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Summary 

In this work, a novel process for the electrolysis of hydrogen chloride in a polymer electrolyte 

membrane reactor with an oxygen depolarized cathode was studied by means of half-cell 

experiments and the modeling of individual reactor components (anode, electrolyte membrane, 

and cathode). The complete reactor experiments were carried out by our partners from the 

Technical University of Clausthal. They also produced the membrane electrode assemblies with 

different catalyst and ionomer compositions employed in this work. 

Our experiments were carried out in a cyclone flow cell, where defined temperature and mass 

transfer conditions can be attained. The kinetics of the hydrogen chloride oxidation were measured 

and identified. An optimization of the catalyst and ionomer (Nafion) loadings was carried out. A 

surprisingly high optimum of about 60 wt.% Nafion was found, which is significantly higher than for 

other electrochemical gas phase reactions (such as hydrogen oxidation, oxygen reduction, etc.). 

Although technically relevant current densities were reached for all investigated electrodes, a 

further need for optimization was identified as, theoretically, higher current densities are possible 

(up to 1000 mA cm-2). 

With help of half-cell experiments, kinetics of the HCl oxidation was studied. A 1-dimensional 

isothermal agglomerate reactor model was developed in order to analyze the transport processes 

of HCl and water. This showed that the membrane conductivity decreases due to the HCl profile 

through it. Another important finding is that water produced by the cathodic oxygen reduction 

reaction condensates in the catalyst layer (as the cathode feed is liquid water or fully humidified 

oxygen) and diffuses through the membrane, improving its conductivity and compensating for 

losses due to the HCl concentration profile through it. These results showed the importance of the 

water balance in the membrane and its impact on the overall reactor operation.

With the established model, the isothermal reactor polarization curves could be reproduced up 

to current densities of 400 mA cm-2. The cell potential curve at higher current densities could not 

be described because the reactor doesn’t behave isothermal in this area. 

The experimental results proved the feasibility of the gas phase electrolysis of hydrogen 

chloride with the use of an oxygen depolarized cathode. The resulting cell potentials below 1 V 

represent an important advance for the development of a technical application of the new process 

for the large-scale chlorine recycling.
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Zusammenfassung

Im Rahmen dieser Arbeit wurde ein neuer Prozess zur Elektrolyse von gasförmigem 

Chlorwasserstoff in einem Polymerelektrolyt-Membranreaktor mit einer Sauerstoffverzehr-kathode 

verfahrenstechnisch untersucht. Dazu wurden sowohl Halbzellen Experimente als auch die 

Modellierung von einzelnen Reaktorkomponenten (Anode, Membran, Kathode) und des gesamten 

Reaktors in enger Kooperation mit der TU Clausthal durchgeführt.

In der TU Clausthal wurden Membran-Elektrode-Einheiten mit unterschiedlichen Zusammen-

setzungen hergestellt. Durch Halbzellen-Experimente in einer Zyklonzelle wurde das System unter 

definierten Temperatur- und Massentransportbedingungen vermessen und die Kinetik der

Oxidation von Chlorwasserstoff identifiziert. Auch dadurch war eine Optimierung der Beladungen 

an Katalysator und Ionomer (Nafion) der Anode und Kathode möglich. Es wurde für die anodische 

HCl-Oxidation ein optimaler MEA Nafiongehalt von ca. 60% festgestellt, der deutlich höher als bei 

anderen elektrochemischen Gasphasenprozessen (z.B. Wasserstoffoxidation, Sauerstoffreduktion, 

usw.) liegt. Die durchgeführten Experimente zeigten noch weitere Optimierungsmöglichkeiten, da 

theoretisch auch höhere Stromdichten (bis zu 1000 mA cm-2) erreicht werden könnten. 

Durch die Halbzellen-Experimente konnte die Kinetik der HCl Oxidation untersucht werden. 

Dabei wurden mit einem aufgestellten, isothermen 1-dimensionalen Agglomeratsmodell die 

Transportprozesse von HCl und Wasser analysiert. Die Experimente zeigten, dass die Leitfähigkeit 

der Membran wegen des HCl-Konzentrationsprofils durch die Membran bei steigenden 

Stromdichten sinkt. Eine wichtige Erkenntnis ist, dass der Wassertransport durch die Membran 

verbessert wird aufgrund des Transportes von kondensiertem Wasser aus der kathodischen 

Sauerstoffreduktion unter einer hohen Befeuchtung des Kathodengases oder Nutzung eines 

flüßigen Elektrolyts. Dies führt zu einer Verbesserung der Leitfähigkeit der Membran die den 

Verlust der Leitfähigkeit durch das Konzentrationsprofil von HCl durch die Membran kompensiert.

Mit dem aufgestellten, isothermen Reaktormodell konnten die Polarisationskurven bis zu einer 

Stromdichte von 400 mA cm-2 gut wiedergegeben werden. Der Zellspannungsverlauf bei höheren 

Stromdichten kann noch nicht beschrieben werden, da sich der Reaktor in diesem Bereich nicht 

mehr isotherm verhält.

Die Experimente zeigten, dass die Gasphasenelektrolyse von Chlorwasserstoff mit einer 

Sauerstoffverzehrkathode möglich ist. Die erhaltenen Zellspannungen von unter 1 V 

repräsentieren einen großen Schritt auf dem Weg zu einer möglichen Anwendung des neuen 

Prozesses für das großtechnische Recycling von Chlor.
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1 Introduction

Chlorine is a platform chemical with about 15,000 compounds currently commercially produced [1]. 

It takes part in the manufacture of a wide range of consumer products like textiles, agrochemicals,

pharmaceuticals, insecticides, plastics, etc. [2]. Chlorine plays its main role in the industrial sector, 

predominantly in the production of plastics and organic solvents. Even though chlorine is not 

always present in the end product, it is required in at least one step of the manufacture process of 

all compounds shown in Figure 1-1.

Figure 1-1 Chlorine tree [2]

Total chlorine production in Europe was 9.94 million tons in 2011 and 9.34 million tons in 2010 

[3]. Germany is the biggest chlorine producer in Europe, accounting for 43.8% of the total 2011 

production (Figure 1-2a). Chlorine is produced mainly via chloralkali electrolysis, which is the 

second most energy intensive process industrially employed. The latest chloralkali technology is 

the membrane process, requiring ca 3.1-3.3 MWh per ton of chlorine [4]. One of the main uses of 

chlorine is in chlorination reactions for plastic production (PVC, PVDF, Isocyanates, etc., see 

Figure 1-2), which produce hydrogen chloride as a byproduct. Taking PVC as an example, it is 

synthetized from vinyl chloride monomer (VCM), which is produced from ethylene, eq. (1-1): 

C � H� (� ) + Cl � (� ) → C � H� Cl(� ) + HCl(� ) (1-1)

generating hydrogen chloride as a byproduct in a 1:1 ratio to consumed chlorine. For diisocyanate 

production, such as methylenediphenyl and toluene diisocyanates (MDI and TDI), this ratio 

increases to 2:1.
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Figure 1-2 a) Chlorine production in 2011 by country; b) Chlorine consumption by industrial segment [3]

Because of the high volumes of generated HCl and the difficulty to commercialize it as a gas, 

normally anhydrous HCl is absorbed in water to form hydrochloric acid. This acid is commonly

employed for other chemical reactions or neutralized and disposed as waste water. But the high 

HCl market saturation, the required conditions for HCl storage and the legal regulations regarding 

salt content in waste water have motivated the development of different process alternatives in 

order to reduce waste streams and improve process economy. For example, in PVC production 

waste hydrogen chloride is employed in the oxychlorination reaction, eq. (1-2)[5], with oxygen and 

ethylene to increase chlorine usage. This allows the “recycling” of some of the chlorine contained 

in hydrogen chloride into ethylene dichloride molecules (EDC).

2C � H� ( � ) + 4HCl(� ) + O� (� ) → 2C � H� Cl � (� ) + 2H� O(� ) (1-2)

EDC can be thermally cracked into VCM molecules at high temperatures, allowing further PVC 

production but still yielding some hydrogen chloride as a byproduct according to eq. (1-3).

C � H� Cl � (� ) → C � H� Cl(� ) + HCl(� ) (1-3)

Therefore, not all hydrogen chloride resulting from PVC production can be recycled. On the 

other hand, for processes like the diisocyanate production, where no reaction variants directly 

employing hydrogen chloride as an educt exist, chlorine recovery from HCl has been proved to be 

an attractive solution. Chlorine recycling from HCl can proceed via a catalyzed chemical oxidation 

and an electrochemical oxidation [6]. The chemical route employs hydrogen chloride and oxygen 

as educts and requires high temperatures (>300°C [7]), high capital costs, big reactors and

proceeds according to the stoichiometry of the Deacon process, eq. (1-4):

4HCl + O� → 2Cl � + 2H� O (1-4)

This reaction is commercially used in the Sumitomo and Bayer processes, which employ fixed 

bed reactors with ruthenium oxide catalysts supported on TiO2 (rutile) and SnO2 (cassiterite)

respectively. This process has a very low energy consumption per ton of chlorine (0.17 MWh, see 

Table 1-1) [8]. In contrast, the electrochemical route can proceed according to the Deacon process 

stoichiometry and the hydrogen chloride splitting reaction stoichiometry, eq. (1-5):

2HCl → Cl � + 2H� (1-5)

a) b)
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Both electrochemical variants operate at milder temperatures (<90°C), and can use either 

hydrogen chloride or hydrochloric acid as educts. These processes require smaller reactors and 

lower capital investments than the chemical route, allowing for decentralized production, partial 

plant shutdowns, and easy production increase by coupling of new reactors to existing units. Due 

to these advantages, electrochemical processes have been widely used since the 50’s [5]. An 

overview of the figures of merit for HCl electrolysis is shown in Table 1-1.

Table 1-1 Comparison of the available processes for Chlorine production from HCl recycling

Parameter Units Bayer-Uhde-Hoechst Dupont-Denora Bayer-Uhdenora This work

Reversible cell potential
1

V -1.41 -0.99 -0.21 0.21

Operating cell potential V -2.00 -1.60 -1.35 -0.97

Typical current density kA m
-2

4.0 10.0 4.0 4.0

Temperature °C 60-90 70-90 ≤60 ≤60

Separator - PVC Diafragma Nafion Nafion Nafion

Anode - Graphite Not disclosed Ti/Pd-DSA Pt/C

Cathode - Graphite Not disclosed Rh. sulfide Pt/C

HCl physical state wt % Liquid (20%) Gas (100%) Liquid (20%) Gas (100%)

Side product - H2 H2 H2O H2O

Energy consumption
MWh/ton 
Cl2

1.50 1.25 1.02 0.73
1

Values are calculated for 60°C, 1M HCl or 101.3 kPa 

Two processes depart from liquid hydrochloric acid: the Bayer-Uhde-Hoechst process based 

on HCl splitting stoichiometry and the Bayer-Uhdenora process, based on Deacon stoichiometry. 

The first one uses a PVC diaphragm as a separator, while the second one employs a polymer-

electrolyte membrane (PEM). The PVC diaphragm produces higher potential losses than a PEM 

and provides a much lower selectivity to ion crossover, which has encouraged the use of PEM 

separators for more modern processes.

Operational costs of electrochemical processes depend heavily on the electricity cost, which 

has been constantly increasing [9], encouraging investigation and optimization of electrochemical 

process alternatives with lower energy consumption. This resulted in the development of the 

Dupont-Denora process [10-12], which is based on the Bayer-Uhde-Hoechst process stoichiometry 

but employs a PEM membrane as a separator, gas diffusion electrodes (GDEs), and hydrogen 

chloride as the educt, allowing for higher current densities with similar energy consumption. The 

use of GDEs also allows reactor sizes to be reduced, as they have a typical thickness of 0.5 mm 

[13] in comparison with dimensionally stable anodes (DSAs). Technical reactors for liquid HCl 

electrolysis employ massive electrodes with thickness from 0.5 to 2.0 mm. The Bayer-Uhde-

Hoechst process employs graphite anodes, which show high levels of wear rate and geometry 

instability but are cheap. The Bayer-Uhdenora process, still the standard industrially employed 
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process, employs DSA consisting of a titanium mesh core covered with an electrocatalytical layer 

(around 10 μm thick) of cobalt, ruthenium and/or iridium oxides [14, 15]. DSAs are normally 

meshes (also louvre, C-shaped and other profiles have been used in chloralkali cells [5]) or are 

perforated in order to ensure better liquid mixing and gas release. Schematic representations of 

two reactor types with DSA and with GDE are shown in Figure 1-3a. 

Figure 1-3 Reactor configurations for the HCl electrolysis. a) Dimensionally stable anode (DSA) for the use of 
liquid HCl as an educt; b) Gas diffusion electrode (GDE) for the use of hydrogen chloride as an educt.

Based on the thermodynamic data presented in Table 1-1, following the Deacon Process 

stoichiometry combined with the use of an oxygen depolarized cathode and hydrogen chloride as 

an educt, should lead to lower cell potentials and even higher energy saving. In the above 

mentioned patent [12], the possibility of the electrolysis of hydrogen chloride with an oxygen-

depolarized cathode was mentioned, but no data, possible advantages, or pilot/technical 

realization was documented or further discussed. This process variant, eq. (1-4), was investigated

departing from hydrogen chloride using a PEM separator due to its enormous theoretical energy 

savings (see chapter 2), higher mass transport rates from the gas-phase, and its allowance to 

spare HCl absorbers and heat exchangers. The focus of this work was to analyze the process 

thermodynamics, characterize the GDEs for the hydrogen chloride oxidation (HClOR), and to 

create kinetic formulations for the HClOR in order to describe and optimize a lab-scale reactor 

using this process. The only available information about the reaction mechanism of the HClOR was 

presented by Eames and Newman [10], who employed Pt/RuO2 electrodes to characterize reaction 

(1-5) at different temperatures in a fuel cell type reactor. In their setup, only total cell potential could 

be measured and a separation of losses associated with the membrane or cathode was not 

possible. 

The use of oxygen depolarized cathodes is currently linked to the use of PEM-membranes, 

from which Nafion is still the market leader [16]. PEMs have the disadvantage of showing ionic 

conductivity only when water is present in their structure, limiting their operational temperature to 

less than 90°C and high relative humidity in the gas feeds. Considering this, process variants 

a)                            b)
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involving anhydrous gas feeds are, with state-of-the-art technology, still non-operational. 

Therefore, water management is of crucial importance in electrolyzers employing PEMs. Water 

transport in hydrogen chloride electrolyzers was investigated by Motupally et al. [11], who reported 

the electroosmotic drag of water through Nafion membranes to be 3.5 with 100% hydrogen 

chloride as the anode feed. Lower values were shown by other researchers: 2.5 by Balko et al. [17]

for a 2.5 M liquid HCl anodic feed and 1.4 by Zawodsinski et al. [18] for a 100% humidified 

hydrogen feed (the latter was employed in [10]). There is currently little available information about 

the hydrogen chloride-Nafion system (ionic conductivity [19], cathodic platinum poisoning with HCl

[20], etc.). Information is mostly available for the liquid HCl-Nafion system, where data about 

diffusion coefficients in Nafion [21], water transport [22, 23], and Nafion conductivity [24, 25] have 

been reported. Therefore, the only sources for comparison between processes are thermodynamic 

calculations and some experimental data. The technical feasibility of the process investigated in 

this work was shown in cooperation with the University of Technology Clausthal, where a reactor 

coupling the HClOR and ORR was developed. 

This work was organized according to the following structure: in chapter 2, the different 

available processes and their thermodynamics are explained. In chapter 3, the experimental 

setups employed for the HCl oxidation and oxygen reduction measurements are shown. In chapter 

4, the preparation and characterization of the catalyst inks and membrane electrode assemblies 

(MEAs) employed in this work are presented. In chapter 5, the cathodic and anodic half-cell 

reaction measurements are shown. In chapter 6, the modeling and kinetic analysis of both 

reactions and the membrane is presented together with an analysis of the full reactor. Later,

conclusions and an outlook for future work are given. 



Isaí González Martínez 8

2 Thermodynamics

2.1 Basic principles

As mentioned in chapter 1, the two main electrochemical processes currently used on an industrial 

scale are the Bayer-Uhde-Hoechst and the Bayer-Uhdenora processes [5]. The former one 

employs anodic hydrochloric acid oxidation and cathodic hydrogen evolution reaction (HER). 

Overall 2HCl(� � ) → Cl � (� ) + H� (� ) (2-1)

Anodic 2HCl(� � ) → Cl � (� ) + 2H � + 2e � (2-2)

Cathodic 2H � + 2e� → H� (� ) (2-3)

On the other hand, the Bayer-Uhdenora process, which is currently industrially employed, 

features the same anodic reaction but uses oxygen reduction (ORR) as the cathodic reaction.

Overall 4HCl(� � ) + O� (� ) → 2Cl � (� ) + 2H� O(� ) (2-4)

Anodic 4HCl(� � ) → 2Cl � (� ) + 4H � + 4e � (2-5)

Cathodic 4H � + 4e� + O� (� ) → 2H� O(� ) (2-6)

The use of an oxygen depolarized cathode represents an advantage in terms of the reversible

cell potential � � � � in comparison with processes employing the HER. Different processes 

employing anhydrous hydrogen chloride have been developed or described [12, 26]: the Dupont-

Denora process, which is based on the stoichiometry of the Bayer-Uhde-Hoechst process:

Overall 2HCl(� ) → Cl � (� ) + H� ( � ) (2-7)

Anodic 2HCl(� ) → Cl � (� ) + 2H � + 2e� (2-8)

Cathodic 2H � + 2e� → H� (� ) (2-9)

and the process studied in this work, based on the Deacon process stoichiometry:

Overall 4HCl(� ) + O� (� ) → 2Cl � (� ) + 2H� O(� ) (2-10)

Anodic 4HCl(� ) → 2Cl � (� ) + 4H � + 4e� (2-11)

Cathodic 4H � + 4e� + O� (� ) → 2H� O(� ) (2-12)

The thermodynamics of the above mentioned processes will be presented in the next sections.

2.2 Reversible electrode potential

The reversible electrode potential is defined as the potential in a cell composed of a standard 

hydrogen electrode (SHE) paired with any other given electrode. This allows the calculation of the 

reversible electrode potential directly from thermodynamic data:

� � � � = −
Δ�

� �
= −

Δ� − � Δ�

� �
(2-13)

where � stands for the free Gibb’s energy, � for the enthalpy, � for the entropy, � the number 

of exchanged electrons, and � Faraday’s constant. In order to determine the reversible electrode 

potential at temperatures and concentrations different than standard conditions, the Nernst 

equation is employed:

E � � � = E° −
RT

zF
ln �

∏ a �
�

∏ a �
� � (2-14)
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where � � stands for the activities of products and reactants, � and � for the stoichiometric 

coefficients, and � ° for the reversible electrode potential at standard conditions. Gas mixtures were 

considered to be ideal and no interaction parameters or mixing rules were employed. The activity 

of a single gas is defined as:

a � =
f

P� � �
=
ϕ P

P� � �
(2-15)

where � stands for gas fugacity and ϕ for the fugacity coefficient. Gas activity was calculated using

the Stryjek-Vera modification of the Peng-Robinson equation, based on the compressibility factor

� � which provides very good accuracy even for polar gases (see Appendix 10.3.1).

� =
z � RT

V
(2-16)

The fugacity coefficient was considered to be unity as the pressures and temperatures 

investigated don’t deviate considerably from standard conditions and � � also showed values very 

close to one. The Nernst equation doesn’t consider entropy losses so a temperature correction is 

needed, which for the ORR was obtained from Bratsch [27]. 

E � � �
� = 1.229 +

RT

zF
ln �

a � � a � �
�

a � � �
� � − 8.456 ∙ 10 � � (T� − 25) (2-17)

For the HClOR no temperature dependence correlation is reported, but was obtained from the 

change in reversible electrode potential with temperature or entropy change according to eq.(2-13).

� � � �
� = 0.9879 −

� �

� �
ln �

� � � �
�

� � �
� � � � �

� + 9.711 ∙ 10 � � ( � � − 25) (2-18)

The effect of temperature and concentration on the reversible electrode potentials for the ORR 

and HClOR is shown in Figure 2-1. In Figure 2-1 a), the highest reversible potentials are obtained 

at high oxygen concentrations and low temperatures for the ORR. On the other hand, for the 

HClOR, Figure 2-1b), low reversible electrode potentials are obtained at high hydrogen chloride 

concentrations and low temperatures. 

Figure 2-1 Reversible electrode potentials as a function of temperature and educt for the a) ORR; b) HClOR.

a)                    b)
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In the case of the HClOR in GDEs, the question arises, if the reaction takes place in the liquid 

or gaseous phase. Nafion is able to uptakes water and hydrogen chloride has a great affinity to

absorb in water. The activity of HCl in water (see Appendix 10.3.2) takes values considerably 

higher than those in the gas phase (11.8 vs 0.988 at 60°C, respectively), which allows greater 

shifts in the reversible electrode potential. The reversible electrode potential for the liquid phase 

reaction is defined as:

� � � �
� = 1.358 −

� �

� �
ln �

� � � �
�

� � � �
� − 1.248 ∙ 10 � � ( � � − 25) (2-19)

The measurement of single ion activities is not possible as ions are always present as pairs in 

solution. Therefore, for hydrochloric acid the mean activity coefficient is obtained by assuming the 

activity of chloride ions is the same as for protons. This activity is determined by the mean molarity 

activity coefficient (further referred only as activity coefficient) with a reference molarity (� � ) of one

(see Appendix 10.3.2).

� � � � = γ� � �
� � � �

� � � �
� (2-20)

Employing eq. (2-18) and (2-19), the effect of HCl and chlorine activities was investigated and 

presented in Figure 2-2. Considerably lower potential values are obtained at high HCl 

concentrations and temperatures in comparison to standard conditions. The effect of the chlorine 

partial pressure is considerable, yielding as well values much lower than at standard conditions. To 

illustrate this, the use of a low chlorine activity (0.001) lowers the reversible electrode potential 

around 90 mV (Figure 2-2b) compared to the case where activity was assumed to be unity (Figure 

2-2a). Increasing the activity of chlorine in an order of magnitude yields a reversible electrode 

potential reduction of only 60 mV, closing more to the theoretical value of 1.358 at 25°C. 

Figure 2-2 Reversible electrode potentials as a function of temperature and chlorine activity for the HClOR in the 
liquid phase considering a) a chlorine activity of 1; b) a chlorine activity of 0.001. 

a)                            b)
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As seen in Figure 2-2, the reversible potential values are very close to one at temperatures 

above 70°C and HCl concentrations above 35%. The use of activities in eq. (2-19) allows for 

higher potential reductions, as activities take values considerably higher than one in the HCl-water 

system), especially at high HCl concentrations (see Appendix 10.3.2). This allows obtaining

reversible electrode potential reductions of up to 140 mV.

2.3 Reversible cell potential

The reversible cell potential U � � � can be obtained by subtracting the reversible electrode potential 

of the anode from the reversible electrode potential of the cathode:

U � � � = E � � �
� − E � � �

� (2-21)

Due to the sulfonic groups contained in Nafion membranes, chloride ions are not able to 

crossover through them. But water is uptaken by Nafion, and HCl dissociates in it when absorbed 

from the gas phase. Due to this dissociation in the anode, a potential difference builds between the 

anode and cathode, the so-called Donnan potential. Protons from the anode are not able to diffuse 

to the cathode, as they need to balance the negative charge of the chloride ions at the anode. This 

potential difference affects the reversible potential and must be considered in eq. (2-1). The 

Donnan potential can be described by the following equation [28] with � � � as the proton activity:

E � , � �
� � � =

RT

F
ln �

a � �
� �

a � �
� � � (2-22)

For the sake of comparing the different HCl oxidation processes, the effect of the Donnan 

potential can be neglected for processes employing the same HCl phase (liquid or gaseous), as 

their proton activities will be identical. A further insight into the effect of the Donnan potential is 

given in chapter 6.6.

Reversible cell potential was calculated for all processes in Figure 2-3. It is observed that only

the Dupont-Denora process shows a positive dependence of � � � � with temperature. 

Figure 2-3 Reversible cell potentials for the different HCl oxidation processes.
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For the process studied in this work, reversible cell potentials of 0.241, 0.227, 0.218, and 0.

208 V are obtained for temperatures of 25, 40, 50, and 60°C. 

To compare the theoretical efficiency � � � of different processes, the ratio between irreversible 

losses and maximal available chemical energy is used:

η� � = 1 −
TΔS

Δ�
(2-23)

In this equation, if the ratio of the entropy change to the enthalpy change is negative, 

efficiencies higher than unity are obtained. This is the case of processes in which the entropy 

change is negative and the enthalpy change is positive, as in the case of the Dupont-Denora 

process.

In Figure 2-4 it can be observed that non-spontaneous processes have higher thermodynamic 

efficiency with increasing temperature, while for the spontaneous process the effect is opposite. 

The difference between η � � and unity show the effect of irreversible heat loss at higher 

temperatures, for which the Bayer-Uhdenora process shows the highest improvement and the 

Bayer-Uhde-Hoechst the least. For the process studied in this work it is seen that theoretical 

process efficiencies around 38% can be expected between 50-80°C, the range where industrial 

processes operate. 

Figure 2-4 Theoretical efficiency for the different HCl process variants.

For the process studied in this work, the reversible cell potential was analyzed as a function of 

reactant concentration. It is observed that high reactant concentrations favor low cell potentials,

being this effect more notorious for processes employing the ORR as the cathodic reaction. Figure 

2-5b) shows the effect of relative humidity in the cathode feed. Reversible cell potential decreases
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reactor operation. A further insight into the effect of temperature and partial pressure is given in 

sections 5.3.4 and 5.3.5.

Figure 2-5 Reversible cell potentials as a function of a) anodic feed concentration (hydrogen chloride) and 
cathodic feed concentration (oxygen); b) relative humidity of the cathodic feed. 

2.4 Concluding remarks

As observed from the reversible cell potentials, the use of oxygen depolarized cathodes brings 

important savings due to the lower potentials required for the hydrogen chloride electrolysis. The 

lowest reversible anodic electrode potential was obtained at high hydrogen chloride concentrations 

and low temperatures. The highest cathodic electrode potential was obtained at high oxygen 

concentrations and low temperatures. In the cathode, lower relative humidity favored higher cell 

potentials as they result in higher oxygen concentrations. 

The reversible potential of the process studied in this work shows a considerable improvement 

in comparison to other processes, as it is the only one thermodynamically spontaneous, yielding a 

positive potential or a theoretical net energy gain. Coupled to this is a reduction of the investment 

costs as no HCl absorption step is required (absorber and heat exchangers), and lower operational 

costs due to a maximal 40% thermodynamic efficiency. Therefore, this process theoretically shows 

a higher potential for energy saving as any other existing process for chlorine recycling [6]. 

a)                                                                          b)
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3 Experimental setup 

The following setup was employed for the characterization of the gas diffusion electrodes and 

measurement of polarization curves for the HCl oxidation and ORR reduction.

3.1 HCl oxidation

Measurements were performed in the setup presented in Figure 3-1. Hydrogen chloride (grade 4.5, 

99.8% purity) and nitrogen (grade 5.0, 99.999% purity) were employed (Linde, Germany). Gas 

inlets were regulated by In-flow mass flow controllers (Bronkhorst Mättig, Germany). Hydrogen 

chloride or oxygen were mixed with nitrogen to achieve the desired concentrations and directed to

the cyclone flow cell [29]. The cell was kept in a Makrolon capsule to enclose possible hydrogen 

chloride or liquid electrolyte leakages. This capsule was placed in a UNP500 convection oven with 

integrated temperature control (Memmert, Germany). Gas products from the cell were neutralized 

in a packed glass column in counter flow with concentrated NaOH. The cell is shown in detail in 

Figure 3-2a. 

Figure 3-1 Setup for the electrochemical measurements of the HCl oxidation and ORR.

The membrane electrode assembly (MEA, 4) was placed between the two conic 

compartments of the cell with the gas diffusion layer (GDL, 5) facing the working electrode 

compartment. A titanium electron conductive support (8) was contacted with the GDL. In the 

working electrode compartment (1) the gas mixture circulates and reacts at the MEA, liberating 

protons which are transported through a Nafion 117 membrane to the counter electrode 

compartment (2). A 4 cm2 platinized platinum net was employed as the counter electrode (9). The 

membrane was supported on a perforated PTFE disc (7) to assure mechanical stability. The 

counter electrode compartment was filled with deaerated 1M solutions of perchloric or sulfuric acid 

(Merck, Germany). The liquid electrolyte was heated in a jacketed glass vessel controlled by a 

thermostat F31 (Julabo, Germany) and circulated to the cyclone flow cell by means of a peristaltic 
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pump (Heidolph, Germany). The reference electrode vessel (3) was connected to the lower 

compartment of the cell, 2 mm away from the MEA and filled with the liquid electrolyte.

Figure 3-2 Schematic representation of the cyclone cell.

A saturated Ag/AgCl electrode (Meinsberger, Germany) was employed as the reference 

electrode. The cell was leak-proofed with Viton gasket seals (6). Temperature was monitored with

PTFE-covered temperature sensors and inserted at the counter electrode compartment entrance 

(11) and exit (10) as well as in the working electrode compartment entrance (12) and exit (13).

3.2 Oxygen reduction

For the oxygen reduction reaction (ORR) measurements, a similar setup to the one for the HCl 

oxidation was employed. The cell was made of Plexiglas with an electron conductive support (8) 

made of carbon-polymer composite material BMA5 using PVDF as a binder (Eisenhuth, Germany).

The HCl feed was replaced with oxygen (grade 4.5, purity 99.995%).

Figure 3-3 Cyclone flow cell for the ORR.
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4 MEA preparation 

4.1 Electrocatalysts

Several catalysts were tested for the HCl oxidation: unsupported platinum (Johnson Matthey, UK), 

Vulcan XC72R (Cabot Inc., USA), supported Pt/C (Johnson Matthey, UK), and supported Pt/C

(BASF, Germany). All catalysts were employed as received. 

4.2 MEA preparation

MEAs were prepared according to the airbrush spraying method [30-32]. MEAs employed in this 

work consisted of a GDL, a catalyst layer (CL) and a proton exchange membrane. 

Figure 4-1 a) Schematic representation of a MEA for the half-cell experiments; b) real MEA.

The GDL provided electric contact with the current collectors and structural support to the 

MEA. GDLs employed were prepared in the TU Clausthal. AvCarb1071HCB carbon cloths

(Ballard, Canada) were airbrush sprayed with a Hostaflon PTFE suspension (Dyneon, Germany),

and afterwards with EC300J Ketjen Black (Akzo Nobel, Netherlands) suspended with 20 wt% 

PTFE up to a loading of 4.5 mg cm-². The treated cloth was pressed with 62 kg m-2 for 3 minutes 

and sintered in an oven for 2 hours at 335°C to improve the homogenization of the layers. 

Nafion 117 membranes were employed in this work. Membranes were first cleaned by cooking 

them for 1 hour at 80°C in water, then 1 hour in a 3% H2O2 solution, and again 3 hours in water. 

Afterwards membranes were protonated by cooking them 1 hour in 1M sulfuric acid followed by

three hours in water in order to remove remaining acid.

The catalyst ink was prepared by mixing an appropriate amount of catalyst and a 15% Nafion 

solution (1:1 weight ratio water:isopropanol) using an overhead mixer for 15 minutes and then 

dispersing it in an ultrasound bath for 5 minutes. The ink was immediately airbrushed up to the 

desired loading over the membrane, which was fixed to a metal frame at 120°C. The sprayed

membrane was pressed for 3 minutes with 90 kg cm-2. The geometrical area of the CL was 2 cm2. 

The finished MEA was created by simply overlaying the catalyst-sprayed membrane and the 

GDL in the cyclone flow cell. The MEA was kept pressed together in order to have good electrical 

a) b)
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contact between the CL and the GDL with help of the conductive support and the PTFE disk 

described in section 3.1. The cyclone flow cell was tightened with a torque of 8 Nm.

4.3 MEA characterization methods

4.3.1 BET measurements

The surface area of all catalysts was measured by the Brunauer–Emmett–Teller theory (BET) and 

the t-plot method with a Nova 2000e (Quantachrome Instruments, USA) in the range of 0.05-0.35 

p/p°. Nitrogen was employed as adsorbate. 

4.3.2 DLS measurements

Particle size distribution was analyzed by Dynamic Light Scattering (DLS) [33]. Catalyst inks were 

treated by ultrasound for 5 minutes and measured with a Mastersizer 2000 (Malvern Instrument, UK). 

4.3.3 CV measurements

Cyclic voltammetry was employed to characterize MEAs with 0.5 mg cm-2 platinum and Nafion 

loadings from 0.5-2.0 mg cm-2. Measurements were done under nitrogen atmosphere at 60°C in 

1M deaerated sulfuric acid as supporting electrolyte with a Solarton 1286 potentiostat. Results 

were normalized by dividing the current by the Nafion loading in the MEA.

4.3.4 Rotating disk electrode measurements

Catalyst inks prepared according to the procedure presented in chapter 4.2 were employed to coat 

rotating disk electrodes and achieve the same loadings as for MEAs used in linear sweep 

measurements. ORR experiments were carried out at 25°C with oxygen-saturated 1M sulfuric acid 

as electrolyte. Electrolyte saturation was achieved by constantly bubbling oxygen into the 

electrolyte. Electrodes were preconditioned by CV between 0.2-1.0 V vs. Ag/AgCl with a sweep 

rate of 50 mV s-1 for 10 cycles controlled with a Solarton 1286 potentiostat. Linear sweeps were 

done in a range between 0.85-1.05 V vs. Ag/AgCl with a sweep rate of 1 mV s-1. 

4.3.5 Linear sweep measurements

MEAs were preconditioned by CV between 0.2-1.0 V vs. Ag/AgCl with a sweep rate of 50 mV s-1

for 10 cycles controlled with a Solarton 1286 potentiostat. Due to the distance between the Luggin 

capillary and the CL, potential was corrected via the current interrupt method. Linear sweeps were 

done in a range between 0.85-1.05 V vs. Ag/AgCl with a sweep rate of 1 mV s-1. Before each 

temperature change, a linear sweep with nitrogen was recorded and employed as a base line 

correction for all further measurements. Baseline corrections had current densities below 13 mA 

cm-2 or 7% of the maximal measured current. Results in this work are the average of at least three 

measurements. 
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5 Half-cell measurements

5.1 MEA characterization

MEAs with a constant platinum loading of 0.5 mg cm-2 and variable Nafion loadings from 0.5-2.0 

mg cm-2 were investigated by cyclic voltammetry. As presented in Figure 5-1a, characteristic 

polycrystalline platinum features (hydrogen adsorption/desorption at lower potentials, oxide 

formation/reduction at higher potentials, see Figure 5-1b) were clearly defined only for the MEA 

with the lowest Nafion loading. CVs become more featureless with increasing Nafion loading, 

exhibiting also higher currents. This was attributed to the rise of the double layer capacitance due 

to an enhancement of the Nafion/carbon interface. This could arise from different GDL surface 

areas in contact with Nafion (probably due to hot-pressing or different Nafion distribution in the CL

at higher Nafion contents). The peak at 0.65 V, characteristic of the quinone/hydroquinone redox 

couple in Vulcan XC72R [34] supports this statement, as it is more pronounced at higher Nafion 

loadings. Another reason could be the possible reduction of available platinum surface area when

Nafion is present. Changes in platinum active surface area in the presence of Nafion have been 

reported to be up to 15% lower than bare platinum [35]. 

Figure 5-1 a) CVs for a) MEAs with 0.5 mg cm-2 platinum normalized to Nafion loading; b) Polycrystalline 
platinum. Conditions: 60°C, electrolyte: 1M sulfuric acid, sweep rate: 50 mV s-1.
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The effect of Nafion loading in GDEs has been extensively investigated in literature. Some 

authors show an increase in total current with increasing Nafion loading [36, 37], as seen in this 

work, while others report an optimal Nafion loading [38, 39]. 

The electrochemical surface area per unit platinum can be calculated from the amount of 

charge exchanged during the electro-adsorption and desorption of protons on platinum. The 

procedure explained by Vidaković [40] was followed for the MEA with 0.5 mg cm-2 Nafion. It is 

important to mention that the peaks observed at the leftmost part of the CV were not taken into 

account as they arise from the oxidation of molecular hydrogen in the liquid electrolyte formed 

during the backward sweep of the CV. This yielded a specific electrochemically active surface area 

of 32 m2 gr Pt-1 or an electrochemically active-to-geometrical surface area ratio of 1560 for the 

MEA with lowest Nafion loading.

In comparison, current state-of-the-art DSAs offer an active surface area around 10-1000 

times greater than their geometrical surface area [15], which shows that the use of GDEs can 

improve catalyst utilization up to 350%.

5.2 Steady state vs. Quasi-steady state measurements

For the HClOR, steady state measurements were compared with quasi-steady state 

measurements. For the former ones the potential was hold for 5 minutes after which the current 

was recorded, for the latter ones a constant slow sweep rate of 1 mV s-1 was used. 

Quasi steady state measurements provided more points along the polarization curve without 

noticeable deviation from steady state measurements, as shown in Figure 5-2 (typical polarization 

curve for the HClOR). Therefore they were used for the investigations presented in this work.

Figure 5-2 Steady-state vs. Quasi-steady-state measurements for a MEAs with 0.5 mg cm-2 platinum and 1.0 mg
cm-2 Nafion at 60°C.
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5.3 Anodic measurements

5.3.1 Effect of different catalysts

It is known different catalysts, such as platinum, ruthenium, and their oxides as well as carbon 

show activity for the HClOR [4, 14, 41-43]. There is still a strong discussion regarding platinum

stability in the presence of chloride ions and chlorine, as it may complex to chloroplatinic acid in the 

presence of HCl and chlorine:

Pt + 2Cl � + 2 � � � → � � � � � � � (5-1)

Kim et al. [44] reported that platinum dissolves in the presence of chlorine only in hydrochloric 

acid solutions with a concentration higher than 3M. For the half-cell experiments realized 

throughout this work (duration around 6 hours and 10 shutoff sequences), no substantial decrease 

in platinum activity was observed at a constant temperature, even though potentials up to 1.2 V 

were applied. The project partners from the TU Clausthal operated a reactor (anodic HClOR and 

cathodic ORR) for periods of 10 hours without noticing platinum dissolution or deactivation, 

reaching cell potentials of up to 1.6 V and more than 10 shutoff sequences. 

In order to separately assess the range of potential where Vulcan XC72R and platinum have 

activity for HClOR, MEAs with platinum supported on Vulcan XC72R (Pt/C), unsupported platinum

(Pt), and Vulcan XC72R were tested with 100% hydrogen chloride (Figure 5-3a). These catalysts 

were also analyzed by BET to determine their surface area. Unsupported platinum catalyst had a 

specific surface area of 24 m2 g-1 while Vulcan XC72R had 202 m2 g-1. Platinum supported on 

Vulcan XC72R had a surface area of 116 m2 g-1.

Industrially relevant current densities (300-400 mA cm-2) were reached by all tested catalysts 

at 60°C. MEA’s with Pt/C catalysts reached the highest current densities in the entire potential 

range followed closely by the MEA with unsupported Pt, which showed an anodic shift of ca. 10 

mV at potentials below 1.17 V. Even though current density differences between MEAs with

supported and unsupported catalysts didn’t exceed 25%, the loading of the latter was 4 times 

higher (2.0 mg cm-2) than that of the former one (0.5 mg cm-2). This points to a better catalyst 

utilization by using a support, as confirmed in literature and our BET measurements [30, 45]. This

results in better platinum particle dispersion, and consequently an increased surface area which 

prevents agglomeration. The MEA with only Vulcan XC72R starts to show activity at potentials 

more positive than 1.13 V and exceed current densities of 300 mA cm-2 at potentials above 1.18 V. 

This corresponds to overpotentials at least 100 mV higher than those of supported and 

unsupported platinum catalysts. These results indicate that the HClOR occurs on supported Pt/C 

catalysts only on the platinum surface at low potentials, while at potentials above 1.13 V the 

reaction might happen simultaneously on the platinum and carbon surfaces. Nevertheless, at 400 

mA cm-2 and 60°C, Vulcan XC72R contributes roughly with 7% of total current density compared to 

the Pt/C catalyst. This estimation is based on the assumption that current density generated at a
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given loading of pure Vulcan XC72R is equal to the current density produced at the same loading 

of Vulcan XC72R contained in Pt/C supported catalyst at a given potential. 

To better assess catalyst utilization total current was divided by the total catalyst mass 

obtaining the specific current � (Figure 5-3b). Unsupported platinum shows the lowest current 

density, followed by supported platinum. Results for the supported catalyst reached current 

densities similar to the ones reported by Eames and Newman [10]. However, applied potentials in 

this work were ca. 200 mV lower, which can be possibly attributed to a better MEA structure and 

the fact that in our set-up potential losses associated to the cathode and membrane could be taken 

out. 

Figure 5-3 Influence of the catalyst type on HClOR activities expressed in terms of: a) current density; b) specific
current. Catalyst loadings. Unsupported Pt: 2.0 mg cm-2 Pt and 1.1 mg cm-2 Nafion. Supported Pt: 0.5 mg cm-2 Pt, 
1.0 mg cm-2 Vulcan XC72R, and 1.0 mg cm-2 Nafion. Vulcan X72R: 0.7 mg cm-2 Vulcan XC72R and 0.8 mg cm-2

Nafion. Conditions: 60°C, 101.3 kPa, hydrogen chloride concentration 100%, hydrogen chloride flow rate: 500 ml 
min-1.

Due to the different phenomena occurring in the MEA, experimentally measured current 

density � � � can be expressed as a function of diffusion, chemical and electrochemical terms [46]:

1

� � �
=

1

� � �
+

1

� � �
+

1

� � �
(5-2)

In order to analyze the Tafel plots of the investigated MEAs, only the kinetic current density � � �

is of interest. As diffusion and chemical reaction limitations can’t be clearly separated, current 

density was corrected according to the following equation:

� � � =
� ( � � , � � ) � � �

� (� � , � � ) − � � �
(5-3)

Tafel slopes of ca. 30 mV (Figure 5-4) at low current densities were observed for all catalysts. 

Values between 30-40 mV have been associated to either difficult chlorine removal from the 

electrode surface or to chloride absorption from the solution [41], which limits the amount of active 

sites available for the reaction.
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The Tafel slope doubles at higher potentials pointing to a possible change in surface coverage 

on the electrode. MEA porosity also affects the Tafel slope, as shown by Banham and Soderberg 

[47], with variations up to ±10 mV depending on pore size. 

Figure 5-4 Tafel plot for the HClOR on different catalysts. Conditions as in Figure 5-3.

5.3.2 Effect of platinum loading

The effect of the platinum loading was investigated on MEAs with 0.2, 1.0, and 2.0 mg cm-2 at a 

constant Nafion loading of 0.5 mg cm-2. An initial increase of platinum loading from 0.2 to 1.0 mg-

cm-2 improves MEA performance at potentials above 0.975 V (Figure 5-5a). Nevertheless, a further 

increase from 1.0 to 2.0 mg-cm-2 shows no remarkable enhancement but a decrease in 

performance at lower potentials. 

Figure 5-5 a) Polarization curve for MEAs with constant Nafion loading of 0.5 mg cm-2 and varying platinum 
loadings; b) specific current. Conditions as in Figure 5-3
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The worst overall performance was shown by the MEA with the lowest platinum loading (high 

Nafion content, 60 wt%). It is important to remark that the total number of active sites in these 

experiments is changing, and a decrease of activity with a decrease of the total number of active 

sites can be expected. This behavior was observed for the platinum loading range from 0.2-1.0 mg 

cm-2. Another important criterion for judging MEA activity is catalyst utilization. To better visualize 

this, current density in Figure 5-5a was divided by platinum loading, resulting in the specific current

� , presented in Figure 5-5b. 

This normalization resulted in an inverse dependence between � and Nafion content, where

the MEA with the lowest platinum loading (highest Nafion content) showed the best performance. 

This dependence points to a catalyst utilization improvement with higher Nafion/platinum ratios.

5.3.3 Effect of Nafion loading

MEAs with a constant platinum loading of 0.5 mg cm-2 and varying Nafion loadings of 0.5, 1.0, and 

2.0 mg cm-2 were investigated. Polarization curves are shown in Figure 5-6a, where all MEAs 

reached technical current densities (300-400 mA cm-2) at potentials below 1.17 V. Optimization of 

the Nafion loading results in an overpotential decrease of ca. 40 mV between MEAs with highest 

and lowest Nafion loadings at 400 mA cm-2. Although small, this difference accounts for 21% of the 

total potential window investigated, showing its importance for process optimization. 

With a constant platinum loading the number of active sites remains unchanged allowing to 

analyze catalyst utilization directly from Figure 5-6a. It is observed that the MEA with the highest 

Nafion loading attains the best performance at current densities up to 360 mA cm-2; at current 

densities higher than 800 mA cm-2 the MEA with 1.0 mg cm-2 performs better.

Figure 5-6 a) Polarization curve for MEAs with constant platinum loading of 0.5 mg cm-2 and varying Nafion 
loading; b) Tafel plot. Conditions as in Figure 5-3.
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performance in the entire potential range. From the Tafel plot in Figure 5-6b it is observed that the 

Tafel slope for the different MEAs attained values between 31-36 mV dec-1 at low current densities 

(<100 mA cm-2), close to the expected value of 30 mV dec-1 on platinum for chloride oxidation [41]. 

To better understand the role of Nafion, the dependences of specific currents at two potential 

values, 1.098 and 1.175 V, are shown in Figure 5-7. At lower potentials, specific current increases 

with Nafion content. At higher potentials, lower Nafion contents perform better. This dependency 

qualitatively corresponds to literature results for other gas phase reactions [48, 49]. The use of very 

high Nafion loadings is discouraged due to an increase of the mass transport resistance. Very low 

loadings are also avoided due to incomplete platinum particle coverage and higher tortuosity of the

ionic transport network. These dependencies yield a bell shaped correlation of specific current to

Nafion content at higher potentials, as shown in Figure 5-7. This can be attributed to an increase in 

mass transport resistance at Nafion contents above ca. 60 wt%, value considerably higher than 

those of other gas phase reactions such as the ORR. At low potentials, mass transport doesn’t 

pose a high resistance due to the low reactant consumption, therefore no maximum is observed. 

Figure 5-7 Dependence of the specific current for the HClOR on Nafion content at two different potential values. 
Condition as in Figure 5-3

In literature it has been reported that at high Nafion contents the ORR activity is reduced [37], 

which was also observed in this work (section 5.4.1). This is commonly attributed to a higher mass 

transport resistance of the gaseous reactant through the Nafion film around the catalyst. A reason 

why this was not observed for the HClOR could be the higher HCl solubility in Nafion and/or higher 

diffusion coefficient through Nafion compared to oxygen. The gaseous HCl diffusion coefficient in 

Nafion hasn’t been reported, but information about the aqueous HCl diffusion coefficient through 

Nafion membranes is available. Comparison of the oxygen and aqueous HCl diffusion coefficients 

in Nafion shows that the latter one is 10 times larger than the former one, 4.52·10-11 m2 s-1,

compared to 3.80·10-12 m2 s-1 [25, 50]. Nevertheless, HCl absorbs in Nafion up to 8.70 mol% 

compared to 0.01 mol% for oxygen [51, 52].
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Therefore, it might be the case that strong HCl absorption overwhelms its slow diffusion,

leading to a better performance at higher Nafion loadings than the ORR. Unlike oxygen, hydrogen 

chloride absorbs chemically in water forming hydrochloric acid, a very exothermic process (heat of 

absorption ~2000 kJ kg-1 HCl [53]), which could lead to water evaporation. Thus, it is possible that 

higher Nafion contents contribute to better water preservation in the CL and therefore higher ionic 

conductivity.

Another reason why the activity of MEAs changes with different Nafion loadings could be a 

Nafion loading dependent agglomerate radius, and subsequent thickness of the Nafion layer 

surrounding the agglomerate. In order to get a better insight into this hypothesis, the effect of the 

Nafion/catalyst ratio on the organization of agglomerates was investigated with dynamic light 

scattering (DLS) experiments. Catalyst inks were prepared with different Nafion to catalyst ratios 

using two platinum loadings, 0.5 and 1.0 mg cm-2, together with low and high Nafion loadings, 0.5 

and 2.0 mg cm-2. As shown in Figure 5-8, higher Nafion to catalyst ratios contribute to better 

catalyst dispersion, seen through the formation of smaller agglomerates. This was notorious at the 

higher platinum loading where an increase of Nafion to catalyst ratio resulted in a decrease of 

agglomerate size from 2.0 to 0.7 μm. At a constant Nafion loading of 0.5 mg cm-2, catalyst 

dispersion was much better for inks containing lower catalyst loadings, agglomerate size of 1.2 μm, 

compared to an agglomerate size of 2.0 μm at higher platinum loading.

Figure 5-8 DLS measurements of catalyst inks with different compositions.

Different agglomerate structures could also be attributed to the higher affinity of Nafion to 

carbon than to platinum [6, 54]. In addition, the particle size of carbon is at least one order of 

magnitude larger than platinum, making it more accessible for Nafion to cover it. This results are in 

accordance to the polarization curves presented in chapter 5.3.3, where an increase of the Nafion 

loading (or Nafion/Pt ratio) improved current density considerably (Figure 5-6a, 2.0 and 1.0 mg cm-

2 compared to 0.5 mg cm-2). This could be attributed to more active sites being easily available due 

to the increased surface area of the agglomerates. 
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5.3.4 Effect of Temperature

The effect of temperature was investigated on a MEA with 0.5 mg cm-2 platinum and 1.0 mg cm-2

Nafion at temperatures of 25, 40, 50 and 60°C, as shown in Figure 5-9a. The highest attainable 

current densities varied almost linearly with increasing temperature. Electrode activity showed a 

considerable increase from 50 to 60°C at current densities lower than 400 mA cm-2. 

Tafel plots are presented in Figure 5-9b for all investigated temperatures. In experiments, 

Tafel slopes were found to be 39, 36, 35, and 33 mV dec-1 for 25, 40, 50, and 60°C. Tafel slopes 

were found to be inversely proportional to the temperature. 

Regarding the issue of the reaction taking place in the gas or liquid phase (section 2.2), it is 

observed that the change in the measured open circuit potential is only ca. 3 mV. Analyzing the 

predicted change in reversible electrode potential, eq. (2-18) for the gas phase and (2-19) for the 

liquid phase reactions, values of 3 and 16 mV are obtained. This supports the theory of having a 

reaction directly from the gas phase rather than from the liquid phase.

Figure 5-9 a) Polarization curve for a MEA with 0.5 mg cm-2 and 1.0 mg cm-2 Nafion loading at different 
temperatures; b) Tafel plot. All other conditions as in Figure 5-3.

5.3.5 Effect of Concentration

The effect of concentration to the HClOR was measured at 60°C for hydrogen chloride 

concentrations of 100, 80, 60, 40, and 20%. Results are presented in Figure 5-10. It is observed 

that the difference in current density is greater when reducing hydrogen chloride concentration 
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1.17 V. Furthermore, as expected, lower current densities were recorded at lower hydrogen

chloride concentrations along the entire potential range. At 20% hydrogen chloride concentration a 

limiting current density plateau was clearly reached. 

According to the Nernst equation, eq. (2-14), a change in hydrogen chloride concentration 

from 100 to 20% produces a reversible potential loss of 46 mV. Losses observed in our 
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experiments are in the range of 60-70 mV. Tafel slopes are presented in Figure 5-10b, where it is 

observed that values of 30 and 60 mV dec-1 were attained at low and high potentials respectively.

Figure 5-10 a) Polarization curve for a MEA with 0.5 mg cm-2 and 1.0 mg cm-2 Nafion loading at different 
hydrogen chloride concentrations; b) Tafel plot. All other conditions as in Figure 5-3.

For concentrations of 60% and lower, a transitional Tafel slope of ca. 42 mV dec-1 was 

observed, whose potential range increased with decreasing hydrogen chloride concentration. 

5.3.6 Apparent kinetic parameters

The use of the cyclone cell allows to clearly determine the effect of the external mass transfer to 

the MEA (between hydrodynamic diffusion layer, HDL, and MEA), but not to separate kinetic 

currents from internal mass transport effects in the MEA. Because of this, parameters determined 

in the next sections are apparent, not purely kinetic, and include the effect of the electrode 

structure such as porosity, internal mass transport, catalyst distribution, etc.

5.3.6.1 Possible reaction mechanisms for the HClOR

The only proposed mechanism for the gaseous HCl oxidation was suggested by Eames and 

Newman [10] as a Heyrovsky-Tafel (HT) mechanism, eq. (5-4) and (5-5).

Heyrovsky � � � + � � ⇌ � � � � + � � + � � (5-4)

Tafel 2 � � � � ⇌ 2 � � + � � � (5-5)

Another possible reaction pathway is the Heyrovsky-Volmer (HV) mechanism, in which both 

steps are electrochemical, eq. (5-6) and (5-7):

Heyrovsky � � � + � � ⇌ � � � � + � � + � � (5-6)

Volmer � � � + � � � � → � � + � � � + � � + � � (5-7)

Also possible would be to have the Heyrovsky reaction as the first step followed by the Volmer 

and Tafel reactions in parallel, a Heyrovsky-Volmer/Tafel mechanism (HVT), as hinted by O’Brien 

et al [4]. These four equations can also be proposed for the HClOR from the liquid phase, replacing 
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HCl with Cl- and eliminating the proton terms. Therefore, the kinetic analysis to follow is valid for 

both, chlorine evolution from hydrogen chloride or from hydrochloric acid.

Expressions for current density were calculated for each of the mechanisms assuming one of 

the reactions to be the rate determining step (r.d.s.) and the other to be in quasi-equilibrium. For 

electrochemical reactions, the r.d.s. was defined based on the Tafel equation. Adapting the kinetic 

analysis presented by Gileadi [55] for the HT mechanism, it was assumed that the adsorption of 

HCl on platinum (Heyrovsky reaction) could be described by the Frumkin isotherm at all surface 

coverages [55], eq. (5-8). 

�

1 − �
� � � �

� �

� �
� = � � � � � � � � � �

� �

� �
� � (5-8)

where � � represents the kinetic constant and � the exchanged electrons in the r.d.s., θ coverage of 

the adsorbed PtCl species and ϵ a lateral interaction factor. Ignoring the preexponential term in eq. 

(5-8) results in the Temkin isotherm. The kinetic equation based on the r.d.s. (Tafel reaction) was 

then formulated:

� = � � �
� � � � �

2 � � �

� �
� (5-9)

Substituting the exponential term from the Temkin isotherm yields the total reaction rate for the 

HT mechanism:

� = � � � �
� �
� � � �
� �

� � � �
2 � � �

� �
� � (5-10)

Leading to an expression for total current density � :

� = 2 � � � � �
� �
� � � �
� �

� � � �
2 � � �

� �
� � (5-11)

Analogous formulations for the other mechanism were formulated to obtain the theoretical 

reaction orders and Tafel slopes in the next sections.

5.3.6.2 Reaction order

Reaction order � was determined from the slope of a plot of the natural logarithm of the kinetic 

current against the natural logarithm of the gas phase mole fraction, presented in Figure 5-11a. 

The points followed a linear trend up to mole fractions of 80%, yielding reaction orders of 

0.82±0.07, 1.07±0.09, and 0.97±0.07 at potentials of 1.065, 1.095, and 1.155 V. The first two 

potential values are found in the Tafel slope region of 30 mV dec-1, while the third one in the 60 mV 

dec-1 region. The value at 100% concentration clearly didn’t follow the trend and was left out of the 

calculation. 

Assuming the reaction takes place in the liquid phase, HCl concentration can be replaced with 

chloride ion activities, yielding a better linear fit along the entire range (Figure 5-11b). Values 

obtained were 1.27±0.06, 1.29±0.07, and 0.98±0.12 at potentials of 1.065, 1.095, and 1.155 V 

respectively. 
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Figure 5-11 Apparent reaction order with respect to a) HCl concentration; b) Cl- activity for a MEA with 0.5 mg 
cm-2 platinum and 0.5 mg cm-2 Nafion. Conditions as in Figure 5-10. 

Comparing the values from Figure 5-10b to the theoretically expected reaction orders from the 

kinetic analysis (Table 5-1), it is possible to explain the reaction order with the HV mechanism at 

high surface coverages or the HT mechanism at intermediate surface coverages. 

Table 5-1 Reaction orders for the different r.d.s. of the mechanisms proposed

Mechanism r.d.s. � ≈ � � . � < � < � . � � ≈ �

Heyrovsky Volmer Volmer reaction    2.0 1.5 1.0

Heyrovsky Tafel Tafel reaction     2.0 1.0 -

The shift in reaction order can be due to the change of surface coverage with potential, as 

observed between 1.095 and 1.115 V. Another possible cause for the deviation of the reaction 

order from unity is the formation of platinum oxide, expected at potentials around 1.0-1.1 V [56],

which would yield a potential dependent catalytic surface. Oxide formation could be shifted to even

lower potentials in the presence of complexing agents like chloride ions. Potential-dependent 

apparent reaction orders have been previously reported for other anodic reactions involving 

chlorides [57] as well as cathodic reactions [58, 59]. Platinum oxide is thermodynamically stable at

the given potential and acidity conditions. Yet, if platinum particles are small or porous enough [56],

the oxide is prone to corrosion, altering the catalytic surface and thus the overall reaction order. 

5.3.6.3 Tafel slopes

As shown in previous sections, experimentally observed Tafel slopes were to some extent

temperature dependent (Figure 5-9b) and attained values around 30 mV dec-1 at low potentials 

and 60 mV dec-1 at higher ones. 

Tafel slopes for chlorine evolution from hydrochloric acid, i.e. the Bayer-Uhde-Hoechst 

process, have been reviewed elsewhere, and show similar values: between 28 and 60 mV dec-1

along a temperature range of 25-85°C [41]. With help of a kinetic analysis analogous to that 
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presented in chapter 5.3.6.1, the Tafel slopes for the HT and HV mechanisms were calculated at 

different surface coverages and presented in Table 5-2:

Table 5-2 Tafel slopes for the different r.d.s. of the mechanisms proposed at 25 and 60°C

Mechanism r.d.s. � ≈ � � . � < � < � . � � ≈ �

Heyrovsky Volmer Volmer reaction    39-44 60-67 117-131

Heyrovsky Tafel Tafel reaction      30-32 60-67 ∞

Theoretical Tafel slopes reach values between 30-32 mV dec-1 for the HT mechanism with 

limiting Tafel reaction under Langmuir conditions, while values between 60-67 mV dec-1 are 

predicted under Temkin conditions. For the HV mechanism values between 39-44 mV dec-1 are 

predicted at Langmuir conditions while under Temkin conditions values between 60-67 mV dec-1

are expected. Considering the low Tafel slope values of 30 mV dec-1 observed at high 

temperatures (50 and 60°C), the HV mechanism is unable to explain them under any surface 

coverage condition (corresponding Tafel slope values lie around 42-44 mV dec-1). On the other 

hand, the HT mechanism can explain both observed Tafel slopes of 30 and 60 mV dec-1 under 

Langmuir and Temkin conditions, respectively. Therefore, the choice of the HT mechanism with the 

Tafel reaction as the r.d.s. was considered to be the most appropriate to describe HClOR kinetics. 

Use of the Temkin isotherm leads to trustable values of both Tafel slope and reaction order in the 

surface coverage range of 0.2-0.8. Because experimental results can be explained in this range of 

θ, use of the Temkin isotherm is justified. It is important to mention that theoretical Tafel slope 

values don’t consider structural effects such as pore size and CL resistance (an indirect measure 

of the Nafion content), which could yield slightly different values than theoretically expected [47]. 

5.3.6.4 Activation energy

Analogous to the reaction order, apparent activation energy was found to be potential dependent 

with values around 16-30 kJ mol-1 (Figure 5-12a), exhibiting a bell-shaped dependence on

potential.
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Figure 5-12 a) Arrhenius plot for a MEA with 0.5 mg cm-2 platinum and 0.5 mg cm-2 Nafion; b) potential 
dependence of the apparent activation energy. Conditions as in Figure 5-3.
Values went from 16 kJ mol-1 at low potentials (<1.05 V) to values of 30 kJ mol-1 at medium 

potentials (1.07-1.10 V) and back again to 16 kJ mol-1 at higher potentials (Figure 5-12b). 

The increase in activation energy can be attributed to a change in the surface coverage of the 

platinum surface. The apparent activation energy drops further [60] as the surface coverage 

remains relatively constant and the effect of the electrochemical activation becomes more 

pronounced at higher potentials. 

5.3.6.5 Exchange current density

Apparent exchange current density � � was extracted from polarization data presented in the Tafel 

plots. Commonly, the exchange current density is extracted by extrapolating current density of a 

Tafel plot at the reversible electrode potential value. In our case, a value for the reversible 

electrode potential could not be clearly identified, as the question still remains open if the reaction 

takes place from the gas or liquid phase. Thus, apparent exchange current density was extracted 

at a value of 1.04 V, the observed open circuit potential. In contrast to the Tafel slope, exchange 

current density is an extensive parameter and incorporates the MEA active surface area, a function 

of the platinum and Nafion loadings, and is an indicator of the number of available active sites. 

Figure 5-13 Exchange current density as a function of a) Nafion content at 60°C; b) temperature for a MEA with 
0.5 mg cm-2 platinum and 0.5 mg cm-2 Nafion. Other conditions as in Figure 5-3.

For the gaseous HClOR, Eames and Newman [10] didn’t explicitly reported exchange current 

density values but kinetic constants depending on hydrogen chloride partial pressure [10]. When 

transformed into current density at 40°C and 101.3 kPa HCl pressure, an approximate value of 7 

mA cm-2 is obtained, which is near the values measured in chloralkali electrolyzers: 8.5 mA cm-2 for 

platinum in 5M NaCl solutions [4]. Nevertheless, it was expected that hydrogen chloride oxidation 

would proceed with higher exchange current densities than electrolysis from the liquid phase, as 

the HCl absorption and slow diffusion through the liquid would be substituted by direct reaction of 
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hydrogen chloride at the catalyst surface. Similar to the results of Eames and Newman, in this work

only MEAs with Nafion contents below 30% (platinum loadings above 1.0 mg cm-2) exhibited 

values above 13 mA cm-2, as shown in Figure 5-13a. Higher Nafion contents yielded exchange 

current densities between 2-5 mA cm-2.

From the apparent exchange current density values it is not possible to determine if the 

reaction proceeds directly from the gas or liquid phase, as the values obtained were very similar to 

those found in chloralkali electrolyzers. It is possible that for the gas phase reaction a different 

amount of active surface area is available in the MEA, as Nafion changes its structure when in 

contact with water vapor or liquid water. Another remaining question is if only the platinum surface 

covered with Nafion or water is electrochemically active, which is still under extensive discussion

especially in the fuel cell community [6, 61]. This issue will be further discussed in chapter 6.1.

5.3.6.6 Mass transfer and reaction resistance analysis

Because of the complex structure of the MEA, it is important to determine which layer contributes 

with the highest mass transport resistance. The species analyzed are hydrogen chloride and 

chlorine. This is done through a mass Biot number analysis as presented by Vidaković [40]

(Appendix 10.12) employing the binary diffusion coefficient (see Appendix 10.5.2), the effective 

diffusion coefficient � �
� � �

(in case of porous media, see Appendix 10.4) or the mass transfer 

coefficient � and the layers thickness � . It was considered that the void fraction is filled with gas. In 

order to assess the effect of the external mass transfer resistance from the gas bulk to the one 

found in the GDL, the following mass Biot number was employed:

Bi�
� � � / � � �

=
� � � �
� � � / � � � �
� �

(5-12)

where � � takes a value of 1.76·10-3 m s-1 (see Appendix 10.12), resulting in a mass transfer 

resistance 16 times greater in the GDL (250 µm thick, 7.01·10-6 m2 s-1 � �
� � � ) as in the HDL. To 

assess the ratio between mass transport resistances in the GDL and the CL eq. (5-13) was used:

Bi�
� � � / � �

=
� � � �
� � / � � �

� � � �
� � � / � � � �

(5-13)

The mass transfer resistance turned to be 2 times higher in the GDL than in the CL. Even 

though porosity in the GDL is considerably higher than in the CL (75% against 20%, respectively 

[45, 62]), the GDL diffusion coefficient is only 7 times greater than in the CL (7.01·10-6 vs. 9.66·10-7

m2 s-1).  Considering that the GDL is 12 times thicker than the CL (250 vs. 20 μm), the greatest

mass transfer resistance was found to be allocated in the GDL. In order to analyze the ratio of the

mass transport to the kinetic resistance in the CL, the second Damköhler number [40] was used: 

DaII =
� � � �

z F c � � � D � � �
� � (5-14)

Considering a HCl concentration of 36.6 mol m-3 (at 101.3 kPa, 60°C) with a current density of 

750 mA cm-2, the DaII takes a value of 0.022, indicating a higher resistance of the electrochemical 
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reaction than CL diffusion. The multiplication of DaII with the different Biot numbers yields the 

relation of the mass transfer resistances to the resistance due to the electrochemical reaction. 

Multiplication of eqs. (5-13) and (5-14) shows the electrochemical reaction resistance is ~26 times 

higher than the resistance due to diffusion in the GDL.

DaII Bi�
� � � / � �

= 0.045 (5-15)

Comparing the electrochemical reaction resistance with the mass transport resistance through 

the entire MEA (multiplication of eqs. (5-12) and (5-15)), shows that both resistances are in the 

same order of magnitude:

DaII Bi�
� � � /� �

Bi�
� � � / � � �

= 0.73 (5-16)

Therefore, optimization of the mass transport in the GDL as well as the improvement of the 

kinetic rate in the CL are of crucial importance for total current density and MEA performance.

5.4 Cathodic measurements

Analogous to the anodic measurements, the cathodic gas feed was not humidified. This was done 

because the MEA is contacted with the supporting electrolyte in the counter electrode 

compartment, thus providing enough water in order to keep the CL well hydrated.

5.4.1 Effect of Nafion loading

MEAs were prepared under the same conditions as for the HClOR (varying Nafion loadings at 

constant platinum loading of 0.5 mg cm-2). 

Figure 5-14 a) Polarization curve for the ORR on MEAs with platinum loading of 0.5 mg cm-2 and varying Nafion 
loadings; b) Tafel plot. Conditions: 60°C, 101.35 kPa, 100% oxygen, oxygen flow rate: 500 ml min-1.

Contrary to the HClOR, MEA activity decreases with increasing Nafion loading as shown in 

Figure 5-14a. The best performance was obtained with a Nafion loading of 0.5 mg cm-2, 38% 

Nafion content, in the entire potential range. 
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This could be attributed to a decrease in the active surface area, a change of the catalytic 

platinum surface, or a decrease of the effective oxygen concentration at the active sites with 

increasing Nafion loading. Active surface area can diminish because of electrical isolation due to

excessive Nafion, which can lead to differences between 15-42% in current density at MEAs with 

and without Nafion [35, 63]. If this was the case, a reduction of current density with increasing 

Nafion loading should also be reflected in experiments for the HClOR (chapter 5.3.3). However, the 

opposite trend was observed. A change of the catalytic platinum surface could be hinted between 

MEAs with Nafion loadings of 0.5 and 1.0 when compared to the MEA with 2.0 mg cm-2. The Tafel 

slopes for the former two show values of 60 mV dec-1 and 120 mV dec-1 while the latter one 

exhibits a value around 85 mV dec-1, as shown in Figure 5-14b. The 60 mV dec-1 Tafel slope is 

associated to oxygen reduction on a platinum oxide surface under Temkin conditions, while the 

120 mV dec-1 is associated to ORR on a chemisorbed oxygen-free platinum surface [64].

Therefore, a change in the prevailing type of platinum surface could be related to the Nafion 

loading, which at higher values allowed for a transition to a chemisorbed oxygen-free platinum 

surface at lower potentials. 

A possible explanation for the trend in current density observed in Figure 5-14a is a reduction 

of the oxygen concentration at the active sites with increasing Nafion loading. Oxygen absorption 

in Nafion can be described by Henry’s Law [65, 66], resulting in very small concentration values 

compared to the bulk (see Appendix 10.11). Hydrogen chloride follows a very different behavior, as 

observed in Figure 5-14, explaining the different trend in current density with Nafion loading. 

Rotating disk electrode (RDE) experiments were performed in order to assess the validity of 

current density being mainly determined by the reactant concentration at the active sites. By 

having a liquid electrolyte instead of a gas mixture, the trend in current density with Nafion loading 

should reflect that observed in Figure 5-14 just at lower current densities, as reactant concentration 

at the active sites will diminish proportionally to Henry’s Law. CLs were prepared with the same 

compositions as those investigated in Figure 5-14 plus one with considerably less Nafion. Results 

are presented in Figure 5-15.

RDE experiments show that current density was negatively impacted by increasing the Nafion 

loading. A further Nafion loading decrease (red markers) improves MEA performance, especially at 

high overpotentials. This hints towards an optimal Nafion loading lower than 0.5 mg cm-2, which 

corresponds to results presented by several authors  [37, 48, 67], in which optimal Nafion loading 

values for the ORR were reported to be around 30-36% (depending on MEA preparation conditions 

and platinum and supporting material loadings). The lowest Nafion loading employed for MEAs in 

this work was 0.5 mg cm-2, which corresponds to 38% Nafion, a value already above the optimal 

range. This indicates that the cathode performance can still be improved by further decreasing the 

amount of Nafion in the MEA, as shown by RDE experiments. As mentioned before, the low 

diffusion coefficient of oxygen in Nafion as well as the high amount of Nafion surrounding platinum 

particles at high Nafion loadings, could be a reason for the decrease in current density. 
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Figure 5-15 Tafel plot for RDEs at different catalyst to Nafion ratios with a constant Pt loading of 0.5 mg cm-2. 
Conditions: 25°C, rotation rate: 3600 min-1, electrolyte: 1M oxygen saturated sulfuric acid.

Exchange current densities for the ORR as a function of Nafion content were obtained from 

Figure 5-14b by the procedure presented for the HClOR at the electrode reversible potential, eq. 

(2-17). Values of 1.2·10-6, 7.6·10-6, and 8.5·10-6 A m-2 for Nafion loadings of 0.5, 1.0, and 2.0 mg

cm-2 were obtained. Reported values for the ORR in fuel cells with hydrogen oxidation as the 

anodic reaction are 1.7·10-6 A m-2 for platinum oxide [45], which are in the same order of 

magnitude as those from our MEAs.

5.4.2 Effect of Temperature

The effect of temperature was investigated for MEAs with 0.5 and 1.0 mg cm-2 Nafion at a 

constant platinum loading of 0.5 mg cm-2 (Figure 5-16a). It is observed that limiting current density 

rises with increasing temperature. This could be attributed to an increase of the oxygen diffusion 

coefficient in Nafion, as corroborated by Parthasarathy et al. [51]. Current density also increased 

with temperature, as expected from faster kinetics as reported by other authors [45, 52, 68]. 

The same Tafel slope regimes as in the case of MEA Nafion variation were observed: at the 

low Nafion loading (thinner Nafion film surrounding the agglomerates) a low Tafel slope region 

from OCP to around 0.9 V, and a high slope region at lower potentials. At the higher Nafion loading

the low Tafel slope region is shorter and transitions faster to the high Tafel slope region. At low 

Nafion loadings the high Tafel slope region attains values above 120 mV dec-1 already at current 

densities above 10 mA cm-2. Some authors [69] reported that the potential window for the low Tafel 

slope region can extend further, up to values of 0.7 V. In our case, the transition to a slope of 120 

mV dec-1 happens at considerably higher potential values, which can be attributed to the thickness 

and tortuous internal structure of the CL, as hinted by Chirkov and Rostokin [69]. They showed that 

extended low Tafel regions (up to 0.8 V) could be attained when the active layer is thin and current 

arises from pure kinetics (no influence of mass transport), which is commonly not the case of 

technical GDEs. 

1E-3 0.01 0.1 1 10
0.6

0.7

0.8

P
o
te

n
tia

l v
s
 S

H
E

, 
E

 /
 V

Current density, -j / mA cm-2

 thin Nafion film

 0.5 mg cm-2 Nafion

 1.0 mg cm-2 Nafion

120 mV dec-1

60 mV dec-1



Isaí González Martínez 36

Exchange current density was calculated at 25 and 60°C for the high Nafion loading (in the 

same fashion as for the HClOR, just substituting the OCP with the reversible cathodic potential)  

yielding values of 2.6·10-6 and 7.6·10-6 A m-2, while for the low Nafion loading values of 6.8·10-6 A 

m-2 and 6.1·10-5 were obtained. A change of one order of magnitude has been reported in literature 

when going from 25 to 60°C [45, 70], in accordance to data of the MEA with 0.5 mg cm-2 Nafion.

Figure 5-16 a) Polarization curves at 60 and 25°C for the ORR on MEAs with 0.5 and 1.0 mg cm -2 Nafion at 
constant 0.5 mg cm-2 platinum loading; b) Tafel plot. Conditions as in Figure 5-14.

It has been hypothesized in literature that higher temperatures shift the Pt/PtO mixed potential 

towards the electrode reversible potential and accelerate ORR kinetics, increasing exchange 

current density [45, 70]. This effect was observed for both analyzed MEAs. The contrast between 

values obtained for the low and high Nafion loadings could be correlated to a change in the

composition of the Pt/PtO surface due to an increased Nafion content, as hinted by the different 

Tafel slopes obtained when varying Nafion loading. 

5.4.3 Effect of Concentration

The effect of concentration for the ORR has been investigated by several authors [51, 71], 

especially because air is cheaper than a pure oxygen feed. This effect was measured at 60°C for 

oxygen concentrations of 100, 80, 60, 40 and 2% and presented in Figure 5-17a. A reduction of

oxygen concentration from 100% to 20% yields an average current density decrease of 70% in the 

entire potential range, which is in accordance to results reported by other authors [51, 71].

The two characteristic Tafel slopes of 60 and 120 mV dec-1 were observed clearly only for 

100% oxygen. At lower concentrations this slope was barely seen (at current densities below 0.1 

mA cm-2 and potentials above 0.9 V, see Figure 5-17b) and at 2% oxygen was not present at all. In 

literature, the 60 mV dec-1 slope has been reported up to potentials as low as 0.8 V [45]. In Figure 

5-17b, a slope between 60 and 120 mV dec-1 is observed at potentials higher than 0.85 V. The 

higher Tafel slope has been related to the platinum surface being free of oxygenated species, 

being the r.d.s. the first electron transfer. 
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Figure 5-17 a) Polarization curves at different oxygen concentrations for the ORR on a MEAs with 1.0 mg cm -2

Nafion and 0..5 mg cm-2 platinum; b) Tafel plot. Conditions as in Figure 5-14.

It can also be seen from the Tafel plot that lowering the concentration from 100 to 80% has the 

greatest impact on current density when compared to the other concentration variations, analogous 

to the HClOR. The lower current density values show that the cathode is the limiting electrode for 

the HClOR-ORR reaction couple. Therefore it is advisable to use pure oxygen as the cathode feed 

in order to minimize the considerably high cathodic overpotential. With 21% oxygen and a potential 

of 0.2 V, a current density of only 50 mA cm-2 was obtained (interpolated from the curves of 4 and 

40% oxygen in Figure 5-17a), in comparison with 400 mA cm-2 obtained with pure oxygen. 

Considering that the anode causes considerably lower potential losses than the cathode, 

optimization efforts should be focused more on the latter one, where a higher potential loss 

reduction might be possible. 

Regarding the mass transport resistances in the MEA, a Biot number analysis analogous to 

the one presented for the HClOR, eq. (5-13) and (5-12), was employed. It was determined that in 

the cathode, the GDL mass transfer resistance is 6.3 times higher than in the CL. 

The GDL use for the ORR is the same as for the HClOR, but the CL is thinner as less Nafion 

is present (10 μm). The diffusion coefficient of oxygen is almost twice as that of hydrogen chloride 

and oxygen has also a lower viscosity (see Appendix 10.6). The mass transfer resistance through 

the HDL and GDL is almost identical ( � � �
� � � / � � �

= 1.04), therefore a lower oxygen concentration 

has a higher impact to current density along the entire analyzed potential range than an equivalent 

reduction of hydrogen chloride. Hydrogen chloride had a resistance 3 times higher in the GDL than 

in the HDL while employing the same GDL as in MEAs for the ORR.
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5.4.4 Effect of Chloride ions

For the present process it was important to check the tolerance of platinum catalyst toward HCl 

crossover, as the influence of chloride ions to the ORR has been shown to be prejudicial along the 

entire potential range for the ORR [20, 72]. According to theory, no crossover is expected since 

Nafion should exclude the passage of chloride anions due to the sulfonic groups in its structure 

and the Donnan effect [73, 74]. Consequently, chloride anions can be transported through the 

membrane only as neutral HCl molecule. Still, HCl transport through the membrane cannot be 

excluded due to the significant concentration gradient between the anode and cathode 

compartments. Another point is the fact that water is transported from the anode to the cathode by 

the electroosmotic drag, and HCl has a great affinity to water and might be transported as a non-

dissociated molecule. 

This effect was estimated by measuring the performance of ORR after replacing the liquid 

electrolyte in the counter electrode compartment of the cyclone cell with hydrochloric acid. In 

accordance with literature [20, 72], our results confirmed that no observable HCl crossover takes 

place, as variations in current density ranged from 4-6%, which were in the same order of 

magnitude as experimental error (ca 5%).
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6 Modelling

Modeling has received a lot of attention in literature as it offers the possibility to reduce the quantity

of expensive, time-consuming, and complicated experiments, allowing for a better understanding of 

the phenomena taking place in the system. Electrochemical reactors can be described at different 

length scales and complexity (hierarchy), analogous to what other authors such as Vlachos et al.

[75] have employed in the field of chemical reaction engineering. The latter authors introduced a 

hierarchy of models at each length scale describing the level of model detail. A schematic 

representation of the different length scales and hierarchy is presented in Figure 6-1. 

Figure 6-1 Modeling approaches overview organized by length scales and hierarchy.

As an example, at the Quantum Mechanics scale, Density Functional Theory can be employed 

in order to take into account activation energies, interactions between single atoms, etc. In order to 

get a broader insight at the same length scale, i.e. between several atoms, semi-empirical 

formulations with smaller calculation times such as Transition-State Theory can be employed, 

representing a lower hierarchy [75]. This hierarchy relation is kept along the entire length scale 

from atoms (Quantum Mechanics) up to entire reactors (Macroscale). In the macroscale, lower 

hierarchy formulations take the form of mean-field models, where the system is analyzed 

disregarding fluid dynamics, opposite to Computational Fluid Dynamics models.

In order to analyze the entire HClOR-ORR process, considering the model categorization of 

Figure 6-1, a mean field macroscale, 1-dimensional, isothermal model has been developed. The 

choice of a macroscale model is supported by the fact that it allows the direct computation of 

polarization curves, which can be compared with performed experiments done at isothermal 

conditions. For this purpose three main modeling domains have been introduced: two GDEs 

Computational 
Fluid Dynamics

Lattice-
Boltzmann

Monte Carlo

Kinetic Monte 
Carlo

Course-grained 
MD

Molecular 
Dynamics (MD)

Ab-initio 
Molecular 

Density-
Functional 

Transition-State 
Theory

Hartree-Fock 
Methods

Molecular

Mesoscale

Quantum 

Mechanics

Hierarchy

Le
n

gt
h

 s
ca

le

Mean Field 
models

Macroscale



Isaí González Martínez 40

(anode and cathode) and the membrane. Each GDE is in turn divided into the following 

components (see Figure 6-2):

 Hydrodynamic diffusion layers (HDL): Gas layers formed at the GDL-gas bulk interfaces.

 Gas diffusion layers (GDL): Conductive carbon clothes to provide physical support to the 

CLs, distribute current, and manage water. 

 Catalyst layers (CL): Layers where the chemical and electrochemical reactions take 

place. They contain a further internal dimension: the agglomerate coordinate (Figure 

6-2b). Agglomerates are considered to have two boundaries: the outer Nafion layer/CL 

and the internal core of platinum and C particles/outer Nafion layer.

Figure 6-2 a) Modeling domains: Green – anode, red – membrane, blue –cathode; b) schematic representation of a 
single agglomerate.

Macroscopic models consider their domain as a continuum, employing effective transport 

properties i.e. diffusion coefficients, ionic and electric conductivities, etc. Other model parameters 

are obtained by fitting experimental data or making educated guesses based on SEM and TEM 

image analysis (layer thickness, void fraction, etc.). Ideally, model parameters should be obtained 

by using lower length scale model results (microscopic/mesoscopic models). This is still not 

common praxis, as the coupling of the multiple physical processes taking place in an electrolyzer

requires immense computational resources for their proper simulation [76]. 

For this process, special attention was devoted to the GDEs. Because the HDL and GDL in 

the MEAs represent only a mass transport resistance, modeling efforts were concentrated in the 

CLs. In this layer not only electrochemical and chemical reactions take place, but also species, 

electron, and ionic transport. Because of this complexity, several models have been proposed in 

literature to describe the CL, such as the thin-film, flooded-layer, and agglomerate models [77, 78]. 

An overview of the macroscale models is presented in Figure 6-3.
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Figure 6-3 Overview of the different macroscopic modeling approaches for catalyst layers.

Interface models consider the CL as a boundary between the GDL and the membrane, 

ignoring its structure, thickness and composition (Figure 6-4a). These models commonly simulate 

only global reaction rates, but may also include more complex descriptions of reaction kinetics [79-

84]. Most models describing entire electrochemical reactors employ this formulation.

Figure 6-4 CL models: a) thin layer; b) homogeneous porous electrode; c) agglomerate model.

Porous electrode models consider the structure and thickness of the CL. They account for 

transport and consumption/production of species in the CL (Figure 6-4b). All three components, 

void space, electric, and ionic conducting networks are homogeneously distributed along the CL 

thickness. The effective transport properties are defined by the porosity and volume fraction of 

each phase. Porous models are mostly used to analyze kinetic formulations and reactant depletion 

along the CL [81-84]. Agglomerate models assume that the CL is composed of microsized Pt/C 

agglomerates bounded together by the polymer electrolyte, giving rise to a macro-sized porous 

network (Figure 6-4c). In addition, the reaction rates and transport inside the agglomerates are 

taken into consideration. These models are employed to better adjust experimental data, especially 

in the case of mass transport limitations (e.g. fuel cell flooding). Although both porous and 

agglomerate models account for layer thickness and morphology, they differ in the type of pores 

they consider (see Figure 6-5). Unlike porous electrode models where only secondary pores are 

considered [85-90], agglomerate models consider primary pores (20-40 nm diameter) and

secondary pores also (0.05-1.0 µm) [66, 77, 91-95].
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Figure 6-5 Schematic representation of the CL. 1: inactive catalyst due to lacking electrical contact, 2: inactive 
catalyst due to lacking electrolyte; 3: primary pore, 4: secondary pore; b) Schematic representation of a single 
agglomerate.

Therefore, porous models cover a “longer” length scale than interface models, but one shorter 

than agglomerate models. Harvey, et al. [96] made a comparison between the three modeling 

approaches for the ORR considering only one-phase flow. Employing the same CL parameters for 

all simulations, overpotential underestimation by the thin layer and porous models at 500 mA cm-2

was 25 and 60 mV, while at 1000 mA cm-2 was 80 and 140 mV, respectively. The thin layer model 

underestimates overpotential along the entire polarization curve. Porous and agglomerate models 

yield almost identical results at low overpotentials. At high overpotentials, only the agglomerate 

model is capable to correctly simulate limiting current density, while other approaches greatly 

overestimate it, as seen in Figure 6-6.

Figure 6-6 Polarization curves for interface, porous and agglomerate models, adapted from [96]

The main difference between models is the physical description they have of the CL, which 

affects the way current density behaves at high overpotentials. I.e., thin-layer models don’t reach a 

limiting current density because they don’t consider any internal mass transport limitations, only 
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reactant depletion in the gas channel. On the other hand, flooded layer and agglomerate models 

incorporate mass transport limitations by means of a liquid or electrolyte layer, where reactant 

diffusion coefficients are considerably lower than in the gas phase, allowing for a better description 

of the limiting current densities. In general, agglomerate models have more parameters than other 

models, allowing for a more accurate description of experimental data [77, 78, 96]. 

There has been a lot of discussion about the physical basis of this model, especially because 

agglomerates are hard to identify in the finished MEAs. Nevertheless, because of the advantages 

of accurate current density description at high overpotentials and the insightful internal structural 

portrayal of the CL, the agglomerate model was chosen to describe the HClOR and ORR in this 

work. One dimensional (perpendicular to the MEA), isothermal agglomerate models for the anode 

and cathode were separately developed in order to analyze experimental data from the half-cell 

measurements. Because of the consideration of the agglomerate coordinate inside the CL, the 

anode and cathode models are considered quasi-two dimensional. Afterwards, a model for the 

membrane was developed and coupled to the anode and cathode models in order to simulate the 

entire reactor with the HClOR and ORR.

6.1 Assumptions

For both the anode and cathode models the following assumptions were made:

1. The gaseous components are incompressible and can be described by the Peng-

Robinson-Stryjek-Vera equation (Appendix 10.3.1)

2. The system is isothermal

3. The system is in steady-state

4. All materials are isotropic

5. The electroneutrality condition applies

6. Reactants are transported only by diffusion 

7. Agglomerates are round

8. Agglomerates are composed of a homogeneous mixture of Pt/C and Nafion

9. The applied potential is constant inside individual agglomerates

10. The catalyst layer is homogeneous and has a defined structure along its thickness

11. Water uptaken by Nafion behaves as free water

12. Nafion HCl uptake is the same as its pure water uptake

It is important to mention that the corrections to transport coefficients due to the tortuosity of 

the Nafion-Pt/C networks in this work are described by the Bruggeman correlation, directly related 

to assumptions 4, and 7-9. Strictly speaking, a 3D model is required to properly describe individual 

agglomerates, the electrical network (contact between agglomerate cores) as well as the ionic 

pathway (contact between Nafion in the agglomerate and the layer surrounding the agglomerate) 
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throughout the CL. Such an effort was made by Das et al [97], but could only study very limited 

areas (10x2x2 μm), as it proved to be computationally very expensive.

For the membrane, the following assumptions were made:

1. The membrane is impermeable to gas flow

2. The membrane is impermeable to dissolved oxygen and chlorine 

3. HCl can be transported through the membrane only as a neutral molecule

4. The membrane porosity and thickness is independent of water uptake

5. The HCl/H2O mixture inside Nafion complies with the Flory-Huggins theory for polymer/fluid 

interactions

6. The diffusion coefficient temperature dependency follows the Einstein-Stokes equation.

7. Water uptaken by Nafion has the same density and absorption properties as free water

8. The permeability of water through the membrane is negligible

Assumption 1 is only partially true as most gases show some degree of absorption in water, 

and therefore can be transported to the other electrode as dissolved species in water. Assumption 

four is not physically correct, as it is well known that the structure of Nafion is a function of water 

content [98] and changes from a sponge-like structure at low water contents to a hair-like structure 

at higher ones. Nevertheless, it is common practice in literature to consider the porosity and 

density of Nafion as constants [66, 78, 95, 99]. Assumption 8 refers to convective transport, which 

is considered to be negligible given the small pores present in Nafion.

6.2 Modeling domains

6.3 Physical phenomena

Based on this geometrical framework, the physical phenomena considered by the anode and 

cathode models are:

1. Reactant diffusion from the gas bulk to the MEA surface 

2. Reactant diffusion through the void fraction of the GDL 

3. Reactant diffusion through the void fraction of the CL

4. Reactant absorption from the gas pores (void fraction) in the CL into Nafion

5. Reactant diffusion through Nafion surrounding the agglomerates to the platinum active sites 

6. Reaction at the platinum surface

7. Product diffusion from the platinum particle active sites to the outer surface of the Nafion 

layer surrounding the agglomerates

8. Product desorption from Nafion to the gas pores in the CL

9. Product diffusion through the GDL to the gas bulk

Assumption 5 implies that HCl reacts at the platinum surface in an absorbed state. This was 

assumed considering that Nafion has a very low permeability to gases and it has a high affinity to 
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water. HCl doesn’t absorb in water as a neutral molecule like oxygen, but dissociates into protons 

and chloride. This is the reason to use an absorption model for HCl in Nafion and consider chloride 

activities and not hydrogen chloride concentration for the kinetic equations.

The physical phenomena described by the membrane model are:

1. Proton diffusion and migration from the anode to the cathode 

2. Water transport by diffusion from the cathode to the anode and osmotic drag from the 

anode to the cathode

3. HCl transport by diffusion from the anode to the cathode

6.4 Anode

The HDL is relatively stagnant with tangential velocity variations of less than 2% [29]. The 

thickness of this layer is a function of the gas mixture’s viscosity � � � � , the diffusion coefficient of 

the mixture � � � � (see Appendix 10.5.2), and the radial velocity � .

� � � � =
3.57 �

� � �

�
� �

� � �

�
�

�
�
�

(6-1)

The radial velocity is a function of the flow rate V̇, which for the cyclone reactor is given by:

� = 19.2 ∙ � ̇ (6-2)

The GDL is considered to be a homogeneous carbon cloth with 75% porosity and a thickness 

of 350 μm. The CL thickness δ� � is estimated according to the following equation:

� � � =

�
� � �
� � �

+
� �
� �

+
� � � �
� � � �

�

(1 − � � � )

(6-3)

6.4.1 Governing equations

6.4.1.1 Mass transport

Mass transport along the GDE proceeds via convection and diffusion. These mechanisms govern 

the transport of gaseous species in accordance to the general mass balance:

�

� �
(� � � � ) = −∇ � �

� � � � − ∇( � � � � ) + � (6-4)

where � stands for the species sources/sinks. For the HDL only the first term on the right-hand 

side was considered and porosity was taken as unity. Considering the low Reynolds number 

values obtained (<1000, laminar regime), the main transport phenomena taking place in the HDL is 

diffusion [29]. This was corroborated by the small changes in concentration along this layer

obtained by the model (see chapter 6.4.4), allowing to neglect the effect of convection (effect on 

the profiles lower than 5%). To model diffusive transport, Fick’s second law was used due to the 

low chlorine mass fractions, temperature, and pressure of the gases involved. It is important to 

note that for the gas phase concentrations were employed, as only small deviations from the ideal 

gas law were obtained for all investigated gases (deviations lower than 3%, see Appendix 10.3.1).
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�

� �
� �
� � � = −∇(D �

� � � ∇ � �
� � � ) (6-5)

For the GDL (and other porous media), the diffusion coefficient was taken as the effective 

diffusion coefficient through the porous media (see Appendix 10.4.2). A discussion of the available 

correlations for the effective properties has been given by Shah et al. [100]. Convection, the 

second term on the right-hand side of eq. (6-4), was neglected as it accounted for less than 2% of 

the concentration gradient present in the GDL due to the small pore size, low permeability, and 

negligible CL thickness [101, 102]. This yields the total GDL mass balance:

�

� �
� � � � � � �

� � � � = −∇ � D �
� � � ∇ � �

� � � � (6-6)

Besides species transport also sources/sinks are present, represented by the third term in eq. 

(6-4), with � � � as the ratio of the surface area of the agglomerate to total CL volume and N � � � as 

the mass flux to/from the agglomerate. For gases in the CL the mass balance yields:

�

� �
( � � � � �

� � ) = −∇( � �
� � ∇c �

� � ) + � � � � � � � � � � �
(6-7)

where Nabla operates perpendicular to the CL. The mass flux from/to the agglomerate employs the 

activity of chloride ions and not HCl because, as mentioned in section 6.2, is calculated from the 

microscale mass balance inside the agglomerates, which yields the following analytical solution 

(details of the derivation are presented by Sun, et al [66]):

� � � � � � � � � � �
= � � � � �

� � /� � �
�
� �
�

1

� � � � � � E � (1 − � � � )
+
δ � � � � r� � � + δ � � � �

3D � � �
� � � (1 − ϵ � � )

�

� �

(6-8)

Due to the highly non-linear nature of the HCl-H2O system, activities instead of concentrations 

were employed for absorbed species. The first term on the right hand side represents the effect of 

chloride activity, the second one kinetics, and the third one the mass transport resistance through 

the Nafion layer surrounding the agglomerate. Chlorine activity is a direct function of the 

concentration of hydrogen chloride at the CL/agglomerate interface. Commonly, gas absorption in 

Nafion is described by Henry’s Law [65, 66, 103], which is not applicable to the HCl- H2O system 

due to its non-linearity (see Figure 10-5). Therefore, experimental data for HCl absorption (see 

Appendix 10.11.3) was employed to relate the gas fraction of hydrogen chloride in the CL gas 

pores, � � � � , to the absorbed HCl mole fraction in Nafion, � � � � . This relation is shown in eq. (6-9), 

where � � stands for temperature in °C:

� � � � = −
ln �

−1.59 � − 4 � � + 1.027
� � � �

− 1 � − 8.525 ∙ 10 � � T� + 0.1734

0.4737T� + 42.544
(6-9)

Knowing the concentration of water in Nafion (from the water uptake of Nafion, see Appendix 

10.7), the concentration of HCl in Nafion can be calculated using the result from eq. (6-9):

c � � �
� � � |� �

=
x � � � c � � �

1 − x � � �
(6-10)

For the reactant and product absorption in the liquid electrolyte, it was considered that Nafion 

had the same absorption properties as water, as no data is available on hydrogen chloride 

absorption in Nafion. A detailed procedure to calculate the absorbed concentrations of hydrogen 



Isaí González Martínez 47

chloride and chlorine is given in Appendix 10.11. First, the weight fraction of HCl in equilibrium with 

the hydrogen chloride concentration in the CL void fraction is calculated. With this value, the 

concentration of HCl in Nafion is determined and employed in the activity model shown in 

Appendix 10.3.3.

6.4.1.2 Reaction mechanism

For the first term in brackets in eq. (6-7), the HCl oxidation kinetics, a Heyrovsky-Tafel mechanism 

with the Tafel reaction as the r.d.s. can be employed, as shown in previous work [104, 105] and in 

chapter 5.3.6. This has been also supported by other authors [10, 41].

Cl � + Pt ⇌ PtCl + e� (6-11)

2PtCl ⇌ 2Pt + Cl � (6-12)

Both reactions were modeled according to the power law. As an example, the Heyrovsky 

reaction is presented:

r� , � = k � , �
� � � � �

� � / � � �
(1 − � � � ) − k � , �

� � � � (6-13)

The kinetic constants for the electrochemical reaction were defined as:

k �
� =

k �
� , �

� � � � � � , � � �
� � /� � �

� � � �
� �

� �
� � � � (6-14)

k �
� =

k �
� , �

� � � � � � , � � �

exp � −
(1 − � )�

� �
� � � � (6-15)

where β stands for the symmetry factor, F for Faraday’s constant, and η � � for the electrode 

overpotential. The kinetic constant for the chemical reaction was defined in a similar manner 

without the exponential term. Furthermore, a single kinetic formulation was employed assuming the 

Tafel reaction is the r.d.s. and that the overall reaction takes place under Temkin conditions. As 

shown by Gileadi [55], total current density can be expressed as:

� = 2Fk � �
k � , �
�

k � , �
� �

� �

�
� � � �
� � / � � �

� � � � , � � �
� � / � � �

�

� �

( � � � � , � � �
� � /� � �

) � � exp �
2 � �

� �
( � � � � + � � � ) � (6-16)

The term 2Fk � (� � , �
� /� � � � , � � �

� � / � � �
� � , �
� )

� �
(� � � � , � � �

� � /� � �
)� � exp(

� � �

� �
� � � � ) has the units A m-2 and 

represents an intrinsic exchange current density � �
� � , which is independent of CL structural 

parameters and is characteristic for each catalyst. As shown in previous work [104], the equilibrium 

potential for the HClOR is hard to define, as the chlorine partial pressure plays a significant role 

and can hardly be controlled or measured at the CL in our setup. Therefore, exchange current

density values estimated from experimental Tafel plots are apparent exchange current densities 

� �
� �

, a function of the open circuit potential ( � � . � ., taken as 1.04 V), electrode thickness, catalyst and 

Nafion loading, etc. [105]. The relationship between the intrinsic and apparent exchange current 

densities is given by:

� �
� � �

( � � . � .) = � � � � � � �
� � (6-17)
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where � � � stands for the catalyst loading in the CL and � � for the catalytic surface area per 

catalyst mass. Considering the same � �
� � for all CL structures (correct only as long as the same 

catalyst is employed), the effective specific active surface area in the CL a � �
� can be estimated 

knowing the apparent exchange current density from experiments.

The spherical geometry of the agglomerates and concentration change along its core is taken 

into account by means of a Thiele module and effectiveness factor approach [66]. The Thiele 

module is defined as:

Φ� =
r� � �

3
�

(n + 1) k � � � c � � �
� � |� � � � � �

2D
�

� � �
(6-18)

with the agglomerate radius r� � � , reaction order n, diffusion coefficient inside the agglomerate D �
� � �

, 

and a modified kinetic constant � � � � , which includes the effect of both reactions through � �
� � .

k � � � =
a � �
� � �

� �

� � � � � �
� � �

exp �
2 � �

� �
� � � � (6-19)

The effective specific surface area can be derived from geometrical considerations:

� �
� � = � �

� � �
� � �

(6-20)

High Φ-values represent a much faster reaction rate than diffusion, or that reactants are 

consumed in the outer layers of the agglomerate leaving its core partially unused. I.e., for a Φ-

value of 2, only 80% of the agglomerate volume is employed; at a value of 5, only 50%. With the 

Thiele module the efficiency factor E � is obtained.

E � =
1

Φ
�

1

tanh(3Φ)
−

1

3Φ
� (6-21)

Current density can be expressed as a mass flux by means of Faraday’s law, which yields

after some mathematical manipulation (as presented in [66]):

� � �
� � � � � � � � �

= � � � � �
� � / � � �

�
� �
�

1

k � � � E � (1 − � � � )
�
� �

(6-22)

Considering the transport limitations imposed by the Nafion layer surrounding the agglomerate 

core, eq. (6-22) turns into eq. (6-8).

The electrochemical reaction’s driving force is the overpotential � � � , which in this work was 

considered to be homogeneously distributed inside the agglomerate and to be constant throughout 

the CL (due to its low thickness, less than 8 µm). It was calculated as the difference between the 

given potential and the experimentally observed open circuit potential of 1.04 V.

� � � = � − 1.04 (6-23)

6.4.2 Boundary conditions

6.4.2.1 Mass transport

The boundary conditions employed for species transport are: 

Anode gas channel/HDLan � = 0 � �
� � � = � �

� (6-24)
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HDLan/GDLan � = � � � �
� � −� �

� � � = − � �
� � � (6-25)

GDLan/CLan � = � � � �
� � + � � � � −� �

� � � = −� �
� � (6-26)

CLan/Membrane � = � � � �
� � + � � � � + � � �

� � � � = 0 (6-27)

Agg Nafion layer/CL void � = � � � � + � � � � � �
� � �

=
� � � � � � � �

� � � � � �
(See Appendix 10.11)

(6-28)

In Table 6-1 a summary of the employed parameters in the simulations is presented. 

Table 6-1 Parameters employed for the simulation
Parameter Symbol Value Units Reference

GDL thickness2 � � � � 250 μm [62, 106]

GDL density2 � � � � 700 kg m � � [62]

GDL electrical conductivity2 � � �
� � � 200 � � � � [106]

GDL pore size2 � �
� � � 30 μm [106]

GDL porosity2 � � � � 0.75 - [62]

CL thickness � � � 9-14 μm calculated

CL electrical conductivity � � �
� � 5500 � � � � calculated

CL porosity � � � 0.09-0.52 - [107]

Pt density � � � 21450 kg m � � [108]

Agglomerate radius r � � 100 nm [105]

Vulcan XC72R density � � 1750 kg m � � [97, 109, 110]

Nafion density1,3 � � � � 1588 kg m � � calculated

Max. Nafion 117 water content (liquid) � � � �
� � �

22 mol H � O mol SO�
� � � [18, 111, 112]

Max. Nafion 117 water content (vapor) � � � �
� � �

14 mol H � O mol SO�
� � � calculated

HCl bulk diffusion coefficient in the mixture � � � �
� 1.10·10-5 m � � � � calculated

HCl diffusion coefficient in the GDL � � � �
� � � 8.62·10-6 m � � � � calculated

HCl diffusion coefficient in the CL � � � �
� � 2.10·10-6 m � � � � calculated

HCl diffusion coefficient in Nafion � � � �
� � �

9.68·10-12 m � � � � [21] / calculated

HCl diffusion coefficient in the agglomerate � � � �
� � �

3.22·10-12 m � � � � calculated

Exchange current density � �
� � 2.10·10-1 A � � � calculated

1: Conditions for all parameters: 60 °C, 1 bar, 100% saturation;    
2: Untreated carbon cloth from Quintech was considered as the GDL; 
3: Nafion 117 was considered for Nafion properties

6.4.3 Temperature effect on HClOR kinetics

The model developed in chapter 6.4 and the experimental data presented in chapter 5.3.4 were 

employed to determine � �
� � and � � for the HClOR. Kinetics for the HClOR were described by eq. 

(6-16), which after regrouping terms and using the definition of the intrinsic exchange current 

density results in eq. (6-29):

� = � �
� � �

� � � �
� � / � � �

� � � � , � � �
� � / � � �

�

� �

exp �
2 � �

� �
� � � � (6-29)

As shown in chapter 6.4.1.2, � �
� � is a function of temperature, which was approximated by an 

Arrhenius formulation:
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� �
� � = � exp �

−� �
� �

� (6-30)

where � � stands for the activation energy. Simulations for the anodic model were done considering 

a gas flow of 100% hydrogen chloride on MEAs with 0.5 mg cm-2 platinum, 1.0 mg cm-2 Nafion 

loading, and a Pt/C ratio of 60%, as shown in Figure 6-7. Fitting experimental values to eq. (6-30), 

an activation energy of 48.05 kJ/mol and a preexponential factor of 5.037·106 A m-2 were obtained.

Figure 6-7 Polarization curves at different temperatures. Conditions: Pt loading: 0.5 mg cm-2, Nafion loading: 1.0 
mg cm-2, hydrogen chloride concentration: 100%, pressure: 101.13 kPa.

The activation energy value is considerably higher than the apparent activation energies found 

experimentally [105], which ranged from 16 to 30 kJ mol-1. It is important to note that a linear 

decrease of HCl concentration represents a non-linear decrease of HCl activity, as shown in 

Appendix 10.3.2. The activity coefficients for HCl in water attain values up to 9 at 60°C, while at 

25°C they can be as high as 15. This complicates assigning the difference between fitted and 

experimental values to the variable water uptake of Nafion, which increases with temperature 

allowing a greater amount of hydrogen chloride to absorb. 

Regarding the intrinsic exchange current density, values from the experimental apparent 

values at 1.04 V can be obtained with help of eq. (6-17). Results yield values four times higher

than those obtained from the simulations, but have the same order of magnitude. I.e., for the MEA 

employed in Figure 6-7, an intrinsic exchange current density from apparent experimental data of 

0.65 A m-2 is obtained (� � = 32 m2 g-1, [113] and � � = 10.4 mA cm-2 for the MEA shown in Figure 

6-7), while the value from simulations is 0.15 A m-2. 

As observed in Figure 6-7, at all investigated temperatures current density was overestimated 

at potentials lower than 1.08, while in the potential region from 1.08 to 1.15 showed good 

agreement. At potentials higher than 1.15 V experimental data showed a slower increase in current 

density as simulations. The reason for such behavior at low potentials is much likely the 

overestimation of the capacity of Nafion to absorb HCl, which corresponds to the fact that higher 
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amounts of HCl can be absorbed at lower temperatures (see Appendix 10.11.3). However, Nafion 

uptakes a smaller amount of water at lower temperatures, counteracting the increased HCl 

absorption. Also, as mentioned before, it was assumed the behavior and absorbing properties of 

water uptaken in Nafion were the same as those of pure water.

6.4.4 Diffusion layers

Concentration profiles of hydrogen chloride/hydrochloric acid were analyzed through the entire

MEA structure at three different potentials: 1.07, 1.13, and 1.20 V at the same conditions as in 

section 6.4.3. The HDL has a thickness of 860 µm at the above mentioned conditions, greatly 

surpassing the thickness of the GDL (250 µm) and CL (10 µm). 

Hydrogen chloride needs to diffuse through both the HDL and GDL in order to reach the active 

sites in the CL. These layers pose transport resistances to hydrogen chloride, which shows a linear 

decrease as shown in Figure 6-8a. The slope of the concentration decrease is higher in the GDL 

than in the HDL, corroborating the results presented in the Biot number analysis from chapter 

5.3.6.6. The change of hydrogen chloride concentration in the CL shows a different behavior, as it 

is not only affected by diffusion but also consumption throughout the layer. Therefore, the HCl 

concentration profile in the HCl is not linear, as shown in Figure 6-8b. 

Figure 6-8 HCl concentration at different potentials. Conditions: Pt loading: 0.5 mg cm-2, Nafion loading: 1.0 mg 
cm-2, hydrogen chloride concentration: 100%, pressure: 101.13 kPa, temperature 60°C.

It can be seen that at higher potentials hydrogen chloride consumption is higher, and the 

greatest concentration drop takes place in the GDL. Due to the small thickness of the CL, 

hydrogen chloride has a relatively uniform distribution in the gas channels even at high potentials. 

Hydrogen chloride was not depleted in the CL void fraction for any of the potentials investigated. 

Therefore, it is expected that the main transport limitations take place inside the agglomerates,

where the absorbed HCl diffusion coefficient is considerably lower than in the gas phase.
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Because the hydrogen chloride depletion is low along the MEA, reaction kinetics needs to be 

improved in order to obtain better current densities. HCl absorption behavior shows little change 

between the concentrations observed along the CL (33-35 mol m-3, see appendix 10.11.3), leading 

to the conclusion that a greater improvement in current density could be obtained with a better 

understanding of the CL structure. The agglomerate model allows modifying the internal structure 

of the CL and agglomerates, providing a better insight into where the main limitations could be.

6.4.5 CL Structural effects

Agglomerate models commonly employ 8 parameters, which are shown in Table 6-2. These 

parameters affect the polarization curves to a different extent and not all of them can be 

experimentally controlled or defined. Therefore, parameters were classified in three categories: 

controllable (can be directly controlled when preparing a MEA), measurable (can be 

representatively measured but not directly regulated), and non-measurable (can only be estimated 

or assumed). The effects of these parameters were analyzed in order to identify the most critical 

ones and identify the best optimization potential in the CL. Because of the interrelation between 

parameters, commonly changing one parameter affects others, thus complicating the discussion of 

one single parameter at a time.

For the results to be presented in the next sections MEAs are characterized by two 

parameters, the catalyst loading � � � and the Nafion content � � � � (calculated from the platinum and 

Nafion loading together with the platinum to carbon ratio). It has been shown by us [105] and other 

researchers [48, 114], that not only the Nafion content must be taken into consideration when 

properly characterizing MEAs, but also either the platinum or Nafion loadings. For example, a CL 

with 55% Nafion might be composed of a Pt/C catalyst with 60% platinum and the following 

loadings: 0.5 mg cm-2 platinum and 1.0 mg cm-2 Nafion, 1.0 mg cm-2 platinum and 2.0 mg cm-2

Nafion, as well as 2.0 mg cm-2 platinum and 4.0 mg cm-2 Nafion.

Table 6-2 Agglomerate model parameters
Controllable Measurable Non-measurable

Pt to C ratio � � � � / � CL thickness � � � Agglomerate Nafion content � � � �

Pt loading � � � CL porosity � � � Nafion layer thickness � � � �

around the agglomerateNafion loading � � � � Agglomerate radius � � � �

For results presented in this work the Nafion content and either the platinum or the Nafion 

loading is given for every simulation presented. Conditions for the simulations were 100% HCl at 

101.3 kPa at 60°C. 

6.4.5.1 Nafion loading

GDEs with 0.5 mg cm-2 platinum and 0.5, 1.0 and 2.0 mg cm-2 Nafion, corresponding to 38, 55, and 

71 wt% Nafion respectively, were studied at 60°C. It has been reported in literature that increasing 
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the Nafion loading has a negative impact in the void fraction, attaining values from 25 to 10% [107, 

115]. As mentioned before, Nafion is required inside the agglomerate to fill the void space and 

provide an ionic conductive network, represented by the agglomerate Nafion content. A maximum 

value of 48% is defined in order to guarantee contact between electrically-conductive particles, 

analogous to the simple cubic packing structure from the Bravier crystal system [116]. Increasing 

the anodic Nafion loading increases also catalyst utilization, as shown in chapter 5.3.3, which 

translates into a change of the catalytic surface area per catalyst mass � � . Employing the 

experimentally obtained apparent exchange current density � �
� � �

for a MEA with 71% Nafion, 0.5 

mg cm-2 platinum (103.8 A m-2), and � � (32 m2 g-1) from the catalyst vendor [107], an intrinsic 

exchange current density � �
� � of 0.65 A m-2 is obtained from eq. (6-17). This value was employed 

for all simulations at a temperature of 60°C.

As a change in Nafion loading alters the surface area per catalyst mass � � (due to partial 

surface covering of the catalyst surface, leaving it inactive), it was employed as a fitting parameter. 

Considering that � �
� � is independent of the CL structure, starting values for � � were obtained from 

eq. (6-17) using � �
� � �

from experiments. The active surface area was calculated with eq. (6-20). 

Because the change of CL void fraction with different Nafion loadings is not known, it was also 

employed as a fitting parameter. Starting values for the CL void fraction of 10, 13, and 52% were 

employed for Nafion loadings of 2.0, 1.0, and 0.5 mg cm-2 [107] respectively. Optimization was 

done using a trust-region method based on the non-linear minimum squares algorithm 

implemented in Matlab. The values employed for the simulation are presented in Table 6-3 with 

fitting parameters highlighted. 

Simulations are compared to experimental data in Figure 6-9a. It can be seen that the model is 

able to qualitatively reproduce the experimentally observed effect of Nafion loading variation.

Table 6-3 Agglomerate model parameters for simulations depending on Nafion loading
Nafion Loading / mg cm

-2

Parameter Unit 2.0 1.0 0.5

� �
� � �

mA cm
-2 10.4 4.2 2.8

� � �
� m

-1 1.09E+07 8.25E+06 8.87E+06

� � � � nm 54.09 35.09 20.63

� � � � % 70.6 54.5 37.5

� � m
2 
g

-1 32.0 12.3 8.3

� � � % 11.3 18.5 24.1

Quantitatively, the model overestimates current density especially at potentials below 1.09 V. 

This could be attributed to an effect not considered in the model which experimentally affects the 

activation region, such as a difficult chlorine desorption or change of the catalytic surface with 

potential. Trials were made to lower the intrinsic exchange current density to better describe the 

low potential region of the polarization curves. This resulted in a better agreement at potentials 

below 1.09, but a higher underestimation of current density at potentials above 1.13 V, 

deteriorating the overall result. 
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Figure 6-9 Experimental and simulation data for different Nafion loadings at constant 0.5 mg cm-2 platinum
loading; b) Dependence of calculated CL thickness on Nafion content in the CL. Conditions as in Figure 5-3.

Higher Nafion loadings lead to thicker CLs, which points to higher values of � � and thus a 

higher effective specific active surface area � � �
� . The increase in � � �

� with the Nafion loading 

supports the observation made in chapter 5.3.3, that the optimum Nafion loading for the HClOR is 

considerably higher than for the ORR. As it was mentioned before, hydrogen chloride has a higher 

absorption in water than oxygen (at 60 °C is 8.70 wt% for HCl while for oxygen it reaches only 

0.01%), allowing an increased HCl concentration to reach the active sites. This leads to the ORR 

depending more on diffusional transport than the HClOR. Another probable explanation for the 

discrepancy at low potentials is that at potential values above 1.11 V, the HClOR proceeds also on 

carbon with the same Tafel slope as for platinum [60]. Therefore, a higher Nafion loading would 

render more carbon active allowing for higher current densities, which is not taken into account by 

the model. This leads to an overestimation of the platinum surface area allowing a better 

agreement at higher potentials, while overestimating current density at lower potentials (< 1.09 V). 

Another effect of increasing the Nafion loading is the rise in the thickness of the Nafion layer 

surrounding the agglomerates, � � � � , which poses a mass transport resistance resulting in a 

decrease of current density. The observed Nafion content optimum in the current study is 

surprisingly high: 52% Nafion. In contrast, the reported optimum for the ORR on similar catalysts 

as in this work lies around 32% [38]. This shows that the effect of thicker Nafion layers surrounding 

the agglomerates is less significant for the HClOR than for the ORR, mainly due to the higher 

absorption of hydrogen chloride in Nafion, as mentioned before. Therefore, optimization results 

reported for the ORR could not be directly employed for the HClOR. 

The Nafion loading shows a high influence in current density, allowing for overpotential 

savings of up to 70 mV at current densities around 350-400 mA cm-2, at which commonly 

electrolyzers are industrially operated.
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6.4.5.2 Platinum loading

Polarization curves for platinum loadings of 0.2, 1.0 and 2.0 mg cm-2 at a constant Nafion loading 

of 0.5 mg cm-2 (60, 23, and 13 wt% Nafion respectively) were simulated and compared with 

experiments, as shown in Figure 6-10a. Similar as for the Nafion loading, � � values were fitted and 

are presented in Table 6-4. The value of the intrinsic exchange current density was the same as for 

the Nafion loading variation.

Changing the platinum loading alters the maximum number of available active sites present in 

the CL. Due to the small radius of the agglomerates, even for the smallest Nafion content, 13%, 

agglomerates were completely filled with Nafion and had a thin Nafion film surrounding them. In 

contrast to the variation of Nafion loading, CL thickness didn’t changed much with the variation of 

platinum, as it has a considerably higher density than Nafion (see Figure 6-10b). This is 

corroborated experimentally in Figure 6-10a, where only a minimal difference in current densities at 

platinum loadings above 1.0 mg cm-2 was obtained. Even though at high platinum loadings more 

catalyst is present in the CL, Nafion is not present in enough quantities to cover all platinum 

particles. Therefore the amount of active sites reaches a plateau and no increase in active surface 

area can be observed. The lowest platinum loading (60% Nafion content) has the thickest Nafion 

layer surrounding the agglomerates, which imposes a higher mass transport limitation to the active 

centers and results in current density limitations along the entire potential range investigated.

Figure 6-10 Experimental and simulated data for different Pt loadings at a constant 0.5 mg cm-2 Nafion loading; b) 
Dependence of calculated CL thickness on Nafion content in the CL. Conditions as in Figure 6-7.

A thicker Nafion layer leads to lower HCl concentrations inside the agglomerate at the active 

sites, even though HCl is present in sufficient amount at the CL pores. Hydrogen chloride 

concentration in the gas phase has influence only on the concentration in the outer part of the 

Nafion layer, which diminishes through the Nafion film surrounding the agglomerates. This 

diminishing is proportional to the HCl diffusion in Nafion, eq. (10-23), which is the same for all MEA 

compositions.
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Table 6-4 Agglomerate model parameters for simulations depending on platinum loading
platinum Loading / mg cm

-2

Parameter Unit 2.0 1.0 0.5 0.2

� �
� � �

mA cm
-2 10.6 11.3 2.8 7.5

� � �
� m

-1
6.15E+06 7.55E+06 8.87E+06 9.71E+06

� � � � nm 2.57 9.99 20.63 40.67

� � � � % 13.0 23.0 37.5 60.0

� � m
2 
g

-1 4.2 4.9 8.3 6.0

� � � % 10.3 21.2 24.1 28.3

Nevertheless, each MEA has a different thickness of Nafion surrounding the agglomerates, 

which changes the effective concentration at the Nafion/agglomerate interface. This yields different 

Nafion profiles inside the agglomerate, as reaction kinetics is a function of � � �
� , which changes with 

Nafion loading. 

The dimensionless Cl- concentration profiles ( � ̅� � � = � � � � /� � � �
� � � / � � �

) are presented as a 

function of the dimensionless agglomerate thickness ( � ̅� � � = � /� � � � ) in Figure 6-11. 

Figure 6-11 Cl- concentration profiles along the agglomerate for a constant Nafion loading of 0.5 mg cm-2 and 
varying platinum loadings of 0.5 and 2.0 mg cm-2 at a potential of  1.15 V. Conditions as in Figure 6-7.

It is observed that higher platinum loadings correspond to higher reactant depletion in the 

agglomerate, mainly due to the lower diffusion coefficient inside the agglomerate. Even though the 

complete volume of the agglomerate is employed for the reaction (no complete HCl depletion was 

obtained), kinetics is slower due to a reduced modified kinetic constant and an increased Thiele 

module. The former one is proportional to � � �
� , which increases with decreasing platinum loading, 

while the latter one is inversely proportional to � � � �
� � �

and has a bigger impact on the Thiele module. 

This allows the MEAs with 1.0 and 2.0 mA cm-2 to achieve nearly the same current density.

It is important to recall that although the concentration profile for the lowest platinum loading is 

nearly flat, the concentration at the Nafion layer/agglomerate core interface ( � � � �
� � � / � � �

) is smaller 

due to the higher thickness of the Nafion layer surrounding the agglomerates, therefore reaching 
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lower overall current densities as shown in section 5.3.2. With an increase of the platinum loading, 

values of � � � �
� � � / � � �

are higher as the thickness of the Nafion layer surrounding the agglomerate 

reduces, allowing a better transport of reactant to the agglomerate core. 

Overall, it can be seen that for technical relevant current densities between 350-400 mA cm-2, 

overpotential reductions up to 80 mV can be achieved by optimization of the platinum loading.

6.4.5.3 Agglomerate porosity

The internal structure of the agglomerates is characterized by the agglomerate porosity ϵ� � � , which 

in case of a sufficient Nafion loading, turns into the agglomerate Nafion content ς � � � . For all 

investigated parameters in this study, the agglomerates were completely filled with Nafion. This 

parameter determines the ionic conductivity inside the agglomerates and the diffusion coefficient of 

HCl inside the agglomerate, as HCl cannot diffuse through platinum or carbon particles. 

This parameter was changed in a range of 20% up to 48%, choosing the higher limit by 

analogy with the simple cubic Bravier crystal structure, as explained in chapter 6.4.5.1. This 

corresponds to a MEA with 0.5 mg cm-2 platinum and 1.0 mg cm-2 Nafion. Figure 6-12a shows that 

current density increases with higher agglomerate porosities. The increase is substantial between 

20 and 30%, 210 mA cm-2, from 30 to 40% it is 105 mA cm-2, and between 40 and 48% only 90 mA 

cm-2.

Figure 6-12 Effect of varying agglomerate porosity in a) polarization curves; b) Cl- concentration profiles along 
the agglomerate at a potential of 1.15 V at a platinum loading of 0.5 and a Nafion loading of 1.0 mg cm-2. 
Conditions as in Figure 6-14.

The effects of a higher agglomerate porosity are visible especially at potentials above 1.07 V, 

as at lower potentials only low current densities are obtained, and thus almost negligible reactant 

depletion in the agglomerates. A higher agglomerate porosity allows better HCl transport to the 

core of the agglomerates, allowing for an increased catalyst utilization in comparison to lower 

Nafion content values, as shown in Figure 6-12a. This has been reported in literature by several 

authors of agglomerate models for the ORR [117, 118]. 
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As can be seen from the diffusion coefficients presented in Table 6-1, the highest mass 

transport resistance for HCl transport is found inside the agglomerates, where Nafion is distributed

between platinum and carbon particles. Here the effective diffusion coefficient is smaller than in 

pure Nafion, as it is corrected for tortuosity according to the Bruggeman correlation, eq. (10-16). 

Analyzing the effective HCl diffusion coefficient in the agglomerate as a function of agglomerate 

porosity (or agglomerate Nafion content), it ranges from 1.3 ∙ 10 � � � to 7.6 ∙ 10 � � � m2 s-1, showing 

almost a seven-fold rise according to eq. (10-16). In a similar fashion, CL ionic conductivity also 

improves with increasing Nafion agglomerate content while electric conductivity diminishes. Due to 

the difference in the CL effective electric and ionic conductivity (1339 vs 1.15 S m-1), reduction of 

electric conductivity plays a considerably smaller role than ionic conductivity, which should be the 

focus for the anodic CL optimization.

6.4.5.4 CL porosity 

The effect of CL porosity to current density is shown in Figure 6-12b for values from 10 to 

45%. � � �
� is inversely proportional to CL thickness as shown in eq. (6-19), thus increasing CL 

porosity diminishes the value of the modified kinetic constant � � � � , and therefore the overall 

reaction rate. 

Figure 6-13 Polarization curves as a function of agglomerate for a MEA with 0.5 mg cm-2 Pt and 1.0 mg cm-2

Nafion. Conditions as in Figure 6-14.

An increase of the CL porosity results in a thicker CL and a smaller solid volume fraction. This 

affects both electric and ionic conductivities, but allows for a greater hydrogen chloride supply to 

the CL void/Nafion layer around the outer surface of the agglomerates. Because the main mass 

transport limitation arises inside the agglomerate and not from the gas-phase transport through the 

CL gas pores, CL porosity plays a smaller role than the agglomerate porosity.
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6.4.5.5 Pt/C ratio

The Pt/C ratio alters the amount of support (in our case Vulcan X72R) present, which influences

the amount of agglomerates that can be formed as well as the CL thickness. Simulations were 

performed keeping a constant Nafion loading of 1.0 mg cm-2, a platinum loading of 1.0 mg cm-2, 

and varying the Pt/C ratio between 20, 30, 40, and 50%. Results are shown in Figure 6-14a. 

Figure 6-14 a) Polarization curves as a function of the Pt/C ratio. Conditions as in Figure 6-9.

As seen in Figure 6-14a, if the potential is low enough (below 1.07 V), MEAs with lower Pt/C 

ratios show a better performance. This is attributed to the higher effective specific active surface 

area. At higher potentials this trend is reversed, as MEAs with higher Pt/C ratios reach higher 

current densities. 

It is important to consider that at high Pt/C ratios the CL layer is thinner and thus gas transport 

through the CL is improved. As seen in Figure 6-8, the change in the HCL concentration in the CL 

void is not that considerable as the change inside the agglomerates, which can be in the 

magnitude of 8% for a change in Pt/C ratio (Figure 6-15) in comparison to 4% at different potentials 

(Figure 6-8). 

It is expected that at high Pt/C ratios a thicker Nafion layer around the agglomerates to be 

present and therefore higher mass transport resistances, especially at high potentials. This arises 

from the decreased amount of catalyst to be covered at a fixed Nafion loading. Simulations refute

this trend, and show that at higher Pt/C ratios the total amount of carbon and platinum in the CL is 

reduced at a constant Nafion loading, leading to higher Nafion volume fractions, improving the 

diffusion coefficient of HCl in the agglomerates. As it was shown for the agglomerate void fraction 

(section 6.4.5.3), this allows for better catalyst utilization inside the agglomerate. Therefore, at low 

potentials, where enough reactant is present at the active sites, MEAs with lower Pt/C ratios show 

the best performance while at higher potentials the opposite effect is observed.

a)                                     b)

1.00 1.05 1.10 1.15 1.20 1.25
0

200

400

600

800

1000

60%
50%
40%
20%

C
u
rr

e
n
t 
d
e
n
s
ity

, 
j /

 m
A

 c
m

-2

Potential vs SHE / V

20 40 60
6

8

10

12

14

16

Pt/C ratio, rw
Pt/C

/ %

C
L

 t
h

ic
kn

e
s
s,

 δ
C

L
 /

 µ
m



Isaí González Martínez 60

Figure 6-15 Cl- concentration profiles along the agglomerate at a potential of 1.15 V for varying Pt/C ratios at a 
platinum loading of 0.5 mg cm-2 and Nafion loading of 0.5 mg cm-2. Conditions as in Figure 6-14.

6.4.5.6 Agglomerate radius

Agglomerate radii have been reported in literature for MEAs with platinum loadings from 0.5 to 5.0 

mg cm-2 and Nafion loadings from 0.5 to 1.0 mg cm-2 in the range from 100 to 500 nm [119-121]. 

Agglomerate radii were investigated in the range from 50 to 500 nm, considering a constant MEA 

composition of 0.5 mg cm-2 platinum and 1.0 mg cm-2 Nafion.

Changing the agglomerate radius changes the CL structure as well as the Nafion distribution 

in the agglomerates. The amount of Nafion contained inside the agglomerates remains unchanged 

as well as Nafion remaining to cover the agglomerates, as long as the platinum and carbon total 

mass remain unchanged. Having smaller agglomerates results in a higher number of 

agglomerates, yielding thinner Nafion layers surrounding them. This greatly affects the rate of 

reactant supply to the active sites, as can be observed in Figure 6-16a. An increase in the 

agglomerate radius from 50 to 500 nm reduces the number of agglomerates by ca. three orders of 

magnitude (see Figure 6-16b), increasing the thickness of the Nafion layer around the 

agglomerates from roughly 5 to 45 nm.

Table 6-5 CL structural parameters as a function of the agglomerate radius
Agglomerate radius / nm

Parameter Unit 50 100 350 500

j�
� � � mA cm

-2
4.2 4.2 4.2 4.2

� � �
� m

-1
7.55E+06 7.55E+06 7.55E+06 7.55E+06

� � � � nm 4.99 9.95 34.79 45.14

σ� � � % 37.5 37.5 37.5 37.5

ϵ � � % 24.1 24.1 24.1 24.1

The qualitative behavior in Figure 6-16a has been reported also by other authors [122, 123], 

who found out that smaller agglomerates result in higher current densities. An overview of the 

structural parameters of the CL as a function of the agglomerate radius is presented in Table 6-5. 
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It can be noticed in Figure 6-16a, that as the agglomerate radius size increases, total current 

density decreases. This is in accordance with eq. (6-8), where the second term in the denominator, 

current density limitation due to reactant transport, is a direct function of the agglomerate radius.

The lower current densities are noticeable in the entire potential range investigated.

Figure 6-16 a) Polarization curves as a function of agglomerate radius. Conditions as in Figure 6-12.

As shown in Table 6-1, the HCl diffusion coefficient in Nafion is considerably smaller than in 

the CL, showing that a thicker Nafion layer around the agglomerates has a higher impact in current 

density than lowering CL porosity. A smaller agglomerate radius also translates into higher Thiele 

module values, which increased from 94 to 100%. Even though this difference is not striking, it is 

more accentuated at higher agglomerate radius values as well as higher overpotentials.

It is clear that the agglomerate radius has a great impact on current density, with an 

optimization potential of about 140 mV. Nevertheless, it is a parameter which can be hardly 

experimentally controlled and is commonly employed as a fitting parameter in literature [66, 115].

6.4.6 Concluding remarks

As seen in the previous sections, the most important parameters for current density 

optimization in the anode are the agglomerate Nafion content and the agglomerate radius. The 

former one affects the diffusion coefficient of HCl inside the agglomerate and thus not only species 

transport but agglomerate utilization as well. The latter one is a direct indicator of the Nafion layer 

thickness surrounding the agglomerates (at a given Nafion loading), affecting the reactant transport 

to the active sites from the gas pores in the CL. Both these parameters can’t be directly controlled, 

and therefore its practical optimization is still not technically viable.

From the controllable parameters, Nafion loading showed the best potential to improve overall 

current density, followed by the platinum loading. These two parameters can be precisely 

controlled and influence the non-controllable parameters to some extent, allowing for a direct way 

to adjust current density.

1.00 1.05 1.10 1.15 1.20 1.25
0

400

800

1200

1600 50 nm
100 nm
350 nm
500 nm

C
u

rr
e

n
t 

d
e

n
s
ity

, 
j /

 m
A

 c
m

-2

Potential vs SHE / V

200 400 600
100

1000

10000

100000

Agglomerate radius, r
agg

/ nm

A
g

g
lo

m
e

ra
te

s
 /

 M
ill

io
n

s

a)                                                                            b)



Isaí González Martínez 62

6.5 Cathode

6.5.1 Governing equations

6.5.1.1 Mass transport

The governing equations for the cathode are analogous to the ones defined for the anode, as both 

electrodes have the same structure. The only difference is the thickness of the HDL and CL. The 

former one depends on reactant physical properties (viscosity and density of oxygen and water 

instead of hydrogen chloride and chlorine), while the former one depends on the platinum and 

Nafion loadings.

Because Nafion needs to be humidified in order to show ionic conductivity, and the 

humidification of the cathode feed is the only source of water in the reactor, fully humidified oxygen 

was considered for all simulation scenarios. The amount of condensed water was directly 

calculated from the volumetric reaction rate of the ORR. It was further assumed that water imposes 

no further mass transport resistance for oxygen or clogs the CL pores. The overpotential in the 

cathode is described analogous to that in the anode.

6.5.2 Boundary conditions

The boundary conditions for the cathode were taken as those defined for the anode. The only 

difference is that for the boundary at the Agglomerate/Nafion layer with the CL, eq. (6-28), the 

absorbed oxygen concentration was modeled according to Henry’s Law (see Appendix 10.11.1). 

Agg Nafion layer/CL void � = � � � � + � � � � � �
� � �

=
� � � �

� �
(See Appendix 10.11) (6-31)

6.5.3 Reaction mechanism

For the electrochemical reaction it was assumed that the ORR could be described by a single 

kinetic expression, in which the reaction order with respect to oxygen was assumed to be one [78, 

124]. A single reaction is employed to describe the entire mechanism of the ORR, which has been 

reviewed elsewhere [45]. Henry’s Law is employed to describe oxygen absorption in Nafion and 

concentrations instead of activities were employed. The reaction can be described by a Tafel

formulation:

� = � � �
� � �
� � � | � � �

� � �
� � �

� exp � −
� �

� �
� � � � (6-32)

where � � stands for exchange current density and � � �
� � �

for the reference oxygen concentration in 

the Nafion layer surrounding the agglomerates. The electrochemically active surface area and 

Thiele module were defined analogous to the ones for the anode. Only the modified kinetic 

constant for the Thiele module has a different definition in the cathode than in the anode: 
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� � = � � �
� �

� �

� � � � �
� � �
� � � � � −

� �

� �
� � � � (6-33)

The values for the exchange current density were taken from the work of Parathasarathy et al.

[51, 52] as shown in Table 6-6. These values were employed as they provide a more complete 

dependence of temperature for the exchange current density as well as transfer coefficient than 

the ones obtained in this work in chapter 5.4.

Table 6-6 Kinetic parameters for the ORR
Parameter Value Units

� � 10 � � � � � � � � � � . � � exp � −
� �
�
�

1

�
−

1

323
� � 10 � � � � � � � � � � . � � exp � −

� �
�
�

1

�
−

1

323
� � A m

-2

� � 76.5 27.7 kJ mol
-1

� 1 0.45 + 2.3 ∙ 10 � � (� − 300) -

Potential range <0.8 V >0.8 V V

6.5.4 Structural effects

The analysis of the structural effects for the ORR was not considered in this work due to the 

extensive available literature about the ORR. Reviewing the available literature on agglomerate 

models for the ORR, many authors have reported that the most important parameters affecting 

current density are the platinum loading, the thickness of the Nafion layer surrounding the 

agglomerates (indirect measure of the Nafion loading), and the agglomerate porosity [97, 117, 122, 

123].
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6.6 Membrane

6.6.1 Governing Equations

6.6.1.1 Mass transport

The general mass balance in the membrane is shown in eq. (6-34). As there are no generation or 

sink terms in this domain, only species transport is considered. The first term on the right-hand 

side represents convective species transport, the second one diffusion transport, and the third one 

electroosmotic drag. 

� �
� � �
� �

= −� � � � �
� − � � �

� − � � �
� = 0 (6-34)

Convective transport through the membrane was modelled according to Darcy’s Law, eq. 6-6.

Due to the non-equimolar overall reaction (HClOR-ORR), a pressure gradient on the membrane of 

up to 0.2 bar at conversions around 100% is expected. Because the actual measured conversions 

in the reactor in Clausthal lie around 30% and the permeability values through Nafion membranes 

are extremely small (1.5·10-12 m2 [125, 126]), this term is responsible for ca. 3% of the overall flux

and therefore it was neglected.

For the description of the diffusive flux N �
� , the Maxwell-Stefan equations for multicomponent 

mixtures were chosen as species concentrations in the membrane are high, thus species/species 

as well as membrane/species interactions cannot be neglected. The general Maxwell Stefan 

formulation is:

−
� �
� �

� � � � , �
−
� �
� �

� � � � � − � � � �
�

� �
� � = �

� � � �
� − � � � �

�

Ð� , �

�

� � �
� � �

+
� �
�

Ð�
� � � (6-35)

where � � represents the chemical potential, � � � the molar volume, � � the charge, � � the mole 

fraction, � � the diffusive molar flux, Ð� , � the effective binary diffusion coefficient, and Ð�
� � � the 

diffusion coefficient of species � in Nafion. The first term on the left-hand side stands for the effect 

of chemical potential on diffusion at constant temperature and pressure along the membrane. The 

second term considers the effect of pressure on diffusion at constant temperature, which due to the

incorporation of convection in eq. (6-34) was neglected in the Maxwell-Stefan formulation. The 

third term on the left-hand side of eq. (6-35) stands for the effect of the potential field gradient on 

charged species transported through the membrane. This term is only valid for protons, as water 

and HCl are considered to be transported only as neutral molecules. The first term on the right-

hand side considers the friction between diffusing components, while the second one considers the 

friction between diffusing species and the membrane structure. 

Chemical potential can be defined by eq. (6-36):

� � = � �
� + � � � � � � (6-36)

where � �
� represents the chemical potential at standard pressure. In order to employ eq. (6-36) to 

describe components transported through the membrane, their activities in Nafion are required.



Isaí González Martínez 65

The activity coefficients in the membrane were described with the Flory-Huggins activity 

model. This model was originally developed for liquid species mixed with polymer solutions.

Nevertheless, it has been previously employed in literature to describe species interaction with 

solid polymer electrolyte membranes [127-129]. A further insight into the different models available 

for membrane modeling as well as the applicability of the Flory Huggins model is given by 

Jonquières et al. [130]. The activity coefficient of species i is given by eq. (6-37):

� � = � � � � � � � � � � � 1 −
� ��

� �� � �
� + � � , � � �

� � +
� � �

� �� � �

�
�

2 � � � �
� (6-37)

where ϵ� stands for the volume fraction of component � , � � � for the molar volume, � � , � for the non-

ideality parameter between species, � � for the average number of single chain units between two 

cross-links, and � � for the molar volume of one single chain of Nafion. In order to calculate 

activities, the interaction parameters between species (water, hydrochloric acid, and Nafion) are 

needed. The system HCl-water has been extensively studied and activity formulations are 

available (see Appendix 10.3.2). Interactions between Nafion and aqueous species ( � � � � , � � � , 

� � � � , � � � ) were experimentally determined and are presented in Appendix 10.3.3 together with a 

more detailed explanation of the activity model. The obtained values of these non-ideality 

parameters show that water is attracted by the Nafion structure while HCl is repelled by it, thus 

supporting the assumption that HCl crossover should be small or negligible.

This activity model was not employed for the anodic half-cell because it is computationally 

more expensive and has the advantage of better describing the effect of HCl interaction with water 

and the polymer backbone. These effects are not so critical in the CL or agglomerates due to their

negligible thickness in comparison with the membrane, which is one order of magnitude thicker

than the CL and more than three times thicker than the Nafion layer surrounding the agglomerates. 

6.6.1.2 Charge transport

Because in the membrane no charge production or consumption takes place, it behaves like an 

ohmic resistor. Thus, the conductivity of Nafion in the presence of HCl is required in order to 

calculate the potential losses through the membrane. In the presence of HCl, water content in 

Nafion is affected as HCl is repulsed by Nafion as shown by the non-ideality coefficient χ � � � , �

(Appendix 10.3.3). This was confirmed by Motupally, et al. [11], who reported that the water

content of Nafion decreases linearly with HCl concentration. However, Yeo and McBreen [25]

experimentally found out that Nafion conductivity showed a non-linear dependence on HCl 

concentration. In this work, a polynomial fit of the experimental data from [25] was employed (see 

Appendix 10.10.1).

Regarding the total potential loss in the membrane, it was defined as:

� �
� � � = � � , � �

� � � + � � , � �
� � �

(6-38)

where � � , � �
� � � stands for the ohmic losses through the membrane, defined by eq. (6-39):
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� � , � �
� � � =

� � � � �

� � � �
(6-39)

and � � , � �
� � � for the Donnan potential through the membrane, due to the proton concentration 

gradient between the anode and cathode, eq. (2-22). This potential difference is affected by 

temperature (through the HCl and proton activity), reactant concentration, and the different water 

contents on each CL (HCl or water absorption in Nafion). The effect of the Donnan potential needs 

to be taken into consideration for proper reactor modeling as the proton concentration gradient is 

considerable. The Donnan potential can’t be experimentally measured in our setup or be corrected 

by the potentiostat software, and must therefore be estimated. As mentioned in chapter 6.1, it

follows that proton concentration is equal to that of the chlorine ions, which can be explicitly 

calculated by the activity model presented in Appendix 10.3.

In the case of the half-cell measurements, the base effect of the Donnan potential was taken 

into account by the use of the open circuit potential instead of the reversible anodic potential. The 

change in Donnan potential with current density was not considered because of the relatively 

constant proton concentration gradient through the membrane. This is true in the cathode due to 

the use of an acidic liquid electrolyte in the counter electrode compartment (providing a 

considerably higher concentration of protons than a cathodic MEA); in the anode the negligible 

hydrogen chloride conversion values allow to disregard a change in proton concentration.

For the complete reactor, on the other hand, the effect of protons is more important as the 

electrode and membrane potentials can’t be separated from each other and only total potential 

through the entire cell can be measured, not allowing to disregard the Donnan potential effect

without incurring in a considerable shift of the open circuit potential.

The parameters employed for the simulation of the membrane are presented in Table 6-7.

Table 6-7 Parameters employed for the membrane simulation

Parameter Symbol Value Units Reference

Nafion density � � � � ~1950 kg m � � calculated

Membrane thickness � � � � 170 [131]

Single chain units between cross-links � � 5 − [132]

Molar volume of a single Nafion chain � � 5.60 ∙ 10 � � m� � � � � � [132]

Molar volume of Nafion � �� � � � 5.60 ∙ 10 � � m� � � � � � [132]

Non-ideality parameter HCl-Nafion � � � � , � 1.45 − measured

Non-ideality parameter H2O-Nafion � � � � , � 0.77 − measured

Non-ideality parameter H2O-HCl � � � � , � � � 5.73 − measured

Molar volume HCl � � � � 3.20 ∙ 10 � � m� � � � � � [133]

Molar volume H2O � � � � 1.81 ∙ 10 � � m� � � � � � [108]
1: Conditions for all parameters: 40°C, 1 bar, 100% saturation

2: Nafion 117 was considered for Nafion properties

6.6.2 Boundary conditions

From the assumptions presented for the membrane, no-flow conditions were imposed for chlorine 

and oxygen. At the interfaces with the CLs flux conservation boundary conditions were employed. 
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In order to solve the Maxwell-Stefan equation system, the proton flow from the membrane to the 

cathode was determined from the current density at the cathode, while at the anode, a Dirichlet 

boundary condition was applied for the known proton concentration.

CLan/Membrane � = � � � � + � � � � + � � � −� � � �
� � = −� � � �

� (6-40)

−� � � �
� � = − � � � �

� (6-41)

� � � �
� � = � � �

� (6-42)

Membrane/CLca � = � � � � + � � � � + � � �
+ � � � �

−� � � �
� = −� � � �

� � (6-43)

−� � � �
� = − � � � �

� � (6-44)

−� � �
� =

�

�

(6-45)

6.6.3 Effect of current density

Fluxes through the membrane were simulated at three different current densities in the 

technical plausible range: 300, 400, and 500 mA cm-2 at 60°C with 100% hydrogen chloride anodic 

concentration, 100% oxygen cathodic concentration fully humidified, and flow rates for both 

species of 500 ml min-1. In accordance to our experimental results (section 5.4.4) and observations 

from other authors [108], HCl transport from the anode to the cathode was negligible. 

Concentration dropped in average 100 times through the membrane at all current densities and the 

profile exhibited a parabolic shape (Figure 6-17a). At higher current densities, in the mixed-control 

region, the HCl profile took lower values due to the depletion of HCl in the anode. 

Figure 6-17 Concentration profiles of a) HCl, b) water in Nafion 117. Conditions: 60°C, anodic MEA: 0.5 mg cm-2

Pt, 1.0 mg cm-2 Nafion; cathodic MEA: 0.5 mg cm-2 Pt, 0.5 mg cm-2 Nafion. Other conditions as in Figure 5-3.

The water concentration profile, on the other hand, showed an inverted trend when compared 

with the HCl concentration, as shown in Figure 6-17b. Water attains higher overall values in Nafion 

due to the sulfonic groups present in its structure. The concentration of water in the cathode 

increases with current density, as water produced by the ORR condenses due to the use of a fully 
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humidified cathode gas feed. This results in a higher water concentration along the entire 

membrane thickness.

It can be seen in Figure 6-17b that an increase in current density yields higher water 

concentrations at the anode and cathode. The difference between 300 and 400 mA cm-2 is not so 

notorious, but at 500 mA cm-2 the profile is considerably higher. This can be explained by the 

different factors affecting water transport. First, the drop in HCl concentration in the membrane with 

increasing current density allows more water to be uptaken. Second, at higher current densities

more water is dragged by protons to the cathode (3.9 mol water per mol of protons). Third, the fact 

that HCl and protons diffuse to the cathode means that water molecules come in contact inside the 

membrane with these two species. Analyzing the binary diffusion coefficients from the Maxwell-

Stefan equation, it can be seen in Figure 6-18a that diffusional resistance between water and 

protons is considerably smaller than between protons and HCl in the entire temperature range. At 

temperatures above 50°C, the binary H2O/HCl diffusion coefficient becomes higher than that of 

H2O/H+. The binary HCl/H+ diffusion coefficient increases with temperature, but hydrogen chloride 

absorption in Nafion decreases with increasing temperature, thus both effects counteract each 

other. 

Figure 6-18 a) Binary diffusion coefficients (see Annex 10.5); b) water flux through the membrane as a function of 
current density. Conditions as in Figure 6-17.

In order to evaluate the impact of these three effects, the total water flux from the cathode to 

the anode was estimated and presented in Figure 6-18b at 40 and 60°C. A net flux of water from 

the cathode to the anode was observed, showing that the concentration gradient overwhelms the 

other two effects. These results are in agreement with those presented by Motupally et al. [11, 

134], who obtained values in the same order of magnitude for the net water flux through Nafion 

membranes equilibrated with water and also HCl. Motupally et al. [11] considered that water 

diffusing from the cathode to the anode condensed in the anodic compartment, absorbed HCl and 

then was driven out of the cell. Because of the high gas fluxes employed in this work, it was 
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considered that no water condensation took place in the anode and excessive water was carried 

away as vapour by the high hydrogen chloride flow rate in the anodic compartment. 

A change in both water and HCl concentrations translates into a change in the conductivity of 

Nafion and thus into membrane potential losses. These losses are presented in Figure 6-19a, 

without the effect of the Donnan potential. It is observed that the resistance of the membrane 

increases at the interface with the anode, where the highest HCl and lower water concentrations 

are present.

Figure 6-19 a) Potential loss along the membrane; b) Donnan potential and Nafion conductivity of Nafion 117.

Because no charge generation or consumption takes place in the membrane, ohmic losses 

should follow Ohm’s law, which predicts a higher potential loss at higher currents, contrary to 

results from Figure 6-19a. Under consideration that the membrane thickness � � � � remains 

constant and current density increases, the conductivity of the membrane � � � � must increase to 

explain the lower ohmic losses. This phenomenon can be associated to an increase in the water 

uptake of the membrane, which is inversely proportional to that of the potential losses (Figure 

6-19a). Nafion uptakes different amounts of water when contacted with water vapor or liquid water. 

Higher conductivity values are obtained when contacted with liquid water. In the reactor, no liquid 

water is fed, but water generation (and thus condensation) from the ORR increases in the cathode 

with rising current density, therefore allowing for higher water uptake values at higher current 

densities. This increases the membrane conductivity near the cathode as more water is present 

and also diluting HCl (see Figure 10-3). Higher losses are observed near the anode, where the 

water profile reaches its lowest value. 

The Donnan potential (shown in Figure 6-19b) also diminishes with increasing current density, 

as the proton concentration further decreases with HCl depletion in the anode (and consequent 

water generation in the cathode), which has a higher influence at current densities above 450 mA 

cm-2 due to the non-linear equilibrium of the HCl-H2O system. The change in Donnan potential was 
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found to be around 30 mV in the current density range from 200-500 mA cm-2, having a lesser 

impact in total potential loss through the membrane than the change in Nafion conductivity.

6.7 Complete reactor

For the complete reactor model, the single modules developed in this work (anode, cathode, and 

membrane) were coupled. The governing equations remained the same, but the boundary 

conditions undertook some changes to allow continuity through the boundaries of the single 

modules.

6.7.1 Governing Equations

The mass balances shown for the anode and cathode in chapters 6.4 and 6.5 were employed for 

the reactor model. An additional equation to define total reactor potential with current density was 

defined: the reversible cell potential minus the potential losses associated to the cathode, anode, 

and membrane [135]:

� = � � � �
� � − � � � �

� � − |� � � | − | � � � | − � �
� � � (6-46)

6.7.2 Boundary conditions

The boundary conditions employed for the reactor simulation were the same as for the single 

electrodes, only eq. (6-27) was changed from a no-flow to a continuity boundary condition:

CLan/Membrane � = � � � �
� � + � � � � + � � �

� � −� �
� � , � � = − � �

� � � (6-47)

CLca/Membrane � = � � � �
� � + � � � � + � � �

� � +
δ � � � + � � �

� � + � � � �
−� �

� � , � � = − � �
� � �

(6-48)

6.7.3 Experimental results

The anodic HClOR together with the cathodic ORR were measured in a 30 cm2 reactor in the TU 

Clausthal. MEAs having the same compositions as those in the present work were employed. The 

reactor was operated at 100% hydrogen chloride and 100% oxygen concentration at temperatures 

of 25, 40, 50 and 60°C. Water saturation of the gas feeds was 0% for the anode and 100% for the 

cathode. The resulting polarization curves are presented in Figure 6-20.

These results present the proof of principle for the direct hydrogen chloride electrolysis with an 

oxygen-depolarized cathode. It is the first time measurements have been presented with operating 

cell potentials below 1 V at a technically relevant current density of 400 mA cm-2 [136]. It is 

important to note that this was obtained at temperatures below 50°C, whereas industrial standards 

operate between 60 and 80°C. The low reaction temperatures and achieved reactor potentials

make this process variant even more attractive for a technical application. 

It was noticed that the polarization curves show three polarization regions analogous to fuel 

cells: the activation, ohmic, and limiting current density regions. The activation region, where 

reaction kinetics determines current density, was observed at current densities below 80 and 100 
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mA cm-2. Afterwards, a region where ohmic losses through the membrane mainly determine 

current density was identified up to values of 320-400 mA cm-2. The limiting current density region 

was observed for all temperatures, starting at current densities ranging from 350 mA cm-2 up to

400 mA cm-2.

Figure 6-20 Reactor polarization curves. Conditions: hydrogen chloride and oxygen concentration: 100%, anodic 
MEA: 0.5 mg cm-2 Pt, 1.0 mg cm-2 Nafion; cathodic MEA: 0.5 mg cm-2 Pt, 0.5 mg cm-2 Nafion. Anode and cathode 
flow rates: 600 ml/s. Cathode feed relative humidity: 100%.

At the moment it is not completely clear which factor is responsible for the limitation of current 

density: mass transport limitation of educts to the electrodes, difficult product removal from the 

catalytic surface, deviation from isothermal conditions, etc. From the polarization curves it can be 

seen that a change of the reactor operation temperature plays a big role in the overall shape and 

extension of the different regions.

For the activation region, a raise in temperature increases the reaction rates by lowering the 

activation overpotentials at both electrodes, resulting in a decrease of the cell potential. For the 

ohmic region the behavior is more complex. For the curves at 25°C and 40°C, the rise in cell 

potential with increasing current density is almost negligible, allowing for a reactor operation at 

potentials below 1 V (0.969 V) up to ca. 350-400 mA cm-2. For higher temperatures, the increase in 

the ohmic region was more pronounced and potentials above 1 V were measured at current 

densities of 360 and 280 mA cm-2, respectively. The limiting current density region was found to 

start at lower current densities for the curves at 25°C and 60°C, while for the ones at 40°C and 

50°C it started at higher values.

6.7.4 Open circuit potential (OCP) analysis

OCP was measured experimentally under zero-current conditions. According to thermodynamics, a 

reversible cell potential of 0.24 V at a temperature of 25°C is expected for this process. 

Nevertheless, negative OCPs in the range of -0.36 and -0.31 V were measured in the reactor 

(Figure 6-21a) at all temperatures [136]. Recalling section 2.3, reversible cell potentials of 0.24, 
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0.23, 0.23, and 0.21 V are expected for temperatures of 25, 40, 50, and 60°C. The difference 

between thermodynamics and measurements is approximately 0.58 V. 

Figure 6-21 Experimental OCP as a function of temperature. Conditions as in Figure 6-20.

One of the reasons for this deviation is the loss caused by the ORR, which is also known from 

several half-cell and fuel cell studies [137]. While the reversible potential for the ORR is 1.23 V, as 

seen in section 2.2 and in literature [38, 138, 139], the maximal measurable OCP from half-cell

experiments lies between values of 0.90 and 1.05 V. These losses are commonly associated to

irreversibilities of the ORR due to a mixed potential from a platinum/platinum oxide catalyst surface 

[45, 124]. Another reason for this was presented by Zhang et al. [137], who pointed out that the 

use of humidified gaseous feeds reduce the effective oxygen concentration, lowering the OCP. The 

behavior of the partial pressure of water with temperature is exponential, and it is considered only 

in some cathode models in literature and in this work, allowing to better estimate the OCP, as the 

experimental values obtained were considerably lower than thermodynamic values. 

An additional reason is the Donnan potential caused by the proton gradient across the 

membrane. It is assumed that the proton concentration at the membrane/anodic CL is dictated by

the dissociation of HCl into chloride and protons. Because the Donnan potential was not measured 

in our setup, it was estimated by means of eq. (2-22).

As shown in eq. (6-46), the potential losses were analyzed in our reactor model, which allowed 

separating the contributions of the anode, cathode, and membrane. Potential losses in the reactor 

were modeled and presented in Figure 6-22. Considering the above mentioned contributions to the 

OCP, the calculated values deviate ca. 60 mV from the experimental values. In Figure 6-22b it is 

observed that the contribution of the proton concentration gradient is of the same magnitude as the 

OCP deviation of the ORR from its reversible potential. This is a very important consideration in 

our system due to the highly different acidic conditions at the membrane boundaries. Even though 

there is still a difference of 60 mV between simulated and experimental data, it can be considered 

as a good first estimation.
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Figure 6-22 Potential losses at 40°C in the a) reactor; b) membrane. Conditions as in Figure 6-20.

6.7.5 Cell potential analysis

The reactor model developed in this work was able to describe the activation and ohmic regions of 

the measured reactor polarization curves, as shown in Figure 6-23. The slope of the ohmic region 

was found to be anomalously small, which could be traced back to an increase of the membrane 

conductivity due to water transport/condensation from the ORR (see section 6.6.3). Even though 

for fuel cells the ORR is also used as the cathodic reaction, such a small slope has not been 

reported. This could be traced back to the influence of HCl in the ionic conductivity of Nafion. 

Higher HCl concentrations in the membrane reduce the ionic conductivity. A higher water flux from 

the cathode to the anode not only improves Nafion conductivity by providing a higher water uptake, 

but also dilutes HCl and thus increases conductivity to a further extent than in fuel cells. 

Figure 6-23 a) Polarization curves considering water condensation and no water condensation in the cathode; b) 
Reactant dimensionless concentration as a function of current density. Conditions as in Figure 6-22.

From the modeling point of view, commonly water condensation is bounded to the mass 

transfer of oxygen to the active sites at high potentials. One of the advantages of the agglomerate 
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model is that it doesn’t require the definition of two-phase flow in order to describe this region due 

to the consideration of the Nafion layer surrounding the agglomerates, which in the case of the 

ORR provides an excellent agreement with measurements [66]. 

In order to visualize the effect of water condensation on the cell potential, in Figure 6-23a 

polarization curves were simulated neglecting and considering water condensation. Quantitative 

agreement between experiments and simulations improves dramatically under consideration of 

water condensation in the industrial relevant current density region. Neglecting water condensation

results in a steeper increase of cell potential than shown by experiments. According to the model, 

the experimentally measured increase in cell potential at current densities above 400 mA cm-2 is

not due to reactant concentration depletion. To support this, the concentrations of educts at the 

agglomerate/CL void boundary were normalized to the concentrations at OCP conditions and 

plotted as a function of current density in Figure 6-23b. It can be seen that reactant depletion 

doesn’t surpass 15 and 28% for the ORR and HClOR respectively. At current densities below 500 

mA cm-2, polarization curves from half-cell investigations still didn’t reach the limiting current 

density region (Figure 5-5, Figure 5-6, and Figure 5-14), hinting to an effect not present in such 

experiments but only in the reactor. It is speculated that non-isothermal conditions in the reactor 

could be the reason, resulting in membrane or CL dehydration at higher current densities due to 

the lack of a supporting electrolyte which could take away the reaction heat produced and keep the 

membrane properly hydrated.

6.7.6 Reactor optimization 

The influence of anode and cathode structural parameters on the rector performance has been 

studied in simulations. This was done because the MEA structure can be easily modified by 

changing the Nafion and platinum loadings, which can be controlled in a readily and reproducible 

manner. From Figure 6-22a it can be seen that the higher potential losses arise from the cathode 

and membrane along the entire cell potential range, which are responsible for about 45% and 41% 

of the total potential losses respectively. MEA structures of the anode and cathode were varied in a 

Nafion content range of 13 to 71%. This was obtained by changing platinum loadings from 0.2 mg 

cm-2 to 2.0 mg cm-2 and Nafion loadings from 0.5 to 2.0 cm-2. 

6.7.6.1 Optimization of the anode structure

Although it was previously shown in Figure 6-23a that the HClOR contributes only with 15% to the 

total potential loss at 400 mA cm-2 and its kinetics is fast, a change in the anodic MEA structure 

represents an easy way to further improve the cell potential. In Figure 6-24, the polarization curves 

for varying anodic MEA structures and a cathodic MEA with a constant composition of 0.5 mg cm-2

platinum and 1.0 mg cm-2 Nafion (55% Nafion content) are presented. The effect of changing the 

anodic Nafion loading was analyzed in Figure 6-24a at a constant platinum loading of 0.5 mg cm-2

and in Figure 6-24b at a constant Nafion loading of 0.5 mg cm-2. It is shown that the maximal 

deviation in cell potential between the best MEA (55% Nafion content) and the worst one (60% 
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Nafion) was 89 mV. The worst performance was shown by the MEA with 60% Nafion, which is 

consistent with results shown in chapter 5.3.2 for the MEA with 0.2 mg cm-2 Pt and 0.5 mg cm-2

Nafion. The difference in performance between MEAs with 13, 23, 55, and 71% was very small

(<10 mV).

Figure 6-24 Polarization curves for a reactor comprising a cathodic MEA with 0.5 mg cm-2 Pt, 1.0 mg cm-2 Nafion
(55% Nafion content) and an anodic MEA with a) constant Pt loading of 0.5 mg cm-2; b) constant Nafion loading 
of 0.5 mg cm-2 . Conditions as in Figure 6-22.

The Nafion content on the cathode side was changed from 55% to 13% and anode structural 

parameters were optimized again, with results presented in Figure 6-25. 

Figure 6-25 Polarization curves for a reactor comprising a cathodic MEA with 2.0 mg cm-2 Pt, 1.0 mg cm-2 Nafion 
(13% Nafion content) and an anodic MEA with a) constant Pt loading of 0.5 mg cm-2 and varying Nafion loadings; 
b) constant Nafion loading of 0.5 mg cm-2 and varying Pt loadings. Conditions as in Figure 6-22.

In this case, the worst performance was still shown by the MEA with 60% Nafion content, but 

the best performance was marginally obtained by the MEA with 71% Nafion content. Recalling the 

catalyst utilization presented in chapters 5.3.2 and 5.3.3, it was shown that at current densities 

below 500 mA cm-2, a higher Nafion loading translates into higher catalyst utilization. It is important 

to mention that higher catalyst utilization doesn’t directly renders considerable current density 
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improvements, but other aspects, i.e. a more cost effective MEA with reduced catalyst loadings per 

current ratios. 

Considering this and results presented in Figure 6-24a, an increase in the anodic Nafion 

loading from 0.5 to 2.0 mg cm-2 delivers more or less the same cell potential reduction as an 

increase in platinum loading from 0.2 to 2.0 mg cm-2. Therefore an increase of the Nafion loading is 

preferred as it represents a lower MEA cost and helps improving the ionic conductivity of the 

anodic CL, which is more prone to lower ionic conductivity due to the use of anhydrous gas as an 

educt.

The performance of a reactor operating with the HClOR and ORR can thus be improved up to 

ca. 80 mV at 400 mA cm-2 by changing the anodic CL composition.

6.7.6.2 Optimization of the cathode structure

From the ORR experiments it was discussed that at a technical current density of 400 mA cm-2

the MEA showing the best performance (35% Nafion content) required overpotentials of ca. 950 

mV. In fuel cell literature [38, 45, 47, 66, 124], overpotentials required to reach such current 

densities range between 400 and 600 mV at 60°C. As can be seen the main kinetic bottleneck is 

the ORR. Results from simulating variable cathodic MEA composition with an optimized anodic 

MEA comprising 0.5 mg cm-2 platinum and 1.0 mg cm-2 Nafion (55% Nafion content) are shown in 

Figure 6-26, where they are compared with experimental data extracted from Figure 6-20.

Figure 6-26 Polarization curves for a reactor comprising a cathodic MEA with 2.0 mg cm-2 Pt, 1.0 mg cm-2 Nafion 
(13% Nafion content) and an anodic MEA with a) constant Pt loading of 0.5 mg cm-2 and varying Nafion loadings; 
b) constant Nafion loading of 0.5 mg cm-2 and varying Pt loadings. Conditions as in Figure 6-22.

In experiments presented in section 5.4.1, Nafion loadings were investigated only in the range 

from 35 to 71% Nafion content, showing that lower values were more suitable for the ORR. 

According to the literature, the ORR shows a maximum performance around Nafion content values 

of 30-35% [38]. Nevertheless, experimental and theoretical work regarding Nafion content are 

0 100 200 300 400
0.3

0.5

0.7

0.9

1.1

C
e

ll 
p

o
te

n
ti
a

l, 
U

 /
 V

Current density, j / mA cm-2

 13%
 23%
 38%
 60%
% (6) Experiments

a)                                                                        b)

0 100 200 300 400
0.3

0.5

0.7

0.9

1.1

C
e

ll 
p

o
te

n
tia

l,
 U

 /
 V

Current density, j / mA cm-2

 38%
 55%
 Experiments



Isaí González Martínez 77

usually done with a fixed platinum loading and varying only the Nafion loading or vice versa. 

Keeping a constant platinum loading allows to reduce the Nafion loading up to the point of 

disruption of the ionic conducting network, which would lead to a very thin CL, as the density of 

platinum is considerably higher than that of Nafion. 

By increasing the platinum loading at constant Nafion loading the same effect will be observed

but the MEA cost would be considerably higher. Therefore, by simultaneously changing both 

loadings it is possible to reach an optimum Nafion content different than 30-35% when comparing 

current densities. The use of mass-normalized currents is discouraged, because as mentioned in 

section 5.3.2, they point out the best catalyst utilization and not precisely the highest current 

density.

From these results it can be observed that the difference in cell potential between a MEA with 

38% and 60% Nafion content is 100 mV, leading to cell potentials of 0.985 and 1.085 V 

respectively. A further increase of the platinum loading leads to a decrease in Nafion content, 

yielding an optimum at 13% Nafion with an additional cell potential reduction of 82 mV at 400 mA 

cm-2. This MEA consists of 2.0 mg cm-2 platinum and 0.5 mg cm-2 Nafion. Increasing the catalyst 

loading directly increases exchange current density allowing for lower potentials in the activation 

region without a considerable increase of the CL thickness, which could lead to reactant depletion 

in the CL. Therefore, choosing the right MEA structure could lead to a reduction in cell potential of 

up to 182 mV. 
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7 Economic Analysis

In this section, an estimation of the economic impact of this novel chlorine recycling process has 

been carried out. This analysis considers only the energetics of the electrochemical reactor. It 

should be kept in mind that more detailed analysis should also include the energetic analysis of 

pre- and post-processing steps to the electrochemical reactor (feed purification, compression, 

pumping, product separations, etc.).

7.1 HCl recycling processes: electrolyzer

The most important cost indicator of an electrolyzer is the specific energy consumption per ton of 

chlorine, � � � � , which is described by eq. (7-1):

� � � �
=
� � �

� � � �

(7-1)

where � � � � stands for the molecular weight of chlorine and � for the reactor potential. Considering 

that the process studied in this work can be operated at cell potentials as low as 971 mV and a 

technical current density of 400 mA cm-2, a specific energy consumption of 735 kWh ton Cl2
-1 can 

be calculated. In comparison to values obtained for other available process for chlorine recycling, 

the energy savings considering only the electrolyzer lie around 50%.

Table 7-1 Cost comparison of the processes for Chlorine production from HCl recycling

Parameter Units
Bayer-Uhde-

Hoechst

Dupont-

Denora

Bayer-

Uhdenora
This work

Typical cell potential V -2.00 -1.60 -1.35 -0.97
1

Typical current density A m
-2

4.00 10.00 4.00 4.00

Energy consumption kWh/ton Cl2 1513 1211 1021 735

Cost
2

€/ton Cl2 7.57 6.05 5.11 3.67

Energy saving
3

% 0% 20% 33% 51%

1
Values are calculated for 60°C, 1M HCl or 101.3 kPa 

2 
The energy cost associated to generate a ton of Cl2 was calculated employing an energy value of 5€ MWh

-1
[9].

3 
Compared to the industrial standard process, the Bayer-Uhde-Hoechst process

Considering that product gas stream of the process studied in this work consists mainly of 

unreacted hydrogen chloride, chlorine, and water, a separation scheme has to be developed.

Commonly, gas washing with water is employed to absorb unreacted hydrogen chloride due to its 

affinity to absorb as hydrochloric acid and the low chlorine absorption due to the acidic pH. This 

would yield hydrochloric acid, which is not desired as unreacted hydrogen chloride could be 

recirculated to the reactor. In case gas washing is employed as a separation method, a liquid HCl 

electrolysis unit can be placed after the hydrogen chloride reactor, as done for the Dupont-Denora 

process in order to avoid more complex separation alternatives such as gas absorption [5], which 

only work at considerably low hydrogen chloride concentrations (<10%). With this consideration, 
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total separation costs should not differ much between the four processes, as they all employ the 

same principle with the same components in the gas stream, just with different hydrogen chloride 

proportions [5].

Another possibility is to implement the separation scheme employed by the DuPont-DeNora 

process [140], in which the product gas stream is first dried with concentrated sulfuric acid, then 

compressed to 850 kPa and cooled down. The liquefied mixture is then distillated at 2400 kPa, 

obtaining hydrogen chloride and inerts from the column’s top and liquefied chlorine from the 

bottom. The equipment requirements and utility consumptions for this separation scheme are 

considerably higher than those for the gas stream washing with water, thus rendering the choice of 

this separation scheme less economically attractive.  

7.2 Study case: diisocyanate production 

In order to estimate the possible energy savings related to the use of the process investigated in 

this work, a study case was chosen: the isocyanate production. This process is the second largest 

industrial process employing chlorine with a 29.4% industry share in Germany [3]. Chlorine reacts 

with carbon monoxide to produce phosgene, which later reacts with amines to produce isocyanate 

and hydrogen chloride as a byproduct [141]. 

The two most commonly used isocyanates are methylenediphenyl diisocyanate (MDI) and 

toluene diisocyanate (TDI), which are employed as precursors for polycondensation reactions to 

produce polyurethanes, polyureas, polyamides, and polyimides. In this process all chloride 

employed is transformed into hydrogen chloride, which is poisonous and corrosive [142], yielding 4 

moles of HCl per mole MDI or TDI.

� � (� ) + � � � ( � ) → � � � � � ( � ) (7-2)

� � � � � ( � ) + � − � � � → � − � = � = � + 2 � � � (� ) (7-3)

Hydrogen chloride waste can be reduced by using the oxychlorination reaction to generate 

EDC:

� � � � ( � ) + 4 � � � (� ) + � � (� ) → � � � � � � � (� ) + 2 � � � (� ) (7-4)

which can be thermally cracked to VCM and further recycled to PVC. Nevertheless, some 

hydrogen chloride is still left unreacted, which is commonly absorbed in water to produce 

hydrochloric acid due to the big gas volumes employed. This reaction is limited by equilibrium with 

a maximal HCl concentration of about 22 wt.%. The hydrochloric acid market is already saturated 

and large areas are required for its storage, as the plastic industry demand grows faster than the 

one for hydrochloric acid. HCl disposal is commonly done by neutralizing it to sodium chloride with 

caustic soda. Nevertheless, salt content in waste water dumped in industrial sewer systems is 

highly restricted in Europe [143].

The European yearly production capacity for MDI and p-MDI in 2013 was estimated to be 2.55 

million tons [144, 145]. Because of the high amount of hydrogen chloride produced, commercial-
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grade hydrochloric acid is manufactured and considered a desired byproduct. Only around 14% of 

all produced HCl is considered as waste and has the potential of being recycled to chlorine.

Currently, several processes for the electrochemical conversion of HCl to chlorine exist, as 

shown in Table 1-1, where it is shown that the process studied in this work offers energy 

consumptions considerably lower than other available options (Table 7-1). Because of the lack of 

complete polarization curves for the other processes, no further insight into the variation of 

operational potential with current density can be given. 

The operational costs for all available electrochemical processes for chlorine recycling are 

shown as a function of � � , the percentage of HCl considered waste from the MDI and TDI industrial 

segments that could be recycled for electrolysis. It is observed that the Dupont-Denora process 

and the process studied in this work show the lowest operational costs.

Nevertheless, considering that oxygen evolution occurs at the anode when HCl concentration 

is too low or impurities present in hydrogen chloride or HCl oxidize at the anode, current efficiency 

is expected to be lower than 100%. Current efficiency is defined as the amount of current actually 

employed for the HClOR reaction. This parameter was investigated by employing different values 

of current efficiency for the process studied in this work and the Dupont-Denora process as a 

function of Fr (Figure 7-1b). 

Figure 7-1 Yearly operational costs for the electrolysis of a percentage of total HCl production considered waste in 
the MDI and TDI industrial segments. a) All processes; b) this work at different current efficiencies.

It was found that our process provided energy savings against all other processes up to 

current efficiencies of 60%, where it overlapped with the curve of the Dupont-Denora process. 

Therefore, it is safe to say that the advantages offered by the process investigated in this work are

robust regarding energy efficiency, which can be traced back to the low cell voltages measured. 

a)                                                                          b)

0 10 20 30 40 50
0

5

10

15

20

25

30

35

E
le

c
tr

o
ly

z
e

r 
o

p
e

ra
tio

n
a

l c
o

s
t,

 O
c

/ 
M

io
. 

E
u

ro

Percentage of waste HCl production to recycle, F
r
 / %

 Bayer-Uhde-Hoechst
 Bayer-Uhdenora
 Dupont-Denora
 This work

0 10 20 30 40 50
0

5

10

15

20

25

30

35

E
le

c
tr

o
ly

z
e

r 
o
p

e
ra

ti
o
n
a

l c
o

s
t,
 O

c
/ 
M

io
. 
E

u
ro

Percentage of waste HCl production to recycle, F
r
 / %

 70%
 80%
 90%
 100%
 Dupont-Denora



Isaí González Martínez 81

8 Conclusions

In this work a novel chlorine recycling process based on the Deacon stoichiometry and using an 

oxygen-depolarized cathode was studied. In order to gain better understanding of the HClOR and 

ORR kinetics, these two reactions were studied under half-cell conditions on technical MEAs. For 

the HClOR, the effects of different catalysts, temperatures, and concentrations were studied. For 

Pt/C supported catalysts, the Nafion content was investigated in the range of 25-60°C between 13-

70 wt.%. It was found out that the HCl oxidation at industrially relevant current densities is viable 

on both platinum and pure carbon electrodes, whereas the latter one operates at considerably 

higher overpotentials. Analysis of the reaction order and Tafel slopes showed that the most viable 

mechanism to describe the gaseous HCl oxidation was a Heyrovsky-Tafel mechanism under

Temkin conditions, which is in accordance to the known behavior of chlorine evolution on platinum. 

It was found out that to optimize the MEAs both the Nafion content as well as the Nafion 

loading have to be considered. For the HCl oxidation an optimum of ca. 60 wt.% Nafion was 

obtained. This value is considerably higher than values reported for other gas phase reactions (i.e.

ORR). It was hypothesized that the stronger absorption of HCl compared to oxygen absorption in 

Nafion, can result higher mass transfer rates to the active sites, thus allowing for higher optimal 

Nafion loadings. For the ORR optimal values below 38 wt.% were found in accordance to results in 

literature.

An agglomerate model was developed for the HClOR in which the diffusion and conductivity 

properties of Nafion were correlated to experimental data available in literature. This was required

because according to the agglomerate model, reactants must absorb and diffuse through the 

polymer electrolyte before reaching the active sites. This model allows the use of more structural 

parameters than other macroscale models (thin film and porous models), which result in a better 

description of current density at different conditions and MEA compositions. A membrane model 

was developed to describe species transport through the membrane (diffusion and electroosmotic 

drag) and conductivity of Nafion in the presence of HCl. This allowed the calculation of potential 

losses and concentration profiles through the membrane. 

The models for the cathode, anode, and membrane were combined into an isothermal, 1-

dimensional model for the complete reactor by adapting boundary conditions. All simulations were

performed using kinetic and structural parameters estimated from measurements in the cyclone 

flow cell or literature correlations (especially transport and conductivity properties). Experimental 

data from the complete reactor, obtained by our partners in the Technical University Clausthal,

showed that the OCP lies around 600 mV away from the predicted reversible cell potential values. 

This difference could be partially explained considering the intrinsic losses observed for the ORR 

(as confirmed in fuel cell literature) and the consideration of the Donnan potential. This potential is 

presumed to play an important role in the process analyzed due to the very different pH values at 
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the anode and cathode. Polarization curves showed activation, ohmic, and limiting current density 

regions. The ohmic region was characterized by a very low slope, which was traced back to water 

condensation in the cathode. Water was transported from the cathode to the anode through the 

membrane due to the high concentration gradient between them, overwhelming the osmotic drag

from the anode to the cathode. This water flux improved the membrane conductivity by increasing 

the water content in Nafion as well as by diluting HCl, thus allowing for operation between 200-400 

mA cm-2 with virtually no cell potential variation. 

The reactor showed stable operation up to current densities of 400 mA cm-2, after which the 

potential dramatically increased. The developed model showed good cell potential prediction 

capabilities only up to 400 mA cm-2. It is hypothesized that the effects taking place above this 

current density are presumably caused from temperature changes in the MEAs and/or membrane,

and therefore are out of the capabilities of the presented model. A global optimization for the 

electrode structure of the MEAs in the complete reactor was carried out. It was found that Nafion 

contents between 60 and 70 wt.% were optimal for the anode while for the cathode MEAs with 

13% Nafion were found to yield the best performance. 

The specific energy consumption per ton of chlorine for this investigated process is around 

50% lower than that of the commercial standard process, making it a viable and attractive option to 

recycle hydrogen chloride. 
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9 Outlook

The process investigated in this work showed great potential as a new technology for chlorine 

recycling at mild conditions and with lower energy consumption than state-of-the-art industrial 

processes. It was the first time that cell potentials under 1 V were reported for platinum catalysts 

for the chlorine evolution reaction.

Simulation results with the 1-dimensional model developed in this work have shown that due 

to the isothermal nature of the model, the exothermal processes in the reactor could not be 

properly described. Energy balances have to be formulated and solved simultaneously with the 

mass balances to describe the temperature profile in the reactor at current densities above 400 mA 

cm-2. The water balance and management was found to be of crucial importance in this system.

The water uptake and ionic conductivity of Nafion are strong functions of temperature, and the 

coupling of these two phenomena must be experimentally determined at temperatures between 25 

and 80°C in order to corroborate the model results. 

One of the main drawbacks to analyze the HClOR is that physical data on the HCl-Nafion and 

hydrogen chloride-Nafion system are scarcely reported in literature. Data such as the ionic 

conductivity of Nafion in the presence of HCl, diffusion coefficient of HCl in Nafion, HCl uptake of 

Nafion, etc., have major importance for the validity of predicions made by the model. Therefore, 

measurements should be carried out in order to validate physical data employed in this work.  

Electrochemical impedance spectroscopy experiments in order to obtain the effective ionic 

conductivity as a function of HCl concentration could be carried out. The HCl uptake of Nafion 

could also be gravimetrically determined under controlled conditions. The diffusion coefficient of 

HCl through Nafion at different water contents should be experimentally determined, as not enough 

literature information about the topic is available. This could be done in a setup similar to the 

cyclone cell, where the concentrations of species in both compartments can be carefully regulated 

and a well defined membrane area can be used. With this, the permeation of HCl from one 

compartment to the other could be measured by titration.

A further insight into the material selection for the cell components should be done, from which 

possibly better membrane materials (thinner and not suceptible to aqueous HCl or with better 

water uptake capabilities) could be found. The catalyst selection should also be carefully revised, 

as several materials are active for the HClOR and could provide cheaper options compared to 

platinum. The deactivation of platinum for long term operation as well as constant shut-offs should 

be investigated in order to come closer to a reliable technical application.
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10 Appendix

10.1 Thermodynamic properties

10.1.1 State properties

Due to the fact that the enthalpy, eq. (10-1), and the entropy, eq. (10-2), are both functions of 

temperature, the standard Nernst potential can be calculated at any temperature with help of the 

Shomate equations [146]. The parameters for these equations are presented in Table 10-1.

� (� ) = � � + � � +
�

2
� � +

�

3
� � +

�

4
� � −

�

�
+ � − � (10-1)

� (� ) = � � � (� ) +
�

2
� � +

�

3
� � −

�

2 � �
+ � (10-2)

Table 10-1 Thermodynamic parameters for the Shiomate equations [146].
Parameter � � � (� ) � � � � � � (� ) � � � (� ) � � � �

A 32.124 33.051 -203.606 30.092 31.322 28.986

B -13.458 12.229 1523.290 6.833 -20.235 1.854

C 19.869 -12.065 -3196.413 6.793 57.866 -9.647

D -6.854 4.385 2474.455 -2.534 -36.506 16.635

E -0.050 -0.159 3.855 0.082 -0.007 0.000

F -101.621 -10.835 -256.548 -250.881 -8.903 -8.672

G 228.687 259.029 -488.716 223.397 246.795 226.417

With help of these equations, the Gibb’s energy was calculated and with help of eq. (2-13) the 

reversible thermoneutral and cell potentials could be obtained. Knowing the change in Gibbs 

energy allowed calculating the temperature dependence of the reversible electrode potentials, eqs.

(2-17) and (2-18).

For the case of liquid HCl there is no Shomate equation. Therefore, the heat capacity of 1M 

HCl was taken from Atkins and Paula [147] as a value of -136.4 J mol-1. The specific heat capacity 

of 1M HCl was taken as 3.966 J g-1 K-1 and considered constant in the temperature range from 25-

80°C.

� � � � = � � � + � � � � � ( � − 298.15) (10-3)

where the standard enthalpy of formation Δ � � is -167.2 kJ mol-1. The entropy of HCl was calculated 

in a similar fashion employing a value of 56.5 J mol-1 K-1 for the entropy of formation Δ � � .

� � � � = � � � + � � , � � � � � �
�

298.15
� (10-4)
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10.1.2 Critical properties

The critical properties are needed for the calculation of the diffusion coefficients and viscosity 

of the different species and mixtures analyzed. These data were obtained from Perry [108] and

Chen et al [148]. This data is presented in Table 10-2.

Table 10-2 Critical properties 
Property Symbol Units � � l � � � � � � � � � �

Critical pressure � � atm 82.6 77.0 50.4 34.0 220.6

Critical temperature � � K 324.6 417.2 154.6 126.2 647.0

Critical volume � � cm
3

g
-1

89.5 124 73.4 89.5 56.0

Lennard-Jones 2-2 Pot. � / � K 360.0 357.0 113.0 91.5 356

10.2 Vapor pressure and liquid-vapor equilibrium correlations

10.2.1 Vapor pressure of water

For the calculation of the vapor pressure of water, the following modification of the Goff-Gratch 

equation was employed [149].

� � � �
� = � � � + � � � + � � � + � � � + � � + � (10-5)

This equation provides better accuracy than the usual Antoine equation at high temperatures

[150].

Table 10-3 Coefficients for eq. (10-5)
A B C D E F

2.08232·10
-11

-2.48024·10
-8

1.17673·10
-5

-2.7667·10
-3

-2.7667·10
-3

-1.44700·10
1

10.3 Fugacity and activity models 

10.3.1 Activity of gases

To calculate the activity of gases, (2-15), the fugacity of the gas, eq. (2-16), should be known. In 

order to implement the real behavior of gases in the modeled temperature (25-80°C) and pressure 

(1-2 bar) ranges, the compressibility factor � � approach was employed. � � is calculated according 

to the Stryjek-Vera modification to the Peng-Robinson equation, which takes into account polarity 

of the molecules through the acentric factor ω� [151].

� �
� − (1 − � ) � �

� + (� − 2 � − 3 � � )� � − ( � � − � � − � � ) = 0 (10-6)

where the factors A, B, and k area defined as:

� = 0.457235
� �
� �
�
� 1 + � � 1 − � � � � �

�
(10-7)

� = 0.077796
� �
� �

(10-8)
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� = 0.37464 + 1.54226 � � − 0.26992 � �
� (10-9)

The subindex r stands for the reduced properties and ω� for the acentric factor, which are 

presented in Table 10-4. The required critical properties can be obtained from Table 10-2.

Table 10-4 Peng-Robinson-Stryjek-Vera parameters 
Symbol Units � � l � � � � � � � � � �

� - 0.5528 0.4858 0.408 0.4313 0.8732

� � - 0.1200 0.0700 0.0200 0.0400 0.3400

10.3.2 Activity of HCl in water

Because HCl dissociates into protons and chloride ions in aqueous solutions, its mean activity 

coefficient is defined as the geometrical average of the proton and chloride ion activity [152]:

� � � �
± = � � � � � � � � (10-10)

Experimental data for the HCl-water system was reported by Cerquetti et al. [153], who 

measured the activity coefficients in the range from 25 to 90°C. A correlation for the mean molal 

HCl activity coefficient as a function of either temperature or molality was given. It was found that 

� � � �
± is a strong function of temperature, especially at high concentrations and low temperatures, as 

shown in Figure 10-1a. 

Figure 10-1 a) HCl activity as a function of HCl weight fraction at different temperatures, based on data from 
[153]; b) parameters for the activity coefficient of HCl eq. (10-11).

In order to use this data in the developed model, the experimental data of the logarithm of the 

mean HCl molal activity coefficient was correlated as a function of both, temperature and HCl 

molarity (M). This change was made because molarity is directly calculated by the model. It is 

important to note that the dependency of � � � �
± on concentration diminishes at higher temperatures.

� � � ( � � � �
± ) = � � � � �

� + � � � � � + � + � � � � � �
� + � � � � � + � � � � + ( � � � � �

� + � � � � � − � )� �
� (10-11)
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10.3.3 Activity model for HCl in Nafion

Considering that recast polymers resemble undercooled liquids [132], the model can be employed 

for mobile species within an immobile polymer backbone. The general formulation for activity is 

expressed in eq. (6-37). In this equation the molar volume of a single unit of Nafion � � is taken as

5.6·10-5 mol m-3 and the number of single chain units of Nafion between cross-links Nm as 5 [132].

The Flory-Huggins activity model requires the interaction parameters χ between water, HCl, 

and Nafion. Parameters for water-Nafion interactions have been reported by several authors [127, 

132], but not for HCl-Nafion. χ is zero for species similar to the membrane polymer, negative if both 

species attract each other and positive if both species repel each other. 

The water-Nafion and HCl-Nafion parameters were estimated with swelling experiments as 

presented by Schultz [132]. Nafion 117 membranes were pretreated according to chapter 4.2

substituting the catalyst inks with pure water. This was done to obtain the same internal Nafion 

structure as in MEAs employed for the HClOR. The dry Nafion membranes dimensions � � � �
� � �

were 

recorded. Then the membranes were immersed in pure water and HCl solutions of known 

concentrations (32 wt.%, 1M) and left to equilibrate for two days. The membranes uptake a definite 

amount of solution, whose volume, � � � �
� � , was determined by measuring its swelled dimensions. 

Subtracting the ratio of the solution volume uptake to the dry Nafion membrane volume from unity, 

results in the volume fraction of the Nafion backbone when fully swollen.

This method considers that when the membrane is in equilibrium with the surrounding solution,

the chemical potential inside and outside the membrane are identical. If the solution is a pure 

solvent, as in pure water, it holds that the activity of the solvent outside and inside the membrane is 

equal to one. On the other hand, HCl it is not available in pure form but as a water solution. 

Therefore, the activity of HCl was determined according to the equations presented in Appendix 

10.3.2. The results from the swelling experiments are presented in Table 10-5.

Table 10-5 Swelling experiment results at 25°C.

Solution � � � �
� � � � � � �

� �
� �
� � � ϵ� � � � � ,�

Water 69.5 130.9 0.47 0.53 0.7686±0.0381

30% HCl 72.0 128.7 0.35 0.65 -1.1038±0.0436

The non-ideality parameter � � � � , � was determined according to the following equation:

� � � � , � =
1

� �
�
� − � � � � � � � � − � � � 1 −

� � � � �

� � �
� −

� � � � � � �

�
�

2 � � � �
� (10-12)

From which a value of 0.7686 was obtained. Schultz [132] reported a value of 0.7177, showing 

good agreement with the calculated value. � � � � , � exhibited a change of ca. 3% over the 

temperature range investigated in this work (25-60°C). The non-ideality parameter χ � � � , � cannot be 
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determined directly as the one from water due to the dilution of HCl, leaving it as a function of HCl 

activity and the non-ideality parameter χ � � � , � � � .

� � � � , � =
1

� �
�
� � � (� � � � ) − � � � � � 1 −

� � � � �

� � � � �
� − � � � � , � � � � � � �

� − � � � 1 −
� � � � �

� � �
� −

� � � � � � �

�
�

2 � � � �
� (10-13)

As presented in Appendix 10.3.2, the activity coefficient of HCl in water � � � � is a strong 

function of both temperature and HCl concentration, feature also shown by χ � � � , � according to eq. 

(10-13). Therefore in simulations presented in this work, the non-ideality parameter � � � � , � was 

calculated as the average between the value at the anode side (high HCl concentrations, values 

between -1.0 and -0.1 depending on temperature) and the cathode side (negligible HCl 

concentration, value of 0.7 regardless of temperature). These results are in accordance to data 

presented by Balko et al. [17] in which an increasing HCl concentration reduced the solvent activity 

and the overall water content of the polymer electrolyte membrane.

� � � � , � � � =
1

� � � �
� � � � ( � � � � ) − � � � � � 1 −

� � � � �

� � � � �
� � (10-14)

With these parameters, activities for HCl and water in the Nafion membrane were calculated.

10.3.4 Activity of protons in Nafion

As reported in literature [154, 155], the proton activity in Nafion equilibrated with water ranges from 

0.8 up to 2.8.

10.4 Correlations to determine effective properties 

Transport coefficients and conductivities must be corrected for the volume fraction of the phase in 

which the corresponding transport phenomena take place: the void or the solid phase, eq. (10-15):

� �
� � �

=
� � � �
� �
� (10-15)

where τ stands for the tortuosity of media � and � the property of component � to correct. 

10.4.1 CL

Different correlations for tortuosity have been proposed in the literature to account for effective 

properties in the CL. Shen and Chen [70] briefly reviewed the most common correlations, in which 

the most important are the ones from:

a) Bruggeman: Empirically developed for non-overlapping packed spheres. In porous media, 

its validity has been experimentally shown at porosities above 0.6. It doesn’t consider contact 

between spheres.

� � =
1

� � �
(10-16)

b) Maxwell: Developed for randomly ordered packed spheres and the calculation of diffusivity. 

The contact between spheres is considered and is valid for low and medium porosity values. 
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� � =
3 − � �

2
(10-17)

c) Beekmann: Developed through Monte-Carlo simulations of randomly packed and branch-

connected media. Its validity is not bounded by any porosity value.

� � =
� �

1 − � (1 − � � )� (10-18)

The Bruggeman correlation is the most widely used correction in CL modeling because it 

corresponds to the physical description of the CL being composed by an arrangement of round 

agglomerates. Due to its simplicity it has been used even at low porosity values. The Beekman 

correlation takes into account the contact pathways between particles and not just its volume 

fraction, yielding lower values for the effective properties in accordance with experiments [45, 156]. 

The Maxwell correlation overestimates effective diffusion in comparison with the other two 

correlations in the entire porosity range. Due to its irregular nature and typical porosity values (0.1-

0.4 [76, 80, 91, 96, 157-160]), none of the correlations fit CL experimental data completely. 

Therefore, due to its simplicity the Bruggeman correlation was employed in this work to correct 

diffusion coefficients.

10.4.2 GDL 

Even though the Bruggeman correlation has been widely employed for the GDL [149], the GDL

internal structure is hair-like, thus rendering its use as physically incorrect. In order to properly 

describe connected hair-like structures percolation theory was employed, which takes the form of:

� � = �
� � �

� � � � − (1 − � � � )
�

�

(10-19)

where � � � is the threshold porosity of the media (taken as 0.89) and n is an empirically determined 

coefficient. This correlation gives lower effective property values as the Bruggeman correlation as 

the tortuosity in the GDL is greater than in the CL.

10.5 Diffusion coefficients

The following physical properties are used in all modeled domains and were corrected for the 

different media porosity by means of the corresponding empirical correlation, Bruggeman or

percolation theory.

10.5.1 Binary diffusion coefficient of gases

The binary diffusion coefficient was calculated according to the Chapman-Enskog kinetic theory of 

gases [66, 97, 161, 162], which considers that molecules are spherical, there is no interaction 

between molecules except when they collide, molecules have no polarity, and collisions between 

molecules are elastic. This results in eq. (10-20) [66, 97, 161, 162].



Isaí González Martínez 90

� � � =
1.86 ∙ 10 � � �

�
�� �
� � � + � � �

� � � � � �

� � � �
� � �

(10-20)

with P as the pressure, σ� � the collision diameter, MW� the molecular weight, and Ω� the collision

integral. In order to describe the diffusion of polar molecules correctly, such as water and 

hydrochloric acid, a correction to the collision integral is used according to Othmer und Chen [148, 

163], where k stands for the Boltzmann-constant and ε � � for the Stockmayer Potential [164], which 

includes the effect of the dipole moment [164]. 

� � =

⎩
⎪
⎨

⎪
⎧

1.47
�
� � �

� � �
�

� � . � �

� � �

� � �
< 2.5

1.07 �
� � �

� � �
�

� � . � �
� � �

� � �
> 2.5

(10-21)

10.5.2 Diffusion coefficient in and of a gas mixture

In order to calculate the diffusion coefficient of a species in a mixture of three or more components 

(i.e., when using dilution with nitrogen in both electrodes), the binary interactions between species 

must be averaged by its mole fractions according to [165]:

� � =
1 − � �

∑
� �
� � �

�
� � �
� � �

(10-22)

The binary diffusion coefficients as a function of temperature are given in Figure 10-2.

Figure 10-2 Binary diffusion coefficients as a function of temperature. 
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10.5.3 Diffusion coefficient in Nafion

There is very little information about the diffusion coefficient of HCl through Nafion, being the 

experimental data from Schwitzgebel and Endres [166] the most reliable. Their data was adjusted 

to the following modified Arrhenius-like correlation in the range of 25-70°C:

� � � �
� � �

= 4.54 ∙ 10 � � � � � � −
25000

� �
� + 3.00 � (10-23)

For the diffusion coefficient of water in Nafion, correlations from different authors were 

compared [68, 112, 134] to obtain the activation energy and preexpoential factor. For the water 

content dependence the correlation presented by Nguyen was taken as a basis [167]:

� � � �
� � �

= (0.033 � + 0.575) ∙ 1.516 ∙ 10 � � � � � � −
16250

� �
� (10-24)

It was assumed that the diffusion coefficient of chlorine in Nafion was equal to that of oxygen, 

as both molecules are non-polar and have similar molecule sizes (ca. 4.4 and 3.0 Å, respectively

[168]). 

According to the Onsager relationship, in order to simulate the simultaneous transport of 

protons, water, and HCl in the membrane, three different binary diffusion coefficients are required. 

For the diffusion of protons in HCl, data from Bertagnolli et al. [169] at 25°C was correlated. This 

correlation was extrapolated to temperatures above 40°C by means of the Einstein-Stokes 

equation, based on the relation of viscosity with temperature. The reference temperature is taken 

as 25°C.

� � � � , � � = 2.426 ∙ 10 � � � � � (−6.343 ∙ 10 � � � � � �
� ) �

�

� �

� �
�
� (10-25)

Harpst et al. [170] investigated the diffusion coefficient of HCl in water and found out that it 

follows a logarithmic decay at molarities higher than 0.05. 

� � � � , � � � = [4.205 ∙ 10 � � � � � ( � � � �
� ) + 2.985 ∙ 10 � � ] �

�

� �

� �
�
� (10-26)

For the diffusion coefficient of protons in water, Chen et al [171] reported their transport 

proceeds by means of Grotthus and en masse diffusion. The correlation they presented is 

temperature dependent:

� � � � /� � = 2.397 ∙ 10 � � � � (� ) − 1.318 ∙ 10 � � − [2.397 ∙ 10 � � � � (� ) − 1.318 ∙ 10 � �

−(2.117 ∙ 10 � � � � � − 2.017 ∙ 10 � � � � � + 6.409 ∙ 10 � � � − 6.761 ∙ 10 � � )] ∙

� � � � −
�

� . � � � � � .� � �
(10-27)

10.6 Viscosity

10.6.1 Viscosity of single gaseous species

The dynamic viscosity of non-polar gaseous species is calculated according to the Chapman-

Enskog theory, valid up to pressures below 2.5 times the reduced pressure [164, 172, 173]. 
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� � =

⎩
⎪
⎪
⎨

⎪
⎪
⎧ 34 ∙ 10 � � ∙ � �

� . � � ∙ � �
�

�
� ∙ � �

�
�

� �

�
�

� � ≤ 1.5

17.78 ∙ 10 � � (4.58 ∙ � � − 1.67)
�
� ∙ � �

�

�
� ∙ � �

�
� ∙

� �

�
�

� � > 1.5

(10-28)

For polar gases a correction proposed by Hyun, based on the theorem of corresponding states 

[172], is employed. Eq. (10-29) is valid for molecules with hydrogen bridge bonds up to 2 times the 

reduced pressure, where T� is the reduced temperature, Z� the critical compression factor, MW� the 

molecular weight, P� the critical pressure, and T� the critical temperature. 

� � =
10 � � (7.55 � � − 0.55) � �

�
�
� � �

�

�
� � �

�
�

� �

�
�

(10-29)

10.6.2 Viscosity of a gaseous mixture

The mixture viscosity is necessary to determine the HDL thickness, given the fact that represents 

the cohesion and flow capability between molecules [174]:

� � � � = �
� �

1 +
1
� �
∙ ∑

� � � 1 + �
� �
� �
�

�
�
�
� � �

� � �
�

�
�
�

�

2√2 � 1 +
� � �

� � �
�

�
�

�
� � �
� � �

�

� � �

(10-30)

A particularity and advantage of this equation is that no density or diffusion coefficient is 

needed, leaving viscosity as a function only of temperature and pressure.

10.6.3 Viscosity of aqueous solutions

In order to employ the Einstein-Stokes relation to estimate diffusion coefficients of aqueous HCl at 

different temperatures, the viscosity of HCl is needed. Experimental data from Solvay GmbH [175]

was correlated for a concentration range from 5 to 38 wt.% and temperatures from 25 to 80°C. 

� � � � = (� � �
� + � � �

� + � � � + � ) � � � �
� + (� � �

� + � � �
� + � � � + � ) � � � � + ( � � �

� + � � �
� + � � � + � ) (10-31)

The viscosity of water is given by the following equation [168]:

� � � � = 1.68 ∙ 10 � � � � � � � �
� � . � � (10-32)

Table 10-6 Parameters for eq. (10-31).
Coeff. Value Coeff. Value Coeff. Value

A -2.33·10
-8

F -1.91·10
-6

K -7.75·10
-5

B 5.64·10
-6

G 1.00·10
-4

L 2.51·10
-3

C -3.69·10
-4

H -7.13·10
-4

D 1.18·10
-2

I -4.04·10
-9

E 8.69·10
-9

J 9.61·10
-7
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10.7 Nafion water content

Nafion has the capacity to uptake water molecules due to its physical (porosity) and chemical 

nature (sulfonic groups). Water uptake � � � � has been described as a function of water 

concentration and its physical state in literature [18, 111, 112, 134, 176]. Alberti and Zawodzinski 

measured Nafion isotherms up to 80°C and assumed their validity up to glass-transition 

temperatures, ca. 130°C [18, 176]. Hinatsu showed different � � � � were achieved at different 

temperatures [111], so based on his experimental data eq. (10-33) was correlated.

� � � �
� = �

−1.32 ∙ 10 � � � � + 1.36 ∙ 10 � � � � − 4.52 � + 500.30 � � � � � �

3.64 ∙ 10 � � � � − 1.67 ∙ 10 � � � + 23.79 � � � � � � �
(10-33)

This correlation is valid from 25 to 80°C and a water activity of unity. As it can be observed, 

water uptake is twice as much for Nafion membranes equilibrated with liquid water as for 

membranes equilibrated with vapor. However, � � � � is also a function of water activity, which is 

unity for liquid water and variable for vapor (� � � � � /� � � �
� ). � � � � shows a small increase at low 

activities and a drastic increase at activities above 0.6. This can be explained by the hydrophobic 

backbone of Nafion, which repulses water, and the hydrophilic sulfonic groups, which are easily 

solvated and therefore attract water [18]. At low water activities not much water is absorbed by 

Nafion due to the repulsion due to the hydrophobic backbone. Nevertheless, when the water 

activity is high enough to overcome this repulsion, water uptake increases drastically, as 

represented in eq. (10-34):

�
� � �

� � � � = 36.01 � � � �
� − 39.85 � � � �

� + 17.81 � � � � + 0.04 (10-34)

Eqs. (10-33) and (10-34) were combined yielding:

�
� � �

� � � � =
� � � � �

� ∙ �
� � �

� � � � �

7
(10-35)

10.8 Density

10.8.1 GDL and catalysts

The density of the carbon cloth employed as GDL ranges between 480 and 520 kg m-3 [62, 177]. 

Platinum has a density of 21450 kg m-3 [108], while the density of Vulcan XC72R lies between 1.75

and 2.10 kg m-3 [66, 97, 108-110]. The density of these three components shows a very little 

dependence of temperature, less than 1% for temperature changes of up to 50°C. 

10.8.2 Nafion

Nafion density is dependent on the water uptake λ, as water is uptaken by Nafion’s structure. 

Another factor influencing Nafion density is the membrane preparation: if membranes are

protonated with acids or with salts [45, 112, 178]. The choice of drying temperature also influences 

density, as higher temperatures result in higher Nafion densities [68, 179]. Experimental data of 
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Nafion density was correlated as a function of water uptake for values of λ from 0-22 and 

temperatures up to 80°C.

� � � � = −3.96 � � + 2144.7 − 19.58 � (10-36)

10.8.3 Hydrochloric acid

The density of liquid HCl is required to calculate mass and mol fractions from molarity values. 

According to experimental data from Perry [168] and Solvay GmbH [175], eq. (10-37) was 

correlated for HCl weight fractions with respect to liquid water � � � � from 0 to 38% and 

temperatures from 25 to 80°C.

� � � � = (5.357 ∙ 10 � � � �
� − 9.928 ∙ 10 � � � � + 516) � � � � +

(−2.70 ∙ 10 � � � �
� − 1.35 ∙ 10 � � � � + 1 ∙ 10 � � )

(10-37)

10.8.4 Water

The density of water in this work is based on the work of McCutcheon et al. [180]. Its value is 

required for the calculation of the water content in Nafion:

� � � � = � 1 −
( � � − 4) �

119000 + 1365 � � − 4 � �
� � (10-38)

10.9 Electric conductivity

10.9.1 GDL

The GDL electrical conductivity depends on material properties, such as the carbon type, its 

internal structure, polymer binders, thermal handling, etc. Toray paper and carbon cloth are among 

the most used materials with conductivities in the range from 100 to 300 S m-1 [45, 62, 124, 177]. 

Analogous to the diffusion coefficient, conductivity was corrected for porosity. Percolation theory 

was employed due to the hair-like nature of the GDL [78, 83] with a porosity threshold of 0.89.

� �
� � � = � � � �

� (1 − � � � � ) �
(1 − � � � � ) − (1 − � � � )

� � �
�

� . � � �

(10-39)

I.e., with porosity of 0.75 and bulk conductivity of 3445 S m-1 [62], a value of 200 S m-1 is 

obtained.

10.9.2 CL

In the CL, only the Pt/C network is electrically conductive. Platinum has an electrical conductivity 

expressed by eq. (10-40) as a function of temperature [108, 124, 181]:

� �
� �

= 1.75 ∙ 10 � − 2.69 ∙ 10 � � (10-40)

which yields values of 9.6 MS m-1. For the conductivity of Vulcan XC72R, values between 200 and 

400 S m-1 have been reported [182]. The electrical CL conductivity can be determined only 

experimentally due to the complexity of its structure, such as contact points between Pt-C particles, 

Nafion distribution, etc. In literature, very different values have been assumed, ranging from 200 up 
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to 21400 S m-1 [66, 69, 97, 99, 183, 184]. The base CL electrical conductivity is calculated as a 

weighted average of the Vulcan X72R and platinum conductivities according to eq. (10-41):

� �
� , � � = � � � � � /� � �

� � + � 1 − � � � � /� � � �
� � �

� �
� � �

� (10-41)

This equation results in values between 5300-5800 S m-1, which are then corrected with 

Bruggeman correlation to yield the effective CL electrical conductivity according to eq. (10-42):

� �
� � = � 1 − � � � − � � � � �

�
� � �

� , � � (10-42)

10.10 Ionic conductivity

10.10.1 Membrane

Ionic conductivity of Nafion is a function of temperature and water content. Springer et al. [66, 184]

described it by means of a modified Arrhenius equation:

� �
� = (0.51 � − 0.32) � � � � 1268 �

1

303
−

1

�
� � (10-43)

This equation considers a maximum λ value of 22, which as shown in 10.7 is not the case for 

low temperatures and low humidification. Experimental data from Springer, Tsampas, and 

Zawodzinski [18, 184, 185] was employed to correlate an Arrhenius model, yielding:

� �
� = (33.75 � − 21.41) � � � � −

10512

� �
� (10-44)

In the presence of HCl, Nafion conductivity shows lower values than in pure water. Because of 

the complex dissociation behavior of HCl in water, Nafion conductivity in HCl is a function of 

temperature, water content, and HCl concentration. There is currently no correlation that properly 

describes this behavior and a polynomial fit of experimental data from McBreen and Yeo [25] was 

correlated and employed in this work:

25-60°C � � � �
� � � = (� � � + � � + � )� � � �

� + (� � � + � � + � ) � � � �
� +

(� � � + � � + � )� � � �
� + (� � � + � � + � ) � � � �

� +

... (� � � + � � + � ) � � � �
� + (� � � + � � + � ) � � � � +

……… (� � � + � � + � )
(10-45)

60-85°C � � � �
� � � = (� � � + � � � + � � + � ) � � � �

� + (� � � + � � � + � � + � ) � � � �
� +

. (� � � + � � � + � � + � ) � � � �
� + (� � � + � � � + � � + � ) � � � �

� +

(� � � + � � � + � � + � ) � � � �
� + (� � � + � � � + � � + � ) � � � � +

. (� � � + � � � + � ′� + � ′)

Table 10-7 Coefficients for the Nafion conductivity equilibrated with HCl.
a) 25-60°C b) 60-85°C

A 1.3497·10
-10

O -6.5773·10
-1

A -2.7975·10
-11

O 4.9876·10
-2

B -2.9284·10
-9

P 1.4446·10
-3

B 5.5928·10
-9

P -1.1245·10
0

C 2.2519·10
-8

Q -2.1911·10
-1

C -3.6532·10
-7

Q -3.8866·10
-5

D -1.5462·10
-8

R 6.7646·10
0

D 7.9945·10
-6

R 8.2322·10
-3

E 1.9257·10
-7

S -6.9121·10
-3

E 3.4096·10
-9

S -5.7095·10
-1

F 1.9862·10
-6

U 8.9318·10
-1

F -6.8675·10
-7

T 1.3073·10
1
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G 6.1670·10
-7

V -1.9761·10
1

G 4.5212·10
-5

U 1.9631·10
-4

H 4.7030·10
-6

H -9.9695·10
-4

V -4.3006·10
-2

I -4.8449·10
-4

I -1.5947·10
-7

W 3.0833·10
0

J -8.6722·10
-6

J 3.2462·10
-5

X -7.1769·10
1

K -6.7256·10
-4

K -2.1608·10
-3

Y -4.4200·10
-4

L 2.7282·10
-2

L 4.8115·10
-2

Z 9.8592·10
-2

M -2.7310·10
-5

M 3.5653·10
-6

A’ -7.0744·10
0

N 1.9460·10
-2

N -7.3716·10
-4

B’ 1.7011·10
2

Figure 10-3 Nafion conductivity as a function of temperature and HCl weight fraction: a) 3D; b) 2D. 

10.10.2 CL ionic conductivity

The ionic conductivity in the CL was taken as the Nafion conductivity in the presence of HCl for the 

anode and of Nafion in the presence of only water for the cathode. These conductivities were

corrected for the fraction of Nafion in the CL with the Bruggeman correlation:

� �
� � = � 1 − � � � − � � � / � �

�
� � �

� , � � (10-46)

10.11 Gas absorption in Nafion

10.11.1 Oxygen

Absorption of oxygen in Nafion can be described by Henry’s Law [66]:

� �
� = � � � �

� � / � � � (10-47)

where p�
� stands for the partial pressure of oxygen in the CL. The temperature dependence of the 

Henry coefficient H� follows an Arrhenius dependence:

� � = � �
� � � � � −

� �
� �

� (10-48)

a)                                                                               b)
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Parthasarathy and Morris [52, 103, 112] correlated values of 2.23 ∙ 10 � J mol-1 and an 

activation energy of 5720 J mol-1 from experimental data. This equation is only valid up to 

pressures of 5 bar [108, 186]. The value of H� rises with increasing temperature, resulting in a 

decrease of reactant absorption in Nafion. 

10.11.2 Chlorine

In order to calculate the chlorine concentration in Nafion, it was assumed that Nafion has the 

same absorption properties as water. Chlorine can absorb and hydrolyze in water. In the case of 

low pH, i.e. due to HCl absorption in the anode, chlorine hydrolysis doesn’t take place allowing the 

direct calculation of the chlorine concentration in water Nafion from the chlorine partial pressure in 

the gas phase. A correlation was obtained from experimental data presented by Adams and 

Edmonds [187]. Knowing the water uptake in Nafion, one can compute the total chlorine 

concentration in Nafion as a function of temperature in °C ( � � ) according to the following equation:

� � � �
� � � | � �

=
(6.38 ∙ 10 � � � �

� − 9.90 ∙ 10 � � � � + 4.73) � � � �
� � �

(10-49)

Absorbed chlorine as a function of the gas phase molar fraction is presented in Figure 10-4.

Figure 10-4 Chlorine-Nafion equilibrium diagram as a function of temperature.

10.11.3 Hydrogen chloride

For the absorption of HCl in water, experimental data from the HCl-Water system equilibrium was 

taken into consideration [142, 188, 189]. HCl absorption shows a non-linear equilibrium between 

the liquid and gas molar fractions x � � � and y� � � , as shown in Figure 10-5. Maximal HCl absorption 

takes place at 25°C with a value of 22% and diminishes with temperature. y� � � is directly 

calculated from the gas composition, which is a function only of the temperature. The molar

fraction of hydrogen chloride was fitted to the molar fraction of absorbed HCl in water yielding 

isotherms of the form:
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� � � � =
−1.59 ∙ 10 � � � � + 1.027

1 + � � � (−(0.4737 � � + 42.544)[� � � � − (−8.525 ∙ 10 � � � � + 0.1734)])
(10-50)

By solving eq. (10-50) for x � � � , the following expression is obtained for absorbed HCl in water. 

� � � � = −
� � �

−1.59 � − 4 � � + 1.027
� � � �

− 1 � − 8.525 ∙ 10 � � � � + 0.1734

0.4737 � � + 42.544
(10-51)

Knowing the concentrations of chlorine and water in Nafion, the concentration of HCl at the 

boundary between the Nafion layer surrounding the agglomerates and the CL void fraction can be 

directly calculated by eq. (10-52).

� � � �
� � � | � �

=
� � � � � � � � � + � � � � �

1 − � � � �
(10-52)

This concentration is the starting point for the agglomerate model calculations, as the activity 

coefficient and therefore chlorine activity require the concentration present in Nafion (see Appendix 

10.3.2 and 10.3.3). Once activities are obtained, reaction kinetics can be calculated.

Figure 10-5 HCl-water equilibrium diagram as a function of temperature

10.12 Mass Biot number analysis

The Biot number analysis was done based on a gas mixture of 90% HCl and 10% chlorine and at 

60°C. The mass Biot number is defined by eq. (5-12), which compares the mass transport 

resistance of the HDL against other layers. The HDL mass transport coefficient is obtained from 

the Sherwood number correlation in a cyclone flow cell [29], with validity for Re<1000 and Sc>1.

� ℎ = 0.0136 � � � / � � � � /� (10-53)

The Schmidt number follows employing the diffusion coefficient in the gas mixture � � , which in 

this case is equal to the binary diffusion coefficient of hydrogen chloride in chlorine and oxygen in 

water, respectively:
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� � =
�

� � �
(10-54)

Because of the cyclone gas flow inside the cell, the Reynolds number is defined as a function 

of the gas angular velocity � and radius of the electrode � � (0.8 cm):

� � =
� � �

� � �

�
(10-55)

where � is given by the following relation:

� = 19.2 � ̇ (10-56)

and � ̇ represents volumetric flow rate in ml s-1. With these definitions and a flow rate of 8.3 ml s-1, 

Reynold numbers of 894 and 548 were obtained at 60°C for hydrogen chloride and oxygen 

respectively. For the Schmidt number, values of 1.06 and 0.58 were obtained. This shows that the 

correlation would be suitable for calculations at the anode and that at the cathode a certain error 

needs to be considered. The different values for the Schmidt number arise due to the high diffusion 

coefficient of oxygen in water compared to the one of hydrogen chloride in chlorine (1.08·10-5 vs. 

3.25·10-5 m2 s, respectively). Considering the definition of the Sherwood number:

� ℎ =
� � � �
� �

(10-57)

The mass transfer coefficient was calculated, yielding values of 1.76·10-3 and 2.81·10-3 m s-1

for hydrogen chloride and oxygen. 
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11 List of Symbols

Greek letters

Symbol Units Description Symbol Units Description

� - Transfer coefficient � mol H� O mol H � � � Electroosmotic drag coefficient

� - Symmetry factor � kg m� � Density

� - Activity coefficient � − CL Nafion content

� � - Real to geom. surface area � � S m� � Conductivity of phase i

� m Thickness � � � m Collision diameter

� � � � m Nafion layer thickness 

covering the agglomerates

� � � �
� � − Nafion fraction in CL

� � � � − Agglomerate Nafion fraction

� - Porosity � − Tortuosity

� � � - Lennard Jones potential � m� s � � Kinematic viscosity

� � � - Threshold porosity � V Potential

� F m� � Lateral interaction factor for 

adsorbed species

� − Thiele Module, Fugacity 

coefficient

� V Overpotential � − Pore to gas molecule diameter

� � � − Thermodynamic efficiency � � , � − Non-ideality parameter 

� - Surface coverage � s � � Radial velocity

� mol SO�
� mol H� O� � Nafion water content � � − Acentric factor

� � kJ mol� � Electrochemical potential � � − Collision’s integral

Latin letters

Symbol Units Description Symbol Units Description

� − Activity � �
� mol m� � s � � Molar flux of component i

� � �
m� �

Specific agglomerate surface 

area per CL volume

� � − Single chain units between Nafion 

cross-links

� � �
� m� � Specific active surface area � � Mio. Euro Annual electrolyzer operating cost

� A mol� � Preexponential factor � Pa Pressure 

� � − Biot number � � Pa Vapor pressure 

� mol m� � Concentration � � Pa Critical pressure 

� � / � mol m� � Interface concentration � mol m� � s � � Volumetric reaction rate

� � kJmol � � K � � Specific heat capacity � � � � m Agglomerate radius

� m� s � � Diffusion coefficient � � m Electrode radius

� V Potential � � mol m� � s � � Surface reaction rate

� � kJ mol� � Activation energy � � � � / � − platinum to carbon ratio

� � V Thermodynamic potential � J mol� � K � � Gas constant

� � − Effectiveness factor � � - Reynold’s number

� � gr mol SO �
� � � Equivalent weight � kJ mol� � K � � Entropy
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� � − Packing factor � � � m� Electrochem. active surface area 

� A s mol� � Faraday’s constant � � � kJ mol� � K � � Entropy of formation

� kJ mol� � Gibb’s energy � � m� Surface area of phase m

� A cm� � mg � � Nafion normalized current � � − Schmidt number

� kJ mol� � Enthalpy � K Temperature

� � m� Pa mol� � Henry constant � � K Critical temperature 

� � � kJ mol� � Enthalpy of formation � � °C Temperature

� A m� � Surface current density � m s � � Velocity of discharge flow rate

� � � � A m� � Kinetic current density � V Cell potential

� � A m� � Limiting current density � � � � V Reversible potential

� � A m� � Exchange current density � � � V Thermoneutral potential

� A kg � � Specific mass current � − Stoichiometric coefficient

� mol Volumetric kinetic constant � � cm� gr � � Critical volume 

� � J K � � Boltzman constant � � m� Volume of phase i

� � m� Permeability � � m� mol� � Molar vol. of a single Nafion chain

� � m s � � Mass transfer coefficient � ̇ ml s � � Flow rate

� � Modified reaction constant � � m� mol� � Molar volume

� � mg cm� � Loading of component i � � � � - Weight fraction of water

� � mol kg � � Molality of component i � � � � kWh ton Cl�
� � Mol fraction of the liquid phase 

� � mV dec � � Tafel slope � - Mol fraction of the liquid phase 

� � mol L� � Molarity of component i � - Mol fraction of the gas phase 

� � � gr mol� � Molar weight of component i � - Number of electrons transferred 

� − Reaction order � � - Compressibility factor

� � � � − Number of agglomerates � � - Charge of component i

12 List of Abreviations

Abbreviation Description Abbreviation Description

� � Catalyst layer � � Heyrovsky-Volmer mechanism

� � Cyclic voltammetry � � � Heyrovsky-Tafel-Volmer mechanism

� � � Dynamic light scattering � � � Membrane electrode assembly

� � � Dimension stable anode � � � Oxygen depolarized cathode

� � � Ethylene dichloride � � � Oxygen reduction reaction

� � � Gas diffusion electrode � � � Polymer electrolyte membrane

� � � Gas diffusion layer � � � Polyvinyl chloride

� � � � � Hydrogen chloride oxidation reaction � � � Rotating disk electrode

� � � Hydrodynamic diffusion layer � � � Standard hydrogen electrode

� � � Hydrogen evolution reaction

� � Heyrovsky-Tafel mechanism
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