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Let R denote a Noetherian ring and an ideal J ⊂ R with U = SpecR \ V (J). 
For an R-module M there is an isomorphism Γ(U, M̃) ∼= lim−−→ HomR(Jn, M) known 
as Deligne’s formula (see [8, p. 217] and Deligne’s Appendix in [7]). We extend 
the isomorphism for any R-module M in the non-Noetherian case of R and J =
(x1, . . . , xk) a certain finitely generated ideal. Moreover, we recall a corresponding 
sheaf construction.

© 2024 The Author. Published by Elsevier B.V. This is an open access article 
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1. Introduction

Let R denote a commutative Noetherian ring, J ⊆ R an ideal and U = SpecR \ V (J). For an R-module 
M and its associated sheaf M̃ on X = SpecR it is known that the sheaf cohomology Hi(U, M̃) and the 
Čech cohomology Ȟi(U, M̃) are isomorphic for all i ∈ Z (see e.g. [8, III, 4]). In the non-Noetherian case a 
corresponding result holds whenever J is generated by a weakly pro-regular sequence x = x1, . . . , xk (for 
the definition see [13]) and a covering of U by SpecR \ V (xi), i = 1, . . . , k. For the details we refer to [10]
and the monograph [13], where it is worked out in the frame of Commutative Algebra.

In the case of a Noetherian ring it is well-known that the global transform DJ(M) ∼= lim−−→HomR(Jn, M) is 
isomorphic to Ȟ0(U, M̃) ∼= Γ(U, M̃), U = X \V (J), known as Deligne’s formula (see e.g. [7], [8], [3] and [15]). 
Moreover, we shall contribute with a variant of Deligne’s formula in the non-Noetherian case (generalizing 
arguments of [7] and [15]) for some particular classes of ideals J generated by x = x1, . . . , xk, where we put 
Ď0

x(M) = Ȟ0(U, M̃). For our purposes here let Hi(x(n); M), i ∈ Z, denote the i-th Koszul homology of M
with respect to x(n) = xn

1 , . . . , x
n
k for an integer n ≥ 1. We prove the following:
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Theorem 1.1. Let J = (x1, . . . , xk)R denote a finitely generated ideal in a commutative ring R. For an 
R-module M there is a commutative diagram

DJ(M)
θM ρM

lim←−−x∈J
Mx

σM

Ď0
x(M)

with the following properties:

(1) θM and ρM are injective and σM is an isomorphism.
(2) θM resp. ρM is an isomorphism if and only if Ȟ1

x(DJ(M)) = 0 (see 2.1 (B) for Ȟ1
x(·)).

(3) θM resp. ρM is an isomorphism for every M if and only if the inverse system {H1(x(n); R)}n≥1 is 
pro-zero, i.e. for any n there is an m ≥ n such that H1(x(m); R) → H1(x(n); R) is zero.

Note that, if M is a Noetherian module, then {Hi(x(n); M)}n≥1 is pro-zero for any system of elements x
and i > 0 as easily seen (see also [10]). Note that ρM is in general not onto, even for an injective R-module 
M (see Example 4.3). The study of inverse systems that are pro-zero was initiated by Greenlees and May 
(see [6]) and Alonso Tarrío, Jeremías López, Lipman (see [1]). For a further discussion about their notation 
we refer to [11] and to [13]. See also 2.2 for the notion of weakly pro-regular sequences and related subjects. 
Moreover, we present a description of Ď0

x(M) as the sheaf M̃(U) (see Section 5 for the details).
In Section 2 we recall some results about Čech and Koszul complexes needed in order to describe some 

properties of sequences generalizing those of regular sequences. In Section 3 we derive the homomorphisms 
of the above diagram. To this end we recall some constructions known in the case of Noetherian rings and 
modify them in the general case, not available in this form before. This is necessary for the proof of the main 
results done in Section 4. We continue in Section 4 with a necessary and sufficient homological condition for 
ρM to become an isomorphism and an Example clarifying the necessary conditions in 1.1. In our notation 
we follow (with some minor differences) those of [13]. Moreover [13] is our basic reference.

2. Recalls about sequences

At the beginning let us fix some notation. In the following we shall use these notations without further 
reference. Let R denote a commutative ring and let M denote an R-module. For a sequence of elements 
x = x1, . . . , xk and an integer n > 0 put x(n) = x1,

n . . . , xn
k . Moreover, let J = (x1, . . . , xk)R the ideal 

generated by the sequence x.

Notation 2.1.

(A) We denote by K·(x(n); M) the Koszul complex of M with respect to the sequence x(n). For an integer i
let Hi(x(n); M) denote the i-th Koszul homology. For two positive integers m ≥ n there are natural maps 
K·(x(m); M) → K·(x(n); M) that induces homomorphisms on the corresponding homology modules. For 
each integer i they induce inverse systems {Hi(x(n); M)}n≥1.

(B) Let K ·(x(n); M) denote the Koszul co-complex and Hi(x(n); M) its cohomology. It is known that 
lim−−→K ·(x(n); M) ∼= Čx(M), the Čech complex with respect to x (see e.g. [13]). That is,

Čx(M) : 0 → M
d0

−→ ⊕r
i=1Mxi

d1

−→ ⊕1≤i<j≤kMxixj

d2

−→ . . . → Mx1···xk
→ 0.
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We call Ȟi
x(M) = Hi(Čx(M)), i ∈ Z, the Čech cohomology of M with respect to x. Moreover, let 

Ďx(M) denote the global Čech complex given by

Ďx(M) : 0 → ⊕r
i=1Mxi

d1

−→ ⊕1≤i<j≤kMxixj

d2

−→ . . . → Mx1···xk
→ 0

(see also [13, 6.1]). There is a short exact sequence 0 → Ďx(M)[−1] → Čx(M) → M → 0 of complexes 
that induces an exact sequence 0 → Ȟ0

x(M) → M → Ď0
x(M) → Ȟ1

x(M) → 0 of R-modules, where we 
abbreviate Ď0

x(M) := H0(Ďx(M)).
(C) Moreover let DJ(M) = lim−−→HomR(Jn, M) be the ideal transform of M with respect to J . We refer 

to [3], [13, Chapter 12, Section 5] and to [14] for more details. There is a natural homomorphism 
τM : M → DJ(M) and a short exact sequence

0 → ΓJ(M) → M
τM−→ DJ(M) → H1

J(M) → 0,

where ΓJ(·) denotes the J-torsion functor and Hi
J(·) its right derived functors, the local cohomology 

functors.

In the next we shall summarize some properties of sequences x = x1, . . . , xk partially needed in the 
sequel.

Definition 2.2.

(A) A sequence x = x1, . . . , xk is called M -weakly pro-regular, if for all i > 0 the inverse system 
{Hi(x(n); M)}n≥0 is pro-zero, where Hi(x(m); M) → Hi(x(n); M), m ≥ n, denotes the natural map 
induced by the Koszul complexes. That is, for each integer n there is an integer m ≥ n such that the 
map Hi(xm; M) → Hi(xn; M) is zero. We call x weakly pro-regular if it is R-weakly pro-regular. The 
first study of weakly pro-regular sequences has been done in [10].

(B) In regard to [2, Sect. 9, 6, def. 2] we call a sequence x weakly secant if the inverse system 
{H1(x(n); R)}n≥1 is pro-zero. Therefore, a weakly pro-regular sequence is weakly secant too. The con-
verse does not hold. Moreover, if R is a Noetherian ring, then any sequence x is weakly pro-regular.

In the following we give a characterization when x is weakly secant. This follows by some adaptions of 
arguments given in [13, 7.3.3] and [12, Proposition 5.3]. For the ring R let R[T ] denote the polynomial 
module in one variable. It is a free R-module with basis N.

Lemma 2.3. Let x = x1, . . . , xk denote a system of elements in R. Then the following conditions are equiv-
alent:

(i) x is weakly secant.
(ii) {H1(x(n); F )}n≥1 is pro-zero for any flat R-module F .
(iii) lim−−→H1(x(n); I) = 0 for any injective R-module I.
(iv) Ȟ1

x(I) = 0 for any injective R-module I.
(v) lim←−−H1(x(n); R[T ]) = lim←−−

1 H1(x(n); R[T ]) = 0.

Proof. The equivalence of the first four conditions is a particular case of [13, 7.3.3] or [10, Lemma 2.4] for 
i = 1, where weakly pro-regular sequences are characterized. Next we show (ii) =⇒ (v). For F = R[T ] we 
get that {H1(x(n); R[T ])}n≥1 is pro-zero and (v) follows (see e.g. [13, 1.2.4]). The implication (v) =⇒ (i) is 
true by [4] (see also the argument in the paper [12]). �
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3. The homomorphisms

In the following we recall the homomorphisms of the diagram in the Introduction. Moreover we add a 
few comments. To this end we use the previous notation.

Proposition 3.1. (ρM ) We define

ρM : DJ(M) → Ď0
x(M), φ 	→ (φn(xn

i )/xn
i )ki=1,

where φn ∈ HomR(Jn, M) is a representative of φ ∈ lim−−→HomR(Jn, M). Then ρM is injective.

Proof. It is immediate to see that ρM (φ) does not depend upon the representative φn. Moreover we have 
φn(xn

i )/xn
i = φn(xn

j )/xn
j for all i, j. Therefore ρM (φ) ∈ Ker d1 = Ď0

x(M). Now let ρM (φ) = 0 and therefore 
φn(xn

i )/xn
i = 0 for all i = 1, . . . , k. That is xm

i φn(xn
i ) = 0 for some m ≥ 0. Because of Jn+m+k ⊆ xn+mR it 

follows that φn(Jn+m+k) = 0. Whence φn|Jn+m+k = 0 and therefore φ = 0. �
Construction 3.2. Let J ⊂ R denote an ideal. For an R-module M we look at the system of localizations 
{Mx}x∈J . For elements x, y ∈ J we define a partial order y ≥ x whenever x ∈ Rad yR, i.e., xk = yr for 
some r ∈ R. Then we define a homomorphism αx,y : My → Mx by

αx,y : My → Mx, m/yn 	→ rnm/xkn.

This is well-defined as easily seen. Moreover, if x ∈ Rad yR and y ∈ Rad zR, then it follows that αx,y ·αy,z =
αx,z and αx,x = idMx

. So that {Mx}x∈J with the homomorphisms αx,y forms an inverse system. Moreover, 
let αx : lim←−−x∈J

Mx → Mx denote the canonical map. Note that for fractions m/xa
i and n/xb

j we use often 
the same exponent for the denominator.

Proposition 3.3. (θM ) We define

θM : DJ(M) → lim←−−
x∈J

Mx, φ 	→ (φn(xn)/xn)x∈J ,

where φn ∈ HomR(Jn, M) is a representative of φ ∈ lim−−→HomR(Jn, M). Then θM is injective.

Proof. For any x ∈ J and φ ∈ DJ(M) let φn ∈ HomR(Jn, M) be a representative of φ. Then we define 
φ 	→ φn(xn)/xn ∈ Mx, which is well defined. This is compatible with the map αx,y : My → Mx with 
x ∈ Rad yR, say xk = yr as easily seen. By the universal property of inverse limits there is a homomorphism 
θM : DJ(M) → lim←−−x∈J

Mx. The injectivity of θM follows as in the proof of 3.1. �
Now we are going on to construct the final morphism in the diagram of 1.1.

Proposition 3.4. (σM ) By the above notation let αx : lim←−−x∈J
Mx → Mx the canonical map. We define

σM : lim←−−
x∈J

Mx → Ď0
x(M), f 	→ (mi/x

n
i )ki=0, where αxi

(f) = mi/x
n
i , i = 1, . . . , k.

Moreover σM is an isomorphism and ρM = σM ◦ θM .

Proof. First note that αxixj ,xi
(αxi

(f)) = αxixj ,xj
(αxj

(f)) = αxixj
(f) for all pairs i, j. This yields that 

mi/x
n
i = (xn

j mi)/(xixj)n = (xn
i mj)/(xixj)n = mj/x

n
j and σM (f) ∈ Ď0

x(M). Let σM (f) = 0 for some 
f ∈ limMx and therefore αxi

(f) = mi/x
n
i = 0 for i = 1, . . . , k. Let x ∈ J and αx(f) = m/xn, where n can 
←−−



P. Schenzel / Journal of Pure and Applied Algebra 228 (2024) 107754 5
be chosen independently of i, j and x. Since xnmi/(xxi)n = xn
i m/(xxi)n and mi/x

n
i = 0, it follows that 

αx(f) = m/xn = 0 for all x ∈ J and f = 0, so σM is injective.
Now let (mi/x

n
i )ki=1 ∈ Ď0

x(M) = Ker d1 and therefore mi/x
n
i = mj/x

n
j for all i, j. That is, (xixj)cxn

jmi =
(xixj)cxn

i mj for some integer c and xc+n
j m′

i = xc+n
i m′

j with m′
l = xc

lml and ml/x
n
l = m′

l/x
c+n
l , l = 1, . . . , k. 

Now choose an element y ∈ J and an integer d such that yd =
∑k

i=1 rix
c+n
i since y ∈ Rad(xc+n

1 , . . . , xc+n
k ). 

We define my =
∑k

j=1 rjm
′
j . Then

xc+n
i my =

∑k

j=1
xc+n
i rjm

′
j =

∑k

j=1
rjx

c+n
j m′

i = ydm′
i

and therefore my/y
d = mi/x

n
i for i = 1, . . . , k. In order to show that (my/y

d)y∈J defines an element 
f ∈ lim←−−x∈J

Mx such that σM (f) = (mi/x
n
i )ki=1 let z ∈ J with zf = yr, where mz/z

e is chosen as before. By 
the equation above xc+n

i rdmy = zfdm′
i and therefore rdmy/z

df = mi/x
n
i = mz/z

e for i = 1, . . . , k. That is, 
αz,y(my/y

d) = mz/z
e, whence f is an element of the inverse limit. The final claim is obvious. �

Question 3.5. Fix the previous notation. What is a necessary and sufficient condition on the sequence 
x = x1, . . . , xk such that the homomorphisms

ρM : DJ(M) → Ď0
x(M) and θM : DJ(M) → lim←−− x∈JMx, φ 	→ (φn(xn)/xn)x∈J

in 3.1 and in 3.3 become isomorphisms for an R-module M? For an answer see 4.2 below.

4. Proof of the main results

In the following we shall discuss when the R-homomorphism ρM : DJ(M) → Ď0
x(M) is onto. To this end 

we need a technical result.

Lemma 4.1. Let x and J = xR be as above. Let M denote an R-module. There is a commutative diagram 
with exact rows

0 ΓJ(M) M DJ(M)

ρM

H1
J(M) 0

0 Ȟ0
x(M) M Ď0

x(M) Ȟ1
x(M) 0.

The natural map H1
J(M) → Ȟ1

x(M) is injective and Ď0
x(M)/DJ(M) ∼= Ȟ1

x(M)/H1
J(M). Moreover, ρM is 

an isomorphism if x is weakly pro-regular.

Proof. For the exact sequence at the bottom of the diagram see 2.1 (B). The exact sequence at the top is 
shown in 2.1 (C). The commutativity of the diagram is obvious. Because the third vertical map DJ(M) →
Ď0

x(M) is injective (see 3.1), so is the fourth one. The statement follows now. Finally if x is weakly pro-
regular, then H1

J(M) ∼= Ȟ1
x(M) (see e.g. [13, 7.4.5]). �

It could be of some interest to describe a necessary and sufficient condition for ρM to become an isomor-
phism in terms of x and the R-module M .

Proposition 4.2. With the previous notation there is a short exact sequence

0 → DJ(M) ρM−→ Ď0
x(M) → Ȟ1

x(DJ(M)) → 0
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and an isomorphism Ȟ1
x(M)/H1

J(M) ∼= Ȟ1
x(DJ(M)). Moreover ρM is an isomorphism if and only if 

Ȟ1
x(DJ(M)) = 0.

Proof. Localizing the exact sequence of 2.1 (C) at x ∈ J yields Mx
∼= DJ(M)x and therefore

Ď0
x(DJ(M)) ∼= lim←−− x∈JDJ(M)x ∼= lim←−− x∈JMx

∼= Ď0
x(M)

(see 3.4). By the exact sequence in 2.1 (B) for the ideal transform DJ(M) it yields the short exact sequence 
of the statement. �
Proof of Theorem 1.1.
(1): These statements are shown in Propositions 3.1, 3.3 and 3.4.
(2): We have that ρM is an isomorphism if and only if θM is so. By 4.2 ρM is an isomorphism if and only if 
Ȟ1

x(DJ(M)) = 0.
(3): If ρM is isomorphisms for any R-module it holds in particular for any injective R-module. In the diagram 
of 4.1 we have the vanishing H1

J(I) = 0 for any injective R-module I. That is, ρI : DJ(I) → Ď0
x(I) is an 

isomorphism for every injective R-module I if and only if Ȟ1
x(I) = 0 for every injective R-module I. By 2.3

this holds if and only if x is a weakly secant sequence. Now we prove that ρM is an isomorphism too. Let 
0 → M → I0 → I1 be the beginning part of an injective resolution of M . It induces a commutative diagram 
with exact rows

0 DJ(M)

θM

DJ(I0)

θI0

DJ(I1)

θI1

0 lim←−−x∈J
Mx lim←−−x∈J

(I0)x lim←−−x∈J
(I1)x.

For the first exact sequence recall DJ(M) = ker(DJ(I0) → DJ(I1)). For the second note that localization is 
exact and passing to the inverse limit left exact. If x is weakly secant, then θIi , i = 0, 1, is an isomorphism 
and θM too. �

We conclude with an explicit example of a ring and an injective module such that ρ is not an isomorphism.

Example 4.3. (see also [14, Example 5.5]) Let R = k[[x]] denote the power series ring in one variable over the 
field k. Let E = ER(k) denote the injective hull of the residue field. Then define S = R�E, the idealization 
of R by the R-module E as introduced by M. Nagata (see [9]). That is, S = R ⊕ E as an R-module with 
a multiplication on S defined by (r, r) · (r′, e′) = (rr′, re′ + r′e) for all r, r′ ∈ R and e, e′ ∈ E. By a result 
of Faith [5] we have that the commutative ring S is self-injective. More precisely, there is an isomorphism 
of S-modules HomR(S, E) ∼= S (see also [13, Theorem A.4.6]). We consider the ideal J := (x, 0)S of S
and note ΓJ(S) = 0 � E. Then ΓJ(S) is not injective as an S-module (see [13, 2.8.8]). We have that S is 
self-injective with ΓJ(S) = 0 � E. Hence DJ(S) = R � Ď0

(x,0)(S) = S(x,0) = Rx.
In this example the ascending sequence of ideals 0 :S (x, 0)t = 0 � (0 :E xt), t > 0 does not stabilize. That 

is, S is not of bounded (x, 0)-torsion and therefore the inverse system {H1((x, 0)n; S)}n≥1 is not pro-zero.

5. The associated sheaf

In this part of the paper we shall recall the sheaf construction of M̃(U) for a finitely generated ideal 
J = (x1, . . . , xk)R in a commutative ring R and an R-module M . Note that it is closely related to the 
cohomological investigations. Set X = SpecR and U = X \V (J). Note that D(xi) = X \V (xi), i = 1, . . . , k, 
is an open covering of U .
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Definition and observation 5.1. For the R-module M we consider the set {Mx}x∈J . Because we are interested 
in the localization Mx, x ∈ J , we may replace M by M/0 :M 〈J〉, where 0 :M 〈J〉 = ∪n≥10 :M Jn. Note that 
Mx = My for x, y ∈ J with RadxR = Rad yR. For elements x, y ∈ J with x ∈ Rad yR, i.e., xk = yr for some 
r ∈ R we have as above a homomorphism αx,y : My → Mx (see 3.2). Now recall that {D(xi)|i = 1, . . . , k}, 
is an affine covering of U .

Claim. M̃(U) := ({Mx}x∈J , {αx,y| RadxR ⊆ Rad yR}) = ({Mx}x∈J , {αx,y|D(x) ⊆ D(y)}) is a sheaf of 
modules.

Proof. To this end we have to show the following:

(1) If m/xn ∈ Mx maps to zero in Rxi
for all i = 1, . . . , k, then m = 0.

(2) If mj/x
n
j ∈ Mxj

, j = 1, . . . , k, satisfies mi/x
n
i = mj/x

n
j in Mxixj

for all i, j. Then there is an n/y ∈ My

that maps to mi/x
n
i for all i = 1, . . . , k.

If m/xn maps to zero in Rxi
, then xc

im = 0 for all i = 1, . . . , k, where c can be chosen independently of i. 
That is Jckm = 0 and m = 0 and (1) holds. In order to show (2) note that we may chose n independently of 
i, j. Then the assumption implies (xixj)cxn

jmi = (xixj)cxn
i mj for a certain c for all i, j. We put m′

i = xc
imi

and get mi/x
n
i = m′

i/x
c+n
i and xc+n

j m′
i = xc+n

i m′
j for all i, j. Now we choose y =

∑k
i=1 rix

c+n
i and 

m =
∑k

j=1 rjm
′
j . Then

xc+n
i m =

∑k

j=1
rjx

c+n
i m′

j =
∑k

j=1
rjx

c+n
j m′

i = ym′
i

and m/y = m′
i/x

c+n
i = mi/x

n
i for all i = 1, . . . , k.

Moreover, clearly M̃(U) is a sheaf of Ã(U)-modules. We conclude with the obvious remark that M̃(U)
coincides with Ď0

x(M) for a finitely generated ideal.

Corollary 5.2. For an R-module M and an ideal J ⊂ R we have Ď0
x(M) ∼= M̃(U), where x = x1, . . . , xk, J =

(x1, . . . , xk)R and U = X \ V (J).

Proof. Let f = (mi/x
n
i )ki=1 ∈ Ď0

x(M) and therefore mi/x
n
i = mj/x

n
j for all i, j. By virtue of (2) in 5.1 there 

is an n/y ∈ My that maps to mi/x
n
i for all i = 1, . . . , k. Whenever, n/y maps to zero by the map of 5.1, 

the condition (1) in 5.1 implies that n = 0. So, there is an isomorphism Ď0
x(M) ∼= M̃(U). �
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