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A B S T R A C T   

The adoption of intelligent tutoring systems (ITSs) worldwide has led to a considerable accumulation of process 
data as students interact with different learning topics within these systems. Typically, these learning topics are 
structured within ITSs (e.g., the fraction topic includes subtopics such as a fraction number line subtopic). 
However, there is a lack of methods that offer quick, data-driven insights into the content structure of ITSs, 
particularly through easily accessible visualizations. Here, we applied psychological network analysis to process 
data (230,241 students; 5,365,932 problem sets) from an ITS for learning mathematics to explore performance 
interdependencies between 40 different subtopics. We argue that the visualization of these content in-
terdependencies allows for a quick empirical evaluation of the validity of the existing structuring of the 
respective learning content. These insights allow for deriving recommendations concerning potential changes in 
the ITS structure and are thus highly valuable for ITS developers. Our results are also relevant for researchers as 
the interdependencies illustrated through psychological network analysis can contribute towards a better un-
derstanding of the interplay between mathematical skills. Together, our results indicate that psychological 
network analysis represents a valuable data-driven method to evaluate and optimize ITSs.   

1. Introduction 

Intelligent tutoring systems (ITSs) provide adaptive learning oppor-
tunities for students and typically record process data as students engage 
with the learning content provided by the system. The widespread use of 
ITSs has led to enormous piles of such process data (e.g., [1–4]). For 
instance, within the ITS Bettermarks 230,241 students worked through 5, 
365,932 problem sets from 9 different topics on fifth grade mathematics, 
which can be further broken down into 40 subtopics (between January 
1, 2016, and August 31, 2023, in Germany). This example further il-
lustrates that the datasets from ITSs are not only large but also complex, 
as data at different levels of granularity exist (e.g., students’ perfor-
mance on topics and constituting subtopics). 

ITS often structure their content reflecting a traditional curriculum 
as they comprise different learning topics hierarchically along grade 
levels (e.g., fifth-grade mathematics topics in Germany include whole 

number divisions and multiplications, as well as fractions). Traditional 
curricula are designed by domain experts who possess deep knowledge 
and expertise in the field of mathematics education [2,5]. However, to 
our knowledge, the validity of how a broad range of different topics and 
subtopics are structured is rarely evaluated empirically by data-driven 
methods after being implemented. 

In this study, we utilize psychological network analysis [6–8] to 
evaluate the content structure of ITSs, aiming to introduce a novel 
data-driven method for validating and advancing ITSs within the field of 
learning analytics. Our empirical investigation focuses on an ITS 
designed for mathematics learning. However, the implications of our 
approach are much broader and extend to ITSs covering diverse learning 
domains, such as language acquisition. Therefore, our study offers a 
foundational framework for future research concerning the validation of 
ITSs’ content structures across various domains and educational 
contexts. 
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In the following sections, we first describe ITSs and how their 
accumulating process data can be leveraged to gain insights into stu-
dents’ performance on mathematical topics. We then introduce psy-
chological network analysis in general and its application on process 
data to evaluate the content structure of ITSs and outline implications 
for research and practice (e.g., the design and further development of 
ITSs). 

1.1. Intelligent tutoring systems 

ITSs are digital learning environments with the primary aim to aid 
students’ learning process through personalized learning experiences; 
for instance, by offering tailored support, feedback, and additional 
learning opportunities through suggested revisions in case students 
struggle with specific topics [9]. ITSs typically log the data generated 
during students’ learning process. This process data typically include 
(but is not limited to) students’ performance on topics and respective 
subtopics (e.g., accuracy), which topics students worked through as well 
as the time and date for each worked-through (sub)topic. The process 
data collected by ITSs is essential for the system itself because students’ 
past performance may determine future (personalized) learning content 
and immediate feedback [10–12]. 

The analysis of process data may also help researchers and software 
developers to gain more detailed insights into students’ learning pro-
cesses and areas in which students may face difficulties (e.g., [1,2,13, 
14]). This information, in turn, may be used to refine the system; for 
instance, by restructuring the learning content of specific topics in a way 
that students face fewer difficulties during their learning process (e.g., 
[11,15]). 

The use of process data also enables researchers to address important 
research questions on the relationships between different mathematical 
skills [16]. For instance, process data can be analyzed to test whether 
students’ performance on a specific topic (e.g., arithmetic) predicts their 
performance on another later and more advanced topic (e.g., fractions). 
This allows for evaluating whether and how different topics within ITSs 
targeting specific skills are related, and, if analyzed longitudinally, how 
they build upon each other [16]. These insights may further be used to, 
for example, explicitly test whether students who revise problems from 
earlier topics known to predict later performance face fewer difficulties 
after such revisions [17]. 

As such, process data from ITSs serve as a valuable resource for (i) 
evaluating the general content structure of ITSs and (ii) advancing our 
understanding of mathematical skills more generally. Importantly, these 
insights may feed back into (iii) optimizing the respective ITSs [1,2]. 
However, to maximize the potential gain of evaluating process data, the 
application of methods that allow to quickly identify structures in 
exceptionally rich and complex process data are needed. This is where 
psychological network analysis comes into play. 

1.2. Psychological networks analysis 

Generally, psychological network analysis is a method to visualize 
correlation matrices. Variables are depicted as nodes and edges between 
nodes represent the correlations between variables [6,8,18], with the 
width of edges reflecting the strength of the correlation between two 
nodes. Force-distance algorithms can be applied to layout psychological 
networks in a way that distances between nodes, in addition to 
edge-widths, indicate how strongly nodes correlate with each other. For 
example, the Fruchterman-Reingold force-distance algorithm depicts 
nodes with relatively high correlations closer together, whereas nodes 
with relatively low correlations are pushed apart [19]. As a result, 
variables with relatively high intercorrelations are visualized as clusters, 
while variables with relatively low intercorrelations are pushed apart. 

Importantly, other types of network analyses exist and have been 
applied to address research questions within the realm of learning an-
alytics, such as social network analysis (e.g., [20–25]), semantic 

network analysis (e.g., [26]), or epistemic network analysis (e.g., [27]). 
The difference between these network analysis and psychological 
network analysis is that the edges within psychological network analysis 
are estimated (i.e., they represent the correlation between two variables) 
and are not directly obtained from the data (e.g., edges within social 
network analysis may represent the amount of communication between 
people and are thus directly obtained from the data). 

Another important aspect of psychological network analysis is that 
large datasets are recommended as small samples, especially in combi-
nation with a complex data structure involving many variables, can 
negatively affect the accuracy of estimated edges (i.e., estimated cor-
relations)[6]. Yet, as noted above, process data from ITSs typically 
comprises large sample sizes and thus, the application of psychological 
network analysis seems particularly well-suited for such datasets. 
However, despite the promise of psychological network analysis, their 
application to ITSs data is still scarce. 

1.3. The application of psychological networks analysis to evaluate and 
explore process data from ITSs 

In the following, we describe examples on how the application of 
psychological network analysis can serve as a powerful method to 
evaluate and explore complex interdependencies across different topics 
and subtopics implemented within ITSs. In our examples we specifically 
focus on an ITS developed for mathematics learning. However, psy-
chological network analysis is not bound to any particular content. Thus, 
psychological network analysis can also be applied to other types of ITSs 
containing process data. 

ITSs for mathematics learning typically comprise several different 
topics, each of which contains multiple subtopics. For instance, within 
the ITS Bettermarks (see Methods), there is a Basics of Fractions topic 
which includes the subtopics 1. Shares of a whole, 2. Expand, shorten, and 
compare fractions, 3. Fractions as quotients, 4. Fractions on the number line, 
5. Shares of sizes, and 6. Fractions and percentages. Students’ performance 
on these subtopics is presumed to reflect students’ fraction under-
standing. Accordingly, one would expect that students who perform well 
on one fraction subtopic should also perform well on another fraction 
subtopic and vice versa. In other words, one would expect high in-
tercorrelations between fraction subtopics, as they were designed to 
measure the same underlying concept—fraction understanding. When 
applying psychological network analysis, relatively high in-
tercorrelations between subtopics within each topic would be reflected 
as clusters of subtopics arranged relatively close to each other. In case 
such clusters could be observed for each topic, this would substantiate 
the validity of the respective content structure (i.e., subtopics meant to 
constitute a topic are actually related [28]). 

Moreover, a large body of research suggests that students’ mathe-
matics achievements are relatively robust across their educational path 
[29–36]. In other words, a student who performs well on one mathe-
matical topic is likely to also perform well on another mathematical 
topic. In contrast, a student who faces difficulties with one topic is also 
likely to face difficulties with another topic. For instance, evidence from 
several studies suggested that students whole number arithmetic skills 
and whole number knowledge predict their fraction understanding, 
indicating that proficient whole number processing serves as a building 
block for later more complex mathematical concepts such as fraction 
understanding [31–33]. Similar results may also be observed for other 
formats of rational numbers, such as fractions, decimals, and percent-
ages [37]. However, empirical evidence substantiating relatively high 
interdependencies between the three formats of rational numbers is 
missing (for associations of fractions and decimals see [38–40]). 

Nevertheless, some topics may build upon each other more strongly 
than others, and variations in interdependencies between topics should 
be observed when exploring data on students’ performance across a 
range of different topics. In addition, one may also observe that some 
topics correlate relatively highly with many other topics, whereas some 
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topics rather correlate highly with just a few other topics, if any. The 
application of psychological network analysis may be promising for such 
a use case as it allows to quickly visualize correlations between topics in 
a user-friendly and intuitive way to better understand how different 
topics are related to each other. 

In sum, when applying psychological network analysis to process 
data of ITSs for learning mathematics, one may expect the following 
observations. First, subtopics of the same topic that are supposed to 
measure the same underlying construct (e.g., fraction understanding), 
should correlate highly and thus should be visualized as clusters within 
the specified psychological networks. Moreover, when a set of different 
constructs (i.e., topics) was implemented in the ITS, one may expect 
distinct clusters for each construct/topic. Finally, one may also expect 
that two related constructs that build upon each other (e.g., different 
rational number formats) should be positioned relatively close to each 
other within the resulting psychological network. 

1.4. Study overview 

In this study, we applied psychological network analysis to explore 
interdependencies between students’ performance on 40 different sub-
topics stemming from 9 different fifth-grade topics. Therefore, we 
leveraged data from the ITS Bettermarks. We conducted an exemplary 
psychological network analysis as a use case on how the application of 
this method may help to identify the structure of students’ performances 
across and within topics. We expected to observe subtopics constituting 
a topic to cluster together. We also expected topics which target similar 
or related competencies to be closely positioned, whereas unrelated 
topics should be further apart from each other (for a visualization of our 
procedure and potential implications, see Fig. 1). 

2. Methods 

2.1. The ITS bettermarks 

Bettermarks is an ITS with a primary focus on mathematics learning 

(e.g., [3,41–44]), which was designed to cater to students across diverse 
age groups and educational levels (age-range 9-18, grades 4-12). Within 
Bettermarks, teachers can assign problem sets from different topics to 
their students to work through in class or at home. The ITS comprises 31 
different mathematical topics suited for fifth graders (see Fig. 2). Each of 
these topics is further subdivided into subtopics which further consist of 
several problem sets. Each problem set comprises an average of nine 
problems. The ITS logs the IDs of topics, subtopics, and problem sets as 
well as the average accuracy of students on these problem sets together 
with the date and time when students worked-through problem sets. 

Bettermarks incorporates several adaptive features to enhance the 
learning experience. First, students and teachers receive immediate 
feedback on an average performance score for each assigned problem 
set. This feature enables continuous monitoring of progress for both 
students and teachers. Second, the platform offers motivational in-
centives, allowing students to earn stars and coins based on their per-
formance. Stars are awarded for achieving 100% accuracy, while coins 
are earned within specific accuracy ranges (e.g., 90-99% = 3 coins; 75- 
89% = 2 coins; 60-74% = 1 coin). Third, students can repeat problem 
sets as often as they wish. However, the parameters of the problem sets 
change with each attempt, discouraging rote memorization and pro-
moting active problem-solving. Fourth, if students face difficulties with 
a topic, the system automatically recommends revision problem sets to 
students to close students’ knowledge gaps. 

As noted above, problem sets comprise several problems which may 
require one or more steps to solve. After each step, students receive 
immediate feedback on whether their solution was correct or not. This 
feedback is tailored to the specific content and errors made by the stu-
dent, providing guidance for improvement. In case students make a 
mistake on one of the steps, the correct answer is not provided, but 
students get a second chance to complete this step and to learn from 
their mistakes with the help of feedback. The accuracy of problem sets 
decreases with each mistake students make and thus students are 
motivated to use only one attempt on each problem. 

Bettermarks shares its anonymous data with researchers for second-
ary data analysis on request. Sensitive personal information (e.g., age or 

Fig. 1. Process diagram displaying the steps of the study and potential implications.  
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gender) about users is not available as the data is fully anonymous. It is 
crucial to note that Bettermarks played no role in the study’s design or 
outcomes, maintaining complete independence from the investigation. 
Thus, the study’s findings may not necessarily reflect the views or 
opinions of Bettermarks. 

2.2. The present dataset 

The dataset for this study was obtained from Bettermarks based on the 
following criteria. First, we considered the topics suited for grade five 
implemented in the German Bettermarks system. Second, we included all 
problem sets from these topics that were computed between August 1st, 
2016, and August 30th, 2023. Third, we considered students best results 
for any given problem set they computed as a proxy for their perfor-
mance on this problem set. However, repetition rates for problem sets 
were low (average 1.4) and results did not differ substantially when only 
considering students first attempts. Fourth, we only included problem 
sets that were computed by a considerable number of students (>1000 
students computed each considered problem set) to obtain robust ac-
curacy estimates on students’ performance. Fifth, each student 
computed at least 10 problem sets to be included. Finally, we only 
considered topics which were worked through by over 40,000 students 
to obtain robust accuracy estimates on topics. Based on these criteria, 
our dataset comprised 230,241 students who worked through 5,365,932 
problem sets from 9 topics separated into 40 subtopics. 

2.3. Data analysis 

Our data analysis was conducted with the R software [45]. We 
applied the igraph package for our psychological network analysis with 
marginal correlations [46]. All marginal correlations were Pearson 
correlations. 

We applied marginal correlations and not partial correlations 
because not all students worked through all topics and subtopics. As this 
leads to missing values for topics and subtopics, the use of marginal 
correlations between subtopics allowed us to base our evaluation on as 
much data as possible. However, marginal correlations reflect the as-
sociation between two variables without considering the influence of 
other variables (see also the discussion of limitations in our discussion 
section). 

The psychological network analysis drew on a correlation matrix 
which was based on students’ average performance on the considered 
subtopics. The psychological network analysis was conducted using the 

igraph package in R that allows to create the psychological network 
analysis plots within R based on the correlation matrix (see https://osf. 
io/mn469/ for the data analysis scripts as well as the data for carrying 
out the psychological network analysis). The average performance of 
each student on each subtopic was reflected by the average accuracy on 
all worked-through problem sets per subtopic. For instance, if a student 
worked through three problem sets of a subtopic and achieved accu-
racies of 70%, 80%, and 90%, then the average subtopic accuracy of 
80% resulted from the average of three problem set accuracies. 

3. Results 

The results from the psychological network analysis are depicted in 
Fig. 3. Each node depicts a subtopic with a topic abbreviation and a 
number that indicates the sequential appearance of the subtopics within 
Bettermarks. Table 1 lists all 9 topics including the topic abbreviation, 
the topic name, the average accuracy of each topic, and the number of 
students who worked-through each topic (n). 

Our psychological network analysis provides an overview on the 
interdependencies between students’ performance on 9 different topics 
(see Fig. 3). In the following two sections, we describe how this visu-
alization can be used to address different kinds of research questions. 

3.1. Evaluating the validity of the content structure 

The psychological network analysis indicated that the subtopics of 
most topics were located relatively closely together, indicating high 
intercorrelations between subtopics of the same topic. For instance, we 
identified relatively tight clusters for all subtopics of the (i) Percentages 
topic (Per; purple nodes in Fig. 3), (ii) Multiplication and Division of 
Decimal Numbers topic (Dec-Mul; yellow nodes), (iii) Basic of Decimals 
topic (Dec; orange nodes), (iv) Calculating with Lengths topic (Len; dark- 
blue nodes), (v) Basic Figures and Basic Solids topic (Fig; green nodes), 
and (vi) Area and Perimeter Calculation on Rectangles and Squares topic 
(Are; red nodes). However, the cluster of Area and Perimeter Calculation 
on Rectangles and Squares subtopics (Are; red nodes) comprised one 
subtopic of the Basic Geometrical Concepts topic (Geo-3; light-blue 
nodes). The subtopics of this Basic Geometrical Concepts topic (Geo; 
light-blue nodes), in contrast, were rather diffused, though still con-
nected with edges. Subtopics of the Whole Numbers topic (Who; magenta 
nodes) were visualized in a straight line between Percentages subtopics 
and subtopics from the two topics on decimals (Dec and Dec-Mul). 
Finally, all subtopics of the Basics of Fractions were relatively close 

Fig. 2. The user interface of the Bettermarks system used in Germany. A: Grade levels can be selected and for each grade level several different topics exist. B: The 
selection of the topics suited for fifth-grade students which appears after selecting grade 5 (Klasse 5). Red dashed ellipse highlights the grade level. 
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together, but the three subtopics Fra-2, Fra-3, and Fra-4 were also very 
closely tied to the two subtopics Dec-1 and Dec-2 of the Basics of Deci-
mals topic. Taken together, these insights help to make quick judgements 
on whether subtopics of the same topic form the expected clusters, thus 
providing evidence for the validity of the content structure of the ITS. 

3.2. Psychological network analysis as an exploration lens for addressing 
research questions on content-specific learning 

When evaluating the position of subtopics across topics, our psy-
chological network analysis showed that topics known to build upon 
each other over the course of students’ development of mathematics 
competences were in fact estimated to be relatively closely together. For 
instance, the observation of relatively high interdependencies between 

three specific fraction subtopics and two specific decimal subtopics 
could hint towards the idea that these two topics may build on similar 
underlying constructs (e.g., understanding rational numbers). This is 
further substantiated by the observation that subtopics of both decimal 
topics and the fraction topic were relatively closely positioned. Thus, 
these results indicate that the illustration of interdependencies via psy-
chological networks can contribute towards a better understanding of 
the interrelations between mathematical skills. 

4. Discussion 

In this article, we applied psychological network analysis to empir-
ically evaluate and visualize the content structure of an ITS for learning 
mathematics reflected by interdependencies of students’ performance 
on different (sub)topics (e.g., a fraction number line subtopic within a 
fraction topic). We demonstrated how psychological networks can be 
used to better understand complex interdependencies between many 
different variables. This information is useful for addressing different 
questions—from validating the content structure of ITSs to the interplay 
between different mathematical skills. 

Our example considered fifth-grade mathematics topics and their 
subtopics taken from Bettermarks (based on data from 230,241 students 
students working on 5,365,932 problem sets) and showed how psy-
chological network analysis can provide an easily accessible overview of 
performance interdependencies between the different topics and sub-
topics. With respect to the evaluation of the content structure of ITSs, 
our psychological network analysis indicated that subtopics of the same 
topic indeed clustered together, indicating relatively higher in-
tercorrelations between these subtopics than with subtopics of other 

Fig. 3. Psychological network depicting interdependencies between grade-five topics and subtopics. This network depicts all edges with a minimum partial cor-
relation of r =.3. Edge width scales with correlation strength. Node colors represent topics. 

Table 1 
Topic ID, Topic Name, Average Accuracy, Standard Deviation (SD), and n 
Problem sets.  

ID Topic Accuracy SD n 

Are Area and Perimeter Calculation on 
Rectangles and Squares 

.81 .27 638,479 

Dec Basic of Decimals .86 .23 471,256 
Dec- 

Mul 
Multiplication and Division of Decimal 
Numbers 

.84 .26 406,171 

Fig Basic Figures and Basic Solids .78 .28 383,252 
Fra Basics of Fractions .88 .22 1,180,959 
Geo Basic Geometrical Concepts .86 .23 647,802 
Len Calculating with Lengths .80 .26 248,199 
Per Percentages .84 .24 830,144 
Who Whole Numbers .86 .22 559,670  
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topics. Thereby, psychological network analysis provided quick empir-
ical evidence by means of user-friendly visualizations, revealing that 
subtopics that are meant to measure similar constructs (e.g., fraction 
understanding) actually seem to measure something similar. Our 
example also suggests that psychological network analysis allows for 
gaining deeper insights into the specific structure of interdependencies 
between different topics. For instance, we observed that (sub)topics on 
fractions, decimals, and percentages were arranged relatively close 
together, potentially reflecting the underlying ability of understanding 
rational numbers. 

Taken together, these results highlight the promise of applying 
psychological network analysis as a method for evaluating the validity of 
the structuring of learning content in ITSs. As the method is generic and 
data driven, it should be easily transferable and applicable to other 
large-scale data sets from ITSs. With more and more datasets from 
different ITSs now being publicly available with free access for re-
searchers (e.g., [1,47]), facing such large datasets for the first time can 
be overwhelming. As observed in the present study, psychological 
network analysis represents a valuable instrument to visualize in-
terdependencies between a range of variables to help to identify and 
understand the underlying data structure of such ITSs. 

Psychological network analysis is not only interesting for re-
searchers, but also for software developers working on optimizing ITSs 
to foster the learning progress of students. Most ITSs incorporate 
personalized adaptive recommendations for students to revise (sub) 
topics to close identified knowledge gaps based on the idea that students 
will face fewer difficulties with the current (sub)topic after such re-
visions. In this context, the application of psychological network anal-
ysis provides a data-driven and interpretable method that helps to gain 
insights into specific interdependencies between students performance 
on specific topics and their associated subtopics. This information is 
highly relevant for optimizing adaptive recommendations for students 
to revise specific (sub)topics to close their knowledge gaps. The evalu-
ation of process data with psychological network analysis may also help 
software developers to optimize the structuring of (sub)topics in ITSs. 
For instance, software developers may consider to restructure certain 
(sub)topics based on the gained information on which subtopics do not 
fit in expected cluster. The restructured (sub)topic could then be re- 
evaluated using psychological network analyses, providing insights 
into how the clustering might change with the new ordering of (sub) 
topics. 

4.1. Limitations and future directions 

The current results should be interpreted in light of several limita-
tions, yet these limitations also point towards promising future research 
directions. One notable limitation is our utilization of marginal corre-
lations in conducting psychological network analysis. This approach did 
not account for potential influences of other (sub)topics on the clus-
tering of topics and their interrelations. The choice of marginal corre-
lations was motivated by the aim to incorporate as much data as 
possible, including cases with missing data. Nonetheless, future studies 
might explore the application of psychological network analysis for 
process data from ITSs with partial correlations, allowing to control for 
the influence of other variables [6]. Applying partial correlations also 
allows to consider recent bootstrapping techniques so that a 95% con-
fidence interval can be estimated for all edges, which further increases 
scientific rigor [7]. 

Another limitation is that this study evaluated the correlations be-
tween mathematical (sub)topics without controlling for differences in 
the times when specific problem sets were worked through. In light of 
this limitation, we propose that psychological network analysis may well 
be applied as a first step to evaluate interdependencies (correlations) 
between a wide range of (sub)topics, but then needs to be followed up by 
additional analyses to understand developmental trajectories of learning 
(mathematics) in more detail. For instance, a promising avenue for 

future research could involve examining the direction of associations 
between (sub)topics by explicitly considering the temporal sequence in 
which students worked through them. In this study, our primary 
objective was to demonstrate the value of psychological network anal-
ysis as an exploration lens, which provides a rapid overview of in-
terdependencies between a rich set of variables as a first instance of data 
analysis. 

Moreover, we applied psychological network analysis to fifth-grade 
mathematical problems as an example. Future work that adopts psy-
chological network analysis to investigate interdependencies across 
mathematical subtopics of higher or lower grades is needed to evaluate 
its suitability for identifying interdependencies of mathematics (sub) 
topics in other samples and age groups. Furthermore, future studies 
should apply psychological network analysis to investigate in-
terdependencies for other subject domains than mathematics as well as 
across subject domains (e.g., How is students’ performance in mathe-
matics, physics, native and foreign language classes, music, etc. 
associated?). 

Another interesting avenue for future research is to determine 
whether changes to the content structure based on a psychological 
network analysis lead to changes in the identified structure (i.e., a more 
consistent clustering of subtopics within the psychological network). In 
other words, one may investigate whether a modification to the content 
structure of subtopics, as suggested by a psychological network analysis, 
leads to the expected outcome of subtopics of the same topics clustering 
closer together relative to other subtopics of other topics in a subsequent 
data collection. This may also include the consideration of other vari-
ables than students’ performance, such as time required for working 
through problems. 

4.2. Conclusion 

In conclusion, the present example clearly indicates that psycho-
logical network analysis can be a powerful method to quickly visualize, 
evaluate, and explore interdependencies between a range of different 
variables (e.g., subtopics) within an ITS. This information can be used to 
evaluate the validity of the existing structure of the learning content in 
the respective ITS and may also provide valuable insights into in-
terrelations between mathematical skills. At the same time, the insights 
from psychological network analysis can lead to improvements of ITSs. 
For instance, based on the observed interdependencies between sub-
topics, recommendations regarding which (sub)topics to revise when 
difficulties are encountered and recommendations regarding adapta-
tions to the structuring of the learning content in general can be derived. 
As such, psychological network analysis seems to be a useful method for 
(educational) researchers and software developers alike, who are both 
interested in better understanding how to best aid students’ learning. 
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