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Abstract 

Bac kgr ound: Genebanks around the globe serve as v alua b le r e positories of genetic di v ersity, offering not onl y access to a broad spec- 
trum of plant material but also critical resources for enhancing crop resilience , ad vancing scientific resear c h, and supporting global 
food security. To this end, traditional genebanks are evolving into biodigital resource centers where the inte gr ation of phenotypic and 

genotypic data for accessions can dri v e mor e informed decision-making, optimize r esour ce allocation, and unloc k new opportunities 
for plant breeding and resear c h. How ever, the cur ation and av aila bility of inter opera b le phenotypic and genotypic data for genebank 
accessions is still in its infancy and r e pr esents an obstacle to rapid scientific discoveries in this field. Ther efor e, effecti v el y pr omoting 
FAIR (i.e., finda b le, accessib le, inter opera b le, and r eusa b le) access to these data is vital for maximizing the potential of genebanks and 

dri ving pr ogr ess in a gricultural innov ation. 

F indings: Here w e provide whole genome sequencing data of 812 barley ( Hordeum vulgare L.) plant genetic resources and 298 European 

elite materials released between 1949 and 2021, as well as the phenotypic data for 4 disease resistance traits and 3 a gr onomic traits. The 
robustness of the investigated traits and the inter opera bility of genomic and phenotypic data were assessed in the current publication, 
aiming to make this panel pub licl y av aila b le as a r esource for futur e genetic r esear c h in barley. 

Conclusions: The data showed br oad phenotypic v aria bility and high association mapping potential, offering a key resource for iden- 
tifying genebank donors with untapped genes to advance barley breeding while safeguarding genetic diversity. 

Ke yw ords: Barley, plant genetic resources, elite, whole genome resequencing, disease resistance, agronomic traits 
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Data Description 

Context 
Successful plant breeding programs rely on balanced efforts be- 
tween short-term goals to de v elop competitiv e cultiv ars and the 
maintenance of a broad genetic pool to guarantee long-term 

pr ogr ess. In pr actice, the de v elopment of ne w v arieties has been 

pr edominantl y deriv ed by r ecycling existing elite lines, leading to 
important genetic impr ov ement and the reduction in the genetic 
diversity of elite germplasm. This could impede the breeding of 
potential new varieties capable of addressing and responding to 
constr aints r elated to climate c hange, a gr onomical thr eads, and 

meeting the escalating social demands [ 1 ]. To overcome these lim- 
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the original work is pr operl y cited. 
tations, le v er a ging genetic div ersity harbor ed within plant genetic
esources (PGRs) has been frequently suggested [ 2 ]. PGRs provide
 v aluable r eservoir of unta pped genetic potential that can be
tilized to de v elop v arieties with impr ov ed yield [ 3 ] and end-use
uality, as well as enhanced resistance to both biotic and abiotic
tr esses, suc h as diseases [ 4 ], pests [ 5 ], waterlogging [ 6 ], salinity
 7 ], and drought [ 6 , 8 ]. 

As the most cost-effective ex situ conservation strategy,
enebanks worldwide are committed to maintaining PGRs, which 

old a diverse gene pool encompassing all the alleles of various
enes, including those from wild species, landraces, and breed- 
ng stocks. Ho w ever, although enormous efforts have been made
024 
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o conserve germplasm [ 9 ], it is estimated that less than 1% of
he resources preserved in genebanks have been used in crop im-
r ov ement [ 10 ]. The gr eat c hallenge for br eeders and scientists

ies in finding useful barley PGRs among entire genebank collec-
ions that comprise thousands of accessions with complex pat-
erns of genetic div ersity [ 11 ]. Ther efor e, cor e collections wer e
roposed as a strategy to streamline operational processes
nd mitigate costs, thereby facilitating more precise and effec-
iv e r esearc h and br eeding initiativ es. Ov er the past decades,
his a ppr oac h has become e v en mor e attr activ e thanks to r e-
ent technological advancements, which have markedly re-
uced the costs of genotyping and led to dramatic improve-
ents in read length, sequencing chemistry, instrumentation,

nd throughput [ 12 ]. As a result, generating large-scale sequenc-
ng and genotyping datasets for entire genebank collections is
ow feasible . T his has gr eatl y expanded the scope of genotyp-

ng efforts and underpinned the effective selection of core col-
ections that maximize genetic diversity [ 13 ]. These advance-

ents provide po w erful tools to efficiently harness PGRs, en-
bling the identification of valuable and fa vorable genes . T his
as streamlined their incorporation into crop improvement ef-

orts, ultimately speeding up the de v elopment of new and im-
r ov ed v arieties. Coupled with extensiv e and high-quality phe-
otypic data, the systematic use of whole genome sequenc-

ng data could pr ovide v aluable insights into genetic diversity
nd potential breeding opportunities. Our recent findings using
enome-wide association analyses highlighted the value of these
ata in selecting donors with potentially no vel fa vorable genes
 14 ]. 

Mor eov er, the str ategic deployment of core collections becomes
 v en mor e compelling when combined with modern elite mate-
ial [ 15 , 16 ], whic h serv es as a r efer ence panel to define favor-
ble alleles/genes that are absent in the elite panel. This inte-
r ated a ppr oac h is essential for enhancing pol ygenic tr aits and,
ence, ac hie ving informed pr ebr eeding decisions. To put this into
ractice, we selected a barley core collection [ 17 ] from the Ger-
an Federal ex situ Genebank for Agriculture and Horticultural

rops at the Leibniz Institute of Plant Genetics and Crop Plant
esearch (IPK) and combined it with a set of European elite ma-
erial. This population was designed to (i) phenotype the whole
opulation in m ultienvir onmental trials for 3 a gr onomical tr aits:
lant height (PLH), heading date (HD), and lodging (LOD) and 4
isease traits: Puccinia hordei (PUC), Blumeria graminis hordei (BLU),
amularia collo-cygni (RAM), and Rhynchosporium commune (RHY); (ii)
 v aluate the inter oper ability quality for the phenotypic and ge-
omic datasets using 5-fold cr oss-v alidation; and (iii) conduct the
antel test to c hec k the detection po w er in association mapping

nalyses. 
The data presented here can be further extended with ad-

itional PGRs and/or elite materials . T hey can also be inte-
r ated with alternativ e str ategies to impr ov e the utilization of
ermplasm collections by selecting untapped PGR donors, such
s the de v elopment of nov el association ma pping methods . T his
ill enable breeders to make mor e accur ate pr edictions of tr ait
erformance, thereby enhancing the efficiency of selection pro-
esses . Furthermore , with the development of publicly accessible
esources, scientists will be able to focus more on r esearc h and
nnovation while reducing the burden of extensive phenotyping.
he insights derived from our data may significantly accelerate
dvancements in genomic research and breeding programs, driv-
ng impr ov ement and fostering futur e collabor ation and r esource
haring. 
ethods 

arle y ma terial and field trials 

o ca ptur e a br oad spectrum of geogr a phic origins and wide ge-
etic diversity, we selected 812 PGRs, which include 288 spring
ype (PGR_Spring) and 524 winter type (PGR_Winter), originat-
ng from 57 countries spanning 5 continents. Based on their per-
ormance during seed r egener ation, these PGRs wer e thought-
ully selected from a previously described barley core 1000
ollection [ 17 ], as a r epr esentativ e subset of the entire 21,405 bar-
ey accessions available at the IPK genebank [ 18 ], based on their
erformance during seed r egener ation. Additionall y, we incor po-
ated 298 elite lines, including 10 local checks, which consist of
28 spring type (Elite_Spring) and 170 winter type (Elite_Winter).
hese elites were exclusively selected from the European reg-

ster ed v arieties and wer e av ailable thr ough the seed market,
howcasing the breeding process over time from 1949 to 2021.
he study initially included 87 additional genotypes that were

ater excluded from certain analyses due to incomplete pheno-
ypic or genotypic data. To maintain the integrity of the dataset
nd facilitate accurate adjustments for experimental design ef-
ects, we retained all relevant data, including instances of missing
nformation. 

Field trials were conducted over 3 consecutive years
2020, 2021, and 2022) across 8 locations in Germany: KWS-
/Prosselsheim (49 ◦51 ′ 15.6 ′′ N, 10 ◦06 ′ 04.1 ′′ E; 10.9 ◦C av er a ge
nnual temper atur e; 565.3 mm av er a ge annual r ainfall), Nordic
eed/Nienstädt (52 ◦17 ′ 35.52 ′′ N, 9 ◦08 ′ 57.156 ′′ E; 10.7 ◦C aver-
 ge annual temper atur e; 638.4 mm av er a ge annual r ainfall),
aatzuc ht Bauer/Riek ofen (48 ◦54 ′ 55.98 ′′ N, 12 ◦21 ′ 21.744 ′′ E; 9.9 ◦C
v er a ge annual temper atur e; 690.3 mm av er a ge annual r ain-
all), Lima gr ain/Peine-Rosenthal (52 ◦18 ′ 09.828 ′′ N, 10 ◦10 ′ 28.488 ′′ E;
0.9 ◦C av er a ge annual temper atur e; 607.5 mm av er a ge annual
ainfall), Nor dsaat/Gudo w (53 ◦33 ′ 28.0 ′′ N, 10 ◦47 ′ 50.5 ′′ E; 10.4 ◦C
v er a ge annual temper atur e; 581.1 mm av er a ge annual rainfall),
yngenta/Bad Salzuflen (52 ◦04 ′ 21.576 ′′ N, 8 ◦41 ′ 55.86 ′′ E; 10.5 ◦C
v er a ge annual temper atur e; 692.8 mm av er a ge annual rainfall),
ecobra-LEM/Lemgo (52 ◦00 ′ 41.6 ′′ N, 8 ◦52 ′ 22.7 ′′ E; 10.7 ◦C av er a ge
nnual temper atur e; 714.3 mm av er a ge annual r ainfall), and
ecobr a-FK/Moosbur g (48 ◦28 ′ 46.8 ′′ N, 11 ◦54 ′ 32.6 ′′ E; 10.7 ◦C av er a ge
nnual temper atur e; 743.1 mm av er a ge annual r ainfall). The
rials w ere so wn follo wing a generalized alpha lattice design,
hic h or ganizes genotypes into incomplete bloc ks to minimize

patial v ariation. Two-r ow observ ation plots (1 m 

2 ) with 2 repli-
ations were used, and 10 c hec ks wer e included acr oss years and
ocations for consistency. Each unique combination of year and
ocation was considered a distinct environment. 

henotyping 

he whole population was phenotyped for 3 a gr onomy tr aits for
heir importance in barley adaptability, yield potential, and har-
estability: heading date measured in days from January 1 for
inter type and from the sowing date onw ar d for the spring type,
lant height measured from the soil surface to the tip of spike

n centimeters (excluding awns), and lodging rated on a 1–9 scale
with a higher score indicating se v er e lodging). Additionall y, 4 dis-
ase traits, including P. hordei , B. gr aminis hor dei , R. collo-cygni , and R.
ommune , wer e e v aluated under natur al infection conditions . T he
isease se v erities wer e scor ed using an ordinal scale from 1 (fully
esistant) to 9 (fully susceptible) following the guidelines of the
erman Federal Plant Variety Office [ 19 ]. 
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Figure 1: Heritability (A) and percentages of the different variance components (B) for the 7 traits considered in this study. BLU: Blumeria graminis 
hordei ; HD: heading date; LOD: lodging; PLH: plant height; PUC: Puccinia hordei ; RAM: Ramularia collo-cygni ; RHY: Rhynchosporium commune ; σ 2 

G : genotypic 
variance; σ 2 

G ∗E : variance due to genotype × environment interaction; σ 2 
E : variance due to environment; σ 2 

e : residual. 
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Phenotypic data analyses 

A linear mixed model using r estricted maxim um likelihood 

(REML) method [ 20 ] was used for data analyses across environ- 
ments for spring and winter barley separ atel y. Phenotypic data 
wer e corr ected for outliers following the method of Tuk e y and 

Anscombe [ 21 ]. The residuals were extracted and then normalized 
o flag the outliers according to a predefined significance thresh-
ld of P < 0.01 ( Supplementary Table S2 ). Variance components
nd best linear unbiased estimations (BLUEs) of each genotype 
er e computed fr om the outlier-corr ected data, following model

 1 ): 

y ijkm 

= μ + E m 

+ g i + g i × E m 

+ E m 

: r j : b k + e ijkm 

, (1) 

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae121#supplementary-data
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Figure 2: Histogram showing the phenotypic distribution for 4 disease traits for the spring (A) and winter (B) population. BLU: Blumeria graminis hordei ; 
PUC: Puccinia hordei ; RAM: Ramularia collo-cygni ; RHY: Rhynchosporium commune . 

Figure 3: Histogram showing the phenotypic distribution for 3 a gr onomic tr aits for the spring (A) and winter (B) population. HD: heading date; LOD: 
lodging; PLH: plant height. 

w  

g  

t  

d  

e  

e  

g  

m  

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/doi/10.1093/gigascience/giae121/8008390 by M

PR
S Enzym

ology Protein Folding user on 12 M
arch 2025
here y ijkm 

denoted the vector of phenotypic values for the i th
enotype ( g ) tested in the k th block ( b ) nested in the j th replica-
ion ( r ) in m th environment ( E ), μ was the common mean, and e
enoted the error term of the model. We assumed that all random
ffects follo w ed an independent normal distribution with differ-
nt variance components. In the model ( 1 ), all terms except μand
 i wer e consider ed r andom for deriving the BLUEs acr oss envir on-
ents, whereas all terms except μ were modeled as random to
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Figure 4: Admixture analysis of the spring (A) and winter (B) populations with the K = 3 admixture model. Each individual is represented as a vertical 
bar with color corresponding to the proportions of 3 ancestral components (K). 

Figure 5: Fivefold cross-validation abilities of the genomic best linear unbiased prediction for heading date (HD; days), plant height (PLH; cm), lodging 
(LOD), Blumeria gr aminis hor dei (BLU), Puccinia hor dei (PUC), Rhynchosporium commune (RHY), and Ramularia collo-cygni (RAM), obtained in the spring (A) and 
winter (B) populations. 
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estimate the variance component for deriving heritability, follow- 
ing model ( 2 ): 

H 

2 = 

σ 2 
g 

σ 2 
g + 

σ 2 
g×E 

n E 
+ 

σ 2 
e 

n R 

, (2) 

where σ 2 
g denoted the genotypic variance, σ 2 

g×E denoted the inter- 
action between genotype and environment, σ 2 

e denoted the resid- 
ual variance, n R denoted the av er a ge number of replications per 
genotype, and n E denoted the av er a ge number of environments 
in which the genotypes were evaluated. ASReml-R [ 22 ] was em- 
plo y ed for all mixed linear models that were applied in the phe- 
notypic analysis. 
hole genome shotgun sequencing 

hole genome sequencing (WGS) of the 1,110 genotypes (812 
GRs and 298 elite lines) was performed at IPK Gatersleben. High
olecular weight (HMW) DNA was extracted from the leaves 

8 g) of gr eenhouse-gr own (21 ◦C/18 ◦C day/night temper atur e) 7-
ay-old seedlings following a pr e viousl y established pr otocol [ 23 ].
he Illumina Nextera libraries were prepared and sequenced 

sing the Illumina NovaSeq 6000 platform [ 24 ]. Raw sequenc-
ng reads were trimmed using cutadapt [version 3.3; 25 ] and
ligned to the Mor exV3 r efer ence genome [ 26 ] using Minimap2
version 2.20; 27 ]. The resultant alignment recor ds w ere sorted
ith No vosort (V3.09.01; http://www.no vocr aft.com ). Finall y, a to-

al of 149,380,812 single nucleotide pol ymor phisms (SNPs) for the

http://www.novocraft.com
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Figure 6: Pairwise correlations for the recorded traits and the Mantel tests between tested traits versus elite materials and plant genetic resources 
(PGR) for spring barley (A) and winter barley (B). The lines r epr esent significant r elationships, wher e the width of the line r epr esents the Mantel r 
statistic value and the different colors of the lines represent different degrees of significance . T he Pearson correlation coefficient between different 
traits is shown in the heatmap matrix. BLU: Blumeria graminis hordei ; HD: heading date; LOD: lodging; PLH: plant height; PUC: Puccinia hordei ; RAM: 
Ramularia collo-cygni ; RHY: Rhynchosporium commune . ∗P < 0.05. ∗∗P < 0.01. ∗∗∗ P < 0.001. 
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,110 genotypes were initially outputted by BCFtools [version 1.9;
8 ]. 

uality control for SNP data 

he resulting raw genotypic data were used to extract the cor-
esponding datasets of the 4 subgroups. Only biallelic SNPs with
 minor allele frequency > 0.05 and missing rate < 0.1 were re-
ained by PLINK [version 1.9; 29 ] for each of the 4 subgroups.
hese meticulous steps yielded datasets comprising 17,759,260
NPs for Elite_Spring, 26,903,811 for Elite_Winter, 54,934,336 for
GR_Spring, and 46,434,685 for PGR_Winter. 

The resulting filtered genotypic data were used as input to
hase and impute missing values using Beagle [version 5.2; 30 ],

e v er a ging linka ge disequilibrium to infer missing data accur atel y.
ubsequently, an r 2 cutoff of 0.2 was set to prune markers by
LINK (version 1.9) with a sliding window size of 50 kb and a
tep size of 10 kb. The final number of SNPs available differed in
he 4 subgroups due to the aforementioned process: 710,855 of
lite_Spring, 945,074 of Elite_Winter, 2,321,327 of PGR_Spring, and
,775,972 of PGR_Winter. For each tested SNP, homozygous for the
ost frequent allele , heterozygous , and homozygous for the al-

ernative allele were coded as 0, 1, and 2 by PLINK (version 1.9),
 espectiv el y. 

opulation structure 

ubsequentl y, the afor ementioned post–quality contr ol markers
ere used to investigate the population structure within and
cross spring and winter barley accessions using principal coor-
inate analysis (PCoA) based on pairwise Rogers’s distance [ 31 ].
CoA was performed using the R pac ka ge a pe [v ersion v5.7–1; 32 ].
dditionall y, the population structur e was tested using ADMIX-
URE [version 1.3.0; 33 ]. The optimal number of population com-
onents was determined based on cr oss-v alidation function (–cv).

Mor eov er, linka ge disequilibrium (LD) analyses of the 4 sub-
roups was carried out separately by determining the pairwise
quar ed allele-fr equency corr elations ( r 2 ) between markers [ 34 ]
nd then combined to estimate LD decay across the entire
enome . A deca y curve was fitted for each subgroup using non-
inear r egr ession of pairwise r 2 a gainst the distance (Mb) between
he markers. LD within a specific physical distance of 2 Mb was
alculated and visualized using P opLDdeca y [version 3.40; 34 ]. 

enomic–phenotypic data interoperability 

o e v aluate the inter oper ability for the phenotypic and genomic
atasets, we calculated the accuracy of the genomic best linear
nbiased prediction (GBLUP) [ 35 ]. First, the mixed-model equa-
ions for genomic prediction were computed using REML in the
rBLUP R pac ka ge [v4.6.1; 36 ]. Pr ediction accur acies wer e then
stimated through 5-fold cross-validation. In this process, both
henotypic and genomic datasets were randomly subdivided into
 groups . T he first 4 gr oups serv ed together as the training set,
hereas the fifth group corresponded to the prediction set. The

andom sampling was repeated 100 times, giving a total of 500
r oss-v alidation runs. Genomic pr ediction ability was ther eafter
efined as the correlation between BLUEs across environments for
 trait and the corresponding predicted values. 

antel correlation 

ollowing the imputation process, we used PLINK (version 1.9) to
onstruct a genetic relationship matrix. To further explore the
ssociation between phenotypic variation and population struc-
ur e, the corr elation between the genetic relationship matrix and
he absolute trait differences (Euclidean distance matrix) in each
ubgroup was tested using a Mantel test [ 37 ] implemented in the
 pac ka ge v egan [v2.6–4; 36 ] and visualized by linkET R pac ka ge

v0.0.7.4; 38 ]; 999 perm utations wer e used to e v aluate the signifi-
ance of the test. 

a ta Valida tion and Quality Contr ol 
igh heritability estimation highlights the 

obustness of the phenotypic data 

he quality and reliability of the phenotypic data were rigorously
ssessed by estimating the heritability of the e v aluated tr aits. Af-
er outlier correction, the heritability estimates for most traits
er e gener all y high, exceeding 0.5 (Fig. 1 A). Notable exceptions
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included RHY in the spring population (h 

2 = 0.05) and RAM (h 

2 = 

2E-06) in the winter population. Variance components analysis re- 
v ealed that envir onment ( σ 2 

e ) accounts for the lar gest pr oportion 

of the total variance, while genotype and genotype × environment 
inter action wer e less pr onounced, with the exception of LOD and 

RHY in both the spring and winter population, as well as PUC in 

the winter population (Fig. 1 B). This suggests that factors such as 
temper atur e fluctuations, v arying le v els of pr ecipitation, and hu- 
midity acr oss differ ent climate zones may have influenced the ob- 
served phenotypic performance . T hese en vironmental conditions 
likely influenced growth patterns and trait expression, leading to 
larger phenotypic variability in traits with high heritability and 

r estricted v ariability in tr aits with low heritability. 
The resulting BLUEs sho w ed a normal distribution for most dis- 

ease traits (Fig. 2 ). Ho w ever, RHY sho w ed left skew in both spring 
and winter population, while BLU and PUC displayed left skew in 

the elite population for both spring and winter type . T he left skew 

of RHY suggests low disease pr essur e acr oss 3 years, hence r esult- 
ing in a small proportion of susceptible genotypes . T he left skew 

of elite population of BLU and PUC also suggests that PGRs tend 

to be more susceptible than the elite materials for the 2 diseases.
For a gr onomic tr aits (Fig. 3 ), the PGR population sho w ed a normal 
distribution, while elite lines sho w ed a normal distribution in HD 

and PLH only in the winter population. 
Furthermor e, se v er al significant corr elations wer e observ ed be- 

tween the e v aluated tr aits (Fig. 4 ). For pairing of a gr onomic and 

disease traits, it was observed that HD was negatively correlated 

with all the disease traits, except for BLU in the winter barley 
population. Those observations suggest a strategic plant response 
given that delayed heading allows plants to e v ade disease infec- 
tion through spatial or temporal adjustments . Moreo ver, LOD was 
positiv el y corr elated with all the disease tr aits, except for RAM in 

the spring barley population. PLH was positiv el y corr elated with 

BLU and PUC while negativ el y corr elated with RAM and RHY. 

Whole genome sequencing data show high 

genetic di v ersity and high mark er densities 

WGS data of the 1,110 genotypes sho w ed an av er a ge cov er a ge of 
4.7 ×, with a range spanning from 0.5 × to 22.6 × across all samples 
with a mapping rate from 94% to 99%, providing a solid foundation 

for downstream genetic analyses and ensuring a comprehensive 
r epr esentation of the genomic information across the diverse set 
of genotypes. 

Building on this compr ehensiv e genomic dataset, we per- 
formed PCoA to assess the genetic diversity among the spring 
and winter barley population, as reported in our companion study 
[ 14 ]. The first 2 coordinates together explained 11.66% and 11.25% 

of the spring and winter population, r espectiv el y. As anticipated,
the inclusion of PGRs significantly broadened the genetic diversity 
compared to the elite materials. Notably, the elite spring popula- 
tion formed a tight, cohesive cluster, indicating less genetic diver- 
sity, while the elite winter population exhibited a more dispersed 

pattern, r eflecting gr eater genetic v ariability. 
To further complement the population structure analyses, the 

optimal number of genetic components (K = 3) was determined 

based on cr oss-v alidation r esults . T he admixtur e anal ysis r e- 
vealed distinct population structures within the spring and win- 
ter populations (Fig. 4 ), with individuals showing varying propor- 
tions of the 3 inferred components . T hese results highlight the 
contr asting le v els of genetic diversity and population structure 
within each spring and winter barley genotype. 

For the intr ac hr omosomal decay of LD ( r 2 ), PGR was faster in 

both the spring and winter population as compared to elite ma- 
erials . T he slo w er LD decay in the elite population may be due to
enetic bottlenecks and/or high selection pr essur es that pr oduce
pecific linkage between alleles that control specific phenotypes. 

igh genomic prediction accuracies support the 

nteroperability of genomic and phenotypic data 

ystematic errors can occur during field trials, which will system-
tically disrupt the connectivity between genotype and phenotype 
ata and, in turn, decr ease the v alue of the data for subsequent

ntegr ated anal yses . To assess potential data imbalances , we used
he cr oss-v alidated accur acy of genomic pr ediction as a quality

easure for genomic–phenotypic data interoperability. 
Integrating phenotypic data with WGS data resulted in 652 

pring and 458 winter barley genotypes. Ov er all, the genomic–
henotypic data inter oper ability was in general high (Fig. 5 ), with a
axim um pr ediction accur acy observ ed for lodging in both spring

nd winter populations. Disease-r esistant tr aits sho w ed moder-
te to high prediction abilities, suggesting that genomic data can
e r eliabl y used, ther eby potentiall y acceler ate br eeding efforts
or r esistant v arieties. In par allel, this r obust r esult ensur es r e-
iable data quality, enabling compr ehensiv e anal yses to explor e
enotype–phenotype relationships and lay a solid foundation for 
uture studies aimed at finding marker-trait associations and 

nderstanding the genetic mec hanisms underl ying k e y traits in
arley. 

antel test results indicate a high detection 

o w er in association mapping 

ccur ate ma pping r equir es addr essing the complexities inher-
nt in genetic relatedness among individuals. In such way, espe-
ially when dealing with panels comprising both elite lines and
GRs, the intricate patterns of genetic relationship can pose sig-
ificant c hallenges. Speciall y, when phenotype v ariation is influ-
nced by genetic relatedness, it becomes crucial to differentiate 
etween genuine associations and those resulting from shared ge- 
etic bac kgr ounds . T his complexity underscores the importance
f robust methods to effectiv el y uncov er meaningful corr elations
nd enhance the reliability of association ma pping. Ther efor e, by
inimizing genotype–phenotype co variance , we can reduce the 

isk of spurious associations [ 39 ]. The Mantel test is a widely used
 ppr oac h to examine the association between 2 matrices . T he re-
ults r e v ealed a moder ate to low corr elation between genetic dis-
ance and Euclidean phenotypic distance matrix, indicating a lack 
f strong association between phenotypic variation and genome- 
ide genetic differences (Fig. 6 ; Mantel’s r ranged from −0.02 to
.29 in spring barley and from 0 to 0.32 in winter barley), which
n turn is expected to increase the detection po w er in association

apping. 

dditional Files 

upplementary Table S1. List of 1,110 genotypes in this dataset. 
upplementary Table S2. The number and proportion of outliers 

dentified for each trait. 

bbreviations 

LU: Blumeria graminis hordei ; BLUE: best linear unbiased estima-
ions; HD: heading date; IPK: Institute of Plant Genetics and Crop
lant Research; LD: linkage disequilibrium; LOD: lodging; PCoA: 
rincipal coordinate analysis; PGR: plant genetic resources; PLH: 
lant height; PUC: Puccinia hordei ; RAM: Ramularia collo-cygni ; RHY:
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hynchosporium commune ; SNP: single nucleotide polymorphism;
GS: whole genome sequencing. 
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