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Kurzreferat

Dem essentiellen Spurenelement Zink wird eine entscheidende regulatorische Rolle in der
Immunhomdostase zugeschrieben. Humane Zinkmangelzustande sind haufig mit gestorten
Immunfunktionen vergesellschaftet. Darliber hinaus wurden immunsuppressive Wirkungen
des Biometalls in T-Zell-vermittelter Autoimmunitét wie der Experimentellen Autoimmunen
Enzephalomyelitis (EAE), einem anerkannten Tiermodell der Multiplen Sklerose (MS)
gezeigt. Untersuchungen der vorliegenden Arbeit belegen dosisabhéngige suppressive Effekte
von Zink-Hydrogenaspartat (Zink-HA), einem zugelassenen Arzneimittel mit sehr guter
Bioverfugbarkeit, auf anti-CD3/CD28-Antikdrper- und Pokeweed-Mitogen-stimulierte
humane T-Zellen sowie murine Splenozyten, ohne dabei die Zellvitalitat zu beeinflussen. Dies
betrifft die Immunzellproliferation und deren Zytokinproduktion, wie IFN-y, TNF-q,
GM-CSF, IL-5 und IL-10. Des Weiteren wurde die Wirksamkeit einer 10-tdgigen oralen
Zink-HA-Applikation in der aktiven EAE an SJL/J-Mausen geprift. Eine perorale Therapie
mit 6 pg bzw. 12 pg Zink-HA/Tag (0,3 bzw. 0,6 mg/kg Kdrpergewicht) in der Akutphase der
EAE bewirkte eine signifikante Reduktion des Schweregrades der Erkrankung fir mehr als
60 Tage nach Therapieende. Histopathologische Analysen des Riickenmarks erkrankter Tiere
nach 10-tdgiger oraler Zink-HA-Behandlung zeigten eine reduzierte Anzahl infiltrierender
inflammatorischer Zellen und bestétigten somit die klinischen Befunde. Die Ergebnisse der
Arbeit verdeutlichen das regulatorische Potential von Zink bei T-Zell-vermittelten
Autoimmunerkrankungen. In zukunftigen klinischen Studien sollte der mdgliche Einsatz einer

kontrollierten immunsuppressiven Zinktherapie bei derartigen Erkrankungen gepruft werden.

Schlusselworter: Zink-Hydrogenaspartat, Experimentelle Autoimmune Enzephalomyelitis
(EAE), IFN-y, TNF-0, GM-CSF, IL-10, IL-5, T-Zell-Aktivierung, Multiple Sklerose (MS)
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Einleitung

1. Einleitung

1.1 Das menschliche Immunsystem

Die Funktion des Immunsystems besteht im Schutz des Organismus vor Infektionen, wozu
insbesondere die Abwehr korperfremder Pathogene und die Elimination korpereigener
entarteter Zellen z&hlt. Neben mechanischen und chemischen Barrieren, welche Haut,
Schleimhaut bzw. Magensdure einschlieBen, und der angeborenen Immunitét, gepragt durch
zelluldre Komponenten wie Monozyten, Makrophagen, Granulozyten oder andere Leukozyten
und einer Vielzahl I6slicher Proteine, verfugt der Mensch (ber ein erworbenes
antigenspezifisches ~ Immunsystem.  Dies beinhaltet T- und B-Lymphozyten,
antigenprasentierende Zellen (APZ) sowie natirliche Killer-Zellen (NK-Zellen). Wéhrend die
humorale Immunantwort durch die von B-Lymphozyten gebildeten Antikdrper vermittelt
wird, gestalten T-Lymphozyten die zelluldare Immunitét. Entsprechend ihrer Funktion kénnen
T-Zellen in zytotoxische CD8'-T-Lymphozyten, welche Uber Zell-Zell-Interaktionen den
Zelltod beeinflussen, und in CD4*-T-Helferzellen unterteilt werden. Humane T-Helferzellen
tragen maligeblich zur Initiierung der spezifischen Immunantwort ber T-Zell-Aktivierung
sowie einer CD40-Liganden getriggerten Expansion von B-Zellen bei. Sie sind nur Gber
MHC-II prasentierte Peptide in der Lage, diese Antigene mittels des T-Zellrezeptors zu
erkennen. Man unterscheidet weitere Sub-Populationen von T-Helfer-Zellen: Typ 1 (Th1l),
Typ 2 (Th2) und Typ 17 (Th17) T-Helferzellen sowie regulatorische T-Zellen (Tregs). Jene
Gruppierung basiert u.a. auf deren differierende Zytokin-Expression, welche die
Immunantwort qualitativ beeinflussen kann. T-Zell-Zytokine sind l6sliche, kurzlebige
Botenstoffe und tragen zur Steuerung und Koordination von Immunreaktionen, zum
Zellwachstum und zur Differenzierung sowie zu Reparaturvorgangen des Organismus bei.
Th1l-spezifische proinflammatorische Zytokine, wie Interferon-y (IFN-y), Interleukin-2 (IL-2)
oder Tumor Nekrose Faktor-a (TNF-a) sind hauptsdchlich bei der Aktivierung von
Makrophagen  (zellulare  Immunantwort)  beteiligt, wéhrend  Th2-Zellen  die
Antikorperproduktion (ber Stimulation von B-Zellen via IL-4 anregen. Thl17-Zellen
produzieren verschiedene proinflammatorische Zytokine, im Besonderen IL-17A,
wohingegen Tregs autoreaktive oder hypersensibilisierte T-Zellen mittels TGF-p oder 1L-10
unterdriicken [1].

Fur eine erfolgreiche spezifische Funktion muss das Immunsystem in der Lage sein, zwischen

korpereigenen und korperfremden Substanzen zu unterscheiden. Geht diese erlernte



Einleitung

Selbsttoleranz verloren, kann es zum Angriff des Immunsystems auf korpereigene Strukturen
mit chronisch entzundlichen Prozessen, zu schwerwiegenden Organdysfunktionen und zum
Tod als potenzielle Folgen kommen. Dieses Phdnomen wird als Autoimmunitét bezeichnet. In
der Pathogenese vieler Autoimmunerkrankungen scheinen autoreaktive
CD4*-T-Lymphozyten Gber Stimulation zytotoxischer CD8*-T-Zellen und /oder Aktivierung
von Makrophagen eine entscheidende Rolle zu spielen [2, 3]. Die Bedeutung eines weiteren
Pathomechanismus liegt in der Bildung von Autoantikorpern oder der Induktion von

proinflammatorisch wirkenden Th17-Lymphozyten begrindet [4-7].

1.2 Das Spurenelement Zink

1869 wurde Zink erstmals von Raulin als notwendiger Wachstumsfaktor von Aspergillus
niger beschrieben [8]. Nahezu ein Jahrhundert spéter konnte Prasad erstmals die bedeutende
Rolle von Zink fur den menschlichen Organismus belegen [9, 10]. Zink ist ein essentielles
Spurenelement, welches fur Zellwachstum, -entwicklung  und -differenzierung, fir
DNA-Synthese, RNA-Transkription sowie Zellaktivitdit und —teilung aller Organismen
entscheidend ist [11-14]. Als Bestandteil und Cofaktor von mehr als 300 Enzymen -
beispielsweise verschiedener Dehydrogenasen (z. B. Alkohol-, Glutamat-, Malat-,
Lactat-Dehydrogenase), Carboanhydrasen, Matrix-Metalloproteinasen und alkalischer
Phosphatase - verfiigt Zink ber katalytische (z. B. Carboanhydrase), cokatalytische (z. B.
Phospholipase C) und struktur-unterstiitzende (z. B. Proteinkinase C) Funktionen [15-19].
Des Weiteren fungiert Zink als Enzyminduktor sowie —inhibitor (z. B. diverse Phosphatasen),
als Stabilisator biologischer Membranen und als Bestandteil genregulatorischer
Transkriptionsfaktoren, deren Proteinarchitektur - sogenannte Zink-Finger-Motive - die
DNA-Bindung ermdglicht. AulRerdem ist es in der Anordnung von Multiproteinkomplexen
(z. B. T-Zell-Corezeptoren) involviert. Durch die Beteiligung an zelluldren De- und
Phosphorylierungsprozessen ist Zink u. a. in der Lage als intrazellulares Signalmolekdl zu
agieren und somit die Wirkung von Wachstumsfaktoren, Hormonen und Zytokinen zu
modifizieren [12, 13, 18, 20, 21]. Eine Rolle als intrazellularer Second Messenger wird
diesem Biometall ebenso zugeschrieben [21, 22]. Biologisch aktiv ist Zink nur als
zweiwertiges Kation [23]. Zinkionen sind stereochemisch flexibel; sie fungieren als
Lewis-Sauren und interagieren sowohl mit harten als auch mit weichen Atomdonatoren [24].
Zudem wird Zink in einer Vielzahl von Studien als Antioxidans beschrieben. Diese
Schutzfunktion der Zelle vor freien Radikalen bezieht sich auf einen schmalen
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Konzentrationsbereich, in dem jenes Spurenelement nicht redoxaktiv ist [25-28]. Diese
biochemischen Eigenschaften unterstreichen die essentielle Bedeutung von Zink fir
Wachstum, Entwicklung und Aufrechterhaltung humaner Funktionen.

1.2.1  Bedeutung von Zink fir Korper und Stoffwechsel

Im Durchschnitt enthalt der Korper eines Erwachsenen 2 - 3 g Zn; dabei sind 85% des
Gesamtbestandes in Knochen und Muskelgewebe sowie 11% in Leber und Haut gespeichert.
Die verbleibenden 4% verteilen sich auf alle anderen Gewebe, wobei sich hohe
Konzentrationen in Prostata, Testes, Auge, Gehirn, Herz und Pankreas nachweisen lassen [27,
29-31]. Die fir das Immunsystem essentielle Plasma-Zinkkonzentration betrégt nur 0,1% der
Gesamtgehaltes [27, 32, 33]. 99% des humanen Spurenelementes befinden sich intrazellular;
50% sind im Zytosol, 30% bis 40% innerhalb des Nukleus und die restlichen Anteile sind
membranstandig lokalisiert [11, 13]. Die intrazellulare Homoostase wird durch
Zink-Importeure (Zip) [34, 35], Zink-Transporter (ZnT), welche den Export aus dem Zytosol
ermdoglichen [35, 36] und zinkbindende Proteine realisiert. Metallothioneine als hochaffine
Vertreter dieser Proteine binden bis zu 20% des intrazelluléren Zinks. Sie schiitzen folglich
vor Metallotoxizitat und oxidativem Stress [37]. Als freies und damit biologisch aktives Zink
bezeichnet man den in membranstandigen Vesikeln (Zinkosomen) gespeicherten und den
niedrigaffin an Proteine gebunden Anteil. Dieser kann ziigig ins Zytosol verlagert werden
(sogenanntes ,,Zink-Signal*“ [21, 38]), um als Signaltransduktor aktiv an der Genregulation
teilnehmen zu kénnen [12, 39].

Zum Erhalt einer Zinkhomdoostase wird eine tagliche orale Zinkzufuhr von 7 mg fur Frauen
und 10 mg fir Manner von der , Deutschen Gesellschaft fir Erndhrung e.V.* unter
Bertcksichtigung einer durchschnittlichen Absorptionsrate von 30% sowie obligatorischen
und fakultativen Zinkverlusten empfohlen. Tierische Produkte wie Gefllgel, Rind- und
Schweinfleisch oder Milchprodukte stellen gute Zinklieferanten dar [40, 41]. Durch einen
hohen Phytatgehalt der Nahrung (bspw. in pflanzlichen Produkten) kann infolge einer
Bildung schwerloslicher Komplexe die Resorption stark reduziert werden. Einige
Aminosduren (z. B. Lysin und Cystein) und Glukose wirken hingegen resorptionsférdernd
[40, 42-45]. Oral aufgenommenes Zink wird im Jejunum und Illeum unter Vermittlung der
Zinktransporter ZnT1 und ZIP 5 resorbiert, anschlielend zu 60% an Albumin gebunden und
vor Aufnahme ins Gewebe wieder freigesetzt. Die hochaffine Bindung an a2-Makroglobulin
(30%) und Transferrin (10%) bedingt, dass Zink in dieser Form als transportierbares Element

nicht zur Verfugung steht [46]. Die Exkretion erfolgt Giberwiegend Uber den Stuhl sowie tber

-3-
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Urin, Haare, Hautschuppen und SchweiR [47]. Abbildung 1 gibt einen allgemeinen Uberblick
uber den Einfluss von Zink auf die jeweiligen Organsysteme und zeigt potenzielle

Auswirkungen eines Mangels.

2 Auge ZNS
- Makuladegeneration - Mentale Retardierung
Immunsystem - Depression .
- Thymusatrophie . QACE[:;:”Af:TeImer

- Infektanfalligkeit ; o
- Allergieneigung - Kortikale Plastizitat
Karzinome

- Mammakarzinom

- (Prostatakarzinom)

Kardiovaskulares System
- Arteriosklerose

Leber

- Leberzirrhose Pankreas

- Diabetes mellitus
Gastrointestinaltrakt

- Diarrhéen Haut und Haare

- Acrodermatitis enteropathica

Wachstum
Beschleunigter Altersprozess

Abbildung 1: Aligemeiner Uberblick des Einflusses von Zink auf humane Organsysteme sowie
Folgen eines Zinkdefizites, modifiziert nach [33].

Ein Zinkdefizit kann alimentar (allgemeine Mangel- oder Fehlerndhrung, phytatreiche Kost
oder parenterale Erndhrung), iatrogen (bspw. durch Therapie mit Glukokortikoiden,
Antikonzeptiva, Penicillamin)  oder genetisch  (Sichelzelland&mie,  Acrodermatitis
enteropathica) bedingt sein; sowie durch Absorptionsstérungen (chronische entzindliche
Darmerkrankungen, Pankreasinsuffizienz), erhohten Bedarf (Schwangerschaft, vermehrtes
Wachstum, chronische Erkrankungen, Leistungssport) oder verstarkte Zinkausscheidung
(Niereninsuffizienz, Leberzirrhose) verursacht werden [31, 33, 45, 48-50]. Ein
schwerwiegender Zinkmangel ist aktuell eine der Ursachen fur die erhdhte Morbiditat und
Mortalitat in Entwicklungslandern [51, 52]. Unter einem marginalen Defizit leiden hingegen
42,5% der Menschen in Industriestaaten [33]. Klinische Symptome eines Zinkmangels aul3ern
sich u.a. in einer Minderung des Appetits sowie des Geschmackempfindens; in Form von
Diarrhden, Haarausfall, Dermatitis, in neurologischen und psychiatrischen Auffalligkeiten
sowie in einer Wachstumsretardierung und Minderung der Reproduktionsfahigkeit [31, 33,
45, 53]. AuBerdem existieren enge Wechselwirkungen zwischen diesem essentiellen

Spurenelement und dem Immunsystem.
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1.2.2  Einfluss von Zink auf das Immunsystem

Basierend auf der regulatorischen, katalytischen und struktur-erhaltenden Funktion vieler
Enzyme und Transkriptionsfaktoren, verfugt Zink tber einen enormen Einfluss auf die stark
proliferierenden Zellen des Immunsystems [32, 33, 54-56]. Eindrucksvoll l&sst sich dies an
der seltenen autosomal-rezessiv vererbten Erkrankung Acrodermatitis enteropathica
verdeutlichen. Die Gen-Mutation SLC39A4, codierend flr den intestinalen Zink-Importeur
ZIP 4, fihrt zu einem schweren Zinkmangel-Syndrom [57, 58], dessen immunologische
Kardinalsymptome durch Thymusatrophie, quantitative und funktionelle Minderung von
Lymphozyten sowie erhohte Infektanfalligkeit gekennzeichnet sind [45, 59]. Eine komplette
klinische Remission erzielt man mittels einer oralen Hochdosis-Therapie von 30-150 mg
Zink/Tag [60].

Storungen der Zinkhomoostase wirken sich sowohl auf das angeborene als auch auf das
erworbene Immunsystem aus [35]. Zinkmangelzustdnde des Menschen fiihren dabei zu einer
gestorten Immunfunktion und sind hdufig mit einem sekundaren Immundefekt verge-
sellschaftet (Abb. 2).

Im Falle einer Entziindung beeinflusst Zink u. a. Chemotaxis, Phagozytose und oxidativen
Burst innater Immunzellen. Zinkmangel fuhrt zur verminderten Chemotaxis dieser Zellen [13,
32, 61], wohingegen hohe Konzentrationen von 500 puM Zink als Chemotaxis-férdernd
beschrieben werden [62]. Die Hemmung der NADPH-Oxidase durch erhohte als auch
erniedrigte  Zinkkonzentrationen  fuhrt zu einer reduzierten Bildung reaktiver
Sauerstoffspezies und folglich zur verminderten Phagozytose [13, 19, 63-65]. Eine
Zink-vermittelte Komplexbildung mit NETs (Neutrophile extrazelluldare Fallen) bewirkt
ebenfalls eine Einschrankung der Phagozytosefahigkeit innater Immunzellen [13, 14, 66].
Aullerdem vermitteln die Chemokine MCP-1 und PMA ein intrazelluldres Zinksignal,
welches die Monozytenadhdsion an Endothelzellen und somit die Auswanderung derer ins
Gewebe beglnstigt [13, 67, 68]. Ein Zinkdefizit fihrt ebenso zur nummerischen und
funktionellen Minderung von NK-Zellen. NK-Zellen erkennen und eliminieren u. a.
Virus-infizierte Zellen oder Tumorzellen Uber Zink-vermittelte MHC-I-Detektion [13, 69,
70]. Die durch Zinkmangel bedingte, herabgesetzte lytische Funktion dieser Zellen basiert
vermutlich auf der verminderten IL-2-Stimulation durch T-Zellen [71]. Auch die Aktivitét
sowie die Anzahl dendritischer Zellen (u. a. Langerhans Zellen der Haut) ist unter jener
defizitaren Bedingung des Spurenelementes gemindert [72].

Abweichungen der Zinkhomgostase wirken sich im Rahmen des adaptiven Immunsystems

besonders stark auf Bildung, Reifung und Funktion von T-Zellen aus [13, 30, 73, 74].
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Daneben fuhrt ein Zinkdefizit auch zu einer verminderten B-Zell-Reifung und zu einer
verringerten T-Zell-abhéngigen Antikorperproduktion [35].

Im Thymus erfolgt die Reifung von Thymozyten (Pra-T-Lymphozyten) zu T-Lymphozyten
unter Vermittlung von Thymulin. Dieses Peptidhormon bendtigt Zink als Cofaktor fiir seine
biologisch aktive Form. Folglich beeinflusst Zinkmangel die T-Zellreifung negativ und
bewirkt, wie im Mausmodell gezeigt wurde, eine Thymusatrophie mit einem 50%igen Verlust
an Thymozyten [73, 75, 76]. AuBerdem fiihrt ein Zinkdefizit zu einem erhohten
Glukokortikoid-Spiegel,  welcher im  Zusammenhang mit einer  modifizierten
Bcl-2-Expresssion  zur vermehrten Pra-T-Lymphozyten-Apoptose flihren kann [73].
SchlieBlich bedarf die IL-2-abhéngige Proliferation wvon aktivierten T-Zellen ein
intrazellulares Zinksignal [77]. Zink nimmt ebenfalls eine entscheidende Rolle bei
T-Zell-Differenzierungsprozessen ein. Beispielsweise fuhrt ein Zinkmangel, welcher durch
Diarrhden verursacht wurde, bei Kindern zu einer verminderten Rate an naiven T-Zellen zu
Gedéachtnis-T-Lymphozyten und  unterstreicht damit die Notwendigkeit dieses
Spurenelementes zur Generierung von naiven T-Zellen [65]. Des Weiteren sinkt in einer
defizitdren Situation die CD4*/CD8'-Ratio, wobei Anzahl und Funktionsfahigkeit von
CD4*-Zellen unter diesen Bedingungen abnimmt [75, 78, 79]. Ebenso kommt es zu einer
Th1/Th2-Imbalance mit verringerter Anzahl an Thl-Lymphozyten und deren
Zytokin-Produktion (IL-2, IFN-y, TNF-o) wéihrend Th2-Zellen und damit die IL-4- und
IL-10-Produktion wenig beeinflusst werden [35, 71, 78]. Unter physiologischen Bedingungen
fuhrt Zink zu einer verstarkten Th1-Antwort mittels erhéhter IFN-y-Produktion. Dies hat eine
vermehrte Anzahl an Makrophagen, hohere Konzentrationen von Komplementfaktoren und
freien Radikalen wie NO zur Folge und trdgt somit zu einer verbesserten Abwehr
intrazellularer Pathogene bei [80]. Im Gegensatz dazu zeigten Hayashi und dessen Mitarbeiter
eine  Zink-abhéngige  IFN-y-Produktionshemmung  durch  Verwendung erhohter
Zinkkonzentrationen in Jurkat-Zellen, einer humanen T-Zell-Linie [81]. Ein biphasischer
Effekt von Zink auf die IFN-y-Produktion aktivierter T-Zellen mit maximaler Stimulation
durch 3,1 uM und beginnender Hemmung ab 25 uM Zink konnte durch Aydemir et al.
gezeigt werden [82]. Fir PWM-aktivierte mononukledre Zellen (MNZ) demonstrierte unsere
Arbeitsgruppe bereits die potenziell regulatorische Rolle dieses Spurenelementes fur deren
DNA-Synthese und Zytokinproduktion. Zink-Konzentrationen bis 100 puM stimulierten die
DNA-Synthese und Zytokinproduktion von IL-6 und IL-10, wéahrend Gaben von 200 bis
400 uM Zink diese dosisabhéngig hemmten. Konzentrationen hoher als 500 uM wurden als
toxisch fir jene Immunzellen beschrieben [83]. Eine mdgliche Erklarung fir diese
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divergierenden Effekte auf MNZ konnte ein konzentrationsabhéngiger Zinkeffekt auf
verschiedene Signalwege der Zytokinproduktion sein. Beispielsweise konnten niedrige Dosen
des Spurenelementes das Zinksignal triggern, welches bei der Zytokinproduktion von
Monozyten in Reaktion auf bakterielle Lipopolysaccharide (LPS) involviert ist [54].
Hingegen scheinen hohe Zinklevel in der Lage zu sein, die zyklische Phosphodiesterase
(PDE) und dadurch die Aktivierung der Proteinkinase A zu hemmen und folglich zu einer
geminderten Zytokinproduktion zu fuhren [84, 85]. AulRerdem konnte die Zink-abhéngige
Suppression inflammatorischer Zytokine mit einer Induktion der Deubiquitinylase A20
assoziiert sein. A20 entfaltet seine immunsuppressive Wirkung durch Inhibition einer NFxB
getriggerten  proinflammatorischen  Immunreaktion. Dieser  Mechanismus  schitzt
Immunzellen vor LPS- und TNF-a-induzierter Zytotoxizitat. Es wurde gezeigt, dass Zink A20
induziert und damit zu einer reduzierten TNF-a-Expression fuhrt [28, 86].

Hohe Zinkkonzentrationen reduzieren des Weiteren die Entwicklung von Thl7-Zellen in
Mausmodellen. Th17-Lymphozyten produzieren diverse proinflammatorische Zytokine und
spielen eine entscheidende Rollen in der Pathogenese von Autoimmunerkrankungen [87-89].

Zinkmangel:
(alimentar, iatrogen, genetisch,
Absorptionsstorungen, erhéhter Bedarf, u. a.)

|

angeborene Immunitat

neutrophile Granulozyten: Chemotaxis, oxidativer Burst, Phagozytose }
Monozyten: Adhésion und Chemotaxis ¥

Makrophagen: Reifung und Aktivitat ¥

NK-Zellen: Anzahlund Lyse-Aktivitat §

dendritische Zellen: Anzahlund Aktivitat 4

erworbene Immunitat

Thymus: Thymusatrophie, Thymozytenzahl, Thymulinim Serum }
T-Zellen: T-Zell-Zahlund T-Zell-Funktionin vitro }
CD4'/CD8*-T-Zell-Ratio |
Th1/Th2-lmbalance, Th1-Zellen }
Th1-Zytokine (IL-2, IFN-7, TNF-a) §
B-Zellen: Reifung und T-Zell-abhédngige Antikorperproduktion |

}

sekundarer Immundefekt

Abbildung 2: Zusammenhang zwischen einem Zinkmangel, einer Funktionsstérung des
Immunsystems und dem damit vergesellschafteten sekundaren Immundefekt [90].

-7-



Einleitung

1.2.3  Zink und Autoimmunerkrankungen

Ohkawara et al. berichteten 2005 Uber eine Zink-induzierte Milderung der Dextran Sulfate
Sodium- (DSS-) induzierten Kolitis — einer im Mausmodell hervorgerufenen
Autoimmunerkrankung des Darmes - und beschreiben Zink als potentiellen Suppressor von
Autoimmunphanomenen [91, 92]. Als Ursache fur diverse Autoimmunphidnomene wurde eine
Inhibition der T-Zell-Aktivierung durch Beeinflussung der IL-6-induzierten STAT3-Aktivitat,
welches die Entwicklung von Th17-Zellen triggert, vermutet [89]. Th17-Lymphozyten und
deren proinflammatorische  Zytokine tragen entscheidend zur Entwicklung von
Autoimmunerkrankungen bei [5-7, 93]; beispielsweise sind IL-17A-defizitare Mause resistent
gegen Autoimmunmodelle wie die Collagen-induzierte Arthritis (CIA) oder die
experimentelle autoimmune Enzephalomyelitis (EAE) [89, 94]. Praventive Zinkgaben
hemmen in vivo die Reifung von naiven CD4"-T-Zellen zu Th17-Zellen mittels direkter
STAT3-Bindung. Dies fiihrt zum Verlust der a-helikalen Struktur und zur Entfaltung von
STAT3 mit einhergehendem Aktivitatsverlust sowie Hemmung der Phosphorylierung von
Janus-Kinasen (JAK) [33, 89]. Minderung der Thl7-Proliferation sowie eine erniedrigte
Serumkonzentration von IL-17A sind die Folge. Interessanterweise flhrt eine
Zinkbehandlung nach dem Transfer pathogener Th17-Zellen in EAE-erkrankten Tieren nicht
zur Milderung der Symptomatik. Dies suggeriert, dass Zink keinen Einfluss auf die
Th17-Lymphozyten-modulierte Immunantwort hat, sondern deren Entwicklung inhibiert. Des
Weiteren wurde die durch Zink getriggerte IFN-y-Produktion, welche die Entwicklung von
Th17-Zellen negativ beeinflusst, als mogliche Ursache der CIA-Symptomreduktion unter
Zinkapplikation diskutiert [95]. Eine Dysfunktion regulatorischer T-Zellen konnte ebenfalls
zur Entstehung von Autoimmunitat beitragen. Deren immunsuppressive Funktion ist stark
von dem Thl-Zytokin IL-2 abhéngig, welches in Zinkmangel-Situationen vermindert
sekretiert wird [96].

Zu den héaufigsten Autoimmunerkrankungen des Menschen zahlen neben den autoimmunen
Schilddrusenerkrankungen, die Rheumatoide Arthritis (RA), die Zoliakie, der Diabetes
mellitus Typ 1, der Systemische Lupus Erythematodes (SLE) sowie autoimmune
Erkrankungen der Leber und die MS. Zudem sind eine Reihe dieser Autoimmunerkrankungen
mit einem Zinkdefizit vergesellschaftet. Beispielsweise wurden von verschiedenen Autoren
verminderte Serum- bzw. Plasma-Zinkkonzentrationen von RA-Patienten im Vergleich zur
gesunden Kontrollgruppe nachgewiesen [97-101]. Yazar und dessen Mitarbeiter [102] fanden
hingegen keine Unterschiede in den Zink-Plasmaspiegel von RA-erkrankten Personen. Auch
Patienten mit einer Z6liakie [103-106], einem Diabetes mellitus Typ | [107, 108], einem SLE
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[109, 110], einer autoimmunen Hepatitis [111, 112] sowie einer Primér Bilidren Zirrhose
[113, 114] und einem  Pemphigus vulgaris [115] wiesen erniedrigte
Serum-Zinkkonzentrationen auf. Im Hinblick auf die MS zeigten diverse Arbeitsgruppen
ebenfalls eine Minderung der Plasma- [116-118] bzw. Serumspiegel [119] jenes
Spurenelementes.

AbschlieRend l&sst sich sagen, dass Zink ein mdgliches Therapeutikum in der Behandlung
von Thl7-vermittelten Autoimmunerkrankungen wie der EAE, einem etablierten Mausmodell

der MS, darstellen kénnte.

1.3 Multiple Sklerose

Die MS st eine chronisch entziindliche demyelinisierende Autoimmunerkrankung des
Zentralen Nervensystems (ZNS) [120], welche sich meist im Alter von 20 bis 40 Jahren
manifestiert, wobei in den vergangenen Jahren ein Préavalenzanstieg im Kindes- und
Jugendalter zu verzeichnen ist [121, 122]. Frauen leiden im Verhéltnis von 3:1 deutlich
haufiger an dieser Krankheit (Gynakotropie) [120]. Derzeit sind weltweit ca. 2,5 Mio.
Menschen an MS erkrankt, darunter rund 120.000 in Deutschland [123, 124]. Als haufigste
Ursache erworbener Behinderung im jungen Erwachsenenalter manifestiert sich die MS
oftmals in Form von Sensibilitatsstorungen, Paresen oder als Optikusneuritis. Bemerkenswert

ist eine ausgesprochene Heterogenitat der Symptomatik.

1.3.1  Atiologie der MS

Die Atiologie der MS ist nicht abschlieBend geklart. In Zusammenschau der aktuellen
Datenlage handelt es sich um ein multifaktorielles Krankheitsgeschehen mit intrinsischen
sowie extrinsischen Risikofaktoren.

Neben der Autoimmunpathogenese (siehe 1.3.2) gilt eine genetische Komponente als
gesicherter intrinsischer Faktor [125]. Im Vergleich zur Gesamtbevélkerung (ca. 0,1%) ist die
Inzidenz Verwandter ersten Grades um das 20fache (ca.2%) [126], bei monozygoten
Zwillingen sogar 200fach (25-30%) gesteigert [127]. Des Weiteren variiert die
Erkrankungswahrscheinlichkeit in Abhéngigkeit der ethnischen Zugehorigkeit — Kaukasier
erkranken h&ufiger an MS als Afrikaner, Asiaten oder andere ethnische Gruppen (bspw.
Hispanics) [128-130]. Bei der MS handelt es sich um ein polygenes Krankheitsbild. Auf
genomischer Ebene besteht eine HLA-Assoziation auf Chromosom 6p21.3 [125, 131]; dabei
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werden die fur MHC-Klasse Il codierenden Gene (HLA-DRB;, HLA-DRB; sowie
HLA-DQB:) als ein Suszeptibilitatslocus der MS angesehen [132, 133].

Als extrinsische Risikofaktoren werden diverse Umweltfaktoren, die durch geographische
Préavalenzunterschiede sowie Migrationsstudien untermauert werden, diskutiert. Die Prévalenz
der Erkrankung ist im Bereich des Aquators am geringsten und steigt zu den Polen hin an.
Auf diese Tatsache stutzt sich die Vitamin-D-Stoffwechseltheorie, da in Vitamin-Ds-Mangel-
Regionen die MS héaufiger auftritt und ein erniedrigter Serumspiegel bei klinischer MS zu
eruieren ist [134, 135]. Vitamin Ds wirkt vermutlich Gber die Produktion von
antiinflammatorischen Zytokinen wie TGF-B oder IL-4 regulatorisch auf die Aktivitat von
T-Zellen und Makrophagen [136, 137].

Als auslosende Faktoren der MS und deren Schibe werden auBerdem virale
(Epstein-Barr-Virus (EBV), Herpes-Simplex-Virus, Humanes Herpesvirus 6 (HHV 6)) [138]
und bakterielle (Chlamydien, Spirochaten, Rickettsien) Infektionen in Form eines
molekularen Mimikry diskutiert [139]. Bei MS-Patienten besteht bspw. eine nahezu 100%ige
Seropositivitat fir EBV [140] sowie eine Korrelation zwischen der EBV-Infektion und dem
Erkrankungsbeginn der MS [141, 142]. Weitere mdgliche Umweltfaktoren sind regelmaRiger
Nikotinabusus [143], Adipositas in der Kindheit [144] und Umweltgifte wie Amalgam [145].
Zusammenfassend ist das Relativgewicht der einzelnen Komponenten bei der

Krankheitsentstehung ebenso wie deren gemeinsame Atiologie weiterhin unklar.

1.3.2  Immunpathogenese der MS

Die MS zahlt zu den chronisch-entziindlichen Autoimmunerkrankungen des ZNS, bei der es
im Rahmen von Entziindung zur herdférmigen (fokalen) Demyelinsierung der Markscheiden
und deren Auslaufern (Oligodendrozyten) kommt. SchlieRlich fuhrt dies zur Axonschadigung
und zur Ausbildung einer reaktiven Gliose mit sklerotischen Plaques. Die Myelin- oder
Markscheide fungiert als elektrischer Isolator von Nervenfasern und ermdglicht eine
saltatorische Reizleitung. Deren Funktionsverlust verursacht Storungen in der Nervenleitung
und bedingt eine Vielzahl neurologischer Defizite der MS.

Autoimmunphanomene sind durch den Verlust der immunologischen Toleranz gegentber
korpereigener Strukturen in genetisch préadisponierten Personen gekennzeichnet [146]. Eine
Zusammenfassung der allgemein akzeptierten MS-Immunpathogenese ist in Abb. 3
dargestellt. Initial erfolgt eine periphere Aktivierung autoreaktiver T-Lymphozyten mittels

APZ (ber die Interaktion zwischen dem T-Zell-Rezeptor und dem MHC I- bzw.
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MHC Il-prasentierten  Autoantigen.  Kostimulatorische  Signale, wie bspw. die
kostimulatorischen Rezeptoren CD80/CD86 [147], welche an CD28 binden oder das an
CD40-Ligand bindende CD40, scheinen die T-Zell-Aktivierung zu modifizieren.

Uber welchen Mechanismus die periphere T-Zell-Aktivierung erfolgt, ist weiterhin
unbekannt. Das sogenannte ,molekulare Mimikry*“ - die molekulare , Ahnlichkeit®
korperfremder (z. B. virale Proteine) und kdrpereigner Oberflachenstrukturen - wird einerseits
als eine potenzielle Variante diskutiert [148, 149]. Die Immunantwort richtet sich somit nicht
nur gegen die Erreger, sondern auch gegen korpereigene Organe [150].

Anderseits besteht die Mdglichkeit, dass potenzielle autoreaktive T-Lymphozyten die
negative Selektion im Thymus umgehen, was auch beim Gesunden vorkommt [151, 152]. Bei
gesunden Personen werden diese jedoch umgehend durch Tregs eliminiert [153]. Deren
immunsuppressive und regulatorische Funktion scheint bei MS-Patienten gestort zu sein [154,
155], was auf einer Reifungsstérung im Thymus beruhen koénnte [156]. Folge dieser
Dysfunktion ist bspw. eine verminderte Kontrolle der Th-17-Lymphozyten, welche in
Anwesenheit von IL-23 das Zytokin IL-17A produzieren. IL-17A ist mit IL-22 in der Lage
die Integritét der Bluthirnschranke (BHS) zu stéren und die Transmigration peripherer Zellen
zu erleichtern (siehe unten). Th-17-Zellen scheinen somit eine entscheidende Rolle in der
Immunpathogenese der MS zu spielen [157, 158].

Eine weitere Variante zur Generierung autoreaktiver Zellen wird in Form einer verstarkten
Synthese von ,,Neo-Epitopen* diskutiert. In einem angenommen durch Infektionen bedingten
inflammatorischen Milieu kommt es durch die Aktivierung von APZ zur verstarkten
Antigenprozessierung, was wiederum zur Présentation von Autoantigenen fiihren kdnnte. Des
Weiteren besteht die Moglichkeit einer gesteigerten antigenunabhéngigen Stimulation bereits
vorhandener autoreaktiver T-Lymphozyten im entziindlichen Milieu [159, 160].

Nach peripherer Aktivierung folgt die transendotheliale Migration von T-Lymphozyten und
weiteren Entziindungszellen (B-Zellen, Makrophagen) tber die BHS in das ZNS [161]. Eine
komplexe Kaskade von Adhésionsmolekiilen (z. B. Hochregulation von VLA-4/VCAM-1
[162]), Chemokinen (z. B. MCP-1) sowie Chemokin-Rezeptoren (z. B. CCR1) und l6slichen
Zytokinen (z. B. TNF-a, IFN-y) [163] ist an der Transmigration beteiligt, ebenso wie das
Vorhandensein von abnormalen Tight Junctions [164]. Die von den infiltrierenden Zellen
sezernierten Matrix-Metalloproteinasen (MMPs) dienen zum Verdau der extrazelluldaren
Matrix und ermdglichen den Immunzellen endgiiltig den Weg ins ZNS [165] (Abb. 3.1).

Im ZNS erfolgt eine Reaktivierung von CD4"-T-Zellen sowie CD8'-T-Zellen durch
ortsstandige, professionelle APZ (bspw. Mikroglia) [166]. Die dafir bendtigten
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HLA-Molekile werden unter dem Einfluss von IFN-y vermehrt produziert. Diese
Reaktivierung fihrt zur klonalen Expansion und Polarisation autoreaktiver Zellen, zur lokalen
Entzindungsreaktion sowie zur Sekretion proinflammatorischer Mediatoren (z. B. TNF-a,
IFN-y) [167]. Jene entziindungsfordernden Zytokine stimulieren einerseits Astrozyten und
Mikrogliazellen, welche die Myelinscheide und das Axon direkt schadigen kénnen und
rekrutieren andererseits weitere Entziindungszellen (CD8"-T-Zellen, B-Zellen, Makrophagen,
Granulozyten, Mastzellen) aus der Peripherie [146, 168] (Abb. 3.2).

Zudem aktivieren Makrophagen u. a. mittels TNF-a CD8*-T-Lymphozyten. Diese schadigen
Oligodendrozyten direkt Gber MHC-I-Bindung und sind in der Lage, Axone zu durchtrennen
sowie die GefalBpermeabilitat zu steigern [169]. Ein weiteres zytotoxisches Effektormolekiil
ist Stickstoffmonoxid (NO), welches durch die induzierbare Stickstoffmonoxid-Synthase
(iNOS) unter dem aktivierenden Einfluss von TNF-a, IFN-y und IL-1 vermehrt produziert
wird. Das neurotoxische NO kann im akuten MS-Schub vermehrt in MNZ-Zellkulturen der
Patienten nachgewiesen werden [170], besitzt die Fahigkeit einer reversiblen
Erregungsblockade des Axons [171] und fihrt zur axonalen Degeneration. Eine
mitochondriale Dysfunktion des Axons sowie eine durch Calcium- und Natriuminflux
bedingte Desintegration des Zytoskeletts tragen ebenfalls zur axonalen Degeneration bei
[172] (Abb. 3.3).

Des Weiteren werden B-Zellen via Th2-Zell-Stimulation zur myelinspezifischen
Autoantikdrperbildung angeregt, welche ebenfalls zur Gewebszerstérung beitragen [173, 174]
(Abb. 3). Aulerdem besteht die Mdglichkeit der Antikorper-bedingten Aktivierung des
Komplementsystems  mit  Ausbildung  eines, die  Zielstruktur  zerstérenden
Membranangriffskomplexes (C5b-9) [175].

Zusammenfassend fuhrt nach dem gegenwaértigen Kenntnisstand eine gesteigerte Phagozytose
sowie eine erhohte Produktion von freien Radikalen (z. B. NO, Lymphotxin, ROS) und
zytotoxischen Zytokinen wie TNF-a ebenso wie die Produktion spezifischer Autoantikorper,
ein aktiviertes Komplementsystem und zytotoxische T-Zellen zur Demyelinsierung und
axonalen Schadigung mit Ausbildung neurodegenerativer Plaques (Abb. 3). Das
Gleichgewicht der Entzlindungsreaktion wird dabei durch pro- und antiinflammatorische
(z. B. TGF-p1, IL-10) Zytokine reguliert, bspw. in Form einer IL-2 induzierten
T-Zell-Apoptose. Interessanterweise weist die Sekretion proinflammatorischer Mediatoren
(TNF-a, IFN-y) geschlechtsspezifische Unterschiede auf und konnte ein Erkldrungsansatz fiir
die Gynikotropie sein. Die Translation des IFN-y-Gens wird durch Ostrogene positiv
beeinflusst [176].

-12 -



Einleitung

Trotz der ausgepragten klinischen Heterogenitat ist die Zusammensetzung der entziindlichen
Infiltrate aus Makrophagen, Mikrogliazellen und Lymphozyten weitgehend konstant. Nach
Lucchinetti et al. werden histopathologisch vier Schadigungsmuster unterschieden [167].
Unabhéngig vom Schédigungsmuster ist ein Nebeneinander von Plaques verschiedenen Alters
fiir die MS typisch.

Wahrend der Inflammation finden bereits Reparaturvorgange statt, wobei der Grad der
Remyelinisierung von der Anzahl tberlebender Oligodendrozyten abhéngt. Das Prinzip der
,heuroprotektiven Immunitit“ beschreibt die positiven Aspekte der Entziindung auf die
Remyelinisierung, bspw. durch Sekretion von Wachstumsfaktoren, welche das Uberleben
sowie die Proliferation und Differenzierung von Oligodendrozyten fordern [177]. Dazu zahlen
Neurotrophine wie nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF)
oder die Neuropoetine leukemia inhibitory factor (LIF) und ciliary neurotrophic factor
(CNTF) [178]. In MS-Léasionen konnte BDNF und dessen Rezeptor immunhistochemisch
nachgewiesen werden, ebenso wie ein starkerer BDNF-Anstieg im akuten Krankheitsschub
und in der Erholungsphase bei primér schubformig remittierender MS im Vergleich zur
sekundar progressiven Form [179-181]. BDNF kann durch neuroprotektive Effekte Lasionen
an Neuronen und am Axon verhindern. Solch protektive Funktion ist auch fiir Molekdile des
CNTF-Signalweges beschrieben [182, 183]. Besteht die Mdglichkeit eines restitutio ad
integrum nicht, folgt die Ausbildung einer reaktiven Gliose sowie der Verlust von Axonen.
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Abbildung 3: Immunpathogenese der Multiplen Sklerose, modifiziert nach [120]. Zunéchst erfolgt
die periphere Aktivierung autoreaktiver T-Zellen (T) durch antigenprésentierende Zellen (APZ). Eine
komplexe Kaskade von Adhésionsmolekillen (CAMs), Chemokinen, Chemokin-Rezeptoren (CCRs,
CXCRs) und Matrix-Metalloproteinasen (MMPs) ist an der transendothelialen Migration von
aktivierten T-Lymphozyten Uber die Blut-Hirn-Schranke (BHS) in das ZNS beteiligt (Abb. 3.1). Im
ZNS werden die eingewanderten T-Zellen reaktiviert und stimulieren u. a. Makrophagen (MF), was
wiederum zur gesteigerten Phagozytose und Produktion von freien Radikalen sowie Zytokinen
(TNF-a, Lymphotxin (LT), Stickstoffmonoxid (NO)) fiihrt. Demyelinsierung und axonale Schiadigung
sind die Folgen (Abb. 3.2). Die von B-Zellen (B) produzierten Auto-Antikérper (Ak) tragen selbst und
durch Aktivierung des Komplementsystems mit Ausbildung eines Membranangriffskomplexes
(C5b-9) (Abb. 3.2) zum Schadigungsmuster bei. Die axonale Degeneration ist auerdem Folge einer
Dysintegration des Zytoskeletts bedingt durch mitochondriale Dysfunktion sowie Elektrolytstérungen
(Abb. 3.3). Das Gleichgewicht der Entziindungsreaktion wird durch pro- und antiinflammatorische
Zytokine reguliert, bspw. in Form einer IL-2 induzierten T-Zell-Apoptose.
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1.3.3 Klinisches Bild und Verlauf der MS

Im Anfangsstadium der Krankheit werden im Wesentlichen zwei Verlaufsformen voneinander
unterschieden. In der Mehrzahl der Krankheitsfalle (85-90%) handelt es sich um eine
schubformig remittierende Variante (engl. relapsing remitting, RRMS), welche durch
Episoden klinischer Progredienz, Remission und Stabilitat charakterisiert ist. Nach einer
Latenz von ca. 10 bis 15 Jahren gehen unbehandelt ca. 50% der Patienten einer RRMS in eine
sekundar progrediente MS (engl. secondary progressive, SPMS) Uber [184]. Diese ist durch
langsames Fortschreiten neurologischer Defizite tGber mindestens sechs Monate mit dem
moglichen Auftreten zusétzlicher Schilbe gekennzeichnet. Davon abzugrenzen sind ca.
10-15% der MS-Erkrankten mit initial progredienten Krankheitsverlauf (engl. primary
progressive, PPMS) [184-186]. Die Klinik der MS, bedingt durch den multifokalen und
potenziell ubiquitaren Befall des ZNS, ist &ul3erst heterogen, interindividuell verschieden und
umfasst ein  Vielzahl von  Symptomkomplexen, wie  Sensibilitatsstorungen,
Visuseinschrankungen, Paresen, Ataxie, Blasen- und Mastdarmstérungen, Beeintrachtigung
der Sexualfunktion, Fatigue sowie kognitive Defizite (bis hin zur subkortikalen Demenz [187,
188]) und psychiatrische Auffalligkeiten (vor allem des Affektes [189-191]). Das klinische
Bild manifestiert sich bei 79% der Patienten zunachst monofokal [192]. Aus diesem Grund
hat sich der Begriff des ,.clinical isolated syndrome* (CIS), bei dem die Diagnose MS in
Folge fehlender zeitlicher Dissemination nicht gerechtfertigt ist, eingeburgert, um einen

zugigen Therapiebeginn zu gewahrleisten [193, 194].

1.3.4  Therapie der MS

Ein kurativer Therapieansatz der MS ist bislang nicht bekannt. Mit dem Ziel die
Unabhdangigkeit des Patienten im Alltag zu erhalten und dabei eine mdglichst hohe
Lebensqualitdt zu gewadhrleisten, gestaltet sich das Therapiekonzept individuell,
interdisziplindr und multizentrisch. Neben symptomatischen MalRnahmen basiert die
Stufentherapie der MS auf einer immunmodulatorischen Behandlung des akuten Schubes und
einer verlaufsmodifizierenden Medikation, bestehend aus Basistherapie sowie der
Moglichkeit einer Eskalation. Tabelle 1 stellt die aktuelle Therapieempfehlung der 2014

Uberarbeiteten Leitlinie der deutschen Gesellschaft flir Neurologie dar [195].
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Tabelle 1: Stufentherapie der Multiplen Sklerose

Indikation CIS RRMS SPMS
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Die Stufentherapie der Multiplen Sklerose wurde nach der deutschen Leitlinie zur Diagnostik und
Therapie der Multiplen Sklerose (MS) modifiziert [195]. Je nach Verlaufsform der MS (CIS (clinical
isolated syndrome), RRMS (relapsing remitting MS), SPMS (secondary progressive MS)) wird neben
der akuten Schubtherapie eine verlaufsmodifizierende Basistherapie mit der Maoglichkeit einer
Eskalation angestrebt. Die Darstellung der Substanzen erfolgt dabei in alphabetischer Reihenfolge und
impliziert keine Uberlegenheit eines Medikamentes gegenlber einem anderen in der
Indikationsgruppe (in Form eines Kastens abgebildet). Beim Versagen der Standardtherapie kann der
Einsatz von Reservepréaparaten (dargestellt in Klammern) erwogen werden.

1.4 Experimentelle Autoimmune Enzephalomyelitis (EAE)

Eine Vielzahl von Therapieansdtzen der MS sind in der EAE, einem tierexperimentellen
Modell der CD4*-T-Zell-vermittelten Autoimmunitidt gegen Antigene der Myelinschicht,
entwickelt und geprift wurden [196, 197]. Folgende Myelinproteine spielen dabei eine
entscheidende Rolle als Auto-Antigene: Myelin Oligodendrozyten Glykoprotein (MOG),
Proteolipidprotein (PLP) und Myelin-Basisches Protein (MBP). Die immunogenen Peptide
dieser Proteine konnen synthetisch hergestellt und zusammen mit bakterienhaltigen
Adjuvantien suszeptiblen Versuchstieren (Mause, Ratten oder Affen) subkutan injiziert
werden. Nach erfolgter aktiver Immunisierung werden unterschiedliche klinische Verl&ufe der
EAE je nach Tierstamm und injiziertem Peptid ausgeldst. Diese EAE-Formen dhneln Kklinisch
und pathologisch den divergierenden Verldufen einer MS. Beispielsweise spiegelt die
PLP (139-151)-Peptid-induzierte EAE von SJL/J-Mé&usen die Relapsing-remitting-Form der
MS wieder, wahrend das MOG (35-55)-Peptid in C57BL/6-Mausstdammen eher den

chronisch-progressiven Verlauf hervorruft [198, 199]. Diese sogenannte ,,aktive EAE® ist
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besonders zur Studie immunologischer Prozesse in der Induktionsphase der Erkrankung
geeignet.

Eine weitere Form der EAE-Induktion stellt der Transfer von antigenspezifischen
T-Helferzellen von erkrankten auf gesunde Méause dar, dem sogenannten passiven oder
adoptiven Transfer der EAE. Viren (z. B. Theiler Virus) oder toxische Agentien (z. B.
Cuprizone) werden ebenfalls zur Induktion von demyelinisierenden Erkrankungen in
Tiermodellen genutzt [199].

Die derzeitige Studienlage schreibt Th17-Lymphozyten eine entscheidende Rolle in der
Pathogenese der EAE zu [199-202]. Indirekt lasst sich dies durch gemilderte oder
EAE-resistente Formen in IL-6-, TGF-B-, IL-21-, 1L-23 oder IL-17A-defizitdren M&usen
belegen [203-207]. Die Zytokine IL-6, TGF-B und IL-21 tragen zur Th17-Differenzierung
bei, wahrend IL-23 fir die Formstabilitdit der Th17-Zellen notwendig ist. IL-17A, ein
Th17-Zytokin, welches Epithel- und Endothelzellen anregt, proinflammatorische Zytokine
und Chemokine zu produzieren, triggert den Verlust der Immuntoleranz und fiihrt zur
Ausbildung der EAE [208, 209]. Ein weiteres proinflammatorisches Effektormolekil der
Th17-Population ist GM-CSF. Die entziindungsférdernde Wirkung von GM-CSF basiert u. a.
auf der gesteigerten Expression von MHC-II- und kostimulatorischen Molekilen (bspw.
CD80/CD86) durch infiltrierende sowie ortsstdndige APZ [210]. Zudem beglnstigt dieses
Zytokin die IL-6- und 1L-23-Sekretion dendritischer Zellen, was wiederum das Uberleben und
die Bildung von Thl7-Lymphozyten fordert [211]. Die Rolle von IL-22, einem weiteren
Th17-Zytokin, bei T-Zell-vermittelten Autoimmunerkrankungen ist nicht abschlielend
geklart. Einerseits tragt 1L-22 zur Desintegritat der BHS bei [212], andererseits zeigen
IL-22-Knockout-Mduse keinen gemilderten EAE-Verlauf [213].

Der Transfer antigenspezifischer Th9-Zellen flhrt ebenfalls zur Induktion einer EAE und
untermauert damit den proinflammatorischen Charakter des Th9-Zytokins IL-9 [214].
Einerseits fordert IL-9 die Produktion des Chemokins CCL20 durch Astrozyten, welches
wiederum die Migration von Thl7-Lymphozyten ins ZNS begunstigt. Zudem beeinflusst
dieses Zytokin das Uberleben sowie die Akkumulation von Th17-Zellen in positiver Weise
[215]. Anderseits unterstiitzt IL-9 direkt die immunsuppressive Funktion der Treg-Population
[216].

Die das ZNS infiltrierenden autoreaktiven Thl-Lymphozyten haben ebenfalls einen
entscheidenden Einfluss auf den Pathomechanismus der EAE. Unter Freisetzung von
proinflammatorischen Zytokinen wie TNF-a und IFN-y aktivieren diese Zellen Makrophagen

und ortsstandige Mikroglia. Des Weiteren regen Th1-Zellen die Produktion von Proteasen und
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reaktiven Sauerstoffradikalen an, welche u. a. fur die Myelinscheide toxisch sind [217]. Das
Th1-Zytokin IFN-y stimuliert zudem die Differenzierung von Thl-Zellen [218], aktiviert
zytotoxische CD8'T-Lymphozyten sowie NK-Zellen [219] und regt Makrophagen an,
proinflammatorische Zytokine (bspw. TNF-a, IL-6, IL-1) zu produzieren [220]. Aus diesem
Grund ist IFN-y entscheidend an der Entwicklung einer EAE beteiligt. An dem durch
Th1l-Lymphozyten verursachten Gewebsschaden ist auch der Botenstoff TNF-a involviert.
TNF-o entfaltet seine Wirkung tiber die Rezeptoren TNF-Rezeptor 1 (TNFR1) und
TNF-Rezeptor 2 (TNFR2). Wahrend tber den TNFR1 zytotoxische und proapoptotische
Signale vermittelt werden, fihrt der TNFR2-Signalweg zur Modifikation der Apoptose und
kann u. a. in Zellwachstum und -differenzierung resultieren [221]. TNF-a wird demnach nicht
nur eine Myelin-schadigende Rolle, sondern auch eine immunregulatorische sowie
remyelinisierende Wirkung zu geschrieben [4].

AbschlieBend lasst sich sagen, dass trotz ihrer differierenden Funktionen die Thl7-, die
Th9-Lymphozyten sowie die Th1l-Zellen und deren Zytokine in der Immunpathogenese der
EAE als auch der MS involviert sind [214]. Tabelle 2 gibt einen allgemeinen Uberblick Gber
die Effektor-Zytokine der EAE, deren Funktion sowie die jeweiligen produzierenden Zellen.
Von essentieller Bedeutung zur Aufrechterhaltung der Immuntoleranz sind Tregs; numerische
oder funktionelle Abweichungen derer fuhren zur Ausbildung von Autoimmunphanomenen
[222—-224]. Zun&chst wurde eine Treg-vermittelte Hemmung der Auswanderung autoraktiver
T-Zellen ins ZNS vermutet [225]. Tregs wandern jedoch auch selbst an den Ort des
Geschehens aus, um dort (ber verschiedene immunsuppressive Mechanismen, bspw. durch
Produktion von antiinflammatorischen Zytokinen (TGF-, IL-10), aktiv zu werden [226].
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Tabelle 2: Effektor-Zytokine der EAE, modifiziert nach [4].

Zytokin produzierende Zellen Rolle in der EAE Ref.
Makrophagen, T-Zellen, Inflammation tiber erhdhte MHC-11-Expression;
GM-CSF dendritische Zellen, vermehrte IL-6-, __IL-23-Sekretion von DC und [210,
Endothelzellen, Makrophagen — Uberleben/Differenzierung von  211]
Mesothelzellen, Fibroblasten Th17-Zellen

Th9-Zellen, Th2-Zellen, Erhoéhung der Suppressorfunktion von Tregs (214

IL-9 Tregs, Proliferation/Akkumulation von Th17-Zellen 216]

Mastzellen Expression CCL20 durch Astrozyten

Th17-Zellen, Induktion proinflammatorischer [4,

IL-17A CD8*-T-Zellen, Zytokine/Chemokine; aktiviert Mikrogliazellen 199,
NK-Zellen, Endothelaktivierung — Desintegritat der BHS; 201,

Monozyten indirekt: Generierung von Th17-Zellen 206]
Th17-Zellen Generierung von Th17-Zellen [206,

IL-21 ' : 207,
NK-Zellen Differenzierung von B- zu Plasmazellen 227]
1L-22 Th17-Zellen, NK-Zellen nicht abschlieend geklart [221132]’
aktiviert Makrophagen zur Produktion [218,

T-Zellen, proinflammatorischer Zytokine; fordert 219,

IFN-y NK-Zellen Th1-Zell-, supprimiert 220,
Th2-Zell-Differenzierung; aktiviert zytotoxische 228,

T- und NK-Zellen; proapoptotisch 229]

Makrophagen, Monozyten, via TNFR1: zytotoxisch, proapoptotisch,
TNF o Mikrogliazellen, Astrozyten, proinflammatorisch [4,
DC, NK-Zellen, T-Zellen, via TNFR2: Apoptose-Modulation, 221

B-Zellen

Zellwachstum und -proliferation
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2. Zielstellung der Arbeit

Das Ziel der vorliegenden Arbeit war es, Untersuchungen zur potentiellen Wirksamkeit und
zum  Wirkmechanismus von Zink-Hydrogenaspartat (Zink-HA, Unizink 50) bei

T-Zell-vermittelten Autoimmunerkrankungen wie der Multiplen Sklerose durchzufthren.

Dazu wurde einerseits in vitro an stimulierten humanen T-Zellen gesunder Probanden und an
murinen Splenozyten die Wirkung von Zink-HA auf die T-Zell-Proliferation und die

Produktion ausgewahlter Zytokine untersucht.

Andererseits wurden in vivo-Untersuchungen in einem Tiermodell der MS, der aktiven EAE
in SJL/J-M&usen, durchgefihrt, um die Frage zu beantworten, ob eine orale Applikation des

zugelassenen Arzneimittels Zink-HA in diesem Modell therapeutisch wirksam ist.
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3. Material und Methoden

3.1 Material
3.1.1

Reagenzien

Reagenzien und Verbrauchsmaterial

1,4 M NaOH/0,7 M Hepes

3H-Thymidin (1 mCi/ml)
Antibiotikum/Antimykotikum (10.000 U/ml
Penicillin G, 1000 pg/ml Streptomycin, 25 pg/ml
Amphotericin B)

Biocoll Separating Solution

BSA (Bovines Serumalbumin Fraction V)

CD4* -T-Cell-Isolation human Kit I

CD8* -T-Cell-Isolation human Kit

EDTA (Ethylendiamintetraessigsaure)
FCS (Fetal Calf Serum)
Formaldehydldsung 4%

HCI5 M

Heparin (5000 U/ml)

Complete Freund’s Adjuvant (CFA)
Mycobacterium tuberculosis

Pan T-Cell-Isolation human Kit 11
Pertussis Toxin

Pierce® ECL Plus Western Blotting Substrate
Proteolipidprotein PLP (139-151)—Peptid
Proteome Profiler ™ (Antibody Arrays)
Human Cytokine Array Panel A Array Kit

PWM (Pokeweed Mitogen)
Quantikine Human GM-CSF-ELISA

Quantikine Human IFN-y-ELISA
Quantikine Human IL-10-ELISA
Quantikine Human IL-5-ELISA
Quantikine Human TNF-a-ELISA
Quantikine Mouse GM-CSF-ELISA
Quantikine Mouse IFN-y-ELISA
Quantikine Mouse IL-10-ELISA

Quantikine Mouse IL-5-ELISA

Carl ROTH GmbH, Karlsruhe, Deutschland
MP Biomedicals, Santa Ana, USA

Gibco BRL, Eggenstein-Leopoldshafen,
Deutschland

BIOCHRROM AG, Berlin, Deutschland
AppliChem GmbH, Darmstadt, Deutschland
Milteny Biotec GmbH, Bergisch Gladbach,
Deutschland

Milteny Biotec GmbH, Bergisch Gladbach,
Deutschland

Carl ROTH GmbH, Karlsruhe, Deutschland
PAN Biotec, Aidenbach, Deutschland

Carl ROTH GmbH, Karlsruhe, Deutschland
Zentralapotheke, Universitatsklinikum
Magdeburg, Deutschland

BIOCHRROM AG, Berlin, Deutschland
Sigma-Aldrich, St. Louis, USA

Difco Laboratories, Augsberg, Deutschland
Milteny Biotec GmbH, Bergisch Gladbach,
Deutschland

List Biological Laboratories, Campell, CA, USA
Thermo Fisher Scientific, Bremen, Deutschland
Dr. J. Faust, MLU Halle, Deutschland
R&D Systems, Wiesbaden-Nordenstadt,
Deutschland

Sigma- Aldrich, St. Louis, USA

R&D Systems, Wiesbaden-Nordenstadt,
Deutschland

R&D Systems, Wiesbaden-Nordenstadt,
Deutschland

R&D Systems, Wiesbaden-Nordenstadt,
Deutschland

R&D Systems, Wiesbaden-Nordenstadt,
Deutschland

R&D Systems, Wiesbaden-Nordenstadt,
Deutschland

R&D Systems, Wiesbaden-Nordenstadt,
Deutschland

R&D Systems, Wiesbaden-Nordenstadt,
Deutschland

R&D Systems, Wiesbaden-Nordenstadt,
Deutschland

R&D Systems, Wiesbaden-Nordenstadt,
Deutschland
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Quantikine Mouse TNF-a-ELISA

Triton X-100

Trypanblau

Unizink (Zink- bis (hydrogen-DL-aspartat))

B-Mercaptoethanol

R&D Systems, Wiesbaden-Nordenstadt,
Deutschland

Sigma-Aldrich, St. Louis, USA
Sigma-Aldrich, St. Louis, USA

Kohler Pharma GmbH, Alsbach-Hahnlein,
Deutschland

Merck, Darmstadt, Deutschland

Verbrauchsmaterialien

24-Kammer-Zellkulturplatten
96-Kammer-Mikrotiterplatten
Amersham Hyperfilm™ ECL

Costar 96-Kammer-Rundbodenplatte
Discofix

Glasspritzen

Nylon Zellsieb, 70 um

TPP, Trasadingen, Schweiz

TPP, Trasadingen, Schweiz

GE Healthcare Limited, Buckinghamshire, UK
Corning Inc., New York, USA

Braun, Melsungen, Deutschland

Poulten Graf, Wertheim, Deutschland

Falcon, BD Biosciences, Heidelberg, Deutschland

3.1.2  Puffer und Medien

AIM-V-Medium

Dulbecco’s MEM
Erythrozytenlyse-Puffer (ACK-Puffer)
MACS-Puffer

PBS Dulbecco (w/o Ca?*, w/o Mg?")
Propidiumiodid/RNase Farbe-Puffer
RPMI 1640-Medium (w 2,0 g/l NaHCO3)

Invitrogen, Darmstadt, Deutschland
BIOCHRROM AG, Berlin, Deutschland

0,15 M Na4Cl; 0,01 MKHCO3; 0,1 mM EDTA
10xPBS + 0,5% BSA + 2 mM EDTA
BIOCHRROM AG, Berlin, Deutschland

BD, Bioscience, Heidelberg, Deutschland
BIOCHRROM AG, Berlin, Deutschland

3.1.3 Gerate

Absorptionsreader
Auto MACS-Seperator

Becton Diekinson FACSCalibur
Brutschrank Steri-cult 200-Incubator

CAWO Entwicklungsmachine Cawomat 2000 IR
Hamatologieautomat Ac T diff2™

Heraeus Biofuge Fresco

Inotech Cell-Harvester

Microbeta Liquid Scintillation Counter
Neubauer Zahlkammer
Varistain™ 24-4 Automatic Slide Stainer

Zentrifuge Hettich Rotanta/TR
Zentrifuge Universal 30F

Anthos Laptec Instruments, Krefeld, Deutschland
Milteny Biotec GmbH, Bergisch Gladbach,
Deutschland

BD, Bioscience, Heidelberg, Deutschland
Forma Scintific, Labotec, Gottingen,
Deutschland

Bender Gruppe, Baden-Baden, Deutschland
Beckman Coulter, Brea, CA, USA

DJB labcare, Hanau, Deutschland

Inotec, Wohlen, Schweiz, Uber Wallac, Turkey,
Finnland

PerkinElmer LAS GmbH, Rodgau Jiigesheim,
Deutschland

Paul Marienfeld GmbH, Lauda-Konigshofen
Deutschland

Thermo Fisher Scientific, Bremen, Deutschland
Hettich Zenrifuge, Tuttlingen, Deutschland
Hettich Zenrifuge, Tuttlingen, Deutschland
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3.1.4  Software

Cell Quest Pro™

Citavi 4.1

GraphPad Prism 6

KODAK 1D Image Analysis Software
Microbeta Liquid Scintillation Counter
Microsoft™ Excel Version 2003/2007
Microsoft™ Powerpoint Version 2003/2007
Microsoft™ Word Version 2003/2007
Mikrotek-Software

BD, Bioscience, Heidelberg, Deutschland
Swiss Academic Software, Wadenswil, Schweiz
GraphPad Software, San Diego, USA
Sigma-Aldrich, St. Louis, USA

Wallac, Turku, Finnland

Microsoft, Redmond, Washington, USA
Microsoft, Redmond, Washington, USA
Microsoft, Redmond, Washington, USA
Mikrotek Laborsysteme, Overath, Deutschland

3.1.5  Antikorper

Maus-anti-Human CD28-Antikorper
Hybridomtiberstande, Klon 248.23.2
Antikdrper fir Durchflusszytometrie
Simultest y1 FITC/ y2A PE
Simultest CD45 FITC/ CD14 PE
Simultest CD3 FITC/ CD16 + CD56 PE
Simultest CD3 FITC/CD19 PE
Ziege-anti-Maus-IgM + 1gG
Maus-anti-Human CD3-Antikorper
Hybridomdiberstande, Klon OKT.3
Hamster-anti-Maus CD3

Institut fiir Molekulare und Klinische
Immunologie, Magdeburg, Deutschland
BD Biosciences, San Jose, USA

Dianova, Hamburg, Deutschland
Institut fir Molekulare und Klinische
Immunologie, Magdeburg, Deutschland
BD Biosciences, San Jose, USA
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3.2 Methoden

3.2.1  Gewinnung von MNZ aus humanem peripheren Blut

Die Gewinnung von MNZ aus dem peripheren Blut gesunder Spender erfolgte mittels
Dichtegradientenzentrifugation. Diese Methode basiert auf der Trennung verschiedener
Zellpopulationen in einem Dichtegradienten zwischen dem peripheren Blut und einer
Polysaccharoselosung (Biocoll Seperating Solution mit einer Dichte von 1,077 g/ml).
Erythrozyten und Granulozyten haben eine héhere Dichte als Biocoll; MNZ hingegen eine
geringere. Plasma und Thrombozyten verfugen schlieBlich Gber die geringste Dichte.
Gleichzeitig werden bei der Separation lebende Zellen mit niedriger Dichte von toten Zellen
mit hoher Dichte getrennt. Abbildung 4 zeigt die Entstehung der klassischen Schichten durch
die Dichtegradientenzentrifugation [230].

.t Plasma,

« .7 .| Thromboryien
Verdiinntes, .

. MNE
unkoagolivries —
Yaollhlut ] : LI Riocoll-
*o+,| Trennlisung

Biacoll- Ervthrozvien,
Trennlisung Granuloryvien

Abbildung 4: Schematische Darstellung eines Zentrifugationsréhrchens vor (links) und nach
(rechts) einer Dichtegradientenzentrifugation, modifiziert nach [231].

Durchfuihrung

Gesunden humanen Spendern wurden 200 ml Blut aus der Peripherie entnommen. Fir die
Blutentnahme lag ein positives Votum der Ethikkommission der
Otto-von-Guericke-Universitdt Magdeburg vor. Zudem willigten die Spender schriftlich zur
Entnahme sowie zur wissenschaftlichen Verwendung ihres Blutes ein. Das entnommene
Material wurde im Verhéltnis 2:1 mit 100 ml Heparin-versetztem RPMI 1640-Medium
(5U/ml) gemischt. Die in einem sterilen 50 ml-Réhrchen bereitgestellten 12,5 ml
Biocoll-L6sung wurden mit 30 ml heparinisiertem Vollblut vorsichtig lberschichtet und bei
18 °C, mit 500 x g und einem maRigen Auslauf (Zentrifuge Hettich Rotanta/TR, Bremse,
Stufe 2) fir 30 Minuten zentrifugiert. Die entstandene Interphase zwischen der

Biocoll-Lésung und dem Plasma enthielt die MNZ. Der Interphase-Ring wurde vorsichtig
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abgenommen und in ein frisches 50 ml-Réhrchen Uberfuhrt. Die drei anschlieRenden
Waschschritte mit RPMI 1640-Medium bestanden aus je einer 10-minutigen Zentrifugation
(400 x g; Bremse, Stufe 9) bei Raumtemperatur, gefolgt von einer Resuspension des Pellets
und der Vereinigung der Zell-Sedimente von jeweils zwei Réhrchen. Die Bestimmung der
Zellzahl  erfolgte  anschlieBend  mittels  eines  vollautomatischen  Zahlgerétes
(Hamatologie-Automat Ac T diff2™, Beckman-Coulter).

3.2.2 Isolation von T-Zellen aus humanen MNZ

Zur Isolation spezifischer Zellpopulationen wurde die Methode der magnetischen
Zelltrennung (magnetic cell sorting, MACS) angewandt. Einzelne Subpopulationen
immunologischer Zellen unterscheiden sich in ihren Oberflaichenmolekilen (Cluster of
differentiation ,,CD*). Werden MNZ gemeinsam mit supramagnetischen Partikeln, an die
spezifische monoklonale Antikdrper gegen diese CD-Antigene gekoppelt sind, inkubiert und
anschlieBend Uber eine Saule mit einem starken permanenten Magnetfeld geleitet, haften die
Antikorper-Magnetpartikel-markierten Zellen an dieser Saule. Alle nicht markierten Zellen
durchlaufen die Saule und kénnen somit von der markierten Zellfraktion separiert werden.

Die MACS-Zellsortierung kann als ,,Anreicherung® oder als ,,Aussortierung™ durchgefiihrt
werden. Bei einer ,,Anreicherung™ werden die zu isolierenden Subpopulationen markiert, bei
einer ,,Aussortierung® hingegen die Verwendung nicht-markierter Zellfraktionen.

Die Isolation von Pan (CD3")-T-Zellen sowie CD4*- und CD8*-T-Zellen erfolgte durch
indirekte Separation/“Aussortierung® mittels Isolations-Kits der Firma Miltenyi Biotec nach
entsprechenden Protokollen. Dazu wurden frisch isolierte MNZ in eiskaltem MACS-Puffer
(0,5% BSA in PBS) bei Raumtemperatur gewaschen (Zentrifugation fir 10 Minuten bei
500 x g) und anschlieBend in MACS-Puffer aufgenommen (100 Millionen Zellen/400 pl).
Nach Zugabe entsprechender biotinylierter Antikérper und einer Inkubation von 10 Minuten
auf Eis folgte die Zugabe von MACS-Puffer und anti-Biotin-Mikrobeads und eine erneute 15-
mindtige Inkubation auf Eis.. Um (berschiissige Antikdrper zu entfernen, schloss sich ein
weiterer Waschschritt mit anschlieBender Resuspensierung (108 Zellen in 500 pl MACS-
Puffer) an. Die ,,Aussortierung® erfolgte am autoMACS (Miltenyi Biotec). Die gewonnenen
CD4*-, CD8"- und Pan-T-Zellen wurden in AIM-V-Medium aufgenommen und die
entsprechenden Zellzahlen mittels eines Hamatologie-Automaten (Ac T diff2™, Beckman-

Coulter) bestimmt.
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Typisierung der T-Zellfraktionen mittels Durchflusszytometer

Zur Zell-Typisierung und zur Bestimmung des Reinheitsgrades der Pan-T-Zellfraktionen
wurden 100 ul T-Zellen (10° Zellen/ml) mit 15 pl der monoklonalen Antikérper
v1 FITC/ y2A PE (Kontrolle), CD45 FITC/ CD14 PE (Monozyten-Marker), CD3 FITC/
CD16/ + CD56 PE (NK-Zell-Marker) und CD3 FITC/CD19 PE (B-Zell-Marker) geférbt
(15 Minuten Dunkelinkubation). Der darauf folgende Waschschritt beinhaltete sowohl die
Zugabe von PBS-Puffer mit 0,5% BSA als auch eine finfmindtige Zentrifugation (400 x Q)
bei 18 °C und ermdglichte schlielflich eine Zellfixierung in 300 pl PBS mit 0,5% BSA und
1% PFA. Die Messung und Auswertung erfolgte am Durchflusszytometer FACS-Calibur (BD
Biosciences). Die Reinheit der in den Experimenten verwendeten T-Zell-Préparationen betrug
97 £ 2%.

3.2.3  Messung der Zellvitalitat

Klassische Methoden der Vitalitdtsbestimmung nutzen die Integritat der Plasmazellmembran
als Nachweiskriterium. Fir ausgewéhlte Kkationische Farbstoffe stellt die intakte
Plasmamembran eine uniberwindbare Barriere dar. Trypanblau, zu den Azofarbstoffen
gehdrend, bindet an zytosolische Proteine, wodurch tote Zellen lichtmikroskopisch blau
erscheinen, wahrend vitale Zellen farblos bleiben [231]. Der Fluoreszenzfarbstoff
Propidiumiodid (PI) interkaliert hingegen in doppelstrangige Nukleinsduren (DNA, rRNA)
und zeigt in einem gewissen Konzentrationsbereich eine stdchiometrische Wechselwirkung
mit der jeweiligen Nukleinsdure. Das Eindringen von Pl in Zellen mit gestorter
Membranintegritat kann mittels Durchflusszytofluorimeter bei einer Anregungswellenlénge
von 488 nm und einem Emissionsmaximum von 617 nm bestimmt werden. Tote Zellen
erscheinen hierbei orange-rot [231, 232].

Die Durchflusszytofluorimetrie ist ein lasergestutztes, optisches Messverfahren. Mit Hilfe von
Fluoreszenz- und Streulichtsignalen konnen Zellen anhand ihrer GroRe und Granularitét
analysiert werden. Hierfir werden die zu untersuchenden Partikel an einem Argonlaser
(Emissionsspektrum 488 nm) in einem laminaren Probenstrom vorbeigeleitet. Dabei entstehen
entsprechend der Lichtstreuung Beugemuster. Das parallel zur Auftreffrichtung des Lichtes
entstandene Beugemuster bezeichnet man als ,,Forward Scatter (FSC). Dieses dient zur
Bestimmung der ZellgroRRe. Das Beugemuster in 90°-Richtung (Side Scatter, SSC) fungiert
als Granularitaitsmall. Andere Zelleigenschaften wie beispielsweise DNA-Gehalt oder
Rezeptorexpression lassen sich Uber spezifische Antikdrper- oder Konjugat-gekoppelte

Fluoreszenzfarbstoffe analysieren [232].
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In der vorliegenden Arbeit wurden zur Vitalitatstestung humane T-Zellen, wie in Kapitel
3.2.3. beschrieben, und murine Splenozyten (siehe Kapitel 3.2.8) isoliert und in An- und
Abwesenheit verschiedener Zink-HA Konzentrationen fur 4 und 24 Stunden in einem
befeuchteten, 37 °C, 7% CO2-Inkubator kultiviert. Kontrollkulturen wurden mit der
entsprechenden Menge an AIM-V-Medium versetzt. Die Bestimmung der Zellzahl erfolgte
nach 0, 4 und 24 Stunden mittels Trypanblau-Farbung. 20 pl einer gut gemischten
Zellsuspension wurden dazu 1:1 mit Trypanblau versetzt, gevortext und fir 2 Minuten bei
Raumtemperatur inkubiert, um anschlieRend in eine Neubauer-Z&hlkammer Uberfihrt zu
werden. Lichtmikroskopisch wurde zunéachst die Gesamtzahl der Zellen und die Anzahl toter
Zellen maanderformig ausgezéhlt, um somit den prozentualen Anteil toter und lebender
Zellen zu ermitteln. Diese Prozedur wurde pro Zellsuspension in Form von zwei
unabhéngigen Messungen durchgefiihrt und die Mittelwerte der Messergebnisse gebildet.

Die PI-Farbung wurde im Anschluss an eine vierstiindige Inkubationszeit der Zellen mit oder
ohne Zink-HA durchgefihrt. Nach Pelletierung der Zellen (Zentrifugation fur 10 Minuten bei
1800 x g) und Dekantierung des Uberstandes erfolgte die PI-Farbung unter Verwendung des
PI/RNase Farbepuffer (10 pg/ml) bei Raumtemperatur im Rahmen einer 15-mindtigen
Dunkelinkubation. Anschlieend wurden die Proben am Durchflusszytofluorimeter
FACSCalibur (BD Biosciences) vermessen und hinsichtlich des prozentualen Anteils toter
und lebender Zellen mit Hilfe des Cell Quest Pro-Programms analysiert.

3.2.4  Messung der DNA-Synthese stimulierter humaner T-Zellen

Frisch isolierte Pan-T-Zellen sowie CD4"-, CD8"-T-Zellen wurden in serumfreiem
AIM-V-Medium (108 Zellen/ml) resuspendiert und in 96-well-Flachbodenplatten mit PWM
(2 pg/ml) oder anti-CD3/CD28-Antikérpern in  An- und Abwesenheit verschiedener
Zink-HA-Konzentrationen (25; 50; 100; 150; 200 uM) kultiviert. Kontrollkulturen wurden
mit der entsprechenden Menge an AIM-V-Medium versetzt. Die Inkubation der Zellen
erfolgte fur 72 Stunden in einem befeuchteten 37 °C, 7% CO»-Inkubator. In den letzten
6 Stunden erfolgte die Zugabe von 20 pl/well [*H]-Thymidin (0,33 pCi/well) zur Erfassung
der DNA-Synthese. Anschlieend wurde die Zell-DNA mit einem Inotech Cell-Harvester
(PerkinEImer LAS GmbH) auf Glasfiltermatten geerntet und die DNA-Synthese mittels eines
Microbeta Liquid Scintillation Counter (PerkinElmer LAS GmbH) bestimmt.

In Versuchsansatzen mit anti-CD3/CD28-Antikorper-Stimulation wurden die Platten zuvor
mit 10 pl/ml Ziege-anti-Maus Antikdrpern tber Nacht bei 4 °C beschichtet und anschlieRend

drei Mal mit je 400 ul sterilem PBS-Puffer gewaschen, um uberschiissige Antikorper zu
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entfernen. Im néchsten Schritt folgte die Beschichtung mit anti-CD3/CD28-Antikdrpern in
einer 1:100 Verdunnung mit PBS fur 2 Stunden im befeuchteten CO»-Inkubator (37 °C;
7% CO2). AbschlieBend wurden die Platten erneut dreimalig, wie oben beschrieben,

gewaschen.

3.25  Gewinnung humaner Zellkulturtberstande

Zur Gewinnung von Zellkulturiiberstinden wurden humane T-Zellen (10° Zellen/ml) in
24-well-Flachbodenplatten in serumfreiem AIM-V-Medium mit PWM (2 pg/ml) oder
anti-CD3/CD28-Antikdrpern in An- und Abwesenheit verschiedener
Zink-HA-Konzentrationen (50; 100; 150; 200 uM) in einem befeuchteten Inkubator (37 °C;
7% CO2) kultiviert. Nach 4, 24, 48 und 72 Stunden erfolgte die Gewinnung von
Zellkulturtberstanden mittels einer zwei-minitigen Zentrifugation (3300 x g). Danach

konnten die Uberstande abgenommen und bei -20°C gelagert werden.

3.2.6  Humaner Zytokin-Array

Zur semiquantitativen Analyse von Zytokinkonzentrationen in Zellkulturiberstanden
unstimulierter und PWM-stimulierter humaner T-Zellen (10° Zellen/ml) nach einer
72-stindigen Inkubation in An- und Abwesenheit von 150 uM Zink-HA wurde der ,,Human
Cytokine Array Panel A Kit “ (R&D Systems) verwendet. Durch punktférmige Anordnung
spezifischer Antikorper auf einer Nitrozellulosemembran konnten gleichzeitig 36 Zytokine in
Doppelbestimmung gemessen werden (Tab. 3). Diese Methode basiert auf dem
,,Sandwich“-Prinzip (Abb. 5) und fungierte als Screeningtest zur Analyse der Wirkung von
Zink-HA auf die Produktion verschiedener Zytokine. Alle Inkubationen fanden, soweit nicht
anders ausgewiesen, auf einem Schuttler (50x/min) bei Raumtemperatur statt. Zundchst
wurden die Membranen mit der Antikdrper-beschichteten Seite nach oben in speziell dafir
vorgesehene 4-Kammer-Multischalen gegeben und eine Stunde mit 2 ml Blockierungs-Puffer
inkubiert. Nach Entfernung des Blockierungs-Puffers erfolgte die Zugabe eines Gemisches
aus 1 ml Zellkulturiberstand, 0,5 ml Puffer und 15 pl biotinyliertem
Detektions-Antikorper-Cocktail. Daraufhin erfolgte tiber Nacht eine Inkubation bei 4 °C. Die
in den Kulturiberstdnden enthaltenen Zytokine banden an entsprechende immobilisierte
anti-Zytokin-Antikorper der Membran und an die dazugehoérigen zytokinspezifischen
Detektions-Antikorper. Den darauffolgenden dreigangigen Waschschritt fuhrte man in

gesonderten Gefalen (20 ml Wasch-Puffer fir je 10 Minuten) durch, um die Membranen
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schlieRlich fur 30 Minuten mit 1,5 ml 1:1000 verdinnter Streptavidin-HRP in gereinigten
4-Kammer-Multischalen zu inkubieren. Hieran schloss sich ein weiterer Waschschritt an.
Danach wurden 1,5 ml Detektionspuffer (Luminol und Wasserstoffperoxid) gleichmé&Rig tber
die Membranen verteilt, diese vorsichtig aus der Kavitat entnommen, angetrocknet und unter
ECL-Film-Exposition (GE Healthcare Limited) in eine Autoradiographiekassette tberfihrt.
Die HRP katalysierte unter alkalischen Bedingungen eine Oxidation von Luminol, welches in
einen angeregten Zustand uberfihrt wurde und Licht emittierte [231]. Wahrend einer
10-minltigen Belichtungszeit lieR sich ein durch die Chemolumineszenz hervorgerufenes
Signal detektieren, welches proportional zu der gebundenen Zytokinkonzentration war.
AnschlieBend wurden die ECL-Filme mit dem Cawomat 2000 IR (Bender Gruppe)
entwickelt, eingescannt und mittels KODAK 1D Image Analysis Software (Sigma-Aldrich)

analysiert.

Tabelle 3: Positionen der entsprechenden Zytokine und Kontrollen des Zytokin-Arrays

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Pos Csa CD40L G-CSF | GMm-csF | cxcL1 ccL1 SICAM-1 IFN-y Pos
n IL-1a IL-1B IL-ra IL-2 IL-4 IL-5 IL-6 IL-8
IL-10 IL-12p70 IL-13 IL-16 IL-17 IL-17E IL-23 IL-27
IL-32a IP-10 CXCL11 MCP-1 MIF MIP-1a MIP-18 | Serpin E1
E Pos RANTES | CXCL12 TNF-a | STREM-1 Neg

(Pos: Positivkontrolle; Neg: Negativkontrolle; Abkirzungen der Zytokine: siehe Anhang)

3.2.7 Enzyme-Linked Immunosorbent Assay (ELISA)

Die Bestimmung humaner sowie muriner GM-CSF-, IL 5-, IL 10-, TNF-o- und
IFN-y-Konzentrationen  in  Zellkulturiiberstdnden  erfolgte  mittels ~ kommerzieller
ELISA-Testsysteme der Firma R&D Systems (Wiesbaden; Deutschland) nach entsprechenden
Testvorschriften.

Die verwendeten  Assays basieren auf dem  Sandwich-Prinzip —  einer
Antigen-Antikorper-Reaktion, bei der das zu quantifizierende Antigen zwischen zwei
Antikorpern eingebettet wird (Abb. 5). Als Grundlage dienten 96-well Mikrotiterplatten,
welche mit spezifischen monoklonalen Antikdrpern gegen die jeweiligen Zytokine
beschichtet sind. Zellkulturiiberstdnde und Standardproben wurden in die Platte pipettiert und
fur 2 Stunden bei Raumtemperatur inkubiert, um eine Antigenbindung an den jeweiligen
immobilisierten Antikorper zu ermoéglichen. Zur Quantifizierung der Proben wurde nach vier

(human) bzw. fanf (murin) Waschschritten ein zweiter, enzymmarkierter, polyklonaler
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Detektionsantikorper zugegeben und fiir weitere 2 Stunden zur Antigenbindung inkubiert.
AnschlieRende Waschschritte ermoéglichten die Zugabe einer Substratldosung, welche aus
gleichen Anteilen der Farbreagenz A (stabilisierendes Wasserstoffperoxid) und der
Farbreagenz B (Tetramethylbenzidine) bestand. Die durch das gebundene Enzym ausgel6ste
Farbreaktion war in ihrer Starke direkt proportional zur Antigen/Zytokin-Konzentration. Die
Messung der Extinktionen nach abgestoppter Farbreaktion erfolgte bei 450 nm im
Mikrotiterplatten-ELISA-Reader  (Anthos Laptec Instruments) mit anschlieRender
Konzentrationsberechnung Uber entsprechend mitgefuhrte Standardkurven mit Hilfe der
Mikrotek-Software (Mikrotek Laborsysteme).

Enzymgekoppelter

Antikorper Substrat fur
gekoppeltes Enzym
Nachzuweisende
Substanz

W

Qbarflichengebundener
Antikérper

Hachweisreaktion

S
vy § 0§ G

A B c

Abbildung 5: Schematische Darstellung des Prinzips von Zytokin-Array und Zytokin-ELISA,
modifiziert nach [231].

3.2.8  Separation muriner Zellen

Organentnahme

Zur lsolation von Maus-Splenozyten wurden SJL/J-Mduse entsprechend der geltenden
Richtlinien getotet, in Rickenlage fixiert und die angehobene Bauchdecke mit einem
Medianschnitt er6ffnet. Zur Wahrung aseptischer Bedingungen erfolgte ein Besteckwechsel.
Im Anschluss wurde die Bauchhaut zur Splenektomie eréffnet. Die Milz Uberfuhrte man in

separate GefaRe mit RPMI 1640-Medium und lagerte diese vorlbergehend bei 4 °C.

Zellisolation

Die unter sterilen Bedingungen entnommenen Spleni wurden anschliefend in ein 70 pum
Nylonsieb Uberfihrt und der Gewebeverband in frischem RPMI 1640-Medium durch
vorsichtiges Driicken mit dem Stempel einer sterilen 2 ml Plastikspritze homogenisiert. Mit
einer Plastik-Pasteurpipette wurden die Zellen anschliefend mit RPMI 1640-Medium durch
das Sieb in ein steriles Rohrchen gespult. Nach 10-minutiger Zentrifugation bei 600 x g wurde
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der Uberstand abgesaugt und das Zellpellet in 15 ml RPMI 1640-Medium resuspendiert.
Diese Splenozyten wurden nach dem ersten Waschschritt in 500 pl ACK-Puffer
aufgenommen und fir 5 Minuten zur Erythrozytenlyse bei Raumtemperatur inkubiert. Nach
einem weiteren Waschschritt erfolgte die erneute Aufnahme der Splenozyten in
RPMI 1640-Medium. Die Zellzahl wurde mit Hilfe einer Neubauer-Z&hlkammer am
Lichtmikroskop ermittelt.

Zur Berechnung der Zellzahl diente folgende Formel:
Zellen/ml = Anzahl Zellen x 10* (Kammerfaktor) x Verdiinnungsfaktor

Der Kammerfaktor einer Neubauer Zellkammer wird als Produkt von Hoéhe (0,1 mm) und
Flache (1,0 mm2) eines Grollquadrates angegeben und spiegelt somit das Volumen (0,1 pl)

eines von vier GroRquadraten wieder.

Gewinnung muriner Zellkulturtiberstande

Zur Gewinnung von Zellkulturiiberstanden wurden Splenozyten gesunder SJL/J-Méuse in
24-well-Flachbodenplatten (TPP) mit PWM (1 pg/ml) oder anti-CD3-Antikdrpern in An- und
Abwesenheit verschiedener Zink-HA-Konzentrationen (25; 50; 100; 150 puM) in einem
befeuchteten CO.-Inkubator (37 °C; 7% CO3) kultiviert. Pro Mikrotiterplattenvertiefung
befanden sich 3 x 10° Splenozyten in 1 ml AIM-V-Medium mit 10° M 2-Mercaptoethanol
(2-ME), welchen Zink-HA zugesetzt wurde. Kontrollkulturen wurden mit der entsprechenden
Menge an AIM-V-Medium versetzt. Nach 4, 24, 48 und 72 Stunden erfolgte die Gewinnung
von Zellkulturiiberstanden mittels zweiminitiger Zentrifugation (3300 x g) und
anschlieRender Abnahme der Uberstande sowie Lagerung bei -20 °C. In Versuchsansitzen
mit anti-CD3-Antikorper-Stimulation wurden die Platten mit
Hamster-anti-Maus-CD3-Antikdrpern (5 pg/ml PBS) (ber Nacht bei 4 °C beschichtet und
anschlieBend drei Mal mit 100 ul (96-well-Platten) bzw. 400 ul (24-well-Platten) PBS

gewaschen, um Uberschiissige Antikérper zu entfernen.

3.2.9 Messung der DNA-Synthese stimulierter Splenozyten der Maus

Splenozyten gesunder SJL/J-Méuse wurden in einer Konzentration von 1 x 10%ml in
AIM-V-Medium mit 10° M 2-ME suspendiert und in 96-well-Rundbodenplatten mit PWM
(L pg/ml)  oder anti-CD3-Antikérper in An- und Abwesenheit verschiedener
Zink-HA-Konzentrationen (25; 50; 100; 150 uM) kultiviert. Kontrollkulturen wurden mit der
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entsprechenden Menge an AIM-V-Medium versetzt. Die Inkubation der Zellen erfolgte fur
72 Stunden in einem befeuchteten CO2-Inkubator (37 °C; 7% COy). In den letzten 16 Stunden
wurden 20 pl 3H-Thymidin (0,33 pCi/well) zur Messung der DNA-Synthese zugesetzt.
AnschlieBend wurde die DNA der Zellen mit einem Inotech Cell-Harvester (PerkinElmer
LAS GmbH) auf Glasfiltermatten geerntet und die DNA-Synthese mittels eines Microbeta
Liquid Scintillation Counters (PerkinElmer LAS GmbH) bestimmt.

3.2.10 Versuchstiere

Fur in-vivo-Experimente wurden 12 bis 16 Wochen alte weibliche SJL/J-Mause (JANVIER,
LE GENEST-ST-ISLE, Frankreich) verwendet. Die Tierhaltung erfolgte in Kleingruppen bis
maximal 10 Mause pro Ké&fig unter pathogenarmen Bedingungen. Alle Tiere durchliefen
einen 12-Stunden-Hell-Dunkel-Rhythmus und erhielten eine Standarddiat fir Mause und
Leitungswasser ad libitum. Eingewohnungsphasen von mindestens 2 Wochen vor
Versuchsbeginn wurden beachtet.

3.2.11 Induktion der EAE an SJL/J-Mausen

Zur Induktion der EAE an weiblichen SJL/J-Ma&usen erfolgte eine einmalige subkutane
Applikation von 200 pug PLP (139-151)-Peptid a 50 pl fraktioniert in 4 Flankendepots. Dazu
wurde eine 1:1 Emulsion aus in sterilem PBS gelostem PLP (139-151)-Peptid und
Complete Freund’s Adjuvant (CFA) mit 4 mg/ml abget6teten M. tuberculosis hergestellt.
Diese Emulsion wurde in einem geschlossenen Glasspritzen-System intensiv gemischt. CFA
verwendet man insbesondere zur Immunisierung von Tieren, um eine starke
Thl-Immunreaktion zu induzieren, welche u. a. eine Voraussetzung fur die Entstehung einer
EAE ist [233, 234]. Um die EAE-Immunreaktion zu verstarken und die Erkrankung mit einer
grolReren Wahrscheinlichkeit zu induzieren (Erkrankungsrate ca. 90%), erfolgte am Tag O und
am Tag 2 eine intraperitoneale Injektion von je 200 ng Pertussis-Toxin (PTX) (1 ng/ul) pro
Maus. PTX ,,6ffnet* die BHS und erzeugt eine zusatzliche Adjuvanswirkung zur Verstarkung
der Thl-Immunreaktion [235].
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3.2.12 Therapeutische Applikationen von Zink-HA im klinischen Verlauf der EAE

Zur Untersuchung der Wirkung oraler therapeutischer Gaben von Zink-HA auf den Kklinischen
Verlauf der EAE von SJL/J-Mé&usen erhielten die entsprechenden Versuchstiere in
PBS-geldstes Zink-HA in Konzentrationen von 6, 12, 30 oder 120 pg. Die tagliche
Applikation erfolgte peroral mittels Eppendorf-Pipetten flr einen Zeitraum von 10 Tagen,
beginnend ab Tag 10. Als Kontrollgruppe fungierten in allen Experimenten Versuchstiere,

welche taglich entsprechende Mengen PBS per os erhielten.

3.2.13 Evaluierung des klinischen Schweregrades der EAE

Zur Klinischen Verlaufsbeobachtung der EAE wurden SJL/J-Mause beginnend ab Tag 8 nach
der Immunisierung taglich auf Symptome der Erkrankung untersucht. Die EAE manifestiert
sich in Form einer aufsteigenden Lahmung, deren Schweregrade, entsprechend Tabelle 4 und
Abbildung 6, graduiert wurden. Fur die tdgliche Dokumentation der Erkrankungszustande
wurden die Mittelwerte aller individuellen Erkrankungsniveaus jeder einzelnen
Versuchstiergruppe verwendet. Die Tierversuche wurden von der staatlichen Behorde
genehmigt (Genehmigungsnummer 42502-2-1110 UniMD) und entsprechend der geltenden
Vorschriften durchgefuhrt. Mause mit einem EAE-Grad groRer/gleich 3 oder stark

eingeschranktem Allgemeinzustand wurden euthanasiert.

Tabelle 4: Klinische Graduierung der EAE

~ Grad | Klinik

0 Keine Symptome

0,5 Partieller Tonusverlust des Schwanzes
1 Tonusverlust des Schwanzes

1,5 Tonusverlust des Schwanzes, verlangsamtes Aufrichten aus der Riickenlage
2 Parese mindestens einer hinteren Extremitéat

2,5 Nachziehen mindestens einer hinteren Extremitét
3 Plegie mindestens einer hinteren Extremitét

3,5 Beginnende Parese einer vorderen Extremitat
4 Zusatzlich schwere Parese mindestens einer vorderen Extremitéat
5 Moribund oder tot
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Tetraparese
Morbibund

Parese vordere Extremitat
Plegie hintere Extremitat

Plegie hintere Extremitéat

Schweregrad der EAE

Parese hintere Extremitat,
Abgeschwichter Umdreh-Reflex

Tonusverlust des : Keine Symptome
Schwanzes -

Abbildung 6: Klinische und graphische Darstellung der EAE-Schweregrade

3.2.14 Histopathologie des ZNS EAE-erkrankter SJL/J-Mause

Zur Untersuchung krankheitsbedingter inflammatorischer Infiltrate im Rickenmark wurden
SJL/J-Mdause mit PLP (139-151)-Peptid-induzierter EAE wahrend der aktiven Erkrankung am
Tag 21 nach 10-tagiger oraler Therapie mit oder ohne 12 pg Zink-HA euthanasiert. Die
Préaparation des Riickenmarks erfolgte in fixierter Bauchlage nach Er6ffnung der Haut mittels
Medianschnitt und Entnahme der gesamten Wirbelséule. Wirbelkdrper fir Wirbelkorper
wurde an der anterioren Seite mit einer spitzen Schere durchtrennt, das Riickenmark in ganzer
Lange vorsichtig aus dem Wirbelkanal gel6st, fur mindestens 24 Stunden in 4%
Formaldehydlésung fixiert und anschlieBend in Paraffin eingebettet. Mit Hilfe eines
Mikrotoms (IHE-Automat; Leica SM 2000R) wurden 4 um dinne L&ngs- und Querschnitte
vom Zervikal-, Thorakal- und Lumbalmark angefertigt, auf einem beschichteten Objekttrager
aufgezogen, tber Nacht bei 60 °C getrocknet und schlieBlich mit Hdmatoxylin-Eosin gefarbt
(Farbe-Automat Varistein 24-4; Shandon Labortechnik GmbH) [231]. Lichtmikroskopisch
wurde die Anzahl infiltrierender Zellen der weillen Substanz des Riickenmarkes aus

3 reprasentativen Schnitten verblindet ausgezahlt und deren Mittelwert gebildet.
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3.2.15 Statistische Methoden

Datenerhebung, Statistik und Textverarbeitung erfolgte unter Verwendung kommerziell
erhaltlicher Softwareprogramme (Microsoft™ Word, Microsoft™ Excel, Microsoft™
Powerpoint, GraphPad Prism 6, Cell Quest Pro™). Alle Messdaten wurden, soweit nicht
anders ausgewiesen, als Mittelwerte mit Standardabweichung (SD) oder Standardfehler
(SEM) angegeben.

Fur Untersuchungen der Proliferation und Vitalitat von Zellen sowie fur die Zytokinsynthese
konnte eine Normalverteilung angenommen und ANOVA-Methoden zur statistischen Prufung
eingesetzt werden. Soweit nicht anders angegeben wurden alle Hypothesen zweiseitig
(,,two-tailed*) formuliert. Der Dunnett's T3-Test diente als Post-hoc-Test.

Fur die statistische Analyse der EAE-Verlaufe wurden zunéchst fur jeden Versuchstag sowie
jede Versuchsgruppe die Medianwerte der EAE-Scores ermittelt. Anschliefend kam der
nonparametrische, ungepaarte Mann-Whitney Rangsummen-Test zum Einsatz [236].

Als Signifikanzniveau wurde ein p-Wert von < 0,05 festgelegt. ,,p* gibt dabei die
Wahrscheinlichkeit an, mit der die Nullhypothese zu Unrecht verworfen werden kann. In den

Abbildungen wurden signifikante Unterschiede mit ,,** gekennzeichnet [237].
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4, Ergebnisse

4.1 Untersuchungen zur Wirkung von Zink-HA auf die DNA-Synthese und
Zytokinproduktion stimulierter humaner T-Zellen

DNA-Synthese stimulierter humaner T-Zellen

Zinkmangel aber auch hohe Konzentrationen dieses Spurenelementes verursachen
Funktionsstorungen im  Immunsystem. Diese Beobachtungen suggerieren eine
Zink-vermittelte Homdoostase der Immunantwort [238—240].

In der vorliegenden Arbeit wurde zur Untersuchung mdoglicher Effekte des zugelassenen
Therapeutikums Zink-HA auf die T-Zell-Aktivierung die Wirkung auf die DNA-Synthese
stimulierter humaner Pan-T-Zellen und T-Zell-Subpopulationen untersucht. Zunéchst erfolgte
eine Vitalitdtsbestimmung zum Ausschluss potenzieller zytotoxischer Effekte von Zink-HA
auf die T-Zell-Populationen. Humane Pan-T-Zellen wurden mit PWM oder mit
anti-CD3/CD28-Antikdrpern in  Gegenwart  verschiedener  Zink-HA-Konzentrationen
stimuliert. Die Bestimmung der Zell-Vitalitat erfolgte in Parallelkulturen nach 4 Stunden
(Abb. 7 a) und 24 Stunden (Abb. 7 b) mittels Trypanblau-Farbung sowie mit Hilfe einer
PI-Farbung nach 4 Stunden (Abb. 7 c).

Die Vitalitat der T-Zellen im Trypanblau-Test war zu beiden Zeitpunkten in dem untersuchten
Konzentrationsbereich von bis zu 200 pM unbeeinflusst von Zink-HA. In den
anti-CD3/CD28-Antikdrper-Ansétzen betrug die maximale Schwankung der Vitalitidt nach
4 Stunden 2,2% des Ausgangswertes lebender Zellen in Abwesenheit von Zink-HA
(99,3 £ 0,4%); nach 24 Stunden variierte diese zwischen ca. 1% (25 pM) und 10% (150 uM
Zink-HA) des Ausgangswertes (99,4 = 0,6%). Die maximale Schwankung der Vitalitat
PWM-stimulierter humaner T-Zellen betrug 2,4% des Ausgangswertes (99,0 £ 0,6%) nach
4-stundiger Inkubation. Nach 24 Stunden schwankte die Vitalitat dieser Zellen zwischen rund
1% (25 uM) und 6,5% (200 uM Zink-HA) des Ausgangswertes (98,5 + 0,4%).

Zur Uberpriifung dieser lichtmikroskopisch ernobenen Daten mittels des Trypanblau-Testes
wurde nachfolgend die durchflusszytofluorimetrische Vitalitdtsmessung mit Pl durchgefiihrt.
Auch mit dieser automatisierten Analysemethode konnte in dem untersuchten
Konzentrationsbereich kein Einfluss von Zink-HA auf die Vitalitdt humaner Pan-T-Zellen
beobachtet werden. Die maximale Schwankung der Vitalitdt anti-CD3/CD28-Antikorper
stimulierter humaner T-Lymphozyten betrug 0,7% des Ausgangswertes lebender Zellen in
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Abwesenheit von Zink-HA (99,6 + 0,4%), die Vitalitit der PWM-stimulierten Zellen
hingegen 0,5% des Ausgangswertes (99,6 + 0,4%).
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Abbildung 7: Zink-HA beeinflusst nicht die Vitalitat stimulierter humaner Pan-T-Zellen.
Humane Pan-T-Zellen wurden mit anti-CD3/CD28-Antikérpern oder mit PWM in Gegenwart
verschiedener Zink-HA-Konzentrationen stimuliert. Die Zell-Vitalitat wurde nach 4 h (a) und 24 h (b)
mittels Trypanblau-Farbung sowie nach 4 h (c) mit Hilfe einer PI-Farbung bestimmt. Dargestellt ist
der prozentuale Anteil lebender Zellen an der Gesamtzellzahl als Mittelwert £+ SEM aus
4 unabhangigen Experimenten.

AnschlieBend folgten Untersuchungen zur DNA-Synthese humaner Pan-T-Zellen sowie
CD4*- und CD8*-T-Zell-Subpopulationen, welche mit dem Mitogen PWM oder mit
anti-CD3/CD28-Antikdrpern in Gegenwart verschiedener Zink-HA-Konzentrationen (0, 25,
50, 100, 150 und 200 pM) aktiviert wurden. Nach 96 h erfolgte die Quantifizierung der
DNA-Synthese der Zellen mittels Einbau von 3H-Thymidin (Abb. 8).

Es konnte beobachtet werden, dass Zink-HA die DNA-Synthese stimulierter humaner
Pan-T-Zellen konzentrationsabh&ngig hemmt. In den Experimenten mit PWM-stimulierten
humanen Pan-T-Zellen betrug die ICso der DNA-Synthese ca. 125 pM Zink-HA und im
anti-CD3/CD28-Antikdrper-Stimulationssystem ca. 80 uM  Zink-HA (Abb. 8 a). Wahrend in
anti-CD3/CD28-Antikorper stimulierten T-Zellen eine nahezu lineare dosisabhéngige

Hemmung der DNA-Synthese zu verzeichnen war, hatte Zink-HA in PWM-stimulierten
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T-Zell-Kulturen bis zu einer Konzentration von 100 uM Zink-HA keinen wesentlichen
Einfluss auf die DNA-Synthese. Konzentrationen von 150 pM und 200 uM Zink-HA flhrten
schlie3lich zu einer signifikanten Hemmung (p < 0,05).

Um diese Beobachtungen zu vertiefen, wurde in weiteren Experimenten der Einfluss von
Zink-HA auf die DNA-Synthese von CD4"- und CD8"*-T-Zell-Subpopulationen untersucht. In
stimulierten humanen CD4'-T-Zellen hemmte Zink-HA konzentrationsabhdngig die
Proliferation mit ICso-Werten von 100 M in beiden Stimulationssystemen (Abb. 8 b). Die fur
Pan-T-Zellen beobachtete dosisabhéngige Wirkung von Zink-HA spiegelte sich auch in der
Proliferationshemmung stimulierter humaner CD8*-T-Zellen wieder (Abb. 8 c). Die
ICso-Werte betrugen ca. 130 UM (PWM) und ca. 110 UM
(anti-CD3/CD28-Antikorper-Stimulation).
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Abbildung 8: Zink-HA hemmt die DNA-Synthese stimulierter T-Zellen. Humane Pan-, CD4*- und
CD8"-T-Zellen wurden mit PWM oder anti-CD3/CD28-Antikérpern in Gegenwart verschiedener
Zink-HA-Konzentrationen kultiviert. Nach 96 h erfolgte die Bestimmung der DNA-Synthese durch
Einbau von *H-Thymidin. Dargestellt sind die Mittelwerte + SEM von 7 (Pan-T-Zellen (a)) bzw.
4 (CD4*- (b) und CD8"-T-Zellen (c)) unabhé&ngigen Experimenten in Relation zur DNA-Synthese
stimulierter Zellen in Abwesenheit von Zink-HA. (Pan T-Zellen: anti-CD3/CD28: 22440 + 5480 cpm,
PWM: 25739 + 5321 cpm; CDA4*-T-Zellen: anti-CD3/CD28: 76866 * 3732 cpm, PWM:
41123 + 1854 cpm; CD8*-T-Zellen: anti-CD3/CD28: 49334 + 2820 cpm, PWM: 17804 + 1327 cpm).
*p<0,05.
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Zytokinproduktion stimulierter humaner T-Zellen

Hayashi et al. (2008) sowie Aydemir und Mitarbeiter (2009) haben in unterschiedlichen
experimentellen Systemen mit differierenden Zinkkonzentrationen einen hemmenden Einfluss
von Zinkverbindungen auf die IFN-y-Produktion von Immunzellen gezeigt [81, 241].

Um die Wirkung des Therapeutikums Zink-HA auf die Zytokinproduktion stimulierter
humaner T-Zellen zu untersuchen, wurde in der vorliegenden Arbeit zunachst in Form einer
Screeningmethode ein Zytokin-Array (Human Cytokine Array Panel A Kit) durchgefihrt. Mit
diesem Testsystem konnten semiquantitativ die Konzentrationen von 36 verschiedenen
Zytokinen, Chemokinen und Akute-Phase-Proteinen (Abb. 9 a) in Zellkulturiberstdnden
unstimulierter sowie PWM-stimulierter humaner Pan-T-Zellen analysiert werden, welche tber
72 h in An- und Abwesenheit von 150 uM Zink-HA kultiviert wurden.

Wie aus Abb. 9 ersichtlich ist, produzieren unstimulierte T-Zellen nur geringe Mengen an den
untersuchten Zytokinen. Lediglich IL-16, MIF und CCL5/RANTES ebenso wie sSICAM-1 und
Serpin E1 konnten in den Zellkulturliberstanden unstimulierter T-Zellen nachgewiesen
werden. Ein signifikanter Einfluss von PWM oder Zink-HA auf diese Zytokine konnte nicht
detektiert werden. Die durchgefuhrten Zytokin-Array-Analysen zeigten im Vergleich zu den
unstimulierten T-Lymphozyten an PWM-stimulierten T-Zellen eine signifikante Stimulation
der Produktion von GM-CSF, IFN-y, IL-2, IL-5, IL-13, MIP-1a und MIP-1p und TNF-a
(Zunahme der Summenintensitat > 2 x 10%). Die Produktion weiterer Zytokine, wie IL-6 oder
IL-10, IL-17, IL-17E, IL-23 und IL-27 wurden durch PWM ebenfalls stimuliert; die Zunahme
der Summenintensitdt war fiir diese Parameter kleiner als 2 x 10% Eine Inkubation
PWM-stimulierter T-Zellen mit 150 uM Zink-HA bewirkte in diesen T-Zell-Kulturen eine
eindeutige Produktionshemmung der genannten Zytokine (Tab. 5). Die Produktion von IL-8
wurde durch die PWM-Stimulation der T-Zellen stark induziert (Zunahme der
Summenintensitat > 2 x 10%), jedoch nicht durch 150 uM Zink-HA supprimiert.

Die Ergebnisse des Zytokin-Arrays bildeten die Grundlage fiir fortfiihrende, verifizierende
und vertiefende Untersuchungen mit Hilfe von spezifischen Zytokin-ELISA.
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Abbildung 9: Untersuchungen zur Wirkung von Zink-HA auf die Zytokin-Produktion humaner
PWM-stimulierter T-Zellen mittels Zytokin-Array. Analyse der Zytokinproduktion in
Zellkulturiiberstdnden unstimulierter sowie fir 72 h mit PWM stimulierter humaner Pan-T-Zellen in
An- und Abwesenheit von 150 uM Zink-HA. a) Lokalisation der jeweiligen Zytokine und Kontrollen auf
dem Array. b) Die Abbildungen zeigen Ergebnisse von X-Ray-Rontgenfilmaufnahmen eines
reprasentativen von 3 unabhéngigen Experimenten nach 10-mindtiger Belichtungszeit. c) Ergebnisse der
semiquantitativen Graustufenanalyse als MaR der entsprechenden Zytokinkonzentrationen, welche mit
KODAK 1D 3.6 Image Analysis Software ermittelt wurden. Dargestellt sind die Hintergrund-korrigierten
Summenintensitaten der einzelnen Arrayspots.
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Tabelle 5: Ubersicht der Ergebnisse des Zytokin-Arrays: Wirkung von 150 pM Zink-HA auf
PWM-stimulierte humane Pan-T-Zellen und deren Zytokinproduktion.

T-Zell-Produkte Produkte von Monozyten, Chemokine

Neutrophilen, DC

. Einfluss von . Einfluss von . Einfluss von
Zytokin Zink-HA Zink-HA ChemoKin Zink-HA

IL-2 W IL-1a ccL1
IL-4 IL-1p MCP-1
IL-5 1! IL-1ra MIP-1a i
IL-6 ! IL-12 p70 MIP-1p Wi
IL-10 RANTES
IL-13 ) IL-23 CXCL 1
IL-16 IL-32 IL-8
IL-17 ! G-CSF IP-10
IL-25(IL-17E) ! MIF CXCL 11
CD40 L l STREM-1 CXCL 12
GM-CSF 1L
-:-ZNFL iﬁ sonstige Produkte
. Einfluss von
Zytokin Zink-HA
C Sa
Serpin Ex
s ICAM-1

Die Pfeile verdeutlichen die Starke der Zytokinproduktionshemmung PWM-stimulierter humaner
Pan-T-Zellen unter Zugabe von 150 uM Zink-HA durch Minderung der Summenintensitét.

11| = Abnahme der Summenintensitat > 2,5 x 10%;

1| = Abnahme der Summenintensitat 2,5 x 10* < X > 1,5 x 10%;

| = Abnahme der Summenintensitat 1,5 x 10* < X > 1,0 x 10*

Unsere Arbeitsgruppe untersuchte in friiheren Arbeiten bereits den Einfluss von Zink-HA auf
die IL-2- und IL-17-Produktion stimulierter humaner T-Zellen. Dabei konnte gezeigt werden,
dass Zink-HA in anti-CD3/CD28-Antikdrper- sowie in PWM- stimulierten humanen T-Zellen
konzentrationsabhéngig die Produktion von IL-2 und IL-17 hemmt [240].

Im Rahmen der vorliegenden Arbeit wurden Untersuchungen zur Wirkung von Zink-HA auf
die IFN-y-, TNF-0- GM-CSF-, IL-5- und IL-10-Produktion stimulierter T-Zellen
durchgefuhrt, um dazu beizutragen, die potentielle Wirksamkeit von Zink-HA zur
therapeutischen Beeinflussung T-Zell-vermittelter Autoimmunerkrankungen zu prifen und

den Wirkmechanismus aufzuklaren.
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Humane Pan-T-Zellen wurden dazu mit anti-CD3/CD28-Antikdrpern oder mit PWM in
Gegenwart verschiedener Zink-HA-Konzentrationen kultiviert, die Zellkulturliberstdnde nach
72 h geerntet und die darin enthaltenen Zytokinkonzentrationen mittels spezifischen ELISA
gemessen.

In Abbildung 10 ist die IFN-y-, TNF-a- und GM-CSF-Synthese und in Abbildung 11 die
IL-5- sowie IL-10-Produktion stimulierter humaner T-Zellen in An- und Abwesenheit
unterschiedlicher Konzentrationen von Zink-HA dargestellt. In  Kulturiiberstanden
unstimulierter T-Zellen waren nur geringe Konzentrationen dieser Zytokine vorhanden. Es
konnte nachgewiesen werden, dass Zink-HA in PWM- und
anti-CD3/CD28-Antikorper-stimulierten humanen T-Zellen konzentrationsabhéngig die
Produktion aller untersuchten Zytokine hemmt.

In anti-CD3/CD28-Antikorpern-stimulierten ~ T-Zellen  supprimierten  Zink-HA-
Konzentrationen hoher als 100 uM (IL-5; IL-10) und 150 uM (IFN-y; GM-CSF; TNF-a) die
Zytokinproduktion signifikant (p < 0,05). In den Kulturen PWM-stimulierter T-Zellen fuhrten
Zink-HA-Konzentrationen von mehr als 100 uM (IFN-vy; IL-10), 150 uM (IL-5; TNF-0) und
200 uM (GM-CSF) zu einer signifikanten Hemmung der Zytokinsynthese (p < 0,05).

Die Ergebnisse der mittels ELISA untersuchten Zytokine bestatigen somit eindeutig die mit

dem Zytokin-Array ermittelten Daten.
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Abbildung 10: Zink-HA hemmt in stimulierten T-Zellen die Produktion von IFN-y, TNF-a und
GM-CSF. Humane T-Zellen wurden mit anti-CD3/CD28-Antikérpern (linke Spalte) oder PWM
(rechte  Spalte) in Gegenwart verschiedener Zink-HA-Konzentrationen  kultiviert, die
Zellkulturiiberstdnde nach 72 h geerntet und die Zytokinkonzentrationen mittels spezifischer
ELISA-Systeme gemessen. Die Produktion von IFN-y (@), TNF-a (b) und GM-CSF (c) ist dargestellt
als Mittelwert + SEM von 4 unabhéngigen Experimenten; unstim = Zellkulturen ohne Stimulation;
*p<0,05.
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Abbildung 11: Zink-HA hemmt in stimulierten T-Zellen die Produktion von IL-5 und IL-10.
Humane T-Zellen wurden mit anti-CD3/CD28-Antikdrpern (linke Spalte) oder PWM (rechte Spalte)
in Gegenwart verschiedener Zink-HA-Konzentrationen kultiviert, die Zellkulturiiberstande nach 72 h
geerntet und mittels spezifischer ELISA-Systeme die Zytokinkonzentrationen gemessen. Die
Produktion von IL-5 (a) und IL-10 (b) ist dargestellt als Mittelwert + SEM von 4 unabhéngigen
Experimenten; unstim = Zellkulturen ohne Stimulation; * p < 0,05.
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4.2 Untersuchungen zur Wirkung von Zink-HA auf die DNA-Synthese und
Zytokinproduktion stimulierter Splenozyten der Maus

DNA-Synthese stimulierter Splenozyten von SJL/J-Mausen

Auf Grundlage der im Abschnitte 4.1 erhobenen Daten sollte in weiteren Experimenten die
Wirkung von Zink-HA auf die DNA-Synthese stimulierter Splenozyten untersucht werden.
Splenozyten gesunder SJL/J-Mduse wurden dazu mit PWM oder anti-CD3-Antikdrpern
stimuliert und in Gegenwart verschiedener Zink-HA-Konzentrationen (0; 25; 50; 100;
150 puM) kultiviert.

Zum Ausschluss potenzieller zytotoxischer Effekte von Zink-HA auf die murinen
Splenozyten erfolgte ebenfalls eine Vitalitatsbestimmung. Splenozyten gesunder SJL-Mause
wurden dazu mit anti-CD3-Antikérpern oder PWM in  Gegenwart verschiedener
Zink-HA-Konzentrationen kultiviert. Die Bestimmung der Zell-Vitalitdit wurde in
Parallelkulturen mittels Trypanblau-Farbung nach 4 Stunden (Abb. 12 a) und 24 Stunden
(Abb. 12 b) sowie mit Hilfe einer PI-Farbung nach 4 Stunden (Abb. 12 c) durchgefihrt.

In dem untersuchten Konzentrationsbereich war die Vitalitat der stimulierten Splenozyten in
der Trypanblau-Férbung zu beiden Zeitpunkten unbeeinflusst von Zink-HA. Die
anti-CD3-Antikorper-stimulierten Zellkulturen wiesen nach 4 Stunden eine maximale
Schwankung der Vitalitat von 6,3% des Ausganswertes lebender Zellen in Abwesenheit von
Zink-HA (91,7 £ 3,0%) auf. Nach 24 Stunden variierte diese zwischen rund 1% (50 uM) und
10% (150 uM Zink-HA) des Ausgangswertes (82,5 + 10,5%). Nach 4-stundiger Inkubation
schwankte die Vitalitait PWM-stimulierter Splenozyten zwischen 2% (25 uM) und 10%
(150 uM Zink-HA) des Ausgangswertes (91 + 3,7 %) bzw. zwischen rund 1% (50 uM) und
12% (150 pM Zink-HA) des Ausgangswertes (84,4 + 7,9%).

Zur Bestédtigung dieser im Trypanblau-Test lichtmikroskopisch erhobenen Daten wurde
nachfolgend eine durchflusszytofluorimetrische Vitalitdtsmessung mit Pl durchgefihrt.
Zink-HA hatte in dem untersuchten Konzentrationsbereich keinen Einfluss auf die Vitalitat
stimulierter Splenozyten nach 4 Stunden. Die maximale Schwankung der Vitalitat
anti-CD3-stimulierter Splenozyten betrug unter den genannten Versuchsbedingungen 6,9%
des Ausgangswertes lebender Zellen in Abwesenheit von Zink-HA (95,2 + 2,8%) sowie in
PWM-Ansatzen 7,8% des Ausgangswertes (95,0 + 3,0%).
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Abbildung 12: Zink-HA beeinflusst nicht die Vitalitdt stimulierter Splenozyten von
SJL/J-Mausen. Splenozyten wurden mit anti-CD3-Antikdrpern oder PWM in  Gegenwart
verschiedener Zink-HA-Konzentrationen stimuliert. Die Zell-Vitalitat wurde nach 4 h (a) und 24 h (b)
mittels Trypanblau-Farbung sowie nach 4 h (c) mittels PI-Farbung ermittelt. Dargestellt ist der
prozentuale Anteil + SEM lebender Zellen an der Gesamitzellzahl aus jeweils 3 unabhdngigen
Experimenten.

Die Bestimmung der DNA-Synthese stimulierter Splenozyten erfolgte durch Messung des
Einbaus von ®H-Thymidin nach einer Kulturzeit von 72 h. Wie in Abbildung 13 ersichtlich
ist, hemmt Zink-HA Kkonzentrationsabhangig signifikant die DNA-Synthese stimulierter
Splenozyten (p < 0,05). In den Experimenten mit PWM-stimulierten Splenozyten betrug die
ICso fur die Hemmung der DNA-Synthese ca. 40 pM  Zink-HA und in
anti-CD3-Antikorper-stimulierten Ansétzen ca. 50 uM Zink-HA.
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Abbildung 13: Zink-HA hemmt die DNA-Synthese stimulierter Splenozyten von SJL/J-Ma&usen.
Splenozyten wurden mit PWM oder mit anti-CD3-Antikérpern in Gegenwart verschiedener
Zink-HA-Konzentrationen kultiviert. Nach 72 h erfolgte die Bestimmung der DNA-Synthese durch
Einbau von *H-Thymidin. Dargestellt sind die Mittelwerte + SEM von 6 unabhangigen Experimenten
in Relation zur DNA-Synthese stimulierter Zellen in Abwesenheit von Zink-HA. (anti-CD3:
9720 + 4552 cpm, PWM: 7331 + 4087 cpm). * p < 0,05

Zytokinproduktion stimulierter Splenozyten von SJL/J-Mausen

In weiteren Experimenten sollte basierend auf den in Abschnitt 4.1 erhobenen Daten an
humanen Pan-T-Zellen die Wirkung von Zink-HA auf die IFN-y-, TNF-a-, GM-CSF-, IL-5-
und IL-10-Produktion stimulierter Splenozyten von SJL/J-Mdusen untersucht werden. Dazu
wurden Splenozyten mit PWM stimuliert und mit verschiedenen Zink-HA-Konzentrationen
kultiviert, die Zellkulturiiberstande nach 72 h geerntet und die Zytokinkonzentrationen mit
Hilfe von spezifischen ELISA-Systemen gemessen.

In Abbildung 14 ist die IFN-y-, TNF-a-, GM-CSF-, IL-5- und IL-10-Produktion stimulierter
Splenozyten in An- und Abwesenheit verschiedener Zink-HA-Konzentrationen dargestellt. In
Kulturiiberstanden unstimulierter Zellen waren nur geringe Zytokinkonzentrationen
nachweisbar. Zink-HA hemmte auch in diesem Maus-Zellsystem konzentrationsabhéngig die
Produktion der untersuchten Zytokine. In den Kulturen der PWM-stimulierten Splenozyten
inhibierten Zink-HA-Konzentrationen hoher als 25 uM (IL-10), 50 uM (IFN-y) und 100 uM
(TNF-a, GM-CSF) die jeweilige Zytokinproduktion signifikant (p < 0,05).
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Abbildung 14: Zink-HA hemmt die Produktion von IFN-y, TNF-a, GM-CSF, IL-5 und IL-10 in
stimulierten Splenozyten von SJL/J-Ma&usen. Splenozyten wurden mit PWM in Gegenwart
verschiedener Zink-HA-Konzentrationen kultiviert, die Zellkulturiiberstande nach 72 h geerntet und
die Zytokinkonzentrationen mittels spezifischer ELISA-Systeme gemessen. Die Produktion von IFN-y
(@), TNF-a (b), GM-CSF (c), IL-5 (d) und IL-10 (e) ist dargestellt als Mittelwert + SEM von
4 unabhédngigen Experimenten; unstim = unstimulierte Zellen; * p < 0,05.

-48 -



Ergebnisse

4.3 Untersuchungen zum klinischen Verlauf der EAE in SJL/J-M&usen bei
peroraler Therapie mit Zink-HA

Neben den in vitro-Experimenten wurden im Rahmen der vorliegenden Arbeit
in vivo-Untersuchungen in einem Tiermodell der MS, der aktiven EAE in SJL/J-Méusen,
durchgefiihrt. Dabei stand die Frage im Zentrum, ob eine orale Applikation von Zink-HA in
diesem Tiermodell therapeutisch wirksam ist. Unsere Arbeitsgruppe hatte bereits in einer
friheren Arbeit eine signifikante Reduktion des Schweregrades der aktiven EAE an
SJL/J-Mdusen durch therapeutische i.p.-Applikationen von 30 upg Zink-HA/Tag
(1,5mg/kg KG) zeigen kdnnen [240].

Zur Induktion der EAE wurden weibliche SJL/J-Mé&use mit PLP (139-151)-Peptid in CFA
und PTX immunisiert. Die Beurteilung des Krankheitsverlaufes erfolgte taglich tber einen
Zeitraum von 85 bzw. 101 Tagen nach den in Tabelle 4 sowie Abbildung 6 (Abschnitt 3.2.12)
dargelegten Kiriterien. Mit Auftreten erster Krankheitssymptome (leichte Parese des
Schwanzes: Graduierung 0,5) an Tag 10 oder 11 wurde die orale Therapie mit Zink-HA flr
die Dauer von 10 Tagen begonnen.

Zur Ermittlung einer geeigneten therapeutischen Dosis wurden in einem ersten Experiment
von Tag 12 bis 21 oral 6 pg (0,3 mg/kg KG) (Abb. 15 a), 30 ug (1,5 mg/kg KG) (Abb. 15 b),
60 pg (3,0 mg/kg KG) (Abb. 16 a) bzw. 120 pg (60 mg/kg KG) Zink-HA/Tag (Abb. 16 b)
oder PBS als Kontrollmedium verabreicht.

Abbildung 15 bzw. 16 zeigt die mittleren Erkrankungsgrade + SEM der Gruppen von jeweils
8 Tieren im Vergleich zur Kontrollgruppe. Wéhrend der ersten akuten Erkrankungsphase von
Tag 11 bis 17 setzte sich die aufsteigende Lahmung in allen Gruppen bis zu einem
Schweregrad von 2,5 (Parese einer hinteren Extremitét) fort. Bei einigen Tieren war dies
progredient. In Therapieansatzen mit 30 pg, 60 pug und 120 pg Zink-HA/Tag bildeten sich die
Symptome der EAE deutlich schwerer (30 pg/Tag: 1,8 + 0,2; 60 pg/Tag: 1,7+ 0,2;
120 pg/Tag: 1,8 + 0,4) aus im Vergleich zur Kontrollgruppe (1,0 + 0,8). Eine verabreichte
Dosis von 6 pg/Tag (1,2 £ 0,1) zeigt in diesem Zeitraum einen der Kontrollgruppe ahnlichen
Krankheitsverlauf. Ab Tag 18 liel sich ein Abklingen der Symptome der EAE, als
schubférmig verlaufende Entzindung des ZNS, beobachten, wobei die Rickbildung bei
6 ng/Tag therapierten M&usen bis zu einem Minimum von 0,3 £ 0,2 (Tag 19) vergleichsweise
starker (Kontrolle: 1,1 = 0,3 (Tag 23)) ausfiel. Im weiteren Verlauf wiesen die Tiere mit
Zink-HA-Gaben von 30 pg und 120 pg/Tag eine hohere Krankheitsaktivitdt sowie ein
friheres (Beginn: Tag 36) und stérkeres Rezidiv im Vergleich zur Kontrollgruppe (Beginn:
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Tag 42) auf und zeigten ab Tag 50 einen der Kontrolle &hnlichen Krankheitsverlauf bis zum
Versuchende. In der Therapiegruppe, welcher 60 pug Zink-HA/Tag verabreicht wurde, verlief
die EAE bis Tag 56 &hnlich der Kontrolle und anschlieRend etwas milder (Tag 57 - 85:
1,4 £0,07; Kontrolle: 1,9 + 0,1). Eine Therapie mit 6 pg Zink-HA/Tag flhrte im Zeitraum
von Tag 42 bis 85 zu einer signifikanten (p < 0,05) Reduktion des Schweregrades der EAE,

wobei ein deutlich erkennbares Rezidiv ausblieb.
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Abbildung 15: Wirkung oraler therapeutischer Zink-HA-Gaben auf den Schweregrad der EAE
im 1. Versuch mit 6 pg und 30 pg Zink-HA/Tag. Weibliche SJL/J-M&use wurden mit
PLP (139-151) Peptid in CFA und PTX immunisiert und fur 85 Tage tdglich auf Symptome der
Erkrankung untersucht. Am Tag 12 wurde eine 10-tdgige orale Therapie mit 6 pg (a), 30 ug
Zink-HA/Tag (b) oder PBS als Kontrollsubstanz begonnen. Der horizontale, rote Balken markiert den
Therapiezeitraum. Dargestellt sind die mittleren Erkrankungsgrade + SEM der Gruppen a 8 Tiere;
*p<0,05.
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Abbildung 16: Wirkung oraler therapeutischer Zink-HA-Gaben auf den Schweregrad der EAE
im 1. Versuch mit 60 pg und 120 pg Zink-HA/Tag. Weibliche SJL/J-Mdause wurden mit
PLP (139-151) Peptid in CFA und PTX immunisiert und fur 85 Tage tdglich auf Symptome der
Erkrankung untersucht. Am Tag 12 wurde eine 10-tdgige orale Therapie mit 60 pg (a) bzw. mit
120 pg Zink-HA/Tag (b) oder mit PBS als Kontrollsubstanz begonnen. Der horizontale, rote Balken
markiert den Therapiezeitraum. Dargestellt sind die mittleren Erkrankungsgrade £ SEM der Gruppen a
8 Tiere; * p < 0,05.

Zur Bestatigung der therapeutischen Wirksamkeit von 6 pg Zink-HA/Tag sowie zur
Dosisoptimierung wurde unter den oben geschilderten Versuchsbedingungen ein weiteres
Experiment mit oralen Applikationen von 6 pg (Abb. 17 a) sowie 12 pg Zink-HA/Tag
(Abb. 17 b) durchgefuhrt. Abbildung 17 zeigt die mittleren Erkrankungsgrade = SEM der
Gruppen von jeweils 8 (Kontrolle; 12 ug/Tag) bzw. 9 Tieren (6 pg/Tag). Wéhrend der ersten

akuten Erkrankungsphase von Tag 10 bis 18 wiesen beide Therapiegruppen einen der
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Kontrolle dhnlichen Krankheitsverlauf auf, der sich jedoch ab Tag 19 (12 pg/Tag-Gruppe:
1,0£0,25) bzw. ab Tag 26 (6 pg/Tag-Gruppe: 0,7 = 0,3) in einer gegenlber der
Kontrollgruppe milder ausfallenden EAE (Tag 19: 1,3 + 0,3; Tag 26: 1,0 £ 0,3) fortsetzt. Die
Gabe von 12 pg Zink-HA/Tag flhrte im Zeitraum von Tag 19 bis Tag 44 zu einer starkeren
Rickbildung der Symptome als die Gabe von 6 pg Zink-HA/Tag. Uber den Verlauf der
Kurve betrachtet, waren die Medianunterschiede der Kontroll- und der Therapiegruppe
zwischen Tag 27 und Tag 43 sowie ab Tag 53 (12 pg/Tag) und ab Tag 45 fir die Gabe von
6 pg/Tag signifikant (p < 0,05).
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Abbildung 17: Wirkung oraler therapeutischer Zink-HA-Gaben auf den Schweregrad der EAE
im 2. Versuch mit 6 pg und 12 pg Zink-HA/Tag. Weibliche SJL/J-Mé&use wurden mit
PLP (139-151) Peptid in CFA und PTX immunisiert und fir 85 Tage taglich auf Symptome der
Erkrankung untersucht. Am Tag 12 wurde eine 10-tagige orale Therapie mit 6 ug (a) bzw. 12 ug
Zink-HA/Tag (b) oder mit PBS als Kontrollsubstanz begonnen. Der horizontale Balken markiert den
Therapiezeitraum. Dargestellt sind die mittleren Erkrankungsgrade + SEM der Gruppen a 8
(Kontrolle; 12 pg/Tag) bzw. 9 (6 pg/Tag) Tiere; * p < 0,05.
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Zusammenfassend konnte festgestellt werden, dass in den durchgeflihrten Experimenten die
10-tagige Gabe von 12 pg Zink-HA/Tag einen groReren therapeutischen Nutzen auf die
Reduktion des Schweregrades der EAE erzielte als die Gabe von 6 pug Zink-HA/Tag.

Aus diesem Grund erfolgte zur Bestatigung der therapeutischen Wirksamkeit von 12 g
Zink-HA/Tag ein weiteres Experiment unter den gleichen Versuchsbedingungen mit
10 weiblichen SJL/J-Md&usen pro Gruppe. In einem Beobachtungszeitraum von 101 Tagen
bewirkte die 10-tdgige Gabe von 12 ug Zink-HA/Tag eine signifikante (p < 0,05) Reduktion
des Schweregrades der EAE ab Tag 51 (Abb. 18).

Der Schweregrad und der Verlauf der EAE variierten in den Kontrollen der 3 Experimente

und reflektieren die h&ufig beobachteten biologischen Schwankungen dieses Tiermodells.
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Abbildung 18: Wirkung einer therapeutischen oralen Gabe von Zink-HA auf den Schweregrad
der EAE im 3. Versuch mit 12 ug Zink-HA/Tag. Weibliche SJL/J-Mause wurden mit
PLP (139-151)-Peptid in CFA und PTX immunisiert und fir 101 Tage taglich auf Symptome der
Erkrankung untersucht. Am Tag 10 wurde eine 10-tdgige orale Therapie mit 12 ug Zink-HA/Tag
oder mit PBS als Kontrollsubstanz begonnen. Der horizontale Balken markiert den Therapiezeitraum.
Dargestellt sind die mittleren Erkrankungsgrade + SEM der Gruppen a 10 Tiere; * p < 0,05.
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4.4 Histopathologische Untersuchungen zur Wirkung von Zink-HA auf das
ZNS von EAE-erkrankten SJL/J-Mausen

Zur Verifizierung der im Tiermodell der EAE erhobenen Klinischen Daten wurden
anschlieBend histopathologische  Untersuchungen des ZNS von EAE-erkrankten
SJL/J-Mdusen durchgefuhrt. Hierflr wurden pro Versuchsgruppe 5 weibliche SJL/J-Mause
mit PLP (139-151)-Peptid in CFA und PTX zur Induktion einer EAE immunisiert und téglich
auf die Symptome der Erkrankung entsprechend Tabelle 4 und Abbildung 6 (s. Kapitel
3.2.13) untersucht.

Abbildung 19 a zeigt das Endergebnis des EAE-Scores am Tag 21. Von Tag 11 bis 20 wurde
die perorale Therapie mit 12 pg Zink-HA/Tag oder PBS als Kontrollsubstanz durchgefhrt.
Am Tag 21 erfolgte die Exstirpation des Rickenmarkes, welches in 4% Formaldehydldsung
fixiert, anschlieRend in Paraffin eingebettet und geschnitten wurde. Die Praparate wurden mit
Hématoxylin-Eosin gefarbt und die Rate infiltrierender Zellen pro Ruckenmark-Querschnitt
lichtmikroskopisch analysiert (Abb. 19 b). Abbildung 19 zeigt einen reprasentativen
Rickenmarksquerschnitt der Kontrollgruppe (c) sowie der Therapiegruppe (d) am Tag 21 post
Immunisierung. Die Pfeile markieren dabei Stellen infiltrierender Zellen im ZNS.

Die histopathologischen Untersuchungen zeigten, dass eine orale Zink-HA-Therapie mit 12
Mg Zink-HA/Tag die Anzahl infiltrierender inflammatorischer Zellen im ZNS von
EAE-erkrankten ~ SJL/J-Mé&usen  reduziert. Im  Vergleich zur  Kontrollgruppe
(230 = 25 infiltrierender Zellen pro Ruckenmark-Querschnitt) konnte ein diskreter Riickgang
infiltrierender Zellen in der Therapiegruppe (170 * 23 infiltrierender Zellen pro

Rickenmark-Querschnitt) beobachtet werden.
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Abbildung 19: Die orale Zink-HA-Therapie reduziert die Anzahl inflammatorischer Zellen im
ZNS von EAE-erkrankten SJL/J-Md&usen. Weibliche SJL/J-Mé&use (n = 5 pro Versuchsgruppe)
wurden mit PLP (139-151)-Peptid in CFA und PTX immunisiert und von Tag 11 bis 20 mit 12 ug
Zink-HA/Tag oder mit PBS als Kontrollsubstanz peroral therapiert. Am Tag 21 erfolgte die
Exstirpation des Ruckenmarkes, welches in 4% Formaldehydldsung fixiert und anschlieend in
Paraffin eingebettet wurde. Die Praparate farbte man mit Hamatoxylin-Eosin. Abgebildet sind a) das
Endergebnis des EAE-Scores am Tag 21 und b) die Analyse der Rate an infiltrierenden Zellen pro
Ruckenmark-Querschnitt in der HE-Farbung; dargestellt sind Mittelwerte + SEM von 5 unabhéngigen
Experimenten. Die beiden unteren Abbildungen zeigen einen reprasentativen Riickenmarksquerschnitt
der Kontrollgruppe (c) sowie der Therapiegruppe (d) am Tag 21 post Immunisierung. Die Pfeile
markieren Bereiche mit Zellinfiltraten. * p < 0,05
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5. Diskussion

Die herausragende Rolle des essentiellen Spurenelementes Zink sowohl fiir das angeborene
als auch fur das erworbene Immunsystem ist in der Literatur seit Jahrzehnten gut belegt. Dies
beinhaltet dosisabhdngige und zelltypbezogene Stimulation oder Suppression von
Immunzellen [242, 243] ebenso wie die Regulation intrazellularer Signalwege [13, 77, 244,
245]. Dabei fungiert Zink u. a. als Neurotransmitter oder als Second Messenger [13, 21, 22].
Auf diese Weise ist jenes Spurenelement an der Zellkommunikation sowie der Proliferation,
der Differenzierung und dem Uberleben von Immunzellen ebenso wie an deren
Funktionsfahigkeit beteiligt.

Besonders gut sind die Auswirkungen eines Zinkmangels auf das Immunsystem untersucht.
Das Kklinische Spektrum reicht hierbei von gehduft auftretenden sowie prolongierten
Infektionen [246] bis hin zu chronisch entziindlichen Prozessen im menschlichen Organismus.
Klinische und experimentelle Daten der vergangenen Jahre zeigten einen Zusammenhang
zwischen einem Zinkmangel und chronische entziindlichen Erkrankungen, wie bspw. des
Darms (M. Chron, Colitis ulcerosa) [247], der Atemwege (Asthma bronchiale) [248], der
Gelenke (RA, Spondylarthritis) [249] sowie der Gefale (Arteriosklerose, Vaskulitis) [250]
und der Haut (Acrodermatitis enteropathica) [251] bis hin zu neurodegenerativen
Erkrankungen wie dem M. Alzheimer [252]. Therapeutische Zink-Applikationen flhrten
unter diesen Mangelbedingungen zu einer Verbesserung der Immunfunktion [35, 56, 246].
Zahlreiche Arbeiten der letzten Jahre beschreiben Zink als potentiellen Suppressor von
Autoimmunphdnomenen in Tiermodellen wie der CIA [85, 89, 94], der DSS-induzierten
Kolitis [91, 92] oder der EAE [6, 89, 240]. Hinsichtlich der Ursache wird u. a. eine
Zink-vermittelte  Inhibition der Th17-Zell-Aktivierung durch Beeinflussung der
IL-6-induzierten STAT3-Aktivitat [6, 7, 89, 93], eine Dysfunktion regulatorischer T-Zellen
unter Zinkmangel-Bedingungen [96] als auch eine Imbalance pro- und antiinflammatorischer
Zytokine [95, 239, 240, 253, 254] diskutiert. Insgesamt weisen diese Ergebnisse darauf hin,
dass Zink bei T-Zell-vermittelten Autoimmunerkrankungen wie der EAE, als Tiermodell der
MS, involviert sein und moglicherweise einen neuen therapeutischen Ansatzpunkt derartiger
Erkrankungen bieten kénnte [242, 243, 255]. Bemerkenswert ist ein dosisabhéniger Effekt des
Spurenelementes auf das Immunsystem - sowohl zu niedrige als auch zu hohe Plasmalevel
des Biometalls fiihren zu einer reduzierten Funktionsweise des Immunsystems [238, 240,
256-258].
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Ziel der vorliegenden Arbeit war es, Untersuchungen zur potentiellen Wirksamkeit und zum
Wirkmechanismus von Zink-HA, einem zugelassenen Pharmakon mit ausgezeichneter
Bioverfligbarkeit, bei T-Zell-vermittelten Autoimmunerkrankungen wie der MS
durchzufiuhren. Dazu wurden zunéchst in vitro die DNA-Synthese, die Vitalitdt und die
Zytokinproduktion von Mitogen-stimulierten humanen T-Zellen gesunder Probanden und von
murinen Splenozyten unter dem Einfluss von Zink-HA untersucht. Dartber hinaus wurden
mit Hilfe der EAE in vivo-Experimente durchgefuhrt, um die Frage zu beantworten, ob orale
Applikationen des Arzneimittels Zink-HA in diesem Modell therapeutisch wirksam sind. Zur
Verifizierung der im Tiermodell erhobenen klinischen Daten erfolgten anschlielend

histopathologische Untersuchungen des ZNS von EAE-erkrankten SJL/J-M&usen.

Zur Analyse potentieller Effekte von Zink-HA auf die T-Zell-Aktivierung wurde zundchst die
Wirkung auf die  DNA-Synthese  stimulierter  humaner  Pan-T-Zellen  und
T-Zell-Subpopulationen sowie Milzzellen der Maus untersucht. Zuvor erfolgte eine
Vitalitatsbestimmung zum Ausschluss zytotoxischer Effekte von Zink-HA auf die zu
analysierenden Zell-Populationen. Die Zellvitalitdt war sowohl lichtmikroskopisch als auch
durchflusszytometrisch ~ unbeeinflusst ~ von  Zink-HA  in  dem  untersuchten
Konzentrationsbereich von bis zu 200 uM fiir stimulierte humane T-Zellen und bis zu
150 uM fur aktivierte murine Splenozyten. Dies bestatigte die 2012 von unserer
Arbeitsgruppe erhobenen Daten mit unbeeinflusster Zellvitalitat bis zu 150 uM im humanen
und bis zu 100 uM im murinen Zellsystem [240]. Auch Beobachtungen anderer Autoren
zeigten keine Auswirkung von 100 uM ZnSO, auf die Vitalitat stimulierter MNZ oder
aktivierter MNZ aus gemischten Lymphozytenkulturen bzw. auf Jurkat-Zellkulturen [13, 259,
260]. Hingegen beschrieben Campo und seine Mitarbeiter eine Reduktion der Zellvitalitat auf
33% unter dem Einfluss von 250 puM ZnSOs. Minderung der Vitalitdt wurden auch fir
300 UM ZnSOs beschrieben [259]. Diese Daten stiitzten die These, dass extrem hohe
Zinkkonzentrationen eine zytotoxische Wirkung aufweisen und sowohl die T-Zell- als auch
die Monozyten-Funktion dadurch beeintrachtigt werden koénnte [260]. Als Ursache hierfur
wurde die Inhibition der IRAK (IL-1 Rezeptor Typ l-assoziierte Proteinkinase) diskutiert,
welche die intrazelluldre Signaltransduktion bereits friihzeitig blockiert [74, 261]. Auch die
Induktion von Apoptose wurde als potenzieller Mechanismus erwogen [35, 259]. Bozym et al.
zeigten indessen, dass hohe Konzentrationen an freien Zinkionen (ca. 100 nmol/L) bereits
nach kurzester Zeit zytotoxisch wirken. Somit sei ein relativ prolongierter Prozess von
Stunden, wie die Apoptose, als alleiniger Mechanismus der Zytotoxizitat fraglich [262].

Hierbei wurde der entscheidende Einfluss freier Zinkionen auf die Zellpopulationen im
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Gegensatz zur verabreichten Gesamtdosis betont. In diesem Zusammenhang konnte die
Verwendung relativ hoher Konzentrationen von Zink-HA fur die in vitro-Experimente der
vorliegenden Arbeit stehen, wahrend physiologische Zinklevel von Immunzellen im
Vergleich dazu im Pico- bzw. im unteren Nanomolar-Bereich liegen. Zudem haben
verschiedene Autoren gezeigt, dass die Konzentration an freien Zinkionen durch die im
Zellkulturmedium befindlichen Proteine, wie Serumalbumin, signifikant gedampft werden
kann [262-265]. Dementsprechend wére die Anzahl an freien Zinkionen unter
Zellkulturbedingungen deutlich niedriger als die zum Kulturmedium zugefligte Gesamtmenge
des Biometalls. Somit stdnde nur eine kleine Fraktion an Zinkionen zur Zellinteraktion zur
Verfugung. Dieser Effekt wurde bereits fir verschiedene Zellkulturmedien unabhé&ngig von
der verwendeten Zelllinie belegt [13, 262, 263].

Albumin ist im Serum, bedingt durch seine quantitativen (hohe Serumkonzentration) und
qualitativen (hohe Zinkaffinitit (KD ~ 0.1 umol/L) [266]) Eigenschaften, das
Hauptbindungsprotein von Zink [33]. Haase et al. haben gezeigt, dass Zink durch die Zugabe
einer physiologischen Menge BSA (50 mg/ml) zu RPMI, einem Serum-freien
Zellkulturmedium, seine Zytotoxizitat auf murine RAW 264.7-Makrophagen verliert [13]. Aus
diesem Grund besteht die Mdglichkeit, dass in den vorliegenden in vitro-Experimenten ein
Teil des zugegebenen Zink-HAs an diverse Komponenten des verwendeten AIM-V Mediums
gebunden wurde und damit keinen Einfluss auf die zu untersuchenden Zellpopulationen hatte.
AIM-V-Medium ist ein Serum-freies Zellkulturmedium, welches u. a. humanes
Serumalbumin als Zusatzstoff enthdlt [267]. Mdoglicherweise war die Zellvitalitdt im
angewandten Konzentrationsbereich aufgrund der hohen Zink-Bindekapazitat des
AIM-V Mediums unbeeinflusst von Zink-HA.

Im Rahmen dieser Arbeit konnte beobachtet werden, dass Zink-HA die DNA-Synthese
PWM- oder anti-CD3/CD28-Antikorper stimulierter humaner Pan-T-Zellen sowie deren
CD4*- und CD8*-T-Zell-Subpopulationen konzentrationsabhéngig hemmte. Diese Wirkung
von Zink-HA konnte auch fur PWM- oder anti-CD3-Antikorper stimulierten Splenozyten von
SJL/J-Mdusen belegt werden. Interessanterweise war der I1Cso-Wert der DNA-Synthese im
murinen System unter beiden Stimulationsbedingungen um ca. die Halfte niedriger als im
humanen System. In PWM-Ansatzen der murinen Splenozyten betrug die 1Csg ca. 40 UM, bei
humanen Pan-T-Zellen hingegen 125 pM  Zink-HA; im anti-CD3-Antikorper-
Stimulationssytem ergab sich ein 1Cso-Wert von ca. 50 pM (murin) bzw. 80 pM (human)
Zink-HA. In Anbetracht der Versuchsbedingungen unterschieden sich die Kulturansétze nur
durch die Zugabe von 10° M 2-ME zu den Milzzellen der Maus. B-Mercaptoethanol wird
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ublicherweise zur Denaturierung und Reduktion von Proteinen sowie als Zusatz diverser
Zellkulturen zur Forderung von Wachstum und Differenzierung genutzt [231].
Mdglicherweise flhrte 2-ME im murinen Zellkultursystem zur Denaturierung von Proteinen
des AIM-V Mediums. Damit kénnte der Anteil freier und reaktionsfahiger Zinkionen durch
den Verlust der Zink-puffernden Eigenschaften der Proteine erhéht werden und zu einer
starkeren Inhibition der DNA-Synthese flhren. In der Literatur konnte fir
Mitogen-stimulierte humane MNZ bereits ein proliferationshemmender Effekt diverser
Zinkderivate (ZnClz, ZnO und ZnSO4) mit einer Dosis groRer als 100 uM belegt werden [83,
238].

Ein Schlusselmechanismus bei der Entstehung pathologischer Gewebslésionen im Rahmen
von Autoimmunerkrankungen wie der MS ist die Produktion und Freisetzung
inflammatorischer Zytokine [4, 254]. Dem Thl-Zytokin IFN-y sowie den Thl7-Zytokinen
IL-17A und GM-CSF werden dabei eine entscheidende Rolle zugeschrieben [4, 253, 268].
Aus diesem Grund wurde in der vorliegenden Arbeit die Wirkung des zugelassenen
Therapeutikums Zink-HA auf die Zytokinproduktion humaner T-Zellen zundchst in Form
einer Screeningmethode, einem Zytokin-Array, untersucht. Mit diesem Testsystem konnten
semiquantitativ die Konzentrationen von 36 verschiedenen Zytokinen, Chemokinen und
Akute-Phase-Proteinen in Zellkulturiiberstdanden unstimulierter sowie PWM-stimulierter
humaner Pan-T-Zellen analysiert werden, welche tber 72 h in An- und Abwesenheit von
150 uM Zink-HA kultiviert wurden. Unter den genannten Versuchsbedingungen fiihrte die
PWM-Stimulation  humaner  T-Zellen zu einer starken Produktions-  sowie
Sekretionssteigerung von Zytokinen wie IL-2, IL-5, GM-CSF, IFN-y und TNF-o. Zink-HA
hemmte signifikant die Synthese jener Zytokine in dem verwendeten Zellsystem. Die
Produktion weiterer Zytokine, wie IL-6 oder IL-10, I1L-13, IL-17, IL-17E, IL-23 und IL-27
wurde durch PWM ebenfalls stimuliert; eine Inkubation mit 150 uM Zink-HA bewirkte in
diesen T-Zell-Kulturen eine eindeutige Produktionshemmung der genannten Botenstoffe. Die
Array-Daten bestétigen bereits den von unserer Arbeitsgruppe beobachteten suppressiven
Effekt verschiedener Zinkderivate (ZnClz, ZnO und ZnSQO4) auf die IL-2-, IL-6- und
IL-10-Produktion mitogenstimulierter humaner MNZ [83, 238] sowie auf die IL-2- und
IL-17-Synthese PWM-aktivierter humaner T-Zellen [240]. Auch andere Autoren belegten
unter Verwendung hoher Zinkkonzentrationen einen hemmenden Effekt des Biometalls auf
die Synthese von IFN-y [81, 239, 260] und TNF-a [56, 239, 269] mitogenstimulierter MNZ
oder aktivierter Jurkat-Zellen. Insgesamt zeigen die Ergebnisse des Zytokin-Arrays, dass
Zink-HA die Synthese verschiedener, fir die EAE bzw. MS relevanter Zytokine, wie
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beispielsweise Thl- (IL-2, IFN-y und TNF-a), Th2- (IL-5, IL-13) und Th17- Zytokine (IL-17,
GM-CSF) in vitro inhibieren kann.

Zur Verifikation der semiquantitativ erhobenen Array-Daten folgten anschlieRend vertiefende
Untersuchungen mittels spezifischer Zytokin-ELISA. Dabei konzentrierte sich die
vorliegende Arbeit auf diejenigen Botenstoffe, welche in die Immunpathogenese der EAE
bzw. der MS involviert sind [4, 270]. Zunéchst konnte gezeigt werden, dass Zink-HA die
Produktion von IFN-y, TNF-o, GM-CSF, IL-5 und IL-10 in PWM- oder in
anti-CD3/CD28-Antikorper stimulierten humanen T-Zellen sowie in PWM-aktivierten
Splenozyten der Maus dosisabhéngig hemmte. Im Mittel erfolgte eine signifikante Inhibition
der Zytokine im humanen System ab 150 pM Zink-HA, im murinen Modell bereits ab ca.
70 uM  Zink-HA  (ausgenommen IL-5). Eine Hypothese zu den differierenden
Zinkkonzentrationen zwischen beiden Systemen wurde bereits fir den Einfluss von Zink-HA
auf die DNA-Synthese dargelegt (siehe oben). In der Literatur wurde ein biphasischer Effekt
von Zink auf die Produktion proinflammatorischer Zytokine, wie IFN-y, diskutiert [17, 54,
239, 241]. Zum einem zeigten Aydemir und seine Mitarbeiter eine Induktion der
IFN-y-Produktion mitogenstimulierter humaner T-Zellen nach 4-tégiger oraler Substitution
von 15 mg ZnSO4/Tag [82, 241]. Zusatzlich konnte eine vermehrte Expression des
Zink-Transporter ZIP8 wéhrend der T-Zell-Aktivierung sowie ein Zusammenhang zwischen
diesem Transporter und der IFN-y-Synthese demonstriert werden. Dies fiihrte zur Annahme
einer ZIP8-vermittelten Rolle des Spurenelementes bei der T-Zellaktivierung in Folge
variierender Zinkkonzentrationen des Zytoplasmas [241]. Auch andere Autoren belegten eine
Zink-bedingte Zunahme der IFN-y-Produktion stimulierter humaner Immunzellen in vitro
[261, 271-274]. Andererseits beobachtete die Arbeitsgruppe um Hayashi 2008 eine
Zink-abhangige Hemmung dieser Zytokinexpression in aktivierten humanen Jurkat-Zellen
unter Verwendung von Zinkkonzentrationen ab 50 uM. Urséachlich wurde von den Autoren
eine Down-Regulation des Calcium-unabhangigen PKC-AP-1-Signalweges angenommen
[81]. Interessanterweise konnten auch Aydemir et. al. trotz differierender
Versuchsbedingungen eine dosisabhangige Inhibition der IFN-y-Synthese in vitro im Sinne
eines biphasischen Effektes des Spurenelementes beobachten. Ein  Maximum der
IFN-y-Produktion in vitro lieR sich unter Zugabe von 3,1 pM Zink und eine Abnahme
derselben durch 25 pM Zink verzeichnen. Dies legt die Vermutung nahe, dass die
Substitution jenes Spurenelementes im unteren Konzentrationsbereich eine mutmallich
stimulierende und bei Konzentrationen oberhalb des physiologischen Niveaus eine potenziell
inhibierende Wirkung auf die T-Zell-Aktivierung hat, ohne dabei die Zellvitalitdt zu
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beeinflussen [82, 241]. Weitere Studien zur oralen Zinksubstitution belegten diese
konzentrationsabhé&ngige Wirkung [239, 255]. Welcher molekulare Mechanismus ursachlich
dazu  beitrdgt, ist bislang unklar.  Mdoglicherweise  Uben  unterschiedliche
Plasma-Zinkkonzentrationen durch variierende Zinktransporter einen wechselnden Einfluss
auf diverse Signalkaskaden aus [241, 275].

Ein weiterer, in die Immunpathogenese der MS involvierter, proinflammatorischer Botenstoff
ist das Thl-Zytokin TNF-o [4]. In humanen Interventionsstudien konnte ebenfalls ein
biphasischer Effekt von Zink auf die TNF-oa-Konzentration bzw. -Produktion stimulierter
MNZ und peripherer Blutzellen angenommen werden [56, 82, 269, 273, 276]. Eine
Zinksubstitution von > 45 mg Zink/Tag flhrte zur Abnahme ex vivo generierter TNF-a-Level
stimulierter MNZ [56, 269, 276] und ist auf diese Weise konform mit den Daten der
vorliegenden Arbeit. Jedoch verweist die Literatur auch auf erhdhte Zytokinkonzentrationen
aktivierter MNZ, welche von Spendern mit einer taglichen Einnahme von < 20 mg Zink
isoliert wurden [82, 273]. Die dosisabhdangige Wirkung von Zink auf die Synthese
proinflammatorischer Zytokine, wie TNF-a aber auch IL-1B, IL-6 und IFN-y spiegelt
vermutlich die Féhigkeit des Spurenelementes wieder, die Aktivitdit des ubiquitér
vorkommenden Transkriptionsfaktors NF-xB zu stimulieren oder zu inhibieren [239]. Der
Signalweg des TNF-Rezeptors ist dabei als Aktivator in den Prozess involviert. Uber den
IxB Kinase Komplex (IKK), welcher das NF-«kB-Inhibitionsprotein phosphoryliert und
dadurch inaktiviert, fihrt dieser Signalweg zur Freisetzung und Translokation von NF-xB in
den Nukleus [277]. Kirzlich wurde gezeigt, dass der Zinkimporteur ZIP8 eine Rolle im
Inaktivierungsprozess von NF-kB in Monozyten, Makrophagen und Epithelzellen der Lunge
wahrend einer Infektion spielen konnte [278]. In vitro bewirkte die Inkubation von
HUT-78 (ThO) Zellen mit niedrigen (1 puM) und mit hohen Zinkkonzentrationen (50 oder
100 uM) eine Reduktion der NF-kB-Aktivitdt und somit des Zellwachstums sowie der
Zytokinexpression im Vergleich zu Kulturbedingungen mit einem physiologischen
Zinkniveau (15 pM) [279]. Im Gegensatz dazu konnte unter physiologischen
Zinkbedingungen in stimulierten HL-60- und GeféalRendothel-Zellkulturen eine Zunahme der
A20-Aktivitat, einem NF-kB-Inhibitor [28, 86] im Vergleich zu Zellkulturen mit 1 uM Zink
gezeigt werden. Diese Ergebnisse suggerieren eine Zelltyp-spezifische Wirkung des
Biometalls auf die NF-kB-Aktivitdt [28]. Die Verwendung verschiedener Zelltypen in
differierenden Studienmodellen unter dem Einfluss diverser Zinkkonzentrationen aber auch

die Wirkung von Zusatzstoffen (bspw. Chelatoren) auf den intrazelluléren Zinkstatus kommen
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als mogliche Ursachen fur die widerspruchlichen in vitro-Beobachtungen der NF-kB-Aktivitat
unter dem Einfluss des Biometalls in Frage.

Neben IL-17 ist der Botenstoff GM-CSF ein wichtiges Effektormolekil der Th17-Population
[4, 268, 270]. Unsere Arbeitsgruppe belegte eine dosisabhangige Hemmung von Zink-HA auf
die IL-17-Produktion Mitogen-stimulierter humaner T-Zellen sowie aktivierter Splenozyten
der Maus [240]. Interessanterweise wurde Zink bereits eine regulierende Rolle in der
IL-6/STAT3 Signalkaskade zugeschrieben, welche zur Entwicklung IL-17-produzierender
CD4*-T-Zellen (Th17-Zellen) fuhrt [89]. Th17-Lymphozyten und deren proinflammatorische
Zytokine tragen entscheidend zur Entwicklung von Autoimmunerkrankungen bei [6,
280-282]. Therapeutische Zinkgaben von 50 uM ZnSO4 hemmten in vivo die Reifung von
naiven CD4*-T-Zellen zu Th17-Zellen mittels direkter STAT3-Bindung. Dies fiihrte zum
Verlust der a-helikalen Struktur und zur Entfaltung von STAT3 mit einhergehender
Aktivitdtsminderung sowie Hemmung der Phosphorylierung von JAK-Kinasen [89].
Minderung der Thl7-Proliferation und eine erniedrigte Serumkonzentration von IL-17A
waren die Folge. Wenn Zink eine supprimierende Wirkung auf die Generation der
Th17-Population hat, kénnte sich dies ebenfalls hemmend auf deren Zytokinproduktion
(bspw. IL-17A, IL-17E, GM-CSF) auswirken, was sich in den erhobenen Array- und
ELISA-Daten der Arbeit widerspiegeln wirde.

Zahlreiche Untersuchungen der letzten Jahre belegten den Einfluss von Zink auf die
Polarisation naiver T-Lymphozyten in diverse Subpopulationen und zeigten eine verminderte
Rate CD4*- zu CD8*-Zellen sowie eine Th1/Th2-Imbalance unter Zinkmangelbedingungen
[49]. Wahrend die Zell-vermittelte Immunantwort durch diese defizitare Situation gestort zu
sein scheint, l&sst sich anhand einer unveranderten Th2-Zytokin-Produktion (bspw. IL-4, IL-5
und IL-10) eine geringe Wirkung des Biometalls auf die humorale Immunreaktion vermuten
[71, 78, 283, 284]. Im Gegensatz dazu zeigte die Arbeitsgruppe um Prasad im Rahmen einer
Zink-Substitutionsstudie eine Abnahme der IL-10-Produktion ex vivo generierter MNZ in der
Therapiegruppe, welche tber 12 Monate tdglich 45 mg Zinkgluconat einnahm [56]. Reinhold
et al. belegten ebenfalls einen suppressiven Effekt verschiedener Zinkderivate auf die
IL-10-Synthese mitogenstimulierter humaner MNZ in vivo [83]. Diese Daten bestatigen die in
der vorliegenden Arbeit erhobenen Ergebnisse und lassen eine Zink-vermittelte Wirkung auf
die Synthese von Th2-Zytokinen vermuten. In welcher Form Zink dabei Signalkaskaden
beeinflusst oder ob diverse Zinktransporter darin involviert sind, ist bislang unklar und sollte

Gegenstand weiterer Untersuchungen sein.
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Basierend auf den in vitro-erhobenen Ergebnissen besteht die Mdglichkeit, dass Zink-HA eine
potentielle Therapieoption zur Modifikation T-Zell-vermittelter Autoimmunerkrankungen des
ZNS darstellen konnte. In der Vergangenheit wurde von verschiedenen Autoren bereits eine
therapeutische Wirkung des Spurenelementes auf einige dieser Autoimmunerkrankungen
angenommen [242, 243, 255].

Der Schwerpunkt der vorliegenden Arbeit fokussierte sich auf orale Zinktherapiestudien im
EAE-Modell. Die EAE ist sowohl ein anerkanntes Tiermodell der MS als auch ein
allgemeines, tierexperimentelles Beispiel fir T-Zell-vermittelte Autoimmunerkrankungen des
ZNS, welche durch entziindliche und demyelinisierende Prozesse gekennzeichnet sind [196,
199]. Der Einfluss praventiver Zinkgaben auf die Entstehung und den Verlauf der EAE
wurden bereits von verschiedenen Arbeitsgruppen untersucht. Ein préventiver Effekt von
ZnSO4 bei EAE-erkrankten SJL/J-Méusen [285] oder von ZnCl, bei Lewis Ratten, welche
ebenfalls an einer EAE litten [286], konnte nicht gezeigt werden. Kitabayashi et al.
dokumentierten hingegen 2010 eine Zink-bedingte Inhibition Thl7-Zell-vermittelter
Autoimmunerkrankungen, wie die CIA und die EAE [89]. Eine signifikante Reduktion des
Schweregrades einer MOG (35-55)-Peptid induzierten aktiven EAE von C57BL/6 Méausen
wurde in Folge eines préventiven Zink-Trinkwasserzusatzes Uber 2 Monate erzielt. Die
aufgenommene Menge des Spurenelementes pro Maus entsprach dabei etwa 29 uM
ZnSO4/Tag. Ursdchlich vermuteten die Autoren eine regulierende Funktion von Zink in der
IL-6/STAT3-Signalkaskade, welche in der Entwicklung von Th17-Lymphozyten
entscheidend involviert sein soll (siehe oben). Einen Einfluss des Spurenelementes auf die
Th1-Population und deren Zytokinsynthese konnte diese Arbeitsgruppe unter den genannten
Versuchsbedingungen allerdings nicht belegen. Mdglicherweise fiihrten die verschiedenen
Applikationsprotokolle sowie die differierende Bioverfugbarkeit diverser Zinkpraparate als
auch deren angewandte Dosen zu diesen widerspruchlichen Ergebnissen.

Kdirzlich beschrieb unsere Arbeitsgruppe eine therapeutische Wirkung i.p.-verabreichter
Zink-HA-Konzentrationen auf die schubférmig verlaufende, aktive EAE von SJL/J-Mé&usen
[240]. Dabei fiihrte eine 10-tgige préventive sowie therapeutische i.p-Applikation von im
Mittel 30 pug Zink-HA/Tag (1,5 mg/kg KG) zu einer signifikanten Reduktion des klinischen
Schweregrades der EAE wahrend des ersten Schubes. Die Verwendung niedrigerer
Zink-HA-Konzentrationen (6 pg/Tag; 0,3 mg/kg KG) hatte hingegen keinen therapeutischen
Effekt, wahrend hohe Dosen des Spurenelementes (120 pg/Tag; 6 mg/kg KG) eine Zunahme
des Schweregrad bzw. des Krankheitsverlaufs bewirkten. Auf Grundlage dieser Ergebnisse

folgten in der vorliegenden Arbeit Experimente zur Optimierung des therapeutischen
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Managements im klinischen Alltag in Form von oralen Zink-HA-Applikationen. Im Rahmen
chronischer Erkrankungen wie der MS ist eine risikoarme und anwenderfreundliche
Therapieform anzustreben.

Die Behandlung der an einer EAE erkrankten SJL/J-Méause begann mit dem Auftreten erster
klinischer Symptome flir einen Zeitraum von 10 Tagen. In dieser akuten Krankheitsphase sind
die entzindlichen Infiltrate des ZNS durch eingewanderte autoreaktive T-Zellen,
Makrophagen sowie weitere proinflammatorische Lymphozyten und aktivierte ortsstandige
Mikrogliazellen gekennzeichnet [287]. Die perorale Therapie mit 6 oder 12 pug Zink-HA/Tag
bewirkte eine signifikante Reduktion des Schweregrades der EAE im Verlauf der
Krankheitsschibe. Insgesamt konnte festgestellt werden, dass in den durchgefihrten
Experimenten die 10-t4gige Gabe von 12 pg Zink-HA/Tag einen groReren therapeutischen
Nutzen erzielte. Diese klinischen Ergebnisse stimmten mit den histopathologischen Analysen
der vorliegenden Arbeit Uberein. Es zeigte sich eine diskrete Reduktion der Anzahl
infiltrierender inflammatorischer Zellen im ZNS von EAE-erkrankten SJL/J-M&usen.
Besonders bemerkenswert war, dass hohere Konzentrationen (> 30 pg/Tag) des peroral
verabreichten Zink-HA keinen therapeutischen Nutzen erzielten, sondern zu einer
Progredienz des Krankheitsgeschehens flihrten. Bislang ist unklar, ob es sich dabei um einen
toxischen Effekt des Spurenelementes im hoéheren Dosisbereich handelte oder ob diese
Zinkkonzentrationen die Balance pro- und antiinflammatorischer Effektormechanismen
beeinflusste. Interessanterweise fuhrte die orale Therapie mit 30 pug Zink-HA/Tag zu einer
Zunahme des Schweregrades der EAE, wahrend die i.p.-Applikation dieser Dosis eine
signifikante Reduktion dessen erzielte. Die i.p.-Darreichungsform z&hlt zu den parenteralen
Applikationsvarianten und wird u. a. zur Vermeidung des First-Pass-Effektes der Leber
eingesetzt [288]. Mdglicherweise lag in jenem First-Pass-Mechanismus jedoch die Ursache
dieser widersprichlichen Ergebnisse. Die Leber stellt das Hauptorgan des Zinkstoffwechsels
dar und ist u. a an der Regulation der fir das Immunsystem essentiellen
Plasmazinkkonzentration mit beteiligt [33]. Letztlich bleibt jedoch unklar, ob die Daten die
h&ufig beobachteten biologischen Schwankungen dieses Tiermodells reflektierten oder ob die
Ursache in der Darreichungsform begriindet lag. Fur den klinischen Alltag, insbesondere im
Rahmen der MS, ist jedoch die erstmalige Beschreibung eines signifikanten therapeutischen
Nutzens einer Dosis-bezogenen oralen Zink-HA-Therapie in der EAE von Bedeutung.

Im Hinblick auf die MS konnten die beiden Spurenelemente Zink und Kupfer in die Atiologie
und Pathogenese dieser Erkrankung involviert sein. Epidemiologische Studien zeigten eine
niedrige Prévalenz der MS in Kustenregionen [289] mit reichhaltigem Fischangebot, was
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Grungreiff et al. als ausgezeichneten Zinklieferanten beschrieben [31]. Des Weiteren fuhrten
Zink- bzw. Kupferdefizite bei einigen Tierarten zu einer Hypomyelinisierung des ZNS
[290-292]. Johnson postulierte, dass die erhohte MS-Préavalenz beim weiblichen Geschlecht
u.a. in der Menstruations-bedingten Zunahme des Kupferplasmaspiegels liegen konnte.
Dieser Uberschuss wiirde wiederum in einer verminderten Resorptionsrate von Zink
resultieren [293]. Niedrige Plasma-Zinkkonzentrationen konnten laut Autor schlieRlich zu
einer Dysfunktion der Kupfer-/Zink-Superoxiddismutase und folglich zu einer groReren
Anzahl freier Radikale fiihren.

Zur Hohe der Plasma- oder Serumkonzentration jenes Spurenelementes finden sich in der
Literatur widerspruchliche Daten. Einerseits berichteten verschiedene Autoren Uber
erniedrigte Serum- [119] oder Plasma-Zinkkonzentrationen [116, 117] von MS-Patienten im
Vergleich zu einer gesunden Kontrollgruppe. Andererseits wies die Arbeitsgruppe von
Dore-Duffy bei 68 Patienten mit MS im Vergleich leicht erhdhte Plasmaspiegel des
Biometalls nach [294]. Kirzlich berichteten Ghazavi et al. hingegen in einer
Fall-Kontroll-Studie mit 60 iranischen MS-Patienten Uber signifikant erniedrigte
Serum-Zinkkonzentrationen sowie erhohte Serumlevel an Kupfer. Die dazugehorige
Kontrollgruppe mit gleicher Alters- und Geschlechtsverteilung bestand aus 60 freiwilligen
gesunden Personen von vergleichbarer sozio6konomischer und geographischer Herkunft
[118]. Des Weiteren wurden von dieser Arbeitsgruppe signifikant niedrigere Zinkspiegel im
Serum von Patienten mit einer sekundar progredienten MS im Vergleich zu denjenigen mit
einer schubférmig remittierenden Variante der MS beschrieben, was einen Einfluss des
Biometalls auf die Progredienz der Erkrankung vermuten l&sst. In diesem Zusammenhang
zeigte unsere Arbeitsgruppe eine signifikante Reduktion der Plasma-Zinkkonzentration von
EAE-erkrankten SJL/J-Mdusen am Tag 21 nach der Immunisierung im Vergleich zum
Plasma-Zinkspiegel gesunder Versuchstiere [295].

Insgesamt deuten die vorliegenden Daten in Zusammenschau mit der aktuellen Fachliteratur
darauf hin, dass eine klinische Anwendung erprobter und zugelassener Zinkpréparate, wie
Zink-HA, bei MS-Erkrankten mit nachweislich erniedrigten Serum-Zinkkonzentrationen von
Nutzen sein koénnte. Eine Hochdosis- und/oder eine Langzeittherapie des Spurenelementes
sollte dabei stets unter regelmaRiger Kontrolle des Serum-Zinkspiegels erfolgen, da nicht nur
Immunsuppression sondern auch Eisen- oder Kupfermangel sowie An&mie und
Wachstumsretardierung zu potentiellen Therapiefolgen gehéren kdénnen [257, 296, 297].
Abbildung 20 stellt den hypothetischen Zusammenhang zwischen einem laborchemisch

ermittelten Zinkmangel und dessen Auswirkungen auf die Immunhomoostase des Korpers dar
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im Sinne einer verminderten Immunfunktion sowie einer UberschieBenden T-Zell-Immunitét.
Dies kann einerseits zu einem sekunddren Immundefekt oder anderseits zu diversen
T-Zell-vermittelten Autoimmunerkrankungen fiihren. In klinischen und tierexperimentellen
Studien bewirkte eine kontrollierte Zinksubstitution unter Zinkmangelbedingungen eine
Normalisierung der Zinkhomdostase des Koérpers und der immunologischen Parameter.
Ebenso fuhrt eine immunsuppressive Therapie mit Hilfe des Spurenelementes zur Reduktion

der klinischen Symptomatik von Autoimmunphdnomenen.

kontrollierte immunsuppressive
Zinksubstitution Zinktherapie
(niedrige Dosis) (hohe Dosis)
Zinkmangel l Normalisierung der l Zinkmangel
(Serumzink) —_— Zinkhoméostase — (Serumzink)
des Korpers

} l

verminderte Normalisierung der iiberschieRende
Immunfunktion Immunfunktion T-Zelldmmunitat
kontrollierte immunsuppressive

Zinksubstitution Zinktherapie

(niedrige Dosis) (hohe Dosis)
- i i T-Zell-vermittelte

sekundarer > \_/e_rbesserung der P Rutoimmuns
Immundefekt klinischen Symptome erkrankungen

Abbildung 20: Zusammenhang zwischen dem ,Zinkstatus*“ und der Immunhomdostase des
Korpers. Hypothetische Darstellung der Beziehung eines Zinkmangels und eines sekundaren
Immundefekt mit kontrollierter Zinksubstitution sowie T-Zell-vermittelten Autoimmunerkrankungen
mit vorhandenem Zinkdefizit und kontrollierter, immunsuppressiver Zink-Therapie [90].

Neben der allgemeinen Wirksamkeit und Vertraglichkeit des Spurenelementes bei
T-Zell-vermittelten Autoimmunerkrankungen wie der MS sollten daher auch Untersuchungen
zur Dosisoptimierung der Serum-Zinkkonzentration Bestandteil zukilnftiger klinischer
Studien sein. Die Aussagekraft der Analyse des Serum- bzw. Plasma-Zinkspiegels wird
derzeit als nicht optimal eingeschatzt [298, 299]. Aus diesem Grund sind weitere
Betrachtungen noétig, um standardisierte Aussagen zum ,,Zinkstatus® einer Person treffen zu
konnen.

Da regulatorische T-Lymphozyten oder Th9-Zellen ebenfalls in die Immunpathogenese der

EAE involviert sein sollen [4], sind aullerdem weitere in vitro-Analysen zum Einfluss von
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Zink auf T-Zell-Subpopulationen und deren Zytokinproduktion denkbar. Auch sollten
verifizierende und vertiefende Untersuchungen zur Wirkung von Zink auf die Th2-Population
und jener Zytokinsynthese angestrebt werden. Weiterhin gilt es zu prifen, ob die suppressive
Wirkung jenes Spurenelementes auf T-Zell-vermittelte Autoimmunerkrankungen im
therapeutischen Bereich auf die Induktion von Apoptose zurtickzuftihren ist. In der Literatur
wurde Zink eine regulatorische Rolle im Apoptose-Prozess bereits zugeschrieben [35, 259].
Campo et al. zeigten eine stirkere Reduktion der IFN-y-Synthese in Folge einer Préinkubation
von MNZ mit Zink [260]. Die Auswirkung einer Prdinkubation mit diesem Biometall auf die
Produktion proinflammatorischer Zytokine sollte in weiteren Experimenten analysiert werden.
Gleiches qilt fur den Einfluss von Zink auf ruhende Zellen, da bislang stets
mitogenstimulierte Zellkulturen als Versuchsgrundlage dienten. An Hand der vorliegenden
histopathologischen Daten gilt es, in Zukunft mittels spezifischer Farbetechniken zu priifen,
welche Zellpopulationen im ZNS durch die Wirkung von Zink beeinflusst werden. Auch
Restimulationsversuche zur Analyse eines potenziellen Wirkungsmechanismus des
Biometalls wéren fur Folgestudien denkbar.

Schliel3lich tragen die Ergebnisse dieser Arbeit einen weiteren Schritt zur Aufklarung der
Rolle von Zink-HA in T-Zell-vermittelten Autoimmunerkrankungen wie der EAE bei und

eroffnen moglicherweise neue therapeutische Ansatzpunkte.
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6. Zusammenfassung

Klinische und experimentelle Untersuchungen haben gezeigt, dass enge Wechselwirkungen
zwischen dem essentiellen Spurenelement Zink und dem Immunsystem existieren. Zink
beeinflusst die zellularen und humoralen Komponenten des angeborenen sowie des
erworbenen Immunsystems. Sowohl ein Zinkmangel als auch ein Uberschuss dieses
Biometalls konnen zu einer schweren Dysfunktion des Immunsystems fuhren. Dies
unterstreicht die Bedeutung eines alimentéren physiologischen Zinkspiegels fur die Erhaltung
der Immunhomd@ostase.

Arbeiten der letzten Jahre belegen darliber hinaus immunsuppressive Wirkungen von
Zinkverbindungen in  T-Zell-vermittelten  autoimmunen  Tiermodellen, wie der
Kollagen-induzierten Arthritis, der DSS-induzierten Kolitis oder der Experimentellen

Autoimmunen Enzephalomyelitis (EAE), einem anerkannten Modell der Multiplen Sklerose.

Unsere Arbeitsgruppe untersuchte in Vorarbeiten die Wirkung von Zink-Hydrogenaspartat
(Zink-HA, Unizink 50), einem zugelassenen Arzneimittel mit sehr guter Bioverfugbarkeit,
und konnte nachweisen, dass praventive sowie therapeutische intraperitoneale Applikationen
dieses Praparates signifikant den klinischen Verlauf und den Schweregrad einer schubférmig

remittierenden, aktiven EAE von SJL/J-M&ausen hemmen.

Ziel der vorliegenden Arbeit war es, fortfihrende in vitro- und in vivo-Untersuchungen zum
Wirkmechanismus von Zink-HA und zur moglichen oralen Wirksamkeit dieses
Therapeutikums im EAE-Modell durchzufihren.

Im Rahmen der Arbeit konnte gezeigt werden, dass Zink-HA die Proliferation
(DNA-Synthese) sowie die Produktion der Zytokine IFN-y, TNF-a, GM-CSF, I1L-10 und IL-5
von anti-CD3/CD28-Antikorper- oder Pokeweed-Mitogen-stimulierten humanen T-Zellen
und murinen Splenozyten dosisabhéngig inhibierte. Die Vitalitat der jeweiligen Zellsysteme
war in den verwendeten Konzentrationsbereichen unbeeinflusst von Zink-HA.

Daneben sollte im Rahmen der Arbeit die Wirksamkeit einer 10-tdgigen oralen,
therapeutischen Zink-HA-Applikation im Tiermodell der aktiven EAE an SJL/J-Mausen
gepruft werden. Es wurde nachgewiesen, dass eine perorale Therapie in der Akutphase der
Erkrankung mit 6 pg bzw. 12 pg Zink-HA/Tag (0,3 bzw. 0,6 mg/kg Kdorpergewicht) eine
signifikante Reduktion des Schweregrades der EAE im Verlauf der Krankheitsschibe fir
mehr als 60 Tage nach Therapieende bewirkte. Dabei lie3 sich mit einer 10-tdgigen Gabe von

12 pg Zink-HA/Tag der grofite therapeutische Nutzen erzielten. Dariiber hinaus wurde
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beobachtet, dass héhere Konzentrationen des peroral verabreichten Zink-Praparates (> 30 pg
Zink-HA/Tag (1,5 mg/kg Korpergewicht)) keine therapeutische Wirkung hatten, sondern zu
einer Progredienz des Krankheitsgeschehens fiihrten.

Histopathologische Analysen des Riickenmarks erkrankter Tiere nach 10-tagiger oraler
Behandlung mit 12 pg Zink-HA/Tag zeigten eine reduzierte Anzahl infiltrierender

inflammatorischer Zellen und bestétigten somit die klinischen Befunde.

Die Ergebnisse der Arbeit verdeutlichen das regulatorische Potential von Zink-HA bei
T-Zell-vermittelten Autoimmunerkrankungen. In zukinftigen klinischen Studien sollte bei
diesen Erkrankungen der mogliche Einsatz einer kontrollierten immunsuppressiven

Zinktherapie geprift werden.
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12. Anhang

12.1

Ubersicht der Zytokine und Chemokine des Zytokin-Arrays

Tabelle 6: Ubersicht tiber die Zytokine und Chemokine des Zytokin-Arrays.

Zytokin

Produzierende Zellen

Funktion

IL-2 T-Zellen T-Zellproliferation
IL-4 T-Zellen., Masj[zellen, B-Zellakti\_/ierung,_ IgE-Isotypwechsel, induziert
Eosinophile Differenzierung zu Th2-Zellen
IL-5 T-Zellen, Mastzellen Wachstum, Differepzieru_ng u. Uberleben v.
Eosinophilen
IL-6 T-Zellen, Makrophagen, Wachstum u. Differenzierung v. T- u. B-Zellen,
Endothelzellen Fieber, Akute-Phase-Protein
IL-10 T-Zellen, Makrophagen Immunsupprimierend, induziert u. a. Treg
B-Zellwachstum u. —Differenzierung, inhibiert
IL-13 T-Zellen Thi.Zellen g
chemotaktisch auf CD4* T-Zellen, Monozyten
IL-16 T-Zellzlgr;i,nl\élaﬁhzsllen, u. Eosinophile, anti-apoptotisch auf
P IL-2-stimulierte T-Zellen
IL-17 Th17-Zellen induziert Rekrutierung v. Neutrophilen
I1L-25 (IL-17E) Th17-Zellen induziert Th2-Zytokine u. Eosinophile
CD40L T-Zellen, Mastzellen B-Zellaktivierung, Isotypwechsel
GM-CSF

(Granulocyte macrophage
colony — stimulating factor)

Makrophagen, T-Zellen

stimuliert Entwicklung u. Differenzierung v.
myelomonozytischen Zellen u. DC

(Int«!llfflzll:gn 7) T-Zellen, NK-Zellen aktiviert Makrophagen, supprimiert Th2-Zellen
IL-1a Mal_<rophagen, Aktivierung v. T-Zlelen u. Makrophagen,
Epithelzellen Fieber
IL-1p S. IL-1a S. IL-1a
IL-1ra S. IL-1a S. IL-1a
IL-12 p70 Makrophagen, dendritische aktivi_ert NK-.ZeIIen, induziert
Zellen CD4*T-Differenzierung zu Thl-Zellen
. induziert Memory-T-Zellen, verstéarkt
1L-23 Dendritische Zellen IFN-y-I)DIro duktion
proinflammatorisch durch Induktion v. IL-1p u.
1L-32 NK-, T-Zellen, Epithelzellen IL-6, induziert Entwicklung v. Monozyten zu
Makrophagen
G-CSF

(Granulocyte-colony
Stimulating Factor)

Fibroblasten, Monozyten

stimuliert Entwicklung u. Differenzierung v.
Neutrophilen

MIF
(Macrophage migrations
inhibitory factor)

Makrophagen
Monozyten

hemmt Makrophagenbewegung, steigert deren
Adhasion, Phagozytose; proinflammatorisch

S TREM-1

Myeloide Zellen

proinflammatorisch Gber Stimulation von

(Soluble Triggering receptor Monozyten TNF-a, TLR-2 und -4;
expressed on myeloid cells) Makrophagen Hypoxie-Marker
TNF-a Makrophagen,

(Tumor necrosis factor o)

NK-Zellen, T-Zellen

Inflammtion, Endothelaktivierung

Komplementfaktor Sa

Hepatozyten

Anaphylatoxin, Chemokin, aktiviert
Makrophagen und Neutrophile

Serpin E1

Endothelzellen

inhibiert tPA (tissue Plasminogen activator)

SICAM-1
(Soluble intercellular
adhesion molecule 1)

T-Zellen, B-Zellen,
Monozyten, Endothelzellen

Adhasionsmolekiil, bindet an CD11a/CD18 und
CD11b/CD18
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Chemokin Alternativer Name
1-309

Zielzellen

Neutrophile, T-Zellen

CCL1
CCL 2 chl\eﬂn?;alc:t(ilc\:ﬂspocigrfl) T-Zellen, Monozyten, Basophile
Monozyten, Makrophagen, T-Zellen
ccL3 _ MIP-la (Macrophage (Th1>Th2), DC, NK-Zellen,
inflammatory protein-1a)
Knochenmarkszellen
Monozyten, Makrophagen, T-Zellen
CCL 4 MIP-1a (Th1>Th2), NK-Zellen, Basophile, DC,
Knochenmarkszellen
RANTES (Regulated on Monozyten, Makrophagen, T- (Memory
CCL5 activation, normal T cell T-Zellen>Th1>Th2), NK-Zellen, DC,
expressed and secreted) Eosinophile
CXCL 1 GROa Neutrophile
CXCL 8 IL-8 Neutrophile, Basophile, T-Zellen
CXCL 10 'P'iln%fgggr;?;‘t’;g?ﬂ‘)?‘a' aktivierte T-Zellen (Th1>Th2)
I-TAC (interferon inducible
CXCL 11 T-cell alpha aktivierte T-Zellen (Th1>Th2)
chemoattractant)
SDF-%aE:sttor(r)rBaI'\;ecI;gdAerlved CD34* Knochenmarkszellen,
CXCL 12 ' Lymphozyten-Vorldufer, T-Zellen, B-Zellen,
(Melanoma growth
. . .9, Plasmazellen, DC
stimulating activity alpha)

Im oberen Abschnitt der Tabelle sind die jeweiligen Zytokine des Zytokin-Arrays, deren wichtigste
produzierende Zellen und Hauptfunktionenen dargestellt (Th = T-Helferzellen, DC = Dendritic Cell

(Dendritische  Zellen)).

Der

entsprechendem Wirkungsort (Zielzellen).

-01-

untere Abschnitt zeigt diverse Chemokine des Arrays mit
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