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Background
Randomized controlled trials (RCTs) are the gold stan-
dard for evaluating treatment effects in medical research, 
because random treatment allocation should guarantee 
balanced known and unknown covariates in the com-
pared groups, resulting in the absence of confounding 
(for terminology used in manuscript see Tab. S1). How-
ever, even if confounding is minimized after randomiza-
tion, prognostic factors (i.e. covariates that are associated 
with the outcome but not with treatment allocation) may 
still be present. For time-to-event data, the Cox model 
[7, 8] is commonly used for statistical analysis, providing 
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Abstract
Background Propensity score matching has become a popular method for estimating causal treatment effects in 
non-randomized studies. However, for time-to-event outcomes, the estimation of hazard ratios based on propensity 
scores can be challenging if omitted or unobserved covariates are present. Not accounting for such covariates could 
lead to treatment estimates, differing from the estimate of interest. However, researchers often do not know whether 
(and, if so, which) covariates will cause this divergence.

Methods To address this issue, we extended a previously described method, Dynamic Landmarking, which was 
originally developed for randomized trials. The method is based on successively deletion of sorted observations 
and gradually fitting univariable Cox models. In addition, the balance of observed, but omitted covariates can be 
measured by the sum of squared z-differences.

Results By simulation we show, that Dynamic Landmarking provides a good visual tool for detecting and 
distinguishing treatment effect estimates underlying built-in selection or confounding bias. We illustrate the approach 
with a data set from cardiac surgery and provide some recommendations on how to use and interpret Dynamic 
Landmarking in propensity score matched studies.

Conclusion Dynamic Landmarking is a useful post-hoc diagnosis tool for visualizing whether an estimated hazard 
ratio could be distorted by confounding or built-in selection bias.
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the hazard ratio as the generic effect measure. Typically, 
in RCTs the Cox model does not include prognostic fac-
tors as covariates. Instead, a marginal Cox model with 
only the treatment as a single covariate is estimated, 
yielding a marginal hazard ratio that is interpreted as a 
population-averaged treatment effect. However, there 
is often interest in understanding treatment effects at a 
subject-specific level. A subject-specific (conditional) 
interpretation of the hazard ratio can only be made when 
conditioning the Cox model on all prognostic factors. 
This particularly means that if a single prognostic factor 
(whether observed or unobserved) is omitted from the 
Cox model, it would prevent the hazard ratio from being 
interpreted on a subject-specific level. More precise, 
assume a proportional hazards model (1)

 λ (t|Z, U) = λ 0 (t) exp(β ZZ + β U U)  (1)

where λ 0 (t) is an unspecified baseline hazard func-
tion, depending on time t and is assumed to be common 
across all individuals. Furthermore, Z  and U are some 
observed covariates with their corresponding regression 
coefficients β Z  and β U . Then λ (t| Z, U) defines the 
conditional hazard with β Z  summarizing the condi-
tional effect of Z , yielding a subject-specific interpreta-
tion. On the other hand, if U  will be omitted, one would 
estimate model (2), i.e.:

 λ (t|Z) = λ 0 (t) exp (β ZZ) (2)

with λ (t| Z) reflecting the marginal hazard, yielding 
an population-averaged interpretation. Importantly, 
conditional and marginal Cox models will not provide 
the same estimates for a treatment effect if additional 
prognostic factors are associated with the time-to-event 
outcome [9, 29, 30]. This circumstance is referred to as 
“non-collapsibility”, indicating that the magnitude of the 
effect measure is changing when conditioning on a prog-
nostic factor [10]. This is often accompanied by the term 
“built-in selection bias”, which can be seen as result of 
conditioning on previous survival within hazard rates. 
More precise, assume an omitted prognostic factors 
(i.e., measured during the trial but omitted from the Cox 
model), which introduces heterogeneity, causing individ-
uals at higher baseline risk (regarding omitted prognos-
tic factors) to expect the event earlier than those at lower 
risk [1, 17]. Given an effective treatment, this would 
result in higher-risk individuals surviving longer in the 
treated group than in the control group. This results in a 
deviation from the marginal and conditional hazard ratio, 
due to conditioning on prior survival. Depending on the 
magnitude of the treatment effect, the influence of the 
omitted prognostic factor on the time-to-event outcome 
and the follow-up time, the magnitude of the built-in 

selection bias changes [5, 28, 31]. Therefore, when aim-
ing for a conditional treatment effect (more precise, con-
ditional on all prognostic factors) in RCTs, all prognostic 
factors have to be included in the Cox model. Please note: 
In the case where treatment is the only prognostic factor 
influencing time-to-event and there are no other prog-
nostic factors, the marginal model and the conditional 
model would give the same value for the marginal and the 
conditional hazard ratio. This is because the Cox model 
would then include all relevant prognostic factors, that is, 
only the treatment allocation, and no other adjustments 
are needed for estimating a conditional treatment effect. 
As a result, non-collapsibility would not be an issue and 
thus built-in selection bias would not occur.

In non-randomized trails, the situation might be more 
complex because confounding becomes an additional 
issue. Here, treatment allocation is generally determined 
by baseline characteristics, leading to systematic differ-
ences between treatment groups [25]. One prominent 
way to address these baseline differences is balancing the 
data by Propensity Score (PS) matching [26, 27]. Here, in 
a first step the PS for each individual is usually estimated 
via a logistic regression model. In a second step the PS is 
used for estimating the treatment effect of interest (that 
is, in our case the hazard ratio) [21]. Under the assump-
tions of positivity, consistency, and unconfounded-
ness for the PS, valid causal statements about treatment 
effects can be made. Misspecification of the PS model 
due to the omission of relevant confounders would lead 
to confounding bias, resulting in a biased treatment effect 
estimate. However, even if the PS model includes all con-
founders, non-collapsibility (and the corresponding built-
in selection bias) plays a role when fitting a Cox model in 
the PS matched trial. Usually, as in RCTs, a marginal Cox 
model with the treatment effect as the single covariate is 
fitted to the data, yielding a marginal (population-aver-
aged) treatment effect estimate. However, when aiming 
for a conditional (subject-specific) treatment effect, the 
Cox model needs to be conditional on all relevant prog-
nostic factors. Note that prognostic factors cannot be 
taken into account by PS models, as the PS addresses the 
association between a covariate and the treatment allo-
cation, which (by definition) is not present in prognostic 
factors. Therefore, when estimating a treatment effect in 
PS matched trials, two potential issues could arise when 
covariates are omitted from the analysis. First, omitting 
a prognostic factor from the Cox model would lead to 
the built-in selection bias. Second, omitting a confounder 
from the PS model would entail confounding bias. Both 
issues have the consequence that the final treatment 
effect estimate differs from the estimate of interest (that 
is, a conditional and unbiased treatment effect) [6, 14]. 
For an overview of concepts and comparison in RCTs 
and PS-matched trials please see Tab. S2.
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The choice of covariates for the PS model and the sub-
sequent outcome model relies on scientific understand-
ing and clinical expertise. This especially introduces the 
possibility of omission of covariates that were measured 
during the trial, but not included in the PS model or, after 
PS matching, in the Cox model. It is therefore of inter-
est to investigate whether an estimated treatment effect 
is subject to confounding bias or built-in selection bias. 
Unfortunately, the hazard ratio provides the effect in a 
single number, not giving a hint for any of these issues. 
Therefore, a recent article introduced a new method, 
Dynamic Landmarking, for diagnosing whether an esti-
mated treatment effect from a Cox model was subject to 
built-in selection bias in RCTs [32]. The original method-
ological approach was designed to detect potential prog-
nostic factors that are measured but omitted from the 
Cox model and could therefore induce built-in selection 
bias.

The aim of the present work is to extend the existing 
Dynamic Landmarking approach to PS matched trials. 
More precisely, we want to use Dynamic Landmarking as 
a post-hoc diagnosing tool in order to check if the esti-
mated hazard ratio could be distorted by confounding 
or built-in selection bias. Moreover, we are interested in 
detecting covariates that were observed (e.g., are pres-
ent in the data set), but omitted from the analysis, which 
could either induce potential built-in selection or con-
founding bias.

First, we describe the extension of Dynamic Landmark-
ing to the PS matched case. Second, we give the results 
of a simulation study to examine how the approach per-
forms in a PS matched trial. Third, we apply the extended 
procedure to a real data set from cardiac surgery and 
finally discuss the results.

Methods
The original Dynamic Landmarking is a methodologi-
cal approach, which provides a visual tool for diagnos-
ing if an estimated treatment effect is subject to built-in 
selection bias. Furthermore, omitted prognostic factors 
that are measured during the trial but omitted from the 
Cox model, are investigated whether they induce built-in 
selection bias. The idea of Dynamic Landmarking is quite 
simple: First, the dataset is sorted by observation time 
and a univariable Cox model only including the treat-
ment is fitted to the full data set. Afterwards, the earli-
est M (M > 0) observations are deleted regardless of 
the event status (observed or censored) and a new uni-
variable Cox model is fitted to the smaller data set. After 
each deletion step, the start of the follow-up interval for 
the new Cox model is moved forwards. More precisely, 
the new time zero for the new Cox model corresponds 
to the follow-up time of the latest of the M deleted indi-
viduals in the previous step. This procedure of deleting 

the earliest M observations and refitting univariable Cox 
models is continued until the data set no longer contains 
a sufficient number of observations for convergence. In 
general, high-risk individuals will have shorter obser-
vation times than low-risk individuals, as they tend to 
expect the event of interest earlier. Consequently, indi-
viduals with higher baseline risk (regarding the omit-
ted prognostic factors) will be deleted earlier during 
Dynamic Landmarking.

In parallel, the balance of omitted prognos-
tic factors is measured in each step by the sum 
of squared z-differences ( SSQzDiff ) [19], with 
SSQzDiff =

∑
z2

con +
∑

z2
bin +

∑
z2

ord +
∑

z2
nom , 
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respective estimated means, variances, proportions, and 
sample sizes of the two groups (formula for all z-differ-
ences can be found in Formula S1). The SSQzDiff  is a 
global balance measure and follows a chi-squared-distri-
bution with expectation k for k independent covariates.

After each deletion-and-refitting step, the point estima-
tor for the treatment effect and the SSQzDiff  is saved, 
yielding a trajectory depending on the remaining number 
of individuals. Through the systematic removal of indi-
viduals, treatment effects are gradually estimated within 
a population of lower-risk patients, potentially leading 
to a systematic shift in the effect trajectory due to the 
presence of built-in selection bias. Moreover, a potential 
imbalance in omitted prognostic factors arises, manifest-
ing as a systematic shift in the SSQzDiff trajectory [32].

To apply Dynamic Landmarking in non-randomized 
trials, a balancing procedure, e.g. PS matching, has to be 
applied prior to sorting the data regarding the observa-
tion time. Afterward, the original Dynamic Landmark-
ing is carried out. However, note that omitted variables 
in RCTs (by design) can only be prognostic factors. In 
PS matched studies, however, they can be both prog-
nostic factors and confounders. This potentially creates 
two problems, first built-in selection bias due to omis-
sion of prognostic factors and, second, confounding bias 
due to omitted confounders, and of course, both should 
be addressed separately by Dynamic Landmarking. This 
distinction between omitted prognostic factors and omit-
ted confounders can be made by looking at the definition 
of SSQzDiff : Omitting a observed confounder from the 
PS model would result in unbalanced groups after PS 
matching. This is because the association of the omitted 
confounder with the treatment allocation is still pres-
ent, resulting in large values of SSQzDiff  already at the 
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beginning of Dynamic Landmarking, that is, before the 
first deletion step. Omitting a prognostic factor from the 
Cox model on the other hand would still yield balanced 
groups after PS matching resulting in lower initial values 
of SSQzDiff . Hence, initial SSQzDiff -values for the 
full data set will give a first hint on whether the omitted 
variable is a confounder or a prognostic factor.

The following preconditions must be met in order to 
achieve valid results from Dynamic Landmarking: First, 
independent censoring has to be assumed. Second, the 
conditional hazard ratio for treatment is assumed to be 
constant across the population and over time, i.e. propor-
tional hazards hold and treatment effect is time-invari-
ant. Third, for measuring the balance by SSQzDiff at 
least one available covariate has to be omitted from either 
the PS or the Cox model.

Results from a simulation study
Data generation process
We simulated a non-randomized intervention trial with 
Z  denoting the treatment, Y  the time-to-event out-
come, X  a known and measured confounder and U  an 
omitted covariate, see Fig. 1 for the corresponding graph-
ical illustration of the data generation process. Both, X  
and U , follow a standard normal distribution. First, we 
simulated the probability of treatment allocation for each 
subject i from the logistic model

 logit (pi) = α 0 + α X · Xi + α U · Ui.

For the intercept, α 0 = −1.21 was chosen in order to 
obtain approximately 24% treated individuals, which was 
motivated by the empirical example in Section  “Illus-
tration of the procedure with an example from cardiac 
surgery”. The parameter α X was set to log (3). This 
denotes a strong impact of the confounder X on the 
treatment assignment. Afterwards, we generated the 
actual treatment status Zi from a Bernoulli distribution 
with subject-specific probability pi. We then simulated 
the time-to-event outcome Yi for each individual using 
a Weibull baseline hazard with parameters λ = 0.01 
and γ = 1.5. The final hazard function used was:

 h (t|Z, X, U) = γ λ tγ −1 · eβ Z Z+β X X+β uU .

For the regression parameter β X  we used the 
value log (3) , which was intended to denote a strong 
impact of X  on the time-to-event outcome. We con-
sidered different effects of U  on treatment allocation 

(
α U ∈ {log (0.5) , log (0.66) , log (0.8) ,

log (1) , log (1.25) , log (2) , log (3)}
). We fur-

ther varied the effect of U  on the time-to-event out-
come by using the following regression coefficients: 
β U ∈ {log (0.5) , log (0.66) , log (0.8) , log (1) ,

log (1.25) , log (1.5) , log (2) , log (3)} .
F u r -

thermore, we assumed various correlations between U  
and X : ρ XU ∈ {0, 0.2, 0.6, 0.9}. Moreover, we con-
sidered different values for the conditional treatment 
effect: β Z ∈ {log (1.25) , log(1.5), log(2), log(3 )} and 
assumed censoring proportions of approximately 10%, 
40% and 80% which were generated using a exponential 
distribution with parameter λ ∈ {0.2,0.6, 0.9}For each 
scenario, we simulated 500 data sets with 5,000 individu-
als each. Please be aware that U  is classified differently 
based on the values of α U and β U U is considered an 
independent covariate when both α U = 0 and β U = 0  a 
prognostic factor when α U = 0 and β U ̸= 0, an instru-
mental variable when α U ̸= 0 and β U = 0, and finally, a 
confounder when both α U ̸= 0 and β U ̸= 0.

Data analyses
For each scenario, we estimated the PS by logistic regres-
sion, including the known confounder X , but excluding 
the covariate U : logit (pi) = α 0 + α X · Xi. We then 
performed a 1:1 PS-matching without replacement. Each 
treated individual was matched with the greedy near-
est available neighbour with a caliper width of 0.2 of the 
standard deviation of the logit of the propensity score [2, 
3]. In a second step, we applied Dynamic Landmarking 
to the PS-matched data set. Therefore, we fitted stratified 
(for the matching stratum) Cox models with treatment as 
the only covariate:

Fig. 1 Graphical illustration for data generation process
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 hj (t|Z) = h0,j (t) · eβ Z Z  (3)

Here, h0,j  refers to the baseline hazard function for 
matching stratum j. These stratified (for matching stra-
tum) Cox model will be referred to “stratified Cox model” 
from now on. Please note, that U  was omitted from both, 
the PS model and the Cox model, whereas X  was con-
sidered in the PS model in each scenario.

Results
Omitting a prognostic factor – detecting induced built-in 
selection bias
In Fig.  2 we give the results for an omitted prognos-
tic factor U  (i.e., aU = 0), a highly effective treatment 
( β Z = log (3)) and a censoring proportion of 10%. 
Results for smaller treatment effects and higher censor-
ing proportions are given in the supplementary infor-
mation (see Fig. S1 – Fig. S5). Two important things 
should be noted: First, in these scenarios, the PS model 
was correctly specified and built-in selection bias is 
induced by the omission of a prognostic factor. Second, 
the treatment effect trajectory will not be equal to the 
true simulated effect β Z at the beginning of Dynamic 
Landmarking. This is because we show the percentage 

of remaining individuals on the x-axis and not the origi-
nal observation time. As a result, the initial treatment 
effect estimate derived from Dynamic Landmarking cor-
responds to the estimate one would obtain at the end of 
a study using a stratified Cox model. However, since a 
relevant prognostic factor has been excluded, this initial 
estimate is already subject to built-in selection bias, lead-
ing to a discrepancy between the estimated and the true 
simulated effect from the beginning on.

The mean sample size of the PS matched data was 2,402 
in the simulation. In the first column of Fig. 2, U  is inde-
pendent of the confounder X  ( ρ UX = 0). We observe 
that a higher impact of U  on the time-to-event outcome 
causes a more visible systematic shift in the treatment 
effect trajectory. Additionally, all scenarios show low 
initial SSQzDiff -values indicating the omission of a 
prognostic factor that is still balanced between the treat-
ment groups after PS matching. Moreover an increase of 
the SSQzDiff -trajectory is observed during the dele-
tion of the first 50% of observations. Similar results were 
obtained for smaller treatment effects and higher cen-
soring rates. However, as highlighted by serveral authors 
[e.g. 31, 35], the built-in selection bias occurs less promi-
nent in case of smaller treatment effects and smaller 

Fig. 2 Trajectories of treatment effect (left y-axis, red) on the log(HR) scale and sum of squared z-differences (right y-axis, blue) for balance measuring of 
the omitted covariate U  for 500 simulated data sets. Dashed black lines show the true, simulated conditional treatment effect estimate β Z = log (3). 
All scenarios assume the omission of a prognostic factor U , i.e. α U = 0., and a censoring rate of 10%
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prognostic effects. Consequently, in such cases, Dynamic 
Landmarking would identify a less pronounced decline in 
treatment effect trajectories. In the remaining columns, 
we simulated a non-zero correlation between X  and U  
varying it from weak to strong. Here we find that the esti-
mated treatment effect moves closer to the true simu-
lated one if the correlation gets stronger. Importantly, less 
systematic changes in the treatment effect trajectory can 
be observed. This is because the omitted prognostic fac-
tor U  is indirectly accounted for by including X  in the 
PS model, allowing a correction towards the true treat-
ment effect. And of course, the stronger the correlation, 
the closer will the estimated hazard ratio be to the true, 
simulated one [14].

Omitting a confounder – detecting confounding bias
The results of the simulation when omitting a true con-
founder (i.e., α U ̸= 0) from the PS model are shown in 
Fig. 3. We present the results for a true, simulated treat-
ment effect of β Z = log (3) and a censoring proportion 
of 10%. Results for smaller treatment effects can be found 
in the supplementary material (see Fig. S5 and Fig. S6). 
Moreover, negative values of α U  and β U  (and combina-
tions) are considered in Fig. S8 - Fig. S10. Note, that all 
these scenarios cover the case when the PS model is miss-
specified as a relevant confounder is omitted. In addition, 
there are no (omitted) prognostic factors simulated in 
this scenario. In the first column, we again assume that 
an independent confounder has been omitted ( ρ UX = 0
). As in the first simulation (Section “Omitting a prognos-
tic factor – Detecting induced built-in selection bias”), 
we observe a more visible systematic shift in the trajec-
tory of the treatment effects while the influence of U  
on the time-to-event outcome increases. Moreover, the 
systematic shift can be observed more clearly when the 
omitted confounder is strongly associated with treat-
ment allocation (see the first column of Fig.  3A com-
pared to first column of Fig. 3B and C). In other words, 
Dynamic Landmarking better detects confounding bias 
if the association with the treatment allocation is strong 
(i.e., |α u| ≫ 0). The SSQzDiff -trajectories behave in 
an expected way, i.e., achieving extremely high values at 
the beginning of Dynamic Landmarking. Referring to 
the formula of the z-differences, we would expect that 
w.l.o.g. xT > xC  or p̂T > p̂C  respectively. It follows, that 
zcon > 0 (or zbin > 0 reps.) and consequently large ini-
tial values of SSQzDiff  are observed at the beginning of 
Dynamic Landmarking, that is, before the first deletion 
step.

When adding a correlation between U  and X , we find 
that the estimated treatment effects becomes closer to 
the true, simulated treatment effect, the stronger the cor-
relation. In addition, the SSQzDiff  come closer to being 
balanced after PS matching as correlation increases. This 

is because the omitted covariate U  will be matched in 
parallel with the true confounder X , if U  and X  are cor-
related [e.g., 33, 37].

Illustration of the procedure with an example from 
cardiac surgery
We now apply the Dynamic Landmarking approach to 
individual patient data from a non-randomized trial on 
aortic valve implantation in cardiac surgery [12]. Here, 
the effect of transcatheter (either transapical (TA) or 
transfemoral (TF)) aortic valve implantation (TAVI) in 
comparison to a conventional surgical treatment (mini-
mally invasive aortic valve replacement (MIC-AVR)) in 
patients with moderate surgical risk was investigated. In 
the original analysis, the authors used 23 baseline covari-
ates and a 1:1:1 PS-matching algorithm for the three 
treatments TA-TAVI, TF-TAVI, and MIC-AVR to evalu-
ate treatment effects by fitting stratified Cox models to 
the matched data set. For our investigation here, we will 
concentrate on the two-group comparison of MIC-AVR 
vs. TA-TAVI. Comparing a catheter-based intervention 
versus a surgical approach is of special methodological 
interest, because the treatments are applied to distinctly 
different patient populations. Unlike surgical interven-
tions, catheter-based aortic valve implantation does not 
require opening the chest (sternotomy), making it suit-
able for much more medically compromised patients, 
often referred to as “high-risk patients”. For this reason, 
strong confounding is to be expected. Indeed, in the 
original analysis we already noted that the overlap of the 
logit-transformed PS is very small before PS matching 
and covariates are heavily imbalanced between interven-
tion groups. Additionally, a univariable Cox model with 
treatment as the only covariate and overall survival as 
outcome, showed an extremely strong effect of a hazard 
ratio of 6.40 (95%CI: 5.33; 7.69) for the MIC-AVR group 
in comparison to the TA-TAVI group. After PS match-
ing with 13 randomly selected covariates (see Table  1 
for details) the hazard ratio reduced to 2.13 (95%CI 1.31; 
3.45) indicating a strong influence of confounding in the 
crude model. Moreover, considering all 23 covariates 
from the original article yielded a hazard ratio of 1.64 
(95%CI: 1.23; 2.19).

Given this strong degree of confounding, we use the 
dataset for illustrative purposes and assess it in three 
different ways. First, a raw model (without any prior 
PS-matching or any other confounder adjustment) was 
fitted to the data set, which means that we omitted all 
28 covariates from data analysis. Second, a partially PS-
matched data set with 13 (out of 28) randomly included 
covariates was used for Dynamic Landmarking. Hence, 
15 randomly selected covariates were omitted from 
data analysis. We assessed whether the selected covari-
ates for PS matching have an influence on the results and 
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Fig. 3 Trajectories of treatment effect (left y-axis, red) on the log(HR) scale and sum of squared z-differences (right y-axis, blue) for balance measuring 
of the omitted covariate U  for 500 simulated data sets. Dashed black lines show the true, conditional treatment estimate β z = log (3). All scenarios 
assume the omission of a true confounder U  with A: low impact on treatment allocation, i.e., α u = log (1.25)B: moderate impact on treatment alloca-
tion, i.e., α U = log (2). C: high impact on treatment allocation, i.e. α U = log (3)
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therefore repeated the partially matching various times 
using different sets of randomly selected/omitted covari-
ates. All scenarios showed similar results regarding the 
trajectories of Dynamic Landmarking; therefore, we pres-
ent only one representative example in the paper (chosen 
covariates can be found in Table 1). In a third scenario, 
we reproduced the PS matching analysis from the origi-
nal publication, including the 23 original and omitting 
the remaining five covariates. For all scenarios we used 
greedy nearest neighbour procedure with a caliper of 
width, equal to 0.2 of the standard deviation of the logit of 
the propensity score. Actually, the idea of Dynamic Land-
marking is to measure the balance of omitted covariates; 
however, for a real data set it is also important to check 
the balance of the PS matched covariates. Therefore, we 
present the SSQzDiff in Section “Patients’ characteris-
tics before and after PS matching” for both, included and 
omitted covariates. For better clarity, we introduce a spe-
cial notation to separate included and omitted covariates 
for each scenario: An x/y-scenario describes a scenario 
were ‘x’ covariates are included in the PS model and ‘y’ 
covariates are omitted from the data analysis but are used 
for balance measuring during Dynamic Landmarking. 
Analogously, SSQzDiff (x) /SSQzDiff (y) describes 
the sum of squared z-differences for the (‘x’ included)/
(‘y’ omitted) covariates. Table  1 summarizes the three 
scenarios.

Patients’ characteristics before and after PS matching
Table  2 summarizes the preoperative patient charac-
teristics for each scenario. Unsurprisingly, most of the 
characteristics are extremely imbalanced without PS 
matching (0/28-scenario), as both groups strongly differ 
in their baseline characteristics ( SSQzDiff : - / 6,538.44). 
In the 13/15-scenario, 240 pairs could be matched based 
on the following covariates: gender, weight, euroSCORE 
II, German aortic valve score, STS score, hypertension, 
pulmonary hypertension, stroke, PAOD, cerebrovascu-
lar disease, atrial fibrillation, previous MI, and NYHA 
class. Interestingly, the 13/15-scenario improved the 
balance of both, the included and omitted covariates 
( SSQzDiff : 62.20 / 476.63); however, the balance of the 
included covariates is still unsatisfactory, as the expected 
value for a perfect matching would be 6.5 for 13 matched 
covariates [20]. In the 23/5-scenario we utilized the same 
covariates as in the 13/15-scenario and additionally 
included age, year of surgery, height, LVEF, GFR, previ-
ous aortic valve surgery, diabetes mellitus, COPD, CAD, 
and priority status as covariates in the PS model. This 
resulted in 177 pairs hardly differing in terms of preop-
erative covariates and their balance ( SSQzDiff : 27.14 / 
4.66). It can be seen that the variables that were not used 
for PS matching in the 13/15- and 23/5-scenario never-
theless show a decreasing imbalance. This is due to the Ta
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0/28-model (N = 2536) 13/15-model (N = 480) 23/5-model (N = 354)
Variable MIC-AVR 

(n = 1929)
TA-TAVI
(n = 607)

z-Diff/SMD MIC-AVR 
(n = 240)

TA-TAVI 
(n = 240)

z-Diff/SMD MIC-AVR 
(n = 177)

TA-TAVI 
(n = 177)

z-Diff/
SMD

Female 836 (43.3%) 328 (54.0%) -4.62/-0.21 133 (55.4%) 118 (49.2%) 1.37/0.13 88 (49.7%) 87 (49.2%) -0.11/-0.01
Weight 81.04 

(± 16.12)
73.66 
(± 16.06)

-9.86/-0.45 76.17 
(± 16.11)

76.68 
(± 15.58)

0.35/0.03 76.47 
(± 15.89)

77.17 
(± 14.86)

-0.43/-0.04

euroSCORE II 1.62 (± 1.44) 8.77 (± 8.87) 19.78/1.13 3.87 (± 2.70) 6.80 
(± 11.62)

3.80/0.33 5.42 (± 9.5) 3.58 (± 2.69) 2.48/0.21

German Aortic 
Valve score

1.32 (± 0.73) 3.81 (± 3.38) 18.02/1.02 2.35 (± 1.13) 3.40 (± 4.53) 3.48/0.31 3.26 (± 4.71) 2.32 (± 1.19) 2.59/0.28

STS score 1.84 (± 1.37) 7.56 (± 5.89) 23.73/1.34 4.01 (± 2.17) 5.81 (± 7.25) 3.69/0.31 5.49 (± 7.46) 3.97 (± 2.41) 2.58/0.25
Hypertension 1447 (75.0%) 549 (90.4%) -9.90/-0.42 217 (90.4%) 213 (88.8%) 1.15/0.06 156 (88.1%) 157 (88.7%) 0.17/0.02
Pulmonary 
hypertension

177 (9.2%) 202 (33.3%) -11.9/-0.61 56 (23.3%) 56 (25.3%) 0.00/0.00 42 (23.7%) 42 (23.7%) 0.00/0.00

Stroke 37 (1.9%) 51 (8.4%) -5.55/-0.30 18 (7.5%) 23 (9.6%) -1.56/-0.03 9 (5.1%) 11 (6.2%) 0.46/-0.04
PAOD 60 (3.1%) 193 (31.8%) -14.85/-0.81 38 (15.8%) 40 (16.7%) -0.48/-0.02 30 (16.9%) 26 (14.7%) -0.58/-0.05
Cerebrovascular 
disease

89 (4.6%) 140 (23.1%) -10.39/-0.55 36 (15.0%) 27 (11.3%) 2.47/0.09 22 (12.4%) 30 (16.9%) 1.20/0.11

Atrial fibrillation 36 (1.9%) 167 (27.5%) -13.95/-0.78 26 (10.8%) 33 (13.8%) -1.86/0.07 22 (12.4%) 20 (11.3%) -0.33/0.03
Previous MI 58 (3.0%) 100 (16.5%) -8.66/-0.46 12 (5.0%) 14 (5.8%) -0.78/-0.06 15 (8.5%) 15 (8.5%) 0.00/0.00
NYHA class
I
II
III
IV

219 (11.3%)
983 (51.0%)
700 (36.3%)
27 (1.4%)

20 (3.3%)
174 (28.7%)
345 (56.8%)
68 (11.2%)

-14.34/0.47 6 (2.5%)
97 (40.4%)
119 (49.6%)
18 (7.5%)

12 (5.0%)
79 (32.9%)
131 (54.6%)
18 (7.5%)

-0.72/0.04 12 (6.8%)
58 (32.8%)
97 (54.8%)
10 (5.6%)

6 (3.4%)
73 (41.2%)
86 (48.6%)
12 (6.8%)

-0.44/0.01

Age 67.85 
(± 10.98)

81.28 
(± 6.08)

38.24/1.51 76.78 
(± 6.42)

80.59 
(± 6.07)

6.68/0.61 79.38 
(± 6.46)

78.29 
(± 5.53)

1.71/0.18

Year of surgery
2009
2010
2011
2012
2013
2014
2015
2016
2017

74 (3.8%)
146 (7.6%)
168 (8.7%)
218 (11.3%)
273 (14.2%)
352 (18.3%)
323 (16.7%)
236 (12.2%)
139 (7.2%)

16 (2.6%)
41 (6.8%)
49 (8.1%)
76 (12.5%)
97 (16.0%)
113 (18.6%)
121 (19.9%)
53 (8.7%)
41 (6.8%)

0.10/0.03 4 (1.6%)
22 (9.2%)
23 (9.6%)
27 (11.3%)
29 (12.1%)
51 (21.3%)
38 (15.8%)
31 (12.9%)
15 (6.3%)

9 (3.8%)
11 (4.6%)
20 (8.3%)
28 (11.7%)
42 (17.5%)
48 (20.0%)
56 (23.3%)
12 (5.0%)
14 (5.8%)

0.32/0.18 7 (4.0%)
7 (4.0%)
15 (8.5%)
24 (13.6%)
30 (16.9%)
29(16.4%)
43 (24.3%)
12 (6.8%)
10 (5.6%)

7 (4.0%)
18 (10.2%)
14 (7.9%)
19 (10.7%)
27 (15.3%)
37 (20.9%)
29 (16.4%)
17 (9.6%)
9 (5.1%)

-0.81/0.09

Height 170.53 
(± 9.51)

165.49 
(± 9.45)

-11.45/-0.53 166.75 
(± 9.43)

167.29 
(± 9.67)

0.61/0.06 166.98 
(± 10.07)

167.47 
(± 8.96)

-0.49/-0.05

LVEF 60.94 
(± 9.29)

51.25 
(± 12.16)

-18.03/-089 58.01 
(± 10.23)

53.83 
(± 11.42)

-4.22/-0.39 55.95 
(± 9.93)

56.15 
(± 10.78)

-0.18/-0.02

GFR 78.74 
(± 20.25)

55.83 
(± 22.81)

-22.12/-1.06 60.45 
(± 23.16)

64.64 
(± 20.81)

2.09/0.19 63.78 
(± 22.63)

64.77 
(± 23.43)

-0.41/-0.04

Previous aortic 
valve surgery

1 (0.1%) 13 (2.1%) -3.54/-0.20 1 (0.4%) 3 (1.3%) -1.76/-0.09 1 (0.5%) 1 (0.5%) 0.00/0.00

Diabetes 
mellitus

362 (18.8%) 214 (35.3%) -7.73/-0.38 72 (30.0%) 61 (25.4%) 2.23/0.10 53 (29.9%) 50 (28.2%) -0.35/-0.04

COPD 88 (4.6%) 105 (17.3%) -7.93/-0.47 34 (14.2%) 27 (11.3%) 1.93/0.09 21 (11.8%) 21 (11.8%) 0.00/0.00
CAD
1-vessel
2-vessel
3-vessel

171 (8.9%)
75 (3.9%)
46 (2.4%)

99 (16.3%)
83 (13.7%)
214 (35.3%)

-25.94/-0.22 37 (15.4%)
17 (7.1%)
13 (5.4%)

46 (19.2%)
29 (12.1%)
57 (23.8%)

-6.66/-0.10 27 (15.3%)
20 (11.3%)
32 (18.1%)

32 (18.1%)
20 (11.3%)
24 (13.6%)

-0.67/-0.08

Priority urgent 
(emergency)

9 (0.5%) 14 (2.3%) -2.93/-0.16 3 (1.3%) 8 (3.3%) -2.70/-0.14 5 (2.8%) 3 (1.7%) -0.72/-0.08

MELD-Score 7.54 (± 2.16) 8.27 (± 4.98) -3.51/-0.27 9.41 (± 3.77) 9.75 (± 4.53) -0.87/-0.16 9.69 (± 4.36) 9.05 (± 3.37) 1.50/0.23
Diameter of 
aortic valve

23.47 
(± 1.89)

25.88 
(± 2.07)

-25.52/-1.72 22.79 
(± 1.81)

26.02 
(± 2.06)

-18.24/-2.36 26.04 
(± 2.07)

25.89 
(± 1.83)

0.06/0.11

Drainage 
quantity

420.83 
(± 328.31)

486.38 
(± 429.62)

-2.56/-0.24 458.30 
(± 391.12)

489.45 
(± 415.36)

-0.84/-0.11 462.20 
(± 357.03)

471.13 
(± 366.32)

-0.23/-
0.03

Table 2 Patients’ characteristics (italic numbers are matched characteristic in each scenario)
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anticipated association between included and omitted 
covariates, which results in a parallel matching also for 
the omitted covariates.

Dynamic Landmarking for scenario I (0/28)
In the first scenario, we applied Dynamic Landmarking 
for the raw model without performing any PS matching 
prior to fitting a univariable Cox model with treatment 
as the only covariate. The results can be found in Fig. 4. 
Not surprisingly, we observe a consistently shifting treat-
ment effect trajectory. Upon analysing the balance of 
the 28 omitted covariates, we notice the very high initial 
values of SSQzDiff  (concrete: 6,538.44). Consequently, 
Dynamic Landmarking indicates that these omitted 
covariates might induce confounding bias. This results 
in a biased treatment effect estimate for this model 
(expressed as a hazard ratio of 6.40) due to confounding. 
One approach to rectify this bias would be to employ a 
PS model, taking into account the omitted covariates, 
before fitting the stratified Cox model.

Dynamic Landmarking for Scenario II (13/15)
After PS matching with 13 covariates, we applied the 
Dynamic Landmarking approach and collected the 
regression parameters to draw a trajectory depending 
on the remaining number of observations (see Fig.  5). 
We still observe a systematic shift in the treatment effect 
estimates, at least for the first 50% of deleted patients, 
and correspondingly a decreasing SSQzDiff during the 
procedure. Therefore, as expected from the simulation 
results, a still biased treatment effect estimate is obtained 
in the 13/15-scenario, pointing to confounding bias 
which is induced by the 15 omitted covariates. We fur-
ther observe that the omitted 15 covariates also improve 
their balance after PS matching, indicating that included 
and omitted covariates are correlated. However, this cor-
relation does not appear to be strong enough to obtain 
a treatment effect that is not influenced by confounding 
bias. Consequently, the user either needs to adjust the 
Cox model for the omitted confounders or must include 
them in the initial PS-matching. Dynamic Landmarking 
should be repeated for the enlarged confounder set to 

Fig. 4 Trajectories of treatment effect (left y-axis, red) on the log(HR) scale and sum of squared z-differences (right y-axis, blue) for Scenario I (0/28)

 

0/28-model (N = 2536) 13/15-model (N = 480) 23/5-model (N = 354)
Variable MIC-AVR 

(n = 1929)
TA-TAVI
(n = 607)

z-Diff/SMD MIC-AVR 
(n = 240)

TA-TAVI 
(n = 240)

z-Diff/SMD MIC-AVR 
(n = 177)

TA-TAVI 
(n = 177)

z-Diff/
SMD

preoperative 
haemoglobin 
level

13.77 
(± 1.51)

12.26 
(± 1.69)

7.27/1.33 12.80 
(± 1.77)

12.46 
(± 1.78)

2.06/0.27 12.5 (± 1.72) 12.77 
(± 1.71)

-1.47/-
0.22

preoperative 
creatinine level

0.99 (± 0.49) 1.45 (± 1.08) -10.92/-0.78 1.34 (± 0.99) 1.14 (± 0.47) 2.74/0.36 1.24 (± 0.85) 1.20 (± 0.85) 0.44/0.07

Table 2 (continued) 
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check whether the treatment effect estimate is still influ-
enced by confounding or built-in selection bias.

Dynamic Landmarking for scenario III (23/5)
In the last scenario, all original 23 confounders were 
included as covariates in the PS model. Dynamic Land-
marking shows a treatment effect trajectory with only 

random fluctuations and no systematic change in the 
SSQzDiff -trajectory (see Fig. 6) in this data set. For bal-
ance fitting we used five additional covariates (MELD-
Score, diameter of aortic valve, drainage quantity, 
haemoglobin and, creatinine level) which were measured 
during the trial, but not included in the original analy-
sis by Furukawa (2018). We observe balanced covariates 

Fig. 6 Trajectories of treatment effect (left y-axis, red) on the log(HR) scale and sum of squared z-differences (right y-axis, blue) for Scenario III (23/5)

 

Fig. 5 Trajectories of treatment effect (left y-axis, red) on the log(HR) scale and sum of squared z-differences (right y-axis, blue) for Scenario II (13/15)
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during the whole Dynamic Landmarking process, which 
indicates that these five covariates do not have a relevant 
impact on the treatment effect estimate. To summarize, 
we would conclude that the estimated treatment effect in 
the 23/5-scenario might not be subject to confounding or 
built-in selection bias, as no systematic shift in the treat-
ment effect estimate can be observed.

Discussion
Dynamic Landmarking can be used in PS matched analy-
sis as a post-hoc diagnosing tool to visualize if the esti-
mated treatment effects from a Cox model thread to 
confounding or built-in selection bias. Furthermore, the 
approach can give a hint on whether prognostic factors 
or confounders have been omitted from the data analy-
sis. Depending on the causal direction of the omitted 
covariate, different issues could arise. While an omitted 
prognostic factor would induce built-in selection bias, 
resulting in a difference between conditional and mar-
ginal treatment effect, the omssion of confounders would 
result in confounding bias. We showed by simulation that 
Dynamic Landmarking indeed is able to visualize and 
distiguish between both issues, at least in case of inde-
pendent omitted covariates. More precisely, both built-in 
selesction bias and confounding bias show systematically 
changing treatment effect trajectories during Dynamic 
Landmarking. Furthermore, omitted confounders tend 
to be heavily unbalanced between the groups yielding 
high initial SSQzDiff - values for the full PS matched 

data set. On the other hand, prognostic are still balanced 
after PS-matching, yielding small SSQzDiff -values at 
the Beginning of Dynamic Landmarking, but showing an 
increasing imbalance for the first 50% of deleted obser-
vations while the procedure continues. This is what pre-
vious work also showed for RCTs [32]. Please note that, 
while an inspection of the initial SSQzDiff -values give a 
first hint on the causal direction of the omitted covariate, 
it is important to consider both. This is because omitted 
instrumental variables (i.e., β U = 0, α U ̸= 0) would 
show high intial SSQzDiff -values. However, in such 
cases the treatment effect trajectory will remain stable 
with only random fluctuations (see supplement, Fig. S11).

For omitted covariates, that were independent from 
included ones, we provide an interpretation- and deci-
sion-scheme for Dynamic Landmarking (see Fig. 7). We 
suggest to analyse the visual output of Dynamic Land-
marking in a two-step-algorithm: First the treatment 
effect trajectory has to be regarded. Only if a systematic 
shift is observed in the treatment effect trajectory the 
SSQzDiff -trajectory should be involved and inter-
preted as mentioned. Moreover, to differentiate correctly 
between built-in selection and confounding bias, the user 
has to run the Dynamic Landmarking with each omitted 
covariate seperatly. Please note, that it might be possible 
to observe a systematically changing treatment effect 
tajectory, but no change in the SSQzDiff -trajectory. In 
such cases we would conclude, that the treatment effect 
still cannot be interpreted as time-invariant effect, but it 

Fig. 7 Interpretation and recommendation for Dynamic Landmarking results under the assumption of uncorrelated omitted covariates. Red boxes are 
related to treatment effect trajectories, blue boxes are related to SSQzDiff -trajectories. Grey boxes give possible interpretations for course of trajecto-
ries and green boxes are recommendations for data analysis
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is not possible to identify omitted covariates causing this 
(e.g., there might be some true unobserved/unmeasured 
confounders or prognostic factors [17, 36] which have to 
be accounted for).

In case the omitted covariate(s) are correlated with 
one or more considered confounders from the PS model, 
confounder bias or built-in selection bias can be mini-
mized [11, 14, 15]. Rubin and Thomas (1996) stated that 
”excluding potentially relevant variables should be done 
only [.] when the excluded variables are highly correlated 
with variables already in the propensity score model” 
[27]. Indeed, recent work found that replacing a highly 
correlated (namely, 0.8) covariate instead of the true con-
founder in the PS model would result in a relative bias 
less than 5% [14]. Due to the correlation, the omitted 
covariate will indirectly accounted for in the PS model. 
This result is reflected in the observed behaviour of the 
SSQzDiff trajectories: The stronger the correlation 
between matched confounder and omitted covariate, the 
more balanced is the omitted covariate – at least at the 
initial state of the Dynamic Landmarking procedure.

The primary focus of Dynamic Landmarking is on 
assessing the estimated treatment effect, which is why 
the treatment effect trajectories should be examined 
first when using this approach. Additionally, it can pro-
vide insights into omitted covariates that might need 
to be included in the analysis. However, the approach 
should not be compared or equated with variable selec-
tion methods. While variable selection aims to iden-
tify an appropriate set of covariates before data analysis 
[e.g. 13, 16] Dynamic Landmarking serves as a post-hoc 
tool to verify whether the model assumptions and corre-
sponding effect estimates are valid. We believe that our 
approach should be viewed as a complement to, rather 
than a replacement for, such analyses.

By our empirical example we showed how induced 
confounder bias impacted both, treatment effect and 
SSQzDiff -values. Indeed, the omission of true con-
founders led to a systematically changing treatment effect 
trajectory and a high intial SSQzDiff - values. Addition-
ally, it is important to note that although the omitted 
confounders are correlated with the matched confound-
ers, this correlation alone is insufficient for obtaining an 
estimate of the treatment effect that is not subject to con-
founding bias, as showed in Fig. 5. In practice, one should 
estimate the PS again, including the omitted confounders 
in the PS model and check by a repeated run of Dynamic 
Landmarking, whether the estimates are still biased 
(results see Fig. 6). Of course, in real life the user would 
not intentionally induce bias by omitting confound-
ers, but would immediately assess a well-specified PS 
model using Dynamic Landmarking. If no constant treat-
ment effect trajectory can be obtained by our approach 
we would conclude, that other assumptions (e.g., real 

unobserved covariates or a time-dependent treatment 
effect) might be an explanation for the systematic shift. 
In that case, a more flexible model, e.g., time-dependent 
propensity score [35] or frailty modelling [36], may be 
used for data analysis.

We have to acknowledge some limitations of our work. 
First, Dynamic landmarking is based on the assumption 
that the conditional treatment (conditional on all rel-
evant prognotic factors) is constant over time, implying 
proportional hazards in the data. If this is true, then the 
method is a good diagnostic tool for identifying whether 
a treatment estimate from the Cox model underlies con-
founding or built-in selection bias. In practice, however, 
time-dependent treatment effects may be observed. 
It is already known that it is not possible to distinguish 
between time-dependent treatment estimates (i.e. non-
proportional hazards) and induced heterogeneity (built-
in selection bias) [4, 10, 24]. In fact, this is also true 
for our method. Therefore, as with other methods, an 
assumption about the true effect (here, being constant 
over time and across the population) has to be made.

Second, the SSQzDiff  is an aggregated balance mea-
sure summarizing the global balance of all omitted 
covariates. We showed that the intial SSQzDiff  can 
be used to distinguish between built-in selection bias 
and confounding bias. We analyzed these two issue by 
separate simulation scenarios. In pratice, however, both 
issue can occur at the same time and consequently the 
SSQzDiff  may be estimated for prognostic factors as 
welll as confounders and summarized in one number. It 
should then be noted that the z-difference of confound-
ers dominates the value of the SSQzDiff , as it is natu-
rally larger than the z-difference of a prognostic factor. 
This can complicate the interpretation of the approach in 
such scenarios. One way to correctly distinguish the two 
effects would be to separately perform Dynamic Land-
marking for each omitted covariate.

Third, we focused here on a specific PS method (PS-
matching). Generally, PS-matching has some limita-
tions per se, which have been discussed previously in 
literature [18, 34] and could also be present in our work. 
Related to that, we believe that recent results for optimal 
and matching weights will lead to increasing use of PS-
weighting techniques at the cost of PS-matching [22, 23]. 
It seems of further interest to investigate how Dynamic 
Landmarking will perform in such situations.

Conclusion
Overall and to summarize, we feel that Dynamic Land-
marking is a good visual tool to verify if a Cox model 
used provides a treatment estimate that is not subject 
to confounding or built-in selection bias in PS matched 
trials. One substantial assumption for a valid interpre-
tation of the resulting hazard ratio is that all relevant 
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confounders are considered and no prognostic factors is 
omitted. In practice, however, it will hardly be possible 
to efficiently collect all covariates, confounders as well 
as prognostic factors. While the literature suggests that 
PS-matching can yield valid results in the presence of 
omitted variables if they are correlated with the matched 
confounders, this assertion is applicable only in cases of 
exceptionally strong correlations, which are uncommon 
in practical scenarios [20]. Furthermore, data collec-
tion often involves gathering more variables than those 
used in the final analysis. The choice of covariates for PS 
matching and subsequent analysis relies on current sci-
entific understanding and clinical expertise, but it is also 
influenced by the researcher. Consequently, there is a 
possibility that omitted covariates, which were measured 
but not considered, may introduce built-in selection bias 
or confounding bias. This is precisely where Dynamic 
Landmarking comes into play, providing an opportunity 
to examine whether (and if so, which) covariates could 
distort the treatment effect estimate.
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