + 𝐴𝑢 + 𝐹 (𝑢) = 0 in 𝑄, 𝑢 = 0 on 𝜕𝛺 × (0, 𝜏), 𝑢(𝑥, 0) = 𝑢0(𝑥) in 𝛺.

Existence results for the Cauchy–Dirichlet problem of the parabolic double phase equation under homogeneous Dirichlet data on the
lateral boundary 𝜕𝛺×(0, 𝜏) have been obtained e.g. by Arora-Shmarev [16] and Bögelein-Duzaar-Marcellini [18]. Similaraly as in the
stationary case considered before, this kind of problems may be used e.g. as a mathematical model describing the thermal diffusion
in heterogeneous media, where the heat conduction in composite materials with varying thermal properties is described through
the double phase operator 𝐴. In this context, the parabolic double phase variational inequality (1.2) stands for a heat conduction
model in some composite materials with varying thermal properties under the additional constraint given by 𝐾.

Unlike in the treatment of an elliptic double phase obstacle problem, in the treatment of the evolutionary obstacle problem
considered here an additional difficulty arises, which is due to the subdifferential of the indicator function 𝜕𝐼𝐾 in (1.1). Because of
this no growth condition can be assumed on 𝜕𝐼𝐾 , and thus, in general there is no growth estimate of the time derivative 𝑢𝑡 in the dual
space 𝑋∗

0 available, which would be needed for proving existence of solutions. In case that 𝐾 admits a nonempty interior, that is,
int(𝐾) ≠ ∅, this difficulty can be overcome by applying Rockafellar’s theorem about the sums of maximal monotone operators, which
llows to study evolutionary variational inequalities by implementation of arguments and results for elliptic variational inequalities
o evolutionary variational inequalities. Unfortunately, the interior of the constraint 𝐾 we are dealing with is empty, i.e., int(𝐾) = ∅,

and therefore a similar approach as for elliptic variational inequalities cannot be applied. Instead, we are dealing with this difficulty
by using a penalty technique.

As far as we know this is the first work dealing with existence results for parabolic double phase obstacle problems. Our main
goal is to establish a functional analytic framework and derive existence results for parabolic double phase obstacle problems (1.1),
resp. (1.2).

In the case of parabolic double phase equations we refer to the work of Arora-Shmarev [16] who considered parabolic equations
of the form

𝑢𝑡 − div
(

|∇𝑢|𝑝(𝑧)−2∇𝑢 + 𝑎(𝑧)|∇𝑢|𝑞(𝑧)−2∇𝑢
)

= 𝐹 (𝑥, 𝑢,∇𝑢) in 𝑄𝑇 = 𝛺 × (0, 𝑇 )

for 𝑧 = (𝑥, 𝑡) ∈ 𝑄 with
2𝑁
𝑁 + 2

< 𝑝− ≤ 𝑝(𝑧) ≤ 𝑞(𝑧) < 𝑝(𝑧) + 𝑟∗

2
, 𝑟∗ = 𝑟∗(𝑝−, 𝑁), 𝑝− = min

𝑄𝑇
𝑝(𝑧).

nder certain conditions on the right-hand side the existence of a unique solution has been shown. The same authors [19] obtained
he unique strong solution with a certain kind of regularity to the parabolic equation

𝑢𝑡 − div
(

𝑎(𝑧)|∇𝑢|𝑝(𝑧)−2∇𝑢 + 𝑏(𝑧)|∇𝑢|𝑞(𝑧)−2∇𝑢
)

= 𝑓

for 𝑧 = (𝑥, 𝑡) ∈ 𝑄𝑇 = 𝛺 × (0, 𝑇 ). Yuan-Ge-Cao-Zhang [20] proved the existence of solutions for parabolic problems with the limiting
case of double phase flux given by

⎧

⎪

⎨

⎪

⎩

𝑢𝑡 − div
(

𝐷𝑢
|𝐷𝑢| + 𝜇(𝑥)

𝐷𝑢
|𝐷𝑢|

)

= 𝑓 (𝑥, 𝑢) in 𝛺 × (0,+∞),

𝑢 = 0 in 𝜕𝛺 × (0,+∞),
𝑢(𝑥, 0) = 𝑢0(𝑥) in 𝛺,

with a Carathéodory function 𝑓 ∶𝛺 × R → R that fulfills the Ambrosetti–Rabinowitz condition. Finally, we mention some works
dealing with regularity results for local and nonlocal parabolic double phase type, see, for example, Buryachenko-Skrypnik [21] (lo-
cal continuity and Harnack’s inequality for parabolic double phase equations), Giacomoni-Kumar-Sreenadh [22] (Hölder regularity
results for nonlocal parabolic double phase problems), Grimaldi-Ipocoana [23] (higher differentiability results), Kim-Kinnunen-
Moring [24] (gradient higher integrability for degenerate parabolic double phase systems), Meng-Zhang [25] (asymptotic mean
value properties), Prasad-Tewary [26] (local boundedness to nonlocal parabolic double phase equations), Savchenko-Skrypnik-
Yevgenieva [27] (Harnack’s inequality for degenerate parabolic double phase equations under the non-logarithmic Zhikov’s
condition), Shang-Zhang [28] (regularity for mixed local and nonlocal parabolic double phase equations) and the references
therein. In the case of elliptic double phase obstacle problems there are some more references in the direction of existence
results and regularity properties. We mention, for example, the papers of Byun-Cho-Oh [29], Byun-Liang-Zheng [30], Zeng-
Bai-Gasiński-Winkert [31], Zeng-Bai-Rădulescu-Winkert [32], Zeng-Gasiński-Winkert-Bai [33], Zeng-Rădulescu-Winkert [34–36],
Zhao-Zheng [37], see also the references therein.

The paper is organized as follows. In Section 2 we present the underlying function spaces and some auxiliary results about certain
parabolic embeddings as well as properties of the penalty operator. Section 3 is concerned with the proof of Theorem 1.2 based
on surjectivity results for pseudomonotone operators along with a penalty technique. Finally, in Section 4 we state the notion of
sub-supersolutions to (1.1), give sufficient conditions for the existence of it (see Lemmas 4.3, 4.4) and prove an existence result for
(1.1) for a given ordered pair of sub-supersolutions, see Theorem 4.5.
4
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2. Preliminaries

In this section we introduce the Musielak–Orlicz spaces 𝐿 (𝛺) and 𝑊 1, (𝛺), 𝑊 1,
0 (𝛺) and summarize some of their relevant

roperties. Further, based on the Musielak–Orlicz spaces we are going to characterize the space–time function spaces 𝑋, 𝑋0, 𝑌 , and
0.

Suppose (H1) and consider the nonlinear function  ∶𝛺 × [0,∞) → [0,∞) given by

(𝑥, 𝑠) = 𝑠𝑝 + 𝜇(𝑥)𝑠𝑞 ,

hen the Musielak–Orlicz spaces 𝐿 (𝛺) is defined by

𝐿 (𝛺) =
{

𝑢∶𝛺 → R measurable and 𝜌 (𝑢) ∶= ∫𝛺
(𝑥, |𝑢|) d𝑥 < +∞

}

equipped with the Luxemburg norm

‖𝑢‖ = inf
{

𝜆 > 0 ∶ 𝜌
( 𝑢
𝜆

)

≤ 1
}

.

he space 𝐿 (𝛺) is separable and uniformly convex and thus a reflexive Banach space. Further let us introduce the weighted space
𝑞
𝜇(𝛺) defined by

𝐿𝑞𝜇(𝛺) =
{

𝑢∶𝛺 → R measurable and ∫𝛺
𝜇(𝑥)|𝑢|𝑞 d𝑥 < +∞

}

equipped with the seminorm ‖ ⋅ ‖𝑞,𝜇 given by

‖𝑢‖𝑞,𝜇 =
(

∫𝛺
𝜇(𝑥)|𝑢|𝑞 d𝑥

)
1
𝑞
.

Denote by 𝐿𝑟(𝑈 ) the usual Lebesgue spaces equipped with the norm ‖ ⋅ ‖𝑟,𝑈 , then one readily verifies the following continuous
embeddings to hold true

𝐿𝑞(𝛺) ↪ 𝐿 (𝛺) ↪ 𝐿𝑝(𝛺) ∩ 𝐿𝑞𝜇(𝛺).

The relation between the norm ‖⋅‖ and the -modular 𝜌 are summarized in the following proposition, see Liu-Dai [38, Proposition
2.1] or Crespo-Blanco-Gasiński-Harjulehto-Winkert [39, Proposition 2.13].

Proposition 2.1. Under hypothesis (H1) the following relations hold true:

(i) ‖𝑢‖ = 𝑎 ≠ 0 ⟺ 𝜌
(

𝑢
𝑎

)

= 1;

(ii) ‖𝑢‖ < 1 (resp. ‖𝑢‖ = 1, ‖𝑢‖ > 1) ⟺ 𝜌 (𝑢) < 1 (resp. 𝜌 (𝑢) = 1, 𝜌 (𝑢) > 1);
(iii) ‖𝑢‖ < 1 ⟹ ‖𝑢‖𝑞 ≤ 𝜌 (𝑢) ≤ ‖𝑢‖𝑝 ,
(iv) ‖𝑢‖ > 1 ⟹ ‖𝑢‖𝑝 ≤ 𝜌 (𝑢) ≤ ‖𝑢‖𝑞 ;
(v) ‖𝑢‖ → 0 ⟺ 𝜌 (𝑢) → 0, ‖𝑢‖ → +∞ ⟺ 𝜌 (𝑢) → +∞.

The Musielak–Orlicz Sobolev space 𝑉 ∶= 𝑊 1, (𝛺) is defined by

𝑊 1, (𝛺) =
{

𝑢 ∈ 𝐿 (𝛺) ∶ |∇𝑢| ∈ 𝐿 (𝛺)
}

equipped with the norm

‖𝑢‖𝑉 = ‖𝑢‖ + ‖∇𝑢‖ ,

and its subspace 𝑉0 ∶= 𝑊 1,
0 (𝛺), whose functions have generalized homogeneous boundary values, is defined as the completion of

𝐶∞
𝑐 (𝛺) with respect to the norm ‖ ⋅ ‖𝑉 , that is

𝑉0 ∶= 𝑊 1,
0 (𝛺) = 𝐶∞

𝑐 (𝛺)
‖⋅‖𝑉 .

As 𝐿 (𝛺) is separable and uniformly convex, the Musielak–Orlicz Sobolev spaces 𝑉 and 𝑉0 are separable and uniformly convex as
well, and thus reflexive. Moreover, the following proposition holds, see Crespo-Blanco-Gasiński-Harjulehto-Winkert [39, Propositions
2.16 and 2.18].

Proposition 2.2. Suppose hypothesis (H1) is satisfied.

(i) Continuous embedding: 𝑉0 ↪ 𝐿𝑟(𝛺) for all 𝑟 ∈ [1, 𝑝∗] with 𝑝∗ = 𝑁𝑝
𝑁−𝑝 being the critical Sobolev exponent;

(ii) Compact embedding: 𝑉0 ↪↪ 𝐿𝑟(𝛺) for all 𝑟 ∈ [1, 𝑝∗);
(iii) Equivalent norm in 𝑉 : ‖𝑢‖ = ‖∇𝑢‖ for all 𝑢 ∈ 𝑉 .
5
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The double phase operator 𝐴𝑢 ∶= −div
(

|∇𝑢|𝑝−2∇𝑢 + 𝜇(𝑥)|∇𝑢|𝑞−2∇𝑢
)

generates a mapping (again denoted by 𝐴) from 𝑉0 to its
ual 𝑉 ∗

0 defined by

⟨𝐴𝑢, 𝜑⟩ = ∫𝛺

(

|∇𝑢|𝑝−2∇𝑢 + 𝜇(𝑥)|∇𝑢|𝑞−2∇𝑢
)

⋅ ∇𝜑 d𝑥 (2.1)

or all 𝑢, 𝜑 ∈ 𝑉0, where ⟨⋅, ⋅⟩ denotes the duality pairing between 𝑉 ∗
0 and 𝑉0. From Theorem 3.3 and its proof in Crespo-Blanco-

Gasiński-Harjulehto-Winkert [39] we deduce the following properties of 𝐴.

Proposition 2.3. The double phase operator 𝐴 defined by (2.1) satisfies:

(i) 𝐴∶𝑉0 → 𝑉 ∗
0 is continuous, bounded, and strictly monotone;

(ii) 𝐴 is of type (S+), that is, if 𝑢𝑛 ⇀ 𝑢 (weakly) in 𝑉0 and

lim sup
𝑛→∞

⟨𝐴𝑢𝑛, 𝑢𝑛 − 𝑢⟩ ≤ 0,

then 𝑢𝑛 → 𝑢 (strongly) in 𝑉0;
(iii) ‖𝐴𝑢‖𝑉 ∗

0
≤ 2‖𝑢‖𝑉0 for all 𝑢 ∈ 𝑉0.

With the notations 𝑉 ∶= 𝑊 1, (𝛺) and 𝑉0 ∶= 𝑊 1,
0 (𝛺) and the properties of the Musielak–Orlicz Sobolev spaces 𝑉 and 𝑉0, the

Lebesgue spaces 𝑋 = 𝐿𝑝(0, 𝜏;𝑉 ), 𝑋0 = 𝐿𝑝(0, 𝜏;𝑉0) and 𝑌 and 𝑌0 as introduced already in Section 1 are separable, and uniformly
convex, and thus reflexive Banach spaces, see e.g. Zeidler [40, Proposition 23.2, Proposition 23.7].

For 𝑠 ∈ R, we set 𝑠± = max{±𝑠, 0}. Note that the Musielak–Orlicz Sobolev space spaces 𝑉0 and 𝑉 have lattice structure and are
closed under max and min operators (see Crespo-Blanco-Gasiński-Harjulehto-Winkert [39, Proposition 2.17]), which implies that the
corresponding Lebesgue space 𝑋0 and 𝑋 have lattice structure as well and are closed under max and min operators.

Lemma 2.4. Assume hypothesis (H1). Then the following assertions hold true:

(i) 𝑉0 ↪ 𝐿2(𝛺) ↪ 𝑉 ∗
0 forms an evolution triple;

(ii) Continuous embedding: 𝑌0 ↪ 𝐶([0, 𝜏];𝐿2(𝛺));
(iii) Let 𝑢 ∈ 𝑌0, then the following integration by parts formula is valid

∫

𝜏

0
⟨𝑢𝑡(⋅, 𝑡), 𝑢(⋅, 𝑡)⟩ d𝑡 =

1
2

(

‖𝑢(⋅, 𝜏)‖22,𝛺 − ‖𝑢(⋅, 0)‖22,𝛺
)

;

(iv) Let 𝑢 ∈ 𝑌0, then it holds

∫

𝜏

0
⟨𝑢𝑡(⋅, 𝑡), 𝑢(⋅, 𝑡)+⟩ d𝑡 =

1
2

(

‖𝑢(⋅, 𝜏)+‖22,𝛺 − ‖𝑢(⋅, 0)+‖22,𝛺
)

.

Proof. (i) 𝑉0 is a separable and reflexive (even uniformly convex) Banach space, which by Proposition 2.2 (ii) is compactly embedded
in the Hilbert space 𝐿2(𝛺), and moreover 𝑉0 is dense in 𝐿2(𝛺).

(ii) and (iii) are immediate consequences of Proposition 23.23 in Zeidler [40].
(iv) In a similar way as in the proof of Lemma 2.146 in Carl-Le-Motreanu [41] one obtains this formula by regularization and

density arguments. □

Remark 2.5. Clearly, Lemma 2.4 remains true if 𝑉0 is replaced by 𝑉 and 𝑌0 is replaced by 𝑌 .

Lemma 2.6. Assume hypothesis (H1). Then the following compact embedding holds

𝑌0 ↪↪ 𝐿𝑝(0, 𝜏;𝐿𝑝(𝛺)) = 𝐿𝑝(𝑄).

Proof. Since 𝑉0 ↪↪ 𝐿𝑝(𝛺) and 𝐿𝑝(𝛺) ↪ 𝐿𝑝′ (𝛺) ↪ 𝑉 ∗
0 (note that 𝑝 ≥ 2), and thus 𝑉0 ↪↪ 𝐿𝑝(𝛺) ↪ 𝑉 ∗

0 , we may apply the
Lions-Aubin Theorem (see e.g. Carl-Le [42, Theorem 2.52]), which results in 𝑌0 ↪↪ 𝐿𝑝(𝑄). □

By means of the obstacle function 𝜓 we define an operator 𝑃 through

⟨𝑃 (𝑢), 𝜑⟩ = ∫𝑄

[

(𝑢 − 𝜓)+
]𝑝−1𝜑 d𝑥d𝑡 for all 𝑢, 𝜑 ∈ 𝑋0. (2.2)

Lemma 2.7. The operator 𝑃 ∶𝑋0 → 𝑋∗
0 is bounded, continuous and monotone, and satisfies

𝑃 (𝑢) = 0 ⟺ 𝑢 ∈ 𝐾, (2.3)

that is, 𝑃 is a penalty operator associated with 𝐾.
6
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Proof. We define the function

𝑔(𝑥, 𝑡, 𝑠) =
[

(𝑠 − 𝜓(𝑥, 𝑡))+
]𝑝−1,

hich is readily seen to be a Carathéodory function and has the growth

|𝑔(𝑥, 𝑡, 𝑠)| ≤ (|𝜓(𝑥, 𝑡)| + |𝑠|)𝑝−1 ≤ 𝑘(𝑥, 𝑡) + 𝑐|𝑠|𝑝−1

for a.a. (𝑥, 𝑡) ∈ 𝑄, for all 𝑠 ∈ R where 𝑘 ∈ 𝐿𝑝′ (𝑄) and 𝑐 ≥ 0. Furthermore, 𝑠 ↦ 𝑔(𝑥, 𝑡, 𝑠) is monotone nondecreasing. Thus the
associated Nemytskij operator 𝐺(𝑢)(𝑥, 𝑡) = 𝑔(𝑥, 𝑡, 𝑢(𝑥, 𝑡)) defines a monotone and continuous mapping 𝐺∶𝐿𝑝(𝑄) → 𝐿𝑝′ (𝑄). From the
continuous embedding 𝑉0 ↪ 𝐿𝑝(𝛺) it follows that 𝑖∶𝑋0 ↪ 𝐿𝑝(𝑄) as well as the adjoint 𝑖∗ ∶𝐿𝑝′ (𝑄) ↪ 𝑋∗

0 are continuous too. Hence

𝑃 = 𝑖∗◦𝐺◦𝑖∶𝑋0 → 𝑋∗
0

is a bounded, continuous and monotone operator. Let us prove (2.3). If 𝑢 ∈ 𝐾, then (𝑢 − 𝜓)+ = 0 and thus ⟨𝑃 (𝑢), 𝜑⟩ = 0 for all
𝜑 ∈ 𝑋0, that is 𝑃 (𝑢) = 0. Conversely, let 𝑃 (𝑢) = 0, which yields

0 = ⟨𝑃 (𝑢), 𝜑⟩ = ∫𝑄

[

(𝑢 − 𝜓)+
]𝑝−1𝜑 d𝑥d𝑡 for all 𝜑 ∈ 𝑋0.

In particular also for 𝜑 = (𝑢 − 𝜓)+ ∈ 𝑋0, which implies

∫𝑄

[

(𝑢 − 𝜓)+
]𝑝 d𝑥d𝑡 = 0.

Therefore (𝑢 − 𝜓)+ = 0, that is, 𝑢 ∈ 𝐾. □

Lemma 2.8. The penalty operator 𝑃 ∶𝑋0 → 𝑋∗
0 defined by (2.2) fulfills the inequality

⟨𝑃 (𝑢), (𝑢 − 𝜓)+⟩ ≥ 𝑑 ‖𝑃 (𝑢)‖𝑋∗
0
‖(𝑢 − 𝜓)+‖𝑝,𝑄

with 𝑑 > 0.

Proof. From (2.2) we get

⟨𝑃 (𝑢), (𝑢 − 𝜓)+⟩ = ‖(𝑢 − 𝜓)+‖𝑝𝑝,𝑄. (2.4)

Applying Hölder’s inequality and the continuous embedding 𝑋0 ↪ 𝐿𝑝(𝑄) we obtain

|⟨𝑃 (𝑢), 𝜑⟩| ≤ ∫𝑄

[

(𝑢 − 𝜓)+
]𝑝−1

|𝜑| d𝑥d𝑡

≤ ‖(𝑢 − 𝜓)+‖𝑝−1𝑝,𝑄 ‖𝜑‖𝑝,𝑄

≤ 𝑐‖(𝑢 − 𝜓)+‖𝑝−1𝑝,𝑄 ‖𝜑‖𝑋0
for all 𝜑 ∈ 𝑋0,

and thus

‖𝑃 (𝑢)‖𝑋∗
0
≤ 𝑐‖(𝑢 − 𝜓)+‖𝑝−1𝑝,𝑄 . (2.5)

From (2.4) and (2.5) it follows

⟨𝑃 (𝑢), (𝑢 − 𝜓)+⟩ ≥ 1
𝑐
‖𝑃 (𝑢)‖𝑋∗

0
‖(𝑢 − 𝜓)+‖𝑝,𝑄,

which completes the proof. □

Lemma 2.9. Assume (H2). Then for any 𝑢 ∈ 𝑌0 with 𝑢(⋅, 0) = 0 one has

⟨𝑢𝑡 + 𝐴𝑢, (𝑢 − 𝜓)+⟩ ≥ 0.

Proof. First note that 𝑢 − 𝜓 ∈ 𝑌 and (𝑢 − 𝜓)+(𝑥, 0) = 0, which by applying the integration by parts formula (see Lemma 2.4 and
Remark 2.5) yields

⟨(𝑢 − 𝜓)𝑡, (𝑢 − 𝜓)+⟩ =
1
2
‖(𝑢 − 𝜓)+(⋅, 𝜏)‖22,𝛺 . (2.6)

With (2.6) and taking into account that the double phase operator 𝐴 is monotone we get

⟨𝑢𝑡 + 𝐴𝑢 − (𝜓𝑡 + 𝐴𝜓), (𝑢 − 𝜓)+⟩

= ⟨(𝑢 − 𝜓)𝑡, (𝑢 − 𝜓)+⟩ + ⟨𝐴𝑢 − 𝐴𝜓, (𝑢 − 𝜓)+⟩ ≥ 0,
7

which by means of (H2) completes the proof. □
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3. Proof of Theorem 1.2

Before proving our main result we start with general considerations on an abstract evolution equation. Even though such an
volution equation is treated within the framework of a general evolution triple 𝑉 ↪ 𝐻 ↪ 𝑉 ∗ and the associated Lebesgue spaces
𝑋 = 𝐿𝑝(0, 𝜏;𝑉 ) and its dual space 𝑋∗ = 𝐿𝑝′ (0, 𝜏;𝑉 ∗) of vector valued functions, in what follows we already specify to our situation,
that is, to the evolution triple

𝑉0 ↪ 𝐿2(𝛺) ↪ 𝑉 ∗
0 ,

nd the associated Lebesgue spaces 𝑋0, 𝑋∗
0 , 𝑌0 introduced in the preceding section. Let us consider the evolution equation

𝑢 ∈ 𝑌0 ∶ 𝑢′(𝑡) + �̂� (𝑡)𝑢(𝑡) = 𝑓 (𝑡), 0 < 𝑡 < 𝜏, 𝑢(0) = 0, (3.1)

where 𝑓 ∈ 𝑋∗
0 and �̂� (𝑡)∶𝑉0 → 𝑉 ∗

0 , and 𝑢′(𝑡)(𝑥) = 𝑢𝑡(𝑥, 𝑡). Let 𝐿𝑢 ∶= 𝑢′ = 𝑢𝑡 be the time derivative operator with domain

𝐷(𝐿) = {𝑢 ∈ 𝑌0 ∶ 𝑢(0) = 0}.

Then by using Proposition 32.10 of Zeidler [43] we have the following result.

Lemma 3.1. The operator 𝐿∶𝐷(𝐿) → 𝑋∗
0 is densely defined, closed and maximal monotone.

Next, we define the operator 𝑇 by means of �̂� by

𝑇 (𝑢)(𝑡) ∶= �̂� (𝑡)𝑢(𝑡), 𝑡 ∈ [0, 𝜏].

Hence the evolution Eq. (3.1) can equivalently be written in the form

𝑢 ∈ 𝐷(𝐿) ∶ 𝐿𝑢 + 𝑇 (𝑢) = 𝑓 in 𝑋∗
0 .

In Berkovits–Mustonen [44] it is proved that certain properties of the operator �̂� (𝑡)∶𝑉0 → 𝑉 ∗
0 transfer to the operator 𝑇 ∶𝑋0 → 𝑋∗

0 .
To this end let 𝐷(𝐿) be equipped with its graph norm ‖𝑢‖𝐿 = ‖𝑢‖𝑋0

+ ‖𝐿𝑢‖𝑋∗
0
.

Definition 3.2.

(i) 𝑇 ∶𝑋0 → 𝑋∗
0 is called pseudomonotone with respect to the graph norm topology of 𝐷(𝐿) (for short: pseudomonotone w.r.t.

𝐷(𝐿)), if for any sequence (𝑢𝑛) ⊂ 𝐷(𝐿) with 𝑢𝑛 ⇀ 𝑢 in 𝑋0, 𝐿𝑢𝑛 ⇀ 𝐿𝑢 in 𝑋∗
0 and

lim sup
𝑛→∞

⟨𝑇 (𝑢𝑛), 𝑢𝑛 − 𝑢⟩ ≤ 0

implies 𝑇 (𝑢𝑛) ⇀ 𝑇 (𝑢) and ⟨𝑇 (𝑢𝑛), 𝑢𝑛⟩ → ⟨𝑇 (𝑢), 𝑢⟩;
(ii) 𝑇 ∶𝑋0 → 𝑋∗

0 has the (S+)-property w.r.t. 𝐷(𝐿), if 𝑢𝑛 ⇀ 𝑢 in 𝑋0, 𝐿𝑢𝑛 ⇀ 𝐿𝑢 in 𝑋∗
0 and lim sup𝑛→∞⟨𝑇 (𝑢𝑛), 𝑢𝑛 − 𝑢⟩ ≤ 0 implies

𝑢𝑛 → 𝑢 in 𝑋0.

The following theorem can be found in Berkovits–Mustonen [44].

heorem 3.3.

(i) If �̂� (𝑡)∶𝑉0 → 𝑉 ∗
0 is pseudomonotone for all 𝑡 ∈ [0, 𝜏], then 𝑇 ∶𝑋0 → 𝑋∗

0 is pseudomonotone w.r.t. 𝐷(𝐿);
(ii) If �̂� (𝑡)∶𝑉0 → 𝑉 ∗

0 has the (S+)-property for all 𝑡 ∈ [0, 𝜏], then 𝑇 ∶𝑋0 → 𝑋∗
0 has the (S+)-property w.r.t. 𝐷(𝐿);

(iii) If

‖�̂� (𝑡)𝑢‖𝑉 ∗
0
≤ 𝑐

(

𝑘(𝑡) + ‖𝑢‖𝑝−1𝑉0

)

, ∀𝑢 ∈ 𝑉0, ∀𝑡 ∈ [0, 𝜏],

where 𝑐 > 0, 𝑘 ∈ 𝐿𝑝′ (0, 𝜏), and 𝑡↦ ⟨�̂� (𝑡)𝑢, 𝑣⟩ is measurable on (0, 𝜏) for all 𝑢, 𝑣 ∈ 𝑉0, then 𝑇 ∶𝑋0 → 𝑋∗
0 is bounded.

The following surjectivity theorem plays an important role in the proof of our main result, see Berkovits–Mustonen [45] or
ions [46].

heorem 3.4. Let 𝑇 ∶𝑋0 → 𝑋∗
0 be bounded, demicontinuous, and pseudomonotone w.r.t. 𝐷(𝐿). If 𝑇 is coercive, that is,

1
‖𝑢‖𝑋0

⟨𝑇 𝑢, 𝑢⟩ → ∞ as ‖𝑢‖𝑋0
→ ∞,

then 𝐿 + 𝑇 ∶𝐷(𝐿) → 𝑋∗
0 is surjective, that is, (𝐿 + 𝑇 )(𝐷(𝐿)) = 𝑋∗

0 .

Using the notations introduced above, the parabolic double phase obstacle problem (1.1) (resp. (1.2)) can be reformulated as
follows: Find 𝑢 ∈ 𝐷(𝐿) ∩𝐾 such that

⟨𝑢𝑡 + 𝐴𝑢 + 𝐹 (𝑢), 𝑣 − 𝑢⟩ ≥ 0 for all 𝑣 ∈ 𝐾.
8

Now we can give the proof of Theorem 1.2.
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Proof of Theorem 1.2. The proof is based on a penalty approach and is carried out in several steps.
Step 1: Assumption (H2) implies that the obstacle function 𝜓 is nonnegative, that is, 𝜓 ≥ 0, which is seen as follows. By (H2),

𝜓 ∈ 𝑌 , and nonnegative on the parabolic boundary of 𝑄, and satisfies

⟨𝜓𝑡 + 𝐴𝜓,𝜑⟩ ≥ 0 for all 𝜑 ∈ 𝑋0 with 𝜑 ≥ 0.

Testing the inequality with 𝜑 = 𝜓− ∈ 𝑋0 we get

⟨𝜓𝑡, 𝜓
−
⟩ + ∫𝑄

(

|∇𝜓|𝑝−2∇𝜓 + 𝜇(𝑥)|∇𝜓|𝑞−2∇𝜓
)

⋅ ∇𝜓− d𝑥d𝑡 ≥ 0.

By means of the integration by parts formula and taking the assumption 𝜓(⋅, 0) ≥ 0 into account we get

⟨𝜓𝑡, 𝜓
−
⟩ = ⟨𝜓𝑡, 𝜓

+ − 𝜓⟩ = ⟨𝜓𝑡, 𝜓
+
⟩ − ⟨𝜓𝑡, 𝜓⟩

= ‖𝜓(⋅, 𝜏)+‖22,𝛺 − ‖𝜓(⋅, 0)+‖22,𝛺 −
[

‖𝜓(⋅, 𝜏)‖22,𝛺 − ‖𝜓(⋅, 0)‖22,𝛺
]

= ‖𝜓(⋅, 𝜏)+‖22,𝛺 − ‖𝜓(⋅, 𝜏)‖22,𝛺 ≤ 0,

which yields

∫𝑄

(

|∇𝜓|𝑝−2∇𝜓 + 𝜇(𝑥)|∇𝜓|𝑞−2∇𝜓
)

⋅ ∇𝜓− d𝑥d𝑡 ≥ 0.

Thus

−∫𝑄

(

|∇𝜓−
|

𝑝 + 𝜇(𝑥)|∇𝜓−
|

𝑞
)

d𝑥d𝑡 ≥ 0,

which results in ∇𝜓− = 0, and therefore 𝜓− = 0, that is, 𝜓 ≥ 0.
Step 2: Penalty equations
For 𝜀 > 0, we consider the following penalty equation:

𝑢 ∈ 𝐷(𝐿) ∶ 𝑢𝑡 + 𝐴𝑢 + 𝐹 (𝑢) +
1
𝜀
𝑃 (𝑢) = 0 in 𝑋∗

0 , (3.2)

where

⟨𝐴𝑢, 𝑣⟩ = ∫𝑄

(

|∇𝑢|𝑝−2∇𝑢 + 𝜇(𝑥)|∇𝑢|𝑞−2∇𝑢
)

∇𝑣 d𝑥d𝑡,

⟨𝐹 (𝑢), 𝑣⟩ = ∫𝑄
𝑓 (𝑥, 𝑡, 𝑢)𝑣 d𝑥d𝑡,

⟨𝑃 (𝑢), 𝑣⟩ = ∫𝑄

[

(𝑢 − 𝜓)+
]𝑝−1𝑣 d𝑥d𝑡

with 𝑃 being the penalty operator. From Proposition 2.3(i), (iii), we infer that 𝐴∶𝑋0 → 𝑋∗
0 is bounded, continuous and strictly

monotone, which implies that, 𝐴∶𝑋0 → 𝑋∗
0 , is pseudomonotone in the usual sense (see e.g. Zeidler [43, Proposition 27.6 (a)]), and

thus, in particular, pseudomonotone w.r.t. 𝐷(𝐿). By (H3), the Nemytskij operator 𝐹 ∶𝐿𝑝(𝑄) → 𝐿𝑝′ (𝑄) is continuous and bounded
with the estimate

|⟨𝐹 (𝑢), 𝑣⟩| ≤ ∫𝑄
|𝑓 (𝑥, 𝑡, 𝑢)||𝑣| d𝑥d𝑡

≤ ∫𝑄

(

𝛼(𝑥, 𝑡) + 𝛽|𝑢|𝑝−1
)

|𝑣| d𝑥d𝑡

≤
(

‖𝛼‖𝑝′ ,𝑄 + 𝛽‖𝑢‖𝑝−1𝑝,𝑄

)

‖𝑣‖𝑝,𝑄,

and

‖𝑣‖𝑝,𝑄 =
(

∫

𝜏

0 ∫𝛺
|𝑣(𝑥, 𝑡)|𝑝 d𝑥d𝑡

)
1
𝑝 ≤ 𝑐

(

∫

𝜏

0
‖𝑣(⋅, 𝑡)‖𝑝𝑉0 d𝑡

)
1
𝑝 ≤ 𝑐‖𝑣‖𝑋0

,

and thus

|⟨𝐹 (𝑢), 𝑣⟩| ≤ 𝑐
(

‖𝛼‖𝑝′ ,𝑄 + 𝛽‖𝑢‖𝑝−1𝑝,𝑄

)

‖𝑣‖𝑋0
. (3.3)

In view of the continuous embeddings

𝑋0 ↪ 𝐿𝑝(𝑄) ↪ 𝐿𝑝
′
(𝑄) ↪ 𝑋∗

0

nd taking into account (3.3) we see that 𝐹 ∶𝑋0 → 𝑋∗
0 is continuous and bounded, which along with the compact embedding

0 ↪↪ 𝐿𝑝(𝑄) (see Lemma 2.6) implies that 𝐹 ∶𝑋0 → 𝑋∗
0 is pseudomonotone w.r.t. 𝐷(𝐿). Taking Lemma 2.7 into account, the same

rguments apply to the penalty operator 𝑃 ∶𝑋0 → 𝑋∗
0 , which is continuous, bounded and pseudomonotone w.r.t. 𝐷(𝐿) as well.

ince the sum of operators that are pseudomonotone w.r.t. 𝐷(𝐿) is again pseudomonotone w.r.t. 𝐷(𝐿), we have that 𝑇 given by

𝑇 ∶= 𝐴 + 𝐹 + 1𝑃 ∶𝑋 → 𝑋∗
9

𝜀 0 0
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is bounded, continuous and pseudomonotone w.r.t. 𝐷(𝐿). In Step 1 we have seen that the obstacle function 𝜓 is nonnegative, and
thus 0 ∈ 𝐾, which implies that ⟨𝑃 (𝑢), 𝑢⟩ ≥ 0 for all 𝑢 ∈ 𝑋0, and by the coercivity assumption on 𝐴 + 𝐹 ∶𝑋0 → 𝑋∗

0 it follows that
𝑇 ∶𝑋0 → 𝑋∗

0 is coercive for any 𝜀 > 0. Applying Theorem 3.4, for each 𝜀 > 0 there exist solutions 𝑢𝜀 of the penalty Eq. (3.2). Let
(𝜀𝑛) with 𝜀𝑛 ↘ 0 and select an associated sequence of penalty solutions (𝑢𝜀𝑛 ) ∶= (𝑢𝑛), that is,

𝑢𝑛 ∈ 𝐷(𝐿) ∶ 𝑢𝑛𝑡 + 𝐴𝑢𝑛 + 𝐹 (𝑢𝑛) +
1
𝜀𝑛
𝑃 (𝑢𝑛) = 0 in 𝑋∗

0 . (3.4)

Testing (3.4) with 𝜑 = 𝑢𝑛 we get

⟨𝐴𝑢𝑛 + 𝐹 (𝑢𝑛), 𝑢𝑛⟩ = − 1
𝜀𝑛

⟨𝑃 (𝑢𝑛), 𝑢𝑛⟩ − ⟨𝑢𝑛𝑡, 𝑢𝑛⟩ ≤ 0.

ence it follows
1

‖𝑢𝑛‖𝑋0

⟨𝐴𝑢𝑛 + 𝐹 (𝑢𝑛), 𝑢𝑛⟩ ≤ 0,

hich in view of the coercivity assumption on 𝐴+𝐹 implies that (‖𝑢𝑛‖𝑋0
) is bounded, and therefore, (𝐴𝑢𝑛) and (𝐹 (𝑢𝑛)) are bounded

n 𝑋∗
0 . Consider next the sequence ( 1

𝜀𝑛
𝑃 (𝑢𝑛)). By Lemma 2.8 we have

⟨𝑃 (𝑢𝑛), (𝑢𝑛 − 𝜓)+⟩ ≥ 𝑑 ‖𝑃 (𝑢𝑛)‖𝑋∗
0
‖(𝑢𝑛 − 𝜓)+‖𝑝,𝑄 (3.5)

with 𝑑 > 0. Testing the penalty Eq. (3.4) with 𝜑 = (𝑢𝑛 − 𝜓)+ we obtain

⟨𝑢𝑛𝑡 + 𝐴𝑢𝑛, (𝑢𝑛 − 𝜓)
+
⟩ +

⟨

𝐹 (𝑢𝑛) +
1
𝜀𝑛
𝑃 (𝑢𝑛), (𝑢𝑛 − 𝜓)+

⟩

= 0. (3.6)

With Lemma 2.9 and

|⟨𝐹 (𝑢𝑛), (𝑢𝑛 − 𝜓)+⟩| ≤ 𝑐‖(𝑢𝑛 − 𝜓)+‖𝑝,𝑄,

from (3.5) and (3.6) we obtain
𝑑
𝜀𝑛

‖𝑃 (𝑢𝑛)‖𝑋∗
0
‖(𝑢𝑛 − 𝜓)+‖𝑝,𝑄 ≤ 𝑐‖(𝑢𝑛 − 𝜓)+‖𝑝,𝑄.

Hence
1
𝜀𝑛

‖𝑃 (𝑢𝑛)‖𝑋∗
0
≤ 𝑐
𝑑

for all 𝜀𝑛, (3.7)

hat is, the sequence ( 1
𝜀𝑛
𝑃 (𝑢𝑛)) is bounded in 𝑋∗

0 . From the penalty equation we have

𝑢𝑛𝑡 = −
(

𝐴𝑢𝑛 + 𝐹 (𝑢𝑛) +
1
𝜀𝑛
𝑃 (𝑢𝑛)

)

,

which shows that the sequence (𝑢𝑛𝑡) is bounded in 𝑋∗
0 , which together with the boundedness of (𝑢𝑛) in 𝑋0 yields that (𝑢𝑛) is bounded

in 𝑌0. Hence there exists a subsequence (again denoted by (𝑢𝑛)) such that

𝑢𝑛 ⇀ 𝑢 in 𝑋0 and 𝑢𝑛𝑡 ⇀ 𝑢𝑡 in 𝑋∗
0 (3.8)

s 𝑛→ ∞ and 𝜀𝑛 ↘ 0. Since 𝐷(𝐿) is closed in 𝑌0 and convex, it is weakly closed, and therefore 𝑢 ∈ 𝐷(𝐿).
Step 3: 𝑢 is a solution of the obstacle problem.
We are going to show that the weak limit 𝑢 is in fact a solution of the parabolic double phase obstacle problem. To this end

et us first show that 𝑃 (𝑢) = 0, and thus 𝑢 ∈ 𝐾. From (3.7) we see that 𝑃 (𝑢𝑛) → 0 in 𝑋∗
0 . Since 𝑃 ∶𝑋0 → 𝑋∗

0 is monotone, we get
𝑃 (𝑣) − 𝑃 (𝑢𝑛), 𝑣 − 𝑢𝑛⟩ ≥ 0 for all 𝑣 ∈ 𝑋0 and for all 𝑛, which by passing to the limit as 𝑛→ ∞ yields

⟨𝑃 (𝑣), 𝑣 − 𝑢⟩ ≥ 0 for all 𝑣 ∈ 𝑋0.

n particular, the last inequality holds for 𝑣 = 𝑢 + 𝛿𝜑 for any 𝛿 > 0 and 𝜑 ∈ 𝑋0, which results in

⟨𝑃 (𝑢 + 𝛿𝜑), 𝜑⟩ ≥ 0 for all 𝜑 ∈ 𝑋0.

assing to the limit as 𝛿 ↘ 0 we get

⟨𝑃 (𝑢), 𝜑⟩ ≥ 0 for all 𝜑 ∈ 𝑋0,

hich implies 𝑃 (𝑢) = 0, that is, 𝑢 ∈ 𝐾.
Testing the penalty equation with 𝜑 = 𝑢𝑛 − 𝑢 and using ⟨𝑢𝑛𝑡 − 𝑢𝑡, 𝑢𝑛 − 𝑢⟩ ≥ 0 one gets

⟨𝐴𝑢𝑛, 𝑢𝑛 − 𝑢⟩ ≤ −⟨𝑢𝑡, 𝑢𝑛 − 𝑢⟩ −
⟨

𝐹 (𝑢𝑛) +
1
𝜀𝑛
𝑃 (𝑢𝑛), 𝑢𝑛 − 𝑢

⟩

. (3.9)

ith (3.8) and the compact embedding 𝑌0 ↪↪ 𝐿𝑝(𝑄) it follows that 𝑢𝑛 → 𝑢 in 𝐿𝑝(𝑄), which yields by passing to the lim sup in (3.9)

lim sup ⟨𝐴𝑢𝑛, 𝑢𝑛 − 𝑢⟩ ≤ 0. (3.10)
10

𝑛→∞
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From Proposition 2.3 (ii) in conjunction with Theorem 3.3 (ii) we conclude that 𝐴∶𝑋0 → 𝑋∗
0 has the (S+)-property w.r.t. 𝐷(𝐿)

note that �̂�(𝑡) ≡ 𝐴). Hence, from (3.8) and (3.10) it follows that 𝑢𝑛 → 𝑢 in 𝑋0.
Let 𝑣 ∈ 𝐾 be arbitrarily given. Testing the penalty equation with 𝜑 = 𝑣 − 𝑢𝑛 we get

⟨𝑢𝑛𝑡, 𝑣 − 𝑢𝑛⟩ + ⟨𝐴𝑢𝑛 + 𝐹 (𝑢𝑛), 𝑣 − 𝑢𝑛⟩ =
1
𝜀𝑛

⟨𝑃 (𝑣) − 𝑃 (𝑢𝑛), 𝑣 − 𝑢𝑛⟩ ≥ 0

for all 𝑛, which in view of 𝑢𝑛 → 𝑢 in 𝑋0 and 𝑢𝑛𝑡 ⇀ 𝑢𝑡 and passing to the limit yields

⟨𝑢𝑡, 𝑣 − 𝑢⟩ + ⟨𝐴𝑢 + 𝐹 (𝑢), 𝑣 − 𝑢⟩ ≥ 0 for all 𝑣 ∈ 𝐾,

that is, 𝑢 is a solution of the parabolic double phase obstacle problem. □

Remark 3.5. The coercivity condition (1.4) in Theorem 1.2 is satisfied if either the coefficient 𝛽 > 0 in the growth condition (1.3)
n 𝑓 is small enough, or else if condition (1.3) is replaced by the following one

|𝑓 (𝑥, 𝑡, 𝑠)| ≤ 𝛼(𝑥, 𝑡) + 𝛽|𝑠|𝑟−1 with 1 < 𝑟 < 𝑝, (3.11)

or a.a. (𝑥, 𝑡) ∈ 𝑄 and for all 𝑠 ∈ R, where 𝛼 ∈ 𝐿𝑝′ (𝑄) and 𝛽 > 0 an arbitrary constant. To verify these claims, consider first ⟨𝐴𝑢, 𝑢⟩.
n view of Proposition 2.1 (iii) and Proposition 2.2 (iii), we have the estimate for ‖𝑢‖𝑉0 large

‖𝑢‖𝑝𝑉0 = ‖∇𝑢‖𝑝 ≤ 𝜌 (∇𝑢) = ∫𝛺

(

|∇𝑢|𝑝 + 𝜇(𝑥)|∇𝑢|𝑞
)

d𝑥. (3.12)

With (3.12) we estimate

⟨𝐴𝑢, 𝑢⟩ = ∫𝑄

(

|∇𝑢|𝑝 + 𝜇(𝑥)|∇𝑢|𝑞
)

d𝑥d𝑡

= ∫

𝜏

0

(

∫𝛺

(

|∇𝑢(𝑥, 𝑡)|𝑝 + 𝜇(𝑥)|∇𝑢(𝑥, 𝑡)|𝑞
)

d𝑥
)

d𝑡

= ∫

𝜏

0
𝜌 (∇𝑢(⋅, 𝑡)) d𝑡 ≥ ∫

𝜏

0
‖𝑢(⋅, 𝑡)‖𝑝𝑉0 d𝑡 ≥ ‖𝑢‖𝑝𝑋0

.

With the growth condition (1.3) we get

|⟨𝐹 (𝑢), 𝑢⟩| ≤ ‖𝛼‖𝑝′ ,𝑄‖𝑢‖𝑝,𝑄 + 𝛽‖𝑢‖𝑝𝑝,𝑄,

and thus due to ‖𝑢‖𝑝𝑝,𝑄 ≤ 𝑐‖𝑢‖𝑝𝑋0
, one gets

|⟨𝐹 (𝑢), 𝑢⟩| ≤ ‖𝛼‖𝑝′ ,𝑄‖𝑢‖𝑝,𝑄 + 𝑐𝛽‖𝑢‖𝑝𝑋0
.

Hence for ‖𝑢‖𝑋0
large we obtain

1
‖𝑢‖𝑋0

⟨𝐴𝑢 + 𝐹 (𝑢), 𝑢⟩ ≥ ‖𝑢‖𝑝−1𝑋0
− 𝑐𝛽‖𝑢‖𝑝−1𝑋0

− 𝑐‖𝛼‖𝑝′ ,𝑄,

which for 𝛽 > 0 small such that 𝑐𝛽 < 1 implies coercivity.
In case (3.11) is assumed we have the estimate for any 𝜀 > 0

|⟨𝐹 (𝑢), 𝑢⟩| ≤ ∫𝑄
|𝑓 (⋅, ⋅, 𝑢) ∥ 𝑢| d𝑥d𝑡 ≤ ∫𝑄

(

𝛼(𝑥, 𝑡) + 𝛽|𝑢|𝑟−1
)

|𝑢| d𝑥d𝑡

≤ ‖𝛼‖𝑝′ ,𝑄‖𝑢‖𝑝,𝑄 + 𝛽 ∫𝑄
|𝑢|𝑟 d𝑥d𝑡

≤ ‖𝛼‖𝑝′ ,𝑄‖𝑢‖𝑝,𝑄 + 𝛽 ∫𝑄

(

𝑐(𝜀) + 𝜀|𝑢|𝑝
)

d𝑥d𝑡

≤ ‖𝛼‖𝑝′ ,𝑄‖𝑢‖𝑝,𝑄 + 𝛽𝑐(𝜀)|𝑄| + 𝛽𝜀𝑐‖𝑢‖𝑝𝑋0
.

y choosing 𝜀 small enough such that 𝜀 < 1
𝑐𝛽 , we readily see that

1
‖𝑢‖𝑋0

⟨𝐴𝑢 + 𝐹 (𝑢), 𝑢⟩ → ∞ as ‖𝑢‖𝑋0
→ ∞,

which shows the coercivity in this case.

Remark 3.6. In case that neither the coercivity condition (1.4) nor the growth condition (1.3) is fulfilled, existence results for the
obstacle problem (1.1) can be proved provided sub-supersolutions for the problem exist, which we are going to introduce in the
following section.

4. Sub-supersolution

Let us introduce the notation 𝑢 ∧ 𝑣 = min{𝑢, 𝑣} and 𝑢 ∨ 𝑣 = max{𝑢, 𝑣}. The sub- and supersolutions of the obstacle problem (1.1)
11

(resp. (1.2)) are defined as follows, see Carl-Le [42, Chap. 5].
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Definition 4.1. A function 𝑢 ∈ 𝑌 is called a subsolution of (1.1) if 𝐹 (𝑢) ∈ 𝐿𝑝′ (𝑄) such that the following holds:

(i) 𝑢 ∨𝐾 ⊂ 𝐾, 𝑢(⋅, 0) ≤ 0 in 𝛺;
(ii) ⟨𝑢𝑡 + 𝐴𝑢, 𝑣 − 𝑢⟩ + ∫𝑄

𝐹 (𝑢) (𝑣 − 𝑢) d𝑥d𝑡 ≥ 0 for all 𝑣 ∈ 𝑢 ∧𝐾.

We have a similar definition for supersolutions of (1.1).

Definition 4.2. A function 𝑢 ∈ 𝑌 is called a supersolution of (1.1) if 𝐹 (𝑢) ∈ 𝐿𝑝′ (𝑄) such that the following holds:

(i) 𝑢 ∧𝐾 ⊂ 𝐾, 𝑢(⋅, 0) ≥ 0 in 𝛺;
(ii) ⟨𝑢𝑡 + 𝐴𝑢, 𝑣 − 𝑢⟩ + ∫𝑄

𝐹 (𝑢) (𝑣 − 𝑢) d𝑥d𝑡 ≥ 0 for all 𝑣 ∈ 𝑢 ∨𝐾.

The following lemmas provide sufficient conditions for sub- and supersolutions of the obstacle problem (1.1) (resp. (1.2)).

Lemma 4.3. If 𝑢 ∈ 𝑌 satisfies 𝑢(⋅, 0) ≤ 0 in 𝛺, 𝑢 ≤ 0 on 𝛴, 𝐹 (𝑢) ∈ 𝐿𝑝′ (𝑄) and

⟨𝑢𝑡 + 𝐴𝑢 + 𝐹 (𝑢), 𝜑⟩ ≤ 0 for all 𝜑 ∈ 𝑋0 with 𝜑 ≥ 0,

then 𝑢 is a subsolution of the obstacle problem (1.1) in the sense of Definition 4.1 provided 𝑢 ≤ 𝜓 .

Proof. We recall 𝐾 = {𝑣 ∈ 𝑋0 ∶ 𝑣 ≤ 𝜓 in 𝑄}. Clearly, 𝑢 fulfills (i) of Definition 4.1. In order to check (ii), we note that 𝑣 ∈ 𝑢 ∧ 𝐾
has the representation 𝑣 = 𝑢 − (𝑢 − 𝜑)+ for any 𝜑 ∈ 𝐾, which yields

⟨𝑢𝑡 + 𝐴𝑢, 𝑣 − 𝑢⟩ + ∫𝑄
𝐹 (𝑢)(𝑣 − 𝑢) d𝑥d𝑡

= −
⟨

𝑢𝑡 + 𝐴𝑢, (𝑢 − 𝜑)+
⟩

− ∫𝑄
𝐹 (𝑢)(𝑢 − 𝜑)+ d𝑥d𝑡 ≥ 0,

ince (𝑢 − 𝜑)+ ∈ 𝑋0 and (𝑢 − 𝜑)+ ≥ 0. □

emma 4.4. If 𝑢 ∈ 𝑌 satisfies 𝑢(⋅, 0) ≥ 0 in 𝛺, 𝑢 ≥ 0 on 𝛴, 𝐹 (𝑢) ∈ 𝐿𝑝′ (𝑄) and

⟨𝑢𝑡 + 𝐴𝑢 + 𝐹 (𝑢), 𝜑⟩ ≥ 0 for all 𝜑 ∈ 𝑋0 with 𝜑 ≥ 0,

hen 𝑢 is a supersolution of the obstacle problem (1.1) in the sense of Definition 4.2.

Proof. Clearly, 𝑢 satisfies (i) of Definition 4.2. Let us prove (ii) of Definition 4.2. First, note that 𝑣 ∈ 𝑢 ∨ 𝐾 has the representation
𝑣 = 𝑢 + (𝜑 − 𝑢)+ for any 𝜑 ∈ 𝐾. Hence we get

⟨𝑢𝑡 + 𝐴𝑢, 𝑣 − 𝑢⟩ + ∫𝑄
𝐹 (𝑢)(𝑣 − 𝑢) d𝑥d𝑡

= ⟨𝑢𝑡 + 𝐴𝑢, (𝜑 − 𝑢)+⟩ + ∫𝑄
𝐹 (𝑢)(𝜑 − 𝑢)+ d𝑥d𝑡 ≥ 0,

because (𝜑 − 𝑢)+ ∈ 𝑋0 and (𝜑 − 𝑢)+ ≥ 0. □

By means of an ordered pair of sub-and supersolutions we are going to prove an existence result for the obstacle problem
(1.1) (resp. (1.2)) without requiring the coercivity assumption (1.4), but instead replacing assumption (H3) by the following local
boundedness on 𝑓 .

(H4) Assume an ordered pair of sub-and supersolutions 𝑢 ≤ 𝑢 of the obstacle problem (1.1) in the sense of Definitions 4.1 and 4.2.
The Carathéodory function 𝑓 ∶𝑄×R → R is supposed to satisfy the following bound with respect to the ordered interval [𝑢, 𝑢]

|𝑓 (𝑥, 𝑡, 𝑠)| ≤ 𝑘(𝑥, 𝑡)

for a.a. (𝑥, 𝑡) ∈ 𝑄 and for all 𝑠 ∈ [𝑢(𝑥, 𝑡), 𝑢(𝑥, 𝑡)], where 𝑘 ∈ 𝐿𝑝′ (𝑄).

Based on the existence of an ordered pair of sub- and supersolution we have the following result.

heorem 4.5. Assume hypotheses (H1), (H2) and (H4). Then the parabolic obstacle problem (1.1) (resp. (1.2)) admits at least one solution
𝑢 ∈ 𝑌0 with 𝑢 ≤ 𝑢 ≤ 𝑢.

roof. Consider the cut-off function 𝑏∶𝑄 × R → R given by

𝑏(𝑥, 𝑡, 𝑠) =

⎧

⎪

⎨

⎪

[𝑠 − 𝑢(𝑥, 𝑡)]𝑝−1 if 𝑠 > 𝑢(𝑥, 𝑡)
0 if 𝑢(𝑥, 𝑡) ≤ 𝑠 ≤ 𝑢(𝑥, 𝑡)

𝑝−1
12

⎩

−[𝑢(𝑥, 𝑡) − 𝑠] if 𝑠 < 𝑢(𝑥, 𝑡),
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for a.a. (𝑥, 𝑡) ∈ 𝑄 and for all 𝑠 ∈ R. Obviously, 𝑏 is a Carathéodory function and satisfies the following growth condition

|𝑏(𝑥, 𝑡, 𝑠)| ≤ 𝑐1(𝑥, 𝑡) + 𝑐2|𝑠|
𝑝−1 for a.a. (𝑥, 𝑡) ∈ 𝑄, for all 𝑠 ∈ R,

ith 𝑐1 ∈ 𝐿𝑝′ (𝑄) and 𝑐2 > 0. Therefore, the Nemytskij operator 𝐵∶ 𝑢 ↦ 𝑏(⋅, ⋅, 𝑢) is a continuous and bounded mapping from 𝐿𝑝(𝑄) to
𝐿𝑝′ (𝑄) and the composed operator 𝑖∗◦𝐵◦𝑖∶𝑋0 → 𝑋∗

0 again denoted by 𝐵 given by

⟨𝐵(𝑢), 𝑣⟩ = ∫𝑄
𝑏(⋅, ⋅, 𝑢) 𝑣 d𝑥d𝑡 for all 𝑢, 𝑣 ∈ 𝑋0

is pseudomonotone w.r.t. 𝐷(𝐿) due to the compact embedding 𝑌0 ↪↪ 𝐿𝑝(𝑄). Moreover, there are constants 𝑐3, 𝑐4 > 0 such that

∫𝑄
𝑏(⋅, ⋅, 𝑢)𝑢 d𝑥d𝑡 ≥ 𝑐3‖𝑢‖

𝑝
𝑝,𝑄 − 𝑐4 for all 𝑢 ∈ 𝐿𝑝(𝑄). (4.1)

ext, we introduce the cut-off function 𝑓0 ∶𝑄 × R → R defined by

𝑓0(𝑥, 𝑡, 𝑠) =

⎧

⎪

⎨

⎪

⎩

𝑓 (𝑥, 𝑡, 𝑢(𝑥, 𝑡)) if 𝑠 < 𝑢(𝑥, 𝑡),
𝑓 (𝑥, 𝑡, 𝑠) if 𝑢(𝑥, 𝑡) ≤ 𝑠 ≤ 𝑢(𝑥, 𝑡),
𝑓 (𝑥, 𝑡, 𝑢(𝑥, 𝑡)) if 𝑠 > 𝑢(𝑥, 𝑡),

which is a Carathéodory function that in view of (H4) satisfies the growth condition

|𝑓0(𝑥, 𝑡, 𝑠)| ≤ 𝑘(𝑥, 𝑡) for a.a. (𝑥, 𝑡) ∈ 𝑄 and for all 𝑠 ∈ R. (4.2)

hus its Nemytskij operator 𝐹0 ∶𝐿𝑝(𝑄) → 𝐿𝑝′ (𝑄) is bounded and continuous, and the composed operator 𝑖∗◦𝐹0◦𝑖∶𝑋0 → 𝑋∗
0 given

y

⟨𝐹0(𝑢), 𝑣⟩ = ∫𝑄
𝑓0(⋅, ⋅, 𝑢) 𝑣 d𝑥d𝑡 for all 𝑢, 𝑣 ∈ 𝑋0

s pseudomonotone w.r.t. 𝐷(𝐿) due to the compact embedding 𝑌0 ↪↪ 𝐿𝑝(𝑄). Hence the operator 𝐹 ∶= 𝐵+𝐹0 ∶𝑋0 → 𝑋∗
0 is bounded,

ontinuous and pseudomonotone w.r.t. 𝐷(𝐿). Consider the auxiliary parabolic obstacle problem: Find 𝑢 ∈ 𝐷(𝐿) ∩𝐾 such that

⟨𝑢𝑡 + 𝐴𝑢 + 𝐹 (𝑢), 𝑣 − 𝑢⟩ ≥ 0 for all 𝑣 ∈ 𝐾. (4.3)

y means of (4.1) and (4.2) we get

⟨𝐹 (𝑢), 𝑢⟩ ≥ 𝑐3‖𝑢‖
𝑝
𝑝,𝑄 − 𝑐4 − ‖𝑘‖𝑝′ ,𝑄‖𝑢‖𝑝,𝑄,

hich implies that 𝐴 + 𝐹 ∶𝑋0 → 𝑋∗
0 satisfies the coercivity condition

1
‖𝑢‖𝑋0

⟨𝐴𝑢 + 𝐹 (𝑢), 𝑢⟩ → ∞ as ‖𝑢‖𝑋0
→ ∞.

Thus, by applying Theorem 1.2 with 𝐹 replaced by 𝐹 , there exist solutions of the auxiliary obstacle problem (4.3). Therefore, the
roof of Theorem 4.5 is complete provided any solution 𝑢 of the auxiliary obstacle problem (4.3) satisfies 𝑢 ≤ 𝑢 ≤ 𝑢, because then
𝐵(𝑢) = 0 and 𝐹 (𝑢) = 𝐹 (𝑢).

Let us verify that 𝑢 ≤ 𝑢. Since 𝑢 ∈ 𝐾, it follows that

𝑢 + (𝑢 − 𝑢)+ = 𝑢 ∨ 𝑢 ∈ 𝐾.

sing 𝑣 = 𝑢 + (𝑢 − 𝑢)+ in (4.3), one obtains
⟨

𝑢𝑡, (𝑢 − 𝑢)+
⟩

+
⟨

𝐴𝑢 + 𝐵(𝑢) + 𝐹0(𝑢), (𝑢 − 𝑢)+
⟩

≥ 0. (4.4)

As 𝑢 is a subsolution we get with 𝑣 = 𝑢 ∧ 𝑢 ∈ 𝑢 ∧𝐾 in Definition 4.1 (ii) the following inequality

−
⟨

𝑢𝑡 + 𝐴𝑢, (𝑢 − 𝑢)
+⟩ − ∫𝑄

𝐹 (𝑢)(𝑢 − 𝑢)+ d𝑥d𝑡 ≥ 0. (4.5)

here we have used that 𝑢 ∧ 𝑢 = 𝑢 − (𝑢 − 𝑢)+. Adding inequalities (4.4) and (4.5) results in
⟨

𝐵(𝑢), (𝑢 − 𝑢)+
⟩

+ ∫𝑄

(

𝐹0(𝑢) − 𝐹 (𝑢)
)

(𝑢 − 𝑢)+ d𝑥d𝑡

≥
⟨

𝑢𝑡 − 𝑢𝑡, (𝑢 − 𝑢)
+⟩ +

⟨

𝐴𝑢 − 𝐴𝑢, (𝑢 − 𝑢)+
⟩

.
(4.6)

he right-hand side of (4.6) is nonnegative, and by the definition of 𝑓0 it follows that

∫𝑄

(

𝐹0(𝑢) − 𝐹 (𝑢)
)

(𝑢 − 𝑢)+ d𝑥d𝑡 = 0.

Thus we obtain from (4.6) and taking into account the definition of 𝑏

0 ≤ ⟨𝐵(𝑢), (𝑢 − 𝑢)+⟩ = −∫𝑄
[(𝑢 − 𝑢)+]𝑝 d𝑥d𝑡 ≤ 0,

hich implies (𝑢 − 𝑢)+ = 0, that is, 𝑢 ≤ 𝑢. The inequality 𝑢 ≤ 𝑢 can be proved in a similar way, which completes the proof of the
theorem. □
13
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