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Summary

� Understanding how widespread species adapt to variation in abiotic conditions across their

ranges is fundamental to ecology. Insight may come from studying how among-population

variation (APV) in the common garden corresponds with the environmental conditions of

source populations. However, there are no such studies comparing native vs non-native

populations across multiple life stages.
� We examined APV in the performance and functional traits of 59 Conyza canadensis popu-

lations, in response to drought, across large aridity gradients in the native (North America)

and non-native (Eurasia) ranges in three experiments. Our treatment (dry vs wet) was applied

at the recruitment, juvenile, and adult life stages.
� We found contrasting patterns of APV in drought responses between the two ranges. In

the native range, plant performance was less reduced by drought in populations from xeric

than mesic habitats, but such relationship was not apparent for non-native populations. These

range-specific patterns were consistent across the life stages.
� The weak adaptive responses of non-native populations indicate that they can become

highly abundant even without complete local adaptation to abiotic environments and suggest

that long-established invaders may still be evolving to the abiotic environment. These findings

may explain lag times in invasions and raise concern about future expansions.

Introduction

Water availability is a major determinant of plant growth, repro-
duction, abundance, and distribution. Plants deal with low water
availability through various strategies. For example, plants can
escape dry periods by altering their phenology (Rauschkolb
et al., 2023) or they can avoid drought by adjusting functional
traits related to transpiration, such as specific leaf area, root :
shoot ratio, and leaf dry matter content (Blumenthal
et al., 2020). However, it is still not thoroughly understood how

functional traits mediate the effects of drought on plant perfor-
mance, particularly at the intraspecific level (Westerband
et al., 2019; González de Andrés et al., 2021; Dawson
et al., 2024). This is an issue in global change ecology because the
frequency and severity of drought events are rapidly shifting
through climate change (Cook et al., 2018). The understanding
of adaptation to drought is therefore crucial for predicting future
species distributions, such as range expansions by invasive species
or the persistence of plant populations experiencing climate
change (Moritz, 1994; Colautti et al., 2009; Pratt &
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Mooney, 2013; Rosche et al., 2018a; Exposito-Alonso
et al., 2019).

Studies on the drivers of among-population variation (APV)
have a pivotal role for our understanding of adaptation to envir-
onmental stress, such as drought. These studies often include
experimental treatments (e.g. drought treatment) to study how
populations that sourced from diverse environmental gradients
(e.g. aridity gradient spanning from mesic to xeric conditions)
differ in their responses to the treatment (Lucas et al., 2024). If
the responses to drought follow aridity gradients of the source
populations, such experiments indicate adaptation to drought.
Thus, by examining APV in drought responses, we can gain valu-
able insights into the adaptive potential of plant species which
may help predicting how plant populations evolve to changing
environmental conditions, including those driven by climate
change (Montesinos-Navarro et al., 2011; Alexander et al., 2012;
Pratt & Mooney, 2013).

There are several possible patterns of how the performance of
populations originating from a gradient in aridity (mesic to xeric)
can differ between dry and wet experimental treatments (Fig. 1,
Supporting Information Fig. S1). Plants may grow less in dry
than wet treatments but do so in the same way across the aridity
gradient (i.e. purely plastic response to the treatment; Fig. 1a).
Adaptive APV in drought responses would be evident if plants
from mesic habitats demonstrate a large change in performance
(Δ performance) between wet and dry conditions, whereas plants
from xeric habitats showed a smaller Δ performance (i.e. decreas-
ing Δ performance with increasingly xeric habitats; Fig. 1b). This
would create a significant two-way interaction between the
response to drought and mesic vs xeric population sources.
The opposite pattern may occur when Δ performance increases
with increasingly xeric habitats (Fig. 1c). However, this pattern
would be unexpected as populations from xeric environments
would appear to be less adapted to drought than populations
from mesic environments.

To properly assess the adaptive potential to drought, it is cru-
cial to sample across broad spatial and bioclimatic gradients.
However, only a limited number of studies have undertaken
global-scale samplings of APV in drought responses (Cook
et al., 2018; Dawson et al., 2024). Among these,
Exposito-Alonso et al. (2019) examined the effects of drought
on 517 Arabidopsis thaliana populations. They showed that
populations from the edges of the environmental limits of
A. thaliana experienced the strongest climate-driven selection.
However, the study solely included native populations, which
have a long history of in situ evolution in arid conditions. Com-
paring mesic to xeric gradients in native vs non-native popula-
tions can offer insights into the evolutionary time scales of
natural selection. In particular, while native populations may
adapt to local environmental conditions through numerous gen-
erations, non-native populations often undergo rapid range
expansions across diverse environmental conditions (Broenni-
mann et al., 2014). Thus, range expansions can lead to a more
stochastic distribution of genotypes in non-native ranges as com-
pared to a more deterministic distribution of genotypes (along
environmental gradients) in native ranges (Keller &

Taylor, 2008; Rosche et al., 2016, 2018b; Nagy et al., 2018).
Non-native populations may counteract such random distribu-
tion of genotypes through rapid evolution (Callaway &
Maron, 2006; Alexander et al., 2009; Vandepitte et al., 2014;
van Kleunen et al., 2018), which can result in the emergence of
locally adapted genotypes over time. However, whether rapid
evolution can result in comparable APV in drought responses
between native and non-native ranges remains poorly under-
stood (Dlugosch et al., 2015). Mráz et al. (2014) found that
APV in drought responses was differently pronounced in native
than in non-native populations of Centaurea stoebe. In addition,
functional traits were less correlated with environmental gradient
in non-native than native populations of Plantago lanceolata
(Villellas et al., 2021), which might be due to the lack of time to
adapt to the new environments in the non-native range. In the
context of Fig. 1, such differences in the patterns of adaptive var-
iation between ranges would be illustrated by a significant
three-way interaction (range × drought treatment × aridity of the
source populations, see Fig. 1d).

So far, the studies on annual species that sampled broad bio-
climatic gradients focused exclusively on adult plants. On smal-
ler bioclimatic scales, there are studies that investigated APV at
early life stages (e.g. Al-Gharaibeh et al., 2017; Birkeli
et al., 2023). However, we are not aware of studies that com-
pared APV in drought responses across several life stages. This
comparison may be important because the impact of drought
can significantly differ between seedlings and adults, likely with
stronger effects observed at the seedling stage (Niinemets, 2010;
Coe et al., 2021). Investigating ontogenetic variation may also
help understanding whether and how selection pressure on func-
tional traits related to drought vary across different life stages
(Mitchell & Bakker, 2014; Zirbel & Brudvig, 2020; Havrilla
et al., 2021).

To address the apparent research gaps, we studied APV in
drought responses for 30 native and 29 non-native populations
of Conyza canadensis (Canadian fleabane) collected across broad
aridity gradients in both the native and the non-native ranges.
In a green house, three complementary experiments were con-
ducted in which plants of the (1) recruitment (i.e. germination
and early seedling development), (2) juvenile, and (3) adult life
stages were subjected to wet and dry treatments. We hypothe-
size that:
(1) Due to adaptation along the aridity gradient, populations
from xeric habitats exhibit greater resistance to drought than
populations from mesic habitats, resulting in evolutionary
expected patterns of APV in drought responses (i.e. decreasing Δ
performance in Fig. 1b).
(2) Because of a longer timeframe for evolution, such relation-
ship is more pronounced in native populations than in
non-native populations, resulting in significant three-way interac-
tions between range, aridity gradient, and the drought treatment
(i.e. differently expressed Δ performance between rages in
Fig. 1d).
(3) Because seedlings are less drought resistant than adults, adap-
tive responses to drought are more pronounced at the seedling
and juvenile stages than for adults.
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Materials and Methods

Study species

Conyza canadensis (L.) Cronq. is an annual, selfing species in the
Asteraceae family with a short life cycle (6–12 months). The spe-
cies primarily colonizes ruderal habitats and is also growing as a
weed of arable lands (Weaver, 2001). Its native range covers
much of North America and its non-native range includes most
of the rest of the Northern Hemisphere. Conyza canadensis was
introduced to Europe c. 350 yr ago, to China c. 150 yr ago, and
to Kashmir just c. 80 yr ago (Shah et al., 2014). In some parts of
this non-native range, C. canadensis can be invasive by suppres-
sing native biodiversity (Shah et al., 2014).

Aridity experienced in the field was shown to be the most
important environmental determinant of both field and green
house plant growth performance (Rosche et al., 2019). Recent
precipitation experiments have indicated that drought could
indirectly promote invasion success when increasing the abun-
dance of C. canadensis relative to native competitors (Mojzes
et al., 2020). This observation aligns with the findings in Rosche

et al. (2019), suggesting that the ability to respond drought might
play an important role in the invasive success of C. canadensis.
More generally, C. canadensis serves as an excellent model species
for studying the drivers of APV due to its remarkable potential
for rapid adaptation to diverse environmental conditions (Bajwa
et al., 2016; Rosche et al., 2019) and biotic interactions (Sheng
et al., 2022), which is likely attributable to its annual life cycle
and self-pollinating reproduction (Peischl et al., 2015; Rosche
et al., 2019). The very low genetic variability within C. canadensis
populations enables estimating APV with a small number of indi-
viduals per population (Rosche et al., 2019; Sheng et al., 2022).

Sample populations

We sampled 30 native and 29 non-native populations from 17
different geographical regions across the Northern Hemisphere
(Fig. 2a; Table S1). In each region, populations were separated
by a minimum of 10 km. The populations occurred across a
broad climatic gradient, including six out of the nine Whittaker
biomes (Fig. 2b). From each population, we sampled matured
seeds from five individuals (in total 295 plants). These plants

(a) (b) (c) (d)

Fig. 1 Predictions for the performance of Conyza canadensis populations under wet (green lines) and dry experimental conditions (yellow lines) along a
gradient in how often and severe drought occurs in the source populations (i.e. aridity gradient from mesic to xeric source habitats). This conceptual figure
illustrates potential scenarios of change in performance (Δ performance) between wet and dry treatments across the aridity gradient, aiming to
demonstrate its change along the gradient, though not explicitly depicting all possible scenarios of wet and dry lines. For the sake of clarity, the populations
have not been included (e.g. as dots) but only their linear response for the two drought treatments along the aridity gradient (Supporting Information
Fig. S1 for a more detailed figure including populations). In (a), drought affects plant Δ performance, but the aridity gradient does not (constant Δ
performance). In (b, c), treatment affects plant performance and the aridity gradient affects Δ performance (i.e. among-population variation in drought
response can be explained by the aridity gradient). Out of these two scenarios, (b) meets evolutionary expectations where increasing aridity of the source
populations results in decreasing Δ performance, whereas (c) presents the opposite response (increasing Δ performance), that is, against evolutionary
expectations. In (d), drought response is differently expressed between native and non-native ranges. Note that this pattern represents one example out of
the many possible three-way interactions, which would indicate that native populations follow evolutionary expectations whereas non-native populations
do not. Another possible scenario is when performance does not respond to the experimental drought (not presented in the figure), but in that case, the
experiment would not fulfill the condition to test our hypotheses.
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were selected randomly across an area that was c. 30 × 30 m in
size, keeping at least 5 m distance among the sampled individuals.
To estimate the aridity patterns experienced by populations (i.e.
local aridity regime), monthly climatic water deficit (CWD) data
were obtained for each population, using the TerraClimate data-
set (Abatzoglou et al., 2018) at a spatial resolution of 1/24°
(c. 4 km). The CWD quantifies unmet evaporative demand by
calculating the difference between actual and potential evapotran-
spiration. Thus the CWD represents the missing water that
would be needed to maximize plant growth (Young et al., 2021),
and with that captures the local aridity conditions of the source
populations. The populations from the native and non-native
ranges were sampled from comparable gradients (Fig. 2c; t-test:
df= 58, t= 0.025, P= 0.989). The variation in CWD was
higher among regions (SD: �319.11 mm) than within regions
(SD: �79.03 mm).

General experimental design

To avoid immediate maternal effects from the field, a potential
bias in offspring fitness in common garden experiments (de Ville-
mereuil et al., 2016), F1 offsprings were produced. To do so, off-
spring from the five seed families collected in the field were raised
by covering inflorescences with a mesh bag until achenes were
mature to prevent cross-pollination. Of the 295 seed families
sampled, 270 produced seeds as F1 generation (the 25 seed
families that failed to produce seeds were evenly distributed
across populations and regions).

To compare the effects of drought across life stages, three sepa-
rate experiments were conducted in parallel, focusing on (1) seeds
and seedlings (recruitment life stage), (2) juveniles (3 wk after
germination), and (3) adult plants (2 months after germination).
In each experiment, 540 plants were included (270 seed

Fig. 2 Spatial and bioclimatic distribution of 30 native (blue) and 29 non-native (red) Conyza canadensis populations used in the present study. In panel
(a), geographical distribution of the populations across nine native and eight non-native regions are presented. In panel (b), populations are plotted
according to their mean annual temperature and precipitation on a Whittaker diagram, illustrating the wide bioclimatic gradients where the species can
occur. In panel (c), the comparison of climatic water deficit (CWD) between native and non-native populations is presented. Climatic water deficit data
were downloaded from the TerraClimate database (Abatzoglou et al., 2018). Precipitation and temperature data were downloaded from the CliMond
database (Kriticos et al., 2012).
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families × 2 drought treatments (wet, dry)), using independent
seeds from the same seed families.

In each experiment, three performance and three functional
traits were assessed (Fig. 3). The performance traits included the
above- and belowground biomasses as well as a transition trait.
The latter was a binomial measure on the proportion of indivi-
duals that successfully passed the respective life stage, including
germination in the recruitment life stage, survival in the juvenile
life, and flowering in the adult life stage. The functional traits
included specific leaf area (SLA= leaf area/leaf dry biomass), leaf
dry matter content (LDMC= leaf dry biomass/leaf fresh bio-
mass), and root : shoot ratio (RSR= shoot dry biomass/root dry
biomass).

Development at the recruitment stage A germination trial was
performed to investigate how plant performance and functional
traits at the recruitment life stage responded to drought and how
these responses correlated with CWD across native vs non-native
ranges. Due to the need for precise control over experimental
conditions, we conducted this experiment in Petri dishes (Wink-
ler et al., 2024). To determine a suitable osmotic potential of the
dry treatment (i.e. that affects but not inhibits germination and
seedling development), a preliminary experiment was performed.
In this preliminary experiment, we used six seed families from six
randomly selected populations and tested their response in germi-
nation and early seedling performance traits to six different man-
nitol concentrations ranging from 0MPa (tap water) to �1MPa.
Based on the results of this preliminary experiment (Fig. S2), two
treatments were chosen for the main experiment, that is tap water
for wet conditions (c. 0 MPa) and mannitol solution for dry con-
ditions (�0.8 MPa). The main experiment was performed with

the 270 seed families. Ten seeds per seed family and treatment
were germinated in Petri dishes, on filter paper (Whatman No.
1). Dishes were sealed with Parafilm, daily re-saturated with tap
water to maintain consistent concentrations, and kept in a germi-
nation chamber at 20°C at 12 h day (176 μmol m�2 s�1) and
10°C at 12 h night. Positions of Petri dishes were randomized
daily. Germination (i.e. when radicle breaks through seed coat)
was recorded daily with a stereomicroscope. The germination
trial ended when no new germination had occurred for five
consecutive days.

To assess traits at the recruitment life stage of C. canadensis,
one seedling per seed family and treatment was transferred to
another Petri dish and maintained under the same experimental
conditions (0 vs �0.8MPa). After 10 d, the roots (hypocotyl)
were separated from the shoots (epicotyl). One leaf was immedi-
ately weighed for fresh weight, and the leaf area was scanned
using WINFOLIA software (Regent Instruments, Quebec, QC,
Canada). Roots and shoots were then placed separately in paper
bags and dried (48 h at 60°C) to record dry mass.

Growth of juveniles A green house experiment was performed
during the spring and summer of 2021 to investigate how per-
formance and functional traits at the juvenile life stage
responded to the wet vs dry experimental treatments and how
these responses correlated with CWD across both ranges. Tem-
perature was set between 20°C and 25°C at day and 10–15°C at
night. Artificial light (between 07:00–09:00 and 16:00–18:00 h;
334 μmol m�2 s�1) was provided during the first month of the
experiment. Five hundred and forty pots (Stuewe and Sons,
Tangent, OR, USA; Deepot, D40H, 6.3 × 25 cm, 650 ml) were
filled with a water-saturated mixture of sand and local field soil

Fig. 3 Flowchart illustrating the design of the
three experiments and data collection. The
drought response of Conyza canadensiswas
tested with two levels using wet vs dry
conditions.
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in a 1 : 1 ratio until a total weight of 600 g. From each seed
family, seeds were sown in two pots (2 treatments × 270 seed
families= 540 pots). After germination, individuals were ran-
domly thinned out, leaving one individual per pot. Pots were
watered equally every 2 d until the pots were transferred to either
the wet or dry treatment, which was when the rosette diameter
reached an average of 2 cm.

To have comparable conditions at the start of the treatment,
all pots for both the wet and dry treatments were again watered
until saturation (c. 30% soil water content measured with Theta
Probe Typ ML2x Soil Moisture Device (Delta T Devices, Cam-
bridge UK)). After that saturation, the treatment was applied in
the following way: Every Monday, Wednesday, and Friday, 59
randomly chosen pots (one from each population) from the wet
treatment were weighed. The average pot weight was then sub-
tracted from the average pot weight at saturation (600 g). This
difference was the average water loss. This amount of water in
mL was added individually to each pot in the wet treatment using
a bottle-top dispenser, while the dry treatment pots received 25%
of the water added in the wet treatment. Treatments corre-
sponded to the mean precipitation of the humid South Chinese
populations and dry Northwestern USA populations in May
(details on the added amount of water are in Table S2). The posi-
tion of single pots within trays and the position of the trays
within the green house were randomized weekly.

At harvest, an average size leaf from each individual was col-
lected and measured for fresh biomass and leaf area with WINFO-

LIA software. Roots and shoots were also harvested and, together
with leaf samples, dried for 2 d at 60°C, and then weighed.

Growth of adults Another green house experiment was per-
formed under the same conditions as for the juvenile experiment.
This experiment investigated how performance and functional
traits at the adult life stage respond to wet vs dry treatments and
how these responses correspond with range and CWD. Five hun-
dred and forty pots (1450 ml; Lamprecht-Verpackungen GmbH,
Göttingen, Germany, 11 × 11 × 12 cm) were set up in the green
house. The pots were filled with a water-saturated mixture of
sand and local field soil in a 1 : 1 ratio, weighing 1300 g. From
each seed family, seeds were sown in two pots (2
treatments × 270 seed families= 540 pots). Pots were watered
equally with a sprayer every 2 d until they were transitioned to
either the wet or dry treatment, which was 2 months after peak
germination, that is the same time at which pots with juveniles
were harvested. Treatments were performed the same way as the
juvenile experiment. Treatments corresponded to the mean preci-
pitation of the humid Alabama populations and dry Northwes-
tern USA populations in May–July (details on the added amount
of water are in Table S2).

Plants were harvested 14 wk after the watering treatment was
initiated, at the peak of the flowering. During the harvest, an
average size leaf of each individual was collected and measured
for fresh biomass and leaf area with WINFOLIA software. Roots
and shoots were also harvested and together with the leaf samples
dried for 2 d at 60°C, after which dry mass was recorded. To
keep the measured performance traits comparable across life

stages, we did not weigh the reproductive biomass, even though
it could serve as a proxy of reproductive fitness.

Monitoring the effects of the drought treatment

To monitor the soil moisture as an effect of the applied treatment,
118 additional pots (59 populations × 2 treatments) were set up
in parallel to the experimental pots. These 118 monitoring pots
have been installed in both the juvenile and the adult experiment
separately. Soil moisture was measured in these additional pots
every Monday for the juvenile experiment and every second Mon-
day for the adult experiment, using a Theta Probe Typ ML2x Soil
Moisture Device (Delta T Devices) (Fig. S3a,b). In parallel to the
soil moisture measures, the weight of the 118 pots was recorded
(Fig. S3c,d). It is important to note that these 118 additional pots
were treated equally to the experimental pots but were solely used
for the purpose of monitoring. The additional pots were not used
for any of the abovementioned trait measurements, because the
soil moisture measures cause disturbance that could influence
plant performance (e.g. through harming the roots).

In addition, we measured the stomatal conductance and
recorded the leaf δ13C isotope ratio in 120 random individuals
from both juvenile and adult experiments at harvest. These mea-
sures served to record the effects of drought on C. canadensis indi-
viduals at the end of the experiment and were measured on
experimental plants (Fig. S3e–h). Measuring stomatal conductance
and leaf δ13C isotope ratio provides direct physiological indicators
of plant response to water stress, offering insights into water use
efficiency (Mininni et al., 2022). These trait data were solely used
to test the efficacy of the applied treatment and were not used to
test our main concept (i.e. the three-way interaction).

The stomatal conductance was measured on the largest leaf of
each plant using an AP4 Porometer (Delta T Devices). The
porometer was calibrated before each measurement. The δ13C
isotope ratio was determined from grounded leaf samples with an
elemental analyzer Flash 2000 with a TCD detector that was
coupled to a Conflo IV and mass spectrometer Delta V Advan-
tage (Thermo Fisher Scientific, Bremen, Germany). The carbon
isotope ratio is expressed as follows: δ13C= (Rsample/
Rstandard� 1) × 1000, where R is the relative abundance of the
carbon isotopes (R= 13C/12C). The isotope ratio was normalized
by using international standards. In addition to the repeated mea-
surements of a series of international standards (e.g. IAEA-CH3,
IAEA-CH6, and IAEA-600), a glycine standard was run after
every 10th sample to calibrate the elemental composition determi-
nations and to quality control for the isotopic measurements.
The carbon isotope ratios were reported using the Vienna Pee
Dee Belemnite (VPDB) scale. The analytical precision was within
�0.2‰ for the isotope ratios.

Statistical analyses

Performance and functional trait analyses were conducted with
linear mixed-effects models using the R package LME4 v.1.1-29
(Bates et al., 2015). Random factors were as follows: (1) seed
family nested within population nested within region, (2)
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population nested within region, and (3) region. Explanatory
variables were the interactive effects of range, treatment, and
transformed (centered) CWD. To assess significance of the expla-
natory variables, we employed stepwise backward model selec-
tion, based on chi-square and Akaike information criterion (AIC)
values. Both methods provided consistent results. Variables
remained untransformed, except for the aboveground and below-
ground biomasses which were log-transformed. Germination,
survival, and flowering were analyzed as binomial response vari-
ables with generalized linear mixed-effects models.

With respect to the local CWD estimate, we initially sought a
suitable proxy by examining whether the responses to drought
were more closely associated with annual or seasonal CWD
values in the sampled populations. Specifically, we compared the
model performance of the annual CWD and four seasonal
CWDs for 3-month-long periods (spring: March–May, summer:
June–August, autumn: September–November, and winter:
December–February). Based on AIC and chi-square values, we
found that annual CWD values consistently showed the best
model performances across the 18 response variables (Table S3).

Germination was also analyzed in terms of timing using a
time-to-event analysis performed with mixed-effects Cox models,
using the R package COXME v.2.2-16 (Therneau, 2012). The same
model structure (explanatory variables and random effects) as for
the mixed-effects models above was used, again applying stepwise
backward model selection based on chi-square and AIC values.
Cox proportion hazards were checked via Kaplan–Meier plots
and multicollinearity was checked via variance inflation factor
(VIF) for each model individually (McNair et al., 2012).

In addition to analyzing the recorded absolute values of perfor-
mance and functional traits, we calculated plasticity indices for
every trait to evaluate plasticity in response to drought. To do so,
we adopted the simplified Relative Distance Plasticity Index
(RDPI), a commonly used metric to assess plasticity in response
to environmental conditions (Valladares et al., 2006). Valladares
et al. (2006) originally proposed the usage of relative distances
per individual to calculate RDPIs, which involves comparing the
trait values of individuals within populations. Because popula-
tions differed in the number of deaths and how these were dis-
tributed across the seed families, we calculated population mean
plasticity indices instead of using individual seed family values.
RDPIs for a given trait were calculated as:

RDPIs=
Tw�Tdj j
Tw þ Td

where Tw and Td represented mean trait values for each popula-
tion in the wet and dry treatments, respectively. The RDPI values
were then tested for differences between ranges with linear
mixed-effects setting region as a random effect.

To investigate whether the effect of drought on performance
traits was determined by functional traits, we tested for Pearson
correlations between the RDPI values of the measured perfor-
mance traits and the values of the functional traits of the respec-
tive population in the dry treatment. These correlations were
recorded separately for each of the three life stages.

In addition, we used log-response ratios to quantify the effect
size of the treatment. Log-response ratios are frequently used in
ecological research because they allow comparing differences in the
magnitude of treatment effects across diverse variables. They are
calculated by taking the natural logarithm of the ratio of the
response variable (e.g. aboveground biomass) in the treatment
group (e.g. dry treatment) to that in the control group (e.g. wet
treatment). To test whether the effects of drought were consistent
across the life stages, four separate linear mixed-effects models were
run, using the log-response ratios of each performance traits, set-
ting population nested within region, and region. The maximal
models included the following: (1) the three-way interactions of
range × centered CWD × life stage, (2) the two-way interactions of
centered CWD × life stage, (3) range × life stage, and (4) the main
effect of life stage. To compare the individual trait values across the
life stages, each trait values were standardized within life stages.

We also assessed the extent of spatial autocorrelation in our
models on the performance traits. Our data showed evidence for
spatial autocorrelation due to the regional structuring of the data
and we found that setting population nested within region, and
region as random effects appropriately accounted for this spatial
autocorrelation (for more details see Notes S1; Table S4).

Results

Effects of drought on performance and functional traits

The applied treatment affected eight out of nine performance
traits (three measurements × three life stages, Fig. 4, for details of
the models, see Table S5). Plants grown in the wet treatment pro-
duced 50–450% more above- and/or belowground biomass than
plants in dry treatments, demonstrating significant variation in
biomass across different performance traits across life stages. Ger-
mination rate was the only trait not affected by the treatment
(Fig. 4a). However, the time-to-event analysis suggested a greater
and faster germination through time in wet compared with dry
conditions: on average, seeds in the wet treatment germinated 1 d
earlier than seeds in the dry treatment (χ2(1)= 348.58, P< 0.01;
Table S6; Fig. S4).

The treatment affected functional traits in eight out of nine
cases (Table S7; Fig. S5). Only LDMC at the adult life stage was
not affected by the treatment (Fig. S5i). There was a shift in func-
tional traits toward increased growth and resource acquisition by
plants in the wet treatment: They showed a 14–30% higher SLA
and 22–33% lower LDMC than in the dry treatment plants
(Fig. S5g,h). Moreover, plants in the wet treatment had 16–32%
higher RSR than plants in the dry treatment (Fig. S5a–c).

Correlations between functional traits and the RDPI values of
the performance traits were not significant for any of the 27 pos-
sible cases (Fig. S6).

Differences between native and non-native ranges in
drought responses

Five out of nine performance traits showed significant three-way
interactions among range, treatment, and CWD (Fig. 4;
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Table S5). However, if the three-way interaction was not signifi-
cant, there was also no two-way interaction between CWD and
treatment. In other words, whenever APV in the response to
drought was present (e.g. Fig. 1b or c), the patterns differed

between native and non-native ranges (as in Fig. 1d). In particu-
lar, in the native range, the performance of populations from
xeric habitats was less reduced by drought than that of mesic
populations for adult flowering rate (χ2(1)= 4.82, P= 0.03;

Fig. 4 Interactive effects of the applied treatment (T: dry vs wet), climatic water deficit (CWD), and range affiliation (native vs non-native) on the
performance of Conyza canadensis for germination (a), survival (b), and flowering (c), aboveground biomasses (d–f), and belowground biomasses (g–i).
Performance traits were recorded across three experiments focusing on the following life stages: recruitment life stage (a, d, g), juvenile life stage (b, e, h),
and adult life stage (c, f, i). The panels represent the results of the respective minimum adequate models (i.e. including only significant terms), except for
the response variables where none of the three tested explanatory factors or their interactions had a significant effect (here: germination rate (a)). For
germination, survival, and flowering rate, data were analyzed at the individual level (binomial), but population means were plotted as percentages for the
sake of clarity. Coloring is based on the applied treatment (dry: yellow, wet: green). Boxplots show the interquartile range with the solid line indicating the
median, and whiskers the max and min values without outliers (calculated as 1.5 times the interquartile range). The confidence intervals of the lines are
presented as shadings. Details on the models and results are found in Supporting Information Table S5. Increasing CWD refers to more arid conditions. In
case of significant three-way interactions, we ran two separate models to test the interaction between T and CWD for native and non-native ranges
(presented in the figure).

� 2024 The Authors

New Phytologist� 2024 New Phytologist Foundation

New Phytologist (2024) 243: 922–935
www.newphytologist.com

New
Phytologist Research 929

 14698137, 2024, 3, D
ow

nloaded from
 https://nph.onlinelibrary.w

iley.com
/doi/10.1111/nph.19895 by Fak-M

artin L
uther U

niversitats, W
iley O

nline L
ibrary on [24/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Fig. 4c), and the aboveground (χ2(1)= 6.76, P= 0.01; Fig. 4e)
and belowground biomasses of juveniles (χ2(1)= 5.70, P= 0.02;
Fig. 4h). By contrast, for non-natives, no such relationships were
found for the mentioned performance traits. For non-natives,
APV in drought responses was present for juvenile survival
(χ2(1)= 7.25, P= 0.01; Fig. 4b), adult flowering (χ2(1)= 5.49,
P= 0.02; Fig. 4c) and aboveground biomass of adults
(χ2(1)= 6.09, P= 0.01; Fig. 4f), but they did not follow the evo-
lutionary expectations because Δ performance (performance dif-
ference between wet and dry treatments) increased with aridity of
the source populations. For the abovementioned responses, how-
ever, there was no APV in drought responses in the native popu-
lations.

Notably, as main effects, none of the nine performance traits
differed between native and non-native populations (e.g.
non-natives did not grow bigger, see Table S5). Furthermore,
plasticity in response to drought did not differ between native
and non-native populations for any of the nine performance traits
(Fig. S7). This result means there were no mean differences
between native and non-native populations in performance traits
and their response to drought, yet how the aridity gradient of the
source populations affected drought responses differed strongly
across the ranges.

APV in the responses of functional traits to drought

Functional traits did not show a consistent pattern of APV in
drought responses across life stages. Only for the SLA of adults
(Fig. S5f), there was a significant three-way interaction
(χ2(1)= 5.86, P= 0.02) showing that APV in the response to
drought differed between native and non-native ranges. Seedling
dry matter content was the only trait with a significant two-way
interaction (χ2(1)= 6.43, P= 0.01) between drought and CWD
(Fig. S5g). With range as a main effect, none of the nine func-
tional traits differed between native and non-native populations,
nor did plasticity in response to drought differ between native
and non-native populations for any of the nine functional traits
(Fig. S8).

Differences among life stages in the response to drought

For each of the three performance trait categories (i.e. transition
traits, aboveground, and belowground biomasses), there was a
significant difference among the life stages in how strongly the
traits were affected by drought as a main effect (Table S8). There
were overall smaller log-response ratios for the recruitment life
stage than for the juvenile life stage (by 48.1–95.8%) and the
adult life stage (by 41.7–95.5%). However, when comparing
the standardized, individual trait values between wet and dry-
treated plants, we found consistent patterns across all life stages
(Fig. 5). In particular, germination, survival, and flowering did
not differ between treatments across all life stages, but above-
ground and belowground biomass was 50–450% greater in the
wet than in the dry treatment across all life stages. More impor-
tantly, log-response ratios were not affected by the interaction
between life stage and CWD or life stage and range or their

three-way interactions (Table S8). These results indicate that the
patterns of APV in drought responses were similar among the life
stages.

Discussion

This research investigated APV in response to drought across
three life stages while studying broad biogeographical scales in
both native and non-native ranges. Drought affected perfor-
mance and functional traits consistently at all life stages and
across both ranges. According to our first hypothesis, native
populations from xeric habitats were less inhibited by drought
than mesic populations, displaying the evolutionarily expected
pattern of APV in drought responses. By contrast, non-native
populations did not follow this pattern confirming our second
hypothesis. Patterns of drought responses were consistent across
the life stages, contradicting our third hypothesis.

Effects of drought on performance and functional traits

Drought had consistent strong effects on plant performance
traits across all life stages, setting the stage for testing our predic-
tions. In terms of functional traits, drought decreased SLA and
increased LDMC which is a common response of plants to
increase stress tolerance by reducing fast growth (Balachowski &
Volaire, 2018). Root : shoot ratio was reduced by drought, which
was consistent across life stages but is not consistent with many
other studies (e.g. Knight et al., 2006; Qi et al., 2019). However,
investing resources in increasing RSR under drought may be
more advantageous for perennial plants than for short-lived
annuals, as the developed root system may be more cost-effective
in multiple years than in a single season (Mokany et al., 2006).
Instead, C. canadensismay invest more into shoot growth in order
to more quickly complete its annual life cycle under drought
stress (Brandenburger et al., 2022), therefore essentially escaping
periods of drought (Volaire, 2018).

The weak relationships between functional traits and the
response of performance traits to drought suggest that the mea-
sured functional traits have either weak or complex effects on
how C. canadensis copes with drought stress. Also, previous stu-
dies estimating the relationship between plant functional traits
and fitness have shown mixed results, with some predicting varia-
tion in performance, while others have not (Caruso et al., 2020).
Drought stress may require multidimensional responses that may
not be captured by single functional traits (Kooyers, 2015).
Moreover, different functional traits may be subject to contrast-
ing climate selection pressures, and trait correlations and ecologi-
cal trade-offs may prevent functional traits from adapting linearly
to distinct climatic gradients (Ahrens et al., 2020).

Performance and plasticity in native vs non-native ranges

There were no general differences in performance traits in the
common garden between native and non-native populations,
which contrasts with many studies of other invasive species
(reviewed by Parker et al., 2013; Callaway et al., 2022), and a
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Fig. 5 Life stage (recruitment, juvenile, and adult) and their interactive effects with range and treatment (dry: yellow, wet: green) on performance of
Conyza canadensis, namely the binomial transition traits (germination, survival, and flowering) (a), aboveground biomass (b), and belowground biomass
(c). The models tested the differences in log-response ratios; however, the plot aimed to visualize the comparable effect of experimental drought across life
stages. To reduce the effect of scale differences among life stages (e.g. biomass variation), all variables were standardized across life stages. For transitional
traits, binomial data were analyzed but population means were plotted for the sake of clarity. Details on the models and results are found in Supporting
Information Table S7. Coloring is based on the applied treatment (dry: yellow, wet: green). Boxplots show the interquartile range with the solid line
indicating the median, and whiskers the max and min values without outliers (calculated as 1.5 times the interquartile range). Lowercase letters refer to the
groupings tested with post hoc analyses (Tukey honestly significant difference) performed on the standardized data.
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study that found the opposite for C. canadensis (Abhilasha &
Joshi, 2009). One possible explanation could be that differences
between native and non-native ranges may not be present when
very large and comparable environmental gradients in both
ranges are considered, as recently demonstrated for C. canadensis
(Rosche et al., 2019; Sheng et al., 2022).

The plasticity of the responses to drought was comparable
between the two ranges. This result does not match the assump-
tion that increased plasticity of non-native populations is an
important factor for invasion success in general (Hiatt &
Flory, 2020) and in response to climatic conditions (Turner
et al., 2015). Apparently, high-performance genotypes or greater
plasticity in non-native populations are not the primary reason for
the overwhelming colonization success of C. canadensis in the
Northern Hemisphere. Instead, shifts in biotic interactions such
as with root-colonizing fungi (Sheng et al., 2022) or plant compe-
titors (Shah et al., 2014; Nagy et al., 2020, 2022) are more likely
to drive the success of non-native C. canadensis populations.

Drought responses in native vs non-native ranges

Five out of nine performance traits showed APV in response to
drought. Although we did not explicitly test for local adaptation,
our results indicate that C. canadensis shows large adaptive varia-
tion to climate, which may have facilitated its ability to occur
across the unusually large climatic gradient of its cosmopolitan
distribution (see also Rosche et al., 2019). However, the patterns
differed in all five cases between the two ranges. The response of
native populations to drought met evolutionary expectations in
the native range – populations from xeric habitats were less sup-
pressed by the dry treatment than populations from mesic habi-
tats. Such relationships were not apparent in non-native
populations, as non-native populations from arid habitats exhib-
ited less increases in performance under dry but maintained
and/or increased performance under wet conditions.

Our results on range-specific APV are consistent with studies
of C. stoebe (Mráz et al., 2014) and P. lanceolata (Villellas
et al., 2021). In the latter, similar, but weaker patterns of APV
were observed in the non-native as compared to the native ranges
of P. lanceolata. Together, these two and our studies suggest gen-
erality in range-specific APV. We postulate three mutually non-
exclusive mechanisms that may explain why non-native
populations may not have locally adapted, or perhaps yet, to var-
iation in water supply.

First, non-native populations, while not strictly locally
adapted, possess traits that enable them to thrive in wet condi-
tions throughout the year. This flexibility might be advantageous,
contributing to the success of non-native populations in diverse
environments (Donelson et al., 2019). Second, non-native popu-
lations have been introduced to their current climatic regimes
much more recently (Yan et al., 2020) and did not necessarily
match their previous adaption to climate. Thus, non-native
populations may have not experienced enough time to adapt to
their new abiotic environments. Third, the relative importance of
different selection regimes may differ between ranges. For exam-
ple, fundamentally altered biotic interactions – as Sheng

et al. (2022) found evolution toward enhanced mutualism in
non-native ranges – may be more important for the non-native
C. canadensis populations than a ‘perfect adaptation’ to local arid-
ity (see also Callaway et al., 2011; Pal et al., 2020; Villasor
et al., 2024). Such basic evolutionary research questions need to
be addressed with more complex experimental designs that simul-
taneously manipulate abiotic and biotic conditions. For example,
studying competitive interactions simultaneously with responses
to drought for many native vs non-native populations across large
geographic distributions could enhance our mechanistic under-
standing of rapid evolution (Lucas et al., 2024).

Irrespective of these mechanisms, our results have two impor-
tant implications. First, assuming that the highly successful
C. canadensis is not yet fully adapted to climate, the spread and
impact of this species might become even more pronounced in
the future. Second, because C. canadensis is present in non-native
ranges for centuries and is actually known for rapid responses to
environmental changes (Rosche et al., 2019), our findings raise
questions about how other plant species can adapt quickly to
contemporary climate change. In other words, if this species has
not fully established its response to drought in non-native ranges,
the ability of other plants to cope with such rapid changes
remains uncertain. Such interpretation is concerning with a view
on global change scenarios and calls for further investigations in
comparable future studies.

Drought responses across life stages

Drought had weaker effects in the recruitment life stage than in
the other two life stages. This suggests that plants may respond
less plastically at the recruitment stage where they must either
grow very rapidly or die as found for Solidago gigantea (Nagy
et al., 2018). From the perspective of performance traits, above-
and belowground biomass was reduced, but transition traits not
affected for all life stages. In addition, range-specific responses to
drought were also similar across life stages. It is unclear whether
this pattern arises because plants allocate the same energy
between life stages in response to drought stress. Further physio-
logical investigations including studies on energy allocation stra-
tegies used by plants in different life stages would be needed to
reveal the mechanisms behind our observations.

Similarly pronounced drought responses across life stages
could be particularly important under climate change, which
likely leads to more extreme weather events, such as unpredict-
able droughts at any life stage (Parmesan & Hanley, 2015). If a
plant species responds similarly to these different weather condi-
tions across all life stages, it will be better able to adapt and sur-
vive (Garzón et al., 2011; Moran et al., 2016; Welles &
Funk, 2021). This may have several positive effects for the colo-
nization of large ranges and adaptive strategies to the resilience of
species to changing climatic conditions.

Conclusions

Our study shed light on the adaptation of invasive species in new
environments, and the speed of adaptation to drought. We
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suggest that invaders can thrive even in the absence of complete
adaptation to new abiotic environments, indicating their remark-
able resilience in the face of changing global conditions. Further-
more, our findings suggest that long-established invaders may
continue to evolve in response to the dynamic abiotic environ-
ment. Future research is needed to test the generality of these
findings with focus on (1) the implications for the adaptive
potential of plant populations under ongoing climate change,
(2) whether invasion success of some non-native species become
even more pronounced once they are fully adapted to the local
climate in the novel ranges, and (3) the relative importance of
abiotic and biotic selection drivers for rapid evolution in non-
native plants.
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