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Abstract

In the realm of infectious disease control, accurate modeling of the transmission dynamics

is pivotal. As human mobility and commuting patterns are key components of communicable

disease spread, we introduce a novel travel time aware metapopulation model. Our model

aims to enhance estimations of disease transmission. By providing more reliable assess-

ments on the efficacy of interventions, curtailing personal rights or human mobility behavior

through interventions can be minimized. The proposed model is an advancement over tradi-

tional compartmental models, integrating explicit transmission on travel and commute, a fac-

tor available in agent-based models but often neglected with metapopulation models. Our

approach employs a multi-edge graph ODE-based (Graph-ODE) model, which represents

the intricate interplay between mobility and disease spread. This granular modeling is partic-

ularly important when assessing the dynamics in densely connected urban areas or when

heterogeneous structures across entire countries have to be assessed. The given approach

can be coupled with any kind of ODE-based model. In addition, we propose a novel multi-

layer waning immunity model that integrates waning of different paces for protection against

mild and severe courses of the disease. As this is of particular interest for late-phase epi-

demic or endemic scenarios, we consider the late-phase of SARS-CoV-2 in Germany. The

results of this work show that accounting for resolved mobility significantly influences the

pattern of outbreaks. The improved model provides a refined tool for predicting outbreak tra-

jectories and evaluating intervention strategies in relation to mobility by allowing us to

assess the transmission that result on traveling. The insights derived from this model can

serve as a basis for decisions on the implementation or suspension of interventions, such as

mandatory masks on public transportation. Eventually, our model contributes to maintaining

mobility as a social good while reducing exuberant disease dynamics potentially driven by

travel activities.
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Author summary

As human contacts and contact networks are key to the development and prediction of

infectious disease spread, travel and commuting activities are important components to

be considered in mathematical-epidemiological modeling. Two, often contrasting model-

ing approaches, based on subpopulations and based on individuals can provide insights of

different granularity but also come at different levels of complexity. With this article, we

extend a recently introduced Graph-ODE-based model by the explicit introduction of

mobility-based infection models in which we allow focused nonpharmaceutical interven-

tions, like face mask mandates in public transport, and in which we can explicitly keep

track of secondary cases induced by travel activities, a component mostly not available

with equation-based models. In addition, we introduce a novel multi-layer waning immu-

nity model particularly suitable for late-phase epidemic or endemic scenarios. On a daily

level and geographically small scale, the newly proposed model often develops similarly,

although our results show that complex mobility networks can lead to substantially differ-

ent disease dynamics in the entirety of a federal state or country. The proposed model

thus enables a better understanding of infectious disease dynamics through mobility. It

allows for targeted numerical investigations and thus leads to more appropriate real-

world interventions.

Introduction

According to the World Health Organization (WHO), the COVID-19 pandemic resulted in

14.9 million excess deaths in 2020 and 2021. Despite ongoing efforts to tackle infectious dis-

eases, WHO predictions foresee communicable diseases to still account for 6% of global deaths

by 2048 [1]. The unprecedented development and administration of COVID-19 vaccines has

undoubtedly saved many lives and years of live [2]. Past experiences have illustrated that wan-

ing immunity [2] and reduced vaccine protection against simple transmission (i.e., any infec-

tion) may require continuous pairing of vaccination with nonpharmaceutical interventions

(NPIs) such as face masks or physical distancing, in particular in situations of high transmis-

sion [3]. For instance, after several vaccination campaigns, most SARS-CoV-2 related inter-

ventions had been discontinued in Germany until summer or early autumn 2022. To further

protect vulnerable groups, FFP2 masks became mandatory in all long-distance trains on Octo-

ber 1st, 2022 and federal states could implement additional mask mandates in local or regional

public transport [4].

In order to proactively react to infectious disease propagation, mathematical models are of

great aid. Models of different types have been largely used to guide policy-makers towards evi-

dence-based decisions, see, e.g. [5] for autumn and winter scenarios in Germany in 2022/2023.

To increase their impact, models should be combined with automated pipelines [6] and user-

centric visual analytics tools [7] to allow for swift and optimized reaction. Over the last years,

contributions have been made by a variety of different approaches, to predict SARS-CoV-2

development in Germany. Among these approaches are agent-based and individual-based

models [8–12], models based on ordinary differential equations (ODE) [13–15], delay differ-

ential equations [16], integro-differential equation-based models [17], advanced ODE-based

models [18] using the linear chain trick [19, 20] to waive the implicit assumption of exponen-

tially distributed transition times, hybrid agent-metapopulation models [21], and in particular

standard [22–25] or graph-ODE [26] metapopulation models. From the international
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community, an even ampler set of models has been suggested to mitigate the spread of SARS-

CoV-2. Some highly recognized international models can be found in [10, 11, 27, 28].

Mathematical models based on systems of ODEs, often denoted compartmental models,

are popular tools used in the context of modeling infectious diseases, see, e.g., [29]. This is due

to their well-understood character and established methods for model analysis but also

because of the low computational cost. However, transmission dynamics of communicable

diseases naturally follow the complex network structures of human mobility. Standard ODE-

based metapopulation (see, e.g., [22–25]) or Graph-ODE models [30] can be seen as a simple

compromise between too simple ODE-based and complex agent-based models. They combine

the low computational effort of ODE-based modeling on small- or medium-sized regional

entities with realistic mobility networks between these regions.

Although we see certain advantages of Graph-ODE models [30] over classic ODE-based

metapopulation approaches, the model in [30] neglected travel times and explicit transmission

during commuting. In the current paper, we propose an extended travel time-aware Graph-

ODE model that allows for explicit modeling of travel time and transmission on travel and

commute.

Aside from mobility, disease dynamics can be driven or mitigated by non-protection or

protection against a given pathogen. In particular for late-phase epidemic or endemic scenar-

ios, waning immunity is an important factor to be considered. However, a recent review study

[31] on models used in different forecast and scenarios hubs showed that only four out of 90

models provided information or modeling on waning immunity. We thus propose a multi-

layer waning immunity model based on ordinary differential equations. In this model, we can

consider three different subpopulations with corresponding immunity layers and protection

factors. Furthermore, protection against mild and severe courses of the disease wane with dif-

ferent paces.

The current paper is organized as follows. In the first part of materials and methods, we

introduce a simple ODE-SIR model and extend it by a mobility-model. We then extend a

recently proposed hybrid Graph-ODE ansatz to use our novel travel-time aware model locally.

Then, we additionally introduce an advanced ODE-SECIRS model containing three different

immunity layers and two different paces for waning immunity, against any and severe infec-

tion, respectively. Then, we provide parameters for mobility, contact patterns, and transmis-

sion dynamics. In the results section, we show how the new model advances the previous one.

Eventually, we discuss advantages and limitations and draw a conclusion.

Materials and methods

In this section, we will introduce a novel travel time aware metapopulation model which will

be implemented in a multi-edge graph based on [30] to account for spatially heterogeneous

disease dynamics. For a county-level resolution of Germany, we provide travel and commute

patterns based on [32]. Furthermore, we introduce a multi-layer waning immunity model

based on ordinary differential equations (ODEs) and which is of particular interest in late-

phase epidemic or endemic scenarios. Finally, we will summarize parameters used in our esti-

mations for the late-phase SARS-CoV-2 demonstrator case.

A novel travel time aware metapopulation model

For compartment-based modeling, we need to define a list of disease or infection states. In the

simplest SIR case, we have the states Susceptible for persons who can get infected, Infected or

Infectious for persons who can infect others, and Recovered or Removed for individuals that

cannot get reinfected. In order to introduce our travel time aware metapopulation model, we
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start from this simple ODE-SIR model which writes

SðkÞ0 ðtÞ ¼ � lðkÞðtÞSðkÞðtÞ

IðkÞ0 ðtÞ ¼ l
ðkÞ
ðtÞSðkÞðtÞ �

1

TðkÞI

IðkÞðtÞ

RðkÞ0 ðtÞ ¼
1

TðkÞI

IðkÞðtÞ

l
ðkÞ
ðtÞ ¼ rðkÞðtÞ�ðkÞðtÞ

IðkÞðtÞ
NðkÞðtÞ

ð1Þ

and where ϕ(k)(t) represents the (mean) daily contacts of a person at time t, ρ(k)(t) the (mean)

transmission risk, TðkÞI the (mean) time a person stays infected, and N(k) = N(k)(t) = S(k)(t) +

I(k)(t) + R(k)(t) the (constant) total population size. Note that in these model, we always use

mean or averaged values so that we drop the mean or average description to parameters in the

following.

For the sake of a consistent development of the new model, we have already introduced the

index k that will later be used to refer to a particular region k but which is without meaning for

the presentation in this subsection.

We suppose some initial conditions at t0 to be given by (S(k)(t0), I(k)(t0), R(k)(t0)).

In infectious disease modeling, the number of daily contacts is often estimated from surveys

or contact diaries like [33]. These surveys provide us with average contact information ϕ(k),

summed for all contact locations, and, in particular, traffic-related contacts �
ðkÞ
tr . In our model,

we allow for nonpharmaceutical interventions that change the daily number of contacts over

time. Consequently, we write ϕ(k)(t)≔ ω(k)(t)ϕ(k) and �
ðkÞ
tr ðtÞ≔o

ðkÞ
tr ðtÞ�ðkÞtr , where ω(k)(t) and

o
ðkÞ
tr ðtÞ are suitable reduction factors of the registered baseline contacts.

In the following paragraphs, we will introduce our mobility-model approach for ODE-

based models.

Classic traffic contacts integration and traffic-related NPIs. A straightforward

approach modeling (local) traffic-related contacts in compartmental models is given with a

separation of contacts in traffic and nontraffic. We can then write

�
ðkÞ
ðtÞ ¼ �ðkÞtr ðtÞ þ �

ðkÞ
nt ðtÞ ð2Þ

where �
ðkÞ
nt ðtÞ represents all contacts that happen elsewhere, i.e., in home, school, workplace, or

leisure activity settings. If Eq (2) is plugged into Eq (1), we can model a reduction in travel con-

tacts from day t1 > t0 with factor r 2 [0, 1] by using

e�
ðkÞ
tr ðtÞ≔

�
ðkÞ
tr ðtÞ; t � t1

b�ðtÞ; t 2 ðt1; t1 þ dÞ

ð1 � rÞ�ðkÞtr ðt � dÞ; t � t1 þ d

; 0 < d < 1;

8
>>>><

>>>>:

ð3Þ

where we define δ as a transition interval and b� as a transition contact rate between the change

of the contact rate to ensure that e�
ðkÞ
tr ðtÞ 2 C1

ððt1 � �; t1 þ dþ �ÞÞ with 0< �� 1 for Eq (1) to

be well defined.
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This type of contact reduction for contact locations such as home, school, work, and other
has been considered in [26, 30, 34]. For noncontinuously differentiable parameters, we actually

compute the solution of a new initial value problems (IVP) from t1.

Explicit traffic or mobility modeling. In order to separate disease dynamics on travel

and commute from nontraffic (i.e., home or work) dynamics, we propose a new way by intro-

ducing a mobility-based infection model in which dynamics follow the same mechanisms but

in which the population distribution as well as transmission or mitigation parameters differ;

see Fig 1. In the following and for the sake of simplicity, we will refer to the mobility-based

infection model simply as mobility model or traffic model. Note that this model basically is a

pure infection dynamics model but is specifically parametrized to represent mobility settings.

Note that the novel model is indeed different and expected to behave different where it

relaxes assumptions such as homogeneous mixture. However, for meaningful comparisons

and in order to be consistent, contact patterns across both models have to be adjusted. In the

following, we will explain how to scale contacts that are obtained from classical diary studies to

our new model.

Without loss of generality, let us assume that all individuals have contacts in nontraffic loca-

tions (which is trivial, i.e., in home or work). However, only a subset pðkÞtr 2 ½0; 1� of individuals

also have contacts in traffic locations, as some people may not commute at all or may use pri-

vate transportation modes such as cars without additional passengers such that they do not

come into contact with others (on commuting itself). For demonstration purposes, we con-

sider the classic and the new model on a timescale of one day, where each day has unit length,

and neglect the daily return trip for now. In the final implementation, this approach is then

just down-scaled to half-a-day.

As we are still working with a mean-value model, we assume that mobility completely hap-

pens either at the beginning or the end of the day, respectively. We will provide graphs for

both realizations, but provide the following description with mobility taking place at the end

of the day. To that end, we introduce the daily travel time 0⪡tðkÞtr < 1, such that the mobility

process starts near the end of the day. Note that we will later use a time scale of half a day, with

a length of stay in another region and return trip to the home region, once we introduced a sec-

ond spatial region.

Fig 1. Compartmental transmission model (white) complemented by compartmental transmission mobility

model (gray).

https://doi.org/10.1371/journal.pcbi.1012630.g001
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We further assume that the number of contacts in nontraffic locations, �
ðkÞ
nt ðtÞ, is indepen-

dent of the additional contacts during travel, e.g., the sole fact that a person commutes or uses

public transport does (on average) not reduce the number of contacts to family members,

friends, or colleagues. In order to compute the number of contacts in traffic modes per indi-

vidual traveler, we compute

�
ðkÞ
trjtrðtÞ≔

NðkÞ�ðkÞtr ðtÞ
pðkÞtr NðkÞ

¼
�
ðkÞ
tr ðtÞ
pðkÞtr

: ð4Þ

The end-of-day approximation of our novel model is then given after solving three initial

value problems. We solve

Eq ð1Þ with �
ðkÞ
ðtÞ≔ð1 � pðkÞtr Þ�

ðkÞ
nt ðtÞ þ pðkÞtr

�
ðkÞ
nt ðtÞ
tðkÞtr

; t 2 ½0; tðkÞtr �; ð5Þ

with initial values (S0, I0, R0)≔ (S(k)(0), I(k)(0), R(k)(0)). The scaling of contacts comes from the

fact that pðkÞtr NðkÞ many individuals now have all their nontraffic related contacts within tðkÞtr

many days, tðkÞtr < 1. This means that the value �
ðkÞ
nt ðtÞ, given on daily scale, needs to be rescaled.

Let byðtðkÞtr Þ≔ðbSðkÞðtðkÞtr Þ;bI ðkÞðt
ðkÞ
tr Þ; bRðkÞðt

ðkÞ
tr ÞÞ be the solution of (5) at tðkÞtr . We define the IVP

Eq ð1Þ with �
ðkÞ
ðtÞ≔�

ðkÞ
nt ðtÞ; t 2 ½tðkÞtr ; 1�; ð6Þ

with initial values ð1 � pðkÞtr Þbyðt
ðkÞ
tr Þ and a total population of ð1 � pðkÞtr ÞNðkÞ, i.e., the people that

do not travel, in the denominator. Furthermore, we define the IVP in the travel node by

Eq ð1Þ with �
ðkÞ
ðtÞ≔

�
ðkÞ
trjtrðtÞ

1 � tðkÞtr

; t 2 ½tðkÞtr ; 1�; ð7Þ

with initial values pðkÞtr byðt
ðkÞ
tr Þ and a total population of pðkÞtr NðkÞ in the denominator. The com-

plete solution at t = 1 is then given by the summed solutions of (6) and (7). Geometrically,

IVPs (5) and (6) are assigned to the white local model from Fig 1, while (7) corresponds to the

grey traffic or mobility model.

Here, with pðkÞtr and 1 � pðkÞtr , we used an equal and potentially unrealistic distribution of the

population compartments to traffic and nontraffic node, respectively. In a more complex

model, one would also reduce the relative share of infected commuters, letting pðkÞtr susceptible

but only zpðkÞtr , z 2 [0, 1), infected individuals commute. This reduction has already been used

in [30] and naturally translates to our new model.

In Fig 2, we provide two examples of our new model for the parameters �
ðkÞ
nt ¼ 9, �

ðkÞ
tr ¼ 1,

pðkÞtr ¼ 0:1, TðkÞI ¼ 8, IðkÞ0 ¼ RðkÞ0 ¼ 2, NðkÞ0 ¼ 10000, tðkÞtr ¼ 0:9 and ρ(t) = 0.05 (left) and ρ(t) = 0.1

(right). In the new model, even if the total number of contacts stays the same, the contact

structure changes from an average of ϕ to a bimodal contact distribution. We see that, both,

the mobility-first and mobility-last approach end up with roughly the same number of infec-

tions at the end of the day but with, of course, slightly different numbers of susceptible and

recovered individuals. We demonstrate the application of the scaling procedure to real contact

data in the section Mobility and contact patterns.
In the end, model (1) can be substituted with any type of (complex) ODE-based model (not

yet integrating mobility processes). However, the modeling of the transmission process can be

very different. In other models, a single parameter, often referred to as β, is used to represent

the transmission dynamics [29, 35, 36] and [22–25] directly integrate transmission on or after
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commuting in the force of infection. In the given presentation, we split this parameter into

two different factors, the transmission probability per contact ρ and the contact rate ϕ. This

decomposition allows for a more detailed and flexible parametrization of the transmission pro-

cess. On top of this splitting, we add a second model realizing transmission on commuting

and travel. This additional model can be used, independent of the underlying transmission

dynamics model. We admit that by this splitting, seasonal mobility effects are not yet taken

into account. However, seasonality is integrated by a parametric trigonometric curve as first

described in [30]. This means that seasonality can also be interpreted as a change in the effec-

tive contact rate over time. For more details also see (16).

Theoretical properties of the novel mobility model. In order to give the motivation for

our scaling, we assume constant contact patterns over the considered day, i.e., �
ðkÞ
nt ðtÞ ¼ �

ðkÞ
nt

and �
ðkÞ
tr ðtÞ ¼ �

ðkÞ
tr , t 2 [0, 1]. For the total number of contacts, we then directly obtain

Z tðkÞtr

0

NðkÞ ð1 � pðkÞtr Þ�
ðkÞ
nt þ pðkÞtr

�
ðkÞ
nt

tðkÞtr

� �

dt þ
Z 1

tðkÞtr

ð1 � pðkÞtr ÞN
ðkÞ�

ðkÞ
nt dt

þ

Z 1

tðkÞtr

pðkÞtr NðkÞ
�
ðkÞ
trjtr

1 � tðkÞtr

dt

¼ NðkÞðð1 � pðkÞtr Þ�
ðkÞ
nt tðkÞtr þ pðkÞtr �

ðkÞ
nt þ ð1 � pðkÞtr Þ�

ðkÞ
nt ð1 � tðkÞtr Þ þ �

ðkÞ
tr Þ

¼ NðkÞð�ðkÞnt þ �
ðkÞ
tr Þ;

ð8Þ

where we recognize Eq (2).

Let us note that the parameters of baseline contacts in traffic �
ðkÞ
tr as well as the travel time

tðkÞtr that implicitly appear in (7) need to fit together, e.g., coming from reliable data sources of

the same country. That means that the model outcome for, e.g., fixed �
ðkÞ
tr and arbitrary tðkÞtr is

not anymore in line with the data used in the model. However, in the following sections, we

still allow a certain variance in travel time between different regions, i.e.,

1 � tmax
tr < 1 � tðkÞtr < 1 � tmin

tr , k 2 {1, . . ., n}. Due to data sparsity, i.e., no individual traffic

contact records for arbitrary commuting routes (�
ðkÞ
tr ¼ �tr, k 2 {1, . . ., n}), we only assume

Fig 2. Infection curves for simple (blue) and mobility-based infection model (orange and green) approach. The

orange curve shows the dynamics with mobility first while the green curve shows the mobility last approach. The

example’s parameters are �
ðkÞ
nt ¼ 9, �

ðkÞ
tr ¼ 1, pðkÞtr ¼ 0:1, TI = 8, IðkÞ0 ¼ RðkÞ0 ¼ 2, NðkÞ0 ¼ 10000, tðkÞtr ¼ 0:9 and ρ(t) = 0.05

(left) and ρ(t) = 0.1 (right). In the legend of the plots, we abbreviate nontraffic with NT and traffic with T.

https://doi.org/10.1371/journal.pcbi.1012630.g002
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that

�tr

1 � tmax
tr

≔ const ð9Þ

to consider the limit case without travel times, instead of directly considering (7).

Considering the limit tðkÞtr ! 1 implies �
ðkÞ
tr ! 0 (with the same convergence rate). From (2),

we have

�
ðkÞ
ðtÞ ! �

ðkÞ
nt ðtÞ ð10Þ

and (5) also reduces to (10) on t 2 [0, 1]. The corresponding IVPs (6) and (7) can be dropped

as the interval converges to a null set and the parameters remain bounded.

Thus, we see that the novel model advances the previous model [30] by removing the unre-

alistic assumption of instantaneous travel and allowing for realistic travel times 1 � tðkÞtr .

Mobility complemented metapopulation models through a multi-edge graph. In order

to make use of the novel model from the previous section, assume n different geographic units

(here, denote regions) to be given. We now combine our novel mobility model extension of a

simple ODE model with the graph approach proposed in [30]. For the paper to be self-con-

tained, we visualize the previous approach in Fig 3 (left). There, each region is represented by

the node of a graph while the (multi-)edge E ij between nodes N i and N j represents the (outgo-

ing) mobility and mobility-based exchange is realized instantly twice a day (round trip). In

practice, each combination of sociodemographic group gl, l = 1, . . ., G and infection state zl,

l = 1, . . ., Z can be assigned a number of travelers such that the multi-edge consists of G × Z
single edges. Return trips are realized by a mapping on the same edge, as the vector of weights

on E ij represents the number of outgoing travelers. For the sake of a simple visualization in Fig

3 (left), each region was assigned an ODE-SIS model with only two compartments (S and I)
and two (sociodemographic) groups (e.g., age groups).

This approach extends classic ODE-based models but simplifies the mobility pattern by

instantaneously transferring commuters to their intended destinations, omitting the duration

of transit. Upon reaching their destinations, individuals remain there for the day’s remainder

before they immediately return to their origin. In Fig 4 (left), we provide a schematic represen-

tation of the mobility distribution under this mobility scheme. This assumption offers the

advantage of facilitating the coordination and incorporation of commuters into and out of var-

ious regions by standardizing the timing of exchanges. It affords flexibility in selecting larger

time steps for the applied numerical integration scheme. However, it also abstracts away

Fig 3. Hybrid graph-ODE approach [30] (left) and novel extension with mobility models (right). For

simplification, we visualized an SIS model with two sociodemographic groups (e.g. age groups). In the old approach

(left), no travel time was used while the novel approach models (right) travel time through compartmental mobility

models.

https://doi.org/10.1371/journal.pcbi.1012630.g003
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critical variables such as the travel time. The instantaneous nature of exchanges precludes the

possibility of transmission events during transit, an aspect that can become significant in dis-

ease spread modeling.

Deviating from this approach, our novel approach introduces a refined segmentation of the

mobility activity schedule by delineating distinct mobility profiles based on local travel and

stay times; see Fig 4 (right). The length of stay can be chosen differently for each region. An

even more refined selection, e.g., an individual selection for each edge (i.e., a subpopulation of

a predefined socioecomic group with a given infection state), would make the scaling of the

contacts considerably more complex. This granular approach not only enhances the precision

of our method but also mirrors the complex, real-world patterns of human movement more

closely. However, including these details means that mobility activities are much more spread

out throughout the daily schedule. Therefore, we have to choose substantially smaller time

steps in the numerical integration scheme in order to take into account outgoing or incoming

commuters.

In the novel approach, traveling is realized via mobility or traffic models; see Fig 3 (right).

Again, each region gets assigned a local compartmental model, now complemented by a local

compartment mobility model.

A key advantage of augmenting the framework with local compartment mobility models

lies in the creation of realistic travel chains. The idea is that commuters pass through other

regions during the trip and that the individuals spend time in the mobility models of the region

they are passing through. This temporary inclusion enables potential interactions with other

commuter groups that are simultaneously represented in the same mobility model.

The trip chain T ðj;kÞ between two arbitrary nodes N j and N k is defined as an ordered tuple

of regions,

T ðj;kÞ ¼ ðN j;N R1
;N R2

; . . . ;N kÞ; Ri 2 f1; . . . ; ng n fj; kg; ð11Þ

where j is the index of the starting node, k is the index of the destination node. The transit

nodes N R1
;N R2

; . . . describing the way of travel between these regions.

The construction of these travel chains is achieved by calculating the centroids of both the

origin and destination regions, represented by (multi-)polygons. A line is then drawn between

these centroids; see Fig 5. The sequence in which these regions are encountered along the line

is crucial, as it establishes the order of the travel itinerary. In the final step, the overall travel

duration is allocated proportionally across the regions in the defined trip chain.

Given that the visualized trip from Region N i to Region N k in Fig 3 (right) is a direct trip, a

traveler spends half of the travel time in each of the corresponding two mobility models. For a

trip from Region N i to Region N j, dissected to a trip chain T ði;jÞ ¼ ðN i;N k;N j), a third of

the trip is spent in the single mobility models. This forms our extended hybrid graph-ODE

Fig 4. Timing of the mobility activities. The hybrid Graph-ODE approach from [30] (left) synchronizes population

exchanges at two common daily junctures. The new approach (right) defines an individual structure of mobility

activities for each commuter group, which is considering the travel time and the length of stay in the destination.

Within this daily schedule, all commuters still return to their home location at the same time, exactly at the end of the

day.

https://doi.org/10.1371/journal.pcbi.1012630.g004
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model. The arrows in Fig 3 (right) are representing mobility between the different mobility

models.

To accurately model mobility, it is crucial to first identify which individuals are participat-

ing in commuting activities. We would like to note here that different travel restrictions can be

active for each region, but there should also be the possibility of restrictions on individual

edges, e.g., for the subpopulations of detected or symptomatic individuals. We determine the

number of commuters in compartment z 2 Z leaving region N j for region N k by

zðj;kÞðtÞ ¼
zðjÞðtÞ
NðjÞðtÞ

dðj;kÞz ðtÞo
ðjÞ
z Cðj;kÞ; z 2 Z; ð12Þ

where Z represents the compound of all compartments of the considered local model. Fur-

thermore, d(j,k) denotes a local reduction factor in daily commuting activity which can be

defined for each edge, i.e., any combination of sociodemographic group and infection state.

Region-based restrictions, e.g., isolation of particular infection states or general stay home

restrictions, can be chosen with oðjÞz . For example, we can useo
ðjÞ
ISy;∗

to isolate symptomatic indi-

viduals and to restrict their commuting activities. Finally, we have the total number of people

moving between nodes N j and N k, denoted by C(j,k). In summary, we break the total given

number of people moving from one region to another, into subpopulations of different infec-

tion states for which different restrictions can be applied. These numbers are time dependent.

An important challenge of the approach is tracing the compartmental affiliation of the trav-

eling individuals. We address this issue by employing and extending the method described in

[30], where we perform an approximation step using a single-step integration method. With

this step, we solely advance the infection states of a focus group of individuals (i.e., travelers)

while considering all other persons within the same model (travelers from other destinations

and local population) as contact persons only. This approach is independent of the model

selected and offers some kind of subpopulation-tracing in a population-level model. As the

local travel time is generally small, we also apply a single step method for traffic nodes where

only one subpopulation is present. Fig 6 demonstrates the movement patterns of individual

groups and how interactions between different groups can lead to additional infections during

a trip. Please note that visualization is based on individuals while in practice only subpopula-

tion shares are known.

Fig 5. Determination of the path chains. Given several regions, we draw a line between the start and destination

region (left). Afterwards we consider all regions that are hit by this line and determine the path chain based on the

order (right). Using geodata “Verwaltungsgebiete 1:2 500 000, Stand 01.01. (VG2500)” from https://gdz.bkg.bund.de,

copyright; GeoBasis-DE / BKG 2021, license dl-de/by-2-0, see https://www.govdata. de/dl-de/by-2-0.

https://doi.org/10.1371/journal.pcbi.1012630.g005
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A multi-layer waning immunity model of SECIRS-type

Waning immunity is a paramount feature in epidemiological modeling if late-phase epidemic

or endemic scenarios are considered and immunity of individuals is not everlasting. This, for

instance, is the case for SARS-CoV-2 or influenza, where neither infection nor vaccination

establishes lasting protection against (any) re-infection; see, e.g., [38].

Fig 6. Demonstration of the mobility across three nodes and four edges. The travel time between region i and k, tði;kÞtr , is two times the travel time

from region i to j, i.e., tði;kÞtr ¼ 2tði;jÞtr . For simplification, there is no exchange between nodes k and j. The images read from top left to bottom right and all

subpictures visualize the developments between (and at the end of) the considered time frame, i.e., t0! t1 for top left. At time t0, for all graph nodes,

travelers change from their local infection model to their local traffic infection model. During the interval [t0, t1] (top left), state changes in traffic

infection models are approximated by a single step time integration method while any other (generally an adaptive high-precision scheme like Cash

Karp 5(4) [37]) method can be used in the local nodes. Subpopulations that come from or go to a different location are only considered as contact

populations; see [30]. This is the first part of the functionality implemented on the graph’s (multi) edges. At t1, the exchange between nodes i and j
happens. By t1 (top right), the exchange along the edge between nodes i and j has already happened and three infected plus one recovered individual

have moved from travel model of node N j to travel model of node N i and vice versa. In [t1, t2), the individuals present in travel node N i and subject to

move to k get in contact with the individuals arriving from node N j. After another time step until t2, the travelers between node N i and node N k are

exchanged. From t2 to t3 (bottom left), we further advance the newly exchanged travelers to finally arrive in the local models at t3, i.e., after they have

completed their predefined travel time within the mobility model. For the local models in nodes i and j, we must update the states of the arrived

individuals using the introduced method, as both local residents and travelers are present, and we will integrate new individuals to the region in the

next step. By t3 + ε, ε> 0 (bottom right), all individuals have reached their destination regions, i.e. the travel models are empty, and local models can be

advanced in parallel.

https://doi.org/10.1371/journal.pcbi.1012630.g006
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To motivate and, later, parametrize our model, we first looked into [38], which had consid-

ered Influenza with vaccination and reinfections (with new variants) as well as an early result

for SARS-CoV-2 [2]. We then also considered two recent systematic reviews with 26 studies in

[39] and 65 studies from 19 different countries in [40]. According [39], protection against hos-

pitalisation or serious illness due to previous infections was found to be 74.6% (on average)

after 12 months, waned from 80–90% after two months. In individuals with hybrid immunity,

i.e., a combination of infection and vaccination, the protective effect of hybrid immunity fol-

lowing primary series remained high at 97.4% after 12 months and 95.3% after 6 months fol-

lowing the first booster vaccination—with practically no waning detected. The paper also

shows that protection against reinfection after a previous SARS-CoV-2 infection decreases

from roughly 70% after two months to 24.7% within 12 months. For individuals with hybrid

immunity with primary series vaccination, protection against reinfection after the first booster

vaccination fell from 75–80% to 41.8% within one year interval. Individuals with hybrid

immunity due to first booster vaccination had a protection of 46.5% after 6 months. A further

systematic review and meta-analysis by [40] found similar results. Protection against (any)

reinfection by the Omicron BA.1 variant fell to around 36.1% after 40 weeks, with slightly

faster decline against symptomatic reinfection. Protection remained higher for earlier variants

but also decreased over time. Again, protection against serious illness stayed high for all vari-

ants, including Omicron BA.1, i.e., at 88.9% after 40 weeks. Earlier variants even showed pro-

tection of over 90%. These results confirm that despite the decline in protection against

reinfection, protection against severe courses lasts longer and remains robust. Overall, we con-

clude that the immunity and decline in immunity plays a major role in the course of time and

should be considered with two different paces.

In the following, we present the full SECIRS-type model with waning immunity; see Fig 7.

The motivation for the particular model is threefold and not only in waning immunity. First,

as pre- or asymptomatic transmission plays an important role for SARS-CoV-2, we use a dif-

ferentiation in nonsymptomatic and symptomatic transmission to separate their related con-

tributions to the disease dynamics. Second, we use three different layers of immunity or

subpopulations with different protection factors against mild and severe courses of the disease.

Finally, we introduce the compartments of temporary immunity to realize different paces of

immune waning against mild and severe infections, respectively. As motivated above, our

model realizes quickly waning protection effects against transmission or any infection while it

preserves longer-lasting immunity against severe or critical infections. To account for age-spe-

cific transmission and infection parameters, our model will also be stratified for age groups.

Our open-source implementation in MEmilio [41] allows for a variable number of age groups

as well as for flexible integration of other sociodemographic factors such as income.

Our model is based on the previously developed SECIR-type model in [26] which had been

assessed as high-quality by a recent meta review [42]. The model allows the integration of vac-

cinations and different immunity layers but lacks waning immunity. However, the introduc-

tion of the temporary immunity states changes the meaning of recovery. Recovery always

means to enter a temporary immunity compartment and then a susceptible compartment with

different protection layer. Furthermore, the states enable the simulation of waning immunity

with different paces to suitably model endemic or late-phase epidemic scenarios. The basic

infection process of our model follows an susceptible (S), exposed (E), nonsymptomatic infec-
tious (INS or C for carrier), and, potentially, symptomatic infectious (ISy), infected severe (ISev),

infected critical (ICr), and Dead (D) structure.

We refer to the first subpopulation (shown in gray in Fig 7) as the naive subpopulation.

Individuals of this group have either not seen vaccination or infection, did not have a substan-

tial immune reaction to these or immunity has waned completely, with the last infection or
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vaccination event long ago. Individuals with partial immunity (shown in purple) have an aver-

age protection, while individuals with improved immunity (shown in blue) are best protected

against the pathogen. The arrows in Fig 7 show a permeable model where individuals can

change the subpopulation during simulation.

The different states of the model and their meanings, independent of the particular immu-

nity, are shown in Table 1. To further motivate our model development, we have sketched out

the idea of different protection layers and waning immunity paces on the individual layer in

Fig 8.

In order to cover age group-specific characteristics of the viral dynamics, we stratify the

population by different groups i 2 {1, . . ., G}, where G is the number of age groups. For all

parameters and variables, we add the subscript i to distinguish the different age groups.

Fig 7. SECIRS-type model with high temporary immunity upon immunization and waning immunity over time. The three different immunity

layers are visualized by different colors. The waning is represented by orange arrows. Vaccinations are visualized through dashed green arrows and

reduce susceptibility for transmission for a certain (short) period of time. Recovery happens from any kind of infection state to a temporary immunity

state with normal black arrow. We have highlighted the disease states responsible for transmission by red boxes. For the sake of simplification, we do

not visualize the age group model here.

https://doi.org/10.1371/journal.pcbi.1012630.g007
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In order to introduce the model equations, we define NðkÞ;D
?

i as people from age group

i 2 {1, . . ., G} which are not in the dead compartment. Furthermore, denote by zðkÞj;i , the j-th dis-

ease state and by zðkÞjþ1;i the worsened disease state, e.g., zðkÞj;i : Infectious, No Symptoms, Naive

(age group i) and zðkÞjþ1;i: Infectious, Symptoms, Naive (age group i). We order the 18 disease

states ZI as follows: Exposed Naive Not Infectious, . . ., Dead Naive, Exposed Partial Immunity

Not Infectious, . . ., Dead Improved Immunity.

Let m
zjþ1;i ;ðkÞ
zj;i be the probability of transition from disease compartment zðkÞj;i to zðkÞjþ1;i. For the

sake of simplicity, we dropped the second superindex (k) on zj,l, l 2 {i, i + 1} here. Then, 1 �

m
zjþ1;i ;ðkÞ
zj;i is the probability to recover from disease state zðkÞj;i . Let further TðkÞzj;i

be the time in days

an individual stays in a compartment zðkÞj;i . For zj referring to a disease state with partial or

improved immunity, we introduce the simplified factor κ as the counterpart of the relative

reduction 1 − κ between TðkÞ
zðkÞj;i

and the corresponding time spent in the naive compartment,

e.g., for nonsymptomatic individuals

TðkÞINS;II;i
¼ kTðkÞINS;N;i

: ð13Þ

Additionally, we define reduction factors p* for the extended protection against severe

courses in the partial and improved immunity layers. The basic functioning of these

Table 1. Model compartments and meanings for disease transmission modeling.

Compartment Symbol Description

Susceptible S Currently not infected, susceptible to infection.

Exposed E Infected but not yet infectious.

Infected, no symptoms INS Infected and infectious but pre- or asymptomatic.

Infected, symptoms ISy Symptomatic, infected and infectious.

Infected, severe ISev Treated in hospital, isolated.

Infected, critical ICr Treated in intensive care, isolated.

Dead D Died, removed from model.

Temporary immunity I Temporarily immune after completed vaccination or infection.

https://doi.org/10.1371/journal.pcbi.1012630.t001

Fig 8. Motivation on different immunity layers and waning immunity waning paces on the individual layer. Recent infections or vaccinations

protect against transmission or any infection for a short time. Less-recent immune boosters may not adequately protect against transmission but may

result in good protection against a severe course of the disease.

https://doi.org/10.1371/journal.pcbi.1012630.g008
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parameters can be described by

m
zjþ1;M;i ;ðkÞ
zj;M;i ¼

pzjþ1;M;i

pzj;M;i

m
zjþ1;N;i ;ðkÞ
zj;N;i ; ð14Þ

where i 2 {1, . . ., G} again denotes to the age group and zj,* 2 {INS,�, ISy,�, ISev,�, ICr,�} refers to

the disease states. Here, we added the index M 2 {PI, II} describing the affiliation to the immu-

nity layer. Summarized, we use reduction factors to reduce the probabilities, which we define

for the naive immunity layer, to use them with two other layers. For more details about the

reduction factors, we refer to [26]. Furthermore, we define TðkÞWPI ;i and TðkÞWII ;i as the time spent in

susceptible compartment SðkÞPI;i and SðkÞII;i, respectively, if no infection event occurs, i.e., these

times define the denominator of the waning rates. The (local) vaccination rates of the different

immunity layers M 2 {N, PI, II} are given by vðkÞM;i, i 2 {1, . . ., G}. Eventually, we define by x
ðkÞ
INS;i

and x
ðkÞ
ISy;i

, i 2 {1, . . ., G}, the share of (locally) nonisolated nonsymptomatic and symptomatic

infectious individuals.

In this section, we now provide the elementary model processes in a general representation.

For the full model equations, see appendix S1 Text. As the susceptible compartments contain

the transmission processes to the exposed compartment as well as the waning immunity from

the temporary immunity compartments and to the susceptible compartment of the inferior

protection layer, we provide these equations first. For the three different groups of susceptibles

M 2 {N, PI, II}, i 2 {1, . . ., G}, these write

dSðkÞM;i

dt
¼ � SðkÞM;ir

ðkÞ
M;i

Xn

j¼1

�
ðkÞ
i;j

x
ðkÞ
INS;j
ðIðkÞNS;N;j þ IðkÞNS;PI;j þ IðkÞNS;II;jÞ þ x

ðkÞ
ISy ;j
ðISy;N;j þ IðkÞSy;PI;j þ IðkÞSy;II;jÞ

ND? ;ðkÞ
j

� vðkÞM;iS
ðkÞ
M;i �

1

TðkÞWM ;i

SðkÞM;i

|fflfflfflfflffl{zfflfflfflfflffl}
≕0 for M¼N

þ
1

TðkÞWMþ1 ;i

SðkÞMþ1;i

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
≕0 for M¼II

þ
1

TðkÞIM;i

I ðkÞM;i

|fflfflfflfflffl{zfflfflfflfflffl}
≕0for M¼N

;

ð15Þ

Here, we used the simplified notation of M + 1 = PI if M = N and M + 1 = II if M = PI and for

the sake of a shorter presentation, we skipped the dependence on t. Furthermore, r
ðkÞ
M;i is the

transmission risk per contact which is modeled through a baseline transmission risk r
ðkÞ
0;N;i, a

potential reduction factor for better-protected individuals pE,PI and pE,II and a parametric

trignometric curve

r
ðkÞ
M;i ¼ r

ðkÞ
0;M;i 1þ k sin p

t
182:5

þ
1

2

� �� �� �

; M 2 N; PI; II ð16Þ

with r
ðkÞ
0;PI;i ¼ pE;PI r

ðkÞ
0;N;i and r

ðkÞ
0;II;i ¼ pE;II r

ðkÞ
0;N;i and where t is the day of the year.

Furthermore, except for the exposed and dead compartments, we can either recover from a

particular disease state to a temporary immunity state or move on to an aggravated state of the

disease. For any given disease state zj 2 ZI excluding the different exposed states, we can
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generically write

dzðkÞj;i ðtÞ
dt

¼
m

zj;i ;
ðkÞ

zj� 1;i

TðkÞzj� 1;i

zðkÞj� 1;iðtÞ �
zðkÞj;i ðtÞ
TðkÞzj;i

; ð17Þ

where we assume that zj−1,i is the previous milder infection state. For future developments and

in order to determine the most influential parameters with respect to different the model out-

comes, we performed a sensitivity analysis using the Morris screening method [43]. This

method calculates elementary effects for each parameter by systematically varying one parame-

ter at a time while leaving other parameters unchanged. We present the elementary effects of

the individual parameters with respect to new infections and number of deaths.

In short, the sensitivity analysis indicates that the transmission risk, followed by the protec-

tion factors against any or symptomatic infection, the reduction of the infectious time for pro-

tected individuals and the overall infectious times have the highest influence on the number of

new infections. The high influence of the transmission risk suggests that small changes in the

probability of transmission upon contact can lead to significant variations in number of daily

new infections. It should also be mentioned that a change in the probability of infection due to

commutativity is equivalent to a change in the contact rate and therefore the result also applies

to the latter. In terms of ICU occupancy, the analysis indicates that the probabilities of transi-

tion from the symptomatic to the severe state and from the severe state to the critical state have

the highest impact, shortly followed by the transmission risk. For more details, we refer to

appendix S1 Fig.

In the full model equations, we also provide confirmed compartments. However, there is

no flow from undetected to detected compartments in the model equations. Detection within

a node is modeled implicitly via xINS;i
and xISy;i

. The detected compartments are only used and

filled via testing on traveling and commuting. For more details, see [34]. However, this mecha-

nism is not used in the underlying study.

An explanation of all parameters for defining the model in Eqs (15)–(17) is provided in

Table 2. In order to solve the local models, we use an adaptive Runge-Kutta Cash Karp 5(4)

integration scheme [37] to ensure a small discretization error.

Parameterization

We will showcase our novel model with a synthetic outbreak scenario and according to the

developments of SARS-CoV-2 in autumn 2022 in Germany. As reported case data is divided

into the six age groups: 0–4 years, 5–14 years, 15–34 years, 35–59 years, 60–79 years, and 80

years and older, we stratify our model accordingly.

Mobility and contact patterns. The dataset user for inter-county commuting in Germany

is based on a macroscopic transport model and a synthetic population for Germany. The trans-

port model called DEMO [44] (short for DEutschlandMOdell, i.e., German Transport Model)

is aimed to forecast transport in Germany when changing external factors like political policies

or technological novelties. The model consists of multiple origin/destination (OD) matrices

for each transport mode containing trip counts, average travel distances and average travel

times for each origin/destination relation. Origins and destinations are described as traffic

analysis zones. In this case the study area (Germany) is divided in 6633 traffic analysis zones

which translates to matrices of size 6633x6633. The synthetic population is generated from the

micro census 2017 and is spatially allocated to the traffic analysis zones. Additionally each syn-

thetic person is binned into a behavioral homogeneous person group considering attributes

like age and gender. In order to generate trip chains, e.g., home! work! leisure! shopping
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! home, daily routines including schedules, average travel distances and times are extracted

from the national household survey Mobility in Germany 2017 [45]. Counts of each routine

are transformed into discrete probability distributions for each person group; for a more

detailed description on the process, see [46]. Further disaggregation iterates through each per-

son where a daily routine is picked out of the according distribution. Since routines start and

end at home, the start and end zone for the first respectively the last activity is known. For all

activities in between, possible destination zones are selected based on travel distance from the

starting zone and the trip count from the macroscopic model. The output is a list of trips

between zones for each person. Finally the data is aggregated again to an OD relation level

with trip counts, transport mode and person group distribution. The preliminary age-group

related OD matrices have been published freely in [47]. Note that in this study age group

related traffic has been recomputed by (12).

For the underlying study with an aggregated mean-value model, we only allow one travel

per day and thus take workplace-related commuting from the described data set. We assume

that all trips are possible in the time line of one day each. For the given data, we provide the

ratio of internal and inbound commuters in Fig 9 (left) for each county in Germany, sorted in

ascending order of the internal commuter ratios. In Fig 9 (right), we present the ratio of

inbound commuters to the total local population of the considered county. The figure shows,

Table 2. Parameters used to define our multi-layer waning immunity model of SECIRS-type; Eqs (15)–(17).

Parameter Description

ϕi,j Daily contact rate between two age groups i and j.
ρ0,N Baseline transmission risk for people located in the naive susceptible compartments

k Seasonality parameter

ND?
i

People from age group i which have not died during simulation.

mz2
z1

Probability of transition from compartment z1 to z2.

Tz1
Time in days an individual stays in a compartment z1.

xINS;i
Proportion of asymptomatic infectious people who are not isolated.

xISy;i
Proportion of symptomatic infectious people who are not isolated.

κ Reduction factor for time spans of asymptomatic and symptomatic infections of individuals with

partial or improved immunity.

pEPI
Effectiveness of partial immunity protection against infection.

pISy;PI
Effectiveness of partial immunity protection against symptomatic infection.

pISev;PI
Effectiveness of partial immunity protection against hospitalization.

pICr;PI
Effectiveness of partial immunity protection against ICU treatment.

pDPI
Effectiveness of partial immunity protection against death.

pEII
Effectiveness of improved immunity protection against infection.

pISy;II
Effectiveness of improved immunity protection against symptomatic infection.

pISev;II
Effectiveness of improved immunity protection against hospitalization.

pICr;II
Effectiveness of improved immunity protection against ICU treatment.

pDII
Effectiveness of improved immunity protection against death.

TWPI
Rate of waning immunity of susceptible who are located in the partial immunity state.

TWII
Rate of waning immunity of susceptible who are located in the improved immunity state.

vN Vaccination rate of people with naive immunity.

vPI Vaccination rate of susceptible with partial immunity.

vII Vaccination rate of people with improved immunity.

https://doi.org/10.1371/journal.pcbi.1012630.t002
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on the one hand, the influence of inbound commuters on the number of total workers and

that the share compared to the total population is relevant, if not even substantial.

Local contact patterns. In the previous sections, we have already explained how we

model contact patterns in mobility and nonmobility settings, given survey numbers of contact

ϕtr and ϕnt. The contact rate is an elementary part of the calculation of the transmission or

infection rate of the persons in the susceptible compartments. As in [30], we select contact

locations Home, Work, School, and Other and choose our baseline contact patterns based on

[48] and [49]. To explicitly model, the contacts in transportation, we additionally subdivide

the group of Other. This is done based on the contact surveys in [50], which numbers have

been provided with [51] in an accessible format. From this data we infer the relative share of

contacts in transportation (with respect to other), to apply these factors element-wise to the

contact matrix from [48]. Inter- and extrapolation of the aggregated contact data to the given

age groups is done with recent demographic data for Germany; [30]. The final contact baseline

is shown in Fig 10. Local contact reduction through NPIs is modeled as in [30]—selecting a

zero minimum contact pattern.

Especially for the school contact location, vacation times are important. We have thus

implemented the federal state dependent vacation times by adjusting the (school) contact

matrix in the corresponding periods. We admit that our model is not (yet) adapted for, e.g.,

computing the import risk from hot spots outside Germany and that additional models (and

Fig 9. Analysis of workplace commuting mobility in Germany. Ratio of internal commuters to inbound commuters

(left) and incoming commuters against the respective local population (right). The counties are sorted in ascending

order.

https://doi.org/10.1371/journal.pcbi.1012630.g009

Fig 10. Age-resolved contact matrices for Germany. The images show the average number of contacts in each of our five contact location. Values

that are zero are displayed in white.

https://doi.org/10.1371/journal.pcbi.1012630.g010
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data) might be needed for vacation time. This however is not the main focus of our improve-

ment and could be addressed with other established models such as [52]. On average, however,

as reported in previous publications [13, 30], the parametric trigonometric curve implemented

for seasonality fits very well the observed surges and declines of infections over the year.

Epidemiological parameters for SARS-CoV-2 Omicron variant BA.1/2. In the last part

of materials and methods, we focus on the epidemiological parameters specific to SARS-CoV-

2 omicron variant BA.1/2, our demonstration case. The introduced model is a highly detailed

model. We have explained the required parameters in Table 2. Depending on the available

data, we provide stratified parameter ranges. Parameters have been obtained from an extensive

literature research and prior findings with our previous models in [26, 30, 34]. Given the litera-

ture findings on waning immunity as mentioned in the introduction of the waning immunity

model, we implement a rather quick immune waning for any transmission, over several

months, and use TIPI
¼ TI II

¼ 60 days. To ensure a long-term protection against severe infec-

tion, we set TWPI
¼ TWII

¼ 720 days, which means that very little waning happens in a one year

time period. For a summary see Table 3. The parameters for the baseline transmission proba-

bility and the risk of being admitted to ICU were manually fitted with the observed data, start-

ing from the findings in [30]. Theoretically, the transmission probability ρ could be chosen

differently for the mobility model and the local contact model to account for varying interac-

tion qualities. However, due to the aggregated view of ODE-based models and limited data

availability, we decided to use the same value across both models, thereby assuming an identi-

cal transmission probability in both models. For most parameters, we provide a range from

which we uniformly take parameter samples. By making a large number of Monte Carlo runs,

we obtain good estimate of the uncertainty in the output.

To determine the initial states for the individual compartments of our model, we use the

German case numbers published by the Robert Koch-Institute [68]. The idea of transforming

the confirmed case data to initial states for each compartment was given in [26]. We follow

this approach while implementing the changed immunity layers in this approach. For more

details, we refer to appendix S1 Text. The presented SECIRS model is highly parameterized.

We therefore use a sensitivity analysis to determine the parameters that have the greatest

impact on the disease dynamics.

Results

In this section, we use and validate the introduced SECIRS-type model with three different

immunity layers and two paces for waning immunity and the novel travel-time aware mobility

model.

We will consider several settings in corresponding subsections:

• First, we consider the separated effects of the waning immunity model, validated qualita-

tively over a two years time frame with wastewater data.

• Second, we numerically validate that the novel mobility method is indeed a generalization of

[30] and convergences to the old method if maximum travel time goes to zero.

• Third, we provide a synthetic outbreak scenario with a infection hotspot in Cologne and

show how infection numbers spread differently with the newly introduced method.

• Fourth, we consider the Post-Oktoberfest and beginning of winter season, where we validate

our model based on reported ICU occupancy.

• Finally, we provide a retrospective analysis of SARS-CoV-2 transmissions in the late phase of

the pandemic and also use ICU occupancy as additional validation.
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Validation of a global waning immunity model using wastewater data

Given the complexity of our proposed model, it is important to show the advancements on the

particular elements separately. Therefore, we consider the results of the immune-waning

model separately from the impact of the mobility scheme and use a single (waning immunity)

model for the whole of Germany over a two years time frame (2022–2024). The parameters

used in this analysis differ slightly from those used in the spatially resolved model (Tables 3

and 4) since we homogeneously aggregate heterogeneous immunity dynamics over the whole

of Germany. We prevented from tweaking parameters too much to improve the global fit, as

inferred parameters would necessarily be wrong on a local scale. As changing or temporarily

absent testing strategies lead to highly biased numbers of confirmed cases, we use wastewater

data as a less biased proxy to adequately capture disease dynamics. From Fig 11, we see that

the new model qualitatively represents the three major surges and declines over the two year

Table 3. Model parameters for spatially resolved model and Omicron BA.1/2. If parameters are stratified by age, vertical lines separate the corresponding columns. Col-

umn Reference provides used references in addition to the findings in [26, 30, 34].

Age Group

Param. 0–4 5–14 15–34 35–59 60–79 80+ Reference

ρ0,N [0.03, 0.06] [0.075, 0.105] [0.12, 0.15] [0.15, 0.225] [30] & Fitted

k [0.1,0.3] [13, 26, 30]

xINS
sigmoidal curve from 0.5 to 1 on incidence 10 to 20 [34]

xISy
sigmoidal curve from [0.0, 0.2] to [0.4, 0.5] on incidence 10 to 150 [34]

TE 1.66 [53–55]

TINS 1.44 [53, 55]

TISy [6.58,7.16] [56]

TISev [1.8,2.3] [2.5,3.67] [3.5,5] [4.91,7.01] [57]

TICr [9.29, 10.57] [10.842,12.86] [11.15, 13.23] [11.07,13.25] [57]

TIPI
60 [39, 58]

TI II
60 [39, 58]

TWPI
720 [39, 58]

TWII
720 [39, 58]

m
ISy
INS

[0.60,0.80] [0.7,8.3] [0.85,0.9] [59]

m
ISev;N
ISy;N

[0.006,0.009] [0.0048,0.0072] [0.006,0.0092] [0.00147,0.0222] [0.0375,0.045] [0.07,0.0875] [28, 60, 61]

m
ICr;N
ISev;N

[0.0104,0.0208] [0.0104,0.0208] [0.0104,0.0208] [0.0208,0.0416] [0.052,0.0728] [0.0728,0.0936] [30] & Fitted

m
DN
ICr;N

[0.00,0.039] [0.039,0.0702] [0.117,0.195] [0.195,0.273] [62–64]

κ 0.5 [65]

pEPI
1.0 [39]

pISy;PI
[0.039, 0.254] [66]

pISev;PI
[0.18, 0.48] [67]

pICr;PI
see pISev;PI

pDPI
see pISev;PI

pEII
1.0 [39]

pISy;II
[0.656, 0.705] [66]

pISev;II
[0.81, 0.9] [67]

pICr;II
see pISev;II

pDII
see pISev;II

https://doi.org/10.1371/journal.pcbi.1012630.t003
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period indicated by the wastewater samples from the AMELAG [69]. On the other hand, the

old model wrongly results in an eradication of the virus in the population. We furthermore see

that the development of reported cases diverges significantly from the wastewater measure-

ments. We see that the global model does not fit well several local peaks induced by a heteroge-

neous spread of COVID-19 in Germany, see also the local wastewater measurements in

appendix S2 Fig. Additional considerations to use and validate our novel model in different

scenarios will be the focus of future work.

Numerical validation of novel mobility scheme

In the section “Theoretical properties of the novel mobility model”, we have already shown

that the novel mobility scheme reduces to the previously suggested model [30], as the travel

time approaches zero. For validation, we here present the numerical convergence of the novel

model to the previously proposed model. To simplify disease dynamics, we use local SIR mod-

els (1) for the five German counties Cologne, Leverkusen, Rheinisch-Bergischer Kreis, Rhein-

Table 4. Model parameters for the global SECIRS-Type model without spatial resolution. The table shows the basic transmission probability (r
ð0Þ

i ) and the increased

protection (pEPI
and pEII

) for individuals with higher immunity.

Parameter Age Group

0–4 5–14 15–34 35–59 60–79 80+

ρ0,N [0.06, 0.12] [0.15, 0.21] [0.24, 0.3] [0.3, 0.4]

pEPI
0.4

pEII
0.4

https://doi.org/10.1371/journal.pcbi.1012630.t004

Fig 11. Comparison of the simulated and reported cases with wastewater measurements over a two-year period (2022–2024). New symptomatic

infected individuals simulated with novel immune-waning model (blue) and existent no-waning model (orange). Obtained AMELAG wastewater

data (red) and reported cases (green). The solid line represents the median of the simulation results, while the shaded area indicates the 25th to 75th

percentile.

https://doi.org/10.1371/journal.pcbi.1012630.g011
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Sieg-Kreis, and Bonn with realistic demographies and parameters as given in Fig 2. For the ini-

tial conditions, we set 0.1% of the total populations to be infected and zero recovered individu-

als. We then compute the solution over 50 days using the novel mobility scheme and

subsequently evaluate the difference to the solution obtained with the existing instantaneous

travel mobility scheme [30] at the last date. Table 5 shows that, as travel time decreases, the dif-

ference between the two model outputs converges to zero. Additionally, we present the conver-

gence behavior using map plots for the different values of tmax
tr in Fig 12.

Fictional outbreak scenario

In this section, we want to show the impact of the mobility on the evolution of the disease

using a fictional outbreak scenario. Therefore, we assume that in the initial stage to only have a

single county which has a high amount of exposed people. In this context, we assume 5% of

Cologne’s population to be exposed to the virus. Although this number is immense, it was cho-

sen by intention to directly visualize the qualitative propagation of new cases to connected

counties.

To emphasize the influence of mobility, we compared our results with the mobility scheme

presented in [30] (here denoted existing instantaneous travel method, both times using our

multi-layer waning immunity model. The advantage of the novel mobility approach account-

ing for travel and transmission during commuting, contrasting the immediate transfer of trav-

elers in [30].

In the maps of Fig 13, we illustrate the progression of the total number of currently infected

individuals using both approaches over 90 days (excluding Cologne to restrict the colorbar). In

particular in the left-most part of the figure, we see that the virus attains counties which have

not or almost not been affected with the existing instantaneous travelmethod. We see that the

novel approach is leading to a different propagation pattern also easily attaining indirect or

loosely coupled regions. The very large number of exposed in Cologne leads to the rapid

increase in the upper right part. The second and higher peak in October is due to the waning

against any transmission and our seasonality factor in the transmission processes. If we look at

the number of infections in all counties except Cologne, a comparison of the median values of

the two methods shows that far more individuals will get infected using the novel approach.

Table 5. Numerical convergence of the novel mobility scheme. The table shows the normed difference between the outcomes of the previous and the novel mobility

scheme after 50 days of simulation with values of tmax
tr ! 0.

tmax
tr Difference

Total Cologne Leverkusen Rhein.-Berg. Kreis Rhein-Sieg-Kreis Bonn
1.00e + 00 1.10e + 05 4.27e + 04 1.18e + 04 1.48e + 04 2.46e + 04 1.61e + 04

1.00e − 01 7.81e + 03 3.12e + 03 8.69e + 02 6.12e + 02 1.73e + 03 1.48e + 03

1.00e − 02 7.58e + 02 2.92e + 02 9.18e + 01 1.05e + 02 1.69e + 02 1.01e + 02

1.00e − 03 7.56e + 01 2.91e + 01 9.15e + 00 1.04e + 01 1.69e + 01 1.01e + 01

1.00e − 04 7.55e + 00 2.90e + 00 9.14e − 01 1.04e + 00 1.69e + 00 1.01e + 00

1.00e − 05 7.55e − 01 2.90e − 01 9.14e − 02 1.04e − 01 1.69e − 01 1.01e − 01

1.00e − 06 7.55e − 02 2.90e − 02 9.14e − 03 1.04e − 02 1.69e − 02 1.01e − 02

1.00e − 07 7.55e − 03 2.90e − 03 9.14e − 04 1.04e − 03 1.69e − 03 1.01e − 03

1.00e − 08 7.55e − 04 2.90e − 04 9.14e − 05 1.04e − 04 1.69e − 04 1.01e − 04

1.00e − 09 7.55e − 05 2.90e − 05 9.14e − 06 1.04e − 05 1.69e − 05 1.01e − 05

1.00e − 10 7.55e − 06 2.90e − 06 9.14e − 07 1.04e − 06 1.69e − 06 1.01e − 06

1.00e − 11 7.56e − 07 2.91e − 07 9.11e − 08 1.05e − 07 1.68e − 07 1.01e − 07

https://doi.org/10.1371/journal.pcbi.1012630.t005
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This is in accordance with the exponential increase in case number in so far virus-free regions.

Similar process had been observed for the beginning of the pandemic when only a small num-

ber of regions was affected at all. The corresponding process is also reflected in the plots of the

maps, where we already see a much more divided infection pattern on the first day.

Developments of Post-Oktoberfest until winter season 2022 in Bavaria

To further validate the effect of the novel mobility model, we simulate the Post-Munich Okto-

berfest period until the beginning of the winter season 2022. The Oktoberfest, which took

place from September 17 to October 3, 2022 and attracted around 5.7 million visitors [70].

Unfortunately, conducted tests have decreased significantly over 2022 and positive rate has

been high, see [71] and Fig 14, which makes reported case numbers quite unreliable and com-

parisons difficult. On an aggregated level we thus also include reported ICU numbers from

[72]. We initialize the model based on the official reported data one week after the festival, at

October 10 2022, and simulate until the end of the year using the parameters in Table 3. We

adjusted the transmission probability ρ with a factor of 0.8. While the simulate mild cases

largely exceed the reported cases (see Fig 14 (left)), which is no surprise given the low number

of tests and high positive rate, the simulated ICU admissions come close to the reported ICU

admissions; see Fig 14 (right).

To provide spatial details of our simulations, we present the simulated number of symp-

tomatic infections in a spatially resolved plot of Bavaria. In Fig 15, we see the spread of infec-

tions across the federal state, with the numbers presented relative to the local population.

Fig 12. Numerical convergence of novel mobility scheme on map plots. The figure presents a grid of maps, each

illustrating the spatial distribution of normed difference as provided in Table 5 for the respective county. The counties

displayed are Cologne, Leverkusen, Rheinisch-Bergischer Kreis, Rhein-Sieg-Kreis, and Bonn. The maps use a

logarithmically scaled colorbar. Using geodata “Verwaltungsgebiete 1:2 500 000, Stand 01.01. (VG2500)” from https://

gdz.bkg.bund.de, copyright; GeoBasis-DE / BKG 2021, license dl-de/by-2-0, see https://www.govdata.de/dl-de/by-2-0.

https://doi.org/10.1371/journal.pcbi.1012630.g012
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Late-phase pandemic in Germany

We now consider the late-phase SARS-CoV-2 pandemic in Germany. We begin our simula-

tion on August 1st, 2022 and examine the official face mask obligation in public transport,

which was maintained until February 2023 and allowed both FFP2 and surgical masks [73].

Beginning October 1, 2022, nationwide enforcement of the use of FFP2 masks on long-dis-

tance public transportation [73] was implemented. However, there were differences in local

public transportation between the German federal states. In Lower Saxony [74] and Hamburg

[75] the FFP2 mask obligations also existed in local public transport but were dropped at the

start of October 2022.

The newly introduced mobility scheme offers us a flexible approach to implement actions

within the mobility node, without necessitating changes to the underlying local model. Within

our model, compliance with the mask mandate can be represented by altering the effective

contact rate through a damping of the contacts. As shown in [76], the proper usage of FFP2

masks is crucial. For both individuals correctly wearing FFP2 masks, the risk of infection dur-

ing a 20-minute encounter with an infected person was estimated to be as small as 0.1%. Nota-

bly, [76] also demonstrates that without any form of mask-wearing, the probability of

infection approaches 100%. Therefore, we implement the effect of FFP2 masks by a reduction

factor of 0.1% to the effective contact.

Throughout much of the pandemic, the German national testing strategy was predomi-

nantly focused on testing individuals displaying symptoms [77]. Therefore, we assume that the

number of confirmed cases corresponds directly to the daily growth of symptomatic

Fig 13. Propagation of infections with existing instantaneous travel method [30] and noveltravel time aware method for an outbreak scenario.

Median propagation of infections in German counties (except Cologne) over 90 days with the existing method (top row maps) and the novel method

(bottom row maps). In the plots of the right hand side, we provide the evolution of case numbers in Cologne and the rest of Germany. The shaded area

visualizes the p25 and p75 percentile results of the 500 ensemble runs. The median value is given as solid line. Using geodata “Verwaltungsgebiete 1:2

500 000, Stand 01.01. (VG2500)” from https://gdz.bkg.bund.de, copyright; GeoBasis-DE / BKG 2021, license dl-de/by-2-0, see https://www.govdata.de/

dl-de/by-2-0.

https://doi.org/10.1371/journal.pcbi.1012630.g013
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individuals if the detection rate stays constant. This is also in line with the overall decreasing

accuracy in positive-testing asymptomatic cases with regard to the Omicron variant [78]. As

official reporting was suspected to have large underdetection factors, we based our compari-

sons not only on the official reported case numbers but also on the self-reported cases in the

Fig 14. Comparison of simulated and reported data for Bavaria and conducted tests. The top left figure shows

simulated daily new symptomatic against reported cases in Bavaria, with data smoothed using a 7-day moving average

to reduce oscillations. The top right figure compares simulated ICU admissions to reported ICU data. The bottom

figure presents the total weekly number of tests conducted per 100 thousand individuals alongside with the positive test

rate in Bavaria for the entire year 2022.

https://doi.org/10.1371/journal.pcbi.1012630.g014

Fig 15. Spatial distribution of simulated symptomatic infections in Bavaria for selected days of the Post-

Oktoberfest and beginning winter season 2022. Presented values are provided relative to local population. Using

geodata “Verwaltungsgebiete 1:2 500 000, Stand 01.01. (VG2500)” from https://gdz.bkg.bund.de, copyright; GeoBasis-

DE / BKG 2021, license dl-de/by-2-0, see https://www.govdata.de/dl-de/by-2-0”.

https://doi.org/10.1371/journal.pcbi.1012630.g015
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DigiHero [79] study. We extrapolated the reported infections from 33730 participants in

autumn 2022 to the total population of Germany. In Fig 16 (left), we provide the results of two

different ensemble runs with 500 individual runs each where either no face masks (blue) or

FFP2 (green) masks in transportation have been simulated. We visualize shaded areas for the

regions between the p25 and p75 percentiles of the 500 runs and solid lines for the median

results.

Until beginning of October, Fig 16 (left) shows substantially larger numbers of infected

individuals for the scenario without face masks. The quick decline in numbers in this scenario

is due to the very large number of infected individuals before and the temporal immunity satu-

ration obtained. We see that face masks in transportation alone cannot prevent peaking of case

numbers. However, the overall peak is considerably smaller (around 20%). Face masks in

transportation can thus contribute in ensuring functionality of critical infrastructure and pre-

venting hospital bed shortages. Compared to reported data, we still see a nonnegligible differ-

ence. However, we also assume important underdetection, as test-positive rates range between

30 and 50%; see [80]. In all curves, we similarly see a first stagnation in numbers and decline of

infections towards end of the considered time frame.

An important advantage of our approach lies in its ability to quantify infections occurring

during participation in traffic, achieved through the utilization of the traffic models. This offers

a fundamental advantage over conventional structures. The significantly different probabilities

of infection due to the implementation of a mask obligation in the transport models are clearly

reflected in the daily number of transmissions in the traffic models obtained by our simulation;

see Fig 16 (center). In order to validate the results obtained by our simulation, we compare to

ICU occupancy in Germany from [72] which is a more stable and reliable indicator. In Fig 16

(right), we see that our model is able to capture the reported ICU occupancy for the second

part of the simulation very well while discharges on initially admitted are overestimated.

Unfortunately, we could not resolve the mismatch in the beginning of the simulation period as

ICU data is reported without age distributions, while average time spent on ICU varies with

age [30, 57]. We here tried to extrapolate a demographic distribution of initial ICU occupancy

using demographic distributions of reported cases. In future works, more advanced methods

for initial state estimation will be developed.

Finally, we want to illustrate the spread of the disease on a geographical basis. In Fig 17, we

provide the (median) daily new numbers of symptomatic infected individuals on county level.

Fig 16. Daily number of symptomatic infections, transmissions and ICU occupancy. The simulations provide results using correctly worn FFP2

masks (green) and no face masks (blue) in the mobility models. The number of daily symptomatic infections (left, blue and green) is compared to

data provided by the DigiHero study (red), where the number of participants is extrapolated to the population in Germany and the official reported

cases (yellow). Median values are indicated by the solid lines and shaded areas between the dotted lines represent the p25 and p75 percentiles of the

particular ensemble runs. In the center plot, we visualize the daily transmission in the mobility models during the course of the simulation on a

logarithmic scale. Furthermore, simulated ICU occupancy with different mask usage (right, blue and green) is compared to reported ICU

occupancy (right, orange).

https://doi.org/10.1371/journal.pcbi.1012630.g016
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This clearly emphasizes once again that the masks, as used only in the mobility models, have a

significant influence on the spread of infection. The far higher peak in the case where no face

masks are worn is clearly recognizable around day 50. Again, due to a temporal immunity sat-

uration, we find a decline from day 70 to day 90 in the nonrestricted scenario while the face

mask scenario numbers decline slower.

Discussion

The results presented in this study are based on a mean-value model, a multitude of assump-

tions and different parameters. Although based on an extensive literature review and previous

findings in [26, 30, 34], there is still uncertainty about many (virus-specific) parameters.

Although the distinction into 3–4 different immunity layers through seropositivity studies [81,

82], a division into three different subpopulations is a rough aggregation. Furthermore, our

model is not suited for simulation the evolution of virus variants or the competing circulation

of different variants. An inherent limitation of almost all mean-field models and most contact

surveys is the difficulty to address (potential) transmission through aerosols which cannot (or

only to limited extent) be measured in (direct) contacts so that estimated parameters have to

address for this limitation. However, mathematical models can help to explore the mecha-

nisms in infectious disease spread and reasonable assumptions are necessary, even for models

up to digital twins. We have waived a lot of unrealistic assumptions such as homogeneous mix-

ture in space and in demography. Our model has been resolved for meaningful regions and

Fig 17. Daily new number of symptomatic infected individuals on county level. This figure illustrates the change in

the daily number of symptomatic infected German counties over the course of 90 days beginning with the 1st August

2022. Each subfigure displays a different day with the two different modes (No masks or FFP2 masks). Using geodata

“Verwaltungsgebiete 1:2 500 000, Stand 01.01. (VG2500)” from https://gdz.bkg.bund.de, copyright; GeoBasis-DE /

BKG 2021, license dl-de/by-2-0, see https://www.govdata.de/dl-de/by-2-0.

https://doi.org/10.1371/journal.pcbi.1012630.g017
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demography has been taken into account to model different vulnerabilities for different age

groups. In order to better assess model performance under changing parameters, we have

included a sensitivity analysis on the parameters used in the waning immunity model in the

appendix. The provided quantification for the different parameter effects will guide extending

or reducing the model in future works and analyses.

As we stated ourselves, a critical factor in infectious disease modeling is mobility. Since the

ground truth for daily mobility is difficult to grasp, again, assumptions have to be used. We

have used the output of a state-of-the-art macroscopic mobility model to be used in our simu-

lations. Different mobility patterns clearly lead to different virus distribution patterns. Further-

more, we have focused on daily mobility activities in this study. The seasonal impact of, e.g.,

vacation times on travel behavior were not taken into account and influences from abroad

have not been included here. For the summer vacation time, where travel activities signifi-

cantly change with travel from hot or to hot spot regions (outside Germany), our model might

need enrichment by an import risk model to reliably capture disease dynamics from the

outside.

A precise quantification of waning immunity against different courses of the disease given

particular immunization histories is still an open research question. To best cope with this

problem, we have considered two large and recent review articles from which we derived most

reasonable parameters. However, there is still large uncertainty in several positions which we

cannot reduce. Qualitatively, our model could correctly predict stagnation, decline and

resurges in considered settings. The effect of waning immunity to SARS-CoV-2 over more

than 1 or 2 years, the interplay with new variants or vaccinations is still an open research ques-

tion our model cannot answer yet.

In order to get meaningful predictions for future developments, our model needs to initial-

ized with reasonable values of the population’s immunity. As the reporting of vaccinations is

not conducted on personal level and as the dark figure of unreported transmission numbers

increased with the end of the pandemic, the current status of the population is difficult to

obtain. Serological studies may be needed to provide approximated starting values for future

predictions. These limitations in data and assumptions should be kept in mind when interpret-

ing the results of this work.

Conclusion

In this paper, we have presented a novel travel-time aware metapopulation model combined

with a novel multi-layer waning immunity model based on ordinary differential equations.

Both models advance already existing models for infectious disease dynamics by taking into

account yet neglected but essential properties for virus propagation.

The travel-time aware metapopulation model advances existing metapopulation or hybrid

graph-ODE approaches by considering travel time as well as transmissions during transport.

As unconstrained mobility clearly is a driver for infectious disease dynamics, more realistic

mobility modeling increases the reliability of model outcomes. The travel-time aware metapo-

pulation model can directly be combined with any kind of ODE-based transmission model

and thus enhances global predictions by correctly resolving heterogeneously different spread-

ing dynamics.

The novel multi-layer waning immunity model copes with the problem of heterogeneous

and hybrid immunity in a population in mid- or late-phase pandemics as well as in endemic

scenarios. The novel model does not only provide three different populations with different

protection factors but also two different paces of waning immunity, i.e., against any transmis-

sion and against a severe course of the disease—a property that has been observed for
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SARS-CoV-2. Given reparameterization, it can also be used for other human-to-human trans-

mittable diseases that show similar developments.

With the combination of both models, we could correctly assess developments in the late

phase of the pandemic in Germany in 2022. Although vaccination could already mitigate the

number of severe courses of the diseases, large numbers of mild cases can also have a disas-

trous impact on economy and critical infrastructure. Our model serves as a good basis for

future waves SARS-CoV-2 in upcoming autumn or winter seasons and adaptation to other

viruses is possible. The suggested mobility model can be of great help when particular inter-

ventions in public transportation are envisaged and expected transmissions can be assessed

beforehand. As it can be combined with any kind of ODE-based model, it can also be used for

other diseases such as Influenza or RSV.
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multi-layer waning immunity model of SECIRS-type.
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PLOS COMPUTATIONAL BIOLOGY Novel travel time aware metapopulation models and multi-layer waning immunity

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012630 December 16, 2024 29 / 34

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1012630.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1012630.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1012630.s003
https://doi.org/10.1371/journal.pcbi.1012630


Writing – review & editing: Henrik Zunker, René Schmieding, David Kerkmann, Alain
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https://www.ndr.de/nachrichten/hamburg/coronavirus/Hamburg-Kleine-Aenderung-der-Maskenpflicht-

in-Bussen-und-Bahnen,corona11074.html.

76. Bagheri G, Thiede B, Hejazi B, Schlenczek O, Bodenschatz E. An upper bound on one-to-one exposure

to infectious human respiratory particles. Proceedings of the National Academy of Sciences. 2021; 118

(49). https://doi.org/10.1073/pnas.2110117118 PMID: 34857639

PLOS COMPUTATIONAL BIOLOGY Novel travel time aware metapopulation models and multi-layer waning immunity

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012630 December 16, 2024 33 / 34

https://doi.org/10.1186/s12879-022-07971-6
http://www.ncbi.nlm.nih.gov/pubmed/36650474
https://doi.org/10.1016/S0140-6736(22)02465-5
https://doi.org/10.1097/INF.0000000000003791
http://www.ncbi.nlm.nih.gov/pubmed/36730054
https://doi.org/10.1016/S0140-6736(22)00462-7
https://doi.org/10.1016/S0140-6736(22)00462-7
http://www.ncbi.nlm.nih.gov/pubmed/35305296
https://doi.org/10.1016/S1473-3099(20)30243-7
http://www.ncbi.nlm.nih.gov/pubmed/32240634
https://doi.org/10.1136/bmjgh-2023-012328
https://doi.org/10.1136/bmjgh-2023-012328
http://www.ncbi.nlm.nih.gov/pubmed/37419502
https://doi.org/10.1111/anae.15201
https://doi.org/10.1111/anae.15201
http://www.ncbi.nlm.nih.gov/pubmed/32602561
https://doi.org/10.1016/S2213-2600(20)30316-7
https://doi.org/10.1016/S2213-2600(20)30316-7
http://www.ncbi.nlm.nih.gov/pubmed/32735842
https://doi.org/10.1371/journal.pone.0263014
http://www.ncbi.nlm.nih.gov/pubmed/35100309
https://doi.org/10.1056/NEJMoa2119451
http://www.ncbi.nlm.nih.gov/pubmed/35249272
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1050721/Vaccine-surveillance-report-week-4.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1050721/Vaccine-surveillance-report-week-4.pdf
https://doi.org/10.5281/zenodo.7814948
https://doi.org/10.5281/zenodo.7814948
https://doi.org/10.5281/zenodo.13683260
https://doi.org/10.5281/zenodo.13683260
https://de.statista.com/statistik/daten/studie/165511/umfrage/anzahl-der-besucher-auf-dem-oktoberfest-seit-1980/
https://de.statista.com/statistik/daten/studie/165511/umfrage/anzahl-der-besucher-auf-dem-oktoberfest-seit-1980/
https://de.statista.com/statistik/daten/studie/165511/umfrage/anzahl-der-besucher-auf-dem-oktoberfest-seit-1980/
https://www.lgl.bayern.de/gesundheit/infektionsschutz/infektionskrankheiten_a_z/coronavirus/karte_coronavirus/archiv2.htm
https://www.lgl.bayern.de/gesundheit/infektionsschutz/infektionskrankheiten_a_z/coronavirus/karte_coronavirus/archiv2.htm
https://www.divi.de/divi-intensivregister-tagesreport-archiv
https://www.bundesregierung.de/breg-de/themen/coronavirus/maskenpflicht-entfaellt-2157682
https://www.bundesregierung.de/breg-de/themen/coronavirus/maskenpflicht-entfaellt-2157682
https://www.vrb-online.de/de/ueber-uns/news/im-%C3%B6pnv-gilt-weiterhin-die-maskenpflicht-296
https://www.vrb-online.de/de/ueber-uns/news/im-%C3%B6pnv-gilt-weiterhin-die-maskenpflicht-296
https://www.ndr.de/nachrichten/hamburg/coronavirus/Hamburg-Kleine-Aenderung-der-Maskenpflicht-in-Bussen-und-Bahnen,corona11074.html
https://www.ndr.de/nachrichten/hamburg/coronavirus/Hamburg-Kleine-Aenderung-der-Maskenpflicht-in-Bussen-und-Bahnen,corona11074.html
https://doi.org/10.1073/pnas.2110117118
http://www.ncbi.nlm.nih.gov/pubmed/34857639
https://doi.org/10.1371/journal.pcbi.1012630


77. Bundesgesundheitsministerium. Fragen und Antworten zu COVID-19 Tests;. https://www.

bundesgesundheitsministerium.de/coronavirus/nationale-teststrategie/faq-covid-19-tests#c25573.
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82. Lange B, Jaeger VK, Harries M, Rücker V, Streeck H, Blaschke S, et al. Estimates of protection levels

against SARS-CoV-2 infection and severe COVID-19 in Germany before the 2022/2023 winter season:

the IMMUNEBRIDGE project. Infection. 2024; 52(1):139–153. https://doi.org/10.1007/s15010-023-

02071-2 PMID: 37530919

PLOS COMPUTATIONAL BIOLOGY Novel travel time aware metapopulation models and multi-layer waning immunity

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012630 December 16, 2024 34 / 34

https://www.bundesgesundheitsministerium.de/coronavirus/nationale-teststrategie/faq-covid-19-tests#c25573
https://www.bundesgesundheitsministerium.de/coronavirus/nationale-teststrategie/faq-covid-19-tests#c25573
https://doi.org/10.1016/j.cmi.2022.08.006
https://doi.org/10.1016/j.cmi.2022.08.006
http://www.ncbi.nlm.nih.gov/pubmed/36028089
https://doi.org/10.3390/vaccines11111640
http://www.ncbi.nlm.nih.gov/pubmed/38005973
https://doi.org/10.5281/zenodo.8069452
https://doi.org/10.5281/zenodo.8069452
https://doi.org/10.5281/zenodo.6968574
https://doi.org/10.5281/zenodo.6968574
https://doi.org/10.1007/s15010-023-02071-2
https://doi.org/10.1007/s15010-023-02071-2
http://www.ncbi.nlm.nih.gov/pubmed/37530919
https://doi.org/10.1371/journal.pcbi.1012630

