(Gl A)n GigaScience, 2024, 14, 1-9
gCIEN‘Q; E

DOI: 10.1093/gigascience/giae121
Data Note

OXFORD

High-quality phenotypic and genotypic dataset of barley
genebank core collection to unlock untapped genetic
diversity

Zhihui Yuan
Andreas Borner

1, Maximilian Rembe?, Martin Mascher © 3, Nils Stein ~ 14, Axel Himmelbach * !, Murukarthick Jayakodi 1,
1 Klaus Oldach “'°>, Ahmed Jahoor * ¢, Jens Due Jensen®, Julia Rudloff’, Viktoria-Elisabeth Dohrendorf3,

Luisa Pauline Kuhfus®, Emmanuelle Dyrszka®, Matthieu Conte®, Frederik Hinz'?, Salim Trouchaud??, Jochen C. Reif “'!, and

Samira El Hanafi = 1*

Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, 06466 Seeland, Germany

2KWS SAAT SE & Co. KGaA, 37574 Einbeck, Germany

3German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany

“Crop Plant Genetics, Institute of Agricultural and Nutritional Sciences, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany
°KWS LOCHOW GmbH, 29303 Bergen, Germany

®Nordic Seed Germany GmbH, 31688 Nienstadt, Germany

’Limagrain GmbH, 31226 Peine-Rosenthal, Germany

8Nordsaat Saatzucht GmbH, Zuchtstation Gudow, D-23899 Gudow, Germany

9Syngenta France SAS, 31790, Saint-Sauveur, France

19Saatzucht Bauer GmbH & CO.KG, 93083 Obertraubling, Germany

HSecobra Saatzucht GmbH, 85368 Moosburg an der Isar, Germany

*Correspondence address. Samira El Hanafi, Breeding research departement, Leibniz Institute of Plant Genetics and Crop Plant Research, 06466 Gatersleben,
Germany. E-mail: hanafi@ipk-gatersleben.de

Abstract

Background: Genebanks around the globe serve as valuable repositories of genetic diversity, offering not only access to a broad spec-
trum of plant material but also critical resources for enhancing crop resilience, advancing scientific research, and supporting global
food security. To this end, traditional genebanks are evolving into biodigital resource centers where the integration of phenotypic and
genotypic data for accessions can drive more informed decision-making, optimize resource allocation, and unlock new opportunities
for plant breeding and research. However, the curation and availability of interoperable phenotypic and genotypic data for genebank
accessions is still in its infancy and represents an obstacle to rapid scientific discoveries in this field. Therefore, effectively promoting
FAIR (i.e,, findable, accessible, interoperable, and reusable) access to these data is vital for maximizing the potential of genebanks and
driving progress in agricultural innovation.

Findings: Here we provide whole genome sequencing data of 812 barley (Hordeum vulgare L.) plant genetic resources and 298 European
elite materials released between 1949 and 2021, as well as the phenotypic data for 4 disease resistance traits and 3 agronomic traits. The
robustness of the investigated traits and the interoperability of genomic and phenotypic data were assessed in the current publication,
aiming to make this panel publicly available as a resource for future genetic research in barley.

Conclusions: The data showed broad phenotypic variability and high association mapping potential, offering a key resource for iden-
tifying genebank donors with untapped genes to advance barley breeding while safeguarding genetic diversity.
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Context

Successful plant breeding programs rely on balanced efforts be-
tween short-term goals to develop competitive cultivars and the
maintenance of a broad genetic pool to guarantee long-term
progress. In practice, the development of new varieties has been
predominantly derived by recycling existing elite lines, leading to
important genetic improvement and the reduction in the genetic
diversity of elite germplasm. This could impede the breeding of
potential new varieties capable of addressing and responding to
constraints related to climate change, agronomical threads, and
meeting the escalating social demands [1]. To overcome these lim-

resources (PGRs) has been frequently suggested [2]. PGRs provide
a valuable reservoir of untapped genetic potential that can be
utilized to develop varieties with improved yield [3] and end-use
quality, as well as enhanced resistance to both biotic and abiotic
stresses, such as diseases [4], pests [5], waterlogging [6], salinity
[7], and drought [6, 8].

As the most cost-effective ex situ conservation strategy,
genebanks worldwide are committed to maintaining PGRs, which
hold a diverse gene pool encompassing all the alleles of various
genes, including those from wild species, landraces, and breed-
ing stocks. However, although enormous efforts have been made
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to conserve germplasm [9], it is estimated that less than 1% of
the resources preserved in genebanks have been used in crop im-
provement [10]. The great challenge for breeders and scientists
lies in finding useful barley PGRs among entire genebank collec-
tions that comprise thousands of accessions with complex pat-
terns of genetic diversity [11]. Therefore, core collections were
proposed as a strategy to streamline operational processes
and mitigate costs, thereby facilitating more precise and effec-
tive research and breeding initiatives. Over the past decades,
this approach has become even more attractive thanks to re-
cent technological advancements, which have markedly re-
duced the costs of genotyping and led to dramatic improve-
ments in read length, sequencing chemistry, instrumentation,
and throughput [12]. As a result, generating large-scale sequenc-
ing and genotyping datasets for entire genebank collections is
now feasible. This has greatly expanded the scope of genotyp-
ing efforts and underpinned the effective selection of core col-
lections that maximize genetic diversity [13]. These advance-
ments provide powerful tools to efficiently harness PGRs, en-
abling the identification of valuable and favorable genes. This
has streamlined their incorporation into crop improvement ef-
forts, ultimately speeding up the development of new and im-
proved varieties. Coupled with extensive and high-quality phe-
notypic data, the systematic use of whole genome sequenc-
ing data could provide valuable insights into genetic diversity
and potential breeding opportunities. Our recent findings using
genome-wide association analyses highlighted the value of these
data in selecting donors with potentially novel favorable genes
[14].

Moreover, the strategic deployment of core collections becomes
even more compelling when combined with modern elite mate-
rial [15, 16], which serves as a reference panel to define favor-
able alleles/genes that are absent in the elite panel. This inte-
grated approach is essential for enhancing polygenic traits and,
hence, achieving informed prebreeding decisions. To put this into
practice, we selected a barley core collection [17] from the Ger-
man Federal ex situ Genebank for Agriculture and Horticultural
Crops at the Leibniz Institute of Plant Genetics and Crop Plant
Research (IPK) and combined it with a set of European elite ma-
terial. This population was designed to (i) phenotype the whole
population in multienvironmental trials for 3 agronomical traits:
plant height (PLH), heading date (HD), and lodging (LOD) and 4
disease traits: Puccinia hordei (PUC), Blumeria graminis hordei (BLU),
Ramularia collo-cygni (RAM), and Rhynchosporium commune (RHY); (ii)
evaluate the interoperability quality for the phenotypic and ge-
nomic datasets using 5-fold cross-validation; and (iii) conduct the
mantel test to check the detection power in association mapping
analyses.

The data presented here can be further extended with ad-
ditional PGRs and/or elite materials. They can also be inte-
grated with alternative strategies to improve the utilization of
germplasm collections by selecting untapped PGR donors, such
as the development of novel association mapping methods. This
will enable breeders to make more accurate predictions of trait
performance, thereby enhancing the efficiency of selection pro-
cesses. Furthermore, with the development of publicly accessible
resources, scientists will be able to focus more on research and
innovation while reducing the burden of extensive phenotyping.
The insights derived from our data may significantly accelerate
advancements in genomic research and breeding programs, driv-
ing improvement and fostering future collaboration and resource
sharing.

Methods
Barley material and field trials

To capture a broad spectrum of geographic origins and wide ge-
netic diversity, we selected 812 PGRs, which include 288 spring
type (PGR_Spring) and 524 winter type (PGR_Winter), originat-
ing from 57 countries spanning 5 continents. Based on their per-
formance during seed regeneration, these PGRs were thought-
fully selected from a previously described barley core 1000
collection [17], as a representative subset of the entire 21,405 bar-
ley accessions available at the IPK genebank [18], based on their
performance during seed regeneration. Additionally, we incorpo-
rated 298 elite lines, including 10 local checks, which consist of
128 spring type (Elite_Spring) and 170 winter type (Elite_Winter).
These elites were exclusively selected from the European reg-
istered varieties and were available through the seed market,
showcasing the breeding process over time from 1949 to 2021.
The study initially included 87 additional genotypes that were
later excluded from certain analyses due to incomplete pheno-
typic or genotypic data. To maintain the integrity of the dataset
and facilitate accurate adjustments for experimental design ef-
fects, we retained all relevant data, including instances of missing
information.

Field trials were conducted over 3 consecutive years
(2020, 2021, and 2022) across 8 locations in Germany: KWS-
L/Prosselsheim (49°51'15.6"N, 10°06'04.1"E; 10.9°C average
annual temperature; 565.3 mm average annual rainfall), Nordic
Seed/Nienstadt (52°17/35.52"N, 9°08'57.156"E; 10.7°C aver-
age annual temperature; 638.4 mm average annual rainfall),
Saatzucht Bauer/Riekofen (48°54/55.98"N, 12°21'21.744"E; 9.9°C
average annual temperature; 690.3 mm average annual rain-
fall), Limagrain/Peine-Rosenthal (52°18'09.828"N, 10°10'28.488"E;
10.9°C average annual temperature; 607.5 mm average annual
rainfall), Nordsaat/Gudow (53°33/28.0"N, 10°47'50.5"E; 10.4°C
average annual temperature; 581.1 mm average annual rainfall),
Syngenta/Bad Salzuflen (52°04'21.576"N, 8°41'55.86"E; 10.5°C
average annual temperature; 692.8 mm average annual rainfall),
Secobra-LEM/Lemgo (52°00'41.6"N, 8°52'22.7"E; 10.7°C average
annual temperature; 714.3 mm average annual rainfall), and
Secobra-FK/Moosburg (48°28'46.8"N, 11°54'32.6"E; 10.7°C average
annual temperature; 743.1 mm average annual rainfall). The
trials were sown following a generalized alpha lattice design,
which organizes genotypes into incomplete blocks to minimize
spatial variation. Two-row observation plots (1 m?) with 2 repli-
cations were used, and 10 checks were included across years and
locations for consistency. Each unique combination of year and
location was considered a distinct environment.

Phenotyping

The whole population was phenotyped for 3 agronomy traits for
their importance in barley adaptability, yield potential, and har-
vestability: heading date measured in days from January 1 for
winter type and from the sowing date onward for the spring type,
plant height measured from the soil surface to the tip of spike
in centimeters (excluding awns), and lodging rated on a 1-9 scale
(with a higher score indicating severe lodging). Additionally, 4 dis-
ease traits, including P. hordei, B. graminis hordei, R. collo-cygni, and R.
commune, were evaluated under natural infection conditions. The
disease severities were scored using an ordinal scale from 1 (fully
resistant) to 9 (fully susceptible) following the guidelines of the
German Federal Plant Variety Office [19].
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Figure 1: Heritability (A) and percentages of the different variance components (B) for the 7 traits considered in this study. BLU: Blumeria graminis
hordei; HD: heading date; LOD: lodging; PLH: plant height; PUC: Puccinia hordei; RAM: Ramularia collo-cygni; RHY: Rhynchosporium commune; o2¢: genotypic
variance; o%c,g: variance due to genotype x environment interaction; o%¢: variance due to environment; o%: residual.

Phenotypic data analyses to flag the outliers according to a predefined significance thresh-
old of P<0.01 (Supplementary Table S2). Variance components
and best linear unbiased estimations (BLUEs) of each genotype
were computed from the outlier-corrected data, following model

A linear mixed model using restricted maximum likelihood
(REML) method [20] was used for data analyses across environ-
ments for spring and winter barley separately. Phenotypic data
were corrected for outliers following the method of Tukey and (2):

Anscombe [21]. The residuals were extracted and then normalized Yijmn = 14+ Em + i + i X Ej +En 1 75 2 be + €ijim, )
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Figure 2: Histogram showing the phenotypic distribution for 4 disease traits for the spring (A) and winter (B) population. BLU: Blumeria graminis hordei;
PUC: Puccinia hordei; RAM: Ramularia collo-cygni; RHY: Rhynchosporium commune.
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Figure 3: Histogram showing the phenotypic distribution for 3 agronomic traits for the spring (A) and winter (B) population. HD: heading date; LOD:

lodging; PLH: plant height.

where yj, denoted the vector of phenotypic values for the ith
genotype (g) tested in the kth block (b) nested in the jth replica-
tion (r) in mth environment (E), © was the common mean, and e
denoted the error term of the model. We assumed that all random

effects followed an independent normal distribution with differ-
ent variance components. In the model (1), all terms except pand
g; were considered random for deriving the BLUEs across environ-
ments, whereas all terms except u were modeled as random to
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Figure 4: Admixture analysis of the spring (A) and winter (B) populations with the K = 3 admixture model. Each individual is represented as a vertical
bar with color corresponding to the proportions of 3 ancestral components (K).
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Figure 5: Fivefold cross-validation abilities of the genomic best linear unbiased prediction for heading date (HD; days), plant height (PLH; cm), lodging
(LOD), Blumeria graminis hordei (BLU), Puccinia hordei (PUC), Rhynchosporium commune (RHY), and Ramularia collo-cygni (RAM), obtained in the spring (A) and

winter (B) populations.

estimate the variance component for deriving heritability, follow-
ing model (2):
2
0= %
- o2, o2
g

. 2

where 092 denoted the genotypic variance, agsz denoted the inter-
action between genotype and environment, o denoted the resid-
ual variance, ng denoted the average number of replications per
genotype, and ng denoted the average number of environments
in which the genotypes were evaluated. ASReml-R [22] was em-
ployed for all mixed linear models that were applied in the phe-

notypic analysis.

Whole genome shotgun sequencing

Whole genome sequencing (WGS) of the 1,110 genotypes (812
PGRs and 298 elite lines) was performed at IPK Gatersleben. High
molecular weight (HMW) DNA was extracted from the leaves
(8 g) of greenhouse-grown (21°C/18°C day/night temperature) 7-
day-old seedlings following a previously established protocol [23].
The Illumina Nextera libraries were prepared and sequenced
using the Illumina NovaSeq 6000 platform [24]. Raw sequenc-
ing reads were trimmed using cutadapt [version 3.3; 25] and
aligned to the MorexV3 reference genome [26] using Minimap?2
[version 2.20; 27]. The resultant alignment records were sorted
with Novosort (V3.09.01; http://www.novocraft.com). Finally, a to-
tal of 149,380,812 single nucleotide polymorphisms (SNPs) for the
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Figure 6: Pairwise correlations for the recorded traits and the Mantel tests between tested traits versus elite materials and plant genetic resources
(PGR) for spring barley (A) and winter barley (B). The lines represent significant relationships, where the width of the line represents the Mantel r
statistic value and the different colors of the lines represent different degrees of significance. The Pearson correlation coefficient between different
traits is shown in the heatmap matrix. BLU: Blumeria graminis hordei; HD: heading date; LOD: lodging; PLH: plant height; PUC: Puccinia hordei; RAM:
Ramularia collo-cygni; RHY: Rhynchosporium commune. *P < 0.05. **P < 0.01. *** P < 0.001.

1,110 genotypes were initially outputted by BCFtools [version 1.9;
28].

Quality control for SNP data

The resulting raw genotypic data were used to extract the cor-
responding datasets of the 4 subgroups. Only biallelic SNPs with
a minor allele frequency >0.05 and missing rate <0.1 were re-
tained by PLINK [version 1.9; 29] for each of the 4 subgroups.
These meticulous steps yielded datasets comprising 17,759,260
SNPs for Elite_Spring, 26,903,811 for Elite_Winter, 54,934,336 for
PGR_Spring, and 46,434,685 for PGR_Winter.

The resulting filtered genotypic data were used as input to
phase and impute missing values using Beagle [version 5.2; 30],
leveraging linkage disequilibrium to infer missing data accurately.
Subsequently, an r? cutoff of 0.2 was set to prune markers by
PLINK (version 1.9) with a sliding window size of 50 kb and a
step size of 10 kb. The final number of SNPs available differed in
the 4 subgroups due to the aforementioned process: 710,855 of
Elite_Spring, 945,074 of Elite_Winter, 2,321,327 of PGR_Spring, and
1,775,972 of PGR_Winter. For each tested SNP, homozygous for the
most frequent allele, heterozygous, and homozygous for the al-
ternative allele were coded as 0, 1, and 2 by PLINK (version 1.9),
respectively.

Population structure

Subsequently, the aforementioned post-quality control markers
were used to investigate the population structure within and
across spring and winter barley accessions using principal coor-
dinate analysis (PCoA) based on pairwise Rogers’s distance [31].
PCoA was performed using the R package ape [version v5.7-1; 32].
Additionally, the population structure was tested using ADMIX-
TURE [version 1.3.0; 33]. The optimal number of population com-
ponents was determined based on cross-validation function (-cv).

Moreover, linkage disequilibrium (LD) analyses of the 4 sub-
groups was carried out separately by determining the pairwise
squared allele-frequency correlations (r?) between markers [34]
and then combined to estimate LD decay across the entire
genome. A decay curve was fitted for each subgroup using non-

linear regression of pairwise r> against the distance (Mb) between
the markers. LD within a specific physical distance of 2 Mb was
calculated and visualized using PopLDdecay [version 3.40; 34].

Genomic-phenotypic data interoperability

To evaluate the interoperability for the phenotypic and genomic
datasets, we calculated the accuracy of the genomic best linear
unbiased prediction (GBLUP) [35]. First, the mixed-model equa-
tions for genomic prediction were computed using REML in the
BLUP R package [v4.6.1; 36]. Prediction accuracies were then
estimated through 5-fold cross-validation. In this process, both
phenotypic and genomic datasets were randomly subdivided into
5 groups. The first 4 groups served together as the training set,
whereas the fifth group corresponded to the prediction set. The
random sampling was repeated 100 times, giving a total of 500
cross-validation runs. Genomic prediction ability was thereafter
defined as the correlation between BLUEs across environments for
a trait and the corresponding predicted values.

Mantel correlation

Following the imputation process, we used PLINK (version 1.9) to
construct a genetic relationship matrix. To further explore the
association between phenotypic variation and population struc-
ture, the correlation between the genetic relationship matrix and
the absolute trait differences (Euclidean distance matrix) in each
subgroup was tested using a Mantel test [37] implemented in the
R package vegan [v2.6—4; 36] and visualized by linkET R package
[v0.0.7.4; 38]; 999 permutations were used to evaluate the signifi-
cance of the test.

Data Validation and Quality Control

High heritability estimation highlights the
robustness of the phenotypic data

The quality and reliability of the phenotypic data were rigorously
assessed by estimating the heritability of the evaluated traits. Af-
ter outlier correction, the heritability estimates for most traits
were generally high, exceeding 0.5 (Fig. 1A). Notable exceptions
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included RHY in the spring population (h? = 0.05) and RAM (h? =
2E-06) in the winter population. Variance components analysis re-
vealed that environment (¢7?) accounts for the largest proportion
of the total variance, while genotype and genotype x environment
interaction were less pronounced, with the exception of LOD and
RHY in both the spring and winter population, as well as PUC in
the winter population (Fig. 1B). This suggests that factors such as
temperature fluctuations, varying levels of precipitation, and hu-
midity across different climate zones may have influenced the ob-
served phenotypic performance. These environmental conditions
likely influenced growth patterns and trait expression, leading to
larger phenotypic variability in traits with high heritability and
restricted variability in traits with low heritability.

The resulting BLUEs showed a normal distribution for most dis-
ease traits (Fig. 2). However, RHY showed left skew in both spring
and winter population, while BLU and PUC displayed left skew in
the elite population for both spring and winter type. The left skew
of RHY suggests low disease pressure across 3 years, hence result-
ing in a small proportion of susceptible genotypes. The left skew
of elite population of BLU and PUC also suggests that PGRs tend
to be more susceptible than the elite materials for the 2 diseases.
For agronomic traits (Fig. 3), the PGR population showed a normal
distribution, while elite lines showed a normal distribution in HD
and PLH only in the winter population.

Furthermore, several significant correlations were observed be-
tween the evaluated traits (Fig. 4). For pairing of agronomic and
disease traits, it was observed that HD was negatively correlated
with all the disease traits, except for BLU in the winter barley
population. Those observations suggest a strategic plant response
given that delayed heading allows plants to evade disease infec-
tion through spatial or temporal adjustments. Moreover, LOD was
positively correlated with all the disease traits, except for RAM in
the spring barley population. PLH was positively correlated with
BLU and PUC while negatively correlated with RAM and RHY.

Whole genome sequencing data show high
genetic diversity and high marker densities

WGS data of the 1,110 genotypes showed an average coverage of
4.7 x,with a range spanning from 0.5x to 22.6x across all samples
with a mapping rate from 94% to 99%, providing a solid foundation
for downstream genetic analyses and ensuring a comprehensive
representation of the genomic information across the diverse set
of genotypes.

Building on this comprehensive genomic dataset, we per-
formed PCoA to assess the genetic diversity among the spring
and winter barley population, as reported in our companion study
[14]. The first 2 coordinates together explained 11.66% and 11.25%
of the spring and winter population, respectively. As anticipated,
the inclusion of PGRs significantly broadened the genetic diversity
compared to the elite materials. Notably, the elite spring popula-
tion formed a tight, cohesive cluster, indicating less genetic diver-
sity, while the elite winter population exhibited a more dispersed
pattern, reflecting greater genetic variability.

To further complement the population structure analyses, the
optimal number of genetic components (K = 3) was determined
based on cross-validation results. The admixture analysis re-
vealed distinct population structures within the spring and win-
ter populations (Fig. 4), with individuals showing varying propor-
tions of the 3 inferred components. These results highlight the
contrasting levels of genetic diversity and population structure
within each spring and winter barley genotype.

For the intrachromosomal decay of LD (?), PGR was faster in
both the spring and winter population as compared to elite ma-

Phenotypic and genotypic insights into barley core collection | 7

terials. The slower LD decay in the elite population may be due to
genetic bottlenecks and/or high selection pressures that produce
specific linkage between alleles that control specific phenotypes.

High genomic prediction accuracies support the
interoperability of genomic and phenotypic data
Systematic errors can occur during field trials, which will system-
atically disrupt the connectivity between genotype and phenotype
data and, in turn, decrease the value of the data for subsequent
integrated analyses. To assess potential data imbalances, we used
the cross-validated accuracy of genomic prediction as a quality
measure for genomic-phenotypic data interoperability.

Integrating phenotypic data with WGS data resulted in 652
spring and 458 winter barley genotypes. Overall, the genomic-
phenotypic data interoperability was in general high (Fig. 5), with a
maximum prediction accuracy observed for lodging in both spring
and winter populations. Disease-resistant traits showed moder-
ate to high prediction abilities, suggesting that genomic data can
be reliably used, thereby potentially accelerate breeding efforts
for resistant varieties. In parallel, this robust result ensures re-
liable data quality, enabling comprehensive analyses to explore
genotype-phenotype relationships and lay a solid foundation for
future studies aimed at finding marker-trait associations and
understanding the genetic mechanisms underlying key traits in
barley.

Mantel test results indicate a high detection
power in association mapping

Accurate mapping requires addressing the complexities inher-
ent in genetic relatedness among individuals. In such way, espe-
cially when dealing with panels comprising both elite lines and
PGRs, the intricate patterns of genetic relationship can pose sig-
nificant challenges. Specially, when phenotype variation is influ-
enced by genetic relatedness, it becomes crucial to differentiate
between genuine associations and those resulting from shared ge-
netic backgrounds. This complexity underscores the importance
of robust methods to effectively uncover meaningful correlations
and enhance the reliability of association mapping. Therefore, by
minimizing genotype-phenotype covariance, we can reduce the
risk of spurious associations [39]. The Mantel test is a widely used
approach to examine the association between 2 matrices. The re-
sults revealed a moderate to low correlation between genetic dis-
tance and Euclidean phenotypic distance matrix, indicating a lack
of strong association between phenotypic variation and genome-
wide genetic differences (Fig. 6; Mantel’s r ranged from —0.02 to
0.29 in spring barley and from 0 to 0.32 in winter barley), which
in turn is expected to increase the detection power in association

mapping.

Additional Files

Supplementary Table S1. List of 1,110 genotypes in this dataset.
Supplementary Table S2. The number and proportion of outliers
identified for each trait.
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