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A B S T R A C T

Investigating the functioning of neurons at the molecular level is an important foun-
dation to understand how higher brain functions like perception, behavior, or learn-
ing and memory are accomplished. Since molecular processes occur in the nanome-
ter range and have to be studied in living samples, recently developed optical super-
resolution techniques have boosted their characterization. However, super-resolution
techniques require complex instrumentation, are hardly applicable to organotypic sam-
ples and still suffer from relatively low temporal resolution. This thesis provides new
analysis tools that aim to overcome these limitations and allow to study how the dy-
namics and the interplay of molecules modulate synaptic transmission efficiency.

In the first part, a method that facilitates fast three-dimensional (3D) molecular dy-
namics analyses in organotypic brain slices is presented. It adjusts fast astigmatism-
based 3D single-particle tracking (SPT) techniques to depth-dependent optical aberra-
tions induced by the refractive index mismatch (RIM) so that they are applicable to
complex samples. In contrast to existing techniques, the method determines the aber-
ration directly from the acquired two-dimensional (2D) image stream by exploiting the
inherent particle movement and the redundancy introduced by the astigmatism. The
method at least halves the systematic positioning error introduced by the aberrations
and allows to correctly derive the neuronal morphology and molecular diffusion pa-
rameters in 3D, independently of the imaging depth. It does not require additional
experimental effort for the user and imaging can directly be started once interesting
regions in the sample have been identified.

The second contribution comprises a method for the detection of spontaneous ac-
tivity at individual synapses. It employs an optical marker that allows to visualize
synaptic vesicle fusion with the cell membrane. Individual synaptic signals are com-
puted and activity represented by peaks in the data is detected using a wavelet-based
algorithm. As opposed to standard peak detection algorithms, the information of mul-
tiple wavelets is fused to match all relevant features of the complex peak shape. The
method is particularly useful at low signal-to-noise ratios (SNRs), where it outperforms
standard amplitude thresholding (AT) approaches by more than 100 %. The total work-
flow is automatized and spontaneous activity, which has yet not been addressed, can
be robustly and reproducibly analyzed.

Both methods are extensively evaluated on synthetic and real data and are available
to the public as open source software. Their combined application is discussed.

Z U S A M M E N FA S S U N G

Die Funktionsweise von Neuronen auf molekularer Ebene analysieren zu können ist
eine wichtige Grundlage um zu verstehen, auf welche Weise das Gehirn komplexe
Aufgaben wie Wahrnehmung, Verhalten oder Lernen und Gedächtnis bewerkstelligt.
Da molekulare Prozesse im Nanometerbereich ablaufen und in lebenden Organis-
men untersucht werden müssen, haben die erst kürzlich entwickelten Methoden der
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hochauflösenden Mikroskopie deren Analyse revolutioniert. Allerdings haben diese
Verfahren oft hohe technische Anforderungen, sind nur schwer in organotypischen
Proben anzuwenden und erreichen nur eine niedrige zeitliche Auflösung. In dieser
Dissertation werden Methoden entwickelt, die versuchen diese Nachteile zu kompen-
sieren, um untersuchen zu können wie die Einzeldynamik als auch das Zusammen-
spiel von Molekülen die synaptische Signalübertragungseffizienz modulieren.

Im ersten Teil der Arbeit wird eine Methode vorgestellt, die schnelle molekulare
3D Bewegung auch in organotypischen Gehirnschnitten analysierbar macht. Sie passt
Einzelpartikelverfolgungsmethoden, welche auf der Ausnutzung induzierter Verzer-
rungen aufbauen und mit hoher zeitlicher Auflösung arbeiten, auf tiefenabhängige op-
tische Abbildungsfehler an. Diese entstehen durch die unterschiedlichen Brechungsin-
dizes des Gehirnschnittes und dem Immersionsmedium des Objektivs. Im Gegensatz
zu existierenden Ansätzen wird hierbei der Einfluss des Abbildungsfehler direkt aus
den 2D Mikroskopiebildern ermittelt indem die natürliche Bewegung der Moleküle
sowie die zusätzliche Information, welche durch die bewusst induzierte Verzerrung
entsteht, ausgenutzt werden. Die Methode verringert den systematischen Position-
ierungsfehler, der durch die optischen Abbildungsfehler entsteht, um mindestens die
Hälfte und ermöglicht es damit die neuronale Struktur sowie molekulare Diffusion-
sparameter in 3D zu ermitteln. Dies geschieht unabhängig von der Aufnahmetiefe im
Gewebe. Dabei entsteht keinerlei zusätzlicher experimenteller Aufwand für den Nutzer.
Sobald eine interessante Region gefunden wurde, kann die Aufnahme gestartet wer-
den.

Der zweite Beitrag dieser Arbeit besteht aus einer Methode für die Detektion spon-
taner einzelsynaptischer Aktivität. Hierbei wird ein optischer Marker eingesetzt, der
es erlaubt synaptische Vesikelfusion mit der Zellmembran sichtbar zu machen. Die Sig-
nale individueller Synapsen werden berechnet und Aktivität, die als Impulse erkennbar
ist, unter Verwendung eines die Wavelet-Transformation nutzenden Algorithmus de-
tektiert. Dabei hebt sich der vorgestellte Algorithmus von existierenden Methoden
dadurch ab, dass die Information mehrerer Wavelets fusioniert wird um eine robuste
Detektion der komplexen Impulsformen auf Grundlage aller seiner Merkmale zu er-
möglichen. Dies zahlt sich gerade bei niedrigen Signal-Rausch-Abständen aus, wo die
Methode gängige Schwellenwertstrategien um mehr als 100 % an Detektionsleistung
übertrifft. Der Analyseprozess ist vollständig automatisiert und erlaubt somit die ro-
buste und reproduzierbare Analyse spontaner Aktivität, die bisher nicht untersucht
werden konnte.

Beide vorgestellten Methoden werden ausführlich auf simulierten und experiment-
ellen Mikroskopieaufnahmen evaluiert und sind als Open-Source-Software frei verfüg-
bar. Zuletzt wird deren gemeinsame Anwendung diskutiert.
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1
I N T R O D U C T I O N

“In what has become known as nanoscopy, scientists visualize the pathways of individual molecules
inside living cells. They can see how molecules create synapses between nerve cells in the brain; they
can track proteins involved in Parkinson’s, Alzheimer’s and Huntington’s diseases as they aggregate;

they follow individual proteins in fertilized eggs as these divide into embryos.” 1

Only recently, such amazing insides into living organisms have been made available by
so called super-resolution techniques. They allow to circumvent the physical limitation
established by Ernst Abbe, stating that conventional optical microscopes are unable
to resolve structures that are less than „ 200 nm apart. This in turn now enables
the investigation of organisms at the molecular scale (see Fig. 1a), which has so far
been reserved to techniques like electron microscopy. The term nanoscopy has been
established to emphasize the advancement into the nanoscale using light. Besides the
obvious improvement in resolution, the key advantage of super-resolution techniques
is their ability to image living organisms. They maintain the viability of the specimen
under investigation. In contrast, electron microscopy requires fixation of the samples.
Consequently, investigation of the functioning of organisms is now possible with so far
unattainable directness, and this has just recently been appreciated by awarding the
Nobel Prize to those that pioneered the development of super-resolution techniques.

Although super-resolution techniques have seen ongoing improvement during the
last few years, research had predominantly focused on increasing the available resolu-
tion. This has indeed lead to images with formerly unachievable insights into neuronal
structures (see Fig. 1b), but there are still shortcomings with respect to the intended
investigation of how organisms function at the molecular level.

Most prominently, this is the still relatively low temporal resolution that is in the
range of seconds and prevents the analysis of fast molecular processes. Lately, this
issue have been receiving increasing attention, but the presented technical solutions
are generally proprietary and tend to be technically more and more complex.

Next to their instrumental complexity, such techniques rely on specific experimental
conditions. As a result, fixed samples or isolated systems like primary cell cultures
are still the primary environment under investigation. Analyses in less artificial sys-
tems like organotypic brain slices are of high interest, since they are expected to yield
biologically more relevant results.

However, present methods for complex tissues are based on manual and often time-
consuming experimental procedures. This is likely to result in subjective findings that
are hardly reproducible. It further impedes the creation of robust statistics and bio-
logically relevant results since the viability of the samples deteriorates quickly with
time.

As a consequence, automatized and routine procedures that at the same time main-
tain the viability of the samples are nowadays still unavailable for complex biological
systems.

1 "The Nobel Prize in Chemistry 2014 - Press Release". Nobelprize.org. Nobel Media AB 2014. Web. 12 Nov
2014. http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2014/press.html
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(a)

(b) (c)

Figure 1: (a) Illustration of the size of several biological structures with respect to Abbes’s
diffraction limit and available imaging techniques. (b) Conventional fluorescence and
the corresponding (c) super-resolution image of labeled adhesion complexes at the
surface of a Hep G2 cell. (Adapted from Schermelleh et al. 2010, originally published
in The Journal of Cell Biology, doi: 10.1083/jcb.201002018.)

1.1 objectives

The present work is embedded in the study of the functioning of neurons at the molec-
ular level and focuses on neuronal signal transmission. Investigation of molecular pro-
cesses is fundamental for understanding how higher brain functions like perception,
behavior, or learning and memory are accomplished. Moreover, their understanding
can often directly be used to foster clinical developments such as target specific medi-
cation.

In order to support such analyses at the molecular level three main subjects are of
utmost importance. They are illustrated in Fig. 2. (1) scientists have to be enabled to de-
termine the motion of individual neuronal molecules. (2) individual synaptic activity
has to be detectable to investigate how molecular dynamics modulate signal transmis-
sion. And (3), the underlying neuronal structure has to be known for correlation of the
measured molecular processes with neuronal compartments.
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Figure 2: Illustration of the three main subjects that require analysis tools to investigate the
functioning of neurons.

The thesis at hand focuses on the first two subjects. Its overall objective is the facilita-
tion of the combined analysis of molecular diffusion parameters and neuronal activity
in complex living samples.

Since such analyses take place at the molecular level and require accuracies of only
a few nanometers, the technical requirements are similar to those of super-resolution
techniques. Consequently, some of their principal ideas have been borrowed, but it
was not intended to develop a new super-resolution technique. The focus was set on
analyzing fast dynamic processes in nanoscale compartments rather than maximizing
the available resolution. Apart from these general objectives, there are further specific
demands of the two individual subjects.

At present, analyses of molecular dynamics have mainly been conducted in isolated
systems. The obtained results may then lead to misinterpretation of signaling events
owing to the limited number of molecular interaction partners (Dustin and Depoil 2011,
Chan et al. 1991). Moreover, only the two-dimensional (2D) movement is typically ob-
served for molecular dynamics analyses (Sibarita 2014, Triller and Choquet 2008). It is
therefore very important to prove that correct 2D dynamics parameters can be obtained
in compact complex samples (Objective 1.1).

Since neuronal compartments are inherently three-dimensional (3D) structures and
molecular motion does not solely take place at the focal plane of the microscope, 2D
analyses underestimate the true diffusion parameters (Renner et al. 2011) and 3D parti-
cle localization is required.

However, 3D analyses in thick complex samples are still a major challenge since the
optical properties in the sample vary as functions of the imaging depth. Therefore,
features of the point spread function (PSF), which are exploited for computation of 3D
molecule positions, do also vary.
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Current approaches are unable to automatically adjust to the varying optical condi-
tions. Instead, these effects are either ignored, or time-consuming manual calibration
procedures have to be conducted prior to each individual acquisition. The major chal-
lenge for a 3D analysis procedure is the automatic adjustment to the depth-dependent
optical aberrations of the PSF without additional user interaction (Objective 1.2).

The following side conditions have to be met: molecular positions shall be deter-
mined with spatial accuracies of less than 100 nm in order to fulfill tight molecu-
lar interaction requirements at molecular compartments (Objective 1.3). The tempo-
ral resolution shall be at least 30 Hz, so that subpopulations can be differentiated in
nanoscale compartments based on their diffusion (Objective 1.4). The imaging configu-
ration should be relatively simple, so that such analyses may become widely available
(Objective 1.5). Finally, the complexity of the experimental procedure should be as low
as possible (Objective 1.6). If the technique is routinely applicable and acquisitions can
immediately be started, the viability of the specimen can be maintained during the
experiment and the results become reproducible.

In order to detect individual neuronal activity, an optical reporter molecule is used.
It changes its fluorescence in correlation to the alteration of an intracellular parameter,
which indicates activity.

The available computational procedures for the detection of single synaptic events
have in common that they require manual interaction. As a result, they are partially
subjective: so commonly, neurobiologists evoke single neuronal signals by image-locked
electrical stimulation. Small regions with in-focus synapses are then manually selected,
and difference images are calculated at the known time of stimulation to analyze in-
tensity responses.

The current situation has shortcomings in two different directions: First, the compu-
tational support is very basic, and hence a completely automated approach is required
(Objective 2.1). There is to date no automated procedure designed specifically for the
detection of individual synaptic activity that goes beyond simple amplitude thresh-
olding (AT). Furthermore, spontaneous activity has yet not been analyzed although
this is of utmost importance for the identification of how molecular dynamics modu-
late synaptic signal transmission. Therefore, the detection of spontaneous activity is a
major demand (Objective 2.2).

There are further side challenges that have to be overcome: owing to their represen-
tation of stochastic neuronal processes, the shapes of the optical signals are complex
and subject to strong variation. The method has to address the fact that it cannot rely
on a single pre-defined shape (Objective 2.3). Finally, the detection has to be robust
to varying signal strengths and signal-to-noise ratios (SNRs) (Objective 2.4). In order to
yield biologically relevant and unbiased results, activity must be detected over a large
field of view including synapses independently of their strength of activity or number
of involved molecules.

1.2 structure

This thesis is structured as follows. Chapter 2 provides the relevant neurobiological
knowledge covering the principal functioning of neurons at the molecular level with fo-
cus on the principles of neuronal signalling. Furthermore, the variable nature of signal
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transmission and its importance for higher brain functions are introduced, providing
the neurobiological motivation for the developments of this thesis.

Chapter 3 is dedicated to the fundamentals of optical microscopy. Since the ca-
pabilities of optical microscopy are relevant for the development of analysis tools,
this technique is introduced in greater detail. The fundamentals of fluorescence mi-
croscopy (FM) and what can be expected from this technique are introduced first. Af-
terwards, standard imaging configurations as well as the recent developments towards
super-resolution are explained.

Chapter 4 covers the first main contribution of this thesis. It presents a method that
facilitates fast 3D molecular dynamic analyses in brain slices. At first, single-particle
tracking (SPT) is introduced as the most suitable technique and the available readout is
described. This is followed by a presentation of the related works on 3D SPT. Further-
more, it is proven that the derivation of diffusion parameters is feasible in brain slices.
The main part covers the developed workflow for 3D SPT in brain slices. The focus is
on the particle localization and the online calibration to the experienced optical aberra-
tions. The proposed methods are evaluated on synthetic and real data. For the online
calibration method, it also includes the analysis of intermediate results, robustness
tests as well as the assessment of the impact on the readout for molecular dynamics.
The chapter concludes with a discussion of the results and the remaining challenges.

Chapter 5 presents the second major contribution. A method for the automatic de-
tection of individual synaptic activity is presented. This chapter is organized in similar
manner as the former: first, the optimal optical reporter for that task is selected, its
available readout is described, and the related works on peak detection are presented.
Next, the proposed wavelet-based method is explained and evaluated. Again, the eval-
uation is done on synthetic and real data. The results are individually discussed and
possible future developments are outlined.

Chapter 6 concludes the contents of this thesis and discusses the individual results
with respect to their combined application.
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2
N E U R O B I O L O G I C A L B A C K G R O U N D

In neuroscience the brain is studied at different levels of abstraction. The first section
presents the functional view on the brain. Since the present work is integrated at the
molecular level, the second section introduces the neuron and is followed by a detailed
description of neuronal signaling at the molecular scale. The final section then provides
an insight into the variable nature of signal transmission, which is believed to be an
important foundation for higher brain functions.

2.1 the brain is organized in functional units

The brain is the central part of the nervous system. It processes sensory information,
mediates behavior, and enables learning and memory. In order to fulfill these tasks
the brain can conceptionally be thought of as being organized by means of functional
units (Shepherd 1994). These are structural entities with specific functionality. Their
structural basis is provided by cells, but their functionality is formed on different levels
of organization. According to Shepherd 1994, there are five principle hierarchies whose
scale and complexity increases up to the highest level.

At the highest abstraction level the fulfillment of tasks is represented by means of
functional pathways. This includes the sensory and central processing as well as the
motor system. At the second level each system is build of cells that are organized in
networks. This creates local circuits that are necessary to receive, process, and output
information between the systems.

The nervous system has two major classes of cells: glial cells and neurons (Kandel
et al. 2013). Glial cells support neurons by providing structure, separation, and under-
taking vital tasks. They are not directly involved in information processing. In contrast,
neurons are the primary signaling units and build the basis of local circuits at the third
abstraction level. Each neuron creates a characteristic type of activity and integrates
it with the input of other neurons. In order to communicate, neurons use synapses
as their contact sites. These synapses arrange to microcircuits at each neuron, which
creates specific activity and connectivity patterns that are the foundation for complex
information processing.

The next level in the hierarchy is the molecular level. It considers the interplay of
signaling molecules in order to render signal transmission at and between neurons pos-
sible. The lowest abstraction is the genetic level, where the mechanisms for encoding
and expression of molecules are present.

2.2 neurons

Neurons are electrically excitable cells that transmit and process information and in-
teract with other neurons. Since the basic principles of operation are similar for all
neurons, it is the way they are interconnected that enables the brain to accomplish its
complex tasks (Kandel et al. 2013). It is the key principle of brain function that informa-
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tion is not determined by the type of signals, but instead by the pathways the signals
travel.

This and the next section summarize fundamental knowledge about the physiology
of neurons. They are based on the comprehensive textbooks by Kandel et al. 2013,
Galizia and Lledo 2013 and Shepherd 1994.

2.2.1 Anatomy and Principal Function

Fig. 3 presents the structural components of a typical neuron. Although neurons vary
significantly in form, their major components are the same. Neurons can be morpholog-
ically defined by the cell body, the processes that are called neurites, and the synapses.

Figure 3: Anatomy of a neuron. (Adapted from http://commons.wikimedia.org/wiki/File:
Derived_Neuron_schema_with_no_labels.svg.)

The cell body is a blob-like structure and the metabolic center of the cell. It con-
tains organelles like the nucleus, the endoplasmic reticulum, the mitochondria, and
the Golgi apparatus. The nucleus contains the deoxyribonucleic acid (DNA) that is the
carrier of the genetic information of the cell. It encodes which molecules are to be
synthesized. The most important functions of the organelles comprise DNA replication,
protein synthesis, and distribution as well as energy supply.

Neurites are tree-like structures that reach out of the cell body in order to connect
with other neurons. Their major task is signal transduction from and to other neurons.
They exist in two forms: the dendrites and the axon. Dendrites receive and the axon
sends signals to other neurons. Dendrites are usually more branchy, and a neuron may
have several of them, whereas there is usually only a single axon. The axon emerges
from the axon hillock, which morphologically belongs to the cell body and is the origin
of the signals of a neuron. The axon is additionally wrapped by the myelin sheath. It
electrically isolates the axon and increases the speed and reliability with which signals
are conducted. The myelin sheath is periodically interrupted by uninsulated nodes of
Ranvier that regenerate the signals.

8
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Synapses are the contact points between neurons that transmit signals. They consist
of a pre- and a postsynaptic site. The presynaptic terminals reside at the fine branches
at the end of an axon, and postsynaptic terminals are located at dendrites.

The shape of a neuron is provided by the cytoskeleton. It fills the neuron and consists
of filamentous structures responsible for cell stability and motility. Furthermore, they
organize the transport of molecules within the cell. The neuron is finally bound by the
cell membrane, whose major task, next to retaining the interior of the cell, is the actual
signal transduction.

2.2.2 Principle of Operation

Signaling in neurons is mainly based on electrical properties of the cell membrane. The
cell membrane maintains an electrical potential difference between the inside and the
outside of cells. This so called membrane potential results from unequal distributions
of ions across the membrane. At rest, the potential is „ ´65 mV , seen from the extra-
cellular space. Temporal local changes in polarization that spread along the membrane
then serve as the neuronal signaling mechanism.

An important principle of neuronal signaling is that signals typically travel in one
direction within a neuron. That is, they spread from the postsynaptic sites along the
dendrites, are integrated at the axon hillock, and the resulting signal is forwarded
along the axon to the presynaptic terminals (see Fig. 3).

Neuronal signaling starts with signals from other neurons that lead to local potential
changes at the involved postsynaptic terminals. These so called synaptic potentials may
have reduced or increased potential and degrade back to the resting potential over
distance and time. Because they spread, they add up at all positions of the dendrites
and the cell body. If the combined potential reaches a certain threshold, this results in a
rapid inversion of the membrane potential, which usually happens at the axon hillock.

The resulting action potential (AP) is send to all presynaptic terminals and may in
turn trigger synaptic potentials at the connected neurons. Synaptic signal transmission
may proceed via direct electrical transmission or chemically by releasing neurotrans-
mitters.

All in all, the neuron operates as an integrative component that adds up the incom-
ing signals of many other neurons. Then it creates a binary decision in form of an AP

that in turn represents the input to other neurons.

2.3 neuronal signaling

This section provides an inside into neuronal signaling at the molecular level. It covers
the signal transduction in the cell membrane and the signal transmission at synapses.
Since chemical synapses are the major structure for neuronal communication in the
brain and are thought to be crucial for learning and memory, only they will be consid-
ered.

9



2.3.1 Signal Transduction in the Cell Membrane

The cell membrane is a 6-8 nm thick lipid bilayer that is almost impermeable to metabo-
lites and ions (see Fig. 4a). Therefore, neurons can maintain different concentrations of
ions across the membrane. Na+, Cl´, K+, and organic anions A´ are most significant
for the resting potential.

In order to generate membrane potentials, specific transmembrane proteins like ion
channels and ion pumps, that span across the bilayer, are of utmost importance. They
are able to conduct specific ions through the membrane and therefore annul the imper-
meability. Channels are passive conductors that allow ions to pass the membrane along
a gradient, whereas pumps are active transporters that consume energy to transport
ions against a gradient. Both types involve conformational changes that may happen
in response to electrical, chemical, or mechanical signals. This switching between con-
formational states is called gating.

There are two principal gradients: the chemical and the electrical gradient. Although
the electrical gradient may be zero across the membrane, there may still be a chemical
gradient caused by different concentrations of individual ions. Since both, ion channels
and pumps, exist for specific ions, also passive channels can create a potential differ-
ence by conducting only a certain type of ions along their chemical gradient. Both
types of gradients then compensate at a certain level and a resting potential is main-
tained. Over time this may lead to an equilibrium without gradients. Therefore, active
ion pumps transport ions against their chemical gradient, and the resting potential can
be maintained in the long run.

(a) (b)

Figure 4: (a) Schematic representation of the cell membrane. (Adapted from http://commons.
wikimedia.org/wiki/File:Kanalprotein_01.png.) (b) Typical course of an AP.

If the gating of specific ion channels is triggered so that some kind of ions pass the
membrane more easily, then the equilibrium may be maintained at another electrical
potential. Exactly that happens when signals are received at the postsynaptic terminals.
The individual deviations in the resting potential are themselves very small, but their
sum may yield very large deviations.
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In order to evoke an AP the presence of Na+ channels is crucial. They concentrate
preferentially at the axon hillock. If a sufficient number of Na+ channels open, the
membrane potential may eventually pass the threshold of „ ´50 mV . This results in
a chain reaction where more and more Na+ channels are opened as a result of the
change in membrane potential. In consequence, the influx of Na+ exceeds that of other
ions, and the membrane depolarizes extremely rapidly to the equilibrium potential of
„ 40 mV (see Fig. 4b).

This equilibrium lasts only for less than 1 ms. The membrane repolarizes quickly,
owing to the inactivation of Na+ channels and the delayed activation of K+ channels
that act compensating. As a result of the delayed K+ channel response the depolar-
ization is followed by a short period of hyperpolarization. This is also indicated in
Fig. 4b. It decreases the likelihood for a second immediate AP. The course of an AP is
very stereotyped, and this process is evoked in an all-or-none fashion as soon as the
potential threshold is reached.

After initiation of an AP it is further conducted along the axon by opening of ad-
jacent ion channels as a result of the local potential change. This is then followed by
depolarization of adjacent parts of the membrane. This way an AP is actively forwarded
without loss of strength. Owing to the subsequent hyperpolarization period APs spread
only in one direction: from the axon hillock to the presynaptic terminals. AP forward-
ing thus stands in contrast to the pure passive conduction of synaptic potentials that
happen below the potential threshold. They spread in both directions and degrade
over distance and time.

2.3.2 Signal Transmission at Chemical Synapses

Chemical synapses strongly vary in shape and size and have diameters in the range of
several hundred nanometers. They are composed of a pre- and a postsynaptic terminal
that are separated by a synaptic cleft of width „ 20-40 nm. Fig. 5a presents an electron
micrograph of an exemplary synapse.

Synaptic transmission is based on two separate processes: neurotransmitter release
at the presynaptic terminal and postsynaptic potential creation by neurotransmitter
recognition. Chemical synapses convert originally electrical signals into chemical sig-
nals and vice versa in order to transmit signals between neurons.

The first half of the transmission process involves the release of neurotransmitters
from synaptic vesicles into the synaptic cleft. Neurotransmitters are biochemical mes-
sengers that are synthesized in the cell body and the presynaptic terminals. They are
encapsulated in vesicles that contain several thousand of them. Vesicles themselves are
ovoid structures with a diameter of „ 40 nm, and each synaptic terminal hosts about
100-200 copies. They are composed of various vesicle proteins. The most important
proteins and their average copy numbers are presented in Fig. 5b. In order to release
neurotransmitters, vesicles fuse with the cell membrane at the so called active zone
that has a diameter of „ 200-500 nm. These components are also observable in Fig. 5a.

The typical process that finally leads to vesicle fusion with the membrane is illus-
trated in Fig. 6. The arrival of an AP at the postsynaptic terminal opens Ca2+ channels
that are concentrated at the active zone. This results in an influx of Ca2+ that bind to
Ca2+ sensors at the vesicle and in turn trigger the formation of a so called SNARE
complex. It mediates the fusion of the vesicle membrane with the cell membrane by
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(a) (b)

Figure 5: (a) Electron micrograph of a synapse. The synaptic cleft separates the pre- (on top)
and the postsynaptic terminal. The presynaptic terminal contains lots of ovoid vesi-
cles. The active zone comprises the region at the synaptic cleft, where vesicles dock
to the presynaptic membrane. (Reprinted from Lou et al. 2012, copyright (2012) Na-
tional Academy of Sciences, USA.) (b) Important vesicle proteins and their average
copy numbers. (Reprinted from Dittman and Ryan 2009, originally published in An-
nual Reviews.)

biochemical interaction of vesicle and membrane proteins. Vesicle fusion is termed ex-
ocytosis and turns the inside of vesicles to the outside of the presynaptic terminal,
so that the contained neurotransmitters are released into the synaptic cleft. During
subsequent endocytosis, vesicles are retrieved from the membrane. Afterwards they
are recycled, thus, take up new neurotransmitters in order to be again available for
synaptic signal transmission.

Figure 6: Synaptic signal transmission. The illustration focuses on the first half of the transmis-
sion process.

The released neurotransmitters diffuse through the synaptic cleft and may be recog-
nized by postsynaptic receptors that initiate the second half of the signal transmission.
These transmembrane receptors are located directly opposite the active zone in a re-
gion called postsynaptic density. They gate postsynaptic ion channels either directly or
indirectly. Ionotropic receptors have binding sites for neurotransmitters and form their
own ion conducting pore, whereas metabotropic receptors use intracellular signalling
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molecules in order to gate ion channels biochemically. Direct gating is much faster, but
both ways result in the creation of synaptic potentials.

The number of neurotransmitters that are received at the postsynaptic site then de-
fines the strength of the synaptic potential deviation. In contrast, it is primarily the
type of postsynaptic ion channels that decides whether the signal acts excitatory (re-
duced membrane potential) or inhibitory (increased membrane potential). The overall
process of synaptic transmission proceeds in less than 1 ms.

2.4 the variable nature of synaptic signal transmission

The principles of synaptic signal transmission were described in the previous sections.
However, in reality the involved processes are subject to strong variability. This vari-
ability is the subject of the current section.

2.4.1 Synaptic Plasticity

Synaptic plasticity is the activity dependent change of synaptic strength (Kandel et al.
2013). This means that depending on the usage of a synapse the strength of the gen-
erated postsynaptic potential, that is initiated by an AP, is subject to strong variability.
The induced changes in synaptic strength may persist over different time scales (Abbott
and Regehr 2004). Changes over milliseconds to minutes are referred to as short-term,
but if they last hours or even longer, they are referred to as long-term plasticity. Short-
term plasticity is generally considered as being important for computational functions
in neuronal networks, whereas long-term plasticity is believed to be an important foun-
dation for memory, learning, and development.

The ability to adjust the synaptic strength at the molecular level can be made clear
by consideration of a synapse that was actively used and hence still exhibits high
Ca2+ concentration. It is then very likely that the next AP results in more vesicles
being fused as it would be the case without prior active usage. The buffered Ca2+

can be considered as the simplest form of molecular memory since it “reminds” the
importance of a certain connection. This supports the understanding of the brain as a
device that determines information by the pathways its signals travel.

2.4.2 Influence of Molecular Dynamics on Synaptic Strength

The current strength of a synapse is mainly defined by the amount of fused vesicles at
the presynaptic terminal as well as the amplitude and timing of the neurotransmitter-
induced postsynaptic potential (Ribrault et al. 2011). The underlying molecular condi-
tions that have to be met in order to achieve high transmission efficiency, and whose
compliance varies during synaptic plasticity, are manifold.

So it is important for the geometry of the synaptic cleft that the active zone and the
postsynaptic density are located close and opposite of each other (Freche et al. 2011).
Also, Ca2+ channels and vesicles must be in close proximity, so that the Ca2+ influx re-
liably triggers vesicle fusion. The number of Ca2+ is expected to directly influence the
number of fused vesicles (Bennett et al. 2000). These ions have to diffuse to the vesicles,
but are buffered quickly (see Fig. 6). Therefore, the Ca2+ concentration is sufficient
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only within a distance of tens of nanometers to a Ca2+ channel (Burnashev and Rozov
2005, Schneggenburger and Neher 2005). Similarly, the number of arriving neurotrans-
mitters at the postsynaptic side (McAllister and Stevens 2000), and the concentration
of postsynaptic neurotransmitter receptors (Heine et al. 2008) considerably influences
the efficiency of synaptic transmission.

However, there is no specified procedure to maintain these conditions. All compo-
nents involved in synaptic transmission are themselves subject to strong variability
and operate stochastically. This refers to their timing as well as arrangement. So Ca2+

channels and postsynaptic receptors exhibit stochastic opening and closing behavior
(Traynelisa and Jaramillo 1998). This means that independently of a signal a variable
numbers of channels and receptors are already open. This is caused by their random
conformational changes and varying opening times. If a channel is already open, an
additional signal will therefore not increase the ion influx.

Similarly, the arrangement is driven by stochastic motion called molecular diffusion.
If it results solely from random collisions with other molecules, it is referred to as
normal diffusion respectively Brownian motion (Gerrow and Triller 2010). This is the
actual motion Ca2+ or neurotransmitters undergo when diffusing to their destinations.
However, Ca2+ channels and receptors that are integrated into the cell membrane
are not only subject to Brownian motion. Their diffusion is impeded by interaction
with other transmembrane proteins or confined through the membrane skeleton that
partitions the entire membrane into 40-300 nm diameter compartments (Kusumi et al.
2012). Consequently, the position of a channel cannot be predicted just according to its
inherent diffusion property.

The individual processes of synaptic signal transmission are conducted within small
compartments having sizes of only a few tens of nanometers. This is because of the lim-
ited size of the active zone and the postsynaptic density. Also, the vesicle to Ca2+ chan-
nel interaction distance and the compartmentation of the membrane limit the range.
Finally, the synapse contains only a few tens of the most important components, like
Ca2+ channels, docked vesicles, or receptors (Ribrault et al. 2011).

With that said, it is apparent that highly specific timing and arrangement are neces-
sary for successful signal transmission. Moreover, Ribrault et al. 2011 stated that based
on their random behavior and their low average quantity, the stochastic properties of
molecular events cannot be averaged. This means that the current behavior of a synapse
is not predictable. The random properties of molecular events have to be considered in
order to understand all contributions to the variability of synaptic transmission.

It is the focus of this thesis to develop tools for the analysis of such highly dynamic
processes that modulate synaptic plasticity. Since the underlying neuronal compart-
ments are very small, the tools have to deal with processes at the molecular scale.
Furthermore, the viability of living samples has to be maintained. Both prerequisites
are principally provided by FM. It is the basic technique for the developments in this
thesis and is introduced in detail in the next chapter.
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3
F L U O R E S C E N C E M I C R O S C O P Y

For neuroscience, FM has evolved into today’s standard imaging tool. In contrast to
electron microscopy that exhibits superior spatial resolution, it offers broad applica-
bility and good compatibility with living cells. In comparison to conventional light
microscopy it offers outstanding contrast as well as high specificity and sensitivity.

In the first section of this chapter the principles of FM will be reviewed in order
to understand what type of information can be accessed. Also the remaining pitfalls
will be addressed. The fundamental resolution limitations will be considered in the
second section, because they severely hinder analyses at the molecular scale. Finally,
the principles of super-resolution techniques will be introduced because the presented
method borrows some of their ideas.

3.1 principles of fluorescence microscopy

This section is mainly based on the fundamental optics book of Hecht 2009, the text-
books of Cox 2007, Lakowicz 2006 and Robenek 1995 as well as the edited books of
Kubitscheck 2013b and Pawley 2006c on FM. First, the fundamentals of light as well
as the principles of contrast and image formation are reviewed. This is followed by
looking at the principal components of FM configurations and is completed with an
overview of available fluorophores.

3.1.1 Fundamentals of Light

At the very beginning, the fundamental properties and phenomenons of light that are
necessary to understand the principles of FM will be briefly reviewed. The underlying
physics are for instance described in the comprehensive textbook of Hecht 2009, but
are beyond the scope of this thesis.

3.1.1.1 The Wave-Particle Duality

To understand the functioning of modern microscopes it is important to realize that
light exhibits both wave and particle properties. This is known as the wave-particle du-
ality of light. It states that light cannot solely be described by the wave or the particle
concept. It exhibits properties of both concepts depending on the type of measurement.
As a consequence, it appears that light spreads in space like a wave undergoing reflec-
tion, refraction, or diffraction, and at the same time it behaves like a stream of particles
during processes like absorption and emission. An everyday example are digital cam-
eras. The digital image represents the spatial distribution of photons arriving at the
sensor, but the shape of this distribution can only be deduced by the propagation of
light through the camera optics as a wave.
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Figure 7: The visible light is part of the electromagnetic spectrum. (Reprinted from http://
commons.wikimedia.org/wiki/File:EM_spectrum.svg.)

The particle nature of light is considered first. The elementary particles of light are
called photons. According to Hecht 2009, they are uncharged, have no weight, travel
with light speed c « 300000 km/s in vacuum, and are assigned with an energy:

E = hf. (1)

Here, h is Planck’s constant, and f denotes the frequency of the light.
Based on the frequency, this is already the link to the description of light as an

electromagnetic wave. The visible light is just a small band of wavelengths ranging
from 380 to 780 nm of the electromagnetic spectrum (see Fig. 7). To humans they
appear as light of different colors, and the sum of all visible wavelengths is perceived
as white light.

Each of these waves has a number of properties: the wavelength λ and the frequency
f are the spatial respectively the temporal period of a wave. They are interrelated by
the the speed c of the propagating wave:

c = λf. (2)

The phase ϕ characterizes the fraction of the period relative to the origin, and the in-
tensity i represents the power of light per area. This correlates to the square of the
amplitude A of the wave. The polarization ~P is the orientation of the oscillation per-
pendicular to the propagation of light.

3.1.1.2 Interaction with Materials

Now, what happens when light interacts with other materials such as the optical com-
ponents in a microscope? It is important to know the type of material because some
properties are specific. When light passes from vacuum through another material, the
speed slows down and the intensity as well as the wavelength decrease (Hecht 2009).
The amount to which a certain material decreases the speed of light is described by its
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refractive index (RI) n. It is inversely proportional to the speed cn in the material and
defined by:

n =
c

cn
. (3)

Back in vacuum, the speed and the wavelength of light will be recovered, but the inten-
sity remains decreased as some energy is lost owing to absorption. As an additional
result, the phase right after the medium will change in dependence of n.

These changes lead to effects at the interface of two materials that are very important
for the image formation process. If incident light contacts the interface to a higher
indexed material with a non-zero angle Φi, two different effects are observed. First,
some portion of light is reflected at the same angle Φl, and second, another fraction
is propagating through the material at a smaller angle Φr (see Fig. 8a). The resulting
angles are defined by the laws of reflection and refraction, respectively:

Φi = Φl (4)

n1 sinΦi = n2 sinΦr. (5)

Considering Equ. 2 and 3, it is obvious that the angle of refraction depends on the
wavelength of light. This phenomenon is called dispersion and is exemplified by the
colored rays in Fig. 8b.

(a) (b) (c)

Figure 8: Important effects at the interface during light matter interaction: (a) reflection and
refraction, (b) dispersion, and (c) diffraction.

The final phenomenon that needs to be considered is diffraction. It describes the devi-
ation from the linear propagation if light passes an obstacle as light bends behind small
obstacles and spreads behind small openings. Fig. 8c presents the resulting diffraction
pattern if light passes a single slit of size wider then the wavelength. This pattern can
be explained as the result of interfering wave fronts starting at evenly spaced positions
within the slit. Next it shall be clarified how light is used in FM to make objects visible.

3.1.2 Fluorescence

In live-cell imaging, light is generally used to detect objects since it is comparatively
harmless for the cells. To be detectable, objects have to be distinguishable from their
surrounding, so there has to be contrast. In the previous section, important proper-
ties of light, and how they alter during interaction with matter were reviewed. These
changes are the basis to produce contrast between different objects.
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The human eye is sensitive to changes in intensity and wavelength, but cells are
transparent and barely absorb light (Kubitscheck 2013a). Instead, they differ in their
RIs, which alters the phase. This discrepancy has led to the development of various
optical contrasting methods that transform phase contrast to intensity contrast. A com-
prehensive review is provided by Cox 2007.

(a) (b)

Figure 9: (a) The basic Jablonski diagram illustrates the process that leads to fluorescence. (b)
The Stokes shift of an exemplary excitation and emission spectrum.

Today FM has become the most basic contrasting technique. It directly introduces
wavelength and intensity contrast by exploiting fluorescence. Fluorescence is the emis-
sion of light with a specific wavelength by a molecule after absorption of light with
a lower wavelength (Dobrucki 2013). The energetic process that leads to fluorescence
is generally described by Jablonski diagrams (Jabloński 1931). A simplified form is
illustrated in Fig. 9a.

Here, the thick lines depict the fundamental electronic energy states Sx of a molecule,
and the thin lines represent the vibrational energy levels. The latter can be thought of
as the temperature of electrons at each fundamental state (Cox 2007). When a molecule
absorbs a photon, its energy hfex raises an electron to a higher vibrational level at S1 or
S2 from which it rapidly returns to the lowest vibrational level at S1. This deexcitation
is called internal conversion (IC), and the energy is released as heat. Once the electron
has reached the lowest vibrational level at S1, it drops down to S0 and releases a
photon with the energy hfem. Owing to the IC the emitted energy is always less than
the absorbed energy, hence, the emitted photon has a longer wavelength. The resulting
difference between the maxima of the excitation and the emission spectra is called
Stokes shift and is depicted in Fig. 9b. Another result of the IC is that the emission
spectrum is independent of the excitation wavelength. Therefore, it remains specific
for a certain molecule (Lakowicz 2006).

Another important characteristic of fluorescence is that since the emission of photons
are independent random events, the number of detected photons for a certain period
is observed to follow a Poisson distribution (Heintzmann 2013). The probability P(N)

to detect N photons with a given expectation µ is:

P(N) =
µN

N!
e´µ. (6)
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The detection variability described by this distribution is called photon or shot noise.

Basically, all cells do contain some fluorescent molecules and are therefore weakly
fluorescing. This is called autofluorescence (Monici 2005). To distinguish structures
of interest from autofluorescence, markers that are strongly fluorescent are employed.
For simplicity, they will be referred to as fluorophores in this thesis, and their different
types as well as labeling strategies are the subject of Sect. 3.1.5. It is important to rec-
ognize that the specific labeling of molecules using fluorophores allows for creation of
the required contrast between objects. This fact makes FM such a valuable contrasting
technique.

However, fluorescence is not a cure-all. Autofluorescence can decrease the contrast,
and most fluorophores bleach over time during constant excitation; a process known as
photobleaching (Diaspro et al. 2006). This limited photostability considerably degrades
the contrast and limits the recording time for long-term experiments. Further, phototox-
icity has to be considered. Although fluorescence is generally compatible with living
cells, fluorescent molecules that undergo excitation can react with molecular oxygen
causing toxic effects to cell components (Nienhaus and Nienhaus 2013). This may not
only alter the cell function under consideration, but also leads to increased autofluo-
rescence after cell death.

3.1.3 Image Formation

In the previous sections it was explained how light is generated in the sample and how
it interacts with other materials. Now, how do refractive lenses create an image? This
can be understood by constructing optical ray diagrams (Heintzmann 2013).

Fig. 10a shows the important rays at the example of a convex lens. They are required
to understand the basic optical composition of typical fluorescent microscopes. The
most important characteristic of any convex lens is the focal point. By definition, this is
the point were all rays, parallel to the optical axis, converge after passing the lens. One
differentiates between the front and the back focal point since this is true for parallel
rays in both directions. The distance of a focal point to the center of the lens is defined
by the focal length f, and the plane perpendicular to the optical axis at a focal point
is called the focal plane. All parallel rays that enter the lens at an arbitrary angle are
focused on the same spot in the focal plane. Rays passing the center of the lens are not
altered in their direction. All of these paths are also retraceable, thus, for instance a ray
first passing the focal point and then entering the lens proceeds parallel to the optical
axis behind the lens.

Based on these geometrical rules, the image at a single convex lens is constructed
by finding the intersection of rays coming from the object (see Fig. 10b). Any object O
located at a distance larger than f, but smaller than 2f yields a magnified and inverted
real image I. Any object located in the focal plane creates an image in infinity.

Based on the operating principle of single lenses, it is straightforward to construct
images formed by combinations of lenses. Owing to the context of this thesis, the basic
optical setting of FM is considered. The finite optics setup of classic light microscopes
is reviewed by Robenek 1995. It consists of an additional convex lens that creates a
further magnified virtual image from the real intermediate image so that it can be
directly viewed by the human eye.
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(a) (b)

Figure 10: (a) Basic characteristics and rays of a convex lens. (b) Image formation by a convex
lens.

For FM, image formation is implemented as an infinity-corrected imaging process
(Kubitscheck 2013a). The basic elements are the objective and the tube lens. The corre-
sponding ray diagram is presented in Fig. 11. In contrast to finite optics, an object must
be positioned at the focal plane of the objective to form a sharp image at the image
plane. The objective first creates an image in infinity, and the tube lens then focuses this
image on the image plane forming a real image. The magnification M is then solely
defined by the ratio of the focal lengths:

M =
ftube
fobj

. (7)

Any off-focus object appears at the image plane with the same size as if it would be in
focus, but has a blurred intensity profile.

Figure 11: The infinity-corrected imaging process in FM.

This infinity-corrected setup has two important advantages for FM (Keller 2006). As
the light path is parallel in the infinity space between the lenses, their distance can
be varied to a certain extent. Furthermore, additional planar optical elements can be
introduced without affecting the final magnification. This allows to move the objective
instead of the stage to focus the image. The optical elements can then for instance be
used to combine the excitation and emission light path or to differentiate wavelengths.
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By now it was ignored that a lens actually consists of two refractive interfaces, and
simply their medial axis was used to draw the diagrams. This simplification to thin
lenses allows for getting a basic understanding of how a system is working, but ig-
nores all imperfections that real thick lenses have. The imperfections and the resulting
consequences will be covered in Sect. 3.1.4.3 and 3.2.1, respectively. An exhaustive ge-
ometrical treatment of thick lenses is provided by Hecht 2009.

After having looked at the fundamental concept of image formation, the next sec-
tion introduces the principal components and their arrangement in fluorescence micro-
scopes.

3.1.4 Principal Components

Today, epifluorescence microscopes are the most common configuration. Their princi-
ple of operation is illustrated in Fig. 12.

Figure 12: Scheme of the epifluorescence imaging configuration.

As it was explained in the previous section, the objective and the tube lens create
an infinity space. In the epifluorescence design, it is used to insert a dichroic mirror.
This allows to pass both the excitation and the emission light through the objective
and has the great advantage that it is much safer for the person who conducts the
experiment not to be exposed to radiation (Dobrucki 2013). The same dichroic is also
used to separate excitation and emission light before image acquisition.

Microscopes that directly implement this epifluorescence configuration are com-
monly known as wide-field (WF) microscopes. Their field of view is homogeneously
illuminated by focusing the excitation light beam into the back focal plane of the ob-
jective. Today, WF microscopes are routinely used for live-cell imaging owing to their
straightforward implementation and their flexibility for accessing molecular dynamic
in cell cultures. In the following, the principal components are introduced.

3.1.4.1 Light Sources

The application in FM puts distinctive requirements on excitation light sources (Nolte
et al. 2006): owing to the Stokes shift they have to emit light at low wavelengths. They
also need to provide high intensity to generate sufficient fluorescence, and should
allow for uniform illumination of the specimen. Today, the main types of light sources
are high pressure arc lamps and lasers.
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Arc lamps are the most routinely used light sources (Dobrucki 2013). They provide
enough intensity for live-cell imaging and are available as different types that are dis-
tinguishable in their lifetime and emission spectra. The latter is either continuous or
has several sharp maxima. The selection of a certain type is therefore highly dependent
on its application. Despite their popularity, they have severe limitations for quantitative
microscopy since they provide non-uniform illumination, and their intensity exhibits
fluctuations and diminishes within an operational time of days.

Lasers are a more costly alternative to arc lamps, but exhibit high temporal and
spatial emission stability (Gratton and vandeVen 2006). They provide very specific
wavelengths and achieve hence much higher intensities in their spectral region. As
an additional characteristic, they emit highly collimated light beams (Axmann et al.
2013). Collimated light can be used to focus into very small regions, which is exploited
in more advanced imaging configurations like they will be reviewed in Sect. 3.3. Lasers
can be implemented in many different ways, and the basic types used in FM are de-
scribed by Cox 2007. An exhaustive list is provided by Gratton and vandeVen 2006.

Recently, also sets of light-emitting diodes (LEDs) have become available (Dobrucki
2013). They are comparatively cheap and are not damaged by repeated on and off
switching. These properties make them a promising alternative in the future.

3.1.4.2 Optical Filters

Optical filters play a central role in FM. As it was emphasized in Sect. 3.1.2, FM is highly
specific owing to the ability to attach fluorophores at individual molecules. However,
it will be revealed in Sect. 3.1.4.4 that the majority of the image acquisition devices
are sensitive to intensity, but they cannot differentiate the wavelengths. This is accom-
plished by filters that selectively transmit light of different wavelengths. Despite this
fundamental function, they also enable correlation analyses of molecules labeled with
fluorophores of different wavelengths. This expands the range of possible applications
tremendously.

In the epifluorescence configuration filters are employed at three positions. First, they
are used as excitation filters to selectively excite fluorophores and second, as emission
filters to separate the intended fluorescence from other wavelengths. The latter is par-
ticularly important since even the reflected excitation light is often much more intense
than the fluorescence (Robenek 1995). While excitation and emission filters are barrier
filters that absorb light, another type, called dichroic mirrors, are special interference
filters that reflect the wavelengths that are not transmitted (Cox 2007). They consist
of several layers with periodically changing low and high RIs that create selective per-
meability and reflection by interference effects (Hecht 2009). As the third option, such
dichroic mirrors are mounted at 450 in the infinity space. This allows to combine and
separate the excitation and emission light paths.

To detect light as efficient as possible, the transmission properties of a set of filters
have to be carefully matched. Beside the availability of standard filter blocks, various
applications need specific filter configurations. Thus, excitation and emission filters
are often separately exchangeable via filter wheels, and multiband dichroic mirrors
are available that support several separated Stoke shifts.
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3.1.4.3 Objective Lenses

The objective is the component mainly responsible for the image quality. So far it has
been treated as a single lens, but modern objective lenses are actually very precise se-
quences of up to 20 lenses (Kubitscheck 2013a). This complexity is required to reduce
the impact of diverse aberrations that real lenses exhibit. In contrast to the simplifi-
cations made in Sect. 3.1.3, real lenses do not focus all parallel rays exactly into the
focal point. This is mainly caused by spherical and chromatic aberrations (Keller 2006,
Robenek 1995). Spherical aberrations occur because curved lenses refract outer rays
stronger than rays that are close to the optical axis, and chromatic aberrations are
caused by dispersion. Therefore, today’s objective lenses come in different classes ac-
cording to the types of aberrations they reduce. A description of these objective classes
is provided by Robenek 1995.

The main characteristics of objective lenses are their magnification, numerical aper-
ture (NA), working distance as well as the immersion medium and cover slip thickness
they are designed for. Infinity-corrected objective lenses already have a magnification
assigned as they internally create a magnified real image that is focused in infinity by
the last lens. Another important characteristic is the NA, defined as:

NA = n sinα. (8)

Here, n is the RI of the immersion medium between the specimen and the objective,
and α denotes half of the angular aperture. The latter represents the maximum angle
with which rays from the focal point can contribute to the image (Kubitscheck 2013a).
It is therefore a measure of the capability of an objective to gather light.

To achieve high image quality the NA should be as high as possible and the RIs of the
objective, the immersion medium, and the specimen should match. Fig. 13 illustrates
what happens if the immersion medium has a lower RI than the objective and if the
RIs match. Owing to the refraction at the interface of the objective and the immersion
medium, the maximum angle α with which light from the specimen can enter the
objective is effectively decreased in case of a refractive index mismatch (RIM). Rays
with an angle larger than α cannot reach the objective and do not contribute to the
image.

Figure 13: Light paths with and without the RIM at the interface between the objective and
immersion medium. In the presence of the RIM, the maximum angle α is effectively
decreased because ray 1 cannot contribute to the image.
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Similar effects occur at the interface between the immersion medium and the sam-
ple if their RIs do not match. They are in detail discussed in Sect. 4.3.5. To optimize
the optical conditions for the various applications in live-cell imaging, different types
of objective lenses have been designed. They are either dry or immersion objective
lenses and are further corrected for use with cover slips or without. The most com-
mon immersion objective lenses are designed to match water, oil, or silicone. Water
and silicone immersion objective lenses are particularly useful for imaging deep into
living tissue since their RIs match those experienced in samples most closely, and their
working distances are high. The latter defines the distance from the physical front of
the objective to the focal plane (Keller 2006). Still, it is most widely used practice to
plate primary cultures on cover slips. Then high-NA oil immersion objective lenses that
have been designed to match the high RI of glass can also be used and exhibit superior
imaging quality at the very first micrometers within the specimen. An exhaustive list
of objective characteristics and corresponding designations that have to be considered
for a particular application is provided by Davidson 2013.

3.1.4.4 Light Detectors

Today, almost all light detectors for FM are electronic devices (Dobrucki 2013). They
exploit the photoelectric effect, where electrons are emitted by materials if they are
exposed to light (Hecht 2009). Such light detectors are inherently monochromatic and
therefore incapable of differentiating wavelengths due to their functioning being based
on the detection of photons. By incorporating filters, color detection systems can be
realized, but they are either lacking speed, spatial resolution, or sensitivity (Cox 2007).

Monochromatic light detectors can be divided into point and full-field detection
devices (Art 2006). Point detectors detect light without discrimination of its spatial
origin, whereas full-field devices detect and spatially separate light from the whole
field of view at once.

Photomultiplier tubes and avalanche photodiodes belong to the first category. They
feature response times shorter than nanoseconds and single photon detection. Their
quantum efficiency (QE), which describes the percentage of absorbed photons that re-
ally induce a charge, is 30 % and 90 %, respectively (Dobrucki 2013).

In comparison, full-field detectors, like charge-coupled device (CCD) respectively
complementary metal-oxide-semiconductor (CMOS) cameras, exhibit high spatial res-
olution by composition as arrays of light-sensitive components. In analogy to digital
images these components are often referred to as pixels. For CCD cameras, the pixel
size is 5-30 µm (Pawley 2006a), the QE can reach 95 %, and the response time for a
full image is in the range of several tens of milliseconds. CMOS cameras have similar
characteristics, but are faster and have lower QEs. However, they can be produced with
smaller pixel sizes allowing for an increase of the number of pixels in an array (Saurabh
et al. 2012).

For the present work, electron-multiplying CCD (EMCCD) cameras have been em-
ployed because the focus is on the analysis of molecular dynamics, which requires
fast observation at low light emission. Their functional principle will now be reviewed
in more detail.

Fig. 14 illustrates the overall architecture of an EMCCD camera. Each individual pixel
element of an array accumulates the electric charge released by the photoelectric effect.
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To obtain QEs up to 95 %, its silicon layer can be thinned, and the pixels are illuminated
from the back so that the electrical wiring does not absorb photons. To parallelize ex-
posure and readout, all charges are first of all shifted from the sensor region into a
covered read register. This is called frame transfer and is accomplished very fast. The
charges in the read register are then shifted line by line into the serial shift register
that forwards the charges to the electron multiplication register. This register consists
of „ 500 charge-coupled elements that shift the charges with a much higher transfer
voltage than normal (Pawley 2006a). With this voltage shifted electrons can generate
additional electrons by collision yielding a chain reaction. The probability with that
an electron generates an additional one is proportional to the applied voltage and
can yield an electron multiplication gain of GEM « 1000. The read amplifier finally
converts the charges into voltage values that are thereafter digitized to create pixel
intensity values.

Figure 14: Schematic architecture of an EMCCD camera. (Adapted from http://commons.
wikimedia.org/wiki/File:EMCCD2_color_en.svg.)

The significance of the electron multiplication register becomes evident when the
noise sources of EMCCD cameras are considered. According to Axmann et al. 2013,
the overall noise δ at a pixel generated by EMCCD cameras can be computed from all
individual noise sources by:

δ =

c

δ2mult

(
δ2dark + δ

2
photon + δ2back

)
+ (δread/GEM)2. (9)

Here, δphoton is the noise inherent to the fluorescent signal, and δb is the background
noise emerging from autofluorescence, unspecific labeling, or light scattering. Both
noise sources are inherent to the application of FM and are therefore uninfluenceable
by camera engineering.

In contrast, δdark, δread, and δmult originate from the camera design (Dobrucki
2013). δdark designates dark current noise that occurs at the pixel elements of the
camera array and emerges from electrons that are solely created by thermal motion. By
cooling the detectors down to about´100 0C, which is already standard for commercial
cameras, dark current noise is practically negligible. δread is the readout noise arising
during amplification and digitization. It is usually specified as a fixed standard devia-
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tion (SD) for each pixel independently of the actual number of measured electrons. The
influence of this error can be decreased by detecting more photons, but typically only
a few tens of photons per pixel are detected in live-cell experiments (Pawley 2006b).
At such low detection rates the multiplication register can alternatively be used to
boost the number of electrons per photon well over the readout noise. This makes it
virtually negligible. However, it should only be used at low detection rates because
electron multiplication is a statistical process and creates the additional noise factor
δmult «

?
2 (Robbins and Hadwen 2003). The total noise could otherwise exceed the

noise of conventional CCD cameras, although they are subject to readout noise.

3.1.5 Fluorophores

The fundamental advantages of FM are mainly attributed to the exploitation of fluo-
rescence. To make structures of interest visible above the autofluorescent background,
fluorophores are used. This section reviews the main types of fluorophores and ex-
plains how they can be attached to the molecules of interest.

3.1.5.1 Types of Fluorophores

Fluorophores must first of all absorb light very efficiently and have to be very bright
in their particular emission spectrum. There are further very important properties that
can be divided into spectroscopic and biochemical properties (Johnson 2006). Spec-
troscopic properties cover the fluorophores efficiency for optical detection including
excitation and emission spectrum, fluorescence quantum yield, and photostability. Bio-
chemical properties determine the compatibility and applicability within the target
environment. This includes the size and material of a fluorophore as well as its mem-
brane permeability, binding affinity, and phototoxicity. In order to adjust the properties
best for a particular experiment, a wide range of different fluorophores has been devel-
oped. According to Nienhaus and Nienhaus 2013 they can be categorized into organic
dyes, nanoparticles, and fluorescent proteins (FPs). They are briefly reviewed in the
following.

Organic dyes are very small (ă 1 nm) planar or cyclic molecules with conjugated
systems that have delocalized pi-electrons (Nienhaus and Nienhaus 2013). The tradi-
tional types are derivatives of fluorescein and rhodamine, but today newer variants like
cyanine and AlexaFluor are available. They feature increased spectroscopic properties
and water solubility (Tsien et al. 2006).

Nanoparticles consist of fluorescent materials whose emission wavelength is deter-
mined by the size of the particle. Traditional representatives are latex beads, but nowa-
days quantum dots (QDs) are preferentially used in living systems. QDs consists of a
semiconductor core surrounded by an inorganic shell that improves brightness and
stability and shields the toxic core (Johnson 2006). This again is encompassed by an
organic coating that makes QDs water soluble.

The discovery of the green fluorescent protein (GFP) in the jellyfish Aequorea vic-
toria was published by Shimomura et al. 1962. It consists of 238 amino acid residues,
and many different variants have been further developed. Today, they cover different
emission spectra and can remain in an excitable state even above room temperature
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(Cox 2007). Fig. 15 provides exemplary schemes of the structure of all three categories.

Figure 15: Schematic structure of the three different fluorophore categories. (Adapted from
Martin-Palma et al. 2009, originally published in Sensors.)

The three types of fluorophores vary considerably in their properties, and a detailed
tabular comparison is presented by Nienhaus and Nienhaus 2013. In summary, organic
dyes and FPs have similar spectroscopic properties, but particularly QDs are outstanding
in this respect. They exhibit very narrow emission spectra and Stokes shifts larger
than 100 nm. This makes experiments with multiple wavelengths possible and allows
for the separation of excitation and emission wavelengths. Furthermore, they barely
bleach and are brighter than organic dyes and FPs because they can absorb about 100
times more photons at a comparable quantum yield. Noteworthy is also the stochastic
blinking that single QDs exhibit. It can be used to ensure that only a single fluorophore
is analyzed.

In terms of the biochemical properties, organic dyes and FPs have clear advantages,
particularly for application in living cells. Owing to their relatively small size they are
less likely to change the molecular functionality (Syková and Nicholson 2008), and they
are also less toxic than QDs.

3.1.5.2 Labeling Techniques

Besides their properties, the most important aspect is how a fluorophore can be linked
to the molecule of interest. This concerns the questions of how a fluorophore is trans-
ported to its target, and how specific is its binding?

FPs are inherently advantageous as the target molecule can be genetically encoded
with a specific connection to selected FPs. The corresponding DNA sequence can be
transfected into the cell. By transcription of this sequence, the cell expresses the fused
construct itself in situ (Tsien 1998).

There are various chemical and mechanical techniques for transfection including the
application of cationic lipid reagents, calcium phosphate coprecipitation, or utilization
of a gene gun (Cox 2007). A decision for either method is then driven by the sample
type and the required expression level in terms of the number of transfected cells
respectively the number of expressed molecules within a cell. Also the tolerable cell
survival rate after treatment is of importance.

While being extremely specific, it should not be neglected that using FPs may lead to
overexpression of the fused protein in comparison to the so called endogenous, original
protein. The level of overexpression or if the endogenous protein is even replaced
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depends on how well a certain target molecule is regulated. A new construct always
has to be tested for effects on the cellular functionality (Nienhaus and Nienhaus 2013).

To bind organic dyes and QDs to the molecules of interest immunostaining is most
frequently employed. It is strongly related to the functioning of the human immune
system and generally refers to techniques that use antibodies to specifically bind to
their corresponding antigens at the target molecules (Cox 2007). To conjugate the fluo-
rophore with the antibody, covalent bonds are established by functionalization of the
fluorophore surface. This direct labeling can be very specific, but requires the creation
of extra fluorophore-antibody structures for each target. Therefore, indirect labeling
is used, where primary antibodies specifically bind to the target, and a secondary
antibody, conjugated with the fluorophore, detects the primary antibody. This yields
greater flexibility and can also be used to increase the brightness since several sec-
ondary antibodies may bind to the same primary antibody. On the downside, this may
decrease specificity since one-to-one binding between molecules and fluorophores can-
not be ensured.

To transport the fluorophore to the target they simply have to be added to the culture,
where they approach the targets by diffusion. The number of tagged molecules has to
be experimentally determined by varying the density and the incubation time. More
disadvantageous is the fact that antibodies are usually too large to penetrate the cell
membrane, which generally limits the application of immunostaining to extracellular
molecules in living cells.

3.2 how far can one go : limits of fm

In the last section the basic principles of FM were reviewed. It was clarified why it
has emerged into the primary imaging technique for living cells: it provides images
of structures in living cells with high contrast, sensitivity, and specificity. Moreover,
it allows to extract functionality and dynamic by one-to-one attachment of single fluo-
rophores to single molecules. However, does it really allow to resolve such information
at the molecular scale? The first answer must be no because the spatial resolution of
optical microscopes is fundamentally limited by the diffraction of light. This and other
limits of FM are the topic of the present section.

3.2.1 Diffraction Sets a Fundamental Limit on the Resolution

In light microscopy, resolution defines the smallest spatial distance between two objects
with that they can still be distinguished as two separate objects (Hecht 2009). The
classical resolution limit was derived by Ernst Abbe. He established the foundations
of image formation together with the calculation of optical lenses that are reasonably
corrected for chromatic and spherical aberrations (Inoué 2006).

In its famous publication, Abbe 1873 derived the connection between the size of
the NA and the distance between periodic line gratings so that they can be resolved.
Owing to the diffraction of light at the grating, the information of the structure is only
recoverable if the NA of the objective is big enough to capture at least the zeroth and
first diffraction order of the resulting diffraction pattern. Since the angle between the
diffraction orders increases with finer gratings, he proved that based on the limited NA
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of objective lenses, the distance between two lines, so that they can be resolved, cannot
be less than „ 200 nm for visible wavelengths.

In its classical definition, Abbe considered the diffraction at illuminated objects in-
stead of the detection of self-luminous point sources like it is the case for FM. In classical
light microscopy objects become detectable by altering the properties of the transmit-
ted light. Opposed to that, objects are detected as composites of many fluorophores
attached to individual molecules in FM. A fluorescence image contains the signal of
many self-luminous point sources. The light of each, even infinitesimal small, point
source in the focal plane of the objective is deflected at the aperture of the objective
so that the point object appears with a blurred intensity profile in the image plane
of the microscope. This point image is generally referred to as the PSF and describes
the focusing capability of a microscope (Kubitscheck 2013a). In this purely diffraction-
limited case the PSF has the shape of an Airy pattern IAiry (Airy 1835). The intensity
profile of IAiry is depicted in Fig. 16 and consists of a blurred bright spot surrounded
by iteratively dark and bright rings that fade away.

Since fluorophores are independent light sources, they emit incoherent light. There-
fore, microscopes can be considered as optical systems that are linear in light intensity
(Wu et al. 2008). The Airy pattern then represents the unique impulse response of the
microscope, and the observed image I(x,y), which contains multiple point sources, is
constructed by convolution of the true objects O(x,y) with the Airy pattern:

I(x,y) = O(x,y) ˙ IAiry(x,y). (10)

This process is depicted in Fig. 16. It is apparent that the Airy pattern degrades the
resolution of the image since point sources that are too close to each other cannot be
distinguished anymore.

Figure 16: Illustration of the microscope image formation process.

The actual resolution is then defined by the smallest distance between two point
sources under which their combined intensity distribution can be perceived as two
separate distributions. At this, the so called Rayleigh criterion is commonly applied. It
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states that two point sources are separable by eye if their distance corresponds to at
least the radius of the inner dark ring of the Airy pattern (Kubitscheck 2013a, Inoué
2006, Rayleigh 1879). The resolution is then defined by the lateral Rayleigh distance:

dR =
0.61λ
n sinα

=
0.61λ
NAobj

. (11)

In contrast to Abbes’s definition, λ is the wavelength of the emitted light and not the
illumination wavelength, but both definitions yield similar results as they attribute the
resolution capability of a microscope to the NA of the objective and the wavelength of
light (Best et al. 2013).

The intensity distribution of the Airy pattern can be well approximated with a 2D

Gaussian function (Zhang et al. 2007b). Then the Rayleigh resolution corresponds to
the full width at half maximum (FWHM) of the Gaussian. This simplifies the practical
estimation of the resolution to computing the FWHM of the PSF’s intensity distribution.

To define the axial resolution of a microscope, the 3D diffraction pattern of a point
source has to be considered. The 3D PSF is point symmetric in the lateral direction
and also symmetric above and below the focal plane along the axial axis (Kubitscheck
2013a). The x,z section together with the lateral and axial FWHM is depicted in Fig. 17.
Similar to the Rayleigh criterion, the minimal axial distance dz between two point

Figure 17: The x,z section of the 3D PSF. The ranges indicate the FWHM. (Reprinted from Huang
et al. 2009, originally published in Annual Review of Biochemistry.)

sources is defined by the distance from the axial center to the first minimum along the
axial axis (Kubitscheck 2013a, Inoué 2006):

dz =
2λn

NA2obj
. (12)

The axial resolution is about three to four times worse than the lateral resolution.
From Equ. 11 and 12 it is apparent that the usage of wavelengths at the lower end

of the visible spectrum is preferable for high-resolution applications. Using high-RI

immersion mediums the resolution can be further improved. All in all, the theoretical
resolution of fluorescence microscopes can approach about 200-300 nm in the lateral
and about 500-700 nm in the axial direction (Huang et al. 2009).

3.2.2 Visibility Defines the Effective Resolution

In the last section it was shown that the imaging capability of microscopes is funda-
mentally limited by the diffraction of light. Resolution asks for the ability to recognize
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two point sources represented by their finite size PSFs as being separate. This requires
contrast. Therefore, the Rayleigh criterion may be considered as the request for 25 %
contrast between the intensity of the dip between two PSFs and the intensity at their
centers (Kubitscheck 2013a). It is important to understand that such pure diffraction-
limited systems are ideal systems (Wu et al. 2008). In reality, chromatic and spherical
lens aberrations, alignment errors, or mismatches in the RIs of the immersion medium
and the sample blur the profile of the Airy pattern, and the effective resolution is re-
duced. Furthermore, the obtained contrast depends on the SNR, and today almost all
microscope images are acquired digitally. These aspects extend the concept of resolu-
tion to the more general question of visibility (Pawley 2006a) and the more important
question becomes: is it possible to recognize the contrast between two individual PSFs

at Rayleigh distance in digitized images?
Digital images are created by measuring the intensity of an optical image at regu-

lar intervals in space and time (Wu et al. 2008). According to the Nyquist-Shannon
sampling theorem, the original information can only be reconstructed from the digital
representation if it was sampled with a frequency at least twice as high as the high-
est frequency in the original data (Shannon 1949, Nyquist 1928). Optical images are
inherently band-limited as their smallest feature is the PSF. The size of a pixel must
not exceed half of the distance defined by the Rayleigh resolution criterion yielding
FWHMPSF/2 (Pawley 2006b).

Pawley 2006b also states that even if this rule is adhered to, it might not always
be possible to achieve the 25 % contrast at the Rayleigh distance between two point
sources. To support that finding Fig. 18 illustrates the sampling with the Nyquist rate
of an image of two point objects that are separated by dR. Here, Fig. 18a represents
the optimal situation, where the pixels sample exactly the intensity at the center of the
two maxima and the valley. Since a pixel actually represents the average intensity of its
total area, the contrast will be less than 25 % (see Fig. 18b). Fig. 18c finally depicts the
likely situation where the pixels are not centered on the maxima and the valley. This
will considerably reduce the contrast and may even eliminate it.

(a) (b) (c)

Figure 18: Illustration of Nyquist sampling using the (a) center or the (b) average intensity
and (c) if the pixels are not well located with respect to the particles. The black
line denotes the combined intensity distribution of two particles and the dashed
lines the individual ones. The blue bars represent the pixels and the percents the
available contrast.

Although Pawley 2006b acknowledges that by proper reconstruction, for instance
using deconvolution, these effects can be mitigated to a large extent, reconstruction
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can never be optimal. This is caused by the existence of noise. In Equ. 9, the noise
sources of a single pixel were summarized. Considering the photon noise alone, it
already introduces an irreducible uncertainty on the number of photons N per pixel
(see Sect. 3.1.2). The uncertainty is usually defined by one SD and yields ˘

?
N.

For low light applications, Pawley 2006b shows that the introduced uncertainty can
easily reach similar magnitude like the required contrast. To decrease the uncertainty
so that the required contrast is reliably available, more photons need to be detected.
However, other application dependent noise sources like autofluorescence, unspecific
labeling, or light scattering scale with N and are not reducible this way. Particularly
the sample type and the labeling strategy have tremendous impact on the achievable
visibility in real experiments.

The above considerations about spatial and temporal sampling are very much interre-
lated: if the spatial sampling shall be increased, then the pixel size could be decreased
or the magnification increased. In either case the number of photons collected by a sin-
gle pixel element will decrease. This, in turn, increases the uncertainty introduced by
photon noise. For compensation, either the excitation power may be increased, or the
temporal sampling can be reduced. The former is particularly dangerous for live-cell
imaging as it accelerates toxic effects that cause cell death. It also yields faster fluo-
rophore saturation, which decreases the available duration of recording. In contrast,
reducing the temporal sampling is uncritical for the cells, but limits the capability to
capture dynamic processes. Temporal undersampling would again lower spatial reso-
lution owing to motion artifacts.

It is obviously difficult to achieve high visibility for different types of experiments. It
must be acknowledged that the fundamental resolution limit that is usually cited in the
literature can hardly be approached in practice. As a result, various imaging techniques
have been developed that approach or even come below the Rayleigh resolution limit
under specific conditions. They are the topic of the next section.

3.3 fm techniques for live-cell imaging

The available resolution in FM presents a serious limitation since interesting molecular
structures like vesicles, the active zone, or the synaptic cleft are in the same range or
even much smaller (see Sect. 2.3.2). Various imaging techniques have been developed
to increase the resolution, and numerous detailed reviews are available (Weisshart
et al. 2013, Schermelleh et al. 2010, Huang et al. 2010, 2009, Heintzmann and Ficz 2006,
Stephens and Allan 2003).

In this section, selected techniques will be reviewed and are subdivided into classical
and super-resolution techniques. Classical techniques improve the effective resolution,
but continue being diffraction-limited. In contrast, super-resolution techniques circum-
vent the diffraction barrier and provide details in the nanometer regime. They are
separately covered in Sect. 3.3.1 and 3.3.2, respectively.

It shall be stressed here that for live-cell imaging the viability of the specimen is just
as important as the resolution because biological results could otherwise simply be
useless. Viability often stands opposed to resolution since procedures that increase the
resolution intensify phototoxic effects and different types of samples set different re-

32



quirements on the accessibility of the requested information. Therefore, many more
factors have to be considered before selecting a particular imaging technique. These
include the photon efficiency of the optical system, the employed wavelengths, the
size of the biological volume that is excited, the penetration depth in the tissue, the
temporal resolution, or the duration of the experiment (Stephens and Allan 2003).

The viability of the specimen also depends on specifications that are not related
to the imaging technique. Stephens and Allan 2003 pointed out that a stable cellular
environment is vital during the experiment. This includes maintaining constant tem-
perature, CO2, and humidity conditions.

3.3.1 Classical Imaging Techniques

The most routinely used imaging technique is WF imaging. Its principal configuration
was introduced in Sect. 3.1.4. Its success stems particularly from the straightforward
implementation and the flexibility in terms of wavelength alternation and temporal
resolution. Owing to the homogeneous illumination of the field of view (see Fig. 19a),
the image is created at once, and the temporal resolution is only limited by the perfor-
mance of the detector.

The homogeneous illumination in conjunction with the fact that light from off-focus
positions is not filtered out is also its biggest disadvantage. The emission from a flu-
orophore in focus is superimposed with the emission from neighboring particles in
the lateral and axial direction (York et al. 2011). This decreases the SNR and reduces
the effective resolution. Furthermore, the available penetration depth is usually low
since light scattering yields very blurry images in dense tissue (Inoué 2006). As a con-
sequence, the application of WF microscopes is restricted to thin cell cultures.

(a) (b) (c) (d) (e)

Figure 19: (a)-(e) Simplified illustrations of sample illumination in classical imaging techniques.
The green regions illustrate the excited volumes in the sample.

3.3.1.1 Scanning Confocal Microscopy

These issues were addressed by the development of scanning confocal microscopy
(SCM) (Minsky 1961) using two major design decisions. First, the excitation light is
focused into the sample to excite only a diffraction-limited region (see Fig. 19b). This is
nowadays achieved by sending collimated light from a laser into the objective (Naredi-
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Rainer et al. 2013) and mainly restricts the lateral detection of light. As a second prin-
ciple, light from out of focus planes is effectively filtered out by placing a pinhole in
the focus of the tube lens.

Thus, point detectors are employed, and the detected light of a diffraction-limited
region is represented by one pixel in the image. The full image is obtained by scanning
the sample. By restricting the detection of light to such a small confocal volume the SNR

is increased, and the effective resolution is significantly improved. It can be shown that
by choosing pinhole sizes well below the PSF’s FWHM the purely diffraction-limited
resolution can be improved by a factor of

?
2, but in practice this improvement is

eliminated by the loss in the number of detected photons (Naredi-Rainer et al. 2013,
Cox and Sheppard 2004).

The axial sectioning capability of the pinhole is more important since the intensity
from the confocal volume falls sharply with the distance to the focal plane. Light from
off-focus planes, which would otherwise blur the image, hardly reaches the detector.
This makes the axial resolution really available and allows for larger penetration depths
in dens tissue (Webb 1996).

However, the increase in effective resolution comes at a significant cost in terms
of the reduced temporal resolution (in the order of seconds for an image) and the
intensified photobleaching. Both is caused by the scanning procedure.

3.3.1.2 Spinning Disk Confocal Microscopy

By scanning the sample in parallel using several pinholes, the invention of spinning
disk confocal microscopy (SDCM) (Egger and Petran 1967) combined the advantages
of SCM with the high temporal sampling available with WF microscopy (see Fig. 19c).
This is accomplished by utilization of a Nipkow disk (Nipkow 1884). It arranges many
pinholes in a way that if an object is viewed through the pinholes, each position on the
object is evenly sampled after at least one rotation. Today’s implementations of SDCM

are using two synchronized Nipkow disks; one equipped with microlenses and the
second with pinholes (Naredi-Rainer et al. 2013, Toomre and Pawley 2006).

The inner portion of a laser beam is spread apart to achieve uniform collimated
illumination for a region of microlenses. This corresponds to the field of view. The
microlenses focus parallel beams through the pinholes that create several confocal ex-
citation volumes. Simultaneously, they act as axial sectioning pinholes in the emission
path. Owing to the parallel sampling the final image can be acquired using full-field
detectors.

The obtained lateral resolution is comparable to that of SCM, but the axial resolution
is slightly worse due to cross-talk between the pinholes (Toomre and Pawley 2006).
SDCM also suffers from very low photon transmission efficiency (ă 10 %). This hinders
the acquisition of dim fluorophores, but at the same time decreases photobleaching.

3.3.1.3 Two-photon Microscopy

A method that is particularly compatible with living cells is two-photon microscopy
(2PM) (Denk et al. 1990). It uses fluorophores that require excitation in the ultraviolet
range, which is very toxic for cells and accelerates photobleaching (Cox 2007). There-
fore, the fluorophores are excited by two photons at the same time so that each of them
needs to carry only half of the required energy, and the excitation light can have twice
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the wavelength. To increase the probability that two photons arrive simultaneously the
excitation light is focused into the specimen using pulsed lasers (see Fig. 19d).

This results in similar axial sectioning and resolution capability like with confocal
microscopy. A pinhole is not required since only in the focal plane the excitation prob-
ability is sufficiently high. Furthermore, photobleaching is only present at the focal
plane. Owing to the excitation with infrared light the irradiation energy is compara-
tively low and less damaging for the sample. It also reduces light scattering allowing
for penetration depths of several hundred micrometers.

3.3.1.4 Total Internal Reflection Fluorescence Microscopy

Another method that excites only a very thin axial section is total internal reflection
fluorescence (TIRF) microscopy (Axelrod 2001). Very high-NA aperture objective lenses
(NA ą 1.4) are employed to focus a collimated laser beam under an angle of total
reflection onto the border between the sample and the cover slip (see Fig. 19e). Owing
to quantum mechanics, this creates an evanescent wave that reaches up to „ 100 nm
into the sample. Only fluorophores in this thin axial region are excited.

This results in images with very high SNRs and increases particularly the axial res-
olution (Heintzmann and Ficz 2006). However, TIRF is very limited in the number of
biological applications since only areas of a cell very close to the cover slip are accessi-
ble (Stephens and Allan 2003).

3.3.2 Circumventing the Diffraction Barrier: Super-resolution Techniques

Nowadays, the term super-resolution is commonly used to address all methods from
the last two decades that achieve effective resolutions well below the diffraction bar-
rier. In the literature it is often stated that the diffraction barrier is now broken. This
is misleading since these methods do not break the diffraction barrier directly, but
circumvent it by introducing artificial contrast. Abbe and Rayleigh are still right.

Now, what is the underlying idea to circumvent the diffraction barrier? Reconsid-
ering the principle of confocal microscopy, the resolution is improved by detecting
only the fluorescence of a single diffraction-limited region at a time. This introduces
extra contrast by spatial and temporal separation. The general idea is therefore to fur-
ther increase the separation by spatial or temporal variation of the light intensities.
Then a super-resolution image can be constructed from individually detected small
features in the sample (Betzig 1995). In other words: if it is known from which small
sub-diffraction-limited region photons do come from, then they can be collected irre-
spective of their diffraction-limited transmission and be assigned to a smaller region
in the image.

According to Huang et al. 2009, the most important techniques achieve separation
below the diffraction barrier by (1) spatially patterned excitation or (2) single-molecule
localization (SML). These two principles are reviewed in the following.

Of course there are also other principles (Weisshart et al. 2013), but methods based
on these two principles have gained major interest and broad application. This is par-
ticularly caused by their compatibility with live-cell imaging and their - at least theo-
retically - unlimited resolution capability.
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3.3.2.1 Spatially Patterned Excitation

Methods that implement this principle, create sub-diffraction-limited regions by engi-
neering on the excitation pattern and exploitation of fluorophores that can be switched
between a bright and a dark state. The first and most fundamental method is stimu-
lated emission depletion (STED) microscopy. It was conceptually presented by Hell and
Wichmann 1994 and experimentally verified by Klar and Hell 1999.

The basic setup is similar to that of SCM, and only a diffraction-limited region is
excited. Additionally, a second so called STED laser is used. It resets already excited
fluorophores to their lowest electronic energy state S0 (see Sect. 3.1.2) before they can
spontaneously emit a photon. To trigger this event, the STED laser has to emit photons
with an energy that corresponds exactly to the energy difference between S1 and the
highest vibrational level of S0. The induced relaxation is also accompanied with the
emission of a photon, but now the light has the same wavelength λSTED as the excita-
tion light of the STED laser. This quantum mechanical phenomenon is called stimulated
emission.

As a practical result, fluorophores illuminated by the STED laser now emit photons
that can be separated from the normal fluorescence using the dichroic mirror. These
fluorophores do not contribute to the image anymore and are effectively blanked out.

To realize an effectively sub-diffraction-limited PSF, the excitation pattern of the STED

laser is shaped like a doughnut. It leaves only fluorophores in a small circular region
in the excited state. This inhibition pattern can be realized using phase masks (Keller
et al. 2007).

The FWHM of the effective PSF and in consequence the resolution of the system is
defined by the distance (Hell 2007):

dSTED «
λ

2n sinα
a

1+ imax/isat
. (13)

Here, imax and isat are the maximum intensity of the STED laser and the saturation
intensity that is sufficient to relax the fluorophores, respectively. The resolution is then
adjusted by imax. Since even the intensity in the boundary regions of the doughnut
will eventually exceed isat, the width of the depletion pattern will increase in practice.
As a consequence, the resolution can theoretically be infinitely high and has already
been realized at the nanoscale by Rittweger et al. 2009.

The high-resolution image is finally constructed by scanning the sample with the ef-
fective PSF and collecting the fluorescence using point detectors. The system is thereby
still diffraction-limited in the excitation and emission light path. The resolution of the
constructed image is solely defined by the known size of the effective PSF.

STED is not the only option to implement dark and bright states of fluorophores.
Alternatively, ground state depletion (GSD) can be used (Hell and Kroug 1995), where
fluorophores are caught in a so called triplet state by additional excitation. They do not
relax to the ground state S0 until the excitation light is turned off. During this period
these fluorophores are therefore effectively bleached.

At the present time the ultimate technique is the application of fluorophores that
can be switched on and off. This has first been shown by Hofmann et al. 2005. Proteins
that undergo conformational changes between excitable and non-excitable states, by
illumination with light of different wavelengths, are employed. The reported switch-
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ing intensities are in the range of a few W/cm2 and are compatible with living cells.
Methods that employ such switchable fluorophores to achieve super-resolution have
also been generalized under the term reversible saturable optical fluorescence transi-
tions (RESOLFT) (Hell 2007, Hofmann et al. 2005).

Using RESOLFT methods, lateral resolutions of „ 70-90 nm have been achieved in
biological samples (Nägerl et al. 2008, Westphal et al. 2008), but the axial and the
temporal resolution as well as the penetration depth remained similar to that of SCM.
Owing to the success of RESOLFT technologies, there is currently ongoing development
in many directions: improved switchable fluorophores have been developed and em-
ployed. They enable multiple switching cycles and exhibit increased photostability so
that repeatable and long-term experiments are available (Grotjohann et al. 2012, Testa
et al. 2012, Fernández-Suárez and Ting 2008). The axial resolution could be dramat-
ically improved to „ 100-200 nm by axial PSF engineering (Harke et al. 2008, Klar
et al. 2000) or by combination with other imaging techniques (Friedrich et al. 2011,
Wildanger et al. 2009, Punge et al. 2008, Dyba et al. 2005). The temporal resolution was
improved by parallel scanning of the sample (Chmyrov et al. 2013, Bingen et al. 2011).

3.3.2.2 Single-Molecule Localization

Single-molecule localization methods use WF illumination instead of scanning tech-
niques. Reconsidering the image construction process, it can be considered as the con-
volution of the point sources in the object with the PSF of the microscope. Hence, two
point sources cannot be resolved if they are located within the FWHM of their blurred
images (see Sect. 3.2.1). However, if it would be possible to image the particles sepa-
rately, then at least their center positions can be determined with much higher preci-
sion than the actual resolution (Betzig 1995). The corresponding localization algorithms
are the topic of Sect. 4.3.3.

If individual fluorophores are iteratively localized over time, then a super-resolution
image that allows to distinguish nearby fluorophores can be created from these posi-
tions. This is exemplarily illustrated in Fig. 20.

In comparison to RESOLFT methods, the image is not directly detected. It is subse-
quently constructed from several images acquired by full-field detectors. The funda-
mental principle is still spatial and temporal separation. In contrast to RESOLFT, this
is not accomplished by defined sub-diffraction-limited excitation, but by stochastic de-
tection of individual fluorophores. They are inherently the smallest entity that can be
resolved. It is the localization accuracy (LA) with which their position can be deter-
mined that defines the actual resolution. The two major aspects of SML, the obtained
lateral resolution and the particle separation procedure, are now discussed in more
detail.

Each photon emitted by a single fluorophore that arrives at the detector is a measure
for the position of that fluorophore. The position error of each photon measurement
is the SD of the PSF because the normalized PSF represents the Gaussian probability
distribution for the spatial position of all detected photons. According to Thompson
et al. 2002, the average of all photon measurements then provides the best estimated
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Figure 20: Principle of single molecule image creation. The true particle positions (a) cannot be
recovered by conventional diffraction-limited FM (b). If fluorophores can be stochas-
tically switched on and off (c), then individual fluorophores can be localized over
time (d) and assembled to a super-resolution image (e). (Reprinted from Sahl and
Moerner 2013, with permission from Elsevier.)

position of the fluorophore. The uncertainty ∆s with which its position is determined
can be estimated by:

∆s «
σPSF
?
N

. (14)

This is simply the standard error of the mean and defines the purely photon-limited LA.
More realistic theoretical treatments have been derived by Mortensen et al. 2010, Abra-
ham et al. 2009 and Ober et al. 2004. Their findings are based on Fisher’s information
limit and consider various experimental and imaging conditions.

The spatial resolution of the compounded image can be estimated by considering
the image construction process (see Fig. 20). Each detected spot is usually drawn into
the image as a 2D Gaussian. Its height then corresponds to the intensity, and its SD is
given by the respective ∆s (Betzig et al. 2006). Since ∆s takes the number of photons
into account, it is much smaller than the SD of the original PSF. By substituting ∆s with
the FWHM in Equ. 14, the theoretically achievable spatial resolution in the image is
defined by the distance:

dSML =
σPSF
?
N
¨ 2
?
2ln2. (15)

By detecting more and more photons per particle, the resolution can in theory again be
infinitely high and ångström-level resolution has already been experimentally proven
(Abbondanzieri et al. 2005).

Precise localization of single fluorophores is only achievable if photons can be clearly
assigned to a single fluorophore. Thus, only a subset of spatially well separated par-
ticles can be imaged at once. Fig. 21 summarizes the principal concepts for single
molecule separation.
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Figure 21: Principles of single molecule separation. The blurred spots represent the particles
like they are observed in the individual acquisitions, and the filled circles represent
the LA with that they are drawn in the final image.

Early approaches have kept the particle density sufficiently low so that the fluo-
rophores are sparsely distributed. They focused on the detection of molecular dynam-
ics in SPT applications (Yildiz et al. 2003, Kubitscheck et al. 2000, Schmidt et al. 1996).
The resolution of particles within biological compartments smaller than the diffraction
limit has been achieved by wavelength discrimination (Schütz et al. 1998, Oijen et al.
1998) and by separation based on photobleaching (Simonson et al. 2011, Qu et al. 2004,
Gordon et al. 2004). In the latter, single fluorophores are successively bleached out.
Starting from the last remaining particle, the combined intensity distribution is com-
puted. This allows to draw conclusions on the individual particle positions. Similar
algorithms have also been used to resolve nearby QDs that undergo stochastic blink-
ing (Lagerholm et al. 2006, Lidke et al. 2005). More generally, intrinsic blinking and
bleaching, common to all fluorescent molecules, was exploited by Burnette et al. 2011.

It was first pointed out by Lidke et al. 2005 that SML techniques are capable of draw-
ing high-resolution images from localized point sources in a pointillistic fashion. This
has ultimately been achieved by using photoswitchable fluorophores. They allow to
resolve high molecular densities with as many as millions of fluorophores in a single
image. Such methods have been individually developed by different labs and were
termed photoactivated localization microscopy (PALM) (Betzig et al. 2006), stochastic
optical reconstruction microscopy (STORM) (Rust et al. 2006), and fluorescence photoac-
tivation localization microscopy (FPALM) (Hess et al. 2006). They create high-resolution
images by stochastically switching on and off subpopulations of fluorophores. For it,
lasers of different wavelength are used, and the whole process can be repeated a few
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thousand times (Schermelleh et al. 2010). These methods differ in the type of employed
fluorophores and the way they are switched. Nowadays many different fluorophores
are available from the stock, and a selection is provided by Huang et al. 2009.

The original methods achieved high SNRs by imaging fixed preparations at the inter-
face of the cover slip using TIRF (Betzig et al. 2006, Rust et al. 2006) or WF (Hess et al.
2006) configurations. Nowadays, they are routinely used with living cells, and effec-
tive resolutions of „ 50-70 nm are achieved (Shroff et al. 2008, Hess et al. 2007). Their
applicability has also been broadened by showing that also conventional fluorophores
can be used (Heilemann et al. 2008). Relying on WF imaging, the penetration depth is
inherently limited, but the field of view is large and does not compromise with the tem-
poral resolution. However, owing to the iterative acquisition the temporal resolution
is still in the range of seconds per image (Shroff et al. 2008), but highly dynamic pro-
cesses, which are only limited by the photon budget and the acquisition speed of the
camera, can be assessed by combining PALM with SPT. This has led to the development
of sptPALM (Nair et al. 2013, Manley et al. 2008).

Current improvements mainly focus on the extension to 3D. They are in detail ad-
dressed in Sect. 4.3.4. Still, as it was pointed out by Weisshart et al. 2013, routine 3D

acquisitions in living samples remain to be challenging. The next chapter provides an
approach to make such experiments readily available.
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4
FA S T 3D M O L E C U L A R D Y N A M I C S A N A LY S I S I N B R A I N S L I C E S

This chapter addresses the analysis of molecular dynamics in complex biological sam-
ples. Such analyses allow to investigate the local arrangement, mobility, and interaction
of signalling molecules in small neuronal compartments.

At first it must be proven that 2D molecular dynamics are also accessible in com-
plex organotypic brain slices. To enable 3D diffusion analyses the major objective is the
automatic adjustment to depth-dependent optical aberrations. Since fast dynamic pro-
cesses in nanoscale compartments shall be analyzed, the method must be feasible with
spatial accuracies of less than 100 nm and with at least 30 Hz temporal resolution. Fur-
thermore, a simple imaging configuration shall be employed so that the method can
become available to a broad community. Finally, it is a great demand that the technique
is fast and routinely applicable so that the viability of the specimen is maintained and
robust statistics can be obtained.

Before the actual workflow is presented, at first the available readout from dynamics
analyses is quantified, and the corresponding state-of-the-art methods are reviewed.

4.1 detection schemes for studying molecular dynamics

Available optical tools for studying molecular dynamics are briefly summarized in the
following. Several related tools provide readouts for molecular dynamics based on pho-
tobleaching. The basic methodology was established by Peters et al. 1974 and has lead
to the fundamental method today known as fluorescence recovery after photobleach-
ing (FRAP). It uses a focused laser beam to shortly illuminate a small region with an
intensive excitation pulse leading to instantaneous and irreversible photobleaching of
the fluorophores within that region. The subsequent diffusive influx of non-bleached
fluorophores from the surrounding region then recovers the fluorescence. This tempo-
ral process can be imaged at standard laser powers. The resulting intensity recovery
curve allows for computation of the type of motion, the absolute diffusion coefficient,
and the immobile fraction of molecules (Axelrod et al. 1976). Since the bleached re-
gion cannot be infinitesimal small, these are always average results for a population
of molecules. Beside the simple implementation of FRAP and its high temporal reso-
lution, the strong dependency of the diffusion measurement on the exact knowledge
of the geometry of the bleached region as well as the light-induced cell damage are
disadvantageous properties.

An alternative implementation is continuous fluorescence microphotolysis (CFM) (Pe-
ters et al. 1981). It employs intermediate laser powers to induce photobleaching at a
certain level while simultaneously imaging that region. The measured intensity decay
reflects the two competing processes of irreversible bleaching and diffusive influx of
new fluorophores. CFM allows for the same readout as FRAP, but works with lower
fluorophore density, provides higher SNR, and requires less instrumentation.

fluorescence loss in photobleaching (FLIP) (Cole et al. 1996) and fluorescence local-
ization after photobleaching (FLAP) (Dunn et al. 2002) are FRAP variants that provide
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additional information. During FLIP, the region is repetitively bleached. The continued
influx and subsequent bleaching of new fluorophores leads to a slow decrease of fluo-
rescence in the surrounding regions and allows to draw conclusions on the connectiv-
ity of different cellular compartments. Alternatively, FLAP labels single molecules with
two different fluorophores and performs simultaneous two color imaging. Bleaching
of only one kind of fluorophore allows for additional determination of the diffusing
bleached molecules using simple difference image analysis.

Another method that is also capable of measuring diffusion properties is fluores-
cence correlation spectroscopy (FCS). It is sensitive enough to detect different diffusive
subpopulations (Lippincott-Schwartz et al. 2001). It is a photon counting technique,
and its application to living cells relies on the detection of fluorescence in a very
small confocal volume. Measuring the intensity fluctuation, driven by individual flu-
orophores that diffuse in and out of that volume, allows to determine fluorophore
correlation times. Subsequently, diffusion coefficients, concentrations, and affinity con-
stants for molecule-molecule interactions can be derived (Lippincott-Schwartz et al.
2001). To achieve such high specificity, the density of labeled molecules has to be kept
reasonably low. Other drawbacks are the required specialized instrumentation and the
difficulty to define the size of the volume.

The utilization of SPT for mobility analyses of individual molecules in living cells
is relatively new (Schütz et al. 2000a, Kubitscheck et al. 2000). Tracking single fluo-
rophores with nanometer LA allows for dynamics analyses of populations and indi-
vidual fluorophores using diffusion measurements (Saxton and Jacobson 1997). Hence,
different types of motion and absolute diffusion coefficients can be determined, and
molecular interactions can be investigated at the nanometer scale. Relatively sparse dis-
tributions of labeled molecules and photostable fluorophores are a prerequisite (Nien-
haus and Nienhaus 2013).

A conceptually different approach is based on Förster resonance energy transfer
(FRET) (Lakowicz 2006). It occurs when the emission spectrum of the so called dona-
tor fluorophore overlaps with the excitation spectrum of the acceptor fluorophore and
involves non-radiative energy transfer through dipole-dipole coupling. If a donator is
excited and FRET can occur, then the practical implication is that fluorescence is emit-
ted by the acceptor instead of the donator fluorophore (Lippincott-Schwartz et al. 2001).
In FRET microscopy this is exploited to measure the spatial relationship between fluo-
rophores since the FRET efficiency and therewith the emitted fluorescence are distance
dependent. Molecular distances of several ångström can be resolved.

Such molecular interactions can alternatively be detected using fluorescence lifetime
imaging microscopy (FLIM) (Bastiaens and Squire 1999). It determines the lifetime of
a fluorophore in the excited state before it returns to the ground state S0. Since the
fluorescence lifetime is sensitive to the occurrence of FRET, interactions can be detected
by a shift in the mean fluorescence lifetime (Day and Schaufele 2008).

In this thesis SPT is chosen as the preferred analysis tool for several reasons: (1) most
importantly, it provides ultimate specificity since selected molecules can be analyzed
individually. (2) the individual spatial LA reaches sub-diffraction nanometer precision
allowing for investigation of dynamics in very small compartments. (3) the temporal
resolution is only limited by the photon efficiency of the detectors, and varying time
scales for the analysis of dynamics can be maintained. The latter notably allows to iden-
tify changes in the type of motion over the trace of a single molecule. Finally, (4) SPT is
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capable of revealing the 3D trajectory. This is important for anisotropic motion that can
for instance be experienced with surface molecules at curved neuronal compartments.

4.2 characterizing the readout of spt

The characteristics that can be extracted by analysis of SPT data are manifold. The
most basic properties are derived from motility and velocity measurements (Meijering
et al. 2012). The former category might include the total trajectory length and time,
the relative distance from the initial position, or the directional change. Properties like
the instantaneous speed, the mean curvilinear speed, or the acceleration, which deal
with the rate of displacement, are available from velocity measurements. In contrast,
analyzing large numbers of particle trajectories can be used to extract morphological
characteristics like the area or contour of biological structures (Nair et al. 2013) or
to probe for interactions between molecules by aggregation detection (Jaqaman et al.
2008).

To analyze molecular dynamics, diffusion measurements are most frequently em-
ployed (Manley et al. 2008, Saxton and Jacobson 1997). This mainly involves the com-
putation of the mean squared displacement (MSD). It can be interpreted as the volume
randomly moving particles have explored after a certain period. It also allows to iden-
tify different types of motion and to extract the absolute diffusion coefficients. This
information is helpful in many ways. It supports analysis of populations, for instance
if different molecules exhibit distinct types of motion or if diffusion parameters are
locally varying. Confined regions and their size as well as the dwell times and escape
probabilities of particles can be individually detected, and even the location and time
of transitions in the type of motion of individual particles can be determined.

The MSD is a measure for the average distance a particle travels during a given
time interval τ and is usually calculated as the second-order moment of displacement
(Michalet 2010, Qian et al. 1991):

MSD(τ = m∆t) =

C

1

M´m

M´m
ÿ

u=1

|~pu∆t+m∆t ´ ~pu∆t|
2

G

, m = 1, ...,M´ 1. (16)

Here, ~pt is the position of a particle at time t, ∆t is the temporal sampling interval,
M denotes the number of position measurements in the trajectory, and m adjusts the
usually discrete τ. The outer brackets represent the average over multiple particles.
Alternative calculations of the MSD, notably for higher-order moments of displacement
(Sbalzarini and Koumoutsakos 2005) or incomplete trajectories (Michalet 2010) are also
available.

If the MSD is plotted as a function of τ, the shape of the slope is an indicator for the
type of molecular motion. According to Saxton and Jacobson 1997 one can differentiate
four types

• directed motion with diffusion MSD(τ) = 2dDτ+ (Vτ)2

• normal diffusion MSD(τ) = 2dDτ

• anomalous diffusion MSD(τ) = 2dDτα
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• confined motion MSD(τ) » Rc

[
1´ a1e

´2da2Dτ

Rc

]
.

The corresponding MSD curves are depicted in Fig. 22a and their course can be approx-
imated with the stated analytical functions. These are based on the Einstein relation
and relate the trajectory of a particle with its diffusion coefficient D (Crocker and Grier
1996). The parameter d always denotes the spatial dimension, V is the velocity, α ă 1
an anomaly parameter, Rc corresponds to the size of the confined region, and a1 and
a2 also relate to their geometry and are positive constants.

(a) (b)

Figure 22: (a) MSD curves for different types of diffusion. (b) Corresponding exemplary trajec-
tories.

Following Saxton and Jacobson 1997, a particle exhibits normal diffusion in the pres-
ence of pure Brownian motion. This is reflected by a straight line in the MSD curve
where D defines their slope. Anomalous diffusion is represented by a lagging MSD

curve indicating impeded motion, owing to interactions with obstacles or traps with
varying binding energies or escape times. If a particle’s motion is confined to a cer-
tain region, its MSD curve approaches a maximum value that relates to the size of this
region. This may result from differences in membrane viscosity, embedment in the
intracellular skeleton, or tethering to immobile structures. The curve of particles that
undergo directed motion is steeper than that of particles with normal diffusion. These
particles probably interact with a cytoskeletal motor. Corresponding particle trajecto-
ries are exemplarily illustrated in Fig. 22b.

To classify a track according to which motion it most likely corresponds to, several
methods have been proposed. The most direct method fits all four motion functions
to the MSD curve, and the version revealing the best goodness of fit is selected (Wilson
et al. 1996, Anderson et al. 1992). In contrast, Feder et al. 1996 just fit the function for
anomalous diffusion and classify into directed motion, normal diffusion or confined
motion on the basis of α. Since the corresponding function is nonlinear, the fit is ap-
plied to their logarithm to converge more consistently. Kusumi et al. 1993 also reduce
the shape of the MSD curve to a single parameter. It represents the ratio of the local
diffusion coefficients Dl of the measured MSD and the MSD of normal diffusion. If the
ratio falls on either side of the distribution of simulated random diffusion ratios, the
particular deviation from normal diffusion can be detected again. To achieve the same
classification, Saxton 1993 employs asymmetry measures from the shape of random
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walks (Rudnick and Gaspari 1987). These measures of a given trajectory are tested
against the probability that they could also accidentally occur in pure normal motion.

Knowing the dominant type of motion allows for the most accurate estimation of the
individual diffusion coefficients by MSD curve fitting. The relative fractions of motion
types within a population can also be computed. If the type of motion is unknown or
difficult to gauge, for instance due to short trajectories (Saxton and Jacobson 1997), a
reasonable alternative is the approximation of D by the already introduced local diffu-
sion coefficient Dl. It is computed by fitting a straight line to the very first MSD data
points (Kusumi et al. 1993, Qian et al. 1991). By evaluation of the analytical functions,
Qian et al. 1991 demonstrated that Dl is fairly independent of the type of motion be-
cause the individual motion components dominate the MSD only for large values of τ.
On average, Dl overestimates D only by „ 20 % (Kusumi et al. 1993).

These results are always only averages and assume that particles undergo only one
type of motion during acquisition. In fact, this assumption is usually not justifiable for
long-term observations since particles randomly interact with other molecular struc-
tures (Kusumi et al. 2012). As one of the first to determine motion transitions in single
trajectories, Simson et al. 1995 detected temporary confinement. Assuming Brownian
motion, they divide trajectories in independent segments and search for temporary con-
finement that is retained longer as would be expected from the probability of random
confinement (Saxton 1993). The classification of segments simply relies on probability
thresholding. To detect the exact location of transition points, Montiel et al. 2006 com-
pare two running windows and determine significant local shifts in D by means of a
log-likelihood ratio test.

Approaches that additionally classify the types of motion have been proposed by
Helmuth et al. 2007, Huet et al. 2006. For this purpose, Huet et al. 2006 employ three
classification parameters. Immobility is represented by a Dl estimate, confined motion
is indicated by a MSD ratio similar to the one proposed by Kusumi et al. 1993, and
the shape asymmetry introduced by Saxton 1993 is used for detection of directed mo-
tion. Computation of these parameters for a running window with variable size allows
for temporal motion classification by thresholding the parameter tracks. Unclassified
periods of the trajectory are assumed to have normal diffusion. In comparison, Hel-
muth et al. 2007 classify motion by feeding a supervised support vector machine with
geometrical trajectory features computed on a running window of fixed size.

Finally, some computational aspects of MSD curve fitting shall be considered. Partic-
ularly the influence of particle localization errors, quantified by ∆s, are of interest. The
related questions are: (1) what is the most accurate fitting method, and (2) how many
MSD data points should be included for accurate estimation of D? Concerning the first
question, Michalet 2010 showed that least-squares (LSQ) fitting can be considered as be-
ing optimal since MSD values follow a normal distribution in most cases. Unweighted
and weighted fitting yield similar results, which is advantageous since there is no need
for estimation of the SD of the MSD. However, the latter holds only true if an adequate
number of fitting points is used.

This leads to the second question. First of all, it has to be considered that trajectories
should be as long as possible respectively as many particles as possible should be mea-
sured to avoid strong statistical fluctuations in the MSD (Qian et al. 1991). However, this
would result in only averaged diffusion measurements, and individual type of motion
changes or subpopulations with various characteristics are undetectable (Saxton and
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Jacobson 1997). In order to maintain specific results, the number of measurements for
each MSD data point is usually low. More measurements could be obtained by increase
of the temporal resolution, but this reduces the LA because it scales with the inverse of
the

?
N (see Equ. 14). Since the influence of localization errors is unavoidable, Martin

et al. 2002 showed that the introduced uncertainty results in a constant offset for any
MSD curve and must be considered as an additional fitting parameter. Furthermore,
they proved that the existence of localization errors is in fact the reason for the re-
ported probability that trajectories might suggest other motion than the correct one
(Saxton 1993).

To deal with the obvious consequence that MSD curves become noisy, Saxton and
Jacobson 1997 suggest to analyze only MSD values for τ ă 1/4 of the length of the tra-
jectory since otherwise the average does not contain enough measurements. Although
they limited their analysis to isotropic mediums and Brownian motion, a more detailed
guideline was proposed by Michalet 2010. They argue that the optimal number of con-
sidered MSD points is a trade-off between including large time intervals to compensate
for the uncertainty at small τ dominated by the localization error and taking only the
very first values to exclude the poorly averaged MSD points towards the end of the
curve. Therefore, they introduce a reduced localization error ∆sr = ∆s2/D∆t that cor-
responds to situations where the localization error dominates the effect of diffusion.
Based on ∆sr, they provide an empirical approximation for the number of included
MSD data points that minimize the error on the fitted curve parameters:

mmin = Round(2+ 2.7
a

∆sr). (17)

In practice, an estimate for the LA of the imaging system must be available and D can
initially be approximated by Dl. Iterative MSD curve fitting and D estimation will then
rapidly lead to optimal values for mmin and D.

Since diffusion and MSD calculations depend on the number of available measure-
ments as well as the LA, they can lead to reasonable uncertainty in the estimation of D
(Michalet 2010, Qian et al. 1991). It is therefore good practice to provide the distribu-
tion of diffusion coefficients rather than an averaged D (Wu et al. 2008). The analysis
of the shape of the distribution then allows to determine deviations from the expected
normal distribution. In case of deviation, immobile and mobile fractions could alter-
natively be already assessed from this shape instead of performing dedicated motion
type analyses.

The next section now reviews state-of-the-art SPT techniques. It explains how ac-
curate particle positions and trajectories can be determined and reveals the current
shortcomings with respect to the determination of 3D information in brain slices.

4.3 related work on spt

SPT is the ultimate tool in terms of specificity since it allows to analyze the dynamic
of individual molecules. Although the principal concepts have long been known, it
was not until the 1980s that the sensitivity of the instrumentation made imaging single
molecules available at all (Deschout et al. 2014). It took then several more years until
single molecule microscopy became a widely available standard tool for analyses in
living cells (Schütz et al. 2000a, Kubitscheck et al. 2000).
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Since then, research has focused on the precise localization and tracking of multi-
ple particles in digital images, which has led to a variety of computational methods.
They are the topic of this section. It follows the general procedure of (1) detecting the
particles above background, then (2) determining their lateral and axial position with
nanometer precision and (3) linking the individual locations to trajectories. It has to be
stated that applications do not always follow this strict distinction between detection
that only generates indications of particle positions and subsequent precise localization.
Not all presented algorithms are particularly designed for SPT applications. Instead,
they often address spot detection in general, which is a common task in microscopic
images.

In this workflow the correct detection of all particles in the image is very crucial for
any experiment since false positive detections yield biologically misleading results, and
missing out too many particles requires to acquire more images for obtaining robust
statistics. The performance of the overall SPT procedure heavily depends on accurate
localization as otherwise tracks might be unnecessarily interrupted or correct partial
tracks might be erroneously linked to intermediate false detections.

Single particle detection and localization are sophisticated tasks. Owing to the one-
to-one labeling, single molecules are only represented by a single fluorophore, which
requires acquisition at the detection limit and yields generally low SNRs. This is aggra-
vated by simultaneous optimization for the speed of acquisition and for the fact that
the excitation intensities cannot be dramatically increased to prevent photobleaching
and phototoxicity (Meijering et al. 2006, Sage et al. 2005). Furthermore, single particles
are only represented by the diffraction-limited PSF in the image, but do not necessar-
ily have the same SNR since in biological samples usually not all particles lie in-plane
with the focal plane of the microscope. Finally, particles often have to be determined in
close proximity to neighboring particles or above a non-uniform background created
by unspecific autofluorescence or off-focus particles. These properties are illustrated in
Fig. 23).

4.3.1 Preprocessing

The generally low SNR in biological images is one of the most aggravating parameters
for the performance of SPT methods. It is common to enhance the SNR by preprocessing
the data. Deconvolution techniques are a powerful tool to reduce blurring and increase
the contrast (Sibarita 2005). Although it is generally recommended to apply these tech-
niques to microscopic image data (Pawley 2006a), it seems to be less effective for SPT

applications. This is reasoned by the fact that localization algorithms often already per-
form some kind of implicit deconvolution through the inclusion of shape assumptions
(Wu et al. 2008).

Noise reduction is much more frequently applied and is highly reasonable since
microscopes are inherently band-limited by the diffraction of light. Thus, any image
feature smaller than the PSF can be considered as noise and should be removed. Im-
age denoising techniques can be generally divided into linear and nonlinear methods.
Examples for linear filters are simple local averaging (Goulian and Simon 2000) and
the very commonly applied Gaussian smoothing (Crocker and Grier 1996). They are
easily parameterizable and effectively reduce noise, but at the same time also blur
the image, which removes small image features. In contrast, nonlinear methods pre-
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serve edges between objects. For biological images, simple median filtering (Bornfleth
et al. 1999) as well as more advanced anisotropic diffusion techniques (Uttenweiler
et al. 2003, Tvaruskó et al. 1999) have been applied. However, edge preservation is not
so important for SPT applications because the boundaries between particles are rather
fuzzy. Further sophisticated methods include wavelet thresholding (Starck et al. 2007)
or patch-based noise reduction (Boulanger et al. 2008).

4.3.2 Particle Detection

Before introducing particle detection methods, the definition of what can be considered
a particle is crucial. For general spot detection in FM, they are usually defined as objects
of variable size and shape with an intensity profile higher than their local environment,
but separated only by a fuzzy boundary without distinct edges (Olivo-Marin 2002). In
the specific case of SPT, their intensity profile simplifies to being round and Gaussian-
shaped. For the present work this definition is extended to elliptical Gaussian shapes,
like they are observable in Fig. 23. This is owed to the requirements of 3D SPT that will
be considered later in this chapter. Based on the usually diffraction-limited size of the
particle images, the number of distinguishing characteristics is rather small. This limits
the type of applicable methods to thresholding and shape-based approaches.
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Figure 23: Detected particles in an exemplary acquisition in brain slices are indicated by green
boxes. Particles appear as diffraction-limited spots with varying shapes (mark 1) and
SNRs (mark 2). They may have overlapping intensity distributions (mark 3) and may
have to be distinguished from unspecific background (mark 4).

4.3.2.1 Threshold-based Methods

The most basic approaches are purely threshold-based and try to categorize pixels only
at the basis of their intensity value. This is generally achieved by estimating the mean
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background intensity ib and computing a threshold tp by adding a constant factor k
times an estimate of the background noise δb:

tp = ib + kδb. (18)

Typical estimations for the noise are δb =
?
ib (Betzig et al. 2006), taking the median ab-

solute deviation δb = ĩb (Olivo-Marin 2002) or, if the particles are sparsely distributed,
δb = σi (Thompson et al. 2002). For the latter, σi denotes the SD of the intensity of all
pixels. In order to perform well, k requires careful adjustment to the particular image
data, which limits the unattended operation of these approaches.

This drawback can be attenuated by using threshold estimation techniques. The clas-
sical method suggested by Otsu 1975 analyzes the histogram and assigns pixels to
classes by maximizing some discriminant criterion measures of class variances. As was
pointed out by Coudray et al. 2010, this common technique is in general not appropri-
ate for unimodal histograms that microscopic images usually exhibit. Owing to the low
SNR and the relatively sparse distribution of particles with respect to background struc-
tures, the resulting unimodal histograms usually consist of two strongly overlapping
distributions. The one representing the particles is normally much smaller than the one
containing background pixels. Approaches that are capable of thresholding such uni-
modal histograms include the histogram-shape-based triangular methods (Rosin 2001,
Zack et al. 1977), a method based on linear diffusion in the scale-space (Baradez et al.
2004) as well as the T-point algorithm that minimizes the residuals of two line fits to
the descending slope of the histogram (Coudray et al. 2010).

In their basic implementation these are all so called global thresholding methods
that show reduced performance for non-uniform background and strong variations
in the particle intensities. They should, therefore, be used as locally adaptive versions
by separate application to non-overlapping smaller image regions and interpolation of
the spatially distributed regional thresholds (Wu et al. 2008). To further improve the
separation of true signal from noise, shape knowledge can be incorporated.

4.3.2.2 Shape-based Methods

The basic principle of all shape-based algorithms is signal enhancement by transform-
ing the shape information again into some sort of intensity representation so that
thresholding methods can finally be applied more robustly. They can be classified
into dynamic thresholding, spot-enhanced filtering, morphological grayscale, wavelet
decomposition, and supervised methods.

The top hat (Bright and Steel 1987) and its rectangular and smoothing version, the
top hat box filter (Breen et al. 1991), scan the whole image and act like locally dynamic
threshold setting operations. They leave a pixel with its original intensity value if the
maximum respectively mean pixel intensity of a concentric circular top region, is about
a constant threshold value higher than the maximum or mean intensity of a surround-
ing brim region. Otherwise the pixel is assigned zero. The size of the two concentric
regions hence defines the expected particle size and distance.

The spot-enhancing procedure proposed by Sage et al. 2005, can be interpreted as a
continuous implementation of the top hat filter. It uses a Laplacian of Gaussian (LoG)
filter that is convolved with the image. The authors show that this corresponds to a
whitened matched filter, that optimally enhances Gaussian-like structures in additive

49



independent noise experienced in FM images. At the same time it suppresses local
background. Thus, noise reduction is implicitly included and the only parameter is the
SD of the LoG filter that must be tuned for the expected particle size.

The most basic method that is based on morphological grayscale operations, is local
maxima detection using grayscale dilation (Crocker and Grier 1996). More advanced
composite methods find peak indications using morphological top hat filtering (Wu
et al. 2008) or employ the h-dome transform that performs grayscale reconstruction
(Vincent 1993). In the former, the size of the circular shape must be larger than the
largest particle to be found and the h-dome transform requires a threshold parameter
that relates to the SNR in the image. These techniques have been extended by multiply-
ing the intensity at peak indications with the local curvature based on the determinant
of the Hessian matrix (Thomann et al. 2002) or by using the h-dome transform as
an importance sampling function for a subsequent clustering algorithm (Smal et al.
2008b).

Wavelet-based approaches exploit the decomposition of the image at different scales.
Izeddin et al. 2012b employ a B-Spline wavelet of third order and particle candidates
are extracted from the wavelet coefficients at the second scale, using a threshold esti-
mated from coefficients at the first scale. Assuming that in contrast to noise, particle fea-
tures tend to propagate across scales, Olivo-Marin 2002 computes the multi-scale prod-
uct after hard-thresholding the coefficients at each scale individually. This tends to be
more robust and only requires to define the scale that corresponds to the expanse of the
largest particle. Using Jeffreys’s noninformative thresholding scheme (Figueiredo and
Nowak 2001), this approach was extended to detect also very weak objects (Genovesio
et al. 2006). Another method based on image denoising uses a multi-scale variance-
stabilizing transformation and reconstructs the image after selecting significant coeffi-
cients by multiple hypothesis testing (Zhang et al. 2007a).

Supervised methods are trained on annotated sub-images that either contain a parti-
cle or only background structures. These sub-images are decomposed by many small
Haar features that altogether describe the object by their intensity, shape, size and po-
sition. Based on these combined responses for each sub-image the machine learning
algorithms AdaBoost (Jiang et al. 2007) and Fisher Discriminant Analysis (Smal et al.
2010) have been applied to biological images.

After signal enhancement, all shape-based algorithms still require the definition of
a suitable threshold. As most of them perform local background subtraction indirectly,
they can draw on simpler thresholding schemes that are related to the required SNR

and conceptionally similar to Equ. 18.

Evaluation

The majority of the presented algorithms has been evaluated in an extensive study by
Smal et al. 2010. They conducted performance measurements on synthetic and real bio-
logical images, where the SNR, the object shape as well as the parameter settings of the
algorithms were varied. The authors conclude that no detection scheme generally out-
performs all others. However, for very low SNRs ď 4, supervised algorithms show the
best overall performance, closely followed by the multi-scale variance-stabilizing trans-
formation, h-dome-based clustering, LoG-based spot-enhancement, and morphological
top hat filtering. They also emphasize that the presented unsupervised algorithms are
fairly insensitive to their parameterization, which is important for practical application.
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4.3.3 Lateral Particle Localization

Having pixel grid indications of particle positions, the next step is their refinement to
sub-pixel positions, yielding nanometer-scale LAs for particles in the object (see Fig. 24).
At first, the fundamental approaches to sub-pixel refinement are introduced.

Figure 24: Principle of sub-pixel refinement by means of a fitting algorithm.

4.3.3.1 Fundamental Localization Algorithms

As already pointed out, a particle is considered as a round or elliptical Gaussian-
shaped object in the image. In the simplest case, its center position xc,yc can be es-
timated by centroid computation (Patwardhan 1997), yielding:

xc =

ř

xix,y
ř

ix,y
and yc =

ř

yix,y
ř

ix,y
, (19)

with the weight ix,y being the intensity of an included pixel. This estimation is fairly
insensitive to particle shape variations, but easily biased by noisy weights and the
chosen region of interest (ROI) (Cheezum et al. 2001). Due to the former, it is usually
not directly applied to raw intensity images. Instead, the centroid is computed after
cross-correlation of the image with a suitable kernel (Gelles et al. 1988), background
subtraction, and low-pass filtering (Ghosh and Webb 1994, Lee et al. 1991) or wavelet
decomposition at the second wavelet plane (Izeddin et al. 2012b). Since centroid com-
putation is biased towards the center of the ROI, Berglund et al. 2008 proposed an
iterative algorithm that adjusts the ROI using fractions of pixels so that the particle
always resides in the center of the ROI.

An extension that excludes the background implicitly is the so called Gaussian mask
algorithm (Thompson et al. 2002). It is similar to the former in the sense that the
centroid computation is weighted with a function G leading to:

xc =

ř

xix,yG(x,y)
ř

ix,yG(x,y)
and yc =

ř

yix,yG(x,y)
ř

ix,yG(x,y)
. (20)

Here, G is computed from a Gaussian function, integrated over each pixel. Because G
is centered at xc,yc, the position estimation is iterated to minimize the χ2 sum of the
Gaussian mask and the peak intensities.

Alternatively, Parthasarathy 2012 exploits the radial symmetry of the intensity distri-
bution of a particle. The key idea is that the gradients of a radial symmetric function
intersect at the coordinate origin of the distribution. The point having the smallest
distance to all gradient lines is taken as the estimate for the particle location. To com-
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pute the gradient lines, the author uses a Roberts cross operator on the four diago-
nal neighbors of each pixel. The distance du between xc,yc and each gradient line
y = yu +mu(x´ xu) is computed by:

d2u =

[
(yu ´ yc)´mu(xu ´ xc)

]2
m2u + 1

. (21)

The center coordinates are analytically determined by minimizing
a

ř

u d
2
uwu, where

wu is a weight for each pixel that can represent its intensity or distance to the estimated
origin.

Another class of algorithms performs fitting of a PSF model incorporating shape and
noise information. The typical procedure takes a full nonlinear LSQ fit of a Gaussian
function G to the intensity distribution of a particle in the image (Kubitscheck et al.
2000, Anderson et al. 1992). This introduces more complexity than the Gaussian mask
algorithm because all free parameters of G are fitted including the SDs σx, σy, the peak
height h, and the background offset ob:

G(x,y) = ob + h ¨ e
´

(
(x´xc)

2

2σx2
+

(y´yc)
2

2σy2

)
. (22)

The fitting routine minimizes the objective function (Kay 1993):
ÿ

x,y
(G(x,y)´ ix,y)

2 (23)

and therewith also accounts for the noise. For that reason, algorithms that locate parti-
cles in the LSQ sense do not require preceding noise reduction routines. However, LSQ

estimation is suited for data exhibiting Gaussian noise, but in FM the intensity at any
pixel is dominated by photon noise, which follows a Poisson distribution. LSQ fitting is
not optimal because it gives constant weight to every pixel and Gaussian noise is dif-
ferent from Poisson noise particularly for low photon counts. To better account for the
photon noise, any pixel can be given a weight 1/Nx,y in the objective function yielding
weighted LSQ fitting (Mortensen et al. 2010).

Estimating the free parameters using maximum likelihood (MLH) instead of LSQ fit-
ting allows to correctly account for Poisson noise (Ober et al. 2004). The joint likelihood
L of the free parameters of G is maximized with respect to the measured pixel intensi-
ties that are subject to Poisson noise:

L =
ź

x,y

G(x,y)ix,ye´G(x,y)

ix,y!
. (24)

The last algorithm considered here, is particularly designed for particle fitting on
locally non-uniform background and is termed polynomial-fit Gaussian weight (PFGW)
method (Rogers et al. 2007). It fits a quartic polynomial function:

Ifit(x,y) =
u+v=4

ÿ

u=0,v=0

Fu,v(x´ xn)
u(y´ yn)

v (25)
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in the LSQ sense to the peak indications. This is further weighted by a Gaussian function
that is centered at the current position estimate xn,yn. As these center coordinates
are estimated from the quadratic part of Ifit, the algorithm involves an iterative sub-
pixel correction step. The refinement stops when the current center position xn,yn
has a distance less than a given threshold from the previous position xn´1,yn´1. The
combination of Gaussian weight and polynomial fitting has the advantage that the
center of the particle is used for fitting and the fitted function has enough freedom to
incorporate the particle into locally non-uniform background.

Although various background subtraction techniques exist (Piccardi 2004), this topic
has barely been addressed in SML techniques (Small and Stahlheber 2014). In general,
locally uniform background that varies smoothly only over larger spatial distances is
assumed. This is reasonable owing to the sparse signals and the narrow emission bands
of optical filters. Simple procedures are sufficient when the background is not consid-
ered in the localization procedure. This includes subtraction of the average intensity
derived from local (Baddeley et al. 2009) respectively global (Hess et al. 2007) image
regions or using more robust temporal median filtering (Hoogendoorn et al. 2014).

Evaluation

These fundamental approaches have been extensively studied in the literature. As one
of the first, Cheezum et al. 2001 compared centroid computation and LSQ fitting for
diffraction-limited spots modeled by the Airy pattern with noise added from a Poisson
distribution. They stated that LSQ fitting generally outperforms centroid computation
since the absolute bias and the LA ∆s are independent of the relative position to the
pixel grid. Furthermore, for LSQ fitting ∆s scales well with the SNR. The authors con-
clude that the limiting SNR for LSQ fitting is 4 since at this SNR ∆s decreases to only
100 nm, which is, assuming Nyquist sampling, no sub-pixel precision anymore. Later,
Thompson et al. 2002 showed that, although being computationally simpler, the Gaus-
sian mask algorithm performs only slightly worse than LSQ fitting. The PFGW shows
similar performance like LSQ fitting, but maintains it even for complicated backgrounds
(Rogers et al. 2007).

Abraham et al. 2009 compared MLH with LSQ fitting, using Airy and Gaussian shapes.
They demonstrated that MLH fitting yields indeed smaller ∆s than LSQ fitting, but this
is noticeable only at the limit of low photon counts. Additionally, MLH fitting showed to
be more robust to deviations in the PSF shape as they occur for instance due to optical
aberrations. Ober et al. 2004 proved that using MLH fitting, predicted theoretical limits
for ∆s can in fact be reached for digital images with limited photon counts and mixed
Gaussian and Poisson noise sources.

The most comprehensive study was conducted by Mortensen et al. 2010. In contrast
to other studies, they fitted theoretical PSF models derived from findings of Enderlein
et al. 2006 and Bartko and Dickson 1999, who showed that fluorophores have to be
considered as dipoles whose 3D orientation changes their intensity distribution. Again,
MLH fitting proved to be optimal. A surprising finding was that due to being easily
biased by pixels with low photon counts weighted LSQ fitting only performs better
than the unweighted version if the background is high or artificially increased.

However, fitting such sophisticated PSF models is only required for imaging fixed
dipole emitters. Stallinga and Rieger 2010 showed that Gaussian PSF approximations
are fine for freely rotating dipoles, but can result in additional deviations up to several
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tens of nanometers for fixed dipoles. Since fixed dipoles might only be imaged if the
fluorophore is rigidly linked to a stationary structure (Deschout et al. 2014), this is in
practice not required for dynamic live-cell imaging (Small and Stahlheber 2014).

In conclusion, fitting methods are computationally slower, but perform with higher
precision owing to the inclusion of shape and noise information. This can also be
disadvantageous. If the real measurements deviate from the theoretical assumptions,
non-fitting methods may be favorable (Deschout et al. 2014, 2012). Possible additional
experimental factors are sample drift, particle movement during exposure, label dis-
placement at the particle, or optical aberrations. Therefore, no estimator suits all ex-
perimental conditions and careful selection of the appropriate localization algorithm is
necessary.

4.3.3.2 Localization at High Particle Densities

Till now it was implicitly assumed that the particles are well separated so that small
image sub-regions, containing only single particles, can be extracted and subsequently
fed to the position estimators. There are many separation approaches trying to meet
this prerequisite (see Fig. 21). Nevertheless, occurrences of densely distributed particles
being neighbored, having partially overlapping intensity distributions or even being
indistinguishable, are still frequent in practice.

A very reasonable procedure is the detection of such occurrences and their rejection
from further processing. This is indeed simple for particles with only partially overlap-
ping intensity distributions. Particles with distances much below the resolution limit
are hard to differentiate just by inspection of the intensity distribution (Lidke et al.
2005). Additional shape information can be employed to reject detected particles on
the basis of their radius, eccentricity, or SNR (Rogers et al. 2007). The obvious drawback
of this procedure is the reduced number of data points and fewer or shorter trajectories,
particularly for SPT applications. Another consequence of including nearby particles is
the loss of achievable LA. Wolter et al. 2011 showed that for maintaining reasonable LA,
the particle density should not exceed „ 0.5 particles per µm2. Since higher local den-
sities are frequently observed owing to the mobility of the particles, the LA, the amount
of collected data and, very importantly, the viability of the living samples have to be
balanced (Small 2009).

In order to reduce the acquisition time, localization algorithms for very dense parti-
cle distributions have recently come into focus. This has been supported by the finding
that even particles closer than the classical resolution limit can be localized with sim-
ilar uncertainty than separated particles, given sufficiently high numbers of detected
photons (Chao et al. 2009, Ram et al. 2006). Based on the assumptions that the num-
ber of particles is known and the combined intensity distribution is drawn from point
sources that emit photons with identical, but independent spatial distributions, densely
distributed particles can be localized by treating them like mixture intensity distribu-
tions (see Fig. 25). This has been formulated by Ram et al. 2006 as a new resolution
measure in the sense of how accurate the distance between the center of two point
sources can be determined. It was further extended to the axial resolution by Chao
et al. 2009. Without wanting to deepen this further, this again emphasizes that the
Rayleigh criterion is actually somewhat arbitrary. It is based on a notion of contrast de-
tected by eye, but given sufficient photon statistics the limit can also be driven down.

54



Figure 25: Principle of sub-pixel refinement for multiple neighboring particles by means of a
fitting algorithm.

The following algorithms try to approach the proposed resolution limit for dense
particle distributions. One of the major difficulties is the correct estimation of the num-
ber of involved particles because only on the basis of the intensity distribution, their
determination is still inherently hindered by Rayleigh’s resolution criterion. In the sim-
plest case when the intensity distributions of different particles are overlapping, but
are clearly distinguishable, a standard watershed algorithm can be applied for spatial
separation (Izeddin et al. 2012b). It has to be ensured that the region contains enough
background pixels as otherwise the fitting routines cannot estimate the offset correctly
(Mortensen et al. 2010, Sergé et al. 2008). The major drawback of cutting the combined
intensity distribution is the incorrect assignment of photons from either distribution in
the overlapping region, which biases the localization. An improved alternative proce-
dure is based on particle deflation through iteration over the detection and localization
steps (Sergé et al. 2008). The brightest particles are fitted first. Then they are subtracted
from the image to allow for subsequent fitting of nearby dimmer particles. This proce-
dure is iterated until only noise is detected.

The most direct implementation of the findings of Ram et al. 2006 is parallel fitting
of multiple particles by means of a Gaussian mixture distribution. Assuming that any
emitter contributes independently to the intensity at a pixel, the function G in Equ. 24

is then extended to contain the sum of the intensity distributions of several particles.
There are many such algorithms and they mainly differ in the implementation of the
second assumption that requires to know the correct number of particles beforehand.
The algorithms of Huang et al. 2011 and Holden et al. 2011 are very similar because
they rely on particle deflation as introduced by Sergé et al. 2008, but fit the determined
number of particles altogether at each iteration. The model with the best likelihood is
finally selected.

Another iterative procedure was suggested by Quan et al. 2011 and optimized for
performance by Wang et al. 2012. It is initialized with an optimistic number of particles
including many false positive indications. The algorithm fits this initial model to the
data, then removes the particle with the smallest fitting amplitude and repeats these
steps until only a single particle is left for fitting. Subsequently, the Bayesian informa-
tion criterion (BIC) is computed for each of these models and the optimal model is
selected by means of the lowest BIC value. As the BIC includes a penalty term for the
number of parameters in a model, this procedure also reduces the probability for over-
fitting of the data. This Bayesian approach has been extended for time series analysis
by Cox et al. 2012. Including connections over several frames can increase the effec-
tive density by exploiting blinking, bleaching and added particles. Also the LA may be
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increased by combining photons of reoccurring particles. However, these advantages
come at the cost of high computational effort and decreased temporal resolution.

Another class of algorithms is based on compressed sensing, which is a quite recent
statistical paradigm. It states that a signal can be reconstructed from underdetermined
linear systems of measurements in a basis different from that of the original signal
given that the signal is sparse in this initial basis (Càndes 2006). In the context of par-
ticle localization, Mukamel et al. 2012 and Zhu et al. 2012 model the image on a pixel
grid much smaller than the resolution limit by convolution of the particle distribution
with the PSF. They take a sparse representation of the image, using the PSF as the fixed
basis, to recover the original image. Then the residual between the model and the true
image is minimized. The number of particles must not be known beforehand, and the
LA correlates with the pixel refinement. These approaches achieve slightly worse LA,
but work with higher particle densities than the algorithms that fit mixture distribu-
tions. A drawback is that particles are represented by a known and constant shape,
which requires all particles to be perfectly in focus.

An extensive evaluation of the different classes of algorithms for densely distributed
particles is yet not available.

4.3.4 Axial Particle Localization

The most obvious approach to extend the localization principle to 3D is axial scanning
of the sample and creation of so called z-stack images. The 3D center position of in-
dividual particles can then be found by either cross-correlating (York et al. 2011) or
fitting an experimental (Zhang et al. 2011) or theoretical (Aguet et al. 2005) 3D PSF to
the image stack.

As an alternative to using the full PSF, an analytical model function can be fitted to a
feature of the PSF. A common feature is the lateral width of the PSF. In a first approach,
the width of the 2D PSF was described as a function of the axial scanning position by a
focused Gaussian beam waist. Then the minimum of the function indicated the axial
center of the particle (Oijen et al. 1998). This was later improved by showing that the
theoretically predicted axial dependency of the PSF’s FWHM ω (Niedrig 1993):

ω(z) = ω0 ¨

c

1+
( z
d

)2
(26)

is in accordance with experimental measurements (Schütz et al. 2000b). Here, z is the
relative axial position, ω0 is the FWHM in focus, and d is the depth of field. The latter
is defined as the maximum axial distance of two objects that simultaneously appear
sharp at one focus setting (Inoué 2006). By fitting Equ. 26 to the particle widths of the
individual z-stack images, the axial center position can be determined with nanometer
accuracy (see Fig. 26).

The major drawback of such approaches is their low temporal resolution. This is
owed to the necessity to acquire entire image stacks. If particles move during the ac-
quisition, the 3D center position cannot be reliably estimated because the relative axial
positions of the measurements have changed. To increase the temporal resolution, two
classes of algorithms have been developed. One focuses on tracking only single parti-
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Figure 26: The varying width of the PSF can be used to determine the axial center position of
a particle. The exemplary images on top illustrate this variation with respect to the
relative axial position. The black curve is a correlation function determined as the
best fit to the measured particle positions. The right red arrow indicates the center
position, but knowing the parametrization of the correlation function also allows to
determine any relative axial position from a single image. (Adapted from Oijen et al.
1998, with permission from Elsevier.)

cles in a feedback approach while the other acquires multiple particles in parallel and
determines their 3D position using off-focus imaging.

In the so called feedback approach, Levi et al. 2005 used 2PM to consecutively orbit
a focused laser beam around a single particle at two different focal planes. The 3D

position is then determined from the resulting periodic intensity profile. They do not
require an exact model of the PSF because the computation of the center position is only
sensitive to the determination of distinct intensity minimums. The determined 3D posi-
tion is used to define the scanning position for the next iteration. The system achieves
a temporal resolution of 30 Hz and an axial detection range only limited by the ob-
jective’s working distance. Katayama et al. 2009 implemented the same algorithm, but
used two pinholes in a confocal setup to orbit the particle at two focal planes in parallel.
They also acquired WF images so that the ROI can be selected automatically, and the tra-
jectory of a particle can be correlated with the cellular environment. Similarly, Lessard
et al. 2007 used a confocal configuration, but focused the image into four optical fibers.
They act like confocal pinholes so that their back projection yields four different confo-
cal volumes arranged by a tetrahedral geometry in the sample. By maintaining an axial
offset between the two pairs of fibers, the measured intensity distribution is used to
compute the full 3D position of a particle. This was again implemented in an iterative
procedure and facilitates temporal resolutions in the kHz range.

In contrast, off-focus imaging does not require any feedback scanning procedure and
is used with standard WF configurations. The basic idea was first proposed by Speidel
et al. 2003. They found that the radius of the outer ring of a particle’s diffraction pat-
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tern scales linearly with the axial focal distance to the real center of the particle. This
correlation holds true for focal distances larger than 0.5 µm above the particle and
is applicable as long as the particle is detectable off-focus. The axial range is limited
to a few micrometer. Well separated particles can be simultaneously measured, and
the temporal resolution is only limited by the photon efficiency of the imaging sys-
tem. The determined correlation function has been further analyzed by Wu et al. 2005.
They showed that due to spherical aberrations of the lens, a monotonically changing
dependency should be calibrated.

It can be concluded that the fundamental concept, initiated by off-focus imaging,
has prevailed. This is particularly due to its compatibility with SML techniques like
PALM, STORM and FPALM that have found tremendous application. The ability to obtain
large number of trajectories has proven to be more relevant than the detailed analysis
of a few single trajectories. The work of Speidel et al. 2003 has been improved and
generalized to the concept of exploiting the relationship between 2D features of the PSF

and the relative axial center position of a particle with respect to the imaging plane.
Given that such an axial correlation is known, it allows for very fast determination
of the 3D center position from a single 2D image. The accuracy is only limited by the
number of detected photons.

The primarily utilized property of the PSF is their width ω. Based on the axial cor-
relation function described in Equ. 26, it determines the relative axial position of the
focal plane to the center of the particle (see Fig. 26). However, extraction of the axial
position has proven difficult for two reasons: (1) owing to the axial symmetry of the
PSF it cannot be distinguished if a particle is above or below the focal plane, and (2)
the shape of the PSF contains only limited information about the axial position of the
particle within the depth of field of the microscope.

These difficulties have led to the development of approaches that encode the com-
plete 3D position in the 2D PSF. They can be classified into (1) astigmatism-based off-
focus imaging, (2) PSF engineering, (3) multifocal plane detection, and (4) interferomet-
ric dual-objective imaging. Their concepts are introduced in the following, and schemes
of their most dominant representatives are illustrated in Fig. 27.

Figure 27: Schematic illustration of how the most dominant representatives of astigmatism-
based off-focus imaging, PSF engineering, multifocal plane detection and interfero-
metric dual-objective imaging encode the axial position in the 2D PSF. (Adapted from
Sahl and Moerner 2013, with permission from Elsevier.)
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4.3.4.1 Astigmatism-based Off-focus Imaging

Astigmatism-based off-focus imaging breaks the axial symmetry of the PSF and adds
additional axial information by intentional introduction of optical aberrations into the
light path. The most basic approaches are uniaxial bending of the dichroic mirror
(Ragan et al. 2006) and the introduction of a cylindrical lens in the emission light
path (Kao and Verkman 1994). Both approaches yield a PSF that becomes elliptical
instead of rotationally symmetric (see Fig. 27). The introduced ellipticity now allows
for unambiguous determination of the relative axial position of a particle. This can be
implemented by computation of a correlation function using the generalized moment
(Ragan et al. 2006) or by separate axial analysis of the two lateral widths. The latter
can be obtained from either the distance between the minimum and maximum of the
lateral derivatives (Kao and Verkman 1994) or the fit of an elliptical Gaussian function
(Holtzer et al. 2007). The ellipticity is not considered as a rejection criterion anymore,
instead it is intentionally introduced and looked for during the localization procedure.
As the lateral position is unaffected by the introduced astigmatism the 3D position can
already be obtained from each individual 2D image.

Owing to its broad applicability, the simple adjustment of the strength of the astig-
matism and the smooth integration into the well understood localization framework,
the combination of a cylindrical lens and fitting of a Gaussian function has become the
preferred configuration for astigmatism-based imaging. It has already been applied to
live-cell SPT with QDs as fluorophores (Holtzer et al. 2007). The authors also showed
that Equ. 26 is still a valid description for the axial dependency of the individual lat-
eral widths, which allows for direct computation of the axial position. Furthermore,
computation of the theoretical limits for the LA was extended to all three directions ac-
counting for mixture of Gaussian and Poisson noise. The results indicate that the axial
accuracy is largely improved, particularly in the vicinity of the particle center, while
the lateral precision is only marginally reduced. Besides these analytical efforts, broad
application of astigmatism-based imaging has been triggered by implementation as 3D
STORM (Huang et al. 2008b) and by subsequent extension to a larger analysis range by
axial scanning of the probe (Huang et al. 2008a).

Astigmatism-based 3D imaging has been improved in many directions. For instance,
Spille et al. 2012 have moved the analysis down to 200 µm deep into living tissue
using light sheet fluorescence microscopy (LSFM) (Ritter et al. 2010). LSFM is different
from the standard epifluorescence configuration in that the excitation light is focused
from the side into the sample, yielding similar optical sectioning like SCM. Extension
to high particle densities has been presented by Babcock et al. 2012. They adapted the
high density algorithm of Holden et al. 2011 to astigmatism-based imaging by allowing
for variable sized PSFs. However, high particle densities can only be resolved if mini-
mal lateral distances are maintained. Pure axial distances cannot be resolved with 2D

imaging, unless the number of particles would be known. Finally, scientists have tried
to improve the image quality. Izeddin et al. 2012a generated an optical astigmatism
with improved quality, using adaptive optics (AO) instead of cylindrical lenses. The
employed deformable mirror detects and corrects the optical wave front for spherical
aberrations, but at the same time also induces the required astigmatism. They could
report improved LAs. Another approach for precision improvement was presented by
Xu et al. 2012 who used two opposed objective lenses for image acquisition. Besides
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doubling the photon collection efficiency, this also suppressed noise by averaging of
two images and yielded considerable improvement of the axial LA.

4.3.4.2 PSF Engineering

Technically more demanding engineering of the PSF profile was reported by Pavani
et al. 2009. They use a phase mask that performs phase-only spatial modulation of
the light beam. This produces a double-helix PSF whose relative angular orientation
of the two lobes encodes the relative axial position of the particle (see Fig. 27). The
lateral position is derived from the center between the lobes. The lobe coordinates
are computed from individual Gaussian fits to their intensity shape. This allows for
simultaneous tracking of multiple particles as long as they are spatially well separated.
In a subsequent application of this approach, Thompson et al. 2010 tracked QDs in
living cells and analyzed the dependency of the 3D localization on the number of
photons and the relative axial position.

A phase mask modification that creates only a single helix, termed corkscrew PSF,
was proposed by Lew et al. 2011. They argue to be more photon efficient and to cover
a larger axial range at the cost of having to acquire two consecutive images that are
rotated by 1800. To simplify the setup, the use of only standard optical elements like
pairs of nearly parallel mirrors (Sun et al. 2009) or prisms (Yajima1 et al. 2008) has also
been proposed. These techniques create two images of the same scene, but maintain
lateral shifts between the images that encode the axial position.

4.3.4.3 Multifocal Plane Imaging

Multifocal plane imaging adds additional axial information by simultaneous acquisi-
tion at multiple focal planes without scanning. Although the shape and axial symmetry
of the PSF is not altered, knowing the order and distance of the different focal planes
along the optical axis also allows for unambiguous determination of the axial position
(see Fig. 27).

Simultaneous imaging of several focal planes can be accomplished by installing a
beam splitter into the emission pathway. By implementation of different lengths for
the resulting light paths, using either several cameras at different distances (Ram et al.
2008, Prabhat et al. 2004) or additional lenses that focus them differently on separated
regions of one camera (Watanabe et al. 2007, Toprak et al. 2007), each camera or region
effectively images a different focal plane in the sample. A less frequent alternative is
the introduction of a distorted diffraction grating that changes the direction of light
according to its diffraction order (Dalgarno et al. 2010). This directly projects several
spatially separated focal plane images onto one camera.

These configurations have initially only been used for continuous 2D tracking over an
enlarged axial range (Prabhat et al. 2004) or to improve the lateral LA of off-focus imag-
ing (Toprak et al. 2007). The information of the additional planes can also be exploited
to obtain an improved axial position estimate, particularly in the vicinity of the particle
center. This has been accomplished by combined fitting of either analytical (Ram et al.
2008) or experimental (Juette et al. 2010) 3D PSFs to the different focal plane images or by
creation of correlation functions from either normalized intensity differences (Watan-
abe et al. 2007) or image sharpness metrics (Dalgarno et al. 2010) of individual planes.
Such configurations have been applied to 3D live-cell SPT applications using QDs (Ram
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et al. 2008, Watanabe et al. 2007). Analogous to astigmatism-based imaging, they have
found broad application after successful combination with FPALM (Juette et al. 2010).

Improvements of multifocal plane imaging focused for instance on increasing the
temporal resolution. Juette and Bewersdorf 2010 report temporal resolutions in the
kHz range for tracking single particles. They were continuously imaged in the focus of
a laser beam by means of a movable mirror. These extremely high acquisition rates had
been achieved because tracing just a single particle only requires to readout a few lines
of the camera and focusing on a small image region yields strong local fluorescence.

An additional orthogonal view of the same region in the sample was obtained by
Tang et al. 2010. They used a second focal plane to focus on an angled mirror that was
placed inside the sample. After coordinate transformation, this yields nearly isotropic
3D LA because both planes effectively image the particle in focus. 2D localization algo-
rithms can be similarly employed for all directions. However, only few and very well
separated particles can be tracked.

4.3.4.4 Interferometric Dual-objective Imaging

With respect to the number of detected photons, interferometric PALM achieves the
highest 3D LA (Shtengel et al. 2008). This technique exploits the wave-particle duality
of light by self-interference of a photon that traveled over two distinct optical paths. It
acts as its own coherent reference beam. The self-interference takes place in a 3-way
beam splitter and modulates the relative intensity of three output beams. By using
three cameras, the axial position can be determined from the relative particle inten-
sities in the images (see Fig. 27). This technique could until now only be applied to
fixed samples, and since the relative axial emitter position is essentially encoded in the
relative phase of the beams, it can be unambiguously determined only in the range of
„ λ/2. By evaluation of higher moments of the PSF, Aquino et al. 2011 could extend
the axial range to „ λ.

Evaluation

At present, there is no study that compares the performance and properties of all al-
gorithms. A selection just based on the data presented in the respective publications
is difficult because different samples and fluorophores have been used. Complete in-
formation including the 3D accuracy, the number of signal and background photons,
the axial detection range, or the frame rate has not always been provided. On these
grounds, the specifications provided in Fig. 27 have to be taken with caution and are
only directly valid for the specified reference.

Two studies that evaluate typical representatives of the main approaches are avail-
able. Mlodzianoski et al. 2009 assessed the performance of astigmatism-based and mul-
tifocal plane algorithms. They used the reports of Huang et al. 2008b and Holtzer et al.
2007 respectively that of Juette et al. 2010 for the selection of realistic experimental
parameters. Badieirostami et al. 2010 also included the PSF engineering algorithm of
Pavani et al. 2009. Both studies mainly differ in their type of performance analysis.
Mlodzianoski et al. 2009 measure the respective PSF model and assess the performance
of the algorithms from repetitive acquisitions experimentally. Badieirostami et al. 2010

involve analytical PSF models and compare only theoretical predictions.
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Both studies consider varying signal and background levels and arrive at similar con-
clusions that can be qualitatively summarized as follows. Analogous to the lateral LA,
the axial LA of all techniques scales with the number of photons and is about 2.5-5 times
worse than the lateral LA. Although the obtained accuracy is comparable, astigmatism-
and multifocal plane-based approaches are dependent on the relative axial position
and maintain reasonable accuracies only in a range of „ 1 µm around the native focal
plane. In comparison, double-helix localization exhibits effectively constant accuracy
over an axial range of „ 2 µm. Multifocal plane detection is also capable of imaging in
this extended range, but with considerably reduced axial accuracy. Astigmatism-based
approaches can be advantageous for low photon count experiments because multifo-
cal plane detection employs beam splitting that distributes the light on twice as many
pixels. Temporal resolution is not an issue of any of these techniques because they are
usually implemented in WF configurations.

All in all, PSF engineering and interferometry techniques are generally accepted to
provide the best overall LA, but the other techniques have found more widespread
application. This is particularly reasoned by their considerably lower experimental
complexity and their simple integration into various imaging configurations.

The influence of important aspects like high particle density or optical aberrations
has not yet been considered. Current studies are only based on theoretical analyses or
isolated fluorescent beads rather than realistic experimental environments. For these
reasons, the above conclusions have to be considered as guidelines, but the true perfor-
mance of a particular implementation always has to be determined experimentally.

All presented methods require proper calibration of their axial correlation functions.
However, so far their availability has been taken for granted and was not considered.
This aspect is the content of the next section.

4.3.5 3D Particle Localization in Complex Tissue

There are a few approaches that tried to employ the presented 3D localization methods
for diffusion parameter estimation deep in living brain tissue (Spille et al. 2012, Izeddin
et al. 2012a, Huang et al. 2008a, Aguet et al. 2005), but none adequately addresses the
RIM whose influences strengthen with increasing imaging depth and is therefore not
negligible anymore.

So far, the RIM has been merely introduced as an effect that reduces the influx of
light into the objective by effectively decreasing the angular aperture (see Sect. 3.1.4.3).
However, the resulting effects are manifold and have been extensively studied theoret-
ically (Sheppard and Török 1997, Hell et al. 1993) and experimentally (Neuman et al.
2005, Diaspro et al. 2002). In short, the RIM results in a focal shift because of geometrical
distortions and yields a loss of spatial resolution as well as intensity owing to spherical
aberrations. These effects are now introduced in more detail followed by a review of
approaches that try to compensate for these effects.

4.3.5.1 Influence of the RIM on 3D Localization Methods

Fig. 28a illustrates the imaging situation without and in the presence of the RIM for
objective lenses corrected for use with cover slips. Then the RIM occurs at the interface
between the sample and the cover slip. For objective lenses that do not require cover
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slips, the RIM would arise at the interface between the actual neuronal tissue and the
immersion medium.

In consequence of the refraction of light at the interface between the mediums, the
true actual focal position differs from the expected focal position. In the most frequent
case where n1 ą n2, the actual focus is shifted towards the cover slip. This means in
practice that any axial movement of the objective results in an actually shorter focal
movement inside the sample, and the axial image appears elongated. The RIM also
induces spherical aberration. Rays from a point source at the focal plane are refracted
to a different degree at the interface. This depend on their angle of incidence. Outer
rays are stronger refracted than central rays and are no longer exactly focused into the
same spot at the back focal plane. This results in a blurring of the PSF, which intensifies
as a function of the imaging depth and primarily deteriorates the axial resolution. On
top of that, the PSF becomes more and more asymmetric with respect to the axial
axis as the imaging depth increases. Since the spherical aberration blurs the excitation
as well as the emission PSF, excitation light is further spread into regions out of the
confocal volume and less emission light passes the pinhole. The maximum detectable
intensity also decreases with the imaging depth. The absorption of light by the material
is negligible. The described impacts on the observable 3D PSF are presented in Fig. 28b.

Now, what are the consequences for the application of 3D localization methods deep
in living tissue? The exponential decrease in intensity certainly lowers their achievable
LA, but does not inherently preclude their utilization. The focal shift has a virtually
linear relationship with the depth in the tissue and can be considered using a constant
scaling factor for the axial positions (Hell et al. 1993). Since diffusion analyses only
consider relative distances, the scaling factor can actually be neglected. It only has to
be considered if the absolute depth of a particle is of interest.

The situation is different for the loss in resolution and the asymmetry of the PSF.
These effects change the local relationship between features of the PSF and the relative
axial position of a particle. Many applications of 3D localization methods still assume
that a single 3D PSF and consequently a constant relationship is valid across the sample
(Wang et al. 2013, Babcock et al. 2012, Huang et al. 2008b). This might be acceptable in
primary cultures, where images are often acquired in close proximity to the cover slip,
but in order to image cells in their natural environment the assumption of a constant 3D
PSF is apparently not valid. Instead, the required axial relationship varies as a function
of the imaging depth and the ratio of the RIs. By ignoring this fact, current techniques
do not only experience a decrease in their axial LA, the computed axial positions also
exhibit a depth dependent systematic error (SE) (Sokoll et al. 2011, Deng and Shaevitz
2009). They are simply incorrect although the accuracy with that these false values are
computed might be high.

To compute the correct axial position the unique relationship between features of the
2D PSF and the relative axial position has to be known at every depth. Approaches that
address this issue can be classified into (1) strategies that minimize the influence of the
RIM, (2) methods that perform prior depth-dependent calibration measurements, and
(3) computational techniques that try to predict the aberrated 3D PSF.
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(a)

(b)

Figure 28: (a) Imaging situation without and in the presence of the RIM. As a result of the RIM,
the actual focus is shifted (orange ray) and central (purple) as well as outer (blue)
rays are not focused into the same spot. (b) Impact on the PSF. It appears elongated,
blurred, axially asymmetric and the intensity decreases. (Reprinted from Hell et al.
1993, with permission from John Wiley and Sons.)

4.3.5.2 Minimizing the Influence of the RIM

Since the imaging depth and the RI of the sample are the major parameters for the
deteriorating influence of the RIM (Sheppard and Török 1997), the most consequent
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practical strategy is the usage of an appropriate objective. Water (Nägerl et al. 2008),
silicone (Shimozawa et al. 2013), or glycerol (Urban et al. 2011) immersion objective
lenses have been used to most closely match the RI of the samples. The RIs of common
mounting mediums as well as of different tissues and organs are for instance listed by
Bacallao et al. 2006. Further practical guidelines like the adjustment of the pinhole size
or the mixing of mounting mediums are provided by Egner and Hell 2006.

If matching the RIs is not practical, Sheppard and Gu 1991 showed that spherical aber-
rations can be compensated by adding a correction lens. This alters the effective tube
length of the objective and introduces an opposite-sign spherical aberration. Therefore,
modern objective lenses are often equipped with correction collars to manually fine ad-
just for varying cover slip thicknesses, depths in the tissue, and temperature-dependent
RI changes (Keller 2006).

Since in biological samples the aberrations introduced by the RIM are usually too
complex to be fully compensated by such static methods, AO schemes from the field of
astronomy have recently been applied to microscopy (Schwertner et al. 2004). The key
idea is to measure the aberrated wave front and to introduce opposed spherical aberra-
tions for compensation. In so doing, AO schemes are capable of restoring the original
PSF shape. Their direct implementation using point-like reference sources is more com-
plicated in live-cell imaging. In thick biological samples the references usually do not
appear point-like, and background as well as out-of-focus light creates ambiguities
(Booth 2007). Still, reasonably improved PSF shapes have been reported for confocal
(Azucena et al. 2010), WF (Izeddin et al. 2012a), and STED (Gould et al. 2012) imaging
configurations.

An alternative to directly measuring the wave front, is maximization of the local
signal intensity. Optimization schemes like genetic (Izeddin et al. 2012a, Sherman
et al. 2002) or hill-climbing algorithms (Marsh et al. 2003) have been applied. These
approaches require less instrumentation, but rely on iterative image acquisitions to
optimize the shape of the induced compensatory aberrations.

4.3.5.3 Doing Prior Depth-Dependent Calibration

Calibration-based methods accept the aberrations induced by the RIM and consider
them by adjustment of the axial relationship according to the imaging depth. This
involves depth-dependent calibration prior to the actual experiment. One option is the
measurement of 3D PSFs by axial scanning at various imaging depths. This can be done
using fluorescent markers in an extra sample (Quirin et al. 2012) or by directly adding
fiducial markers to the sample under observation (York et al. 2011). The latter variant
prolongates the duration of the experiment, but is generally more precise. In either
case, it is important to employ markers with spectroscopic properties similar to the
actual fluorophores. For analysis, the reference images corresponding to the imaging
depth of the acquisitions can be used to compute the correct axial relationship.

Alternative to calibrating the full PSF, the variation of the induced positioning error
can be calibrated. Huang et al. 2008a implemented this idea in an astigmatism-based
method and corrected the varying parabolic relationship of the PSF’s width to the rel-
ative axial position. They found an approximately linear correlation between the true
relative position at a certain imaging depth and the measured relative position. The
latter was obtained using the, at this point incorrect, symmetric calibration curve mea-
sured at zero depth. The linear correlation is different for positions above and below

65



the focal plane, and the two corresponding scaling factors were used to correct the
relative positions. By calibration of the course of the scaling factors as a function of the
imaging depth the SE of the axial position could be compensated during analysis.

4.3.5.4 Predicting the Aberrated 3D PSF

In contrast to experimental calibration, computational methods predict the variable 3D
PSF for a certain depth and fit it to the acquired data. The axial position can be com-
puted with respect to the induced aberrations. Vectorial (Török et al. 1995, Hell et al.
1993) and scalar (Gibson and Lanni 1991) PSF models have been proposed. The latter
is computationally much simpler since it depends only on a few standard parameters
of the objective and the specimen. It was further extended by Hiware et al. 2011 to
account for spatially varying RIs within a sample.

The model of Gibson and Lanni 1991 was used by Aguet et al. 2005 in a MLH-based
fitting method. Initially, they need to acquire z-stack images of reference beads in the
sample so that they know the absolute axial position of their focal plane with respect to
the cover slip. Once they know their imaging position in the sample acquisition of sin-
gle images is sufficient to compute the position of any other particle. The accuracy with
that axial positions of fast moving particles can be obtained also depends on the feasi-
bility to scan immobile reference beads. The determination of absolute positions from
z-stacks was also implemented by Kirshner et al. 2013. They fit the same PSF model,
but in the LSQ sense. They also included the model of Hiware et al. 2011 and adapted
it for different courses of spatially varying RIs. Finally, McGorty et al. 2014 proposed to
experimentally measure the PSF near the cover slip and predict their distortion with re-
spect to the imaging depth and the RIM. They were also able to account for aberrations
specific to the instrumentation by evaluation of the derived axial calibration curves.

Evaluation

All in all, it is apparent that there is currently a strong development towards analy-
sis of biologically more relevant brain slices. Although, the mismatch in the optical
system should always be reduced as much as possible, such static methods are not al-
ways viable or require continual manual interaction and subjective adjustment. AO are
usually more effective, but are very demanding in terms of their technical instrumenta-
tion and setup. Furthermore, they exhibit the same basic disadvantage like calibration
or computational approaches: they rely on some sort of calibration either before or
during the experiment. To incorporate the current experimental conditions, which can
significantly vary as a result of cover slip thickness tolerances, varying temperatures,
or imperfect specimen contact to the cover slip, immobile reference point sources are
required. These are hard to implement or to ensure in living brain tissue. Computa-
tional methods still rely on rather basic parameters of the objective and the specimen.
Moreover, preceding measurements have to be conducted to adjust to the actual speci-
men.

4.3.6 Linking Particles Over Time

Next to the full spatial information, analysis of molecular dynamics also requires the
information of the temporal domain. This involves linking multiple particle positions
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over several frames to trajectories. Solving this association problem is especially diffi-
cult for tracking fluorescent particles in biological samples (Meijering et al. 2012, Jaqa-
man et al. 2008). Temporarily high particle densities and particles with varying types
of motion are common. The number of particles usually varies over frames as particles
might appear or disappear at the focal plane or undergo blinking (see Fig. 29), and it
might look like particles split or merge, owing to the limited spatial resolution of the
imaging system. Finally, linking can suffer from false or missing particle detections in
the preceding steps. On top of that, only few information is available to resolve conse-
quent ambiguities. Because particles appear as diffraction-limited spots in the image,
next to their position, only simple properties such as intensity, velocity or acceleration
can serve as additional features (Wu et al. 2008).

Figure 29: Linked particles in a set of time lapse images. Particles may closely approach each
other (track 1 and 5), newly appear (track 5 and 6) or disappear (track 4). (Reprinted
from Smal et al. 2007, copyright (2007) IEEE.)

To solve such multiple target tracking problems, multiple hypothesis tracking (MHT)
has generally been accepted as the preferred method because it is almost globally
optimal in space and time (Jaqaman et al. 2008, Blackman 2004). Based on measure-
ments of particle positions and assumptions on the particle behavior, MHT computes
the probability tree for all possible associations over all frames. Multiple assignment
of a particle with particles in adjacent frames is explicitly allowed. Potential conflicts
are not resolved immediately, instead it is assumed that future data will clarify it. The
most probable paths that are non-conflicting, thus, do not contain identical particles in
any frame, are eventually chosen as the solution for the tracking. Although an algorith-
mic formulation for MHT exists (Reid 1979), it is generally not applicable to scenarios
with more than a few particles and frames owing to the exponential increase in com-
plexity (Jaqaman et al. 2008). Established algorithms usually attempt to approach the
globally optimal solution by temporal separation and determination of locally optimal
solutions.

They can be divided into local linking approaches that consider only two consecutive
frames and global linking approaches that take multiple adjacent frames into account
(Meijering et al. 2012). Considering local strategies, the simplest approaches just look
for the nearest neighbor of each particle in a circular region in the consecutive frame.
Linkage of two particles is only performed if only a single particle is found in the
respective search region. Their size can be defined by the user (Goulian and Simon
2000, Marston et al. 1996) or drawn from biophysical knowledge, for instance based on
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the expected diffusion constant (Wieser and Schütz 2008). In high density situations
this may still lead to multiple particle assignments that have to be resolved.

So called global nearest neighbor algorithms enforce a uniqueness constraint stating
that each particle can only belong to a single trajectory. To ensure uniqueness, poten-
tially conflicting assignments are resolved by taking the distance to a potential linking
candidate as a weight in a bipartite graph and finding the optimal assignment defined
by the minimal global weight (Vallotton et al. 2003, Schmidt et al. 1996). To increase the
significance of the weights, further similarity measures can be included. Thomann et al.
2002 and Anderson et al. 1992 also integrated a relative change of intensity measure
and Tvaruskó et al. 1999 combined distance, velocity, intensity, and shape area using
fuzzy rules.

Global linking strategies still rely on locally optimal associations between consecu-
tive frames. However, they construct complete trajectories over the whole image stack
by considering multiple frames and trying to reconnect across gaps or capturing split-
ting and merging events. They can be classified into deterministic algorithms perform-
ing (1) spatio-temporal tracing or (2) graph-based optimization as well as (3) Bayesian
estimation-based probabilistic methods.

4.3.6.1 Deterministic Spatio-temporal Tracing

Deterministic spatio-temporal tracing methods track particles under consideration of
previous results and multiple frames ahead. They mainly attempt to close gaps in
trajectories occurring from temporally dim, blinking or off-focus particles. Sage et al.
2005 particularly considered finding the path of well separated particles in noisy im-
ages. The path of a single particle is described by a cost function over all frames that
includes the distance, a smoothness weight and the absolute intensity difference for
the position at each frame to the previous. Since they define constraints on the particle
movement, they can formulate it as a global optimization problem. After computing
the weights of all possible local connections, the optimal path is then found by means
of dynamic programming.

A conceptually similar approach was proposed by Bonneau et al. 2005, but they
enforce smoothness by treating particle paths as geodesics in a Riemannian metric
and are capable of tracking multiple particles. This is done on the expense that particle
trajectories are no longer globally optimal. They compute initially unambiguous partial
tracks based on some maximal traveling distance between consecutive frames. These
are subsequently combined to complete tracks by finding geodesics between end and
start points of partial tracks using a variant of the fast marching method. Taking the
diffusion constant estimated from the corresponding partial tracks and the intensity in
the image into consideration, this minimizes the energy of paths across gaps.

Relying on the sub-pixel LA produced by their deflation strategy, Sergé et al. 2008

provide multiple particle tracking at high densities. They iteratively extend the tracks
by finding the most likely connections according to the product of three weights de-
fined by probability laws. All weights include past information using a sliding tem-
poral window and are also computed for particles possibly reconnected over several
frames. They integrate a probability for the expected position that extends over tem-
poral gaps according to the estimated local diffusion constant. Furthermore, they treat
bleaching as being negligible and enforce constant intensities by a probability law de-
rived from the preceding intensity distribution because the algorithm is particularly
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designed for QD experiments. Their third weight consists of a reappearance probability
for discontinued tracks that decays exponentially over time.

4.3.6.2 Deterministic Graph-based Optimization

Graph-based algorithms construct weighted bipartite graphs that represent connec-
tions over several frames and solve this assignment problem (Burkard and Çela 1999).
Sbalzarini and Koumoutsakos 2005 construct a bipartite graph for each frame that links
all particles in that frame with all particles in a preset number of subsequent frames.
This allows for consideration of blinking events. The links are given costs computed
from the quadratic distance and the quadratic differences in the intensity moments
of first and second order between two particles. Splitting and merging events are ex-
plicitly excluded. Dummy particles are introduced to cope with varying number of
particles between frames. To find the optimal set of links, they extend the algorithm
of Dalziel 1993, which is based on the transportation problem, to deal with multiple
frames.

Jaqaman et al. 2008 explicitly designed their method for high particle densities and
treat splitting and merging as additional separate events. They first create partial tracks
by frame-to-frame particle linking similar to Sbalzarini and Koumoutsakos 2005, but
consider only two consecutive frames at a time. Subsequently, a second bipartite graph
is constructed that links the end and start points of the partial tracks. Each track ap-
pears in each of the temporal events track initiation, termination and reconnection as
well as splitting and merging. Because splitting and merging events might happen at
intermediate positions of a partial track, even the individual frame positions of each
track are included in the graph. Both linking steps are formulated as linear assignment
problems, where the first considers the particle and the second the partial track assign-
ment. The corresponding cost matrices include distance and intensity properties. By
solving the linear assignment problem, they find a global solution in space and time
because all tracks compete with each other.

4.3.6.3 Probabilistic Methods

Recently, probabilistic methods experienced major attention. They generally rely on
spatio-temporal tracing, but employ a Bayesian estimation framework. Instead of mak-
ing hard decisions at every step, they model the uncertainty about potential particles
and their potential associations by assigning probability (Meijering et al. 2009). This
uncertainty is kept up during tracking until eventually hard decisions have to be made
to decide for a final solution. They also include knowledge about the dynamic behav-
ior of the particles and combine these predicted measurements with measurements
obtained from the image.

Within the Bayesian framework, this strategy is implemented by sequential state esti-
mation, where a state describes the information about a system at a certain time point.
This is the information that is to be estimated and may include the particle position,
intensity, velocity or acceleration. Given a sequence of measurements, the state of each
time point is then estimated in a recursive two-step procedure (Godinez 2013, Wu et al.
2008). First, the posterior distribution of the current state is predicted by evolving the
prior state distribution with a dynamic model. And second, Bayes’s theorem is applied
to update the current posterior state distribution with the measurement model that de-
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fines the probability of the observed measurements given the current state. In so doing,
all previous measurements are exploited to evolve the state of individual particles over
time.

This can be analytically computed using the well-known Kalman filter and has been
implemented in a tracking algorithm by Genovesio et al. 2006. Since the dynamics of
particles are the information to be determined from the measured trajectories, includ-
ing a particular motion model is critical. Therefore, they incorporate several different
Kalman filters in an interacting multiple model algorithm.

A more suitable analytical computation scheme is the particle filter (Isard and Blake
1998). It can handle nonlinear and non-Gaussian dynamics as well as noise. The key
idea is the representation of the posterior state distribution with random state sam-
ples and associated importance weights. By means of these random samples, multiple
image positions are queried in parallel to determine the position of an object. This
abolishes the former separation of detection and linking procedures and yields greater
robustness to preceding errors during the detection step (Godinez 2013). Propagation
of multiple particles can be modeled by using a single mixture model (Smal et al. 2007)
or several independent particle filters (Godinez et al. 2009). Both approaches have been
combined by Smal et al. 2008a in order to adjust to the local particle density. They also
incorporated different motion models. Chenouard et al. 2009 increased the competition
of tracks by allowing for MHT over some future frames. By evaluation of the probabilis-
tic model for these frames, the algorithm can cope with false measurements using
future data.

Evaluation

Two studies have compared biologically motivated tracking algorithms of different
classes. A classical study was conducted by Godinez et al. 2009. They compared deter-
ministic and probabilistic algorithms on simulated and real images and considered gap
closing, spurious particle detections and varying SNRs. For deterministic algorithms
they solely involved local strategies, which are clearly not competitive. In contrast,
Chenouard et al. 2014 performed an open competition and invited scientists to ap-
ply their algorithms to a published data set. Although this also does not ensure to
be entirely representative, it complies with the general criticism that public data sets
are unavailable (Saxton 2008). Their purely synthetic data set particularly addressed
varying particle dynamics, density and SNR. They analyzed the total workflow of SPT

algorithms disallowing for assessment of the individual steps.
Notwithstanding their conceptual differences, both studies arrived at similar conclu-

sions: global linking strategies are generally to be preferred over local strategies. Within
global strategies, probabilistic methods tend to provide less fragmented results. This
is notably due to the inclusion of dynamic models and the reliability of the measure-
ments, allowing to cope with spurious detections. Chenouard et al. 2014 also empha-
sized that the best algorithms were perhaps overtrained for the particular data set. The
expected particle density and the SNR are the main factors that have to be considered
for appropriate algorithm selection.

These studies and also the majority of the individual methods did not directly ad-
dress the desire for 3D tracking. Nonetheless, it can be expected that virtually all algo-
rithms are extendable to 3D linking. This can be achieved by adjustment of the distance
measures as well as other criteria such as velocity, acceleration or dynamic models.
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4.3.7 Implications for the Thesis

In this section the state-of-the-art methods for all components of the complete SPT work-
flow were reviewed and individually assessed. Since this thesis particularly addresses
their application in brain slices, counteracting the influence of the RIM is the primary
requirement.

By reviewing the proposed solutions, it has to be concluded that current methods are
generally impractical owing to their specialized technical implementation or parallel
calibration for each acquisition. The manual experimental efforts are generally high
and have impeded the widespread application of current approaches until today. This
is also reflected in the fact that these methods seem to have been used so far only
for static, but not for dynamic analyses in brain slices (Deschout et al. 2014, Specht
et al. 2013, Gould et al. 2012). For dynamic analyses in living tissue, acquisitions have
to be immediately executable without delaying calibration procedures that impair the
viability of the sample.

On these grounds, an online calibration method for astigmatism-based 3D SPT tech-
niques will be developed in the following sections. It determines the varying rela-
tionship between the width of the 2D PSF and the relative axial position of a particle
directly from the acquired 2D image stream. This is accomplished with only minor pre-
conditions and without individual calibration procedures. Thus, this method intends
to solve the demand for making 3D SPT in living brain slices readily available. This
enables analyses that maintain the viability of the sample, but does not add additional
experimental efforts or compromises for the experimenter.

Since the accuracy of the proposed online calibration method strongly depends on
the quality of the obtained particle shape parameters, emphasis is also put on the cor-
responding procedure. For 3D localization of multiple neighboring particles, the major
difficulty is that owing to the required high number of free fitting parameters the
likelihood function can become quite complex and may be difficult to maximize. In
order to maintain robust estimation, reduction of the number of fitting parameters by
fixing the peak intensity (Huang et al. 2011) or by proprietary optimization schemes
(Babcock et al. 2012) have been proposed. Owing to the requirement of imaging par-
ticles off-focus, the former solution is not applicable. In order to avoid a proprietary
optimization scheme, it will be proposed here to employ a standardized expectation
maximization (EM) algorithm.

Both aspects have been incorporated into a 3D SPT workflow that is presented in the
following.

4.4 3d spt in brain slices - algorithm overview

A schematic overview of the proposed workflow for fast nanoscale 3D SPT deep in
living samples is presented in Fig. 30. It basically follows the general guideline for SPT

applications. Particle candidates are detected first. Then their sub-pixel locations and
shape parameters are determined. Finally, they are linked to trajectories.

To extract the required 3D information an astigmatism-based method, employing a
cylindrical lens, is used. It was chosen for its ease of implementation, the ability to
track multiple particles in parallel, and because the method itself sets no limit on the
temporal resolution. Furthermore, it is applicable to various imaging configurations.
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Owing to the depth-dependent aberrations induced by the RIM, the axial position
cannot be immediately accessed just by prior calibration of a single axial correlation
function. For that reason, the workflow additionally includes an online calibration pro-
cedure that estimates the required axial calibration curves directly form the 2D image
stream. As it will be explained later, the online calibration method has relatively low
prerequisites, but draws on 2D particle trajectories. Therefore, a preceding 2D linking
procedure is introduced.

Figure 30: Workflow of the 3D SPT algorithm. In contrast to the general guideline, it additionally
includes a 2D linking and an online calibration procedure. The dashed lines indicate
optional procedures.

Since this thesis focuses on the online calibration and the shape estimation proce-
dures, but the total SPT workflow has to be implemented for proving their functioning,
well-established methods were implemented for the particle detection and the 2D link-
ing procedures. It was not attempted to achieve further development in these areas.
Also, some simplifications have been made, and they will be addressed in the corre-
sponding sections. Since a multitude of powerful 3D linking tools is already publicly
available (Meijering et al. 2012), the final 3D linking is considered as an optional proce-
dure and was not implemented in this thesis.

In the remainder of this chapter, the fundamental capability to derive 2D diffusion
properties deep in brain slices will be proven first. Sect. 4.6 and 4.7 focus on the particle
detection and localization procedures. The latter also includes the estimation of each
particle’s individual FWHMs. In Sect. 4.8 it will be described how the particle locations
are used to create the required 2D trajectories. This is followed by Sect. 4.9 that analyzes
the influence of the RIM in detail and explains the proposed axial online calibration
method. Sect. 4.10 finally presents experimental results.

4.5 the proof of principle : 2d spt in brain slices

Before the 3D SPT workflow is presented, a suitable imaging configuration as well as
fluorophores for application deep in living brain tissue have to be selected. It is the
purpose of this section to prove that diffusion characteristics are in fact accessible in
brain slices. The corresponding line of argument has originally been published in Bier-
mann et al. 2014. It was the joint work of members of the group Molecular Physiology
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at the LIN in cooperation with scientists from Bordeaux, Hamburg and Münster. In the
following, the key results are presented.

Owing to the deterioration of the optical signal, application of the various imaging
configurations to thick biological samples remains a major challenge until today (Scher-
melleh et al. 2010, Triller and Choquet 2008). Relatively few approaches have been re-
ported. For instance, STED microscopy has been used to localize synaptic molecules in
living mouse brains (Testa et al. 2012, Berning et al. 2012). They report maintenance of
high spatial resolution down to 50 µmwithin the specimen, but the general problem of
this technique remains: the temporal resolution is only in the range of several seconds,
even for small fields of view. Also, STED microscopy does still not allow for direct obser-
vation of individual molecules in such complex environments. WF based SML methods
are an alternative. They have been applied to whole cells, and frame rates up to 100 Hz
have been reported (Huang et al. 2008a, Juette et al. 2010). Since optical sectioning is
inherently missing, the penetration depth of these methods is limited to only a few
micrometers. Photobleaching and photoactivation of fluorophore populations is still
challenging with WF excitation across the whole sample (Zanacchi et al. 2011). To cope
with these disadvantages, SML has been combined with 2PM that provides the required
optical sectioning (Vaziri et al. 2008, Fölling et al. 2008). The penetration depth could
be increased to 15 µm. 2PM has also been classically used with fluorescent nanoparti-
cles (Ragan et al. 2006). This yields imaging depths down to 100 µm, improved SNRs

and frame rates up to 100 Hz. Similar temporal resolution and sensitivity can also be
obtained by using quite novel LSFM. Extension of the imaging depth down to 200 µm
has been reported using QDs in an aqueous solution (Ritter et al. 2008) or fluorescent
beads in salivary gland cells (Spille et al. 2012).

To investigate molecular dynamics of lipids and transmembrane proteins in correla-
tion with synaptic membrane compartments the usage of SDCM in combination with
QDs is proposed here. Owing to their outstanding spectroscopic properties, QDs are
very appropriate for SPT applications. In comparison with other types of fluorophores,
they are very bright, exhibit high photostability, have very narrow emission spectra, ex-
ceptionally large Stokes shifts, and the surface of QDs can be functionalized for a large
variety of molecules (Michalet et al. 2005). Although genetically encoded FPs are un-
beatably specific labeling membrane proteins via antibodies has several advantages for
the envisaged purpose. First, depending on the membrane turnover of the molecule of
interest only the surface population of this molecule is detected, and second, the most
suitable QD variant can be selected for a particular application. Finally, endogenous
membrane molecules can be investigated in their native cellular environment without
overexpression.

To access QDs deep in living tissue, LSFM and 2PM seem to be the preferred tools.
However, by the time of selection, LSFM has not been commercially available (Santi
2011), and because the maintenance costs are very high, 2PM was simply not affordable
by the group Molecular Physiology. Therefore, SDCM was chosen since it is conceptually
similar to 2PM, but comes at lower costs. A setup that at its core is based on a confocal
spinning disk unit (CSU) was established. It is presented in Fig. 31. It allows to image
living samples at depths of several tens of micrometers (Shimozawa et al. 2013) with
a large field of view, while maintaining high temporal resolution that is only limited
by the speed and sensitivity of the camera. To allow for imaging into brain slices with
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and without a cover slip, an upright configuration was chosen. It can be expected that
by using such a well-established, commercially available, and affordable setup, the
findings presented in the following become widely accessible and reproducible.

Figure 31: The confocal spinning disk setup that was established by the group Molecular Phys-
iology. The major components are the upright microscope Olympus BX51WI and on
top the Yokogawa confocal scanner unit CSU-X1 as well as the EMCCD camera Andor
iXonEM+ 897. The lasers and the control units are located in the racks on the right.

The major contributions that will be provided in the following are the answers to the
questions: (1) can QDs deeply penetrate and specifically bind to membrane molecules at
cells in cultured brain slices? (2) is the extracellular space permeable enough to enable
diffusion measurements with QDs, and, more specifically, (3) is a CSU-based imaging
system sensitive enough to distinguish between different cellular compartments and
subpopulations of molecules by means of diffusion?

4.5.1 Quantifying the Performance of the SDCM Setup

Before these questions are finally addressed, first of all the performance of the estab-
lished setup shall be assessed. The related question is: what is the maximum achiev-
able performance using QDs? This effort is reasonable since it enables derivation of the
most effective parametrization and subsequent assessment of the influence of the sam-
ple. Also, the performance limits can be identified so that the obtained measurements
can be checked for being plausible.

A related, technically and biologically very important, parameter is the excitation
power. It controls the imaging quality and the viability of the specimen. It is known that
the photon transmission efficiency is relatively low for SDCM (Toomre and Pawley 2006).
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To still enable reasonable SNRs at large imaging depths, a tuneable laser1 providing up
to 1000 mW was additionally installed. The measured transmission efficiency of the
presented imaging configuration is depicted in Fig. 32a. As expected from the fiber
coupling and the light transition through the spinning disks, the resulting excitation
power in the infinity space between the CSU and the objective is only about 8 % of the
input laser power.

In order to determine realistic upper bounds for the key performance characteris-
tics of the setup, 655 nm emission wavelength QDs2 were immobilized on cover slips
and imaged using a water immersion3 and an oil immersion objective4. 655 nm emis-
sion was chosen to improve the SNR since autofluorescence of cells occurs mainly in
the green region of the spectrum and is reasonably low in the red region (Nienhaus
and Nienhaus 2013, Schütz et al. 2000b). The water immersion objective was tested to
achieve high imaging depths since it matches the RI of the sample most closely. The
oil objective was expected to provide better imaging quality at intermediate depths,
owing to its higher NA. From Fig. 32a it is also apparent that the resulting excitation
powers at the focal plane of the objective lenses are about 5 % and 3 % of the input
laser power for the water and oil objective, respectively.

For the following measurements, immobilized QDs were embedded in purified water
respectively in Zeiss Immersol 518 F oil. With the oil objective, QDs had to be imaged
through a cover slip. Fig. 32b-32c plot the SNR and the lateral LA as functions of the
input laser power for each objective. The frame rate was always 30 Hz. The SNR was
computed according to Cheezum et al. 2001. As expected, it clearly improves as the
excitation increases. Although the total light throughput of the water objective was
higher, the obtained SNR is about twice as good for the oil objective. This is most likely
due to the fact that the oil objective focusses the excitation light much better, and
consequently the resulting intensity is higher.

With respect to the lateral LA, many publications often only provide a theoretical
value, but this predicts just the lower bound for the achievable LA, based on the con-
sidered imaging conditions. Experimental assessment is more realistic since the fitting
procedure as well as experimental factors like optical aberrations or the thermal drift of
the microscope are considered. Consequently, both versions are provided here. Experi-
mental derivation involved iterative measurement of immobilized QDs and calculation
of the SD of their center coordinates. This is taken as the measure for the LA (Ku-
bitscheck et al. 2000). The theoretical prediction is based on the number of photons
per particle Np, the background noise σb, and the pixel size in the object space dpo
(Thompson et al. 2002):

@

(∆s)2
D

=
σ2xy + d

2
po/12

Np
+
8πσ4xyσ

2
b

d2poN
2
p

. (27)

As expected, both procedures reveal similar trends in the course of the LA, but the the-
oretical prediction yields better absolute values. In summary, the LA always improves
as a function of the input power and reaches a range of a few tens of nanometers.

1 Genesis Coherent laser: 488 nm wavelength, max. power 1000 mW
2 QD Invitrogen Molecular Probes: 655 nm emission wavelength, 45 nm diameter
3 Olympus LUMFI objective: 60x magnification, 1.1 NA
4 Olympus UPlanSApo objective: 100x magnification, 1.4 NA
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Figure 32: (a) Efficiency of light transition through the CSU and a water respectively an oil
objective. LA and SNR for the same objective lenses as functions of (b)-(c) the input
laser power and (d)-(e) the frame rate.

Please note that the presented results are taken from the initial publication (Bier-
mann et al. 2014). At this early stage, only a standard weighted LSQ fitting procedure,
including a peak detection procedure based on Thompson et al. 2002, had been imple-
mented. A complete software package from collaborators in Bordeaux was used for
diffusion analysis. Since the range of functions of the SPT workflow presented in this
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thesis is not as complete as that of the software package, particularly the diffusion
results could not be equivalently repeated. The presented performance results are con-
sequently not one-to-one comparable, but this does not put the generality of this proof
of principle into question.

The dependency of both measures on the temporal resolution was also analyzed. A
clear tendency for deterioration towards higher frame rates is observable in Fig. 32d-
32e. Apparently, frame rates up to 100 Hz still yield reasonable performance, however,
30 Hz were selected for real experiments since worse performance is expected within
the tissue. Although Kusumi et al. 2012 pointed out that the molecular motion is actu-
ally about 1000 times faster, video-rate analyses continue to be frequently used since
they already allow to detect changes between populations of molecules.

The presented results were obtained using 400 mW and 100 mW laser input power
for the water and the oil objective, respectively. This is also the parametrization used
for all following experiments in brain slices. Since there are no noticeable points of
saturation in the curves of Fig. 32c-32c, this parametrization has been derived from
experimental experiences with the vitality of the slices. It was experienced that higher
excitation powers for either objective led to recognizable acceleration of photobleaching
and visually detectable cell death.

4.5.2 Accessing Diffusion Parameters in Brain Slices

To validate the applicability of the presented configuration, organotypic hippocampal
brain slices from mice were prepared, and glycosylphosphatidylinositol (GPI) as well
as neuroligin1 (Nlg1) were monitored. GPI is a surface molecule in the neuronal mem-
brane and has no direct interactions with intracellular scaffold proteins or extracellular
binding partners. It has therefore been used to investigate lipid subdomains of the neu-
ronal membrane (Eggeling et al. 2009, Renner et al. 2009) and was employed here as
a reporter for varying diffusion in different membrane compartments. Nlg1 is a post-
synaptic cell adhesion molecule that reaches out of the membrane and interacts with
other proteins to maturate and stabilize synapses (Bang and Owczarek 2013). Its im-
peded diffusion compared with GPI allows to probe for molecular subpopulations by
means of diffusion.

To label GPI and Nlg1, the slices were transfected by use of a gene gun to express
GPI and Nlg1 in neurons with GFP- respectively hemagglutinin (HA)-tags. QDs then bind
via specific anti-GFP or anti-HA antibodies. The slices grew in well plates (see Fig. 33a)
and were incubated with QDs directly before imaging. To image into brain slices, the
water objective can directly be pointed to the slices since the required RI matches that
of the extracellular solution that supports the cells during the experiment. A specific
imaging chamber had to be build for the oil objective (see Fig. 33b). It uses a net to
attach the slice below a cover slip, while at the same time keeping it embedded in the
extracellular solution.

4.5.2.1 Can QDs Penetrate and Bind to Membrane Molecules in Slices?

Indeed, it was possible to detect QDs within the tissue (see Fig. 34a), proving that the
penetration of QDs through the outer surface into cultured brain tissue is not substan-
tially hindered by adding the GFP antibody. Specific labeling was observed at trans-

77



(a) (b)

Figure 33: (a) Alive brain slices of rat (the white spots) that are cultured in a 6-well plate. (b) The
custom-made imaging chamber. It is heated and filled with extracellular solution. A
net fixates the brain slices at the cover slip so that they can also be imaged using an
oil objective.

fected neurons. They were identified by preceding imaging of GPI-GFP. The relative
labeling density as a function of the depth in the tissue is depicted in Fig. 34c. It repre-
sents the ratio between the number of QDs that correlate with transfected cells and the
detected number of QDs at 3 µm penetration depth. The absolute density of QDs at the
membrane of transfected cells could be controlled by the concentration of QDs in the
incubation media and the time of incubation5.

The relative labeling density constantly decreases and vanishes at about 60 µm imag-
ing depth. This is reasoned by the deteriorating detection rate, mainly owing to the em-
ployed one-photon excitation, light scattering, and the RIM. It also explains the faster
deterioration for the oil objective since here the RIs of the specimen and the immer-
sion medium deviate much more. To prove that these trends are indeed artifacts of the
particle detection instead of impeded penetration capability, collaborators in Hamburg
repeated these measurements using 2PM. As apparent from Fig. 34b and the effectively
constant labeling density presented in Fig. 34c, QDs really penetrate the tissue and en-
tirely label transfected neurons without loss of specificity for at least 150 µm depth.
These findings already indicate that the extracellular space is much more permeable
than suggested by ultrastructure investigations of fixed tissue (Syková and Nicholson
2008, Van Harreveld et al. 1965). Furthermore, they confirm predictions about the form
of the extracellular space, described as fluid-filled pores of about 38-64 nm (Thorne
and Nicholson 2006).

Before the analysis of molecular diffusion in slices is addressed, first of all the achiev-
able LA is assessed as a function of the imaging depth (see Fig. 35a). Particles that
seemed to got stuck in the tissue were manually selected by visual inspection, because
QDs cannot be immobilized in living samples without changing the optical properties
of the tissue. Since this procedure is subjective, and particle motion cannot be perfectly
excluded, the presented values tend to underestimate the true LA. It is most likely
slightly better. The general trend of reduced performance towards larger depths in the
tissue as well as the superior performance of the oil objective at intermediate imaging

5 Typically, 5 minutes incubation with mixture of „ 100 ml extracellular solution and 1 µl QD solution
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Figure 34: (a) QD labeling at transfected neurons in brain slices. The color encodes the depth in
the sample and the sub-figures present measured QD trajectories at different depths.
(b) A traced neuron using 2PM. The sub-figures on the right present the GPI-GFP and
the corresponding QD acquisitions as well as both overlayed. (c) Relative labeling
density as a function of the imaging depth for different imaging configurations.

depths are recognizable. The performance reduction in comparison to the measure-
ments without tissue (see Fig. 32b-32c) is remarkably high. Apart from the stated prob-
lem of the particle selection, this is most likely due to the effects introduced by the RIM,
the movement inherent to the tissue and the decreased SNR. The latter was found to
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constantly deteriorate for both objective lenses from 5 to 3.5 as a function of the imag-
ing depth. Nevertheless, these results clearly suggest that particularly the assumed LA

always has to be measured for every setup and imaging condition individually, so that
reasonable values are obtained.

From a biological perspective it can be concluded that reasonable LAs are achievable
for analysis of the first cell layers. Using cultured organotypic slices, all cells are al-
ready integrated into the complex neuronal network at low depths. The viability of
such neurons close to the surface was tested by whole-cell patch-clamp recordings and
normal electrical properties and spontaneous activity was found.

4.5.2.2 Is the Extracellular Space Permeable Enough for Diffusion Measurements?

To identify whether QDs are suitable for quantification of mobility in brain slices, the
water objective was taken for its larger penetration depth. The highly mobile GPI-GFP

was recorded using the previously stated parametrization. For comparison, also the
dynamics of GPI-GFP in transfected neurons of primary hippocampal rat cultures were
analyzed. They represent the system often used for molecular analyses.

To analyze the image data, a software package6, provided by collaborators in Bor-
deaux, was used. Particles are detected and localized based on image wavelet segmen-
tation and individual centroid determination (Izeddin et al. 2012b). In comparison to
Gaussian fitting approaches, this method has about 10 % lower LA, but is particularly
suited for low SNR and performs more than one order of magnitude faster. Especially
the gain in computation time was a strong argument, considering the large amount of
data that had to be processed. To construct the trajectories, the software draws on a
deterministic global linking strategy based on simulated annealing (Racine et al. 2006).
It allows to capture particle appearance and disappearance as well as splitting and
merging events. This is particularly valuable for imaging in slices since particles occa-
sionally interfere or leave the focal plane, owing to the 3D extension of neurons in the
thick tissue.

The resulting trajectories are most probably correct, but relatively short (see Fig. 35b).
To exclude QDs that did not bind to the target molecule, usually recognizable by their
short dwell times in the focal plane, only trajectories with lengths ľ 12 were analyzed.
„ 40 % of all trajectories remained for analysis. More than „ 60 % of the trajectories
were longer than 12 measurements in primary cultures. This is most likely because of
the more planar cellular architecture.

Since the LA is significantly lowered in slices and the trajectory length is relatively
low, diffusion was quantified based on the distribution of Dl. For the present configu-
ration, using the rule of thumb of Saxton and Jacobson 1997 would suggest to take 3
points to maintain statistically significant MSD values. In contrast, using Equ. 17 even
suggests to include more than 10 points to reduce the influence of the LA. Here, 8 MSD

points were used as a compromise between the LA and the trajectory lengths so that
the last MSD point is still averaged by at least 4 measurements. Dl was then computed
by fitting a straight line at these MSD points.

The distribution of Dl is depicted in Fig. 35c for molecules in dendritic compart-
ments. It is apparent that the diffusion is very similar for primary cultures and slices.

6 Meanwhile the software is commercially available at http://www.moleculardevices.com/systems/
metamorph-research-imaging/metamorph-microscopy-automation-and-image-analysis-software
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Figure 35: (a) LA as a function of the imaging depth for the water and the oil objective. (b) Dis-
tribution of the analyzed trajectory lengths of GPI-GFP measured in primary culture
and at various depths in slices. (c) Distribution of Dl and (d) the corresponding MSD
curves of GPI-GFP for the same preparations.

It does not significantly change as a function of the imaging depth in slices. The corre-
sponding MSD curves are presented in Fig. 35d. The slope of the MSD curves is identi-
cal for cultures and slices. However, for larger time scales the mobility appears to be
more constrained in slices than in primary cultures. It can be assumed that the more
confined motion is justified by the more complex cellular environment that leads to
compartmentation owing to the size of the QDs. From these results it can be concluded
that the extracellular space is indeed permeable enough to analyze the local diffusion
of molecules in slices at biologically relevant depths. Although propagation seems to
be restricted at a larger scale, the local mobility is not significantly hindered by labeling
with QDs. The finding that local diffusion is similar in slices and primary cultures is of
utmost importance.

4.5.2.3 Can Cellular Compartments and Subpopulations of Molecules be Distinguished?

Now the final question, whether it is indeed possible to detect subpopulations by
means of diffusion, is addressed. To distinguish such usually small differences, the
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oil objective with its about twofold better LA than the water objective, was used. Again,
the surface mobility of GPI-GFP was measured, but the preceding acquisition of GPI-GFP

fluorescence was used to assign trajectories to axons, dendrites, and synaptic compart-
ments. The corresponding distributions of Dl are presented in Fig. 36a. Differences
in the mobility between neuronal compartments are clearly visible. Without explicitly
presenting it here, similar results have been obtained for repetition of these measure-
ments in primary cultures. They are also comparable to results previously reported by
Renner et al. 2011 and Renner et al. 2009.
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Figure 36: (a) Distribution of Dl for GPI-GFP measurements at different compartments. (b) Dis-
tribution of Dl for GPI-GFP and Nlg1-HAmeasurements.

In a second set of experiments Nlg1-HA was also imaged at dendrites, and its diffu-
sion was compared with that of GPI-GFP (see Fig. 36b). As expected from its synapse
stabilizing function, the population of Nlg1-HA molecules is on average considerably
slower than the only passively interacting GPI-GFP. These results demonstrate that mo-
bility differences between neuronal membranes at various subcellular compartments
as well as different molecular populations are indeed verifiable using the proposed
imaging configuration.

4.5.3 Conclusion

It can be concluded that the presented SPT application allows for verification of inter-
actions found in biochemical or molecular biology experiments in primary neuronal
cultures. The achieved temporal and spatial resolution is sufficient to quantify effects
on subpopulations of membrane-associated molecules in organotypic slices. Therefore,
this application can support other scientists to gain more detailed information about
the molecular organization and dynamics in complex living brain slices. Owing to the
technical scope of this thesis the line of argument has mainly focused on the proof of
principle in terms of the accessibility of varying mobility. More detailed analyses and
discussion of the biological impact are presented in the original publication (Biermann
et al. 2014). It also provides further biological details. These are for instance the prepa-
ration of the samples, the protocols for coupling the QDs with antibodies and how to
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transfect the samples. The electrophysiological properties of neurons in brain slices are
also provided.

In the following, the individual components of the developed 3D SPT workflow are
presented in detail.

4.6 particle detection

To identify particle candidates, unsupervised and supervised techniques have been
developed. Supervised techniques were found to generally perform best, but at the ex-
pense of heavily relying on good training data that reflects the expected data very well
(Smal et al. 2010). Due to imaging at different depths in the samples, the shape and SNR

of the acquisitions vary significantly. Therefore, supervised techniques are expected to
require frequent retraining and are consequently not considered as being suitable for
this type of application. Instead, a procedure based on the spot-enhancement filter is
used (Sage et al. 2005). It exhibits good overall performance, is reasonably insensitive
to variations in the shape, and requires only a single easily tunable parameter (Smal
et al. 2010). Furthermore, it implicitly smooths the data and suppresses the local back-
ground. Explicit preprocessing procedures can be avoided.

The present particle detection procedure is then as follows:

Data : Image stream
Result : Pixel positions of particle candidates
for each image do

Convolve the image with a LoG filter;
Segment image using a global threshold tp;
Compute watershed transformation;
Use watershed lines to separate interconnected particle regions;
Compute region centers from minimum values;

end
doch

First, each image is convolved with a LoG filter of size 11 and kernel SD of 1.5 pixel
(see Fig. 37a). This results in strong negative responses at bright particle positions. The
chosen parametrization corresponds well to the maximum FWHM value of detected
off-focus particles with the present imaging configuration (see Fig. 40a). Before con-
volution, the image is mirror-reflected at its boundaries so that truncated boundary
particles are still detectable.

Subsequently, a global threshold tp is computed for the LoG-filtered image by tp =

ib + kδb. Since the image fraction that is occupied by background pixels is usually
high, robust estimates of ib and δb are obtained by computation of the median and the
median absolute deviation, respectively. Owing to unavoidable photobleaching over
time, these parameters have to be estimated for each image individually.

For the user-defined factor k, a value of k = 8 has been empirically found to be
reasonable for real acquisitions as well as synthetic images. This setting never had to
be changed during this work. However, k should not be set too high since otherwise
dim off-focus particles can easily be missed. In contrast, it is relatively save to chose
rather lower values since more information about particles is available in later stages
of the algorithm. Rejection of particle candidates is then more reliable.
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(a) (b)

Figure 37: (a) Kernel of the applied LoG filter. (b) Illustration of how the additional watershed
segmentation allows to distinguish neighboring particle candidates. The current seg-
mentation that is based on the LoG-filtered image is presented in green on top of the
original acquisition. The red dots depict the detected particle positions with pixel
accuracy.

The application of tp is likely to result in a segmentation that contains interconnected
regions of nearby particles. Therefore, a watershed algorithm that uses the 8-connected
neighborhood is applied to the LoG-filtered image. Removal of the watershed lines
from the segmentation allows for separation of neighboring particles without further
parametrization (see Fig. 37b). The pixels with the lowest value in each region are
finally selected as particle candidates.

4.7 particle localization and shape estimation

2D localization algorithms can be classified into fitting and non-fitting methods. Their
basic pros and cons have been discussed in Sect. 4.3.3.1. For the purpose of 3D SPT,
a fitting-based method was selected for two reasons: (1) since astigmatism-based 3D

localization is employed, an explicit model of the PSF shape is preferable for determi-
nation of particle features that provide the required axial relationship. (2) occurrences
of nearby particles can be handled to a certain degree by treatment as mixture distri-
butions or based on compressed sensing algorithms.

In a second fundamental decision, fitting mixture models is preferred over com-
pressed sensing algorithms, because they can easily be adapted to elliptical intensity
distributions. Compressed sensing algorithms rely on the definition of a single unique
intensity distribution. This simplification is not valid for the present application since
blurred off-focus particles have to be detected for axial localization, which are addi-
tionally altered by the intentional astigmatism. For the fitting routine, MLH estimation
is employed because it performs better than LSQ fitting if the noise can be accurately
modeled (Mortensen et al. 2010, Abraham et al. 2009). This is indeed the case when
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using modern EMCCD cameras. Their dominant source of noise at low signal and rea-
sonable GEM levels is photon noise (Axmann et al. 2013), which is well described by a
Poisson distribution (see Equ. 6).

The actual fitting algorithm and the general analysis procedure are now described
in detail.

4.7.1 Multiple Particle Fitting

The most common procedure for particle fitting is the isolation of single spots and
the individual estimation of their shape parameters. Although the particle density at a
neuron can be controlled by the concentration of QDs in the incubation media, closely
approaching or superimposing particles are likely to occur owing to the mobility of
particles. To reduce the fitting errors in case of neighboring particles, they are explicitly
modeled using Gaussian mixture distributions.

When fitting multiple particles in parallel, the likelihood function can become quite
complex and may be difficult to maximize. This is already the case if multiple fixed-
sized intensity distributions are fit, which is a standard procedure today. In this con-
text, it was pointed out by Huang et al. 2011 that in order to achieve robust parameter
estimation, also the intensity parameter had to be predefined. This is effectively a re-
duction of the number of fitting parameters that is not applicable here. Owing to the re-
quired off-focus acquisitions also the intensity is subject to strong variation. In contrast,
Babcock et al. 2012 actually fitted multiple particles with individual shape parameters
and proposed an optimization scheme where the particles are fitted individually, but
in an iterative fashion.

In order to avoid proprietary optimization schemes or limitation of the number of
free fitting parameters, it is proposed here to employ an EM algorithm. Its principles
and the current implementation for microscopy data are now introduced in detail.

4.7.1.1 The Basic Principle of EM

The EM algorithm is a standard statistical tool developed by Dempster et al. 1977. It
replaces the complex nonlinear optimization problem of maximizing the log-likelihood
during MLH fitting with an iterative sequence of problems that are easier to solve.

The key idea is the concept of incomplete data, where parts of the data are treated
as missing observations. For the general example of estimating the distribution pa-
rameters of mixtures, the assignment of single measurements to the corresponding
distribution would be the missing information. If the assignments would be known,
the problem would reduce to several independent distribution estimations that are
easier to solve.

The EM algorithm implements this idea by means of an iterative two-step process
consisting of an expectation step (E-step) and a maximization step (M-step) (Chen and
Gupta 2010). As the complete data is unavailable, the E-step makes a guess about the
complete data and takes the expected value of the complete data log-likelihood instead.
The M-step consecutively maximizes this expectation with respect to the model param-
eters. Given improved estimates for the model parameters they can in turn be used to
improve the guess about the complete data. By iteration of the two steps, the observed
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data log-likelihood is indirectly maximized by maximizing the expected complete data
log-likelihood.

4.7.1.2 EM Algorithm for Binned and Truncated Data

For the present application, the EM formulation of Ainsleigh 2009 is used. It is a gen-
eralization of the initial work of McLachlan and Jones 1988 that was later extended
to multivariate data by Cadez et al. 2002. They showed that for estimating Gaussian
mixture distributions in histogram data, whose bins can be treated as statistically inde-
pendent Poisson processes, almost a closed-form solution for a single update iteration
of the EM algorithm exists. Ainsleigh 2009 finally added the consideration of uniform
background to the formulation. Therefore, his EM formulation is applicable to digi-
tal microscopy images since they are created by discrete sampling of photons that is
subject to shot noise.

In microscopy images, the individual photon positions are the actual measurements,
but only the intensities, as a relative measure for the number of photons that fall in each
pixel, are observable. Hence, next to (1) the assignment of photons to the individual
Gaussian distributions, also (2) the individual photon measurements that distribute
over each pixel are the missing observations. Cadez et al. 2002 and McLachlan and
Jones 1988 showed that (3) the unknown pixel intensities of truncated distributions
can also be treated as missing observations. Consideration of truncated distributions
is advantageous since they are likely to occur during sub-region creation (see Fig. 38).
Ignorance of truncated intensity data, which effectively means treating them as zero
values, yields biased parameter estimates.

The underlying component mixture model for microscopy images, that contain the
intensity distributions of particles as well as background, can be described by:

C(r;Θ) = N(r;Θ) + πg

(
1

v

)
r P R2, (28)

where N(r;Θ) is itself a Gaussian mixture model defined by:

N(r;Θ) =
g´1
ÿ

i=1

πiNi(r, θi). (29)

The g components are separated into g´ 1 multivariate normal distributions Ni that
represent the particles and a single uniform distribution that describes the background.
Here, r is a random variable that represents the sub-pixel positions of the individual
photon measurements, and each Ni(r, θi) has parameter vector θi = (µi,Σi) with µi
being the expected values and Σi being the covariance matrix. The uniform background
distribution is solely parameterized by the total number of pixels v. π is a vector of
component mixing proportions subject to

řg
i=1 πi = 1, πi P [0, 1] and represents the

unconditional probabilities that a photon belongs to a certain component. Θ is the
vector of all unknown parameters of the mixture given by Θ = (π1, ...,πg, θ1, ..., θg).
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According to Ainsleigh 2009, the update step for the individual parameters πi, µi,
and Σi of the mixture components at the t+ 1-th iteration of the EM algorithm involves
evaluation of:

πt+1i =
1

N

v
ÿ

j=1

mj(Θ
t)τji(Θ

t), (30)

µt+1i =
1

κi(Θt)

v
ÿ

j=1

mj(Θ
t)

Φj(Θt)
πti

ż

Rj

dr Ni(r, θti) r, (31)

Σt+1i =
1

κi(Θt)

v
ÿ

j=1

mj(Θ
t)

Φj(Θt)
πti

ż

Rj

dr Ni(r, θti) rr
T . (32)

Note here that the first equation refers to all components of the mixture model, while
the remaining equations refer solely to the update steps for the parameters of the Gaus-
sian components. Since the background component contains no unknown parameters,
solely its proportion has to be updated.

Ainsleigh 2009 also provided an in-depth theoretical derivation for this solution.
Here, it shall be sufficient to have a closer look at some individual variables in or-
der to clarify the basic principle of how this EM formulation deals with the missing
observations.

So, mj(Θ) denotes the expected intensity at the j-th pixel and is defined for all pixels
v as:

mj(Θ) =

$

&

%

Nj if j = 1, ...,o
No

Φo(Θ) Φj(Θ) if j = o+ 1, ..., v.
(33)

For the observed pixels o, these are simply the number of photons Nj observed at each
pixel. The values for the unobserved pixels are computed by extrapolating the total
number of observed photons into the truncated regions. This can be done by means of
the ratio No

Φo(Θ) that is applied to the unconditional probability that a photon is detected
at a certain pixel. In this manner, the derivation of an explicit parameter estimator for
the truncated pixels is avoided, and maximization is conducted on a complete set of
pixels. The estimation is less biased than it would be by assuming zero-valued pixels.
The subscript o denotes all observed pixels, while j denotes only a single pixel.

The unconditional probability Φj(Θ) for a single pixel is then defined by:

Φj(Θ) =

ż

Rj

C(r;Θ), (34)

where R denotes the sample space of r. It becomes apparent that the observed inten-
sities are linked to the unobserved individual photon measurements by integration of
their Gaussian distribution over the pixel regions.

Furthermore, τ is defined as:

τji(Θ) =
πi

ş

Rj
dr Ci(r, θi)

řg
i=1 πi

ş

Rj
dr Ci(r, θi)

. (35)
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It represents a relative weight that can be interpreted as the probability with that a
photon measurement is assigned to the i-th mixture component solely given its posi-
tion.

Finally, N and κi(Θ) denote the total number of photons respectively the number of
photons per mixture component.

Using Equ. 30-32, the EM algorithm iteratively updates Θ until a maximum number
of iterations titer is reached. The parametrization Θtiter is taken as the fitting result.

The presented EM algorithm has been implemented in Mathematica7 by Yury Proka-
zov from the Special Lab Electron and Laserscanning Microscopy at the LIN. This also
includes a wrapper for calling the algorithm in MATLAB8.

4.7.2 The General Analysis Procedure

This section describes how the EM algorithm is embedded into the general fitting pro-
cedure. Since it explicitly considers the dominant noise source, it is applied to the
original data rather than to the LoG-filtered image. For the same reason, the image
is gain corrected so that each pixel’s intensity value corresponds to the approximate
number of photons instead of an arbitrary intensity representation.

Owing to the practically linear GEM of the employed camera, the true number of
photons per pixel can be estimated by:

Nx,y =
ix,y ¨ SCCD

GEM
, (36)

where SCCD is the sensitivity of the analog-to-digital converter representing the num-
ber of electrons per digital intensity unit.

Based on the set of particle candidates provided by the detection procedure, the gen-
eral analysis procedure for each image is as follows:

Data : Image
Result : Particle configurations
for each particle candidate do

Cut sub-region around candidate;
Select all candidates within sub-region;
Create initial configuration;
for 1:tinit do

Invoke EM fitting algorithm;
Compute and store likelihood of fitted particle configuration;
Update initial configuration with random component;

end
Select configuration with highest likelihood;
Store configuration of center candidate;

end
Validate particle configurations;

7 http://www.wolfram.com/mathematica/
8 http://www.mathworks.com/products/matlab/
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This is also illustrated in Fig. 38. A sub-region is selected around each particle can-
didate, and the individual sub-regions are successively fit by the EM algorithm. This
multiple particle fitting includes any particle candidate within each sub-region, but
only the fitting parameters of the current central particle candidate are retained.

Figure 38: Illustration of the fitting procedure. The red dots denote particle candidates, while
the green ones with the contour line represent the fitted particles. The red boxes de-
pict two exemplary sub-regions, and on the right their true image data as well as the
fitted image are presented. The intensity distribution of neighboring particles may
overlap, and truncated distributions can arise as a result of the sub-region selection.

This iterative procedure was chosen for two reasons: first, to account for the smoothly
varying background and, second, to minimize the additional fitting error introduced
by truncated boundary particles.

Similar to the experiences made by most of the researchers using cell cultures, im-
ages acquired in brain slice were found to exhibit only smoothly varying background.
This is reasonable since the narrow emission spectra of QDs allowed for the usage of
emission filters with similarly narrow transmission range. Imaging QDs with emission
in the red region of the light spectrum rejects most of the autofluorescence that usu-
ally occurs in the green region of the spectrum. Owing to the low transfection rate,
there are barely neighboring neurons whose particles may additionally add blur to the
image. Finally, since off-focus particles at the same neuron are explicitly considered
in the fitting procedure, also blurred particles do not contribute as inhomogeneous
background.

The analysis procedure relies on sub-regions that are assumed to contain homoge-
neous background, and the component mixture model of the EM algorithm (see Equ. 28)
can be directly applied. An additional global background subtraction procedure is not
required.

Although the EM algorithm explicitly accounts for truncated intensity distributions
of boundary particles, the accuracy with that their parameters are estimated was found
to still being significantly reduced (see Sect. 4.10.1.3). This adds additional uncertainty
to the fitting accuracy of particles that neighbor such boundary particles since emitted

89



photons might be incorrectly assigned to the individual distributions. In order to ob-
tain the best fitting result for each particle, a sub-region is selected that centers each
particle individually. This maximizes the distance to the boundary of the sub-region
and reduces the impact of the error that propagates from boundary particles.

The boundary size of the sub-region was set to 19 pixels for the present data. This
choice represents a compromise between the required distance to the boundary so that
the fitting accuracy is not reduced (see Sect. 4.10.1.3) and a preferentially small region
to justify the assumption of background homogeneity.

The actual EM algorithm is provided with an initial parametrization that is individu-
ally derived for each sub-region and considers the number of particle candidates. For
initialization of the mixing proportions πi, the image region is first smoothed with a
Gaussian filter having a SD of one pixel so that the subsequent procedure is more ro-
bust. The background proportion is then computed from the minimum photon count
in the sub-region times the number of pixels. The remaining photons are distributed
to the particle candidates with respect to the number of photons in their peak pixel.
Finally, all proportions are normalized so that they sum to one. The centers µi of
the Gaussian mixture are initialized with the center position of the pixel identified
by the particle detection. The FWHM values are always initialized with 380 nm. This
corresponds to the average value of the FWHM range experienced in calibration mea-
surements (see Fig. 40a).

After initialization, the EM algorithm iterates titer = 100 times. This is a relatively
large value (Cadez et al. 2002) that should ensure that a local maximum in the likeli-
hood can be reached. This is indeed important since EM only guarantees to find at least
a local maximum of the likelihood function (Dempster et al. 1977). In order to avoid
that the EM algorithm gets stuck in a poor local maximum, it is repetitively started
tinit times with random initialization (Chen and Gupta 2010). The parameter set Θ
with the highest likelihood is selected.

For the present data, where the bins are treated as statistically independent Poisson
processes, the normalized observed data log-likelihood is given by (Maus et al. 2001):

L = ´
v

ÿ

j=1

Njln
Nj

Cj
. (37)

Here, Nj again represents the number of photon counts at the j-th pixels, while Cj
denotes the expected number of photons at that pixel for the mixture model with
parametrization Θ.

After the initial execution of the EM algorithm with the presented parametrization,
subsequent starts are initialized with a random deviation of up to 20 % from the initial
mixing proportions. The particle positions are randomly altered by ˘1 pixel, and the
FWHMs are randomly selected in the range 266-500 nm. All deviations are drawn from
an uniform distribution.

Detected particles and their parametrization are finally tested for being reasonable.
Particles that do not contain a minimum of 100 photons or have FWHM values outside
the range of 200-700 nm are rejected for further analysis.

The identification of occasionally superimposed particles that were too close to have
been distinguished by the particle detection procedure (see Fig. 48) is transferred into
the temporal domain. Instead of analyzing the noisy intensity distribution, like existing
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mixture distribution fitting algorithms do (Huang et al. 2011, Holden et al. 2011), it is
proposed here to solve this problem by detection of splitting and merging events. The
additional temporal information provided by the image streams is explicitly exploited.
This issue is addressed in the next section. Particles with significantly overlapping
distributions are detected, but not resolved. Instead, they are excluded from further
analysis because the accuracy with that parameters of their intensity distributions are
estimated considerably reduces as a function of the distance between two particles (see
Fig. 51).

This procedure is reasonable since the focus of this work is on the axial online cali-
bration that heavily depends on accurate shape estimations. Once the axial correlation
function is known, particles that have yet not been resolved can also be analyzed. It
can also be concluded that the selected spot detection procedure is sufficient since it
can resolve particles that are at least 3 pixels apart (see Sect. 4.10.1.2). This correlates
with the distance where the LA starts to significantly deteriorate.

4.8 linking particle positions to trajectories

In order to link particle positions to trajectories, local and global strategies are avail-
able (see Sect. 4.3.6). For the present data, a local linking strategy seems to be sufficient
for the following reasons: (1) relatively sparse particle distributions are adjusted, (2)
very close particles are not considered for analysis owing to the decrease in accuracy,
and (3) the trajectory lengths are not required to be extremely long. The latter will be-
come clear in Sect. 4.9.2 as the online calibration can simply combine trajectories from
multiple particles. For the current focus on the axial online calibration method, the cor-
rectness of the identified trajectories is of much more importance than their absolute
lengths. Consequently, a conservative, but reliable strategy is most appropriate, and
the following procedure has been implemented:

Data : Particle positions for all images
Result : Trajectories
for all subsequent images do

Connect particles using a local linking strategy;
end
Bridge small gaps between individual trajectories;
Detect splitting and merging events;
Delete trajectories that represent multiple particles;
Delete trajectories that are too short;

doch
The local linking strategy provided by the implementation of Jean-Yves Tinevez and
Yi Cao9 was employed. The assignment problem between particle positions in consec-
utive frames is solved via the Hungarian algorithm (Kuhn 1955) based on the nearest
neighbor criterion. To account for blinking events, the end and starting positions of dif-
ferent trajectories are subsequently reconnected with respect to a user-defined maximal
number of frames and distance.

9 Their set of MATLAB scripts is available at http://www.mathworks.com/matlabcentral/fileexchange/
34040-simple-tracker.
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In order to identify superimposed particles that are hardly distinguishable by analy-
sis of their intensity distributions, it was proposed here to exploit the temporal domain.
Splitting and merging events are detected after all trajectories have been assembled.
It is checked whether at the end of any track another track can be found within a
user-defined neighborhood in the consecutive frame. This identifies merging events
between trajectories. By running the same procedure backwards, splitting events can
be detected. Provided all merging and splitting events are known, all positions after a
merging respectively all positions before a splitting event are removed from the corre-
sponding trajectories. If trajectories undergo splitting and merging, only the positions
between these events are removed. A minimum track length criterion is applied to the
remaining trajectories.

Although the proposed procedure is relatively basic, it suffices to reliably link parti-
cles in the present acquisitions and allows to detect superimposed particles.

4.9 addressing the rim

In this section the actual online calibration method is presented. It adjusts astigmatism-
based 3D SPT techniques to the aberrations induced by the RIM so that they are applica-
ble deep in living samples. In contrast to existing techniques, this method determines
the aberrations directly from the acquired 2D image stream and does not require indi-
vidual calibration or any other additional effort for the experimenter.

At first, the influence of the RIM will be quantified, and an axial model that describes
the induced aberrations is established. By exploiting particle movement and the redun-
dancy introduced by the astigmatism, it is subsequently shown that it is possible to
estimate the current axial model from the 2D image stream independently of the imag-
ing depth. The presented results have initially been published in Sokoll et al. 2013 and
Sokoll et al. 2011.

4.9.1 The Axial Correlation Function

It was explained in Sect. 4.3.4 that 3D SPT techniques achieve high temporal and spatial
resolution by evaluation of the axial correlation function. It describes the relationship
between features of the 2D PSF and the relative axial distance of the particle to the focal
plane.

Considering Gaussian PSF models, there are basically two features that vary with
the axial distance of the focal plane to the center of the particle. These are the height
h and the FWHM ω. They correspond to the peak intensity respectively the width of
a fluorescent spot at each axial position and are depicted in Fig. 39a. Fig. 39b-39c
further illustrate that the axial intensity distribution can be approximated with a Gaus-
sian function, and that the width exhibits the well-known parabolic relationship (see
Equ. 26). The peak intensity was experienced to be a relatively noisy measure, which is
particularly true for QDs. Moreover, the peak intensity varies significantly already for
fluorophores of the same type, which prevents the application of a single correlation
function. On these grounds, only the axial relationship of the FWHM is a suitable model
that can be reliably used for analysis of multiple particles at once.
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(a) (b) (c)

Figure 39: (a) Illustration of the relationship between 2D PSF features and the axial position. (b)
Fit of a Gaussian function to the relationship of the intensity with the axial position.
(c) Corresponding plot for the FWHM fitting Equ. 26.

4.9.1.1 Adjusting the Correlation Function to the Influence of the RIM

To determine the influence of the RIM on the axial correlation function, z-stacks of im-
mobilized 30 nm diameter fluorescent beads with 580-605 nm emission wavelength
were analyzed at different depths. To maintain improved LA at reasonable depths in
brain slices, again an oil immersion objective10 was employed. Such sub-resolution-
sized beads are typically used for calibration measurements (Hibbs et al. 2006). Here,
they were chosen because of their stable fluorescence that simplifies analysis and re-
duces the number of frames that need to be acquired. These beads were dissolved in
Mowiol11, and drops of this solution were put on cover slips. This procedure enables
imaging of immobilized beads at varying depths, because Mowiol is a transparent
mounting medium that is curing quickly. Since Binding et al. 2011 showed that the RI

of rat brains measured in vivo can be considered being independent of the imaging
depth, the usage of Mowiol that exhibits a constant RI is a reasonable experimental
setting. Furthermore, the RI of Mowiol is lower than that of the immersion oil and the
cover slip. This is identical to the situation in real experiments.

The axial correlation curves for beads at depths of 0-30 µm are presented in Fig. 40a.
They are obtained by axial scanning of 20 beads at each depth and plotting of the
average FWHM from elliptical Gaussian fits to the 2D PSFs at each relative axial scan
position. Each bead was scanned once with an axial step size of 20 nm over an axial
range of 2 µm and a temporal resolution of 10 Hz. For negative relative z positions
the focal plane is above the center of the particle and for positive positions below. The
center of the particle is represented by the vertex of the curve, where the effective
resolution is highest.

It is apparent that the well-established parabolic correlation function holds only true
for beads located directly under the cover slip, where the RIM is effectively negligible.
With increasing depth the 3D PSF becomes more and more distorted resulting in increas-
ingly skewed parabolic correlation curves. Also, the effective resolution at the center
of the particle decreases as a function of the depth.

The presented depth dependency is not directly comparable to the one that should
be experienced in brain slices or aqueous solutions since there the RIs are much lower.

10 Olympus UAPON 100XOTIRF objective: 100x magnification, 1.49 NA
11 Mixture ratio: 0.1-1 µl beads solution to 2 ml Mowiol
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Although this could not be proven as Mowiol was self-made and its exact RI was
unknown, the observed dependency on the depth is nevertheless expected to be weaker
than that for real experiments.
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Figure 40: (a) Measured axial correlation curves of immobilized beads at different depths in
Mowiol. Each data point represents the average value of „ 20 beads. The individ-
ual numbers may vary owing to reasonability checks on the fitting results and the
additional restriction that data points are only included if their intensity is at least
30 % of the intensity at focus. All curves were aligned according to their true vertex
before averaging. (b) Deviations from the true axial position if the influence of the
RIM is ignored and always the same calibration at zero depth is used. Note that the
underlying calculations already draw on modelling the curves using Equ. 38.

If the depth dependency is neglected and the calibration curve at zero depth is
utilized for particles imaged deep within the specimen, then the obtained relative axial
position will be incorrect. The resulting SEs are presented in Fig. 40b. They increase
as a function of the imaging depth. For the given experimental configuration, this can
already result in deviations of more than 100 nm from the true axial position. Since
the SE originates from wrong depth assumptions, it is obtained no matter how accurate
the shape of a particle can be determined.

To compensate for the RIM, Huang et al. 2008a proposed the usage of two depth-
dependent scaling factors that individually correct the obtained relative axial positions
above and below the focal plane. However, this almost linear relationship was only
shown for simulated PSFs, where most likely not all experimental factors were included.
The measured results in Fig. 40 clearly indicate that there is no linear relationship.
The simulations apparently did not cover the reduction of the effective resolution at
the particle center as a function of the depth. In reality, significant deviations already
occur in the vicinity of the particle center. Their approach also changes the axial LA

by means of the scaling factors, which additionally deteriorates it as a function of the
imaging depth. In order to avoid this artificial reduction of the axial LA and since
the determined linear relationship seems hardly valid, here an alternative approach is
proposed. Instead of post-correcting the localization results, the aberrations of the axial
correlation function are directly modelled. Equ. 26 is adapted to:

ω(z) = ω0 ¨

c

1+
( z
d

)2
+mr ¨ z. (38)
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Here, z, d and ω0 are still the relative axial position, the focal depth and the FWHM in
focus. The extra parameter mr controls the skewness of the correlation function. The
proposed extension was empirically established and can be considered as adding a
straight line with depth-dependent slope to the symmetric correlation function at zero
depth.
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Figure 41: (a) Fits of the proposed correlation function to calibration measurements at selected
depths. The individual axial fitting range is indicated by the dashed vertical lines at
the bottom of each graph. (b) Individual fitting residuals for all examined depths. (c)
Change of the correlation function parameters as a function of the imaging depth.

Fig. 41a illustrates that the proposed correlation function is capable of approximating
the induced aberrations independently of the imaging depth. It includes only selected
depths since for the given configuration the effects of the RIM are most evident within
the first 20 µm. LSQ-based fitting is used to match Equ. 38 with the measured calibra-
tion curves.

The fit residuals for all examined depths are presented in Fig. 41b. Apparently,
Equ. 38 is a fairly good approximation for the induced aberrations at any depth since
the residuals are only in the range of ˘5 nm. Note that the fit is obtained only from
a limited axial range that increases as a function of the depth. It corresponds to the
axial spread of the PSF and was determined from the FWHM of a Gaussian fit to the
axial distribution of the peak intensity (see Fig. 39b). This limitation is reasonable since
it was experienced that already the well-established standard model deviates outside
this range. This could be the result of the much lower number of collected photons or
because the shape of the PSF starts deviating from Gaussian approximations as was ob-
served by Izeddin et al. 2012b. If the included data points would be only restricted to
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have peak intensities of at least 20 % of the intensity at focus, then the fitting residuals
still just increase by a factor of two (Sokoll et al. 2013).

Fig. 41c finally depicts the change of the correlation function parameters as a func-
tion of the imaging depth. mr and ω0 reflect the strength of the induced aberrations
most. Their rate of change decreases as a function of the depth as was already experi-
enced for the course of the calibrations curves.

4.9.1.2 Breaking the Axial Symmetry by Introduction of a Cylindrical Lens

Now that a depth-independent description of the axial correlation function is available,
still the differentiation whether a particle is located above or below the focal plane has
to be enabled. As is illustrated in Fig. 42a, the axial position can only be ambiguously
determined since owing to the lateral point symmetry of the PSF effectively only a
single width parameter is extracted. Fig. 42a also depicts the critical region around
the focal plane where only limited information about the axial position is available.
Changes in the axial position are only represented by minor variations in the function
value of the correlation function.

(a) (b)

Figure 42: (a) Critical issues of axial off-focus imaging are illustrated on the basis of a real
acquisition at 10 µm depth. Clearly, the axial position can only be determined am-
biguously, and only limited information about the axial position is available from
the flat course of the curve in the vicinity of the particle center (red arrow). (b) Posi-
tion of the cylindrical lens in the light path of the SDCM setup. The red arrow points
at the custom-built housing for the lens.

To address these issues, a plano-convex cylindrical lens12 was inserted into the light
path of the SDCM setup. It was placed with distance dcl directly in front of the camera
using a custom-built housing (see Fig. 42b).

This introduction of the lens slightly shifts the focal plane for one lateral direction
along the axial axis so that the 2D PSF becomes elliptical instead of rotationally sym-
metric. Furthermore, the major axis is switching half way between the two focal planes
like it is illustrated on the left in Fig. 43a. Breaking the axial symmetry of the PSF intro-
duces additional axial information as now the two lateral widths of the elliptical PSF

can be separately analyzed. If they are plotted individually, this creates two correlation

12 Thorlabs LJ1516RM, f = 1000 nm
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curves that exhibit an axial shift. It is denoted as focal shift ∆f in this thesis and is also
visualized in Fig. 43a. This allows for unambiguous computation of the relative axial
position of a particle since each position is defined by a unique pair of FWHM values.
The center between the vertices of the two curves is often interpreted as the axial center
of the particle. This is imprecise since the real center of the particle is at the vertex of
the correlation curve unaffected by the lens. This is the y curve in the current config-
uration, and therefore, their vertex represents the zero position throughout this thesis.
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Figure 43: (a) Individual correlation functions acquired in confocal mode. ∆f and ∆ω are il-
lustrated. The corresponding acquisitions are presented on the left. (b) Individual
correlation functions acquired in WF mode. There is no FWHM shift for this config-
uration. Again, the corresponding images are presented on the left. (c) Simplified
ray diagram for confocal imaging with (red) and without (black) the cylindrical lens.
∆ω and ∆f are plotted as functions of (d) the imaging depth respectively (e) dcl.

The expected focal shift between the two calibration curves is clearly observable in
Fig. 43a, but also an offset in the FWHM value of their vertices. It will here be denoted
as ∆ω. It can also be recognized by the varying lengths of the major axis above and
below the particle center in the real acquisitions on the left.

This offset was determined to be an artifact of using a cylindrical lens with SDCM.
As is apparent from Fig. 43b, if the bypass of the CSU is used, thus, the images are
acquired in WF mode, only the expected focal shift is obtained, and the major axes are
of equal length.

To clarify the principle of operation of the lens, Fig. 43c shows a simplified sketch
of the light paths in the setup. This is done separately for the x and the y direction,
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where, for the present implementation, the x direction is affected by the lens, but the
y direction is unaffected. The image that is focused on the camera chip stems from
a different, second, focal plane for the x direction. This is due to the different angle
of refraction at the convex interface of the lens. This is actually the desired effect that
breaks the point symmetry of the PSF since the width of the 3D PSF varies along the
axial axis, but a different axial plane for each lateral direction is now focused into a
single image.

To identify the origin of ∆ω, the actual light path has to be examined. For the y
direction, the light at the focal plane of the objective is first focused into the pinhole
and then on the camera chip. Since the image for the x direction stems from a different
focal plane, the light of this second focal plane is not focused into the pinhole anymore.
Instead, its focal point is slightly shifted towards the back of the pinhole. This leads to
a loss of resolution in the x direction. Consequently, the PSF is blurred along this lateral
direction, which is finally observed as a FWHM offset in the corresponding correlation
curve. It must be concluded that the FWHM shift is an inherent artifact of using a
cylindrical lens with confocal setups and cannot be avoided.

Next to the focal shift also the FWHM shift has to be known for confocal setups. The
course of both shifts as a function of the imaging depth is depicted in Fig. 43d. It is
apparent that they are virtually constant and independent from the imaging depth
yielding on average ∆ω = 60.25˘ 5.71 nm respectively ∆f = 278.40˘ 45.37 nm. A
notable deviation is apparent for the measurements at zero depth. Similar to another
effect that will be explained later, this could be an artifact of the astigmatism produced
by the cylindrical lens. On the other hand, the fact that at zero depth one focal plane
may be located in the cover slip while the other is already in the mismatched media
might introduce such deviations. It must be admitted, that the cause of this effect could
not be clearly determined during this work. However, since molecular dynamics are
measured within the samples, this effect can be neglected. The stated average values
do not include the measurements at zero depth.

In contrast, both shifts vary as a function of the distance dcl between the lens and
the camera chip. In Fig. 43e it is apparent that ∆f has a linear relationship, whereas
∆ω first increases as one would expect, but then decays for distances larger than 5 cm.
Inspection of the resulting axial correlation curves revealed that at very large dcl their
centers are shifted out of the detectable axial range. This results in deviations from the
expected relationship. The axial sectioning capability of the CSU, that in the first place
renders analysis deep in living tissue possible, now limits the strength of the astigma-
tism that can be adjusted. Given that for a specific lens the introduced astigmatism is
solely adjusted by dcl, it is very reasonable that ∆ω does not vary with depth.

Consequently, the constant FWHM shift can simply be subtracted from the measure-
ments and does not yield a loss of generality of the proposed approach. ∆ω is silently
accounted for in the remainder of this thesis. dcl = 4.5 cm was chosen as a compro-
mise between a reasonable astigmatism and the available axial detection range. This
issue is also addressed in more detail in Sect. 4.10.1.9.

Finally, another artifact of the setup that could not be accommodated for in this work
has to be revealed. Fig. 40-41 were already drawn from analyses of the y curve of im-
ages acquired with a cylindrical lens. This lateral direction is almost unaffected by the
lens and results in equivalent curves like if they were measured without a lens (Sokoll
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et al. 2011, Deng and Shaevitz 2009). In theory, the cylindrical lens only shifts the focus
of one lateral direction so that owing to the rotational symmetry of the PSF both curves
should be identical. However, for the present configuration the shifted x curve was
found to exhibit deviations from the y curve that cannot be neglected. This is most
significant below the particle (see Fig. 44a). The x and y curves are corrected for their
shifts and plotted for exemplary depths.
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Figure 44: (a) Individual plot of the x and y axial calibration curves of single scans at exemplary
depths. (b) Difference of the x curve that is affected by the cylindrical lens from the
unaffected y curve at exemplary depths. (c) Total difference between the two lateral
calibrations curves for different imaging configurations at exemplary depths. Note
that owing to the measurement noise and the calculation of absolute deviations,
the average error may never approach zero. The average difference with lens is not
increased tremendously because only parts of the curve deviate.

In Fig. 44b the corresponding differences between the individual curves are quanti-
fied. Within the available axial range the differences may become as high as 100 nm.
The average absolute deviation for the relevant axial range is presented as a function
of the imaging depth in Fig. 44c. The total deviation is „ 11 nm and is almost constant
as a function of the depth.

To identify the source of this artifact, Fig. 44c also presents the deviations for dif-
ferent imaging configurations. This includes confocal spinning disk imaging without
the lens as well as using the WF mode with and without the lens. Clearly, this artifact
must be attributed to the lens since for both imaging configurations the error increases
significantly only when the cylindrical lens is installed. Without the lens both curves
are virtually identical for the total axial range (see Fig. 42a for an example). Similar re-
sults were obtained when using another cylindrical lens of the same type respectively
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one with shorter focal length. Consequently, these aberrations are not subject to a sin-
gle poorly manufactured lens, but instead it must be concluded that the introduced
astigmatism of a cylindrical lens is not as perfect as expected. Similar artifacts have
also been reported by Izeddin et al. 2012a and were corrected using technically more
sophisticated AO. An explanation was not provided.

It has to be stated that although the cylindrical lens could be determined as the
source of these aberrations, a satisfying physical explanation could not be found. The
artifacts of the present setup that lead to deviations form the expected behavior have to
be accepted as they are. Since alternatives are available, the proposed online calibration
method nevertheless draws on the expected curve model with identical curves that just
exhibit a focal shift.

4.9.2 The Axial Online Calibration Method

Up to now, high temporal and spatial resolution have been enabled by computation
of the nanoscale 3D particle position from just a single acquisition. The axial analysis
range was extended to both sides of the focal plane by introducing an astigmatism us-
ing a cylindrical lens, and also a description of the required axial correlation function is
available independently of the imaging depth. However, their current parametrization
is still unknown.

As it was stated in Sect. 4.3.5, virtually all methods that localize fluorophores deep
in tissue rely on some sort of prior calibration. Owing to the continuous motion of
molecules this is practically hardly feasible for SPT in living samples. As a result of
the minimum time it takes to acquire a full z-stack, particle motion corrupts the cor-
respondence between the expected and the real scan position. Also, matching the cur-
rent experimental situation is impracticable since the parametrization among different
depths varies significantly. So for instance imperfect specimen contact to the cover slip
may hinder estimation of the current depth in the tissue, the actual RI of the sample de-
pends on the temperature and the manufacturing variance of the cover slip thickness
changes the effect of the RIM.

In order to circumvent such issues, here an online calibration procedure is developed.
It attempts to determine the current axial correlation function directly from the 2D

image stream that must be acquired to analyze molecular dynamic.
The key ideas of the method are (1) that since the correlation function is defined by

three parameters, it can be reconstructed by knowing three coordinates of the curve. (2)
for the purpose of obtaining these coordinates, the inherent molecular particle motion
can be used, and (3) on that account, the redundancy introduced by the astigmatism
can be exploited. The method consists of three steps:

Data : Concatenated particle trajectories and corresponding FWHM values
Result : Parametrization of axial correlation function
(1) Identify vertex frames;
(2) Compute the three required coordinates;
(3) Estimate the curve parameters;

doch
They are now described in detail.
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4.9.2.1 Vertex Frame Identification

In contrast to trying to avoid the inherent molecular motion, it is actually demanded
and consequently employed to estimate the FWHM of the vertex of the correlation curve.
The presented method assumes that a particle passes the two artificial focal planes of
the imaging configuration several times during the acquisition of a single 2D image
stream. This is not a serious limitation since the diameters of neuronal compartments
like synapses, axons, or dendrites are limited, and particles mainly diffuse freely within
these compartments.

The most simple case is considered in Fig. 45a, where a particle just moves along the
axial axis. It presents the particle’s axial position as a function of the current imaging
frame. The respective focal planes in the x and y directions are crossed at different
frames. The corresponding FWHM measurements of the individual lateral directions
are also depicted. The vertex point of the curves corresponds to the moment when a
particle is in either focal plane. To identify those images where a particle is in either
focal plane and that consequently represent a vertex position, the change of the FWHM

values during particle movement is analyzed.

(a) (b)

Figure 45: Basic principles of the algorithm. (a) Trajectory of a particle that moves along the
axial axis and the corresponding FWHM measurements. The red marks illustrate the
vertex identification model. (b) Derivation of the three required coordinates (in red)
by exploitation of the redundancy introduced by the cylindrical lens.

The corresponding vertex identification model is then defined as follows: a vertex
frame is any image, where the measured FWHM in one lateral direction is smaller than
those of the two neighboring images. This is indicated by mark 1 in Fig. 45a. The FWHM

values in the other lateral direction have to be either constantly increasing or decreasing
in the current neighborhood (see mark 2). Finally, mark 3 refers to the requirement
that the FWHM value of v must be smaller than that of the opposite lateral direction. A
robust estimate for the FWHM value of the two vertices can then be computed by the
median FWHM of all identified vertex frames fvx and fvy.

An inherent problem of this identification model is that it is prone to underestimate
the true FWHM value. Because the estimated FWHM values are subject to noise, it is clear
that frames with outliers towards low FWHM values are more likely to be selected as
vertex frames than the remaining ones. Consequently, the estimated FWHM value of v is
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biased towards lower values. To account for this effect, the vertex frame identification
is conducted on smoothed images to reduce the noise. The data is convolved with a
Gaussian filter of size 9 and kernel SD of 1 pixel (Crocker and Grier 1996) before fitting.
Although the vertex frames are identified from the smoothed images, the actual FWHM

value is still computed using the fitting results from the original images. This heuris-
tic procedure is reasonable since smoothing stabilizes the relative FWHM differences
between the frames.

4.9.2.2 Computation of the Three Required Coordinates

Now that an estimate of the vertex FWHM is available, the redundancy introduced by
the astigmatism is exploited to derive estimates for two more coordinates left (l) and
right (r) of the vertex.

Therefore, the properties of the two correlation functions shall be recapitulated: they
are axially separated by ∆f, which is independent of the imaging depth and is solely
defined by the distance dcl of the cylindrical lens to the camera. Apart from that, the
curves are identical owing to the rotational symmetry of the PSF. In consequence of
that knowledge, l and r are chosen to be the points at axial distance ˘∆f from v. Then
all three coordinates can be estimated from the identified vertex frames. This situation
is exemplarily depicted in Fig. 45b.

It is apparent that in this setting ly corresponds to the vertex vx and rx to the vertex
vy. Since always the widths in both lateral directions are known, the FWHM value of
ly can be computed from the median of the FWHM values of the vertex frames fvx
in the lateral x direction. Similarly, the FWHM value of rx can be computed from the
median of the FWHM values of the vertex frames fvy in the lateral y direction. Since
the two curves are identical, the FWHM value of ly is the same as the FWHM value
of lx at distance ´∆f from vx. Respectively, the FWHM value of rx is the same as the
FWHM value of ry at distance +∆f from vy. Consequently, they can be jointly used to
construct each individual axial correlation function.

Because the absolute axial position of a particle is not of interest, the axial coordinate
of v is simply zero, and the three general coordinates are finally given by:vl

r

 =

 0 ω̃xy(fv)

´∆f ω̃y(fvx)

+∆f ω̃x(fvy)

 . (39)

Here, ω̃ denotes the median of all collected FWHM values. Note that for simplicity only
the three general coordinates v, l, and r are stated. The extra notation whether they
belong to the x or y curve can be omitted because vxx is simply vyx ´∆f and so on.
As already addressed earlier, ∆ω is left out in these equations since it can simply be
considered by subtraction. It should be noted that the calibration procedure actually
also allows for estimation of ∆ω. It can be computed from the difference between
ω̃x(fvx) and ω̃y(fvy).
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4.9.2.3 Estimation of the Parametrization

By use of the three general coordinates, the parameters mr, ω0, and d of the axial
correlation function can be computed by setting up a nonlinear equation system:

ω(lx) = ly (40)

ω(vx) = vy (41)

ω(rx) = ry (42)

In order to avoid complex solutions, the solution space is restricted by incorporation
of the following assumptions on the three coordinates:

vy ą 0, ly ą 0, ry ą 0 (43)

ly ą vy, ry ą vy (44)

lx ă vx ă rx (45)

vx = 0 (46)

´ lx = ∆f, rx = ∆f (47)

This results in the following relatively compact analytic solutions for the three param-
eters:

mr =
´ly + ry
2rx

(48)

ω0 = vy (49)

d = ˘
2vyrx

a

(ly ´ 2vy + ry) (ly + 2vy + ry)
. (50)

By observation of Equ. 50 it becomes apparent that there exist actually two solutions for
each set of coordinates. However, owing to the squaring of d in Equ. 38, both solutions
result in the same curve, and effectively an unique real solution exists.

An exemplary analytical solution is presented in Fig. 46a. It is computed for a set of
coordinates taken from the calibration experiments at depth 10 µm in Mowiol. Appar-
ently, the resulting curves run well through the three coordinates, but their true vertex
is not located at vx respectively vy. This violates an essential assumption of the on-
line calibration, and it must be concluded that although a compact analytical solution
exists, it does not comply with all expectations on the solution.

Therefore, an additional equation is necessary that incorporates the required side
condition of having the vertex of the curve at the coordinate v. This can be accom-
plished by adding equation:

ω 1(vx) = 0 (51)

to the nonlinear equation system (see Equ. 40-42). Here,ω 1(vx) denotes the first deriva-
tion at v. Since this results in an overdetermined equation system, Equ. 38 is extended
with an additional parameter zs yielding:

ω(z) = ω0 ¨

d

1+

(
z´ zs

d

)2
+mr ¨ (z´ zs) (52)
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Figure 46: (a) Approximation of the true calibration curve (red dashed line) on the basis of
the reference coordinates (red rectangles). The analytical solution (blue line) runs
well through the coordinates, but does not have its vertex at the true vertex. In
contrast, the proposed numerical solution (black line) approximates the true calibra-
tion curve very well. (b) Illustration of the shift zs. The blue curves have identical
parametrization except that the dashed curve has mr = 0 because it is the corre-
sponding symmetrical parabola. Both curves are axially separated by the shift zs.
It must be subtracted in order to have the vertex at the true vertex position of the
wanted curve (red line).

and consequently

ω 1(z) = mr +
ω0(z´ zs)

d2
b

1+
(z´zs)2

d2

. (53)

The principal course of the curve is still the same, but zs allows to shift the curve along
the axial axis in order to maintain the true vertex at v.

Although the fitting procedure involves only four variables, the closed-form solu-
tion of the latter system of four nonlinear equations is quite complicated and contains
complex solutions. In order to avoid the evaluation of ill-conditioned expressions, a nu-
meric root finding procedure was found to be much more convenient from a practical
point of view.

A LSQ-based nonlinear curve fitting procedure is proposed. It has the advantage that
complex solutions can be prevented, and instead, always a near real solution is ob-
tained. The fitting procedure relies on the trust region optimization scheme (Coleman
and Li 1996) implemented in MATLAB’s Optimization Toolbox and is provided with
the following bounds:

mr : [´2 5] (54)

ω0 : [100 1000] nm (55)

d : [100 1000] nm (56)

that are derived from the calibration measurements in Mowiol (see Fig. 41c).
In order to enforce the necessary side condition, although there is now one coor-

dinate less than required parameters, the key idea is the substitution of zs by the
remaining parameters. zs is defined to be the axial shift of the true vertex position that
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originates because the original parabola is skewed by means of the term mr ¨ z. zs is
illustrated in Fig. 46b and can be computed by:

zs = ˘

d

m2rd
4

ω20 ´m
2
rd
2

. (57)

This simply corresponds to the root of the first derivation as the original vertex is
by definition at vx = 0 (see Equ. 39). Since the RI of the specimen is typically much
smaller than that of the immersion medium, the RIM leads to axial correlation func-
tions with positive shift zs. Owing to the manufacturing variance of the cover slip
thickness, the curve may also be skewed in the opposite direction. This occurs most
likely at low imaging depths. Errors in the coordinate estimation may also result in
that phenomenon. Therefore, the appropriate solution of Equ. 57 is selected according
to whether ly or ry is larger.

During the fitting procedure, zs is not considered as a free parameter, but instead
computed by use of Equ. 57 and the current estimates of mr, ω0, and d. Consequently,
the true vertex of the skewed parabola is always enforced to be at vx = 0 independently
of the parametrization. As a result of this substitution, the actually underdetermined
problem can be solved using just three coordinates because the fitting procedure in-
directly maintains the additional side condition. This procedure yields adequate real
approximations to the wanted correlation function as is exemplarily shown in Fig. 46a.

4.9.3 Computation of the Axial Position

Now that the parametrization of the axial correlation functions is known, they can be
used as calibration curves to compute the relative axial position of a particle using the
measured widths ωx, ωy.

There are two different types of techniques: here termed (1) direct computation and
(2) distance minimization methods. Techniques of the former type plug the widths
into a separate calibration function. The corresponding axial position can be directly
read out by computation of the function value from the measured FWHM values. This
separate calibration function can be computed using the ellipticity ωxc/ωyc (Spille
et al. 2012), the difference ωxc ´ωyc (Izeddin et al. 2012a), or by insertion of the

generalized width
b

ω2xcω
2
yc and the square root of the ellipticity into Equ. 26 (Holtzer

et al. 2007). ωxc and ωyc denote the FWHM values of the axial calibration curves for
each axial position.

The distance minimization method proposed by Huang et al. 2008b searches for
the axial position that matches the measured widths best. It minimizes the distances
between the measured widths and the calibrations curves by means of the combined
distance:

Dc =

c(?
ωx ´

?
ωxc

)2
+
(
?
ωy ´

?
ωyc

)2
. (58)

According to Spille et al. 2012, direct computation methods are faster, but the mini-
mization method is more accurate. It was therefore chosen in this thesis. Since it was
experienced that in order to yield robust results the search must be well initialized,
the axial position is first computed by direct computation using the difference and
subsequently improved by initializing the minimization method with that estimate.
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4.10 experimental results

This section evaluates the presented 3D SPT workflow. Evaluation of algorithms that an-
alyze real experimental data with nanometer accuracy is inherently difficult for several
reasons. Most importantly, the ground truth (GT) is generally not accessible owing to
the lack of parallel methods that could assess the same level of information. Further-
more, critical parameters like the SNR or the number of focal plane crossings cannot
be easily accessed or even be controlled in real experiments. Finally, statistically sig-
nificant results can only be ensured using large number of acquisitions, which cannot
always be obtained experimentally.

Therefore, the algorithm is evaluated on different types of data: (1) its performance
is analyzed on synthetic data so that the GT is available and the dependency on critical
parameters can be assessed. (2) the algorithm is applied to semi-synthetic data, which
allows for determination of its accuracy in the presence of experimental artifacts of the
setup. (3) measurements in brain slices under real experimental conditions have been
conducted, and the plausibility of the results was examined.

Since the major contribution of this thesis is the facilitation of experiments in natural
brain slices, the evaluation mainly considers the online calibration procedure respec-
tively the axial accuracy. The focus was set on minimizing the depth dependent SE

since this is an important measure to reveal how well the model assumptions meet the
reality. Intermediate results of the 3D SPT workflow are also evaluated.

4.10.1 Evaluation on Synthetic Data

Since the online calibration method depends on the quality with which the shape pa-
rameters of individual particles are determined, also the particle detection and shape
estimation procedures are evaluated. The focus is set on evaluating their performance
in the presence of multiple particles with partially overlapping distributions. This is
followed by several detailed analyses that evaluate the efficiency of the online calibra-
tion method in isolation. This includes (1) assessment by means of the SE and the axial
LA, (2) visual analysis of the determined trajectories, and (3) an evaluation of the ob-
tainable diffusion parameters. Since the online calibration comprises several steps, also
(4) intermediate results are analyzed. (5) the impact of the experimental parametriza-
tion is evaluated. Before the results are presented it is described how the underlying
images are simulated.

4.10.1.1 Simulation of Astigmatism-Based 3D Single Molecule Images

To create synthetic single molecule images that also represent astigmatism-based 3D

information, the PSF of individual particles is simulated with an elliptical Gaussian
function of the form presented in Equ. 22. This is a common approximation to the
induced aberrations (Huang et al. 2008b, Holtzer et al. 2007).

Since the sensor of the camera is well represented by a discrete set of quadratic
pixels, this continuous function is integrated over the pixels to simulate photon counts
(Huang et al. 2011). The discretized elliptical Gaussian profile is then computed as:

Nx,y = Np∆Ix(x,y)∆Iy(x,y) (59)
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with

∆Ix(x,y) =
1

2

[
erf

((x´ 1
2)´ xc)?
2σx

´ erf
((x+ 1

2)´ xc)?
2σx

]
, (60)

∆Iy(x,y) =
1

2

[
erf

((y´ 1
2)´ yc)?
2σy

´ erf
((y+ 1

2)´ yc)?
2σy

]
. (61)

Here, Nx,y is the number of signal photons at a pixel per particle, Np is the total
number of emitted photons per particle, and ∆Ix(x,y), ∆Iy(x,y) integrate the Gaussian
distribution over each pixel using the error function. xc, yc are the center coordinates,
and σx, σy represent the SD of the Gaussian profile.

Multiple particles, of number Kp within an image, are simulated by adding up Nx,y

of all particles. This is reasonable since it can be assumed that any emitter contributes
independently to the number of photons at a pixel.

In order to obtain realistic images, they are parameterized and further processed
to correspond to the present experimental configuration. σx and σy are chosen to
correspond to ω values in the range of 266-500 nm (see Fig. 40a). The individual
FWHMs of each particle are randomly drawn from an uniform distribution in that range.
This reflects the situation that particles have elliptical shapes owing to the introduced
astigmatism.

The images are also scaled to match the camera’s back-projected pixel size in the
object space (dpo). Based on the TIRF objective with M = 100 and the CSU’s internal
magnification factor of 1.2, 1 µm in the object space is magnified to 120 µm on the
camera chip. Since the physical pixel size of Andor’s iXonEM + 897 camera is dp =

16 µm, 7.5 pixel represent 1 µm in the object space, and hence each camera pixel
corresponds to dpo « 133 nm.

The number of emitted photons per particle is varied in the range Np « 400-100000,
which corresponds to SNRs of « 4-66. Np ď 3000 respectively SNR ď 10 are the val-
ues actually experienced in real brain slice experiments (see Fig. 74e). From the same
experiences a constant number of background photons Nb = 40 is added to each pixel.

To simulate the noise contribution of an EMCCD camera, only δphoton, δb, and δmult
have to be considered (see Sect. 3.1.4.4). The signal and background noise sources are
added to each pixel using independent realizations ppois of a Poisson distribution with
λpois =

řKp
1 Nx,y +Nb. The respective λpois is subtracted from ppois so that it only

represents the additive noise component at a pixel. The multiplicative noise that occurs
in the electron multiplication register is considered by multiplication of δmult =

?
2

with ppois.
In order to effectively eliminate the readout noise, GEM was set to 64. Since GEM is

practically linear and the number of electrons per digital intensity unit of the analog-to-
digital converter is SCCD = 12.4, the photon counts are converted to intensity values
similar to what the camera provides by multiplication with GEM

SCCD
.

Altogether, the intensity value present at each pixel in a synthetic image with multi-
ple particles is finally computed as:

ix,y =

[
Kp
ÿ

1

Nx,y +Nb +
?
2ppois

]
¨
GEM
SCCD

. (62)
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ω Np Nb dpo λpois δmult GEM SCCD

266-500 nm 400-100000 40 133 nm
řKp
1 Nx,y +Nb

?
2 64 12.4

Table 1: Default parametrization for the simulation of single molecule images.

The parametrization is summarized in Table 1. This is the default parametrization used
throughout the evaluation if not stated otherwise.

An exemplary image that was rendered with the presented configuration is pre-
sented in Fig. 47. The density was set to 0.5 molecules per µm2, and it is presented at
various SNRs in order to gain an impression of the obtained variance in image quality
with which a 3D SPT algorithm has to deal.

Figure 47: Exemplary simulated image at varying SNRs.

In accordance with Equ. 9, the individual SNR of each particle in the image is defined
by:

SNR =
N̂

b

2
(
N̂+Nb

) , (63)

where N̂ denotes the number of photons at the peak pixel of a particle excluding noise
and background. The factor 2 incorporates δmult. Note that this definition is valid only
for individual particles and may hence overestimate the SNR for overlapping intensity
distributions of multiple particles.

Finally, also note that for evaluation the SNR is sometimes kept constant across all
particles in an image independently of their FWHMs. This means that for a predefined
SNR the number of photons per particle must be individually computed by:

Np = 2πσxσyN̂, (64)

with

N̂ =
2SNR2 +

a

4SNR4 + 8NbSNR2

2
(65)
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derived from Equ. 63. Of course, in real acquisitions the SNR reduces for off focus
particles since their photons distribute over a blurred intensity profile, and the total
photon number is decreased. However, for the evaluation of the detection and shape
estimation performance it is reasonable to maintain a constant SNR. The respective
FWHM and SNR definitions will be stated for each evaluation scenario individually.

4.10.1.2 Particle Detection Procedure

The particle detection procedure is based on the spot-enhancement filter that was
already evaluated in detail for elliptic shapes, varying SNRs, and non-uniform back-
grounds (Smal et al. 2010). It was reported to exhibit good overall performance, but its
capability to handle overlapping intensity distributions or at least nearby particles was
not analyzed. Such occurrences were explicitly avoided by the evaluation procedure.
Since particles may occasionally approach each other during diffusion, this issue is
addressed here. The particular question is: what is the minimal distance two particles
may have so that the spot detection method can still resolve and detect them?

A common approach is the application to images with varying particle densities
(Zhu et al. 2012, Huang et al. 2011, Holden et al. 2011). However, the density is just
an indicator for the average distance of particles, but lower distances may occur by
chance.

Therefore, the detection method is tested on simulated images that contain only two
particles at varying distance. One particle is always located in the center of the image,
and the second is located at a circular orbit with varying radius that represents the
distance. Its exact position on the orbit is drawn from a uniform distribution. This
setting is supposed to avoid any dependency on the sub-pixel positions by rendering
them variable on the discrete grid. As explained earlier, the SNR of both particles in
an image is kept constant, but the FWHMs do vary. Exemplary images are presented in
Fig. 48a.

(a)

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Particle distance (pixel)

C
o

rr
e

c
t 

d
e

te
c
ti
o

n
s
 (

%
)

 

 

SNR  2

SNR  3

SNR  4

SNR  6

SNR  8

SNR 10

(b)

Figure 48: (a) Exemplary simulated images for different particle distances at SNR = 6. The
red dots depict the GT and the green dots the detection result of the algorithm. (b)
Fraction of correctly detected images as a function of the particle density and the
SNR.
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The performance was measured by means of the fraction of images that are correctly
analyzed. This means that exactly two particles must be detected within one pixel
distance to their known rounded pixel position. Any image that has less, more, or inac-
curately detected particles is counted as being analyzed incorrectly. One pixel distance
was chosen because it is the maximum deviation experienced with that filter for the
present type of data. The detection threshold factor k was kept at 8 and never had to
be altered for any evaluation scenario. Fig. 48b plots the fraction of correctly detected
images as a function of the particle density and the SNR. 1000 images were analyzed
for each data point.

Apparently, there is a clear change in the detection performance at distance of 4
pixels. This means that there must be 3 pixels between the center of two particles so that
they can be correctly detected. For larger distances the detection rate reaches almost
100 %, which indicates that indeed the maximum deviation from the true particle
position is only about 1 pixel. It is also apparent that the detection capability strongly
deteriorates for SNR ă 4, which is in good agreement with previous reports (Meijering
et al. 2012).

Alternative algorithms that fit mixture models, but try to determine the correct num-
ber of particles by iteration between detection and localization (see Sect. 4.3.3.2), usu-
ally just provide the performance with respect to the density, but not an exact distance
that they can resolve. By inspection of their provided images, it becomes apparent that
they also require a distance of „ 2 pixels between particle centers. Therefore, it can be
concluded that the simplification for the detection performance, made in Sect. 4.7.2, is
reasonable.

4.10.1.3 EM Particle Fitting Procedure

This section evaluates the accuracy with that the EM algorithm estimates the intensity
distribution of multiple particles. Since for the present 3D application the individual
widths of the distributions are of interest, in addition to the LA of the center coordinates
also the accuracy with that the individual FWHMs are determined is assessed.

The evaluation covers several scenarios including the robustness of the EM algorithm
with respect to (1) the number of random starts and (2) the number of particles. The
dependency of its accuracy on the distance (3) between two particles, (4) of a parti-
cle to the boundary, and (5) of a center particle to another truncated particle is also
investigated.

In order to isolate the accuracy analysis from the detection capability, the spot de-
tection procedure is bypassed. The EM algorithm is provided with the correct number
of particles, and their positions are rounded to discrete pixel positions. To simulate
the accuracy of the spot detection filter, the positions are given a random deviation of
either ´1, 0, or 1 pixel in each lateral direction.

The SNR will be the same for all particles in an image irrespectively of their varying
FWHMs. This holds true for all evaluation scenarios of this section. The number of
simulated images is always 1000 unless stated otherwise.

Robustness to the Number of Random Starts

Since the EM algorithm is known to be a local optimizer, the presented fitting procedure
runs it several times with varying random initialization and reports the result with the
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highest likelihood. To determine a useful number of random starts for sub-regions of
19 pixels, images containing 4 particles, arranged on a grid with average distance of
5 pixels, were rendered. For the purpose of varying particle distances and sub-pixel
positions, random xy deviations, drawn from an uniform distribution in range [´1 1]

pixels, were added to each particle position. This configuration simulates the envisaged
distances between particles that the detection routine can deliver. Exemplary simulated
images, together with the corresponding fitting results, are depicted in Fig. 49a. The
superimposed contour lines represent the FWHM of each elliptical 2D Gaussian.
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Figure 49: (a) Exemplary simulated images for different number of random starts at SNR = 6.
The red shapes depict the GT and the green shapes the fitting result of the algorithm.
(b)-(c) The LA respectively the FWHM accuracy as functions of the number of random
starts and the SNR.

Fig. 49b-49c plot the LA and the FWHM accuracy as functions of the number of ran-
dom starts and the SNR. The accuracy is computed using the SD of the distance to the
true center position respectively the true individual FWHMs (Kubitscheck et al. 2000).
This measure is applicable since the errors are symmetrically distributed. This also
holds true for all further analyses.

It is apparent that the FWHM accuracy is about twice as bad as the LA. Consequently,
the axial LA will also be worse than the lateral LA, which is in line with previous reports
(Badieirostami et al. 2010, Mlodzianoski et al. 2009). This finding will be proved true
throughout all following scenarios.

With respect to the number of random starts, it has to be stated that there is almost
no effect on the accuracy. If at all, then there is a slight tendency for improvement for
higher SNRs, while for lower SNRs the accuracy even seems to decrease. By in-depth
examination of the individual fitting results it was determined that the slight deterio-
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ration for low SNRs is reasoned by fitting outliers that nevertheless maintain a better
likelihood. Most frequently, this occurs if the intensity distributions of two particles are
notably overlapping. The EM algorithm sometimes fits the intensity distributions of two
particles as one and erroneously includes a nearby, low SNR particle within the noise
of the background. With increasing number of random starts it becomes more likely
that such a misleading solution is found owing to the additional deviations introduced
during random initialization. This can lead to worse accuracies.

It can be concluded that the EM algorithm is reasonably robust with respect to the
proposed initialization. This is supported by the fact that even for high SNRs the like-
lihood just improves by order of less than 106. The corresponding gain in accuracy
is therefore extremely marginal. If particles are very close, still fitting outliers may
emerge. This is mainly a result of the relatively coarse range for reinitialization that
was chosen to suit the accuracy of the spot detection procedure.

Consequently, the number of random starts of the EM algorithm was set to tinit = 1
for all presented computations in this thesis. The majority of evaluation scenarios has
also been computed using tinit = 10, but since the SNRs of off-focus particles are very
low, either the results were virtually identical or the fitting outliers even resulted in
less accurate results. A practical advantage of this selection was the notable reduction
of algorithm runtime.

It should be noted that setting tinit to higher values is expected to be advantageous
if the correct number of particles is unknown and remains itself a free fitting parameter.
Then also the reinitialization should be less coarse. This issue must be addressed if the
EM algorithm shall be used for super-resolution images, where the density of particles
is high (Zhu et al. 2012, Huang et al. 2011, Holden et al. 2011). It is neglected in this
work.

Robustness to the Number of Particles

Owing to the derivation of 3D information, the fitting routine has to deal with two
additional free parameters per particle. The EM algorithm was proposed to deal with
the increased complexity in the likelihood function. In order to analyze its robustness
to the number of particles, varying particle numbers were rendered on a discrete rect-
angular grid with grid size 5 pixels similar to the previous evaluation scenario. Note
that for this scenario the fitting sub-region had always the same size like the total im-
age so that always all particles were fit at once. Exemplary simulated images and the
corresponding fitting results are presented in Fig. 50a.

The LA and the FWHM accuracy are displayed as functions of the number of parti-
cles and the SNR in Fig. 50b-50c. The accuracies of the respective parameters improve
slightly up to 10 particles, but remain virtually stable even for high numbers of simul-
taneous particle fits. The EM algorithm can consequently be considered as a reasonably
robust parameter estimator for the present application. It can robustly handle all free
parameters for multiple particles and uses a well-known optimization scheme. Other
scientists can easily adopt and extend this approach. It can be concluded that the size
of the sub-region is a fairly uncritical parameter as long as uniform background can
be assumed.
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Figure 50: (a) Exemplary simulated images for different number of particles at SNR = 6. The red
shapes depict the GT and the green shapes the fitting result of the algorithm. (b)-(c)
The LA respectively the FWHM accuracy as functions of the number of particles and
the SNR.

Dependency on the Particle Distance

To analyze the dependency on the distance between particles, the image configuration
is identical to the distance test of the particle detection procedure. It includes a central
particle and a second particle at an orbit with varying radius. In Fig. 51a now also the
contour lines are plotted.

Fig. 51b-51c present the LA and the FWHM accuracy as functions of the particle dis-
tance and the SNR. Apparently, the accuracies are unaffected by neighboring particles
for distances larger than 4-5 pixels. Up to a particle distance of 1 pixel the accuracies
deteriorate to „ 2-3 times their optimal values. Again, the FWHM accuracy is about
twice as bad as the LA.

All in all, it is apparent that the EM algorithm maintains nanometer accuracy for
realistic SNRs and dense particles up to 1 pixel distance. The results are in similar range
than those reported by Huang et al. 2011, Holden et al. 2011, and Babcock et al. 2012.
Note that only the latter algorithm dealt with the same number of free parameters
like the present implementation. As a result, application of the EM algorithm can be
considered as a robust alternative even for analysis of 3D super-resolution images. For
the present workflow it can be concluded that once the axial correlation function has
been determined, the proposed algorithm can also be used to compute the 3D position
of very dense particles that are currently omitted.
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Figure 51: (a) Exemplary simulated images for different particle distances at SNR = 6. The red
shapes depict the GT and the green shapes the fitting result of the algorithm. (b)-(c)
The LA respectively the FWHM accuracy as functions of the particle distance and the
SNR. The dashed lines are the result if the EM algorithm is configured with tinit = 10.

Fig. 51b-51c also include the results for configuration of the EM algorithm with
tinit = 10. They clearly indicate that fitting outliers occur only at very low particle
distances. Their occurrence is raised by multiple random starts only in that range. At
larger particle distances the results are virtually identical. This supports the choice of
only a single start of the EM algorithm for the present data.

Dependency on the Distance to the Truncating Boundary

Here, it is assessed whether the truncation of intensity distributions has an impact on
the accuracy with that shape parameters are determined. Images that contain only a
single particle with varying distance to the boundary are rendered. The orbital bound-
ary position was again drawn from an uniform distribution so that the sub-pixel posi-
tion is varied. Exemplary images, including the fitting results, are presented in Fig. 52a.

Fig. 52b-52c display the LA and the FWHM accuracy as functions of the particle dis-
tance to the boundary and the SNR. Truncated pixels effect the accuracy of the shape
estimation up to a particle distance of 3 pixels to the boundary. This corresponds to a
distance of 3-4 times the SD of the PSF and is a reasonable result since further beyond
the Gaussian representation of the PSF approaches zero values.

Although truncated pixels are explicitly considered, the accuracy deteriorates „ 2-3-
fold from boundary distance 3 to 0.5 pixels. This is a clear improvement with respect
to the results when truncated pixels are simply considered as being zero valued. Those
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Figure 52: (a) Exemplary simulated images for different particle distances to the boundary at
SNR = 6. The red shapes depict the GT and the green shapes the fitting result of the
algorithm. (b)-(c) The LA respectively the FWHM accuracy as functions of the particle
distance to the boundary and the SNR. The dashed lines are the result if truncated
intensity distributions are not considered in the EM algorithm.

are additionally presented in Fig. 52b-52c. The corresponding improvement is most
considerable for the FWHM accuracy. This emphasizes the importance of taking trun-
cated intensity distributions for the present 3D application into account.

Dependency on the Distance to a Truncated Boundary Particle

Finally, the error propagation from truncated boundary particles to neighboring par-
ticles shall be assessed. The same image configuration like in the previous section
was used, but the distance to the boundary was fixed to 0.5 pixel. In addition, always
a second particle with varying distance to the boundary particle was included (see
Fig. 53a). In order to isolate the influence of the truncation of the boundary particle,
other sources of errors, like the influence of the distance between the particles as well
as the distance to the boundary itself, were subtracted from the obtained accuracies of
the second particle.

Fig. 53b-53c present the relative deterioration of the accuracies that are solely at-
tributed to the truncation of a nearby particle. The error from a nearby truncated parti-
cle propagates over „ 4-5 pixels until it stops to affect the accuracies with that a central
particle is determined. This effect is clearly measurable for SNR ą 4. For lower SNRs, it
was already apparent in Fig. 52b-52c that the extrapolation of photons into truncated
regions does not increase the accuracy.
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Figure 53: (a) Exemplary simulated images for different particle distances to a boundary parti-
cle at SNR = 6. The red shapes depict the GT and the green shapes the fitting result of
the algorithm. (b)-(c) Relative deterioration of the LA respectively the FWHM accuracy
as functions of the particle distance to a boundary particle and the SNR.

The distance to the boundary of the fitting sub-region should be ě 6 pixels. At
these sub-region sizes, the fitting of the center particle is not biased by cutting out a
sub-region, and determination of closed sets of superimposed particles can be avoided.
However, the error may propagate even further for multiple concatenated particles,
and error propagation should be analyzed in more detail for groups of particles.

4.10.1.4 Simulation of SPT Images

Since the aberrations induced by the RIM and the cylindrical lens leave the symmetric
distribution along the lateral directions intact, the center coordinates are independent
of the individual FWHMs. The axial LA can be analyzed in isolation from the lateral LA.
The lateral position of simulated particles is kept constant, and the shape of a particle
is only varied according to its relative axial position. The trajectory has therefore only
an axial component.

The simulated axial trajectories are supposed to represent free diffusion of trans-
membrane molecules. Starting from the focal position, every next step of the trajectory
is drawn from a normal distribution with zero mean (Qian et al. 1991). By choosing
D = 0.05 µm2/s and ∆t « 0.0333 s, the SD was set to 80 nm «

a

MSD(τ) =
?
2dDτ.

This was motivated by the determined diffusion of GPI-GFP in brain slices (see Fig. 35c)).
The maximum step size was limited to three times the SD. The maximum axial range is
limited to 300 nm away from the two individual focal planes. To simulate the axial tra-
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jectories within this range, the direction of the next step is simply inverted if a particle
would otherwise approach one of the two boundaries.

The axial sampling is set to 1 nm, and the length of each trajectory is 1000 frames.
Since the trajectories of several particles can be concatenated for calibration, the actual
length of the trajectory can become very large. The rather important variable is how
often a particle actually crosses the focal planes during the acquisition because these
are the important frames for the online calibration. The number of focal plane cross-
ings was therefore forced to be 50˘ 10 for each focal plane. This range was chosen
because it was typically obtained for randomly generated trajectories of length 1000.
An exemplary simulated trajectory is displayed in Fig. 54.

Figure 54: An exemplary axial trajectory and corresponding simulated images at different axial
positions. The dashed red lines indicate the two focal planes.

The parametrization for the axial correlation functions at different depths is taken
from the calibration measurements of beads in Mowiol (see Fig. 40a). The two corre-
lation functions per depth get identical parametrization. The FWHM shift is ignored
so that the model assumptions are perfectly met. According to the measurements in
Sect. 4.9.1.2 the focal shift is set to ∆f = 278 nm.

In order to simulate realistic images, the number of photons for off-focus particles
must decrease as a function of the axial distance to the center of the two focal planes.
The decline of the peak intensity can be approximated by a Gaussian function (see
Fig. 39b). The number of photons of a particle as a function of the preset SNR and the
relative axial position are computed by multiplying Np (see Equ. 64) with the value of
the Gaussian function at the corresponding axial position. The FWHMs of the Gaussian
functions at different depths are identical to the axial fitting ranges (see Fig. 41a). The
declared SNR is consequently only valid for the center position between the focal planes
and reduces at both sides.

In order to determine whether the algorithm works irrespectively of the noise, it is
also always applied to images that do not contain noise. In such images the number
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of photons per particle is similar to those with SNR = 66, but noise is not added. The
corresponding results will be denoted by SNR = inf standing for infinite SNR. Fig. 54

also depicts exemplary simulated images at different axial positions.
The following evaluation configurations always comprise 50 realizations for each

data point. To allow for comparable results at different depths, the simulated trajecto-
ries are identical across depths.

4.10.1.5 Quantifying the Systematic Error and the Localization Accuracy

In order to assess the capability of the online calibration method, the SE in combination
with the LA are the crucial measures. For this thesis, the SE is of major importance. If the
RIM is present, but only a calibration at zero depth is used - in the following denoted
as prior calibration - then the SE increases as a function of the depth (see Fig. 40b)
although it might be possible to keep the LA constant.

Systematic Error

The SE is the error in the axial position that exists independently of the actual SNR

of the images. It is in principle solely defined by the deviation from the calibration
curves and the true underlying axial correlation functions of the data. However, the
estimation of the correlation functions depends on the SNR and therefore also the SE.
As for simulated data the estimated and the true reference curves are available, the
SE can be directly computed. For it, a particle that travels along the axial axis has to
be considered. Its corresponding FWHM values can simply be taken from the reference
curves at each position. Its measured position is obtained by plugging these values
into the estimated calibration curves. The difference between the estimated and the
true axial position then defines the SE.

Based on the high dimensionality of the data, Fig. 55a first of all presents the SE as
a function of the relative axial position and the SNR. Since the fundamental course of
the curves is similar for all depths, this is exemplary depicted for 10 µm depth, where
the RIM has already a strong impact. The SE is plotted over an axial range that covers
the center between the two focal planes ˘300 nm. This corresponds to an axial range,
where, from practical experiences with SDCM, the number of collected photons and
the shape of the off-focus PSFs are suitable. Of course, this range is smaller than that
achievable with WF microscopy (Huang et al. 2008b, Holtzer et al. 2007), which is owed
to the axial sectioning capability of the CSU. Note also that the absolute differences are
taken for averaging over many evaluation runs because the deviations could otherwise
erroneously cancel out each other.

The SE deteriorates at both sides from the center. This is reasonable since the absolute
deviation of the estimated and the true curves increases with distance to the center for
any deviation in the determined coordinates. Furthermore, the SE decreases for higher
SNRs indicating that the approximation of the correlation functions improves with the
quality of the images.

To allow for representation of the SE as a function of the imaging depth and the
SNR, the average of its values along the axial axis is computed. This is here denoted as
the total SE. It is presented in Fig. 55b. Apparently, the total SE exhibits a tendency for
deterioration towards higher imaging depths. This is most obvious for the first 10 µm,
where the axial correlation function changes most in consequence of the RIM. This
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deterioration is likely to result from the fact that the axial correlation curves become
generally flatter with increasing depth, and therefore the FWHM differences between
frames decrease for the same axial increment of a particle. This seems to impede the
correct selection of vertex frames and is addressed in more detail in Sect. 4.10.1.8. The
SE depends more notably on the SNR and is almost eliminated if noise is not present.
The latter result proves that the online calibration is indeed functioning.

Since the outcome of the online calibration is primarily a function of the achievable
SNR, and the deterioration over depth is only in the range of a few nanometer, it is
fair to conclude that the online calibration procedure operates reasonably well inde-
pendently of the actual parametrization of the underlying calibration curve. It may
hence be applied to other imaging techniques that can penetrate the sample much
deeper. For real acquisitions, the blurring of the PSF at larger depths further reduces
the effective SNR and increases the SE. This is in fact a matter of the SNR and not of the
parametrization at a certain depth.

Fig. 55b also presents the SE if the prior calibration would be applied. To facilitate the
assessment of the difference between both methods, Fig. 55c depicts the corresponding
reduction of the SE that the online calibration provides. As expected, the online calibra-
tion method results in worse SEs than the prior calibration at zero depth. The absolute
values simply represent the actual SE of the online calibration since the prior calibration
is correct at this depth. At zero depth the SE of the online calibration approaches that
of the prior calibration only for very high SNRs. For any other depth, the SE is always
substantially reduced by the online calibration method.

The reduction clearly increases constantly as a function of the depth. This is also ap-
parent, for the relative reduction of the SE that is additionally provided in Fig. 55d. The
proposed online calibration method can be considered particularly useful for imaging
at large depths. In total, it can be concluded that the presented online calibration at
least halves the SE at any depth and independently of the SNR. It is always useful to
apply this technique even for low recording quality. For realistic SNRs such as 10, the
reduction may even approach 70 %. This does not include acquisitions at zero depth,
where the prior calibration must be more accurate.

Another useful perspective is enabled if the reduction is put in relation to the re-
maining SE of the online calibration method (see Fig. 55e). It becomes apparent that
for any SNR the reduction in the SE is at least in the same range as the remaining SE,
but can even be more than 300 % for SNR ě 10. Again, the relative reduction notably
increases as a function of the imaging depth. It even overproportionally counteracts
the grow of the SE as a function of the depth like it would be experienced by doing
prior calibration. This makes application of the online calibration method very useful.

Axial Localization Accuracy

The LA cannot be directly computed like it was the case for the SE. Instead, 30 individ-
ual images were rendered for each realization and axial position. They were fit by the
EM algorithm, and their axial positions were computed using the estimated calibration
curves. The axial LA at each axial position then relates to the SD of the corresponding
estimated positions.

Fig. 56a depicts the axial LA as a function of the relative axial position and the SNR.
This is done again for the exemplary depth of 10 µm. As it is known from previous
investigations (Badieirostami et al. 2010, Mlodzianoski et al. 2009), the axial LA varies
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Figure 55: (a) The SE as a function of the relative axial position and the SNR. The (b) total SE, the
(c) reduction of the total SE, the (d) relative reduction of the total SE, and the (e) ratio
of reduction to the total SE as functions of the imaging depth and the SNR.

as a function of the SNR and the axial range. It is apparent that the axial LA improves
from the left to the right beside the obvious improvement as a function of the SNR.
The accuracy with that a particle can be measured is superior if it is located above the
focal plane. Again, this can be explained by the course of the calibration curves. Their

120



−400 −300 −200 −100 0 100
0

50

100

150

200

250

300

Relative z position (nm)

A
x
ia

l 
L

A
 (

n
m

)

 

 

SNR 4

SNR 6

SNR 10

SNR 18

SNR 34

SNR 66

SNR inf

(a)

0 5 10 15 20 25 30
0

50

100

150

200

250

300

Imaging depth (µm)

T
o
ta

l 
a
x
ia

l 
L
A

 (
n
m

)

Online calibration

 

 

SNR 4

SNR 6

SNR 10

SNR 18

SNR 34

SNR 66

SNR inf

(b)

0 5 10 15 20 25 30
0

50

100

150

200

250

300

Imaging depth (µm)

T
o
ta

l 
a
x
ia

l 
L
A

 (
n
m

)

Prior calibration

 

 

SNR 4

SNR 6

SNR 10

SNR 18

SNR 34

SNR 66

SNR inf

(c)

Figure 56: (a) The axial LA as a function of the relative axial position and the SNR. The total
axial LA for the (b) online respectively the (c) prior calibration method as functions
of the imaging depth and the SNR.

course is flatter if the particle resides below the focal plane. Already small deviations
in the estimated FWHM result in substantial deviations in the axial position. This effect
is consequently less pronounced for the steeper course of the curves on the other side
of the focal plane.

Also the total axial LA, computed as the average value across the selected axial range,
is presented in Fig. 56b. Similar to the SE, it improves for higher SNRs and also deteri-
orates as a function of the imaging depth. This is again owed to the generally flatter
curves at larger depths leading to the similar effect as described for the position of
a particle with respect to the focal plane. However, the axial LA appears to be more
sensitive to the imaging depth than the SE, and also the absolute values are notably
higher.

Fig. 56c presents the course of the axial LA if prior calibration is performed. At zero
depth the axial LA is similar to that obtained with the online calibration method for
any SNR. This was expected since the online calibration method aims at improving
the SE. The axial LA should actually not be affected. Surprisingly, there is almost no
deterioration towards larger imaging depths for the axial LA of the prior calibration.
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This observation is best understood by looking at the measured axial trajectories and
will be addressed in the following section.

4.10.1.6 Visual Analysis of the Trajectories

To obtain a visual impression of the performance of the online calibration method,
exemplary measured and true axial trajectories at selected depths are plotted in Fig. 57a
for SNR = 10.
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Figure 57: Measured trajectories determined by the (a) online and the (b) prior calibration
method at selected depths. The red lines denote the true simulated trajectories.

Apparently, the measured trajectory approximates the true trajectory quite well at
zero depth. The course of the particle movement is followed correctly and also the
absolute positions are meet. The principal course is preserved also for larger depths
proving that the online calibration indeed adjusts the axial correlation functions to the
individual depths. It is also apparent that systematic deviations from the trajectory
are more pronounced further away from the axial center between the two focal planes.
This is in line with the results presented in Fig. 55a.

With increasing depth, the accuracy with that the absolute positions are met de-
creases significantly. This is owed to the axial LA and less to the SE. The correct funda-
mental course remains observable, but the measured positions scatter strongly around
the true values. Moreover, it can be observed that the actual variation at any depth
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even varies with respect to the relative axial position of the particle. The axial LA is
worse if the particle is measured below the center of the focal planes (see Fig. 56a).

It must be concluded that the deteriorating axial LA is the primary limiting factor for
application of 3D SPT deep in living tissue. Given that, why is it nevertheless reason-
able to adjust the axial correlation function? This becomes apparent by looking at the
measured trajectories if the prior calibration is applied (see Fig. 57b).

At zero depth, the measured trajectory reflects the true trajectory very well, and
with increasing depth, the measured trajectories exhibit more and more systematic
deviations from the true positions. This is most apparent for portions of the trajectory
that are below the focal plane of the y curve. There, the shape of the axial correlation
function changes most with respect to the imaging depth. If the influence of the RIM

is ignored, particles should preferentially be imaged above the original focal plane.
However, this reduces the available axial analysis range by more than its half.

In consequence of the strong SE, the measured trajectories hardly represent the true
course of the trajectory. Instead, the particles are erroneously observed to move in a
quite narrow axial range. This happens because owing to the influence of the RIM,
large axial step sizes are only represented by small changes in the FWHM values. By
computation of the axial position using the steep calibration curves from zero depth
the axial increment is notably underestimated. This is particularly true below the center
between the focal planes.

Another consequence is that the axial LA is erroneously measured to remain almost
constant as a function of the depth. This is because also the estimation errors are
downscaled using the steep calibration curves.

In the light of this, it must be concluded that the achieved axial LAs provided in the
literature are clearly underestimated and should be reconsidered. Ignorance of the RIM

does not only lead to biased absolute positions, it also leads experimenters to believe
that their measurements are very accurate. As a final consequence, it can be expected
that the diffusion properties are also notably underestimated. This is addressed in the
following.

4.10.1.7 Impact on the Calculated Diffusion Parameters

Next to the absolute positions of molecules, particularly the determination of their
diffusion properties is of crucial importance for neurobiologists. Fig. 58 summarizes the
implications that the selection of either online or prior calibration has on the essential
measures: MSD andDl. Fig. 58a and 58c plot the observed MSD curves at selected depths
for the online respectively the prior calibration method. Similarly, the dependency on
the SNR is plotted in Fig. 58b and 58d. For varying depths, the SNR was fixed to 10,
while for varying SNRs, a depth of 10 µm was chosen.

The MSD curves for the true trajectories, denoted as GT, are also always provided.
They clearly exhibit confined motion and asymptotically approach a maximum value
of „ 0.1 µm2. This corresponds to „ 316 nm and is justified by the limitation of
the simulated trajectories to the axial analysis range. The smallest MSD value is „
0.0064 µm2. It corresponds exactly to the SD of 80 nm of the normal distribution with
that the simulated trajectories were parameterized.

In addition to the MSD curves, Fig. 58e-58f plot the change of the corresponding
Dl. The local diffusion coefficient was chosen since in real experiments the trajectories
are usually quite short (see Fig. 35b). Differences have to be determined already by
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Figure 58: (a)-(b) Observed MSD curves for the online calibration method at selected imag-
ing depths respectively SNRs. (c)-(d) Observed MSD curves for the prior calibration
method at selected imaging depths respectively SNRs. (e)-(f) Observed courses of Dl
as functions of the imaging depth respectively the SNR.

that measure. Again, the first 8 MSD points were used for computation of Dl (see
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Sect. 4.5.2.2). Note that the ground truth diffusion was determined to be 0.0312 µm2/s.
This is smaller than the simulated 0.05 µm2/s because the axial range was confined.

For varying imaging depths, the MSD curves determined using the online calibration
method exhibit similar curvature, but have different absolute values that grow with
depth. This is also observable in Fig. 58e, where Dl deviates not more than „ 10 %
from the GT. It can be concluded that the online calibration method approximates the
true axial correlation functions reasonably well since large SEs should be reflected by
incorrect diffusion results. The difference in the absolute values is attributed to the
deteriorating axial LA since it artificially introduces larger step sizes between time
points. As a result, the first MSD point, but also the maximum value are increased. The
latter erroneously indicates a broader zone of confinement. For zero depth, where the
axial LA is at its minimum, the absolute MSD values are approximated best.

These conclusions are supported by the results of the prior calibration method. As
expected, the MSD curve and Dl are well approximated at zero depth and are superior
to that of the online calibration. Owing to the larger deterioration of the SE as a function
of the depth, the true Dl is significantly underestimated and deviates up to „ 70 %.
This course is reasonable since the measured step size is erroneously decreased for
prior calibration. This was already observed during visual analysis. The first MSD point
is always correctly determined since the axial LA is almost independent of the imaging
depth. Since this independence is an artifact of taking an inappropriate calibration
curve, in addition, the true confinement is notably underestimated as a function of
the depth. Application of the prior calibration method massively biases the short- and
long-term diffusion results.

If just the SNR is varied, the fundamental shapes of the estimated MSD curves almost
remain constant for both calibration methods. This is also clearly observable at the
course of Dl. Here, the online calibration method exhibits a larger variance, but the
maximum deviation from Dl is „ 18 %, which is significantly lower than that for the
prior calibration that is „ 36 %. The online calibration achieves the best approximation
of the true MSD curve at infinite SNR, but owing to the unavoidable SE when using prior
calibration, the true curve is never correctly approximated no matter how well the SNR

is. The SNR mainly affects the axial LA since the MSD curves vary in their absolute
values, but less in their fundamental course. This is valid for both methods.

In summary, it must be concluded that there remains no linear relationship of the
depth and the SNR with respect to Dl like it was experienced for the SE and the axial
LA. Although the online calibration method cannot prevent that the measured absolute
MSD values can deviate from the true values, it still allows to determine the correct
diffusion coefficients almost independently of the depth and the SNR. This is of utmost
practical importance for analysis of diffusion properties of different molecules in thick
samples. It underlines the importance and ability of the online calibration method to
make 3D SPT analyses readily available for the user.

4.10.1.8 Evaluation of Intermediate Results

The SE and the axial LA are the most direct measures for clarifying how the algorithm
performs in the end. In this section, intermediate results will be analyzed in order
to provide an inside about how the algorithm performs at different stages. Starting
points for optimizing its functioning will be revealed. As a first intermediate result,
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the accuracy with that the FWHM of the three required curve coordinates is estimated
will be analyzed.

The Coordinate Estimation Procedure

Estimation of the three required coordinates is a crucial part of the algorithm because
it already relies on all important model assumptions of the algorithm. Fig. 59a-59c
present the average deviation B of the estimated coordinates from the reference coor-
dinates as functions of the depth and the SNR. It is computed as B = xω´ωry, where
ωr denotes the known reference FWHM at each coordinate.
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Figure 59: (a)-(c) Average deviation of the estimated from the reference coordinates as functions
of the imaging depth and the SNR. (d) Average deviation of the estimated from the
reference vertex as a function of the imaging depth and the SNR, but this time the
image data was not smoothed for detection.

Apparently, Bv deteriorates as a function of the depth for SNR ď 10. This supports
the assumption that the generally flatter calibration curves at higher depths make the
correct selection of vertex frames more difficult. For higher SNRs, the FWHMs at the
vertex are almost correctly determined. The quality of the vertex estimation depends
mainly on the SNR.
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Thereby the deviation is negative in most cases meaning that the FWHM at the vertex
is underestimated. This issue was already addressed in Sect. 4.9.2.1. It was considered
by smoothing the image just to support the correct selection of vertex frames. From
Fig. 59d it is apparent that without additionally smoothing the data for vertex frame
detection the course of the deviation is similar, but indeed much worse. However,
the deviation could not be canceled out entirely. It must be accepted as an inherent
problem of the estimation procedure with respect to noisy data. In fact, the error is
effectively nullified for images with infinite SNR proving the functioning of the vertex
selection.

The trend of the average deviations at the coordinates l and r is different from that
at v. Bl and Br appear to slightly improve as functions over depth. For the simulated
images, where the SNR has not been decreased over depth, this may be reasoned by
the axial blurring of the PSF as a function of the depth. Since ∆f remains constant, the
SNR at l and r is less decreased for larger depths allowing for more accurate FWHM

estimations. In real samples, where the SNR decreases with depth, this advantage is
likely to be compensated.

Note finally, that computation of B from the absolute deviations did lead to similar
absolute errors for all coordinates. Their deviations did not cancel out over different
trajectories.

In summary, it can be concluded that the coordinate estimation works reasonably
well since the errors are in the low nanometer range also for relatively low SNRs. The
dependency on the current configuration of the axial correlation function is observable.

The Curve Estimation Procedure

Estimation of the curve parametrization is the second major intermediate step. Based
on the three defining coordinates, the wanted parametrization for the calibration curve
is obtained by numerical approximation. Fig. 60a-60c present the course of the param-
eters mr, ω0, and d as functions of the depth and the SNR. They also include the true
parametrization. Apparently, the principal courses of increasing mr and ω0 as well
as a constant d are observable for almost all SNRs, but a reasonable approximation of
the GT is only achieved for relatively high SNRs. For realistic SNRs, the concrete values
deviate notably.

Substantial deviations are even obtained for very high SNRs. In order to investigate
this finding the curve estimation was provided with the true coordinates. Then the esti-
mated curves match the coordinates with residuals ă 10´3 nm for any depth proving
that the parameter deviations cannot be solely attributed to the fitting procedure. It
seems more likely that already small errors in the coordinate estimation, like they are
remaining for any SNR (see Fig. 59), lead to noticeable changes in the curve parameters.

To substantiate this assumption, Fig. 61a illustrates the impact of individual coordi-
nate estimation errors on the curve fitting procedure. Individual coordinate deviations
were set to ˘10 nm, and an exemplary imaging depth of 10 µm was chosen. The varia-
tion of the fitting parameters and the residuals of the curve coordinates are plotted as
functions of the coordinate estimation error in Fig. 61b and 61c, respectively.

The presented results reveal that, although by visual inspection the shape of the
curve does not significantly change, small coordinate estimation errors can yield sig-
nificant deviations in the respective curve parameters. It has to be stated that the
parametrization is quite sensitive regarding the shape of the curve so that the pa-

127



0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

Imaging depth (µm)

m
r

 

 

SNR 4

SNR 6

SNR 10

SNR 18

SNR 34

SNR 66

SNR inf

GT

(a)

0 5 10 15 20 25 30
250

300

400

500

600

700

800

Imaging depth (µm)

ω
0
 (

n
m

)

 

 

SNR 4

SNR 6

SNR 10

SNR 18

SNR 34

SNR 66

SNR inf

GT

(b)

0 5 10 15 20 25 30
230

250

300

350

400

450

500

Imaging depth (µm)

d
 (

n
m

)

 

 

SNR 4

SNR 6

SNR 10

SNR 18

SNR 34

SNR 66

SNR inf

GT

(c)

Figure 60: Course of the estimated curve parameters (a) mr, (b) ω0 and (c) d as functions of
the imaging depth and the SNR. The corresponding GTs are provided in red.

rameters are an inappropriate measure to assess the present method. Although the
parametrization indicates poor adjustment for the imaging depth, the resulting SE is
nevertheless decreased by the online calibration (see Fig. 55b).

This discrepancy can be made plausible by the applied fitting bounds. They were
involved to maintain realistic solutions in the presence of coordinate estimation errors.
In Fig. 61b-61c it is apparent that in the moment when the fitting constraints take effect,
the fitting residuals increase. The limits for the available parametrization have major
effects for the residuals at the vertex and the left coordinate. This is clearly visible in
Fig. 61a at the deviation of the estimated curve from the provided coordinates. The
right coordinate is much less sensitive, which is justified by the steeper course of the
curve below the particle.

In conclusion, the coordinate estimation is the most critical step of the online cali-
bration since their course correlates with that of the total SE. The occurring coordinate
estimation errors also explain the strong deviations in the obtained curve parametriza-
tion for realistic SNRs. However, the substantial deviations in the parametrization are
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Figure 61: (a) Impact of individual coordinate estimation errors on the curve fitting procedure.
The true curves are presented in red and the estimated ones in black. Variation of
the (b) fitting parameters and the (c) residuals of the curve coordinates as functions
of the coordinate estimation error.

not that directly reflected in the outcome of the online calibration since the total SE is
significantly improved over that of the prior calibration for any SNR.

The vertex estimation procedure is consequently the most promising starting point
for improvement of the online calibration. Besides the already implemented heuristic
improvement of detecting vertex points in smoothed images, this may also include the
involvement of a larger neighborhood of images in order to have a more restrictive
vertex identification model. Also the number of photons can be an additional source of
information. Since the vertex must be at a focal plane, only comparatively bright spots
should be included. One could also think of filtering the selected vertices by removing
outliers after analysis of their distribution.
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4.10.1.9 Analyzing the Impact of the Parametrization

This section assesses the dependency respectively the robustness of the algorithm to
the experimental parameters. This includes the dependency on (1) the number of focal
plane crossings during an acquisition and (2) the size of the focal shift that has to be
configured manually. Furthermore, the robustness to the required parametrization is
analyzed. This involves the accuracy with that the (3) focal and the (4) FWHM shift must
be provided.

In these experiments, the total SE is evaluated since it is the determining criterion
of interest for the online calibration method. The different experimental parameters
will be tested in combination with varying depths and SNRs. If the SNR is varied, the
depth will be fixed to 10 µm, whereas for varying depths the SNR will be set to 10. This
reasonably high SNR was chosen to reduce the impact of errors induced by low SNRs.
This way, the effects of the particular variables of interest are better isolated.

Number of Focal Plane Crossings

The number of focal plane crossings is a defining parameter for the online calibration.
If more vertex frames are detected, then the coordinate estimation should be more
accurate. It is also an indirect measure for an appropriate recording time. Although
there is not necessarily a linear relationship, it is at least likely that longer recording
times lead to higher number of focal plane crossings. The length of the trajectories had
to be extended for simulation in order to increase the number of focal plane crossings.
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Figure 62: The total SE as a function of the number of focal plane crossings and the (a) imaging
depth respectively the (b) SNR.

Fig. 62a and 62b present the total SE as a function of the number of focal plane cross-
ings and the imaging depth respectively the SNR. As expected, the total SE improves
with increasing number of focal plane crossings. It is advisable to include as many par-
ticles as possible or to extend the recording time. Since for the vertex frame selection
only fast relative changes are analyzed, the independence of slow sample drifts, like
they occur during most experiments, is an advantage of this method. In fact, it should
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actually even be possible to manually refocus during the acquisition as long as the
smeared images during refocusing are not analyzed.

Apart from that, the SNR is again the most influencing experimental parameter for
the SE, while the current depth has minor impact. These findings are independent of
how many focal plane crossings are actually detected. The prior calibration method
leads to total SEs ą 50 nm for imaging depths ě 5 µm. Consequently, the online
calibration provides more accurate results already for very low number of focal plane
crossings.

Adjustment of the Focal Shift

Configuration of the focal shift for a given focal length of the cylindrical lens must
be done manually by adjusting the distance of the lens to the camera. The configured
focal shift is a measure for the degree of the introduced astigmatism and effects the
operation of the online calibration.

Fig. 63a plots the total SE as a function of ∆f and the imaging depth. As apparent
from the course of the total SE, the adjustment of ∆f represents a compromise between
two opposing effects. For larger ∆f, the three estimated coordinates distribute more
preferable over the total axial analysis range. This improves the SE since for smaller ∆f
any deviation in the coordinates results in larger deviations from the true curves as a
function of the distance to the focal planes.

On the opposite, the increasing degree of the astigmatism additionally blurs the PSF

by spreading the photons over the axial range. This lowers the effective SNR at the
vertex frames and increases the SE. This effect was indirectly simulated by keeping the
decay of the SNR constant with respect to the distance to the center between the two
focal planes. This was done irrespectively of the adjusted focal shift. The maximum
degree of the astigmatism is physically limited by the axial sectioning of the CSU.

Apparently, there is almost no difference between the depths, and a single optimum
at ∆f « 280 nm exists for the present parametrization. This was also used for adjust-
ment of the setup.

Robustness to Calibration Errors of the Focal Shift

The robustness to calibration errors of ∆f is of importance since it is the sole exper-
imental parameter that the user must provide to the online calibration method. For
the current experimental configuration, it was calibrated to be ∆f = 278.40˘ 45.37 nm.
In order to provide the experimenter with a guideline for the accuracy with that ∆f
should be determined, Fig. 63b-63c present the total SE as a function of the deviation
from the true focal shift and the imaging depth respectively the SNR.

The SE deteriorates linearly for under- and overestimation of ∆f. Since the SD of the
presented ∆f calibration was 45.37 nm, it must be concluded that calibration using just
a single particle would be insufficient. The obtained total SE for any experiment could
easily double. However, particularly for realistic SNRs, calibration errors of ˘20 nm
appear to be tolerable. In order to maintain better results than with the prior calibration,
the true ∆f has to be determined with an error not larger than ˘60 nm for the present
imaging configuration.
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Figure 63: (a) The total SE as a function of ∆f and the imaging depth. The total SE as a function
of the deviation from the true focal shift and the (b) imaging depth respectively the
(c) SNR. The dashed red lines represent the obtained total SE for the prior calibration
at (b) 5 µm respectively (c) 10 µm imaging depth.

Robustness to Estimation Errors of the FWHM Shift

The robustness to estimation errors of ∆ω is not of importance for the online calibration
method itself, but a specific prerequisite for their application to confocal setups. In
order to analyze the robustness, the images were now simulated with ∆ω = 60 nm. In
Fig. 64 the total SE is then presented as a function of the deviation from the true FWHM

shift and the depth respectively the SNR.
The principal courses of the total SE are similar to those with respect to errors of

the provided focal shift. The SE now also significantly deteriorates as a function of the
imaging depth. This behavior is quite reasonable since for the flatter calibration curves
at large imaging depths any additional error in the FWHM estimation must have an
increased effect on the total SE.

Similar to ∆f, ∆ω should not be calibrated from a single particle since for the corre-
sponding SD of 5.71 nm the total SE already deteriorates significantly. Lower deviations
appear to be generally tolerable, but they should not be larger than 10 nm in order to
maintain better results than the prior calibration.
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Figure 64: The total SE as a function of the deviation from the true FWHM shift and the (a)
imaging depth respectively the (b) SNR. The dashed red lines represent the obtained
total SE for the prior calibration at (a) 5 µm respectively (b) 10 µm imaging depth.

4.10.2 Evaluation on Semi-synthetic Data

Semi-synthetic 2D image streams were constructed on the basis of experimentally ac-
quired z-scans of immobile particles. Then individual images were selected and aligned
according to simulated axial trajectories. Such data also allows for evaluation of the
calibration algorithm since the exact axial position of every image is known, and the
calibration curves can be computed from the z-stacks. An important advantage is the
fact that realistic artifacts of the image creation process are inherently considered. In
detail, this includes the alignment of the setup, aberrations of the PSF owing to the
cylindrical lens and the pinholes, as well as any deviation from the optimal model
assumptions.

Particularly the revealed deviations between the axial calibration functions impede
the evaluation (see Sect. 4.9.1.2). The required GT calibration can now either be cre-
ated by individual fits to the axial correlation functions and would violate the model
assumptions or identical curves can be enforced during the fitting, but would then ex-
hibit substantial deviations from the true measurements. Consequently, semi-synthetic
images cannot be evaluated against a known GT.

To still evaluate such images, individual fits to the axial curves of the two lateral
directions are computed so that at least the values of the three required coordinates
are available. Also the SE can be assessed. This is done by computation of the axial
position of all images at each axial scan position. The measured axial position p is
compared to the known axial scan position pr of each image and the SE is computed as
xp´ pry. This procedure avoids the evaluation against an incorrect GT calibration, but
the result is dependent on the accuracy with that the vertex position of the y curve is
calibrated from each z-stack.

The required parameters ∆f and ∆ω are taken from the calibrations in Sect. 4.9.1.2.
The evaluation results are presented in the following.

133



The next sections first provide a detailed description of how the data is created and
how the SNR can be estimated in real data. Then, similar evaluation procedures like in
Sect. 4.10.1 are conducted and the results are discussed.

4.10.2.1 Semi-synthetic Data Creation

Semi-synthetic images are based on z-scans that were again acquired from 30 nm

diameter fluorescent beads immobilized in Mowiol. Each bead was repeatedly scanned
50 times with an axial step size of 20 nm. The axial range was 1.6 µm and a temporal
resolution of 20 Hz was set. This configuration was chosen as a compromise between
the targeted temporal resolution, the possible number of images, and the drift of the
piezo stage device during the scan. Within the depth range of 0-30 µm 5 particles were
selected every 5 µm.

In order to maintain comparability, the axial trajectories were created using exactly
the same parametrization as described in Sect. 4.10.1.4. To construct 2D image streams,
the corresponding images for each computed axial position were selected from the
acquired z-stack. The axial sampling of the obtained trajectories is now limited to
20 nm since the computed position must be rounded to the closest available axial scan
position. Based on the limited number of repeated z-scans, at most 50 different images
are available per position in a single stream. The length of the trajectory was limited to
1000 frames, which yielded about 50 focal plane crossings. At every penetration depth
each of the 5 selected bead images was combined with 10 simulated trajectories so that
the total data set comprised again 50 realizations per depth.

Inherent problems of this type of data sets are the uncontrollable drift of the nanome-
ter focusing piezo stage device and the fact that the reference axial correlation functions
are also only calibrations. Both issues introduce inevitable artifacts and inaccuracies in
the evaluation. Given the relatively coarse axial sampling, it was found that the im-
ages at each position could still be combined for calibration. The occurring deviations
during the total scanning procedure were still smaller.

In contrast to the evaluation of simulated data, the lateral particle positions per
image were not initialized, and instead the full workflow of particle detection, fitting,
and calibration was invoked. Images at off-focus positions with unreliable SNR were not
included in the analysis like it was the case for real acquisitions. Since the dependency
of the online calibration on the SNR was already analyzed for simulated data, the actual
SNR is determined, but not varied again. The next section describes the corresponding
procedure.

4.10.2.2 SNR Estimation in Real Images

The most critical part of the SNR estimation is the quantification of the noise. For real
data, this can be accomplished experimentally by repetitive acquisition of particles and
computation of the SD as a function of the peak intensity. This has to be done for the
full dynamic range (Kubitscheck et al. 2000). In order to avoid these calibration efforts
for varying experimental configurations, a method to estimate the SNR directly from
the experimental data is proposed here.

The key idea is the employment of the fitting results. Based on the estimated intensity
distribution of a particle, its peak intensity and the noise component can be easily
derived. The peak intensity then corresponds to the maximum intensity of the discrete
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surface of the estimated intensity distribution, and the noise component is obtained by
subtraction of the estimated surface from the true data. In order to compute the noise
values for the particle (σp) and the background (σb) separately, the SD is calculated
for the corresponding pixels. Since the shape of a particle is subject to strong variation,
all pixels covered by a rectangle, having edge lengths corresponding to the individual
FWHMs, contribute to the noise of the particle.

The SNR of real images is then defined by:

SNR =
N̂

b

σ2p + σ
2
b

. (66)

This is similar to Equ. 63 except for the factor that considers δmult. It is left out because
σp and σb are measured values and hence already include the multiplicative noise.

To evaluate the proposed procedure it is applied to synthetic images, where the true
SNR is known. 1000 particles with varying individual FWHMs were rendered for a large
range of SNRs. Fig. 65a plots the true and the estimated SNR. Apparently, the SNR esti-
mation is correct for very low, but overestimates it for higher SNRs. This behavior was
actually expected. The derivation of σp from several pixels of the intensity distribu-
tion must underestimate the noise because the shot noise scales with

?
N and is hence

largest at the peak pixel (Cheezum et al. 2001).
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Figure 65: (a) Comparison of the true with the estimated SNR. (b) The SNR correction factor as
a function of the estimated SNR.

For that reason, the estimated SNR needs to be corrected. This can be done using a
correction factor cSNR that is defined by the ratio of the true and the estimated SNR.
Fig. 65b plots cSNR as a function of the estimated SNR. It is well fit by a double expo-
nential decay function and hence easily applicable.

The presented SNR estimation procedure can now be applied to the semi-synthetic data
set. Fig. 66a presents the SNR of an exemplary particle at 10 µm depth as a function of
the relative axial scan position and the scan iteration. The Gaussian profile along the
axial axis is clearly visible. The missing values at the left side represent images where
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the particle was not detected. In accordance with the results of Cheezum et al. 2001,
missing detections start to occur at SNR ă 4.
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Figure 66: (a) The SNR of an exemplary particle at 10 µm depth as a function of the relative axial
scan position and the scan iteration. (b) The average total SNR for each individual
particle at its respective depth. The black bars represent the SD.

Fig. 66b finally presents the total SNR for each individual particle at its respective
depth. It is computed as the average of all repeated iterations at the individual axial
center position. Given that beads exhibit relatively bright and stable fluorescence, their
average SNR is in the range 13-17. Owing to the transparent embedding medium and
the subjective manual selection of the brightest particles at each depth, there is hardly
a trend in the obtained SNR values towards larger imaging depths.

4.10.2.3 Coordinate Estimation Procedure

The error of the coordinate estimation as a function of the imaging depth is presented
in Fig. 67. With the exception of zero depth, all three coordinates are reasonably well
determined. The average deviations from the FWHM at the vertex are almost negligi-
ble, while for l and r they are in the low nanometer range. These results correspond
very well to the expected values from the simulation at SNR = 18. The large errors at
zero depth can be attributed to the deviations of ∆f and ∆ω at this depth. They were
revealed in Sect. 4.9.1.2.

4.10.2.4 Quantifying the Systematic Error and the Localization Accuracy

Fig. 68 summarizes the performance of the online calibration method applied to the
semi-synthetic data similarly to the simulated images. Fig. 68a and 68c present the
SE respectively the axial LA as functions of the relative axial position and the depth.
In accordance with the simulations, the fundamental course of the SE is similar for
all depths and deteriorates in both directions away from the center between the focal
planes. Again, the SE is significantly deteriorated at zero depth owing to the artifacts
of ∆f and ∆ω at this depth. This effect will be observable in all provided measures for
semi-synthetic data.
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Figure 67: Average deviation of the estimated from the true curve coordinates as functions of
the imaging depth.

The principal course of the axial LA is also consistent with the simulations. It dete-
riorates for particles measured below the focal plane and exhibits the expected strong
dependency on the imaging depth.

Fig. 68b and 68d present the respective total measures as functions of the imaging
depth, but also present the results if the prior calibration is applied. For the prior
calibration, always the average configuration of all particles calibrated at zero depth
was used.

The total SE deteriorates only slightly as a function of the depth, whereas the axial LA

varies significantly. The total SE is only worse than the prior calibration at zero depth.
The obtained deviations at zero depth correspond well to the results of the robustness
measurements in Sect. 4.10.1.9. For any other depth, the online calibration reduces the
error by at least half. The relative reduction increases as a function of the depth up to
„ 70 %. The axial LA is again always superior and almost independent of the depth
when using the prior calibration.

The principal courses of all measures are similar to that determined by simulation.
The absolute values are deteriorated by „ 30 % for the SE, but almost 100 % for the
LA with respect to the simulations at comparable SNR of 18. These degradations are
reasonable since they can be attributed to the imperfections of the data set that partic-
ularly affect the accuracy. This includes the drift and positioning accuracy of the piezo
stage device, the relatively low axial sampling, and the fact that the images contain
deviations between the two axial correlation functions.

4.10.2.5 Visual Analysis of the Trajectory

For visual analysis, Fig. 69 presents exemplary axial trajectories at selected depths
determined using the online respectively the prior calibration. It is apparent that for
the online calibration the fundamental course of the true trajectories is followed for all
depths. This is true with the exception of zero depth owing to the known deviations of
∆f and ∆ω. The systematic errors increase with depth, but the deteriorating axial LA

has again more severe effect on the accuracy of the measured trajectories.
For prior calibration, the fundamental course is hardly followed at larger depths.

The axial LA erroneously appears to be superior and is almost constant for all depths.
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Figure 68: (a) The SE as a function of the relative axial position and the imaging depth. (b) The
total SE as a function of the imaging depth for the online and the prior calibration
method. (c) The axial LA as a function of the relative axial position and the imaging
depth. (d) The total axial LA as a function of the imaging depth for the online and
the prior calibration method.

Again, the principal findings are identical to that of the simulations proving that
they are valid also for real acquisitions.

4.10.2.6 Impact on the Calculated Diffusion Parameters

For analysis of the resulting diffusion measures, Fig. 70a and 70b plot the MSD curves at
different imaging depths for the online and the prior calibration method, respectively.
The corresponding local diffusion coefficients are provided in Fig. 70c as functions of
the imaging depth.

At zero depth both diffusion measures are well approximated using prior calibration,
but deviate significantly for the online calibration method. For the other depths, it is
apparent that the MSD curves almost preserve their principal shape, but the absolute
values increase as a result of the deteriorating axial LA. The measured MSD curves
exhibit significantly stronger confinement than the GT if the prior calibration is used.
This is reasoned by the erroneously low axial LA as a result of the incorrect calibration
curves.
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Figure 69: Measured trajectories determined by the (a) online and the (b) prior calibration
method at selected depths. The red lines denote the true simulated trajectories.

These effects are also clearly visible by looking at the courses of Dl. Since the online
calibration yields significantly lower deviations from the true Dl, it can be concluded
that indeed more reasonable approximations to the true calibrations curves have been
computed. In total, the results are similar to those of the simulation, but again the
absolute errors are larger.

4.10.3 Evaluation on Real Data

By now the fundamental functioning of the online calibration method has been proven.
Evaluation of their performance in real brain slice experiments is hardly possible as
the GT is unknown, and the molecules cannot be immobilized without changing the
optical properties of the sample. Only the plausibility of the output of the algorithm
can be tested.

For it, brain slices were prepared as described earlier (Biermann et al. 2014) and
transfected with GPI-GFP. Its mobility was monitored by labeling GPI-GFP with QDs

(see Sect. 4.5.2). 2D image streams were acquired in brain slices at depths between 1
and 20 µm at an interval of 1 µm. Each image stream comprised 1000 frames and
was acquired with a temporal resolution of 30 Hz. To increase the reliability of the
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Figure 70: (a)-(b) Observed MSD curves at selected imaging depths for the online respectively
the prior calibration method. (c) Observed courses of Dl as functions of the imaging
depth.

results, only trajectories of length ě 20 were considered for calibration and subsequent
analysis.

4.10.3.1 Visual Analysis

To obtain a visual impression of the shape fitting capability of the workflow, the fit-
ting results for exemplary acquisitions at different depths in the sample are provided
in Fig. 71. Some situations that underline the functioning of the algorithm are also
highlighted. It is apparent that nearby particles can be distinguished (mark 1), but if
they are too close, they are rejected based on the allowed size (mark 2). Furthermore,
varying elliptical shapes are observable (mark 3), and particles far off the focal plane
that create non-uniform background are rejected (mark 4).

Fig. 72 additionally presents the measured 3D trajectories within the red regions
indicated in Fig. 71. They illustrate the 3D capability of the developed SPT workflow.

The lateral extent of an axon is clearly recognizable in Fig. 72a and 72b. As expected
from 3D measurements (Renner et al. 2011), the distribution of particles is highest at the
axons lateral border. By encoding the axial position in the color, Fig. 72b also reveals
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Figure 71: (a)-(c) Exemplary acquisitions in brain slices at varying depths (1, 3, and 6 µm). The
green dots indicate the fitted sub-pixel positions, and the contour lines represent the
individual FWHMs. The red dashed boxes depict the regions that are used for the 3D
plots in Fig. 72, and the red marks denote situations that are described in the text.
(d)-(f) Surface plots of the same acquisitions.

that the particles in the center of the image run on top of the axon, whereas those on
the left are located below the axon. This conclusion is justified by the observation that
in the center of the image the trajectories in the inner area of the axon have a higher
axial position than those at the lateral border. The situation is vice versa on the left. In
addition, the whole axon seems to follow the axial course of a bridge.

The second example (see Fig. 72c-72d) reveals that the algorithm allows to dis-
tinguish the axial course of two intersecting axons. The horizontal axon proceeds
„ 400 nm above the perpendicular axon.

Even the tubular structure of an axon can be determined. It is clearly observable
in Fig. 72e-72f. It also becomes apparent that the axial LA considerably decreases if a
particle moves below the center of the focal planes. This finding is in line with previous
results (see Sect. 4.10.1.6).

The presented results reveal that meaningful axial information can be recovered by
using the proposed online calibration method. If prior calibration is applied, Fig. 73

illustrates that the axial information is basically lost. Adjusting the correlation function
to the imaging depth is indeed mandatory.
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Figure 72: Exemplary measured 3D trajectories in brain slices. (a)-(b) 2D views of an axon illus-
trating that particles located on top and below the axon can be distinguished. In (a)
the color distinguishes individual trajectories and in (b) it encodes the axial position.
(c)-(d) 3D views of two intersecting axons that can now be axially separated. The
meaning of the colors is the same like in the figures above. (e)-(f) 3D and front view
of a part of an axon illustrating the tubular axon structure. In order to make the
morphological structure more visually apparent, the trajectories are just presented
with position markers, and the color encodes the axial position.

4.10.3.2 Molecular Dynamics Analysis

It is also apparent from the presented examples that the axial LAs with that the z
coordinates are determined are very low. This is well observable by calculation of
molecular dynamics parameters. Fig. 74a presents the MSD curves for the individual
dimensions as well as their combinations at selected depths.
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Figure 73: (a)-(b) The same views like in Fig. 72b and 72d, but calculated using prior calibration.

Apparently, the fundamental courses and correlations between the various MSD

curves are similar. This is reasonable since it was already shown in Sect. 4.5 that the
diffusion does not significantly change as a function of the depth in the sample. Only
the correlations between the individual lateral dimensions vary because they depend
on the underlying neuronal structure. If molecules are for instance measured at a sin-
gle straight axon, the absolute MSD values are larger for the direction of the axon’s
expansion. If a true network is imaged, the two lateral directions are likely to exhibit
almost identical MSD curves.

The absolute MSD values of the axial direction are significantly higher than those in
the lateral directions. This is owed to the apparently much worse axial LA. Although the
exact LAs can hardly be determined without additional calibration procedures, the av-
erage molecular step size can act as an indicator because the molecular motion should
on average be similar in all directions. Consequently, deviations just stem from the
individual LAs. The average step size can be computed from the first MSD point as
a

MSD(τ = 1∆t). It is plotted in Fig. 74b as a function of the depth for the lateral and
the axial directions.

The lateral step sizes are almost identical and much smaller than the axial step
size. It can be concluded that the axial LA is indeed much worse than the lateral LA

approximately „ 5 times. Moreover, and in line with the simulated results, the axial
step size deteriorates significantly as a function of the depth. If the prior calibration
method is applied, the axial step size remains almost constant and appears to be much
better.

To quantify the course of the MSD curves for the individual directions, the individ-
ual courses of Dl as functions of the imaging depth are provided in Fig. 74c. The
absolute diffusion values are well compatible with the range observed for lateral dif-
fusion (see Fig. 35c) and can hence be considered reasonable. Equally important are
the findings that the axial diffusion is similar to the lateral diffusion and that a de-
terioration towards larger imaging depths cannot be observed for the first 10-15 µm.
If prior calibration is applied, the axial diffusion is consistently underestimated and
deteriorates as a function of the depth. The apparent breakdown of the performance
of the online calibration for imaging depths ě 15 µm is likely to be attributed to the
limiting SNR that is achieved with the presented imaging configuration (see Fig. 74e).
Further reasons may be the lower amount of detected particles and that the influence
of the RIM is stronger in slices than in Mowiol. Since even the pure detection capability
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Figure 74: (a) MSD curves at selected depths in brain slices. (b) Individual average step sizes
as functions of the imaging depth. (c) Individual and (d) combined diffusion results
as functions of the depth. For comparison, also the axial diffusion coefficients when
employing prior calibration are depicted. (e) Average estimated SNR as a function of
the depth. (b)-(e) The presented data always includes in total 18098 trajectories with
at least „ 300 trajectories per imaging depth. It was obtained from two slice cultures,
five brain slices, and 125 acquisitions.

of using oil objective lenses in brain slices drops down to „ 20 % at these depths (see
Fig. 34c), this is not an additional limitation.

Fig. 74d finally provides Dl for the combined diffusion as functions of the imaging
depth. The 2D and 3D diffusion are similar for the online calibration method, but using
prior calibration the 3D diffusion is significantly underestimated. These results indicate
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that the proposed imaging configuration might not be sensitive enough to resolve the
expected underestimation of 2D diffusion in relation to 3D diffusion. In primary cell cul-
tures, similar results were obtained by Renner et al. 2011 who concluded that higher
frame rates are required. It could be reasonable to extract the rough morphology first
and then update the distance between two consecutive particle positions with respect
to this information. By now, the analysis just takes the smallest distance between two
measured positions and assumes an isotropic medium. However, when measuring sur-
face dynamics, the morphology effectively enforces an anisotropic system. Taking the
morphology into account may make the expected diffusion differences observable.

Conclusion

The presented experimental results indicate that the proposed online calibration is
indeed able to adjust for the aberrations introduced by the RIM. This is justified by
the result that the axial diffusion is in the same range as the lateral diffusion. Another
important outcome is that although the axial LA deteriorates significantly over depth,
Dl could nevertheless be correctly determined for the first 10-15 µm. Dl is clearly
underestimated for prior calibration.

The most critical factor is the relatively poor SNR, which is especially limiting at
imaging depths ě 15 µm. It must be concluded that the observed axial LA suffices for
the extraction of morphological information, but is too poor for the interpretation of
individual trajectories. The axial LA leads to uncertainties of almost half of the available
axial analysis range. Improving the imaging quality is the major starting point to make
such individual outcomes also available in brain slices.

4.10.4 A Final Illustrative Example

This section finally provides an illustrative 3D example. Realistic images that represent
multiple particles diffusing at the surface of an axon or a spine neck are rendered. The
simulation implements the algorithm described by Renner et al. 2011, which basically
comprises the wrapping of 2D trajectories around a cylinder.

Fig. 75a-75b present different views of five exemplary surface trajectories at the sur-
face of a single tube whose diameter was set to 400 nm. Each start point was ran-
domized, and the trajectories had length 1000. The diffusion coefficient for each par-
ticle was drawn from an exponential distribution with mean 0.05 µm2/s, and ∆t was
again 0.0333 s. The corresponding fluorescence images were rendered as described in
Sect. 4.10.1.4 at imaging depth 10 µm and with SNR = 10.

For analysis, the complete SPT workflow was invoked. Fig. 75c-75f depict the mea-
sured trajectories at different perspectives for using the online as well as the prior
calibration method. The higher number of different trajectory colors reveals that not
all trajectories could be completely traced and were instead partitioned. Furthermore,
the measured positions are subject to relatively strong noise, but the basic cylindrical
surface is well recovered by the online calibration method. This supports the finding
in real acquisitions (see Fig. 72f). Using prior calibration results in an oval deformation.
The axial positions could not be correctly recovered and particularly the positions be-
low the center of the focal planes constantly deviate more than 100 nm. The correct
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Figure 75: (a) 3D and (b) front view on the five simulated trajectories at the surface of a tube.
(c) 3D and (d) front view on the measured trajectories recovered using the online
calibration method. (e) 3D and (f) front view on the measured trajectories recovered
with prior calibration.

recovery of the basic shape by the online calibration indicates that it is indeed capable
of adjusting the correlation functions to the induced optical aberrations.

In Fig. 75c it is also apparent that the axial LA is worse than the lateral LA because
the boundary representation is thinner at the sides of the tube. Again, the axial LA

considerably decreases for particles that are located below the center of the focal planes.
The axial LA appears to be constant for prior calibration, which is also in line with
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previous findings (see Sect. 4.10.1.6). Again, it becomes obvious that the axial LA is the
limiting factor for 3D SPT in brain slices.

The quality of the recovered trajectories is finally illustrated by plotting them with
a color coding that represents the absolute 3D distance between the measured and
the true positions. This is presented in Fig. 76 for SNR = 10 and 18. As expected,
the absolute deviations are smaller for the image with higher SNR. The color coding
also reveals that for SNR = 18 the circular shape is recovered with higher accuracy.
Except for particle positions further below the center of the focal planes, the measured
positions then deviate only by „ 20 nm.
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Figure 76: The measured trajectories for (a) SNR = 10 and (a) SNR = 18 recovered using the
online calibration method. The color represents the deviation in nanometer and was
clipped off after 64 nm in order to increase the resolution for smaller errors.

The presented results clearly illustrate the necessity for adjusting the axial corre-
lation functions. Besides determination of less biased diffusion parameters, this also
enables the recovery of the 3D morphology of neuronal structures below the resolution
limit.

4.11 conclusion and future work

This chapter presented an imaging configuration and an algorithmic workflow to facili-
tate fast 3D SPT deep in living brain slices. The imaging configuration is based on a CSU.
QDs were employed as fluorescent markers. It could be shown that this ensemble allows
to assess parameters of molecular dynamics in complex living tissue at penetrations
depths down to several tens of micrometers.

For analysis of the acquired images, a 3D SPT workflow was developed. The focus was
set on the development of an axial online calibration method. It adjusts astigmatism-
based 3D SPT techniques to the optical aberrations induced by the RIM, like they are
unavoidable for the application of high NA objective lenses with living samples. Since
it is an important prerequisite, this work also focused on the accurate estimation of
the particle shapes and position. For the remaining aspects of particle detection and
2D linking, well-established techniques were implemented. A 3D particle linking proce-
dure was considered optional and not implemented.
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For shape estimation, an EM algorithm for binned and truncated data was applied
to microscopy images. For axial localization deep within the sample, a formula that
models the induced aberrations and an online calibration method that determines the
current model directly from the 2D imaging stream, were developed. The key idea of
the latter is the exploitation of the molecular particle motion and of the redundancy
introduced by the astigmatism.

The performance of both methods was extensively evaluated on synthetic data and
their functioning was proven. It turned out that the exact parametrization of the axial
correlation function could not be consistently recovered. However, it was shown that
the correct principal course of the underlying trajectories could nevertheless be de-
tected at any depth. This is a result of the capability of the online calibration to at least
halve the SE at any depth and SNR. In contrast, the axial LA was found to deteriorate
more notably over depth and SNR, which in consequence yielded evident deviations
from the absolute positions and MSD values. Nevertheless, and more importantly, it
could be shown that correct diffusion coefficients can still be obtained almost inde-
pendently of the imaging depth and SNR. Comparable results were also obtained for
semi-synthetic data, where already the experimental artifacts of the setup were con-
sidered. Real experiments in brain slices were conducted and analyzed. The results
indicated that the online calibration also works there because the axial diffusion was
in the same range as the lateral diffusion, whereas for prior calibration Dl was clearly
underestimated. From visual inspection, it became apparent that the 3D morphology
can be extracted, but the axial LA is too poor for the interpretation of individual trajec-
tories.

With respect to the stated objectives, it can be concluded that the proposed imag-
ing configuration indeed allows to observe diffusion parameters that are similar to
those known from primary cultures (Objective 1.1). The extracellular space seems to be
permeable enough for the application of QDs, so that the observed 2D diffusion param-
eters were similar to those known from primary cultures and subpopulations could
be differentiated. Limitations have only been observed for long-term diffusion, where
the compartmentation impedes the mobility of QDs. As a major result it can be stated
that the developed workflow is capable of making fast nanoscale 3D SPT experiments
deep in living organotypic brain slices readily available (Objective 1.2). This is justified
by the fact that the correct 3D morphology and diffusion parameters can be derived.
Simulations showed that the SE can be reduced by more than 50 %. This is now possi-
ble with virtually no additional experimental efforts or compromises for the user and
works for imaging depths up to „ 15 µm in real brain slices. Solely the focal shift has
to be adjusted for the setup. A conceptually novel strategy to account for the effects of
the RIM was developed. Instead of trying to counteract or measure the induced aber-
rations with additional experimental efforts, inherent properties of the experiment are
exploited so that the analysis can be adapted to the aberrations. Users can search for
transfected neurons in the sample and start imaging right away (Objective 1.6). This
facilitates the generation of robust statistics from healthy samples. It could also be clar-
ified how critical it is to neglect the influence of the RIM: the true axial motion and as
a consequence also the axial LA are significantly underestimated.

Furthermore, the application of an EM algorithm for microscopy data was proposed.
It allows for robust fitting of multiple neighboring particles in a standardized statistical
fashion. In conjunction with the online calibration this enables assessment of 3D molec-
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ular dynamics in nanoscale compartments with LAs below 100 nm and 30 Hz temporal
resolution (Objectives 1.3 and 1.4). It must be admitted that in real brain slices, where
the SNR drops below 10, the axial LA reduces to 200-300 nm. The obtained SNR is the
major limiting factor.

The complete workflow, including a graphical user interface (GUI)13, is available at
http://sourceforge.net/projects/mdagui/. It can be run in the MATLAB environ-
ment and is published under the Creative Commons Attribution License.

In conjunction with the presented imaging configuration, which is commercially
available and affordable, it should make the application of 3D SPT techniques in com-
plex living tissue widely available (Objective 1.5). A final problem are the numerous
artifacts that the imaging configuration introduces and that have been revealed in
Sect. 4.9.1.2. They do not put the proposed method in question, but they reduce their
accuracy and may impede the applicability in practice.

In the light of this, technical aspects of the imaging configuration are the most promis-
ing starting points for future improvements. Although the CSU-based setup was es-
tablished for its axial sectioning capability and reasonable temporal resolution, it had
shown during this work that the available SNR in packed brain slices is relatively low.
This is due to the inefficient light transition through and the emerging stray light at
the spinning disks.

Optical microscopy undergoes ongoing development. Just recently, Andor Borealis14

has been released that utilizes conventional CSUs with multi-mode fibers in order to
triple the light throughput. Another confocal technique that has been shown to im-
prove the SNR several times, while maintaining video-rate temporal resolution, has
been proposed by Lee et al. 2012. It combines line-scanning with WF detection and was
particularly designed for single-molecule imaging in living samples.

Alternatively, the proposed online calibration method can also be applied to con-
ceptionally different imaging configurations. LSFM seems to be the most promising
technique (Rebollo et al. 2014, Ritter et al. 2010). It achieves the required axial section-
ing by excitation of a thin layer within the sample using laser light that is projected
perpendicular into the objective. Therefore, light efficient WF detection, that is compat-
ible with the online calibration method, can be used. Another technique that achieves
penetration depths up to several 100 µm and is well compatible with living cells is
2PM. Since Ragan et al. 2006 showed that optical aberrations can be introduced in order
to obtain an astigmatism, the online calibration method should also be applicable to
2PM. Last but not least, it can be expected that application of the online calibration
method is also reasonable for standard WF imaging in primary cultures. This assump-
tion is justified by the results of Deng and Shaevitz 2009 and Huang et al. 2008a who
illustrated that the influence of the RIM is already clearly recognizable at the very first
micrometers when imaging into aqueous solutions.

Concerning the intentionally introduced astigmatism, AO should be employed (Ized-
din et al. 2012a). This is likely to improve the performance of the online calibration
since artifacts of the astigmatism, such as have been experienced with cylindrical lenses,
can be avoided.

13 The GUI was designed and implemented by Magnus Hanses.
14 http://www.andor.com/microscopy-systems/revolution/borealis
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From an algorithmic point of view, further improvements were already discussed in
Sect. 4.10.1.8. The vertex estimation procedure has turned out to be the most promising
starting point since the whole calibration procedure draws on the correct detection of
vertex frames. Possible improvements are the involvement of a larger temporal neigh-
borhood of images, inclusion of the peak intensity as a feature or statistical outlier
detection.

The presented EM algorithm itself seems to have great potential for much broader
application. Although evaluation of the EM implementation yielded promising results
also for particle distances of just one pixel, the proposed workflow has not yet taken
advantage of this capability. Instead, a few simplifications have been made. The most
important simplification concerned the particle detection. In order to maintain the
highest shape estimation accuracy for the subsequent online calibration method, it
was limited to particles that are at least 3 pixels apart.

To allow for the extraction of large statistics (Sibarita 2014), advanced approaches
like that of Huang et al. 2011, Holden et al. 2011 or Quan et al. 2011 should be in-
cluded in the workflow. They try to iteratively estimate the correct number of neigh-
boring particles. Although they still suffer from the risk of overfitting, such strategies
should improve the final 3D linking procedure and simplify the determination of su-
perimposed particles that may still be wanted to be removed for the sake of fitting
accuracy.

The EM implementation could then be considered as an alternative fitting procedure
for super-resolution techniques like PALM and STORM. Its ability to deal with truncated
distributions is of particular advantage since the fitting becomes less sensitive to the
selected region size, and determination of closed sets of superimposed particles can
be avoided. Also its robustness to high number of particles is advantageous. Still, its
performance in comparison to MLH algorithms, that use the Newton-Raphson method
(Huang et al. 2011) or a rather proprietary optimization scheme (Babcock et al. 2012),
remains to be assessed in detail.

In order to meet the runtime requirements of super-resolution techniques, the algo-
rithm can be accelerated in the following ways: the number of iterations titer could
be adjusted dynamically by terminating the EM algorithm once the improvement of
the expected complete data log-likelihood per EM step falls below a certain threshold
(Chen and Gupta 2010). Fewer iterations may be required by cascading of a standard
with the presented more complex EM implementation that can deal with truncated dis-
tributions (Cadez et al. 2002). Convergence of the EM algorithm can be accelerated by
implementing the new class of iterative schemes proposed by Varadhan and Roland
2008. The EM algorithms can also be parallelized for implementation on fast graphics
processing units (GPUs) (Kumar et al. 2009).

Last but not least, it shall be stated that although the development of the proposed
workflow was driven by the requirements in neurobiology, it is applicable to the more
general field of cell biology.
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5
D E T E C T I O N O F I N D I V I D U A L S Y N A P T I C A C T I V I T Y

This chapter covers the detection of individual synaptic signalling events. The detec-
tion of neuronal activity allows to quantify how the interaction of signalling molecules
modulates synaptic transmission. This thesis focuses on the first half of the transmis-
sion process. Optical methods that translate the alteration of intracellular parameters
into changes of optical signals are preferably employed. A pH-sensitive variant of
GFP (pHluorin) is used as the optical reporter. It can be used to change its fluorescence
in correlation to presynaptic vesicle fusion.

The major objective is the automatic detection of spontaneous individual synaptic
activity. It should be noted that spontaneous activity is not to be confused with the
spontaneous fusion of vesicles without signaling by an AP (Vardjan et al. 2007, Groemer
and Klingauf 2007). Here, spontaneous activity is defined to comprise all individual
vesicle fusion events whether triggered by an AP or not. The term spontaneous is used
to distinguish these events from those artificially evoked.

Since the signals represent stochastic neuronal processes, the method cannot rely on
a single pre-defined shape to detect such complex and variable signals. Moreover, it has
to be robust to varying signal strengths and SNRs since all synapses in the field of view
shall be analyzed. Strong variations in the intensity response are typical for this type
of data owing to: off-focus synapses, non-planar light transmission of objective lenses,
variations in the number of fused vesicles per AP, and different expression levels of
pHluorin across transfected neurons.

The available readout from pHluorin data and the corresponding state-of-the-art meth-
ods are reviewed before the actual workflow is presented.

5.1 optical reporters for studying neuronal activity

The standard methods for analysis of neuronal signaling stem from experimental elec-
trophysiology. Here patch-clamp or multi-electrode array recordings rely on electrodes
that directly measure the electrical signals during neuronal communication (Scanziani
and Häusser 2009). Notwithstanding their extremely high SNR and temporal resolution,
the major drawbacks of these techniques are the necessities to physically contact the
samples and their low spatial resolution.

Owing to the nanometer-sized structures of chemical synapses, optical methods
based on FM are therefore preferable for the analysis of individual synaptic activity.
They employ optical reporters, which translate dynamic intracellular parameters into
optical signals. They allow for specific determination of intracellular parameters at var-
ious sub-cellular compartments simultaneously, but do not interfere with the neuronal
function (Scanziani and Häusser 2009).

Voltage-sensitive optical reporters are the direct equivalent to electrophysiology. They
can be generally divided into fast- and slow-responding fluorophores, whereas only
the fast-responding reporters are suitable for detecting short-term APs (Cox 2007).
These fluorophores have to be incorporated into the neuronal membrane, where they
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change their electronic structure and therewith also their fluorescence as a function
of the reversing polarity of the membrane potential during neuronal signal transmis-
sion (Sjulson and Miesenböck 2007). Their major weakness are the low magnitude of
voltage-dependent change in fluorescence („ 10 % per 100 mV) (Cox 2007) and the
spatial resolution limited to individual neurons (Sjulson and Miesenböck 2007).

A rather indirect reporter for neuronal activity are organic calcium-sensitive fluo-
rophores (Grynkiewicz et al. 1985) since they determine changes in the Ca2+ concen-
tration that are triggered by APs. They respond to varying Ca2+ concentrations not only
with changes in fluorescence, but also in excitation or emission wavelength, which al-
lows for ratiometric measurements and consequently high SNRs (Tsien et al. 2006). Since
Ca2+-sensitive fluorophores are usually employed to diffuse in the cytoplasm of the
neuron, it is possible to simultaneously determine activity at individual neuronal com-
partments. However, identification of varying Ca2+ concentration does not necessarily
mean that presynaptic neurotransmitter release did indeed occur.

Therefore, methods that directly report about presynaptic vesicle dynamics have
been developed. Kraszewski et al. 1995 proposed monitoring neuronal activity by live
staining of active synapses. The sample is incubated with fluorophores conjugated to
antibodies that can attach to the inner domain of the vesicle protein synaptotagmin.
Upon endocytosis these antibodies are uploaded into vesicles, and the amount of flu-
orescence per synapse is an indirect measure to quantify individual synaptic activity.
The weaknesses of this approach are its low temporal resolution in the range of min-
utes and the difficulty to quantify absolute intensities owing to optical aberrations.

The most direct method uses a pH-sensitive variant of GFP (pHluorin) that is cou-
pled to the inner domain of synaptic vesicle proteins by transfection (Miesenböck et al.
1998). This allows for monitoring of exocytosis and endocytosis since pHluorins change
their fluorescence during vesicle cycling owing to the pH gradient between the inside
of vesicles and the extracellular space (Miesenböck and Kevrekidis 2005). The result-
ing intensity signal characterizes the kinetics of the vesicle cycle during synaptic signal
transmission. Fig. 77 illustrates the vesicle cycle, the principle of measuring presynaptic
activity with pHluorins, and the resulting signal. Since this method features high tempo-
ral resolution and allows for identification of individual presynaptic activity with high
sensitivity, it is employed in this thesis.

To date this method has primarily been used to characterize the vesicle cycle and
to estimate biophysical parameters that modulate the presynaptic vesicle fusion effi-
ciency. The next section highlights important findings with focus on their support for
automatic activity detection.

5.2 characterizing the readout of phluorin-based measurements

The types of biological parameters that can be accessed via pHluorins are manifold and
have been obtained using different vesicle proteins as reporters. Such optical measure-
ments have already allowed to determine the necessary quantity of certain presynaptic
molecules for successful vesicle fusion (Sinha et al. 2011) and preferred release sites at
very active synapses have been observed (Gaffield et al. 2009, Tabares et al. 2007). It
was determined that the sorting of proteins into vesicles is not random (Kim and Ryan
2009, Balaji and Ryan 2007), and that the absolute size of the vesicle pools is limited
by the speed of endocytosis (Ariel and Ryan 2010, Granseth and Lagnado 2008). Also,
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(a) (b)

Figure 77: (a) The vesicle cycle at chemical synapses during synaptic signal transmission. At
the low pH inside vesicles pHluorins are quenched and thus hardly fluorescent. Upon
vesicle fusion with the presynaptic membrane pHluorins undergo a conformational
change owing to the more alkaline pH of the extracellular space. Consequently, their
fluorescence increases (A). At the onset of endocytosis vesicles get recycled (B) and
reacidify (C), thus, pHluorins get quenched again. (b) The resulting intensity signal is
characterized by an immediate increase of intensity (A), followed by a dwell time for
endocytosis where it remains constant (B), and an intensity decay owing to vesicle
reacidification (C).

pHluorin experiments are used for the ongoing discussion whether different modes of
synaptic vesicle recycling exist (Granseth et al. 2009, Zhang et al. 2009, Gandhi and
Stevens 2003).

In order to automate the derivation of these biological parameters, detailed knowl-
edge about the time course of the intensity response to be detected is of utmost im-
portance. In the remainder of this section the main features of the peak’s shape are
summarized.

To obtain the individual synaptic intensity signal, the mean intensity within a fixed
region centered over each synapse is computed for each point in time. Independently
of the chosen reporter protein, the kinetics of the vesicle cycle result in a signal of the
general form exemplarily depicted and described in Fig. 77b.

The intensity difference between the fluorescent and the quenched state of pHluorin

is „ 20-fold (Sankaranarayanan et al. 2000). As a result of the conformational change,
it switches in an all-or-none fashion (Sankaranarayanan et al. 2000) with a switching
time well below 10 ms (Ariel and Ryan 2010). Using video frame rates, exocytosis is
characterized by an immediate increase of intensity between two consecutive images
(see Fig. 77b). According to Granseth et al. 2006, the averaged signal decay is best
described by two consecutive first-order kinetics (see Fig. 78a). These correspond to the
particles dwell time for endocytosis at the surface and the time until reacidification of
the vesicles. These processes have a mean lifetime of „ 14-15 s and „ 4-5 s, respectively.
The results were independently verified by Balaji and Ryan 2007 and Atluri and Ryan
2006, whereby Balaji and Ryan 2007 even analyzed individual events. The maximum
velocity of vesicle recycling is limited to one vesicle per second (Sankaranarayanan
and Ryan 2000), and the average dwell time may vary across cells, but is kept constant
for individual synapses (Armbruster and Ryan 2011). Some exemplary signals with
individual dwell times and the histogram distribution of individual dwell times are

153



presented in Fig. 78b and 78c, respectively. Apparently, the intensity remains constant
during the dwell time and decays rapidly during reacidification.

(a) (b)

(c) (d)

Figure 78: (a) The average signal decay can be described with a single (red) or, more exactly,
with two consecutive first-order kinetics (black). (Adapted from Granseth et al. 2006,
with permission from Elsevier.) (b) Individual measured signals with varying dwell
times. (c) Distribution of individual dwell times. (d) Quantized intensity distribution
of intensity responses. ((b)-(d) are reprinted from Balaji and Ryan 2007, copyright
(2007) National Academy of Sciences, USA.)

The signal is transient and always decays to the baseline. This baseline is defined
by a remaining surface population of diffusive vesicle proteins created most likely
due to inefficiencies in the recycling process (Sankaranarayanan et al. 2000). Given
the diffusive fluctuations of these surface proteins, they are an important factor for
the available SNR. The intensity response to single APs must therefore be computed
on exocytosis relative to the baseline. Analysis of intensity responses by Balaji and
Ryan 2007 and Gandhi and Stevens 2003 revealed quantized intensity distributions
(see Fig. 78d). The homogeneously distributed peaks correspond to the number of
fused vesicles per AP, and it was shown that the number of proteins per vesicle is kept
constant.
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Since specific peak detection algorithms for the present data have not been developed
yet, the next section generalizes the problem and provides a survey on peak detection
algorithms in one-dimensional (1D) data.

5.3 related work on peak detection in 1d signals

In their majority, recent peak detection algorithms are specialized for some particular
type of data. Considering pHluorin signals, the most closely related signal types, which
have also received major attention, are electrophysiological recordings of APs and mass
spectrometry data. The algorithms reviewed in this section were usually developed for
either of these types of data.

Peak detection in 1D signals is challenging since measurements are subject to noise,
distorted by unspecific background, and usually lack unique discriminating features
owing to the low dimensionality as well as the spectral similarity of the signal and the
background (Kim and Kim 2003).

5.3.1 Threshold-based Methods

The most basic, but still most widely used method is AT. Thresholds are either provided
manually or using a factor for the expected noise yielding an adaptive threshold. For
the latter, the automatic estimation of the noise component is the major concern. Noise
estimates can be obtained using the SD (Pouzat et al. 2002) or, in order to reduce the
dependency on the strength and the number of peaks in the data (Watkins et al. 2004),
based on the median absolute deviation (Coombes et al. 2005, Quiroga et al. 2004).
Thakur et al. 2007 also proposed fitting a Gaussian function to the central part of
the histogram distribution in a so called "cap-fitting" procedure. To further improve
robustness, these estimates can be computed using a running window (Biffi et al. 2010,
Chan et al. 2008). However, regardless of how well the threshold is selected AT scales
poorly towards low SNR (Shahid et al. 2010).

In order to consider that peaks usually distribute over several measurements, power
detection methods have been developed. Bankman et al. 1993 apply a cumulative en-
ergy operator that computes the integral over the squared signal in a running window
before thresholding. On this basis Mtetwa and Smith 2006 later proposed to use the
normalized cumulative energy. By utilizing that at peak positions the power as well
as the frequency increase, Kim and Kim 2000 employed a nonlinear energy operator
that computes the product of the amplitude and frequency. Since these methods do
not explicitly exclude noise, they also rapidly deteriorate for low SNR.

5.3.2 Template Matching Methods

Template matching methods yield better performance since they explicitly include
knowledge about the expected shape of the peak, instead of just incorporating their
length. They compute the similarity of a given shape with the signal at different po-
sitions (Jain et al. 2000). Reasonable similarity measures are for instance the sum of
absolute (Jansen and Maat 1992) respectively squared differences (Mtetwa and Smith
2006) or cross-correlation (Kaneko et al. 1999). If the noise can be statistically described,
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then probabilistic methods from the classical detection theory are another alternative
(Kay 1993). They estimate whether a peak shape is present or not at a certain position
using hypothesis testing on the assumption of an additive noise model. Although tem-
plate matching methods are simple, but yet efficient, their major weaknesses are the
necessity to have prior knowledge about the peak shape, and that the performance
decreases if the peaks significantly vary in shape or size.

Since prior peak shape information may not always be available or obtainable with-
out supervision, Shahid et al. 2010 proposed to estimate an optimal template directly
from the acquired data in a blind equalization technique. For that reason, they employ
the cepstrum of bispectrum, which is an higher order statistic technique to estimate
an inverse filter. The obtained filter is subsequently used for deconvolution with the
signal. A denoising and thresholding procedure is applied to detect the peaks. In order
to reduce the weakness of extracting only an average filter that is usually suboptimal,
Natora and Obermayer 2011 extended this approach by classifying the extracted filters
and computation of individual filters for each class. This way, they are able to detect a
larger variation of peak shapes.

5.3.3 Wavelet-based Methods

Assuming that at least basic peak shape features are preserved over all peaks, algo-
rithms that employ the wavelet transform are another alternative to account for varia-
tion in the shape. The wavelet transform projects the signal s(t) onto the wavelet basis
ψa,b(t) (Mallat 2008):

C(a,b) =
ż

R

s(t)ψa,b(t)dt, (67)

where ψa,b(t) are shifted and scaled versions of a mother wavelet ψ(t):

ψa,b(t) =
1
?
a
ψ

(
t´ b

a

)
a,b P R, a ą 0. (68)

The wavelet coefficients C then determine the similarity between the signal and the
mother wavelet at different scales a and translations b. A high value at C(a,b) indi-
cates a close match with the signal at the given scale and position. If a wavelet that
resembles basic peak shape features is available, analysis of the wavelet coefficients
can be considered as template matching with varying shape sizes.

Most wavelet-based algorithms implement a detection framework consisting of three
subsequent steps: (1) decomposition of the signal using an appropriate mother wavelet
selected by visual inspection, (2) separation of the signal from noise via thresholding
the wavelet coefficients to increase the effective SNR, and (3) detection of peaks across
multiple scales.

Recent algorithms mainly differ in the implementation of the last step. It is of ut-
most importance since significant signal structures propagate across scales (Mallat and
Zhong 1992), and consideration of this effect is the key to further increase the effec-
tive SNR. Nakatani et al. 2001 only accept peak positions where the wavelet coefficient
at a certain scale as well as the coefficients at the neighboring scales exceed a given
threshold. The threshold for the neighboring scales may be 10 % lower. Kim and Kim
2003 extended this approach by computation of the point-wise product over three con-
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secutive dyadic scales and thresholding in the combined coefficients. The selection of
the three scales is driven by biophysical properties of the expected peak shape. Since
this may limit the possible shape variation of the peaks, Du et al. 2006 employed every
second scale until a maximum scale derived from the broadest expected peak shape.
Their algorithm is motivated by visual inspection of the wavelet coefficent image where
peaks appear as so called ridge lines. These lines are detected by tracing local maxima
in the coefficients across scales. A ridge line then indicates a peak if it fullfils a length
and a SNR criterion.

Alternatively, probabilistic methods can be employed to detect peaks in the wavelet
coefficients. Nenadic and Burdick 2005 perform statistical hypothesis testing for each
coefficient to detect whether it belongs to noise or signal. They expect the noise to
be Gaussian distributed, and an acceptance threshold has to be defined. Indications
at multiple scales are finally combined to a single peak indication using a distance
criterion. In so doing, they do not increase the likelihood for correct peak detection
using multiple scales because peak indications at different scales are simply merged.
Benitez and Nenadic 2008 rely only on two selected scales derived from biophysical
properties of the signal. They analyzed the correlation between the two coefficients at
each transition, and determined that noise coefficients can be described by a Gaussian
mixture model in the 2D plot of the coefficients. If also signal is present, they propose
a combination of the Gaussian mixture with an uniform distribution that describes the
peak coefficients. Both models are fit using an EM algorithm that treats the assignment
of the pairs of coefficients to the distributions as the missing observation. The model
yielding the best fit is then selected to classify the coefficients as peak or noise, and
several peak indications are again merged according to some distance criterion.

Evaluation

The presented peak detection approaches were mainly individually evaluated based on
the specific data available to the authors. Therefore, the algorithms are highly specific,
which prevents a general assessment of their performance. A comprehensive study is
currently not available and would indeed be difficult given the very different types of
data the algorithms are designed for. Still, there is a comparatively old review on spike
detection in electrophysiology data (Wilson and Emerson 2002). The authors confine
themselves to comparing algorithms according to the statements in the corresponding
publications. A separate experimental evaluation is not conducted. Yang et al. 2009

apply recent algorithms to simulated and real mass spectrometry data. They conclude
that wavelet-based peak detection methods are most appropriate owing to the consid-
eration of multiple scales.

5.3.4 Implications for the Thesis

Vesicle fusion events appear with certain well defined shape features in the signal, but
owing to the stochastic distribution of the fluorophores’ dwell time at the presynaptic
surface their time scale varies across events. This variability in scale, while preserving
basic peak shape features, is well addressed by the wavelet transform. This renders it
the preferred tool for the present peak detection task.
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In order to reliably detect peaks in the signal, the mother wavelet must match the
basic peak shape. Current methods are successful since adequate wavelets for elec-
trophysiological or mass spectrometry data are available. However, the major wavelet
families provide no wavelet that supports all shape features of synaptic vesicle fusion
events in pHluorin data at the same time. Therefore, current approaches need to be
extended for the present application.

A new method that employs multiple wavelets for combined matching of individual
peak features will be presented in the following. Combination of multiple wavelets
intends to make complex shapes detectable that are currently not addressable. At the
same time it maintains the advantages of wavelet-based approaches to effectively sep-
arate signal from noise and to adjust to variation in the scale.

5.4 synaptic activity detection using multiple wavelets

A wavelet transform-based detection method is proposed for the detection of synaptic
vesicle fusion events in pHluorin intensity measurements since the peak shapes exhibit
certain well defined features, but owing to the stochastic timing of the vesicle cycle
they are subject to a large variability in scale.

As opposed to other peak detection algorithms that propose to use a single, but in the
current case then suboptimal wavelet, the key idea of the present approach is the usage
of multiple different wavelets that match individual peak features separately1. Their
individual peak indications are then fused after processing the wavelet coefficients.
This procedure may be interpreted as construction of more complex peak shapes from
simple wavelets. The proposed method will be referred to as the multiple wavelet
algorithm (MWA).

This section presents the entire detection procedure covering (1) the localization of
synapses, (2) the computation of the intensity signals, and (3) the detailed description
of the actual MWA. The presented workflow has originally been published in Sokoll
et al. 2012b.

5.4.1 Localization of Synapses

The basis for synaptic activity detection are 2D time lapse images of pHluorins as well
as of a red fluorescent protein attached to synapsin. The detection procedure is then as
follows:

1 This is not to be confused with multiwavelets (Keinert 2004), which are a generalization of the wavelet
theory to gain mathematical properties that are otherwise mutually exclusive.
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Data : Image streams of pHluorin and synapsin
Result : Synapse locations
Compute mean projection for the individual image streams;
for both projections do

Convolve the image with a LoG filter;
Segment image using a global threshold tp;
Compute watershed transformation;
Use watershed lines to separate interconnected synaptic regions;
Compute region centers from minimum values;
for each synapse candidate do

Fit elliptical Gaussian function;
Validate fit results;

end
end
Select synapses that are double positive for pHluorin and synapsin;

doch
In order to locate individual synapses, all images are projected into a single image by
computation of the mean intensity value at each pixel position. The mean projection is
advantageous since it acts like a smoothing operation over time and reduces the likeli-
hood for detection of non-synaptic locations, due to diffusive surface proteins. To fur-
ther increase the likelihood of detecting true synapses, every culture is co-transfected
with a red fluorescent protein attached to synapsin. Synapsin is a protein that accumu-
lates in synapses and is commonly used as a synaptic marker (Evergren et al. 2007).
Additional time lapse images of that fluorophore at exactly the same region are ac-
quired, and only synapses that are double positive for pHluorin and synapsin are se-
lected. Co-transfection increases the biological reliability of the detection and provides
additional information about the ratio of active and silent synapses.

Synapses appear as elliptic spots in both images and have to be determined automat-
ically. This is a classical spot detection task, and the corresponding algorithms were
already discussed in Sect. 4.3.2. The proposed algorithm for particle detection is again
employed. Since synapses are usually larger than the PSF of the microscope, the kernel
size and the SD of the LoG filter would have to be adapted. Considering the present
setup (see Sect. 5.5.1), the same parametrization can be used since the camera pixel
size here corresponds to a larger range in the object space. The user-defined threshold
factor k can again be set to 8, but owing to the temporal smoothing, estimation of the
background noise using the median absolute deviation results in extremely low values
δb. Therefore, δb must be estimated based on the original images before averaging.

In order to minimize the amount of unspecific detections or superimpositions of
multiple synapses, the size of each detected spot is taken as an indirect argument
(Kubitscheck et al. 2000). For it, 2D elliptical Gaussian functions of the form:

G(x,y) = ob + h ¨ e´(a(x´xc)
2+2b(x´xc)(y´yc)+c(y´yc)

2), (69)

where

a =
cos2 θ
2σ2x

+
sin2 θ
2σ2y

, b =
sin 2θ
4σ2x

+
sin 2θ
4σ2y

, c =
sin2 θ
2σ2x

+
cos2 θ
2σ2y

(70)
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are fitted to each synaptic candidate. Since synaptic shapes do not align with the image
grid, θ is introduced to define the rotation angle of the Gaussian function. Equ. 69

is fitted using weighted LSQ. This is reasonable since a corresponding closed-form
solution for the EM algorithm is not available, and owing to the temporal averaging the
Poisson noise assumption is not valid anymore.

Because an approximate size estimate is sufficient, the fit is performed on a support
region simply restricted by the watershed lines around each synaptic candidate. The
individual FWHMs are subsequently used to constrain the size of detected synapses.
Only synapses that have a size of 0.56-6 µm are selected for further analysis. The lower
bound corresponds to the actual PSF measured using immobilized 30 nm diameter flu-
orescent beads that had the same emission wavelength than pHluorin. The upper bound
was empirically established. Its relatively high value reflects the fact that synaptic spots
may appear expanded owing to the diffusion of surface pHluorins and the averaging op-
eration over a long time period.

5.4.2 Computation of the Intensity Signals

Based on the locations of synapses, their intensity responses for each point in time are
then computed as follows:

Data : Synapse locations and pHluorin image stream
Result : Intensity signals
for each image do

for each synapse do
Take intersection of watershed and fixed region;
Compute mean intensity value;

end
end

doch
The intensity responses for each point in time correspond to the mean intensities within
individual regions. The fixed region for each synapse is computed from the intersec-
tion of the corresponding watershed region and a circular region centered over each
synapse (see Fig. 79a). The center pixels are taken from the Gaussian fits. The region
must be as small as possible to optimize the SNR of the signal, but large enough to
contain the site of exocytosis and endocytosis so that the true kinetics of the vesicle
cycle are detected (Royle et al. 2008). For the present experimental data (see Sect. 5.5.1)
both requirements are robustly fulfilled by taking a diameter of three times the size
of the PSF. This corresponds to „ 1.68 µm in the object space. This value was found
empirically by analyzing the respective SNRs of the signal and corresponds well to the
region sizes reported in the literature (Balaji and Ryan 2007, Granseth et al. 2006). In
conjunction with the watershed region, this region selection then presents a compro-
mise for small and large synapses since it also accounts for the actual size of each
synapse. The intensity responses of neighboring synapses are well separated.

Alternative to taking static regions, the intensity signal could also be computed using
the peak intensity of elliptical Gaussian fits at each individual point in time. This would
have the advantage of maintaining the optimal center position at each time point and
was also implemented. However, given the working memory-limited acquisition times
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Figure 79: (a) Presentation of pHluorin image data by means of false color images. The circles in-
dicate regions where the vesicle kinetics are analyzed. (b) Corresponding computed
intensity signals that illustrate the variation in signal quality and peak shapes.

of only very few minutes, the sample drift was found to be negligible. In addition, the
SNRs of the signals are lessened by „ 15 %. This considerable reduction probably stems
from the mobility of vesicle proteins after exocytosis (Royle et al. 2008), which is why
even the usage of the proposed most general Gaussian shape is not optimal.

Therefore, static regions are preferable, but it has to be kept in mind that particularly
the maximum region size has to be adjusted according to the employed vesicle protein.
As it was pointed out by Granseth et al. 2006, if selecting reporter proteins with high
numbers per vesicle, the region size has to be enlarged in order to avoid measuring
too fast decays owing to the lateral movement of the reporters out of the region.

Fig. 79b presents exemplary signals obtained using such static regions. As expected
for imaging over a large field of view, the SNR and baseline intensity between individ-
ual synapses are subject to strong variation. It is already visually noticeable that signal
A and B have their peaks at identical positions, but signal A has a higher SNR than
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signal B. Also, the individual dwell times are highly variable. They depend on the rate
of endocytosis, which in turn dependent on the activity of synapses and if more than
one vesicle is fused (Gandhi and Stevens 2003, Sankaranarayanan and Ryan 2000). This
is particularly noticeable for the clearly visible peaks in signal A. Signal C represents
a silent synapse whose intensity just decreases as a result of photobleaching.

5.4.3 The Multiple Wavelet Algorithm

This section describes the core of the multiple wavelet peak detection algorithm. Re-
calling the peak description in Sect. 5.2, the immediate increase of signal intensity, the
variation in the dwell time, and the subsequent intensity decay are found to be the
characterizing peak shape features. However, there exists no single wavelet that closely
resembles this peak shape.

In order to avoid the application of a single suboptimal wavelet, the peak shape is
approximated by different wavelets that match separate features. By visual inspection
it was found that a combination of the Haar and the Bior3.1 wavelet is capable of
describing the major peak shape characteristics. This is illustrated in Fig. 80. The Haar
wavelet detects the step response of the intensity in a small support region, and the
Bior3.1 wavelet adjusts to the varying dwell time limited by the local discontinuities at
the intensity increase and the onset of the decay.

(a) (b)

Figure 80: Illustration of the use of the (a) Haar and the (b) Bior3.1 wavelet. The decomposing
wavelet functions ψ are presented in red and an almost ideal intensity response in
black. The wavelets are mirrored at the x axis for illustration.

The actual peak detection method MWA comprises six steps:

Data : Intensity signals
Result : Peak positions
for each signal do

for each wavelet do
(I) Signal projection into the wavelet space;
(II) Selection of relevant coefficients;
(III) Combination of coefficients;

end
(IV) Fusion of multi wavelet information;
(V) Bartlett window smoothing;
(VI) Thresholding;

end
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doch
They are illustrated in Fig. 81 on the example of a section from signal B in Fig. 79b and
are now explained in detail.

Figure 81: Illustration of the six steps of MWA. The true peak positions are indicated by the
red arrows and were taken from the well observable peaks in signal A. The dashed
green lines indicate the final threshold tf as well as the found peak positions.

in step i the signal is projected onto two individual wavelet bases defined by the
Haar and Bior3.1 mother wavelets. This results in the separate wavelet coefficients
Chaar and Cbior. To avoid boundary artifacts, the signal is extrapolated at both sides
using a preceding second-order polynomial fit.

The discrete wavelet transform (DWT) as well as the continuous wavelet transform
(CWT) are available for transformation. The DWT operates on dyadic and the CWT on
continuous scales and transitions. There are very efficient implementations for the DWT

(Mallat 1989), but it has the undesirable property of being translational invariant. This
means that even small shifts in the signal will lead to large changes in the wavelet
coefficients (Mallat 2008), and this in turn will result in the fact that the detectability
of a peak depends on its position in the signal (Benitez and Nenadic 2008). Since the
CWT also allows to maintain the maximum resolution in scale and transition, it is the
preferred transformation algorithm for the present application.
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The individual transformations are directly applied to the raw signals without prior
noise reduction or baseline removal. Although numerous preprocessing techniques
exist and comprehensive reviews are provided by Komsta 2011 and Yang et al. 2009,
they have been deliberately omitted in Sect. 5.3. This was due to the fact that state-
of-the-art peak detection methods mainly consider them inherent and avoid explicit
preceding procedures.

For the present application, the fitting of a double exponential decay function and
its subsequent subtraction from the signal has been proposed by Royle et al. 2008. It
was found here that this procedure is inadequate for synapses with high activity pat-
terns. A practical alternative to computational baseline correction is intentional pho-
tobleaching of the initial surface population prior to the image acquisition. This is
acceptable since pHluorins cannot be photobleached while being quenched (Gandhi and
Stevens 2003). Such procedures are only necessary for the usage of reporter proteins
with large surface populations. For the recently developed reporter employed in this
study (Voglmaier et al. 2006), photobleaching was noticeable, but not very pronounced.
It was also found that the existing photobleaching has no effect on the outcome of
the algorithm, which is likely since its impact is minor over the peak support region.
Consequently, baseline removal was omitted in order to avoid the introduction of ad-
ditional parameters.

One of the major attractions of the wavelet transformation is the ability to separate
a signal from noise by thresholding in the wavelet coefficients. It is an implicit part of
the next step.

step ii selects the most significant coefficients. This is a crucial task since it mainly
affects the effective SNR. The hard thresholding strategy proposed for wavelet denois-
ing by Olivo-Marin 2002 is applied to all coefficients:

Ct(a,b) =

$

&

%

C(a,b) if C(a,b) ě ta

0 otherwise
. (71)

The individual threshold ta for each scale a is derived from the noise coefficients at
that scale. Since they are unknown and bias by true signal peaks must be avoided, a
reasonably robust estimate is obtained from the median absolute deviation σ̃a yielding
ta = σ̃a/0.6745.

Only coefficients at scales that fall within the variation in shape size are selected.
This restriction is derived from biophysical properties and the support range of the in-
dividual mother wavelets. The lowest included scale for both wavelets was empirically
set to amin = 4. Because noise and distortions are usually high frequency components
they are mainly present at lower scales and would otherwise indicate spurious peaks.
The maximum scale â is independently defined. Since the Haar wavelet matches a
narrow local discontinuity and the minimum time of vesicle recycling is one second
(Sankaranarayanan and Ryan 2000), its maximum scale is set to âhaar = 20. This cor-
responds to a time interval of 2 s for the present data with a sampling rate fs = 10 Hz.
The Bior3.1 wavelet covers larger parts of the peak shape corresponding to the dwell
time. For an individual signal, the current dwell time is unknown, but follows an ex-
ponential distribution with a mean lifetime of τ « 14 s (Balaji and Ryan 2007, Granseth
et al. 2006). However, because the mean lifetime is defined as the arithmetic mean of
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the exponentially decaying values, the majority of events has actually lower individual
lifetimes. It is sufficient to set the maximum scale to âbior = 94 « (2τfs)/rbior, where
rbior is the support range of the Bior3.1 wavelet.

This selection then covers a relatively large possible time range for the peak shapes.
In order to better account for the individual dwell times, the selection also exploits
the property that significant signal structures, in contrast to uncorrelated noise, propa-
gate across scales (Mallat and Zhong 1992). It was found that at the location of a peak
wavelet coefficients continuously increase over scales until the match is optimal. There-
fore, for any point in time all remaining coefficients from amin up to the optimal scale
aopt(b), which has the highest coefficient ĉ(b), are continuously selected. Therewith
the scale selection already aims at estimating from ĉ(b) the scale aopt(b) that correlates
to the current dwell time of a possible peak.

in step iii the selected coefficients are combined to the individual signal S(b) by
summation:

S(b) =

aopt(b)
ÿ

a=1

Ct(a,b). (72)

This is similar to computing the ridge lines in the wavelet coefficients (Du et al. 2006)
since it also favors continuous scale combinations and tolerates gaps between scales.
However, it is computationally much more efficient and requires no additional param-
eters to be set. In contrast to taking the commonly used product (Kim and Kim 2003,
Olivo-Marin 2002), computing the continuous sum is more robust regarding outliers
and the efficiency of the previous selection of coefficients. Shaar(b) and Sbior(b) rep-
resent then the individual peak indications of each wavelet.

step iv addresses the fusion of the information from the two wavelets into com-
bined peak indications. In a related application where multiple spectra are combined,
Hsueh et al. 2008 proposed the integration of redundant signals by averaging the
individual coefficients. Instead of being redundant representations, here, Chaar and
Cbior contain complementary information. In addition, the underlying wavelets have
non-identical support regions, and their coefficients cannot be merged. Therefore, in-
formation fusion is conducted after combination of the scales when individual peak
indications are already available.

The complementary signals Shaar(b) and Sbior(b) are fused at the feature level
by computation of their pointwise weighted sum (‘) yielding Sf(b). The correspond-
ing two weights are calculated as the inverse of the median of Shaar(b) respectively
Sbior(b), but only non-zero values are included. The median computation selects the
noisy baseline of each signal, and the weights normalize the signals so that the baseline
is represented by the value one. The summation of the normalized signals can conse-
quently be interpreted as a combined decision on whether there is a peak or not. The
probability of a peak indication is increased with respect to its distance to the baseline
noise.

A third-order local maximum filter is applied to each signal before fusion in order
to account for the fact that the Haar and Bior3.1 wavelet may have a location shift at
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the same peak. This also supports alignment of peak indications between the signals.
The final data fusion hence becomes:

Sf(b) =
Shaar

S̃haar
‘

Sbior

S̃bior
, (73)

where
Shaar = max

b´1ďb˚ďb+1
Shaar(b

˚) (74)

and
Sbior = max

b´1ďb˚ďb+1
Sbior(b

˚). (75)

in step v Sf(b) is smoothed by convolution with a Bartlett window (Kim and Kim
2003) yielding S˚f(b). This removes spurious peaks in the vicinity of real peaks as
well as plateaus of similar values in Sf(b) that can occur due to the maximum filter
operation. The window size was set to 15 and corresponds to the support region of the
Bior3.1 wavelet at amin since this wavelet was found to produce the majority of noise
artifacts. The smoothed version of Sf(b) can now be used to detect local maxima and
compare them to a threshold.

in step vi the threshold tf is computed using robust statistics. Similar to ta it
computes as tf = µ̃S˚

f
+ kfσ̃S˚

f
, where µ̃ is the median and σ̃ the median absolute

deviation. Note that this computation only involves positions in the signal that contain
non-zero values.

Provided that the experimental settings remain unchanged, the chosen adaptive
thresholding scheme is applicable for all synapses without individual adjustment of
kf.

5.5 experimental results

This section evaluates the proposed workflow for automatic detection of vesicle fusion
events. This involves assessment of real and semi-synthetic data. For real data, the total
workflow is invoked, while for semi-synthetic data only MWA is assessed in detail. First
of all the experimental data and the SNR estimation routine are established.

5.5.1 Experimental pHluorin Data

For targeting pHluorin, currently about eight different vesicle proteins are accessible (see
Fig. 5b). To date, synaptobrevin, synaptotagmin, synaptophysin, and the neurotrans-
mitter transporter vGlut have been employed, and the corresponding surface expres-
sions were summarized by Balaji and Ryan 2007. In order to allow for identification of
single vesicle fusion events at individual presynaptic sites, low surface expression is
preferred since this directly affects the available SNR and specificity. On these grounds,
the construct developed by Voglmaier et al. 2006 that couples pHluorin to vGlut is em-
ployed in this work.

The downside of this choice is that the expression level of this construct seemed
to be too low to be applicable in brain slices. The fluorescence was hardly detectable.
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This is further explained by the low number of vGlut proteins per vesicle, and the fact
that autofluorescence, which is much more prominent in packed brain slices, generally
appears at the same wavelength as the employed green fluorescent pHluorin (Nienhaus
and Nienhaus 2013, Schütz et al. 2000b). In order to establish the algorithm, all exper-
iments have been done with cultured rat hippocampal neurons. Another consequence
was that an inverted WF setup was employed because it allowed direct access for elec-
trical stimulation. The constructed setup is presented in Fig. 82.

Figure 82: The WF setup that was established by the group Molecular Physiology. The major
components are the inverted microscope Zeiss Axio Observer, the EMCCD camera
Photometrics Evolve 512, and the light source Sutter Instrument Company LAMBDA
DG-4. Electrical stimulation is provided by a manual micro-manipulator at the stage
of the microscope in connection with the GRASS S48 stimulator on top of the rack
on the right. Extracellular solution is provided by the ISMATEC perfusion device on
the left.

Noteworthy is that the setup was equipped with a 63x oil immersion objective2.
Based on the lower magnification and NA, each camera pixel now corresponds to
254 nm in the object space, and the FWHM of the PSF increased to 560 nm. Although
this configuration reduced the available resolution, the SNR of the images appeared
to be increased because more photons were now averaged on the same pixel. Since
the expression level is quite low and the algorithm averages the intensity at a certain
synapse anyway, this seemed to be a more reasonable choice than an objective with
larger magnification.

2 Zeiss Plan-Apochromat oil immersion objective: 63x magnification, 1.49 NA
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The actual recordings were performed with cultures after 14-18 days in vivo. During
acquisition, they were perfused with normal extracellular solution and standard Ca2+

concentration3. The images were acquired at 10 Hz for 2-3 min.
To be able to distinguish between evoked and spontaneous activity, six APs have

been evoked by single pulse electrical stimulation4 at an interval of 10-13 s during
each acquisition.

5.5.2 SNR Estimation in Real Data

Following Cheezum et al. 2001, the SNR of a peak in the present pHluorin data is defined
by:

SNR =
∆i
σ

. (76)

Here, ∆i represents the individual peak height computed as the difference between the
average intensity of five frames before and five frames starting at the onset of a peak. σ
denotes the noise and is also individually estimated for every peak. In order to remove
the intensity decay after each peak, each intensity signal is highpass filtered before
noise estimation. A 4th order Butterworth filter of cutoff frequency 0.05 Hz is applied
using the filtfilt function of MATLAB’s Signal Processing Toolbox. Subsequently, σ can
be estimated by computing the SD of the intensities of 80 frames after the onset of the
peak.
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Figure 83: (a)-(b) Histograms of peak SNRs for stimulated respectively spontaneous activity.

To get an idea of the available SNR for the present experimental setup, Fig. 83 presents
the SNR histograms for stimulated and spontaneous activity from 22 acquisitions. Here,
kf was set to 10, which is also the threshold factor used if not stated otherwise. The
available SNR is between 1 and 4, and the SNR of spontaneous peaks appears to be on
average slightly lower than that of stimulated ones. This is because incorrect detections
are more likely for spontaneous activity since peaks are collected at any frame, whereas

3 The standard Ca2+ concentration contains 2mM CaCl2 and 2mM MgCl2.
4 Electrical stimulation included passing 1 ms pulses at 30 V via two electrodes at a distance of „ 5 mm.

They were centered around the objective and put in the extracellular solution in close proximity to the
neurons.
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stimulated peaks are only accepted at defined positions. This bias will be noticeable in
all of the following analyses.

5.5.3 Evaluation on Real Data

The evaluation on real data comprises (1) visual, (2) quantitative, and (3) plausibility
analyses.

5.5.3.1 Visual Analysis

Fig. 84 illustrates the performance of MWA on the basis of signal A and B (see Fig. 79b)
and indicates the time points of electrical stimulation. Signal A has a reasonably well
SNR of 2.52, whereas signal B exhibits only a SNR of 1.71. Note that these SNRs have
been estimated solely on the basis of stimulated peaks since it is more likely that these
are indeed true peaks. By comparison it is apparent that stimulation does not always
result in vesicle fusion at a synapse.

In order to get an impression of how well MWA separates peaks from noise, the corre-
sponding signals S˚f , where the thresholding finally takes place, are also provided. For
comparison, these are also presented for AT since other automated detection algorithms
for pHluorin data are not available yet.

A representative AT method was implemented as follows. ∆i is computed at every
position in the signal as described for SNR estimation in the preceding section. Then
the adaptive thresholding scheme proposed by Quiroga et al. 2004 is applied. In order
to compute a robust noise estimate, the corresponding intensity signal is highpass
filtered using a more rigorous cutoff frequency of 1 Hz so that peak frequencies are
largely eliminated.

Looking at S˚f and the corresponding signal that would be available for AT, it is ap-
parent that both algorithms manage to separate true peaks from noise quite well for
the high SNR signal. Also a relatively broad range of threshold factors kf is applica-
ble without wrong peaks being included or true ones missed. This robustness is less
pronounced for AT since possibly incorrect peaks are likely to be included in order to
detect true peaks as indicated with mark 1.

The situation is different for the low SNR signal. So first of all it is already much more
difficult to decide as an observer whether distortions in the signal are true peaks or
just subject to noise. The effective SNR of the signals, where thresholding of the peaks
is conducted, appears to be much smaller for both algorithms. However, MWA still
provides reasonable freedom for selection of an optimal threshold that fits the require-
ments of the user without that the correct detection in signal A would be impeded. In
comparison, threshold factors kf that yield robust detection of true peaks in A using
AT hardly detect any peak in signal B (see mark 2). If alternatively kf is set to lower
values, then false peaks are very likely to be included in A and B as for instance at
mark 3.

It can be concluded that MWA is indeed capable of notably increasing the effective
SNR for peak detection in contrast to standard adaptive AT. The selection of thresh-
old factors kf is much more robust with respect to varying SNRs of different synaptic
signals.
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Figure 84: Visual comparison of the performance of MWA and AT using a (a) high and a (b) low
SNR signal. The time points of electrical stimulation are indicated by the red dashed
lines. The threshold lines correspond to kf = 8, 10, and 14 for MWA and kf = 1.88,
2.4, and 3 for AT.

5.5.3.2 Quantitative Analysis

In order to measure the detection performance of MWA quantitatively, a GT comprising
the position of peaks in intensity signals must be available. Although the exact moment
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Jaccard index Expert 1 Expert 2 Expert 3 Expert 4 Expert 5

Expert 1 - 0.62/0.44 0.44/0.34 0.46/0.37 0.47/0.34
Expert 2 0.62/0.44 - 0.33/0.24 0.46/0.33 0.45/0.33
Expert 3 0.44/0.34 0.33/0.24 - 0.32/0.23 0.32/0.20
Expert 4 0.46/0.37 0.46/0.33 0.32/0.23 - 0.34/0.26
Expert 5 0.47/0.34 0.45/0.33 0.32/0.20 0.34/0.26 -

Table 2: Inter-rater reliability by means of the mutual Jaccard indices for stimulated (first num-
ber) and spontaneous (second number) peaks.

of stimulation is known, the GT is not even available for evoked APs because the release
probability was experienced to be ă 100 %. A GT must be constructed. For it, five
neurobiologists from the LIN have individually been asked to manually select peaks
in 123 synaptic intensity signals computed from four acquisitions. All neurobiologists
were experts in the very related field of electrophysiology, where peak detection is a
frequent task.

All acquisitions included the initial phase with six evoked APs, but of course the
experts were not aware of this. Three of the four acquisitions underwent the standard
single pulse stimulation, but the last acquisition actually saw four pulses per stimulus
at 40 Hz. The release probability was increased, but still each stimulus just covered
the time period of a single frame. Furthermore, two acquisitions dated from the same
experiment. The required intensity signals have not been manually selected, instead
the total workflow was invoked. Also, low SNR and empty signals from silent synapses
were provided to the experts.

The outcome of the manual detections was fairly surprising. It turned out that 1D
peak detection is a nontrivial task and highly subjective also for human experts since
the inter-rater reliability was very low. It was measured by means of the Jaccard index
J (Levandowsky and Winter 1971), which determines the similarity between two sets
by:

J =
|Set1 X Set2|

|Set1 Y Set2|
. (77)

For the present application, it can be interpreted as the probability that a detected
peak position by either human expert is actually detected by both experts. The mutual
Jaccard indices for stimulated and spontaneous peaks are summarized in Table 2. The
average mutual similarities are only 41.05 % respectively 30.80 %.

Given the low inter-rater reliability, a reliable GT could be constructed for neither
of both types of activity. A quantitative evaluation against human experts could not
be performed since the results would be hardly interpretable. Instead, MWA will be
quantitatively analyzed on semi-synthetic data in Sect. 5.5.4, and in the following the
output of MWA is at least made plausible on real experimental data. The outcome of the
manual detections emphasized again how important an automated and reproducible
activity detection algorithm is.
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5.5.3.3 Plausibility Analysis

To obtain at least an indirect measure for the correctness of the detected peaks, it will
now be tried to make plausible that the output of MWA yields biologically reasonable
results. The quantized distribution of the peak heights ∆i, individually demonstrated
by Balaji and Ryan 2007 and Gandhi and Stevens 2003, is reproduced here, but now
the computation is automatized and also covers spontaneous activity, which has not
been shown yet.

In previous studies on biophysical properties, histograms of absolute peak intensities
of stimulated activity at manually selected synapses have been calculated. The present
algorithm scans the whole field of view and also includes off-focus synapses. More-
over, next to including different acquisitions into the analysis the test set combines
acquisitions from cell preparations with different expression levels, which routinely
happens if experiments are performed at different dates with fresh cell cultures. The
distribution cannot be computed from absolute intensities since even peaks of different
synapses in the same image may have different absolute intensity quanta.

Therefore, it is proposed here to transform absolute intensities into relative intensi-
ties that can be combined in a histogram. The key idea is that absolute peak intensities
of a single synapse are quantitatively comparable as long as the sample drift during
image acquisition is negligible. Then for each synapse the individual absolute quan-
tal intensity can be estimated by use of hierarchical clustering if at least two peaks are
available. The individual quantal intensity can then in turn be used to compute relative
intensities by dividing the absolute peak intensities with the quanta.

In order to cluster the peak intensities of individual synapses, the cluster function of
MATLAB’s Statistics Toolbox was solely provided with a minimum quantal distance
of 100 intensity counts empirically determined by examination of several acquisitions.
Subsequently, the average peak intensity of each cluster was computed. The individual
quantal intensity is then the smallest cluster distance or the smallest average cluster
intensity, whichever is smaller.

The relative intensity histograms for evoked and spontaneous activity of three dif-
ferent data sets are summarized in Fig. 85. The first set comprises 22 acquisitions at
standard Ca2+ concentration, and in the initial phase six peaks have been evoked by a
single pulse. The second set comprises 19 acquisitions at high Ca2+ concentration5. The
stimulation protocol was identical. The third set was again acquired at standard Ca2+

concentration and included nine acquisitions. However, the six stimulation events now
included multiple pulses provided with 100 Hz during one sampling interval, and each
event consisted of 10 instead of a single pulse.

Basically, there is only a single significant peak with Gaussian distribution in the
stimulated and spontaneous relative intensity histograms of the first data set (see
Fig. 85a-85b). This indicates that all peaks at a single synapse originated from the same
number of fused vesicles. Since the Ca2+ concentration was low, it can be expected
that actually only single vesicles did fuse.

In comparison, there are several evenly spaced peaks under high Ca2+ concentration
(see Fig. 85c-85d). All figures also illustrate the best overall and individual fit to a set of
Gaussians with identical SDs. The corresponding line fits to the fitted peak positions in
Fig. 85f further visualize the integer multiples of the quantal distribution since all lines

5 The high Ca2+ concentration contains 5 mM CaCl2 and 0.6 mM MgCl2.
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Figure 85: Relative intensity histograms for three different data sets: (a)-(b), (c)-(d), (e). The
thick contour lines represents the best overall (red) and individual (black) fit to
a set of Gaussians with identical SDs. (f) Line fits to the fitted peak positions of the
individual data sets. They visualize the integer multiples of the quantal distributions.
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almost approach the coordinate center. These results suggests that at single synapses
peaks with different absolute intensities did occur, and hence the number of fused
vesicles for a single AP varied. This is reasonable since it is well known that an increase
in Ca2+ concentration increases the probability for larger numbers of fused vesicles
per AP (Kandel et al. 2013). These findings were reproducible for both types of activity.

Similar results can be obtained by provision of multiple pulses with high frequency
as was done for the third data set that remained with standard Ca2+ concentration.
Again, the probability for multiple vesicle fusion increased since several evenly spaced
peaks are identifiable in Fig. 85e.

The proposed clustering procedure is likely to result in an underestimation for the
number of peaks with multiple quanta. They can only be detected if a single synapse
indeed responded with different numbers of fused vesicles for different APs. Otherwise
they were always only counted as single quanta. Nevertheless, it could be made plausi-
ble that the probability for multiple vesicle fusion can indeed be increased with higher
Ca2+ concentration as well as bursts of APs.

Based on these findings, it can be concluded that the proposed workflow is capable of
detecting relevant peaks irrespectively of whether they are manually evoked or result
from the network activity itself. Biophysical parameters can reliably be derived using
both types of activity.

5.5.4 Evaluation on Semi-synthetic Data

In order to evaluate the performance of MWA more rigorously, it was also applied
to semi-synthetic synaptic intensity signals. The signals were created from 76 evoked
and 91 spontaneous peaks that were clearly identifiable in the same data set that was
provided to the human experts. Owing to the low inter-rater reliability the number of
selected peaks turned out to be relatively low. To maintain a reliable GT, only peak
shapes that showed no overlap with other peaks could be selected.

The peak shapes were repeatedly placed on signals of length 3 min until a total num-
ber of 500 peaks was reached for both types of activity. The individual positions were
created by a homogeneous Poisson process with firing rate of 1 Hz, but overlapping
peak shapes were prevented. The baseline signal had an offset of 2000 intensity units,
and bleaching was simulated by an exponential decay with decay constant of 0.01.

To test how MWA performs as a function of the SNR, scaled noise from silent synapses
was added to the signals. The noise between peaks was also adjusted to match the
resulting SNR at the peaks. The semi-synthetic data consequently includes realistic peak
shapes and noise instead of simulated approximations. A reliable GT is also available.
Fig. 86 depicts an exemplary spontaneous activity signal at the four different SNRs

adjusted in this study and indicates the underlying GT.
The performance of MWA, in comparison with AT, is assessed by plotting the true

positive rate (TPR) versus the false discovery rate (FDR), where FDR is the number of
falsely identified peaks divided by all identified peaks. This is similar to the com-
monly used receiver operating characteristic (ROC). Since the frequency of true peaks
is relatively low in comparison to the sampling rate, evaluation of the ROC would not
be very meaningful here. The performance curves for four different SNRs are presented
in Fig. 87a-87b for stimulated respectively spontaneous activity. The threshold factor
kf was varied between „ 4-20.5 for MWA and „ 1.5-2.9 for AT.
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Figure 86: Exemplary semi-synthetic signal with spontaneous activity at four different SNRs.
The red dashed lines indicate the GT.

Clearly, the detection capability of MWA is superior over AT at any SNR and type
of activity. The results are worse for spontaneous activity, but it can be assumed that
any ambiguous peak selection for creation of the semi-synthetic data did fall into this
data set. The relative improvement even increases towards low SNR as is additionally
depicted in Fig. 87c-87d. The overall performance of MWA is satisfactory only for SNR

ą 1, however, this is the SNR that most of the peaks have given the present experimental
configuration. MWA can be reliably applied to such type of data.

5.6 generalization of the multiple wavelet concept

MWA introduces a new concept that employs multiple wavelets to match all relevant
features of a peak. This stands opposed to other general peak detection algorithms
that just use a single wavelet. For the present application, the number of wavelets was
set to two, but more can be incorporated. In order to assess whether the fusion of
multiple wavelets indeed improves the detection capability of MWA, Fig. 88 plots again
the performance of MWA on semi-synthetic data, but also provides the curves if only
the Haar or the Bior3.1 wavelet would be used for detection. The algorithm remained
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Figure 87: Performance analysis of MWA and AT. Both algorithms were applied to semi-
synthetic data at different SNRs for (a) stimulated and (b) spontaneous activity. Rel-
ative improvement of MWA related to AT for (c) stimulated and (d) spontaneous
activity at different SNRs. Since the performance curves for the two algorithms had
different supporting points at the x axis, they were interpolated in order to be com-
parable.
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unchanged except that in step IV the fusion defined by Equ. 73 is not conducted for
the Haar or the Bior3.1 curves.
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Figure 88: Performance analysis of the complete MWA and if just the individual wavelets are
used. Both algorithms are applied to semi-synthetic data at different SNRs for (a)
stimulated and (b) spontaneous activity.

It appears that the performance of using just the Haar wavelet is a lot better than
solely relying on the Bior3.1 wavelet. This was expected since the Bior3.1 wavelet re-
sults in a much noisier signal Sbior, which is clearly recognizable in the example of
Fig. 81. The discrimination between noise and signal is much more unreliable than in
Shaar.

Although their results are considerably different, fusion of both wavelet decisions,
as performed by MWA, manages to increase the performance. It has to be admitted that
the improvement is relatively small, but this is justified by the following circumstances.
First, the individual performance of the Bior3.1wavelet is indeed very weak, and hence
its ability to contribute reasonably to the weighted result can be considered low. Sec-
ond, it is likely that the created semi-synthetic data set is biased to some degree. It
must be considered that humans tend to select peaks mainly based on a clear imme-
diate increase of the intensity. The semi-synthetic data consequently favors the feature
that is mainly addressed by the Haar wavelet, and the corresponding performance is
overly good.

177



In spite of it all, MWA exhibits some minor improvement, which proves that the key
idea is working. It is also fair to expect that if the data set would be less biased or if a
more powerful wavelet than Bior3.1 could be found the resulting improvement would
be more pronounced.

Besides these considerations with respect to the present specific data, the key con-
cept of MWA should be generalizable to other applications since varying or complex
shapes are a typical challenge in signal and image processing. This is particularly true
for electrophysiology, where in fact the true peak shape and not just its scaling varies
significantly. Several wavelets have their justification, but always only a single one was
chosen (Benitez and Nenadic 2008, Nenadic and Burdick 2005, Kim and Kim 2003). It
would be of great interest if their combined application can yield higher robustness.

More complex shapes that can be disassembled into several clear features should
be addressed with multiple wavelets. This may for instance be advantageous for ad-
vanced driver assistance or geo-information systems. It must be stated that for the
present application two wavelets that match the signal at the same position have been
employed, which was shown to facilitate the fusion strategy. In order to achieve more
general applicability and to support compounded shapes, an improved fusion strategy
that can deal with fixed or even varying distances between different wavelet decisions
must be developed. If this is developed further it can also be advisable to conduct the
fusion at another level. Here, the feature level was chosen, but for multiple wavelets
(ą 2) the fusion could also take place at the decision level (Hall and Llinas 1997).

5.7 conclusion and future work

This chapter presented a workflow for automated detection of individual synaptic
activity in pHluorin images. It includes the detection of synaptic spots, computation
of their intensity signals and subsequent determination of activity by means of 1D
peak detection. Activity detection was the main matter of interest and a wavelet-based
algorithm that employs multiple wavelets was proposed.

Instead of choosing a single suboptimal wavelet for peak detection, individual fea-
tures of the shape of interest are addressed by different wavelets. The resulting signals
in the wavelet space are subsequently fused so that the final thresholding is facilitated
and more robust. This could be made plausible by visual analysis of real data and was
more rigorously assessed by means of the detection performance on semi-synthetic
data. In either way the proposed MWA was clearly superior to standard AT, which is
currently the only algorithm available for pHluorin measurements. For real acquisitions
it was also shown that detected peaks reveal the quantal nature of vesicle fusion indi-
cating the reliability of the outcome of MWA. A ground truth evaluation against human
experts failed owing to the poor inter-rater reliability.

It is particularly the latter result that emphasizes the difficulty to interpret pHluorin

signals. It underlines the stated objective for robust automatic approaches. It can be
concluded that the proposed procedure is capable of fulfilling this demand, since the
complete workflow is automatized and its performance is clearly superior to AT (Ob-
jective 2.1). It is advantageous that only the two thresholds for synapse and peak de-
tection remain as free parameters because all other variables could be well defined
with respect to the application. Since all analyses have been conducted for evoked and
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spontaneous activity and similar results were achieved, MWA can be reliably used for
analysis of spontaneous activity that has not been investigated yet (Objective 2.2).

The incorporation of two different wavelets to detect complex peak shapes that are
subject to strong variation can be considered as a novel concept. It enables the MWA

to perform more than twice as good as AT, particularly at low SNRs (Objective 2.3).
The fundamental functioning of this multiple wavelet concept could be proven, but for
the present application the improvement was shown to be marginal. However, since
the method is not limited to only two wavelets as employed here, it can be expected
that it yields great potential for the detection of more complex peak shapes in other
applications. Finally, MWA makes the analysis of synaptic activity less subjective by
incorporating all synapses and their varying signal quality into the analysis (Objective
2.4). It was possible to reveal the quantal nature of vesicle fusion without manual
selection of clearly identifiable activity.

In order to make this workflow widely available, MWA, including a GUI, can be down-
loaded at http://sourceforge.net/projects/isad/. It is implemented in MATLAB
and published under the Creative Commons Attribution License.

MWA could not be applied to acquisitions in brain slices since the fluorescence of
pHluorin was barely distinguishable from the autofluorescence in the compact tissue. To
fulfill this demand it must be referred to the promising imaging configurations stated
in Sect. 4.11.

There are two major directions for future work that would make the fundamental
idea more generally applicable. First, closely overlapping peaks have so far not been
considered in this work. For the present application, occurrence of overlapping peaks
have found to be rare. For instance in electrophysiology this appears to happen more
frequently. So called bursts are an exception where all pHluorins are released with high
frequency. This typically happens when cultures die. Detection of such events would
be of interest from a biological point of view. It allows to draw conclusions on the
viability of the cells and if recorded data should be used or not. Consequently, the
impact of nearby peaks on the detection performance should be analyzed in detail. It
is particularly the relatively large support range of the Bior3.1 wavelet that can cause
problems if peaks are too close.

On the other hand, the fusion strategy should gain more attention. In order to ad-
dress more complex shapes it is required to handle wavelets that match features at
different positions in the signal or image. To fuse their information, a strategy that can
deal with variable distances between the peak correlation of the individual wavelets
is necessary. For the present application, this situation would arise if for instance a
wavelet that matches the intensity decay shall also be included. Since the dwell times
vary significantly, the individual signals S cannot be combined by simple arithmetic
treatment. It might be advisable to conduct the fusion at the decision level after indi-
vidual thresholding.

From a biological point of view, the presented workflow can now also be applied
to investigate spontaneous activity of neurons. Such analyses could now be combined
with measurements of multi-electrode arrays. This would allow to bridge the gap be-
tween single synaptic analysis and the network level because multi-electrode arrays
only have a low spatial resolution, but can record signals over a large area (Scanziani
and Häusser 2009).
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An algorithm for neuronal network skeletonization, that just relies on optical activity
reporters, has also been developed during the work for this thesis. The major difficulty
was that exclusively active synapses are labeled while the neuronal structure is only
visible by autofluorescence. It was applied to images containing live staining of active
synapses using fluorescent labelled anti-synaptotagmin antibody uptake and was pub-
lished in Sokoll et al. 2012a. Synaptotagmin uptake and pHluorin images have similar
properties with respect to the stationary network structure and hence the algorithm
should also be applicable to pHluorin recordings. In combination, these techniques have
the potential to analyze the process of signal transmission at the neuronal network
level.

A final application of interest that shall be addressed here is the determination of
the exact vesicle fusion site at the presynaptic terminal. The existence of preferred
vesicle fusion sites has been postulated by Freche et al. 2011 on the basis of simulations
and was experimentally investigated by Gaffield et al. 2009 and Zenisek et al. 2000.
However, both used types of cells with very large synaptic terminals that simplified
the analysis.

In order to determine the fusion sites of neurons using pHluorins, the very first idea
could be to apply localization algorithms. Although the likelihood for only single vesi-
cle fusions is high, each vesicle contains several pHluorins and the density is too high
even for multiple particle finding algorithms. Pilot experiments have been conducted
where the weighted Gaussian fitting procedure described in Sect. 5.4.1 was applied to
synaptic locations in the pHluorin images at any time point. The underlying assumption
is that at least at the moment of vesicle fusion the pHluorins are so closely located that
they can be considered as a single fluorophore until they diffuse apart.
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Figure 89: Course of the average FWHM over the support range of stimulated peaks. The red
line represents a single exponential recovery fit to the course after vesicle fusion.

As a first result, Fig. 89 plots the course of the average FWHM over the support range
of stimulated peaks. The FWHM decreases immediately at the onset of the peak and
recovers exponentially. The course of the obtained curve is similar to that experienced
in FRAP experiments and is likely to describe the assumed pHluorin diffusion. If it turns
out that this is indeed the case, the fitted location at the onset of each peak could be an
indicator for the fusion site at the active zone. This remains to be investigated in more
detail. As a side effect, the FWHM signal could also be used in combination with the
intensity signal so that the peak detection can be further improved.
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6
S U M M A RY A N D F U T U R E W O R K

This thesis aimed at developing tools that support neurobiologists in investigating the
functioning of neurons at the molecular level. The focus was on two subjects: the mea-
surement of fast 3D molecular dynamics in complex living samples and the detection
of individual synaptic activity.

Both topics are interrelated since the highly dynamic arrangement, mobility and in-
teraction of molecules modulate synaptic transmission efficacy. This variability in neu-
ronal signalling must be detectable and is in turn considered fundamental for higher
brain functions.

These underlying biological principles were the topic of Chapter 2. Since the corre-
sponding investigations have to be conducted in nanoscale compartments of living
samples, FM is used as the basic analysis technique. It was introduced in detail in
Chapter 3.

Chapter 4 addressed the observation of 3D molecular dynamics inside complex living
samples. For it, a suitable imaging configuration was established. As a first contribu-
tion, it could be proven that at least the derivation of 2D mobility parameters is possible
at depths of several tens of micrometers in organotypic brain slices. Owing to the op-
tical aberrations introduced by the RIM, such analyses are not directly extendable to
3D. The major contribution is the development of an online calibration procedure that
adjust astigmatism-based 3D SPT techniques to the induced aberrations. It requires vir-
tually no additional experimental efforts or compromises for the experimenter and
is conceptually novel by estimating the aberrations directly from the acquired image
stream. Improved 3D diffusion parameters and the correct 3D morphology of neuronal
structures can now be observed below the resolution limit. The systematic positioning
error is at least halved. As a final contribution, also the application of an EM algorithm
for shape estimation of multiple particles at distances below the resolution limit was
proposed.

In Sect. 4.11 the evaluation results and the achieved objectives were in detail dis-
cussed. In summary, it can be concluded that the observation of fast 3D molecular dy-
namics in nanoscale compartments is now readily available in complex living samples.
The experimenter can start imaging right away. The spatial and temporal resolutions
are basically only limited by the available SNR. Increasing the imaging quality remains
the biggest challenge. The presented imaging configuration does not suffice to reach
the intended goal of having axial LAs ď 100 nm in brain slices. However, the funda-
mental functioning of the algorithm in combination with the setup could be proven.
Its simplicity makes it easy for others to further improve the presented method.

A method for the detection of individual presynaptic neurotransmitter release was
presented in Chapter 5. It employs pHluorins as fluorescent markers and detects in-
tensity changes that correspond to vesicle fusion events at individual synapses using a
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wavelet-based algorithm. The analysis procedure is fully automatized and allows to de-
tect spontaneous activity. The major scientific contribution is the incorporation of two
different wavelets to match individual features of the shape of interest. Taking multiple
wavelets is conceptionally novel and allows to address more complex shapes than with
just a single suboptimal wavelet. Particularly for low SNRs, the detection capability is
increased by more than 100 % with respect to that of standard AT approaches.

Again, the evaluation results and the achieved objectives were already in detail dis-
cussed in Sect. 5.7. It can be stated that the proposed workflow allows for robust au-
tomated detection of individual synaptic activity in pHluorin images. By incorporating
all observable synapses into the analysis, subjectivity has been largely eliminated. It is
now possible to derive biologically relevant parameters also for spontaneous activity,
which has not been investigated yet.

The two major subjects have mainly been considered separately in this thesis. The
directions for future work were individually described in Sect. 4.11 and Sect. 5.7, re-
spectively. Their combined application requires two prerequisites: first, both must be
available for the same biological system and second, multiple wavelengths have to be
detected in parallel.

The first issue could not be fully accomplished during this work. The application to
brain slices could only be shown for the analysis of molecular dynamics, but it was
found that the determined pHluorin signals are too weak for the reliable extraction of
neuronal activity. It can be assumed that activity detection is likely to be accomplished
in brain slices using the proposed alternative imaging configurations (see Sect. 4.11).
The combined application is rather a matter of improvements in microscopy hardware
than of algorithmic difficulties.

The detection of multiple wavelengths can be easily accomplished by introduction
of a beam splitter between the CSU and the detector. It transmits a certain wavelength,
but reflects another (see Sect. 3.1.4.2). This creates two light paths that can either be
detected by individual cameras or projected on either halve of the sensor of a single
camera. The fluorescence of QDs and pHluorins can be detected in parallel, since the
Stokes shift of QDs can be quite large so that even a single excitation wavelength can be
used. Such a configuration would already provide the ability to observe interactions
of different types of molecules. They simply have to be labeled with QDs of varying
emission wavelengths.

The combined application of both methods would finally allow to address various
biological questions. The direct readout of the probability of neurotransmitter release
is of utmost importance. It allows to determine variations in short-term plasticity. The
facilitation or depression of the release probability, that may last from milliseconds to
seconds, is now directly observable at the single synaptic level where the stochastic
variability cannot be neglected anymore (see Sect. 2.4.2). It can now be investigated
whether facilitation or depression correlate with the presence of certain molecules and
their interplay. Furthermore, do they need to maintain fixed positions or is it indeed
their random behavior that facilitates synaptic plasticity. What happens if certain sub-
populations are coupled via antibodies and hence their mobility is decreased. What is
the result with respect to over- or underexpression of subpopulations. Finally, also the
patterns of activation and their timings have an influence on synaptic plasticity (Abbott
and Regehr 2004) and can now be investigated for each individual synapse.
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As an ultimate goal, analyses at the molecular and the network level should be com-
bined (Scanziani and Häusser 2009). Then, it can be investigated how local changes in
synaptic transmission modulate the organization of cells to local circuits. For instance,
what happens if Ca2+ channels are overexpressed and hence the synaptic transmission
probability is globally increased. Does this lead to certain synchronization patterns at
the network level, or does it become more static so that fast and reliable reactions are
favored over adaptability.

All in all, it can be concluded that the techniques for investigating the functioning
of the brain have been tremendously improved until today. Employing image and sig-
nal processing algorithms, the present thesis supports this direction by making current
techniques widely and readily available in less artificial systems. This fosters and en-
courages further investigations on how the brain fulfills our complex daily tasks.

183





B I B L I O G R A P H Y

E. Abbe. Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung.
Archiv für mikroskopische Anatomie, 9(1):413–68, 1873. (Cited on page 28.)

E.A. Abbondanzieri, W.J. Greenleaf, J.W. Shaevitz, R. Landick, and S.M. Block. Direct
observation of base-pair stepping by rna polymerase. Nature, 438:460–5, 2005. (Cited
on page 38.)

L.F. Abbott and W.G. Regehr. Synaptic computation. Nature, 431:796–803, 2004. (Cited
on pages 13 and 182.)

A.V. Abraham, S. Ram, J. Chao, E.S. Ward, and R.J. Ober. Quantitative study of single
molecule location estimation techniques. Optics Express, 17(26):23352–73, 2009. (Cited
on pages 38, 53, and 84.)

F. Aguet, D.V.D. Ville, and M. Unser. A maximum-likelihood formalism for sub-
resolution axial localization of fluorescent nanoparticles. Optics Express, 13(26):10503–
22, 2005. (Cited on pages 56, 62, and 66.)

P.L. Ainsleigh. A tutorial on em-based density estimation with histogram intensity
data. Nuwc-npt technical report 11,807, Sensors and Sonar Systems Department,
NAVSEA, Newport, Rhode Island, 2009. (Cited on pages 86 and 87.)

G.B. Airy. On the diffraction of an object-glass with circular aperture. Transactions of
the Cambridge Philosophical Society, 5:283–91, 1835. (Cited on page 29.)

C.M. Anderson, G.N. Georgiou, I.E. Morrison, G.V. Stevenson, and R.J. Cherry. Track-
ing of cell surface receptors by fluorescence digital imaging microscopy using a
charge-coupled device camera. low-density lipoprotein and influenza virus receptor
mobility at 4 degrees c. Journal of Cell Science, 101:415–25, 1992. (Cited on pages 44,
52, and 68.)

D. Aquino, A. Schönle, C. Geisler, C. Middendorff, C.A. Wurm, Y. Okamura, T. Lang,
S.W. Hell, and A. Egner. Two-color nanoscopy of three-dimensional volumes by 4pi
detection of stochastically switched fluorophores. Nature Methods, 8(4):353–9, 2011.
(Cited on page 61.)

P. Ariel and T.A. Ryan. Optical mapping of release properties in synapses. Frontiers in
Neural Circuits, 4(18):1–10, 2010. (Cited on pages 152 and 153.)

M. Armbruster and T.A. Ryan. Synaptic vesicle retrieval time is a cell-wide rather
than individual-synapse property. Nature Neuroscience, 14(7):824–6, 2011. (Cited on
page 153.)

J. Art. Photon detectors for confocal microscopy. In Handbook of Biological Confocal
Microscopy, pages 251–64. Springer, 3th edition, 2006. (Cited on page 24.)

185



P.P. Atluri and T.A. Ryan. The kinetics of synaptic vesicle reacidification at hippocam-
pal nerve terminals. The Journal of Neuroscience, 26(8):2313–20, 2006. (Cited on
page 153.)

D. Axelrod. Total internal reflection fluorescence microscopy in cell biology. Traffic, 2

(11):764–74, 2001. (Cited on page 35.)

D. Axelrod, D.E. Koppel, J. Schlessinger, E. Elson, and W.W. Webb. Mobility mea-
surement by analysis of fluorescence photobleaching recovery kinetics. Biophysical
Journal, 16(9):1055–69, 1976. (Cited on page 41.)

M. Axmann, J. Madl, and G.J. Schütz. Single-molecule microscopy in the life sciences.
In Fluorescence Microscopy - From Principles to Biological Applications, pages 293–343.
Wiley-Blackwell, 1th edition, 2013. (Cited on pages 22, 25, and 85.)

O. Azucena, J. Crest, J. Cao, W. Sullivan, P. Kner, D. Gavel, D. Dillon, S. Olivier, and
J. Kubby. Wavefront aberration measurements and corrections through thick tissue
using fluorescent microsphere reference beacons. Optics Express, 18(16):17521–32,
2010. (Cited on page 65.)

H. Babcock, Y.M. Sigal, and X. Zhuang. A high-density 3d localization algorithm
for stochastic optical reconstruction microscopy. Optical Nanoscopy, pages 1–6, 2012.
(Cited on pages 59, 63, 71, 85, 113, and 150.)

R. Bacallao, S. Sohrab, and C. Phillips. Guiding principles of specimen preservation
for confocal fluorescence microscopy. In Handbook of Biological Confocal Microscopy,
pages 368–80. Springer, 3th edition, 2006. (Cited on page 65.)

D. Baddeley, I.D. Jayasinghe, C. Cremer, M.B. Cannell, and C. Soeller. Light-induced
dark states of organic fluochromes enable 30 nm resolution imaging in standard
media. Biophysical Journal, 96(2):L22–4, 2009. (Cited on page 53.)

M. Badieirostami, M.D. Lew, M.A. Thompson, and W.E. Moerner. Three-dimensional
localization precision of the double-helix point spread function versus astigmatism
and biplane. Applied Physics Letters, 97:161103, 2010. (Cited on pages 61, 111,
and 119.)

J. Balaji and T.A. Ryan. Single-vesicle imaging reveals that synaptic vesicle exocytosis
and endocytosis are coupled by a single stochastic mode. Proceedings of the National
Academy of Sciences, 104(51):20576–81, 2007. (Cited on pages 152, 153, 154, 160, 164,
166, and 172.)

M.L. Bang and L. Owczarek. A matter of balance: Role of neurexin and neuroligin at
the synapse. Neurochemical Research, 38(6):1174–89, 2013. (Cited on page 77.)

I.N. Bankman, K.O. Johnson, and W. Schneider. Optimal detection, classification, and
superposition resolution in neural waveform recordings. IEEE Transactions on Biomed-
ical Engineering, 40(8):836–41, 1993. (Cited on page 155.)

M.O. Baradez, C.P. McGuckin, N. Forraz, R. Pettengell, and A. Hoppe. Robust and au-
tomated unimodal histogram thresholding and potential applications. Pattern Recog-
nition, 37(6):21131–48, 2004. (Cited on page 49.)

186



A.P. Bartko and R.M. Dickson. Imaging three-dimensional single molecule orientations.
The Journal of Physical Chemistry B, 103:11237–41, 1999. (Cited on page 53.)

P.I.H. Bastiaens and A. Squire. Fluorescence lifetime imaging microscopy: spatial res-
olution of biochemical processes in the cell. Trends in Cell Biology, 9(2):48–52, 1999.
(Cited on page 42.)

R. Benitez and Z. Nenadic. Robust unsupervised detection of action potentials with
probabilistic models. IEEE Transactions on Biomedical Engineering, 55(4):1344–54, 2008.
(Cited on pages 157, 163, and 178.)

M.R. Bennett, L. Farnell, and W.G. Gibson. The probability of quantal secretion near
a single calcium channel of an active zone. Biophysical Journal, 78(5):2201–21, 2000.
(Cited on page 13.)

A.J. Berglund, M.D. McMahon, J.J. McClelland, and J.A. Liddle. Fast, bias-free algo-
rithm for tracking single particles with variable size and shape. Optics Express, 16

(18):14064–75, 2008. (Cited on page 51.)

S. Berning, K.I. Willig, H. Steffens, P. Dibaj, and S.W. Hell. Nanoscopy in a living mouse
brain. Science, 335(6068):551, 2012. (Cited on page 73.)

G. Best, R Amberger, and C. Cremer. Super-resolution microscopy: Interference and
pattern techniques. In Fluorescence Microscopy - From Principles to Biological Applica-
tions, pages 345–74. Wiley-Blackwell, 1th edition, 2013. (Cited on page 30.)

E. Betzig. Proposed method for molecular optical imaging. Optics Letters, 20(3):237–9,
1995. (Cited on pages 35 and 37.)

E. Betzig, G.H. Patterson, R. Sougrat, W. Lindwasser, S. Olenych, J.S. Bonifacino, M.W.
Davidson, J. Lippincott-Schwartz, and H.F. Hess. Imaging intracellular fluorescent
proteins at nanometer resolution. Science, 313(5793):1642–5, 2006. (Cited on pages 38,
39, 40, and 49.)

B. Biermann, S. Sokoll, J. Klueva, M. Missler, J.S. Wiegert, J.B. Sibarita, and M. Heine.
Imaging of molecular surface dynamics in brain slices using single-particle tracking.
Nature Communications, 5(3024):1–10, 2014. (Cited on pages 72, 76, 82, and 139.)

E. Biffi, D. Ghezzi, A. Pedrocchi, and G. Ferrigno. Development and validation of a
spike detection and classification algorithm aimed at implementation on hardware
devices. Computational Intelligence and Neuroscience, 2010(8):1–15, 2010. (Cited on
page 155.)

J. Binding, J.B. Arous, J.F. Léger, S. Gigan, C. Boccara, and L. Bourdieu. Brain re-
fractive index measured in vivo with high-na defocus-corrected full-field oct and
consequences for two-photon microscopy. Optics Express, 19(6):4833–47, 2011. (Cited
on page 93.)

P. Bingen, M. Reuss, J. Engelhardt, and S.W. Hell. Parallelized sted fluorescence
nanoscopy. Optics Express, 19(24):2316–26, 2011. (Cited on page 37.)

S.S. Blackman. Multiple hypothesis tracking for multiple target tracking. IEEE
Aerospace and Electronic Systems Magazine, 19(1):5–18, 2004. (Cited on page 67.)

187



S. Bonneau, M. Dahan, and L.D. Cohen. Single quantum dot tracking based in percep-
tual grouping using minimal paths in a spatiotemporal volume. IEEE Transactions on
Image Processing, 14(9):1384–95, 2005. (Cited on page 68.)

M.J. Booth. Adaptive optics in microscopy. Philosophical Transactions of the Royal Society
A, 365(1861):2829–43, 2007. (Cited on page 65.)

H. Bornfleth, P. Edelmann, D. Zink, T. Cremer, and C. Cremer. Quantitative motion
analysis of subchromosomal foci in living cells using four-dimensional microscopy.
Biophysical Journal, 77(5):2871–86, 1999. (Cited on page 48.)

J Boulanger, C. Kervrann, J. Salamero, J.B. Sibarita, and P. Bouthemy. Non-parametric
regression for patch-based fluorescence microscopy image sequence denoising. In
5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pages
748–51, 2008. (Cited on page 48.)

E.J. Breen, G.H. Joss, and K.L. Williams. Locating objects of interest within biological
images: The top hat box filter. Journal of Computer-Assisted Microscopy, 3(2):97–102,
1991. (Cited on page 49.)

D.S. Bright and E.B. Steel. Two-dimensional top hat filter for extracting spots and
spheres from digital images. Journal of Microscopy, 146(2):191–200, 1987. (Cited on
page 49.)

R.E. Burkard and E. Çela. Linear assignment problems and extensions. In Handbook of
Combinatorial Optimization, pages 75–149. Springer US, 1th edition, 1999. (Cited on
page 69.)

N. Burnashev and A. Rozov. Presynaptic ca2+ dynamics, ca2+ buffers and synaptic
efficacy. Cell Calcium, 37(5):489–95, 2005. (Cited on page 14.)

D.T. Burnette, P. Sengupta, Y. Dai, J. Lippincott-Schwartz, and B. Kachar. Bleach-
ing/blinking assisted localization microscopy for superresolution imaging using
standard fluorescent molecules. Proceedings of the National Academy of Sciences, 108

(52):21081–6, 2011. (Cited on page 39.)

I.V. Cadez, P. Smyth, G.J. McLachlan, and C.E. McLaren. Maximum likelihood esti-
mation of mixture densities for binned and truncated multivariate data. Machine
Learning, 47(1):7–34, 2002. (Cited on pages 86, 90, and 150.)

E.J. Càndes. Compressive sampling. In Proceedings of the International Congress of Math-
ematicians, pages 1433–52, 2006. (Cited on page 56.)

H.L. Chan, M.A. Lin, T. Wu, S.T. Lee, Y.T. Tsai, and P.K. Chao. Detection of neuronal
spikes using an adaptive threshold based on the max–min spread sorting method.
Journal of Neuroscience Methods, 172(1):112–21, 2008. (Cited on page 155.)

P.Y. Chan, M.B. Lawrence, M.L. Dustin, L.M. Ferguson, D.E. Golan, and T.A. Springer.
Influence of receptor lateral mobility on adhesion strengthening between membranes
containing lfa-3 and cd2. The Journal of Cell Biology, 115(1):245–55, 1991. (Cited on
page 3.)

188



J. Chao, S. Ram, A.V. Abraham, E.S. Ward, and R.J. Ober. A resolution measure for
three-dimensional microscopy. Optics Communications, 282(9):1751–61, 2009. (Cited
on page 54.)

M.K. Cheezum, W.F. Walker, and W.H. Guilford. Quantitative comparison of algo-
rithms for tracking single fluorescent particles. Biophysical Journal, 81:2378–88, 2001.
(Cited on pages 51, 53, 75, 135, 136, and 168.)

Y. Chen and M.R. Gupta. Em demystified: An expectation-maximization tutorial. Tech-
nical report number uweetr-2010-0002, Department of Electrical Engineering, Uni-
versity of Washington, 2010. (Cited on pages 85, 90, and 150.)

N. Chenouard, I. Bloch, and J.C. Olivo-Marin. Multiple hypothesis tracking in mi-
croscopy images. In IEEE International Symposium on Biomedical Imaging: From Nano
to Macro, pages 1346–9, 2009. (Cited on page 70.)

N. Chenouard, T. Smal, F. de Chaumont, M. Mas̆ka, I.F. Sbalzarini, Y. Gong, J. Car-
dinale, C. Carthel, S. Coraluppi, M. Winter, A.R. Cohen, W.J. Godinez, K. Rohr,
Y. Kalaidzidis, L. Liang, J. Duncan, H. Shen, Y. Xu, K.E.G. Magnusson, J. Jaldén, H.M.
Blau, P. Paul-Gilloteaux, P. Roudot, C. Kervrann, F. Waharte, J.Y. Tinevez, S.L. Shorte,
J. Willemse, K. Celler, G.P. van Wezel, H.W. Dan, Y.S. Tsai, C.O. de Solörzano, J.C.
Olivo-Marin, and E. Meijering. Objective comparison of particle tracking methods.
Nature Methods, 11:281–9, 2014. (Cited on page 70.)

A. Chmyrov, J. Keller, T. Grotjohann, M. Ratz, E. d’Este, S. Jakobs, C. Eggeling, and
S.W. Hell. Nanoscopy with more than 100,000 ’doughnuts’. Nature Methods, 10(8):
737–42, 2013. (Cited on page 37.)

N.B. Cole, C.L. Smith, N. Sciaky, M. Terasaki, M. Edidin, and J. Lippincott-Schwartz.
Diffusional mobility of golgi proteins in membranes of living cells. Science, 273(5276):
797–801, 1996. (Cited on page 41.)

T.F. Coleman and Y. Li. An interior, trust region approach for nonlinear minimization
subject to bounds. SIAM Journal on Optimization, 6:418–45, 1996. (Cited on page 104.)

S. Coombes, K.R. Tsavachidis, J.S. Morris, K.A. Baggerly, M.C. Hung, and H.M. Kuerer.
Improved peak detection and quantification of mass spectrometry data acquired
from surface-enhanced laser desorption and ionization by denoising spectra with
the undecimated discrete wavelet transform. PROTEOMICS, 5(16):4107–17, 2005.
(Cited on page 155.)

N. Coudray, J.L. Buessler, and J.P. Urban. Robust threshold estimation for images
with unimodal histograms. Pattern Recognition Letters, 31(9):1010–9, 2010. (Cited on
page 49.)

G. Cox. Optical Imaging Techniques in Cell Biology. Taylor & Francis Group, 1th edition,
2007. (Cited on pages 15, 18, 22, 24, 27, 28, 34, 151, and 152.)

G. Cox and C.J.R. Sheppard. Practical limits of resolution in confocal and non-linear
microscopy. Microscopy Research and Technique, 63(1):18–22, 2004. (Cited on page 34.)

189



S. Cox, E. Rosten, J. Monypenny, T. Jovanovic-Talisman, D.T. Burnette, J. Lippincott-
Schwartz, G.E. Jones, and R Heintzmann. Bayesian localization microscopy re-
veals nanoscale podosome dynamics. Nature Methods, 9(2):195–200, 2012. (Cited
on page 55.)

J.C. Crocker and D.G. Grier. Methods of digital video microscopy for colloidal studies.
Journal of Colloid and Interface Science, 179(1):298–310, 1996. (Cited on pages 44, 47, 50,
and 102.)

P.A. Dalgarno, H.I.C. Dalgarno, A. Putoud, R. Lambert, L. Paterson, D.C. Logan, D.P.
Towers, R.J. Warburton, and A.H. Greenaway. Multiplane imaging and three di-
mensional nanoscale particle tracking in biological microscopy. Optics Express, 18(2):
877–84, 2010. (Cited on page 60.)

S.B. Dalziel. Decay of rotating turbulence: some particle tracking experiments. In Flow
Visualization and Image Analysis, pages 27–54. Springer Netherlands, 1th edition, 1993.
(Cited on page 69.)

M.W. Davidson. Microscope objective specifications, 2013. URL http://www.

microscopyu.com/articles/optics/objectivespecs.html. (Cited on page 24.)

R.N. Day and F. Schaufele. Fluorescent protein tools for studying protein dynamics
in living cells: a review. Journal of Biomedical Optics, 13(3):031202–6, 2008. (Cited on
page 42.)

A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood from incomplete data
via the em algorithm. Journal of the Royal Statistical Society. Series B (Methodological),
39(1):1–38, 1977. (Cited on pages 85 and 90.)

Y. Deng and J.W. Shaevitz. Effect of aberration on height calibration in three-
dimensional localization-based microscopy and particle tracking. Applied Optics, 48

(10):1886–90, 2009. (Cited on pages 63, 99, and 149.)

W. Denk, J.H. Strickler, and W.W. Webb. Two-photon laser scanning fluorescence mi-
croscopy. Science, 248(4951):73–6, 1990. (Cited on page 34.)

H. Deschout, K. Neyts, and K. Braeckmans. The influence of movement on the local-
ization precision of sub-resolution particles in fluorescence microscopy. Journal of
Biophotonics, 5(1):97–109, 2012. (Cited on page 54.)

H. Deschout, F.C. Zanacchi, M. Mlodzianoski, A. Diaspro, J. Bewersdorf, S.T. Hess, and
K. Braeckmans. Precisely and accurately localizing single emitters in fluorescence
microscopy. Nature Methods, 11(3):253–66, 2014. (Cited on pages 46, 54, and 71.)

A. Diaspro, F. Federici, and M. Robello. Influence of refractive-index mismatch in high-
resolution three-dimensional confocal microscopy. Applied Optics, 41(4):685–90, 2002.
(Cited on page 62.)

A. Diaspro, G. Chirico, C. Usai, P. Ramoino, and J.W. Dobrucki. Photobleaching. In
Handbook of Biological Confocal Microscopy, pages 690–702. Springer, 3th edition, 2006.
(Cited on page 19.)

190

http://www.microscopyu.com/articles/optics/objectivespecs.html
http://www.microscopyu.com/articles/optics/objectivespecs.html


J. Dittman and T.A. Ryan. Molecular circuitry of endocytosis at nerve terminals. Annual
Review of Cell and Developmental Biology, 25:133–60, 2009. (Cited on page 12.)

J.W. Dobrucki. Fluorescence microscopy. In Fluorescence Microscopy - From Principles
to Biological Applications, pages 97–142. Wiley-Blackwell, 1th edition, 2013. (Cited on
pages 18, 21, 22, 24, and 25.)

P. Du, W.A. Kibbe, and S.M. Lin. Improved peak detection in mass spectrum by incor-
porating continuous wavelet transform-based pattern matching. BIOINFORMATICS,
22:2059–65, 2006. (Cited on pages 157 and 165.)

G.A. Dunn, I.M. Dobbie, J. Monypenny, M.R. Holt, and D. Zicha. Fluorescence local-
ization after photobleaching (flap): a new method for studying protein dynamics in
living cells. Journal of Microscopy, 205(1):109–12, 2002. (Cited on page 41.)

M.L. Dustin and D. Depoil. New insights into the t cell synapse from single molecule
techniques. Nature Reviews Immunology, 11:672–84, 2011. (Cited on page 3.)

M. Dyba, J. Keller, and S.W. Hell. Phase filter enhanced sted-4pi fluorescence mi-
croscopy: theory and experiment. New Journal of Physics, 7(134):1–21, 2005. (Cited on
page 37.)

C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova,
V.N. Belov, B. Hein, V. Middendorff, A. Schönle, and S.W. Hell. Direct observation
of the nanoscale dynamics of membrane lipids in a living cell. Nature, 457:1159–62,
2009. (Cited on page 77.)

M.D. Egger and M. Petran. New reflected-light microscope for viewing unstained brain
and ganglion cells. Science, 157(3786):305–7, 1967. (Cited on page 34.)

A. Egner and S.W. Hell. Aberrations in confocal and multi-photon fluorescence mi-
croscopy induced by refractive index mismatch. In Handbook of Biological Confocal
Microscopy, pages 404–13. Springer, 3th edition, 2006. (Cited on page 65.)

J. Enderlein, E. Toprak, and P.R. Selvin. Polarization effect on position accuracy of
fluorophore localization. Optics Express, 14(18):8111–20, 2006. (Cited on page 53.)

E. Evergren, F. Benfenati, and O. Shupliakov. The synapsin cycle: A view from the
synaptic endocytic zone. Journal of Neuroscience Research, 85(12):2648–56, 2007. (Cited
on page 159.)

T.J. Feder, I. Brust-Mascher, J.P. Slattery, B. Baird, and W.W. Webb. Constrained diffu-
sion or immobile fraction on cell surfaces: a new interpretation. Biophysical Journal,
70(6):2767–73, 1996. (Cited on page 44.)

M. Fernández-Suárez and A.Y. Ting. Fluorescent probes for super-resolution imag-
ing in living cells. Nature Reviews Molecular Cell Biology, 9:929–43, 2008. (Cited on
page 37.)

M.A.T. Figueiredo and R.D. Nowak. Wavelet-based image estimation: an empirical
bayes approach using jeffrey’s noninformative prior. IEEE Transactions on Image Pro-
cessing, 10(9):1322–31, 2001. (Cited on page 50.)

191



J. Fölling, V. Belov, D. Riedel, A. Schönle, A. Egner, C. Eggeling, M. Bossi, and S.W. Hell.
Fluorescence nanoscopy with optical sectioning by two-photon induced molecular
switching using continuous-wave lasers. Chemical Physics and Physical Chemistry, 9

(2):321–6, 2008. (Cited on page 73.)

D. Freche, U. Pannasch, N. Rouach, and D. Holcman. Synapse geometry and receptor
dynamics modulate synaptic strength. PLOS ONE, 6(10):e25122, 2011. (Cited on
pages 13 and 180.)

M. Friedrich, Q. Gan, V. Ermolayev, and G.S. Harms. Sted-spim: Stimulated emission
depletion improves sheet illumination microscopy resolution. Biophysical Journal, 100

(8):43–5, 2011. (Cited on page 37.)

M.A. Gaffield, L. Tabares, and W.J. Betz. Preferred sites of exocytosis and endocytosis
colocalize during high- but not lower-frequency stimulation in mouse motor nerve
terminals. The Journal of Neuroscience, 29(48):15308–16, 2009. (Cited on pages 152

and 180.)

C.G. Galizia and P.M. Lledo. Neurosciences, From Molecule to Behavior: A University
Textbook. Springer Spektrum, 1th edition, 2013. (Cited on page 8.)

S.P. Gandhi and C.F. Stevens. Three modes of synaptic vesicular recycling revealed by
single-vesicle imaging. Nature, 423:607–13, 2003. (Cited on pages 153, 154, 162, 164,
and 172.)

J. Gelles, B.J. Schnapp, and M.P. Sheetz. Tracking kinesin-driven movements with
nanometre-scale precision. Letters to Nature, 331:450–3, 1988. (Cited on page 51.)

A. Genovesio, T. Liedl, V. Emiliani, W.J. Parak, M. Coppey-Moisan, and J.C. Olivo-
Marin. Multiple particle tracking in 3-d+t microscopy: method and application to
the tracking of endocytosed quantum dots. IEEE Transactions on Image Processing, 15

(5):1062–70, 2006. (Cited on pages 50 and 70.)

K. Gerrow and A. Triller. Synaptic stability and plasticity in a floating world. Current
Opinion in Neurobiology, 20(5):631–9, 2010. (Cited on page 14.)

R.N. Ghosh and W.W. Webb. Automated detection and tracking of individual and
clustered cell surface low density lipoprotein receptor molecules. IEEE Transactions
on Image Processing, 66(5):1301–18, 1994. (Cited on page 51.)

S.F. Gibson and F. Lanni. Experimental test of an analytical model of aberration in an
oil-immersion objective lens used in three-dimensional light microscopy. Journal of
the Optical Society of America A, 8(10):1601–13, 1991. (Cited on page 66.)

W.J. Godinez. Probabilistic Tracking and Behavior Identification of Fluorescent Particles. PhD
thesis, PhD thesis, Ruperto-Carola University of Heidelberg, 2013. (Cited on pages 69

and 70.)

W.J. Godinez, M. Lampe, S. Wörz, B. Müller, R. Eils, and K. Rohr. Deterministic and
probabilistic approaches for tracking virus particles in time-lapse fluorescence mi-
croscopy image sequences. Medical Image Analysis, 13(2):325–342, 2009. (Cited on
page 70.)

192



M.P. Gordon, T. Ha, and P.R. Selvin. Single-molecule high-resolutionwith photobleach-
ing imaging. Proceedings of the National Academy of Sciences, 101(17):6462–5, 2004.
(Cited on page 39.)

T.J. Gould, D. Burke, J. Bewersdorf, and M.J. Booth. Adaptive optics enables 3d sted
microscopy in aberrating specimens. Optics Express, 20(19):20998–1009, 2012. (Cited
on pages 65 and 71.)

M. Goulian and S.M. Simon. Tracking single proteins within cells. Biophysical Journal,
79(4):2188–98, 2000. (Cited on pages 47 and 67.)

B. Granseth and L. Lagnado. The role of endocytosis in regulating the strength of
hippocampal synapses. The Journal of Physiology, 586(24):5969–82, 2008. (Cited on
page 152.)

B. Granseth, B. Odermatt, S.J. Royle, and L. Lagnado. Clathrin-mediated endocytosis
is the dominant mechanism of vesicle retrieval at hippocampal synapses. Neuron, 51:
773–86, 2006. (Cited on pages 153, 154, 160, 161, and 164.)

B. Granseth, B. Odermatt, S.J. Royle, and L. Lagnado. Comment on "the dynamic con-
trol of kiss-and-run and vesicular reuse probed with single nanoparticles". Science,
325(5947):1499, 2009. (Cited on page 153.)

E. Gratton and M.J. vandeVen. Laser sources for confocal microscopy. In Handbook of
Biological Confocal Microscopy, pages 80–125. Springer, 3th edition, 2006. (Cited on
page 22.)

T.W. Groemer and J. Klingauf. Synaptic vesicles recycling spontaneously and during
activity belong to the same vesicle pool. Nature Neuroscience, 10(2):145–7, 2007. (Cited
on page 151.)

T. Grotjohann, I. Testa, M. Reuss, T. Brakemann, C. Eggeling, S.W. Hell, and S. Jakobs.
rsegfp2 enables fast resolft nanoscopy of living cells. eLife, 00248:1–14, 2012. (Cited
on page 37.)

G. Grynkiewicz, M. Poenie, and R.Y. Tsien. A new generation of ca2+ indicators with
greatly improved fluorescence properties. The Journal of Biological Chemistry, 260(6):
3440–50, 1985. (Cited on page 152.)

D.L. Hall and J. Llinas. An introduction to multisensor data fusion. Proceedings of the
IEEE, 85(1):6–23, 1997. (Cited on page 178.)

B. Harke, C.K. Ullal, J. Keller, and S.W. Hell. Three-dimensional nanoscopy of colloidal
crystals. Nano Letters, 8(5):1309–13, 2008. (Cited on page 37.)

E. Hecht. Optik. Oldenbourg, 5th edition, 2009. (Cited on pages 15, 16, 21, 22, 24,
and 28.)

M. Heilemann, S. van de Linde, M. Schüttpelz, R. Kasper, B. Seefeldt, A. Mukher-
jee, P. Tinnefeld, and M. Sauer. Subdiffraction-resolution fluorescence imaging with
conventional fluorescent probes. Angewandte Chemie, 47(33):6172–6, 2008. (Cited on
page 40.)

193



M. Heine, L. Groc, R. Frischknecht, B. Béïque, J.C. Lounis, G. Rumbaugh, R.L. Huganir,
L. Cognet, and D. Choquet. Surface mobility of postsynaptic ampars tunes synaptic
transmission. Science, 320(5873):201–5, 2008. (Cited on page 14.)

R. Heintzmann. Introduction to optics and photophysics. In Fluorescence Microscopy
- From Principles to Biological Applications, pages 1–31. Wiley-Blackwell, 1th edition,
2013. (Cited on pages 18 and 19.)

R. Heintzmann and G. Ficz. Breaking the resolution limit in light microscopy. Briefings
in Functional Genomics, 5(4):289–301, 2006. (Cited on pages 32 and 35.)

S. Hell, G. Reiner, C. Cremer, and E.H.K. Stelzer. Aberrations in confocal fluorescence
microscopy induced by mismatches in refractive index. Journal of Microscopy, 169(3):
391–405, 1993. (Cited on pages 62, 63, 64, and 66.)

S.W. Hell. Far-field optical nanoscopy. Science, 316:1153–8, 2007. (Cited on pages 36

and 37.)

S.W. Hell and M. Kroug. Ground-state-depletion fluorscence microscopy: a concept for
breaking the diffraction resolution limit. Applied Physics B, 60(5):495–7, 1995. (Cited
on page 36.)

S.W. Hell and J. Wichmann. Breaking the diffraction resolution limit by stimulated
emission: stimulated-emission-depletion fluorescence microscopy. Optics Letters, 19

(11):780–2, 1994. (Cited on page 36.)

J.A. Helmuth, C.J. Burckhardt, P. Koumoutsakos, U.F. Greber, and I.F. Sbalzarini. A
novel supervised trajectory segmentation algorithm identifies distinct types of hu-
man adenovirus motion in host cells. Journal of Structural Biology, 159(3):347–58, 2007.
(Cited on page 45.)

S.T. Hess, T.P.K Girirajan, and M.D. Mason. Ultra-high resolution imaging by fluo-
rescence photoactivation localization microscopy. Biophysical Journal, 91(11):4258–72,
2006. (Cited on pages 39 and 40.)

S.T. Hess, T.J. Gould, M.V. Gudheti, S.A. Maas, K.D. Mills, and J. Zimmerberg. Dynamic
clustered distribution of hemagglutinin resolved at 40 nm in living cell membranes
discriminates between raft theories. Proceedings of the National Academy of Sciences,
104(44):17370–5, 2007. (Cited on pages 40 and 53.)

A.R. Hibbs, G. MacDonald, and K. Garsha. Practical confocal microscopy. In Handbook
of Biological Confocal Microscopy, pages 650–71. Springer, 3th edition, 2006. (Cited on
page 93.)

S. Hiware, P. Porwal, R. Velmurugan, and S. Chaudhuri. Modeling of psf for refractive
index variation in fluorescence microscopy. In 18th IEEE International Conference on
Image Processing (ICIP), pages 2037–40, 2011. (Cited on page 66.)

M. Hofmann, C. Eggeling, S. Jakobs, and S.W. Hell. Breaking the diffraction barrier in
fluorescence microscopy at low light intensities by using reversibly photoswitchable
proteins. Proceedings of the National Academy of Sciences, 102(49):17565–9, 2005. (Cited
on pages 36 and 37.)

194



S.J. Holden, S. Uphoff, and A.N. Kapanidis. Daostorm: an algorithm for high- density
super-resolution microscopy. Nature Methods, 8(4):279–80, 2011. (Cited on pages 55,
59, 91, 109, 112, 113, and 150.)

L. Holtzer, T. Meckel, and T. Schmidt. Nanometric three-dimensional tracking of indi-
vidual quantum dots in cells. Applied Physics Letters, 90(5):53902–5, 2007. (Cited on
pages 59, 61, 105, 106, and 118.)

E. Hoogendoorn, K.C. Crosby, D. Leyton-Puig, R.M.P Breedijk, K. Jalink, T.W.J. Gadella,
and M. Postma. The fidelity of stochastic single-molecule super-resolution recon-
structions critically depends upon robust background estimation. Scientific Reports,
4(3854):1–10, 2014. (Cited on page 53.)

H. Hsueh, H. Kuo, and C. Tsai. Multispectra cwt-based algorithm (mcwt) in mass
spectra for peak extraction. Journal of Biopharmaceutical Statistics, 18(5):869–82, 2008.
(Cited on page 165.)

B. Huang, S.A. Jones, B. Brandenburg, and X. Zhuang. Whole-cell 3d storm reveals in-
teractions between cellular structures with nanometer-scale resolution. Nature Meth-
ods, 5(12):1047–52, 2008a. (Cited on pages 59, 62, 65, 73, 94, and 149.)

B. Huang, W. Wang, M. Bates, and X. Zhuang. Three-dimensional super-resolution
imaging by stochastic optical reconstruction microscopy. Science, 319(5864):810–3,
2008b. (Cited on pages 59, 61, 63, 105, 106, and 118.)

B. Huang, M. Bates, and X. Zhuang. Super-resolution fluorescence microscopy. Annual
Review of Biochemistry, 78:993–1016, 2009. (Cited on pages 30, 32, 35, and 40.)

B. Huang, H. Babcock, and X Zhuang. Breaking the diffraction barrier: Super-
resolution imaging of cells. Cell, 143:1047–58, 2010. (Cited on page 32.)

F. Huang, S.L. Schwartz, J.M. Byars, and K.A. Lidke. Simultaneous multiple-emitter
fitting for single molecule super-resolution imaging. Biomedical Optics Express, 2(5):
1377–93, 2011. (Cited on pages 55, 71, 85, 91, 106, 109, 112, 113, and 150.)

S. Huet, E. Karatekin, V.S. Tran, I. Fanget, S. Cribier, and J.P. Henry. Analysis of tran-
sient behavior in complex trajectories: Application to secretory vesicle dynamics.
Biophysical Journal, 91(9):3542–59, 2006. (Cited on page 45.)

S. Inoué. Foundations of confocal scanned imaging in light microscopy. In Handbook
of Biological Confocal Microscopy, pages 1–16. Springer, 3th edition, 2006. (Cited on
pages 28, 30, 33, and 56.)

M. Isard and A. Blake. Condensation - conditional density propagation for visual
tracking. International Journal of Computer Vision, 29(1):5–28, 1998. (Cited on page 70.)

I. Izeddin, M.E. Beheiry, J. Andilla, D. Ciepielewski, X. Darzacq, and M. Dahan.
Psf shaping using adaptive optics for three-dimensional single-molecule super-
resolution imaging and tracking. Optics Express, 20(5):4957–67, 2012a. (Cited on
pages 59, 62, 65, 100, 105, and 149.)

195



I. Izeddin, J. Boulanger, V. Racine, C.G. Specht, A. Kechkar, D. Nair, A. Triller, D. Cho-
quet, M. Dahan, and J.B. Sibarita. Wavelet analysis for single molecule localization
microscopy. Optics Express, 20(3):2081–95, 2012b. (Cited on pages 50, 51, 55, 80,
and 95.)
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S Y M B O L S

a Wavelet scale

amin, â Min/max wavelet scale parameters for MWA

âhaar, âbior Max scale parameter for the Haar respectively the Bior3.1 wavelet

aopt(b) Optimal scale for fitting a certain peak shape at transition b

a1, a2 Positive constants that relate to the geometry of a confined region

α Half of the angular aperture; Anomaly parameter for anomalous diffusion

b Wavelet translation

B Generally for bias

c Speed of light in vacuum

ĉ(b) Highest employed wavelet coefficient at transition b

cn Speed of light in material with RI n

cSNR Correction factor for the estimated SNR

C Wavelet coefficients

Chaar, Cbior Wavelet coefficients for the Haar respectively the Bior3.1 wavelet

C General component mixture model

d Focal depth; Spatial dimension

δ Overall noise of EMCCD cameras

δb Background noise of EMCCD cameras

δdark Dark noise of EMCCD cameras

δmult Multiplicative noise of EMCCD cameras

δphoton Photon noise of EMCCD cameras

δread Read noise of EMCCD cameras

dp Pixel size of the camera

dpo Pixel size in the object space

dR Rayleigh distance

dSML Distance for SML resolution

dSTED Distance for STED resolution

du Distance between center coordinates and each gradient line

dz Distance for axial resolution

∆f Focal shift intentionally introduced by a cylindrical lens

∆i Peak intensity in pHluorin data

∆s Generally for LA

∆σ FWHM shift inherently introduced by a cylindrical lens for confocal setups

∆sr Reduced localization error
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∆t Discrete sampling interval

D Diffusion coefficient

Dc Combined distance between the measured widths and the axial calibration curve

Dl Local diffusion coefficient

E Energy of a photon; Expectation operator

Ej Expectation within a single pixel

f Frequency of light; Focal length in geometrical optics

fs Sampling rate

fv Vertex frames

F Generally for some function

g Number of components in a mixture model

G Generally for Gaussian function

GEM Gain factor of the electron multiplication register of EMCCD camera’s

h Planck’s constant; Height of a Gaussian function

i Intensity of light

ib Amount of background intensity at a pixel

ix,y Pixel intensity

I Generally for image

IAiry Image of the Airy pattern

I, IAiry, Ifit Image that is fitted to a particle’s intensity distribution

J Jaccard index

k Threshold factor for particle detection in microscopy data

kf Threshold factor for peak detection in pHluorin data

κi Number of photons per mixture component i

Kp Number of particles

l Coordinate at axial distance ´∆f from v of the axial correlation function

L Joint likelihood in maximum likelihood estimation

λ Wavelength of light

λpois Mean of a Poisson distribution

µ Generally for expected value

m Generally for running index

mj Expected intensity at the j-th pixel

mu Generally for the slope of a line

mr Slope of the line that adjust the axial correlation function to the RIM

mmin Optimal number of included MSD data points

M Magnification; Number of measurements of a trajectory

n Refractive index

N Generally for number of photons
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Nb Number of background photons

Np Total number of photons per particle

Nx,y Number of particle photons at a pixel

N̂ Number of particle photons at the center pixel

Nj Number of particle photons at the j-th pixel

N Gaussian mixture model

Ni i-th multivariate normal distribution

ob Offset for a Gaussian function; Number of observed pixels for the EM algorithm

ω Generally for FWHM

p Generally for position

ppois Realization of a Poisson random variable

ϕ Phase of light

P Generally for probabilities

Ppois Poisson distribution
~P Polarization of light

Φj Unconditional probability that a photon is detected at a certain pixel j

Φi, Φl, Φr Angle of the incoming, the reflected and the refracted light ray

π Vector of component mixing proportions

ψ(t) Wavelet

O Real objects

r Random variable for the sub-pixel position of photon measurements on a camera

chip; Coordinate at axial distance +∆f from v of the axial correlation function

rbior Support range of the Bior3.1 wavelet

R Sample space of R

Rc Size of a confined region

σ Generally for SD

σp, σb Signal and background noise of the intensity distribution of a particle

Σi Covariance matrix

σ̃ Generally for median absolute deviation

S(b) Signal containing the combined wavelet coefficients across scales

Shaar(b), Sbior(b) Signals containing the combined coefficients across scales for the

Haar respectively the Bior3.1 wavelet

SCCD Sensitivity of a CCD camera’s analog-to-digital converter

Sf(b) Signal containing the fused information of multiple wavelets

S˚f(b) Fused signal after convolution with the Bartlett window

s(t) Generally for a 1D signal over time

Sx Fundamental electronic states

t Generally for time; Current iteration number for EM algorithm
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ta Scale dependent threshold in the wavelet space

tf Threshold for final peak detection in S˚f(b)

tinit Number of random starts for the EM algorithm

titer Maximum number of iterations for the EM algorithm

tp Intensity threshold for particles during spot detection

ts Threshold for the skewness of Sbior(b)

T Transpose operation

τ Generally for time interval; Mean lifetime; Relative weight of each mixture com-

ponent with respect to an individual photon measurement

θ Rotation angle of general Gaussian function; Parameter vector for Gaussian mix-

ture model

Θ Parameter vector for general component mixture model

u Generally for running index

v Generally for running index; Vertex coordinate of the axial correlation function;

Total number of pixels for EM algorithm

w Generally for some weight

V Velocity

x, y Lateral x and y coordinates

xc, yc Lateral x and y center coordinates

z Relative axial position

zs Parameter that shifts the axial correlation function along the axial axis

220



colophon

This document was typeset using the typographical look-and-feel classicthesis de-
veloped by André Miede. The style was inspired by Robert Bringhurst’s seminal book
on typography “The Elements of Typographic Style”. classicthesis is available for both
LATEX and LYX:

http://code.google.com/p/classicthesis/

http://code.google.com/p/classicthesis/




E H R E N E R K L Ä R U N G

Ich versichere hiermit, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Dritter
und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe; ver-
wendete fremde und eigene Quellen sind als solche kenntlich gemacht. Insbesondere
habe ich nicht die Hilfe eines kommerziellen Promotionsberaters in Anspruch genom-
men. Dritte haben von mir weder unmittelbar noch mittelbar geldwerte Leistungen für
Arbeiten erhalten, die im Zusammenhang mit dem Inhalt der vorgelegten Dissertation
stehen. Ich habe insbesondere nicht wissentlich:

• Ergebnisse erfunden oder widersprüchliche Ergebnisse verschwiegen,

• statistische Verfahren absichtlich missbraucht, um Daten in ungerechtfertigter
Weise zu interpretieren,

• fremde Ergebnisse oder Veröffentlichungen plagiiert,

• fremde Forschungsergebnisse verzerrt wiedergegeben.

Mir ist bekannt, dass Verstöße gegen das Urheberrecht Unterlassungs- und Schadenser-
satzansprüche des Urhebers sowie eine strafrechtliche Ahndung durch die Strafverfol-
gungsbehörden begründen kann. Die Arbeit wurde bisher weder im Inland noch im
Ausland in gleicher oder ähnlicher Form als Dissertation eingereicht und ist als Ganzes
auch noch nicht veröffentlicht.

Magdeburg, 30.10.2015

Stefan Sokoll


	Abstract
	Zusammenfassung
	Publications
	Acknowledgments
	Contents
	1 Introduction
	1.1 Objectives
	1.2 Structure

	2 Neurobiological Background
	2.1 The Brain is Organized in Functional Units
	2.2 Neurons
	2.2.1 Anatomy and Principal Function
	2.2.2 Principle of Operation

	2.3 Neuronal Signaling
	2.3.1 Signal Transduction in the Cell Membrane
	2.3.2 Signal Transmission at Chemical Synapses

	2.4 The Variable Nature of Synaptic Signal Transmission
	2.4.1 Synaptic Plasticity
	2.4.2 Influence of Molecular Dynamics on Synaptic Strength


	3 Fluorescence Microscopy
	3.1 Principles of Fluorescence Microscopy
	3.1.1 Fundamentals of Light
	3.1.2 Fluorescence
	3.1.3 Image Formation
	3.1.4 Principal Components
	3.1.5 Fluorophores

	3.2 How far can one go: Limits of FM
	3.2.1 Diffraction Sets a Fundamental Limit on the Resolution
	3.2.2 Visibility Defines the Effective Resolution

	3.3 FM Techniques for Live-Cell Imaging
	3.3.1 Classical Imaging Techniques
	3.3.2 Circumventing the Diffraction Barrier: Super-resolution Techniques


	4 Fast 3D Molecular Dynamics Analysis in Brain Slices
	4.1 Detection Schemes for Studying Molecular Dynamics
	4.2 Characterizing the Readout of SPT
	4.3 Related Work on SPT
	4.3.1 Preprocessing
	4.3.2 Particle Detection
	4.3.3 Lateral Particle Localization
	4.3.4 Axial Particle Localization
	4.3.5 3D Particle Localization in Complex Tissue
	4.3.6 Linking Particles Over Time
	4.3.7 Implications for the Thesis

	4.4 3D SPT in Brain Slices - Algorithm Overview
	4.5 The Proof of Principle: 2D SPT in Brain Slices
	4.5.1 Quantifying the Performance of the SDCM Setup
	4.5.2 Accessing Diffusion Parameters in Brain Slices
	4.5.3 Conclusion

	4.6 Particle Detection
	4.7 Particle Localization and Shape Estimation
	4.7.1 Multiple Particle Fitting
	4.7.2 The General Analysis Procedure

	4.8 Linking Particle Positions to Trajectories
	4.9 Addressing the RIM
	4.9.1 The Axial Correlation Function
	4.9.2 The Axial Online Calibration Method
	4.9.3 Computation of the Axial Position

	4.10 Experimental Results
	4.10.1 Evaluation on Synthetic Data
	4.10.2 Evaluation on Semi-synthetic Data
	4.10.3 Evaluation on Real Data
	4.10.4 A Final Illustrative Example

	4.11 Conclusion and Future Work

	5 Detection of Individual Synaptic Activity
	5.1 Optical Reporters for Studying Neuronal Activity
	5.2 Characterizing the Readout of pHluorin-based Measurements
	5.3 Related Work on Peak Detection in 1D Signals
	5.3.1 Threshold-based Methods
	5.3.2 Template Matching Methods
	5.3.3 Wavelet-based Methods
	5.3.4 Implications for the Thesis

	5.4 Synaptic Activity Detection Using Multiple Wavelets
	5.4.1 Localization of Synapses
	5.4.2 Computation of the Intensity Signals
	5.4.3 The Multiple Wavelet Algorithm

	5.5 Experimental Results
	5.5.1 Experimental pHluorin Data
	5.5.2 SNR Estimation in Real Data
	5.5.3 Evaluation on Real Data
	5.5.4 Evaluation on Semi-synthetic Data

	5.6 Generalization of the Multiple Wavelet Concept
	5.7 Conclusion and Future Work

	6 Summary and Future Work
	Bibliography
	Abbreviations
	Symbols
	Colophon
	Declaration

