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Abstract
Purpose: To implement and validate an algorithm to determine the statistical
errors in self-gated non-contrast-enhanced functional lung imaging.
Methods: A bootstrapping residuals approach to determine the error in quanti-
tative functional lung imaging is proposed. Precision and accuracy of the median
error over the lungs, as well as reproducibility of the approach were investigated
in 7 volunteers. The algorithm was additionally applied to data acquired in a
patient with cystic fibrosis.
Results: The obtained bootstrapping error maps appear comparable to the
error maps determined from repeated measurements, and median absolute error
values for both methods show comparable median errors when reducing the
number of averages. In a volunteer in whom 10 consecutive measurements
were carried out, the median functional parameters were ventilation= 0.22 mL
gas/mL lung tissue, perfusion amplitude= 0.028, perfusion timing = −82 ms,
whereas precision and accuracy of the median error were below 3.2× 10−3 mL
gas/mL lung for ventilation tissue, 4.4× 10−4 for perfusion amplitude, and 11 ms
for perfusion timing. In the measurement of the patient, low errors in areas with
reduced ventilation support the assessment as real defects.
Conclusion: Using a bootstrapping residuals method, the error of functional
lung MRI could be determined without the need for repeated measurements.
The error values can be determined reproducibly and can be used as a future
means of quality control for functional lung MRI.
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1 INTRODUCTION

MRI-based functional lung examinations attempt to
add regional information to standard lung function
tests like spirometry or body plethysmography. Meth-
ods include hyperpolarized noble gases like xenon1

or helium2 imaging, fluorinated gases MRI,3,4 and
non-contrast-enhanced techniques.5–13 Pure proton-based
methods are particularly advantageous in that they do
not necessitate the use of additional contrast agents,
specialized gases, or any preparatory steps. This makes
them particularly interesting for pediatric imaging.14–17
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These methods rely solely on the signal change within
the human body. The ventilation of a specific area in
the lung is reflected by the compression and expan-
sion of the tissue in a single voxel, which in turn causes
the overall signal within that voxel to change. Perfu-
sion effects are characterized primarily by the inflow
of blood carrying spins with a different excitation his-
tory, which again changes the overall signal intensity
per voxel.

All commonly used proton-based techniques like
Fourier decomposition,5 phase resolved functional lung
(PREFUL) MRI,8 and self-gated non-contrast-enhanced
functional lung (SENCEFUL) MRI9 make use of these
effects but differ in the acquisition, reconstruction, and
signal processing pipeline.

Some of the techniques have proven their ability to
diagnose or monitor different diseases affecting the lung
like chronic obstructive pulmonary disease,8 asthma,18

and cystic fibrosis.8,19 The techniques have been evaluated
in part concerning reproducibility,4,20–23 in comparison
with other techniques,24,25 and in terms of stability and
diagnostic accuracy.

This study focuses on SENCEFUL as a use case,
which calculates the required morphologic image series
of one cardiac and one respiratory cycle from randomly
acquired k-space samples relying on respiratory and car-
diac self-gating. SENCEFUL has already been used to
investigate ventilation and perfusion in a population of
patients with cystic fibrosis,26,27 to reveal perfusion deficits
after pulmonary embolisms28 and to show delayed or het-
erogeneous pulmonary blood inflow.27,29

In general, the signal in lung is very low due to low
proton density and rapid signal decay resulting from
relaxation. Noise represents a significant source of error.
Additional sources of error include artifacts, caused by
undersampling, motion and pulsation, or partial vol-
ume. Model inconsistencies and misallocation of data in
irregular breathing patterns can also contribute to errors.
Although all of these factors can vary from one mea-
surement to the next, statistical noise is an inherent and
constant component of a given setup.

Several studies addressed the repeatability and
reproducibility of non-contrast-enhanced functional
lung imaging over several unrelated measurements,
which include the variability due to all the aforemen-
tioned error sources (such as SENCEFUL,9 PREFUL,8
or Fourier decomposition5), but none have assessed
the error of the quantitative parameters from a single
measurement.

The aim of this study is to propose and eval-
uate a means to calculate error maps for quantita-
tive SENCEFUL results without the need of repeated
measurements.

2 METHODS

The study was approved by the local ethics committee, and
written informed consent was obtained before all human
in vivo examinations. Measurements were conducted on
a commercially available 3T whole-body system (MAG-
NETOM PrismaFit; Siemens Healthineers, Erlangen, Ger-
many). A spine coil (18 channels) and a body array coil (32
channels) were used for signal reception. All image recon-
struction and postprocessing steps were performed offline
using MATLAB (The MathWorks, Natick, MA, USA).

2.1 Data acquisition and image
reconstruction

Quantitative functional lung imaging was performed on
7 healthy volunteers to validate the implementation of
the proposed algorithm for error estimation. Addition-
ally, a measurement was performed in 1 patient suffering
from cystic fibrosis. All measurements were performed
in free breathing. One coronal slice was selected at the
position of the descending aorta in each subject. In the
patient, the measurement was performed in one coronal
slice covering the central plane of the heart. One volun-
teer was scanned 10 times, without leaving the scanner,
in order to maintain unchanging imaging conditions. The
other 6 were measured twice, again without leaving the
scanner. All scans of 1 volunteer were registered using
a B-spline nonrigid image registration algorithm (MIRT
toolbox30). Subsequently, functional maps and bootstrap-
ping error maps were calculated for every scan in every
volunteer, as described subsequently. Additionally, the
standard deviation (SD) was calculated in each voxel of
the parameter maps acquired by the repeated scans in the
same volunteer. This resulted in a repeated-measurement
error map serving as the gold standard for the error of the
SENCEFUL technique (gold-standard error [GSE]).

For imaging, a two-dimensional spoiled gradient echo
sequence with asymmetric echo readout was used employ-
ing the following acquisition parameters: field-of-view
(FOV)= 450× 450 mm2, matrix= 128× 128, slice thick-
ness= 10 mm, coronal slice orientation, repetition time
(TR)= 2.5 ms, echo time (TE)= 0.69 ms, flip-angle= 8◦.
Succeeding each readout, gradients were rewound and the
k-space center signal31,32 was acquired for self-gating. A
total of 64 000 readouts were obtained in a total acquisi-
tion time (TA) of 160 s. The phase encoding steps were
chosen according to a Niederreiter quasi-random num-
ber sequence33,34 in order to decouple the data acquisition
from physiology.34 One coil element close to the heart or
a large vessel was chosen to register the signal modula-
tion by the cardiac cycle and to enable retrospective sorting
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1486 SLAWIG et al.

of read-outs. Likewise, a coil element in proximity of the
diaphragm provided information for respiratory gating.

Cardiac cycles consisting of 20 independent cardiac
phases and breathing cycles consisting of 20 independent
breathing phases were reconstructed via self-gating and
processed further. The gating and binning process removes
any cardiac or respiratory deviations and results in images
of one pseudo- heartbeat and one pseudo- breath.

In each image the number of averages per readout
and functional phase was determined and the minimum
found. For all images the reconstruction was restricted to
only use this number of averages for each phase encod-
ing step.

For repeated scans (10 repetitions in one volunteer, 2
repetitions in 6 other volunteers) registration of all images
was performed to minimize errors caused by motion
between the scans.

2.2 Calculation of functional lung
parameters

The reconstructed images forming a complete cardiac or
respiratory cycle were analyzed to obtain the functional
information for ventilation and perfusion, respectively. A
detailed description of the measurement and reconstruc-
tion can be found in previous SENCEFUL publications.9,35

For ventilation weighting, the respiratory motion needs
to be eliminated by image registration. By registering all
breathing states to an intermediate breathing state, a time
series without motion but with preserved signal changes
induced by the expansion and compression of the lung
parenchyma, was obtained. The ventilation-related sig-
nal variations of the lung parenchyma can be assumed
to resemble a periodic function (expiration: high
signal—inspiration: low signal—expiration: high sig-
nal).5 After data binning and Fourier transform along
the temporal dimension of the reconstructed images, the
ventilation weighted information is in the first harmonic
(the real part of the spectral image with lowest temporal
frequency adjacent to the 0-Hz peak).

For perfusion weighing, phase encoding steps mea-
sured in expiration were selected. This data was sorted
according to the cardiac cycle and thus a series of images
representing one cardiac cycle were reconstructed.

Both time series, along one breathing or one cardiac
cycle, were Fourier transformed pixelwise in the temporal
dimension.

In ventilation as well as perfusion, the functional infor-
mation in encoded in the first harmonic:

Svent∕card(t) =
N∑

n=0
Cne−i2𝜋 n

N
t
,

C0 = static component,C1 = ventilation∕perfusion
signal,C2 to Cn = residual components

where S(t) denotes the signal evolution in each pixel along
the reconstructed respiratory or cardiac cycle and N is
the number of breathing or cardiac states. Residual higher
components combine unusable signal variations due to
noise, artifacts, model inaccuracies and others.

Ventilation maps were then calculated voxelwise fol-
lowing the notation of Zapke et al.36:

Vabs =
Sexp − Sins

Sexp

where Sexp represents the signal intensity of a voxel in expi-
ration and Sins the signal intensity in inspiration, providing
the ventilation V abs in mL air/mL lung parenchyma.

In perfusion, normalization to a manually selected,
completely blood-filled region of interest (ROI) in the
descending aorta was performed. Perfusion timing in ms
was determined from the phase information of the first
harmonic in each voxel and its shift in comparison to the
reference ROI and the duration of one heartbeat.

2.3 Quantification of errors by the
bootstrapping method

Quantifying the statistical error of the functional param-
eters for each dataset was performed via a bootstrapping
technique.37,38 The method relies on resampling to allow
for the estimation of uncertainty and has previously been
used in medical imaging studies.39–41 When modeling of
data is used, residuals can be calculated as the deviation of
the model from the original data. By randomly shuffling
the residuals and adding them again to the model data
(“bootstrapping residuals” or “bootstrapping errors”),
synthetic data can be created and evaluated. This boot-
strapping residuals can be repeated until an adequate
sample size for the statistical determination of errors is
reached.42,43

In the present study, during the estimation of the func-
tional parameters, either perfusion or ventilation related,
data modeling was performed via the first harmonic over
the cardiac or the breathing cycle (step 1). By subtracting
the model data from the originally reconstructed dataset,
residuals are calculated for every time point (step 2). The
residuals are randomly shuffled and added to the model
data (step 3). These synthetic data are in turn used to cal-
culate functional maps as described above (step 4) and
the results are added to a stack of functional parameter
maps. To determine error maps of functional lung param-
eters step 3 (randomly shuffling the residuals) and step
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SLAWIG et al. 1487

F I G U R E 1 The process of fitting, calculation of the residuals, and generation of synthetic data for one voxel over a reconstructed
heartbeat. For the obtained data (black triangles), the first harmonic is fitted as model data (black curve). Subsequently, the deviation of the
model from the data (residuals; brown lines) is calculated, randomly permuted, and added to the model, resulting in one example of synthetic
data (gray circles). The fitting process on the synthetic data via the first harmonic results in new model data (gray line) from which functional
lung parameters can be determined again.

4 (calculating functional maps) were repeated 2000 times
and a stack of 2000 quantitative functional parameter
maps was generated. Subsequently, the standard deviation
in each voxel was calculated providing an estimate of the
error of the respective functional parameter. Figure 1 illus-
trates the process of data modeling, calculation and shuf-
fling of the residuals for creation of synthetic data for the
perfusion amplitude of one voxel in the lung parenchyma
of a healthy volunteer.

To evaluate whether the implemented bootstrapping
approach provides reproducible error values, error maps
of one dataset were calculated 1000 times with random
permutations and the width of the 95% confidence inter-
val (CI) of the error was calculated for every voxel of the
dataset.

2.4 Quantification of errors
for repeated measurements

In one volunteer 10 separate SENCEFUL scans were
acquire while in the remaining six volunteers two
independent SENCEFUL scans were recorded in each

case without the subjects leaving the scanner. To further
minimize errors caused by motion between the scans, all
scans of one volunteer were registered using a B-spline
Nonrigid Image Registration algorithm (MIRT toolbox30).
Subsequently, functional maps and bootstrapping error
maps were calculated for every scan in every volunteer.
Additionally, the SD in each voxel of the parameter maps,
acquired by repeated scans in the same volunteer, was
calculated, resulting in a repeated-measurement error
map serving as the gold standard for the error of the
SENCEFUL technique (gold standard error [GSE]).

For the 10 repeated scans in 1 volunteer, the mean
and SD of breathing depth were analyzed based on the
total change in lung area in the 2D slice, between inspira-
tion and expiration. Scans with a relative change in lung
volume outside this mean ±SD were excluded during the
estimation of the GSE.

2.5 Data reduction

Functional maps and corresponding errors maps were ret-
rospectively determined for different amounts of data. For
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1488 SLAWIG et al.

this purpose, the number of averages per readout for every
independent single phase image was restricted to six, three
and one, respectively, during data reconstruction.

To compare the error values of different maps, the
cumulative distribution function of the bootstrapping
error for the 10 different scans and the GSE over
all voxels in the lung were plotted. Additionally, the
median errors over the lungs were determined for every
error map.

Precision of the median error was determined by cal-
culating the interquartile range of the median bootstrap-
ping error values in the lung of all 10 repeated scans.
Accuracy of the median was assessed by calculating the
median of the difference between the median of the
value obtained from the GSE map and the medians of
the bootstrapping errors in the lung of all 10 repeated
scans.

3 RESULTS

Figure 2 presents functional parameter maps and one of
1000 bootstrapping error maps of the healthy volunteer on
a voxel-by-voxel basis from 2000 reshuffled residuals, each.
Additionally, the width of the 95% confidence interval (CI)
of the bootstrapping error of the 1000 repetitions is pre-
sented. Ventilation in the lung was 0.22 (0.12) mL gas/mL
lung tissue with an error of 0.016 (0.007) mL gas/mL lung
tissue (median [interquartile range]). The median width
of the 95% CI of the 1000 calculated errors was 9.3× 10−4

(4.5× 10−4) mL gas/mL lung tissue. The perfusion ampli-
tude was 0.027 (0.031) with a median error of 0.006 (0.004)
and a width of the CI of 3.2× 10−4 (2.3× 10−4). The values
for perfusion timing were −82 ms (116 ms) with a median
error of 47 ms (23 ms) and a width of the CI of the error of
3 ms (4 ms).

F I G U R E 2 Results of the repeatability study. Functional parameter (first column) and corresponding bootstrapping error maps (second
column) are shown. The last column presents maps showing the width of the 95% confidence interval (CI) after calculating error maps in the
second column 1000 times.
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SLAWIG et al. 1489

F I G U R E 3 Results of 10 self-gated non-contrast-enhanced functional lung (SENCEFUL) scans of a healthy volunteer. Functional
parameter maps and corresponding bootstrapping error maps are presented for ventilation, perfusion amplitude, and perfusion timing. The
gold-standard repeated-measurements error maps are also presented (GSE).

Figure 3 shows all functional parameter maps and
the corresponding bootstrapping error maps of 10 con-
secutive scans. Additionally, the gold-standard repeated-
measurement error is presented. Results are presented as
quantitative absolute errors. Because estimation of the
ventilation depends on the breathing depth, and thus dif-
ferent breathing depths in the 10 scans potentially cor-
rupted the accuracy of the ventilation error, this parameter
was further investigated.

Mean breathing depth in the 10 repeated measure-
ments was 24.3% with SD of 5.6%. During four scans (Scans
1–3 and 8), the breathing amplitude differed considerably
from the other six scans. To take this into account, the GSE
map was calculated from the six other scans only (Scans
4–7 and 9 and 10), while measurement with area changes
higher than 29.9% or lower than 18.7% were excluded in
this evaluation (Scans 1–3 and 8).

It can be observed in Figure 3 that the functional
parameter maps have a similar appearance for all 10 scans.
Only ventilation appears more inhomogeneous in Scans
1, 2, 3 and 8, which corresponds to the scans that were
excluded. The errors obtained by bootstrapping are compa-
rable to the GSE, and absolute error values are small when
compared with the functional parameters. All median and
interquartile range values of ventilation, perfusion ampli-
tude, and timing as well as the corresponding errors are

collected in Table 1. In general, absolute errors are well
below 10% of the functional value for ventilation and per-
fusion amplitude in the case of six data averages being per-
formed. The median GSE is in the same range as all median
errors calculated by bootstrapping. As can be expected,
a decrease in averages increases the error in all cases. In
ventilation, the distribution of errors is variable across the
maps, whereas in perfusion high errors always correspond
to areas of high perfusion. Perfusion timing errors show
distinct patches of high errors (up to 200 ms) and large low
error areas (about 40 ms) for six averages. Again, errors
increase with decreasing number of averages.

Functional parameter maps and corresponding error
maps were also determined from a smaller part of the
acquired data by restricting the maximum number
of averages allowed per phase-encoding line to three
and to one. Figure 4 contains parameter maps, corre-
sponding bootstrapping error maps, and GSE maps for
ventilation, perfusion amplitude, and perfusion timing.
The images presented in the first two rows stem from
the same measurement as Scan 1 and GSE in Figure 3
but were reconstructed after data reduction to six,
three, and one averages. A degradation of the image
quality of the functional maps is evident for reduced
data averaging. The errors increase with decreased
averaging, but the bootstrapping error maps and the
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1490 SLAWIG et al.

T A B L E 1 Summary of quantitative values.

Averages

Ventilation (%)
(mL air/mL lung
parenchyma)

Perfusion
amplitude

Perfusion
timing (ms)

6 Median functional values Median of each functional
map

0.179 0.219 0.027 0.031 −56.32 −112.74

0.173 0.224 0.026 0.030 −46.92 −121.80

0.191 0.184 0.027 0.027 −75.36 −33.47

0.222 0.221 0.029 0.028 −88.23 −99.76

0.215 0.220 0.027 0.030 −68.33 −90.93

Median over all maps 0.217 0.027 −82

IQR functional values IQR of each functional map 0.134 0.111 0.032 0.030 116.19 96.93

0.109 0.121 0.030 0.032 121.30 116.77

0.124 0.096 0.029 0.032 125.06 120.92

0.124 0.124 0.030 0.031 106.03 110.71

0.122 0.136 0.029 0.031 119.20 104.75

Median over all IQRs 0.123 0.031 116.48

Median functional errors Median of each error map 0.016 0.018 0.006 0.006 56.91 42.10

0.015 0.017 0.006 0.006 53.76 47.80

0.017 0.016 0.005 0.005 49.15 52.26

0.015 0.014 0.005 0.005 43.30 40.38

0.015 0.015 0.005 0.006 44.50 46.96

Median over all error maps 0.016 0.006 47

IQR functional errors IQR of each error map 0.008 0.007 0.004 0.004 44.98 20.01

0.007 0.007 0.005 0.005 34.33 23.78

0.008 0.007 0.004 0.004 29.15 32.23

0.008 0.007 0.005 0.004 20.56 16.69

0.008 0.007 0.004 0.005 22.96 22.01

Median over all IQRs 0.007 0.004 23.37

Median GSE 0.019 0.005 59

Accuracy of the median error 0.004 0.001 12

Precision of the median error 0.002 0.001 8.96

3 Median functional value Median of each functional
map

0.181 0.188 0.030 0.031 −16.80 −11.94

0.119 0.194 0.026 0.026 −51.45 −143.42

0.155 0.165 0.024 0.029 −13.12 −29.00

0.188 0.181 0.032 0.030 −43.62 −85.54

0.212 0.187 0.025 0.029 3.05 −25.74

Median over all maps 0.184 0.029 −27

IQR functional values IQR of each functional map 0.137 0.111 0.028 0.029 166.80 152.92

0.111 0.126 0.025 0.029 210.10 338.30

0.123 0.117 0.024 0.027 203.71 152.23

0.137 0.118 0.028 0.027 169.32 166.37

0.121 0.125 0.025 0.029 262.25 211.35

Median over all IQRs 0.122 0.028 186.51

(Continues)
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SLAWIG et al. 1491

T A B L E 1 (Continued)

Averages

Ventilation (%)
(mL air/mL lung
parenchyma)

Perfusion
amplitude

Perfusion
timing (ms)

Median functional error Median of each error map 0.041 0.037 0.011 0.009 101.23 79.92

0.039 0.038 0.009 0.009 108.92 106.24

0.038 0.037 0.009 0.009 115.07 84.79

0.040 0.037 0.010 0.009 84.81 83.99

0.037 0.037 0.009 0.010 108.40 94.60

Median over all error maps 0.038 0.092 98

IQR functional errors IQR of each error map 0.018 0.020 0.005 0.004 122.89 97.81

0.022 0.020 0.004 0.004 139.11 171.29

0.017 0.019 0.004 0.004 167.17 114.43

0.021 0.018 0.004 0.004 89.47 111.26

0.017 0.015 0.004 0.005 143.98 113.90

Median over all IQRs 0.019 0.004 118.66

Median GSE 0.044 0.011 145

Accuracy of the median error 0.007 0.002 20.75

Precision of the median error 0.001 0.001 32.72

1 Median functional value Median of each functional
map

0.163 0.178 0.043 0.044 −13.30 −24.21

0.108 0.180 0.040 0.040 −44.28 −49.67

0.140 0.148 0.040 0.045 −10.86 −25.45

0.176 0.168 0.046 0.044 −47.53 −12.93

0.196 0.178 0.041 0.042 11.33 32.96

Median over all maps 0.172 0.042 −19

IQR functional values IQR of each functional map 0.161 0.138 0.035 0.036 319.46 313.16

0.154 0.146 0.033 0.034 397.53 445.30

0.149 0.140 0.033 0.037 410.09 306.63

0.159 0.155 0.037 0.036 336.23 329.83

0.146 0.140 0.034 0.035 422.12 343.75

Median over all IQRs 0.148 0.035 339.99

Median functional error Median of each error map 0.065 0.063 0.021 0.021 198.73 187.02

0.066 0.065 0.022 0.021 232.63 230.81

0.063 0.060 0.021 0.021 228.52 179.49

0.068 0.068 0.023 0.021 204.95 189.53

0.068 0.059 0.021 0.021 229.55 201.27

Median over all error maps 0.065 0.021 203

IQR functional errors IQR of each error map 0.025 0.027 0.006 0.005 209.77 211.93

0.023 0.023 0.006 0.006 221.85 237.73

0.023 0.022 0.005 0.006 232.49 210.06

0.028 0.024 0.006 0.006 217.50 206.17

0.024 0.020 0.006 0.006 236.33 212.00

Median over all IQRs 0.024 0.006 214.75

(Continues)
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1492 SLAWIG et al.

T A B L E 1 (Continued)

Averages

Ventilation (%)
(mL air/mL lung
parenchyma)

Perfusion
amplitude

Perfusion
timing (ms)

Median GSE 0.068 0.021 282

Accuracy of the median error 0.003 0.001 79

Precision of the median error 0.005 0 40.02

Note: This table summarizes the median and IQR over all functional values and error values in the maps acquired by 10 repeated scans in 1 healthy volunteer. Th
median and IQR of functional values and median and IQR of bootstrapping errors are provided for each of the 10 separate scans, as well as the median over all 10
scans. The median GSE, accuracy, and precision of the median error are also provided. All values are given for ventilation, perfusion amplitude, and perfusion
timing and for the different amounts of data averaging.
Abbreviations: GSE, gold standard errors; IQR, interquartile range.

F I G U R E 4 Dependency of the error on different amounts of data averaging: Functional parameter maps (first, third, and fifth rows),
corresponding error maps (below the functional parameter map), and gold-standard error (GSE) map (second, fourth, and sixth columns). With
decreasing amount of raw data (top to bottom), the bootstrapping error increases. However, the difference between the bootstrapping error
and the GSE remains small for all regimes. Please note the slightly different scaling of the error maps, which was used for better visualization.
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y = 0.864 x + 0
R^2 = 0.13
p < 0.05

y = 0.749 x + 0
R^2 = 0.53
p < 0.01

y = 0.917 x + 0
R^2 = 0.99
p < 0.01

y = 0.984 x + 0
R^2 = 0.98
p < 0.01

y = 0.741 x + 0
R^2 = 0.81
p < 0.01

y = 0.726 x + 0
R^2 = 0.95
p < 0.01

F I G U R E 5 (A–C) Cumulative distribution functions (different data acquisition times) of the error maps for all three functional
parameters and all 10 scans (colored lines) and the gold-standard error (GSE) map (black line). (D) Median values of the GSE (x-axis) and
median values of the 10 scans (y-axis) in Volunteer 1. (E) Median values of the GSE (x-axis) and median values of the two scans (y-axis) in
Volunteers 2–7. Provided are curves and values for the three different data-acquisition times.

gold-standard maps appear similar for a given functional
parameter.

To visualize the distribution of determined errors,
cumulative distribution functions of the bootstrapping
error for the 10 different scans and of the GSE are plotted
in Figure 5A–C for different amounts of data averaging.
The cumulative distribution functions of the bootstrap-
ping error of the 10 repeated scans show good agreement
and correlate moderately well with the curve of the GSE
map (black line). The error values of each bootstrapping
error map and the GSE error map do not necessarily stem
from the same distribution but are in the same order of
magnitude and have comparable characteristics. Addition-
ally, for less data averaging, the cumulative distribution
functions of the bootstrapping errors and of the GSE are
similarly shifted to higher values. To illustrate this effect,
in Figure 5D, the median errors over the lungs (value
where the cumulative distribution function equals 0.5) for
the bootstrapping method are plotted against the median
GSEs. The solid line shows the identity between bootstrap-
ping errors and GSEs. Determined median error values
for ventilation and perfusion amplitude over the lungs
are very close to the median of the corresponding GSE.
Solely the median error of the perfusion timing shows a
larger difference to the corresponding GSE for maps from
non-averaged data. Nevertheless, there is a strong positive

correlation (R2
> 0.95) between both values, as the median

error of the 10 scans and the median GSE are very similar
to each other for the different SNRs, resulting in a largely
linear behavior (Figure 5D).

The same analyses (i.e., the calculation of func-
tional maps, bootstrapping error maps, and the
repeated-measurement error maps) as well as the median
calculations of the lungs were performed for the repeated
SENCEFUL scans of 6 other volunteers with six, three,
and one average of every phase-encoding step. The median
bootstrapping error in each scan is presented as a func-
tion of the medium GSE (Figure 5E). Although a similar
linear trend can be found as in Figure 5D, a slight under-
estimation could be detected for ventilation, whereas in
perfusion a small overestimation of errors occurs. Corre-
lation is moderate for perfusion amplitude (R2 = 0.53) and
strong in perfusion timing (R2 = 0.81).

To allow for a quantitative comparison between the
bootstrapping errors and the GSEs, median values as well
as the precision and accuracy of the median errors over the
lungs are presented in Table 1. The outlined values mir-
ror the visual impression from the cumulative distribution
functions in Figure 5: The median error over the lungs of
all functional parameters increases with a decrease in data
averaging. An increase can also be seen for the GSEs, as is
also suggested by the plots in the last row of Figure 5. The
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1494 SLAWIG et al.

F I G U R E 6 Results from
an exemplary patient with a
diagnosis of cystic fibrosis.
Functional parameter (first
column) and corresponding
bootstrapping error maps
(second column) are shown.
Ellipses mark areas of true
functional defects,
accompanied by low error
values. The arrow points to an
apparent ventilation defect.
However, high error values in
this area indicate that the
values are unreliable.

presented values for precision and accuracy of the median
for the different amounts of data averaging suggest a stable
determination of the errors.

An exemplary measurement in a patient suffering from
cystic fibrosis is shown in Figure 6. In the ventilation map,
several areas with reduced ventilation can be identified. In
two areas in the upper parts of the lungs, the ventilation
deficit is not accompanied by high error values, indicat-
ing a true pathology. In contrast, in the area in the lower
right lung, low ventilation values are accompanied by high
error values. Numerous bronchia and vessels in this area
prevent correct estimation of the ventilation. The perfu-
sion map illustrates the typical decrease from medial to

distal regions, as well as a perfusion defect in the upper
right lung, which aligns with the location of the ventilation
defect. The perfusion timing cannot be accurately quanti-
fied in areas with low perfusion amplitude, as evidenced
by the perfusion timing error map.

4 DISCUSSION

4.1 Summary

Functional lung imaging provides spatially resolved func-
tional information regarding pulmonary ventilation and
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perfusion without the use of contrast agents or radiation.
However, until now, no methods to quantitatively deter-
mine the error limits have been reported for functional
lung imaging without repeated measurements.

The presented method, based on the bootstrapping
residuals technique, can determine the statistical error in
functional lung parameters. It provides a way to calculate
a statistical distribution via resampling in the presence of
just one single scan.37 Other complex studies dealing with
functional MRI,39 diffusion tensor MRI,40 or MR spec-
troscopy41 have made use of this technique to estimate
different uncertainties. The modeling of the physiological
processes via a harmonic, as performed in SENCEFUL,
allows to calculate the deviations between model and the
original data. Shuffling these residuals and adding them to
the model data simulates different data sets with different
independent noise or artifacts. Consequently, a large num-
ber of different parameter maps can be generated from one
single data set.

The present study focuses on the development,
implementation, and evaluation of this technique for
quantification of the errors that occur during calculation
of quantitative functional parameter maps in SENCEFUL
MRI, such as ventilation and perfusion.

4.2 Application to SENCEFUL

In the presented use cases of SENCEFUL lung imaging,
the bootstrapping algorithm provides error maps for all
acquisitions in 7 healthy volunteers and 1 patient with
cystic fibrosis. The bootstrapping error maps calculated
separately from individual scans appear different for
the standard SENCEFUL reconstruction without data
reduction (Figure 3). Variations could be caused by dif-
ferences in the level or color of noise between two scans.
The general SENCEFUL reconstruction is restricted to
use the maximum number of averages available for all
phase-encoding lines in all cardiac and breathing states.
Thus, two separate scans do not necessarily have the same
number of averages. Remaining deviations of individ-
ual bootstrapping error maps are most likely caused by
the image registration necessary when obtaining sepa-
rate scans, as small misalignments will corrupt the exact
repeatability of a voxel-wise procedure. The error in the
repeated measurement is comparable to the variations
found in other repeatability studies for functional lung
imaging.44,45

In Volunteer 1, calculating the gold-standard map from
the six data sets with similar breathing depths results in
good agreement between the gold standard and the corre-
sponding single maps. Similar results were obtained in 6
additional volunteers.

Although in ventilation, the distribution of errors is
variable across the maps, in perfusion areas of high error
are consistently correlated with areas of high signal, for
bootstrapping as well as GSE. These are primarily large
blood-filled vessels where the simple model of the first har-
monic model would need to be extended to sufficiently
describe the complex pulse wave. Thus, care needs to be
taken when interpreting error values, from bootstrapping
as well as GSE, in these areas outside the lung parenchyma.

Error maps obtained by bootstrapping can help to iden-
tify true defects in functional lung values and distinguish
them from defects caused by other sources. For example,
in the exemplary patient suffering from cystic fibrosis, two
types of areas with low ventilation are detected: (i) a true
pathology, in which low functional values are accompa-
nied by low error values and are thus reliable; and (ii)
low ventilation values accompanied by high error values,
indicating insufficient data or artifacts, which hinders the
computation of functional values.

4.3 Conditions and parameters
in bootstrapping

The proposed bootstrapping method relies on modeling
functional data over a whole cardiac or respiratory cycle
and shuffling the differences between measurements and
the corresponding model data. Consequently, an appli-
cation of bootstrapping error determination to PREFUL8

seems straightforward, whereas for other functional lung
imaging techniques,5,10,46 a direct transfer of the proposed
bootstrapping technique is not obvious.

The precondition for a simple bootstrapping residuals
method is that the residuals are independent from each
other. This is evident if the residuals are generated primar-
ily by noise in independent images. The errors from arti-
facts arising independently in different images can also be
well described by the bootstrapping residuals. These errors
can experimentally be determined by repeated measure-
ments, if repetitions are feasible. However, if the model is
chosen insufficiently and the model values plus indepen-
dent errors are not able to describe the measured values
adequately, then the bootstrapping residuals method is not
able to describe the error of repeated measurements cor-
rectly. In our implementation, all single images have been
reconstructed independently from each other, and the first
harmonic has been chosen as the model function.

Differences between the model and the measured data
are caused by noise, motion, artifacts, and other inconsis-
tencies. Noise is a relevant error source due to generally
low signal intensities in lung tissue, the fast relaxation
processes, and the restricted total measurement time in
clinical contexts. This assumption of noise being the major
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contribution to the residuals in SENCEFUL is backed by
the results for lower numbers of averages, where the errors
increase with the lower SNR.

It may be a question of future research to investi-
gate whether the only first harmonic is suited best for
SENCEFUL or whether more harmonics have to be con-
sidered at the price of an increase noise level. How-
ever, the accuracy obtained between median GSE and
median bootstrapping error is a strong indicator that the
one harmonic model is suitable to determine the statis-
tical error voxel-wise for the error and artifact level in
our study.

An important parameter in the proposed bootstrapping
technique is the number of repetitions used for calculat-
ing the stack of images and the resulting error maps. A
high number of repetitions results in unnecessary prolon-
gation of the process. Using too few iterations might lead
to errors. In our study, we empirically chose a number of
2000 iterations as a tradeoff between calculation time and
the quality of the resulting error value. To verify the appro-
priateness of this number, we conducted 1000 replications
of our approach to evaluate the reproducibility of our tech-
nique. The obtained small CIs indicated that our technique
was reliable.

4.4 Bootstrapping versus repeatability

In the context of clinical research, studies aimed at assess-
ing the repeatability and reproducibility of a given method
are common. In clinical trials, data are typically obtained
from groups of volunteers and patients in order to dif-
ferentiate between healthy and diseased states. This is
because it is crucial to assess the performance of a given
method in heterogeneous groups and through indepen-
dent measurements.

In a repeatability study, the error is determined from
repeated measurements taken from the same individual
and within the same setup. Such an experiment serves
as a ground-truth experiment (GSE) in our study. Boot-
strapping may be regarded an analogous experiment, in
which a single scan is conducted and the supplemen-
tary scans are replaced by in silico experiments (shuf-
fling of residuals). This allows for the assessment of the
inherent error of the method and the evaluation of the
quality of a single acquisition. In addition to the evi-
dent advantage in terms of scan time, this approach
is particularly beneficial for cases in which quantita-
tive values are evaluated at a pixel-wise basis, as motion
between consecutive scans compromises the accuracy of
such values.

4.5 Application of bootstrapping error
maps

A primary application of bootstrapping error maps is the
analysis of the performance of imaging setups and possi-
ble alternatives. A thorough investigation of the impact of
measurement setting, such as flip angle, echo time, repe-
tition time, or even field strength, on the errors could also
be beneficial as a guideline for new setups.

The presented method may prove especially useful in
determining the optimal measurement time for the assess-
ment of functional parameters of the lung in future studies.
Shown here are errors determined for different artificial
acquisition times by restricting the number of maximum
allowed data averages to six, three, and one. The restriction
was imposed on the number of averages per line instead of
the total measurement time, to ensure a consistent degree
of averaging and therefore SNR decrease. Truncating the
acquired data could result in a varying SNR in each scan.
The good agreement of the median bootstrapping error
with the gold-standard repeated-measurement error over
the lung confirms that the bootstrapping method provides
very accurate error estimates also for noisy data. In our cur-
rent SENCEFUL implementation, not restricting the data
averaging during reconstruction typically results in aver-
aging factors of 6 to 7 for perfusion maps and about 30 for
ventilation maps, depending on the individual breathing
and cardiac frequency. Thus, the restriction to six averages
was chosen to generate consistent data close to our “real
world” data. With some limitations, the restriction to three
averages in our study simulates a reduction of the data
acquisition time from 160 s to 80 s, and the restriction to
one average simulates a reduction of the data acquisition
time to 27 s.

Several other changes in the imaging protocol could
also significantly affect the error. Although the method
cannot answer whether the given conditions are optimal
or what optimal conditions would be, it provides an assess-
ment of the performance of the given setup. The results
would then need to be carefully scrutinized if the resulting
error levels are within an acceptable range for the clinical
question to be addressed.

A secondary application of this methodology would
permit the calculation of statistical errors in individ-
ual patient measurements as a means of quality control.
Especially for clinical examinations of patients, in whom
repeating MRI scans is virtually impossible, bootstrapping
can be the method of choice. While such a use is possible,
the current setup does not allow a real-time analysis. The
necessary high-end hardware and suitable interfaces to the
MRI scanner will likely not be available in most clinical
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SLAWIG et al. 1497

setups. Thus, individual cases could only be evaluated in
retrospect.

5 CONCLUSION

We introduced a method for quantifying the error in the
determination of quantitative functional lung parame-
ters by the SENCEFUL technique without the need for
repeated measurements. By bootstrapping the residu-
als from a sinusoidal model function and the measured
images, voxel-wise error maps can be generated. The
bootstrapping error maps showed good repeatability and
precision of the median value over the lungs. High accu-
racy of the median bootstrapping error over the lungs
could be found when compared with the median error
determined from repeated measurements. Exemplary
patient data show the value of bootstrapping error maps
when evaluating the results of functional lung imaging.
Henceforward, the proposed method could be used for a
thorough analysis of the impact of measurement setting,
such as acquisition time, flip angle, echo time, repetition
time, or even field strength, on the errors.
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