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Abstract
Inference for predicted exceedance sets is important for various environmental 
issues such as detecting environmental anomalies and emergencies with high confi-
dence. A critical part is to construct inner and outer predicted exceedance sets using 
an algorithm that samples from the predictive distribution. The simple currently 
used sampling procedure can lead to misleading conclusions for some locations due 
to relatively large standard errors when proportions are estimated from independent 
observations. Instead we propose an algorithm that calculates probabilities numeri-
cally using the Genz–Bretz algorithm, which is based on quasi-random numbers 
leading to more accurate inner and outer sets, as illustrated on rainfall data in the 
state of Paraná, Brazil.

Keywords Geospatial models · Predicted exceedance sets · Kriging

1 Introduction

In environmental and health sciences, researcher often try to determine an exceed-
ance region where the environmental variable of interest is exceeding a certain 
safety threshold, using point measurements on a set of locations. For example public 
and scientific interest in nitrate in groundwater and in particulate matter in the air is 
high.
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The legal limit for nitrate in groundwater in the European Union (EU) is 50 mg/l 
(Ohlert et  al. 2023). For particulate matter in the air there are several limits, the 
European Air Quality Directive has thresholds of 40 μg∕m3 for PM10 and 20 μg∕m3 
for PM2.5 concentrations, while the WHO air quality guideline has thresholds of 
20 μg∕m3 and 10 μg∕m3 (Beloconi et al. 2018). The main public interest is in deter-
mining regions where these thresholds are exceeded. Then in these regions measures 
can be taken to reduce exposure levels.

Consider the univariate stochastic process

in the spatial domain D with D ⊂ ℝ
d . One of the major objectives in spatial statis-

tics is prediction of Y(⋅) from observed data,

at known locations so ≡ {so
1
,… , so

n
}.

The observed variables Z(so
i
) are considered to be a noisy version of Y(so

i
) by add-

ing a Gaussian measurement error

where �(⋅) is a Gaussian white-noise process with mean zero and variance �2
�
.

An exceedance region is a set of locations in the spatial domain D where the uni-
variate stochastic process {Y(s) ∶ s ∈ D} exceeds some fixed threshold u, that can 
also vary with location s , i.e. u(s).

The greater exceedance region is defined as follows

French and Sain (2013), French (2014), and French and Hoeting (2016) considered 
the estimation of outer and inner predicted exceedance sets, the former contains and 
the latter is contained in the true unknown greater exceedance set GY with a certain 
high pre-specified probability.

Formally, a (1 − �)100% outer predicted exceedance set G�
O
 satisfies

and a (1 − ��)100% inner predicted exceedance set G�′

I
 satisfies

These sets and the probabilities in Eqs. (4) and (5) that must equal 1 − � and 1 − �� , 
respectively, are obtained from the conditional distribution of {Y(s) ∶ s ∈ D} given 
the data Z(so) . This distribution is obtained by Bayes’ theorem and is often referred 
to as empirical Bayes since first the distribution of Z(⋅) (could be called prior) is esti-
mated from the data Z(so) , Cressie (1992).

The algorithms to obtain G�′

I
 and G�

O
 require resampling from the underlying geo-

statistical model and uses a pseudo-statistic

(1){Y(s) ∶ s ∈ D},

Z(so) ≡ (Z(so
1
),… , Z(so

n
))⊤,

(2)Z(so
i
) = Y(so

i
) + �(so

i
); i = 1,… , n,

(3)GY ≡ {s ∈ D ∶ Y(s) > u(s)}.

(4)Pr
(
GY ⊂ G𝛼

O
|Z(so)

)
= 1 − 𝛼;

(5)Pr
(
G𝛼�

I
⊂ GY |Z(so)

)
= 1 − 𝛼�.
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where Ykr(s) is the kriging predictor and �kr(s) the kriging standard deviation for a 
given location s . French and Hoeting (2016) considered a fully Bayesian approach to 
obtain {Y(s) ∶ s ∈ D} given the data Z(so) , however for the construction of exceed-
ance regions, which they called credible regions, they considered a multiple testing 
framework that has also been established by French and Sain (2013) and French 
(2014). This framework was used, because conditions (4) and (5) are equivalent to 
controlling the family-wise-error rate (FWER) (French and Hoeting 2016).

Since French and Hoeting (2016) considered a Bayesian approach they replaced 
in Eq. (6) the kriging mean and variance by Bayesian mean and variance estimators. 
They also considered two other test statistics by using slightly different denomina-
tors. Cressie and Suesse (2020) investigated more robust methods by using further 
adjusted test statistics.

The numerical algorithms to obtain G�
O
 and G�′

I
 require simulating a large number 

of realisations from the conditional distribution of Y(s)|Z(so) to obtain estimates of 
quantiles or alternatively probabilities. This estimation can lead to different numbers 
of rejected hypotheses depending on the particular random sample from this condi-
tional distribution and can be very inaccurate by falsely rejecting or failing to reject 
several hypotheses due to the sampling error, resulting in incorrect sets G�

O
 and G�′

I
 . 

In this paper we propose a different algorithm that directly calculates probabilities 
from Y(s)|Z(so) , one for each hypothesis, using the numerical algorithms designed 
to accurately calculate probabilities from a multivariate normal distribution imple-
mented in the R package mvtnorm (Genz et al. 2021) leading to more accurate sets 
G�

O
 and G�′

I
.

We review the exceedance set methodology in Sect. 2 including the main algo-
rithm to determine exceedance sets. In Sect.  3 we present an equivalent formula-
tion of this algorithm before we present in Sect. 4 a new algorithm. In Sect. 5 the 
new algorithm is illustrated using the Paraná rainfall data set and compared with 
the standard algorithm in terms of sizes of the inner and outer predicted exceedance 
sets. Finally the paper discusses the findings and future research.

2  Exceedance‑set inference

In this section we outline the existing methodolgy and algorithm to obtain inner and 
outer predicted exceedance sets.

In the following the notation of Cressie and Suesse (2020) is used, unless 
otherwise stated. We make the assumption that Y(⋅) is a Gaussian process on 
D ⊂ ℝ

d with mean function �Y (⋅) ≡ {�Y (s) ∶ s ∈ D} and covariance function 
CY (⋅, ⋅) ≡ {CY (s, v) ∶ s, v ∈ D}.

For convenience we assume that �Y and CY are known; but realistically they need 
to be estimated. For example the simple kriging predictor, Ykr(⋅) , see (e.g., Cressie 
1993, Ch. 3),

(6)Tkr(s) ≡ Ykr(s) − u

�kr(s)
,
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can be used, where cY (s) ≡ (CY (s, s
o
1
),… ,CY (s, s

o
n
))⊤ and �Z ≡ E(Z(so)) 

= (𝜇Y (s
o
1
),… ,𝜇Y (s

o
n
))⊤ . The corresponding simple kriging covariance is given by

with the special case of the simple kriging variance �kr(s)2 = cov(Y(s),Y(s)|Z(so)) . 
For other kriging predictors, such as universal kriging predictor, see (Cressie (1993), 
Ch. 3).

Instead of defining the greater exceedance set GY , we may also define the lower 
exceedance set LY

Similarly to Eqs. (4) and (5), we could define inner and outer lower predicted 
exceedance sets L�

I
 and L�′

O
 . Superscripts � and �′ are in the following suppressed, 

unless needed. Here Ac denotes the complement of the set A. Notice that setting 
LI = Gc

O
 and LO = Gc

I
 will satisfy the conditions LI ⊂ LY and LY ⊂ LO with certain 

pre-specified probabilities 1 − � and 1 − �� , respectively.
French and Sain (2013) formulated for each location s the following hypoth-

eses test

to determine LI (and GO = Lc
I
 , see Eq. (4)).

Similarly to determine GI , see Eq. (5), (and LO = Gc
I
 ) the following hypotheses 

test is used

The algorithms presented by French (2014) and French and Hoeting (2016) to deter-
mine GI begin with a discretisation of the spatial domain into finite-grid representa-
tion of the original continuous index set. For convenience, we use the same notation 
D for this finite-grid representation. The nodes of the grid are D ≡ {s1,… , sm}.

Standard GI-Algorithm

(1) Conditional on Z(so) , simulate B realizations of {Y(si) ∶ i = 1,… ,m}

(2) For each realisation b we determine S(b)
I

≡ {si ∶ Y (b)(si) < u; i = 1… ,m}

(3) Calculate Ψb ≡ max{T(s) ∶ s ∈ S
(b)

I
}

(4) Determine C�′

I
 the (1 − ��)-th quantile of Ψ1,… ,ΨB

(5) Determine GI by 

(7)Ykr(s) ≡ E(Y(s)|Z(so)) = 𝜇Y (s) + cY (s)
⊤
�
−1
Z
(Z(so) − �Z),

(8)cov(Y(s),Y(v)|Z(so)) = CY (s, v) − cY (s)
⊤
�
−1
Z
cY (v),

(9)LY ≡ {s ∈ D ∶ Y(s) < u(s)}.

(10)HG
0
(s) ∶ Y(s) > u versus HG

1
(s) ∶ Y(s) ≤ u.

(11)HL
0
(s) ∶ Y(s) ≤ u versus HL

1
(s) ∶ Y(s) > u.

{Y (b)(si) ∶ i = 1,… ,m; b = 1,… ,B}.
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Obtaining GO can be achieved by applying the same algorithm and obtaining LI 
first, by using the following properties: (i) Pr(Y < u|𝜇, 𝜎2) = Pr(Y > −u| − 𝜇, 𝜎2) 
and (ii) LI = Gc

O
 and (iii) GI = Lc

O
 . Property (i) states that we can obtain lower 

exceedance sets from greater exceedance sets by changing the sign of u and � , and 
properties (ii) and (iii) imply that the sets GO can be obtained from LI and LO from 
GI . So in general, the above algorithm can be used to obtain GI and LI and then the 
remaining sets GO and LO can be obtained, depending on whether GI and GO , or 
LI and LO are required. Due to this equivalence, w.l.o.g. we only consider the con-
struction of GI.

Obtaining the predictive distribution {Y(si) ∶ i = 1,… ,m}|Z(so) can be compu-
tationally demanding. A general algorithm to simulate realisations from a Gauss-
ian random field has computational complexity O((n + m)3) due to calculating the 
Cholesky factorisation of the (n + m) × (n + m) covariance matrix � of observed and 
predicted locations (Givens and Hoeting 2012). The decomposition only has to be 
done once, before the simulaton process starts. There are other fine-tuned algorithms 
to simulate from the predictive destribution, for example turning bands method 
(TBM) for Gaussian random fields, see Chevalier et al. (2015), that can be faster for 
particular situations.

In the above GI algorithm, quantiles are calculated to obtain critical values, or 
equivalently p-values and more generally probabilities are estimated by simulating a 
large number B of gridded data sets. Storing and processing matrices of size m × B 
is required. To be very accurate in the estimation of probabilities, the value of B is 
commonly a multiple of thousands, often 1000, 5000 or 10,000 (but could be much 
larger). To have a certain numerical accuracy in the probability estimates that are 
needed in the numerical algorithm (later defined as qk ) to determine the exceedance 
sets, or in other words to be within a certain error tolerance most of the time, say 
at least 1 − � , we can calculate the sample size B needed to have a margin of error 
of say M = 10−3 . Using the well-known formula for the margin of error (e.g. Tanur 
2011)

Since p is often unknown and p(1 − p) ≤ 0.25 , a conservative formula is

obtaining B = 1,658,724 for � = 1% and M = 10−3 . Even storing a matrix of size 
m × B can be problematic, when m or B are very large. When decreasing M by a 

(12)G
��

I
= {s

i
∶ T(s

i
) ≥ C

��

I
; i = 1,… ,m}.

(13)B =

(
z�∕2

M

)2

p(1 − p).

B =

(
z�∕2

M

)2

0.25,
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factor of 10 (or 100), then B increases 100 (or 10,000) times to a value of approxi-
mately 166 million (or 16,6 billion).

In the following we propose a different algorithm that still requires the calcu-
lation of the conditional distribution, an m-dimensional Gaussian distribution of 
{Y(si) ∶ i = 1,… ,m}|Z(so) with mean vector �m and covariance matrix �m , but cal-
culates probabilities using a Quasi-Monte-Carlo (QMC) algorithm with high numerical 
accuracy � without simulating a large number of realisations B from the conditional 
distribution.

3  An equivalent algorithm

In this section, we define adjusted p-values termed qk that can be used to define a new 
but equivalent algorithm.

For notational convenience, T1,… , Tm denote the values of the test statistic Tkr(⋅) of 
the m grid locations s1,… , sm . The values T1,… , Tm are assumed to be in descending 
order T1 ≥ T2 ≥ ⋯ ≥ Tm (i.e. Ti = T(n−i+1) is the (n − i + 1) th order statistic), and the 
corresponding locations are s1,… , sm . Similarly, the null hypothesis HL

0
(si) is denoted 

by Hi
0
 and the alternative HL

1
(si) by Hi

1
 , i = 1,… ,m . Large values of the test statistic 

should indicate deviations from the null hypothesis.
Consider the following equation

It shows a monotonic relationship between Tkr and Pr(Y(s) > u) , suppressing con-
ditioning on Z(so) for convenience. Under the null hypothesis, see Eq. (10), Tkr and 
Pr(Y(s) > u) are small and Pr(Y(s) < u) is large.

In steps 2 and 3 of the GI-algorithm, the maximum Ψb is calculated. Next we con-
sider its distribution under the null denoted by maxM Ti , where M refers to the set 
of grid cells to be tested. Let us consider the distribution of maxM Ti under HL

0
 of 

the set M. For example suppose M = {1} . Then max Ti = T1 when Y1 ≤ u (null) or 
max Ti = −∞ when Y1 > u (alternative) with P(maxi∈{1} Ti = T1) = P(Y1 ≤ u) and 
P(maxi∈{1} Ti = −∞) = P(Y1 > u) , a discrete variable with two outcomes −∞ and T1.

More generally let M ≡ {1,… , l} , then maxi∈M Ti has a domain with l + 1 val-
ues T1, T2,… , Tl,−∞ with T1 > T2 > …Tl > −∞ , a discrete variable with l + 1 
outcomes.

The algorithm by French and Sain (2013) is equivalent to rejecting the first l 
hypotheses H1

0
,… ,Hl

0
 when P(maxi∈M Ti ≥ Tl) ≤ � . Define qI

k
≡ P(maxi∈I Ti ≥ Tk) 

for any I ⊂ M ≡ {1,… ,m} . We reject H1
0
,… ,Hk

0
 if qM

k
≤ � . The value qM

k
 can be 

considered as an adjusted p-value for the hypothesis Hk
0
 . In the following the nota-

tion qk is used without M, unless required.

Pr(Y(s) > u|Z(so)) = Pr

(
Y(s) − Ykr(s)

𝜎kr(s)
>

u − Ykr(s)

𝜎kr(s)

||||
Z(so)

)

= Φ

(
Ykr(s) − u

𝜎kr(s)

)
= Φ(Tkr(s)).
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4  Proposed new algorithm

As the calculation of qk can be computationally demanding, we consider some sim-
plifications, avoiding the calculation of qk in many steps of equivalent algorithm. 
Then we formulate the newly proposed algorithm to obtain inner (and outer) pre-
dicted exceedance sets incorporating these simplifications.

Define Ak ≡ {Y1 > u,… , Yk > u} and Bk ≡ {Y1 > u,… , Yk−1 > u, Yk ≤ u} . The fol-
lowing relationship holds qM

k
= P(maxTi ≥ Tk) =

∑k

l=1
P(maxTi = Tl) =

∑k

l=1
P(Bk).

We can express qM
k

 as

We also have Ak−1 = Ak ∪ Bk with Ak ∩ Bk = � leading to

and

So we may calculate qk in different ways, either directly P(Ak) to obtain qk , or calcu-
late P(Bk) to obtain P(Ak) and finally qk , but this requires using the previous P(Ak−1).

We can also construct bounds based on subsets of Ak and Bk . Define Ai1,…,i
l ≡ P(Y

i1

> u, Y
i2
> u,… , Y

i
l
> u) and similarly Bi1,…,il ≡ P(Y

i1
> u, Y

i2
> u,… , Y

il−1
> u,Y

il
≤ u)

Bi1,…,il ≡ P(Yi1 > u, Yi2 > u,… , Yil−1 > u, Yil ≤ u).
Suppose {i1,… , il} ⊂ {1,… , k} , then P(Ak) ≤ P(Ai1,…,il ) and this leads to a lower 

bound qL
k
 for qk , i.e.

Similarly Bk ⊂ Bi1,…,il
 if i1,… , il ⊂ {1,… , k} , hence

leading to an upper bound for

In particular using sets with one index only leads to upper and lower bounds based 
on marginal probabilities

(14)

qM
k
= P

( k⋃

i=1

{
Yi ≤ u

})
= 1 − P

( k⋃

i=1

{
Yi ≤ u

})
= 1 − P

( k⋂

i=1

{
Yi > u

})

= 1 − P

(
Y1 > u, Y2 > u,… , Yk > u

)
= 1 − P(Ak).

(15)P(Ak−1) = P(Ak) + P(Bk)

(16)qM
k
= 1 − P(Ak) = 1 − (P(Ak−1) − P(Bk)) = 1 − P(Ak−1) + P(Bk).

qk ≥ 1 − P(Ai1,…,il
) = qL

k
.

P(Bk) ≤ P(Bi1,…,il
)

qk =

k∑

l=1

P(Bk) ≤
k∑

l=1

P(Bi1,…,il
) = qU

k
.
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with pk = P(Yk ≤ u) , which are easy to calculate with standard software. Notice 
that the marginal probability pk equals qk,…,m

k
 , for example qM

1
= 1 − P(Y1 > u) is 

identical to p1 = P(Y ≤ u) . We could also term these marginal or unadjusted p-val-
ues to contrast them with the adjusted p-values qk . We could also use different sets 
with several indices, for example two indices leading to pairwise probabilities. But 
since there are O(k2) of such pairwise probabilities, the benefit of using these lower 
dimensional probabilities is limited (due to the increase in these probabilities that 
need to be computed).

The calculation of qk is only necessary to compare this value with � . If qM
k
< 𝛼 , 

then Hk
0
 is rejected, otherwise we fail to reject Hk

0
 and the algorithm stops. Hence 

knowing lower qL
k
 and upper bounds qU

k
 can help in making the decision, i.e. 

if qL
k
> 𝛼 , then we can stop, as we failed to reject Hk

0
 , likewise qU

k
≤ � then Hk

0
 is 

rejected. Using lower and upper bounds based on lower-dimensional integrals, 
such as marginal probabilities P(Yk > u) and P(Yk ≤ u) can avoid more complex 
calculations.

We can also use the Holm procedure (Holm 1979) to accomplish this, i.e. when 
pk = P(Yk ≤ u) ≤ �

m−k+1
 , then we can reject Hk

0
 without calculating an integral. To 

determine GI we propose the following algorithm

New GI‑Algorithm 

(1) k = 1

(2) If pk ≤ �

m−k+1
 , then reject Hk

0
 and go to Step 8.

(3) If qL
k
> 𝛼 , then we fail to reject Hk

0
,… ,Hm

0
 and stop.

(4) Calculate qU
k

 , if qU
k
< 𝛼 , then reject Hk

0
 go to Step 8.

(5) Calculate q̂k and 𝜖k using Genz–Bretz algorithm with tolerance � = 0.01 , if 
q̂k + 𝜖k < 𝛼 , then reject Hk

0
 and go to Step 8.

(6) Calculate q̂k and 𝜖k using Genz–Bretz algorithm with lower tolerance, e.g. 
� = 10−6 , if q̂k + 𝜖k < 𝛼 , then reject Hk

0
 and go to Step 8.

(7) Retain Hk
0
,… ,Hm

0
 and stop.

(8) Set k = k + 1 , proceed with Step 2.

In Step 2 the Holm algorithm is used. Steps 3 and 4 use the lower and upper bounds, 
see Eq. (17). In Step 5, the Genz–Bretz algorithm is used (Genz 1992, 1993; Genz 
and Bretz 2002) to calculate qk , see Eq. (14)

where �k and �k are the mean vector and covariance matrix of Y = (Y1,… , Yk)
⊤ 

conditional on Z(so).

(17)qL
k
= 1 −min(p1, p2,… , pk),q

U
k
=

k∑

l=1

min(p1, p2,… , pl−1, 1 − pl)

(18)qk = 1 − ∫
∞

u ∫
∞

u

⋯∫
∞

u

f (y,�k,�k)dyk … dy1,
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The Monte-Carlo algorithms by Genz (1992, 1993) use a transformation to cal-
culate the value of the integral qk and use a random sample of size N from the uni-
form distribution. Genz and Bretz (2002) considered instead a Quasi-Monte-Carlo 
(QMC) method by obtaining a series of quasi random numbers to achieve a higher 
convergence rate of O(N−1) instead of O(N−1∕2) . We refer to this QMC algorithm 
as Genz–Bretz algorithm, following the convention in the R package mvtnorm 
Genz et  al. (2021). This algorithm also estimates the standard error of the prob-
ability estimate q̂k denoted by �2

N,k
 . Since the interval q̂k ± 3𝜎N,k based on a normal 

approximation contains most of the values (99.73% for a truly normal distribution), 
the term 𝜖k = 3𝜎N,k was considered by these authors as an error estimate. The user of 
the algorithm can set a pre-specified value of �k (error tolerance) and the algorithm 
increases N when 𝜖k > 𝜖k until 𝜖k ≤ 𝜖k . Often the estimated error 𝜖k is very small, for 
example 𝜖k < 10−6 , even when �k is set to much larger values, e.g. �k = 0.01 , as in 
Step 5 of the algorithm. The criterion q̂k + 𝜖k < 𝛼 uses the upper bound for the esti-
mated qk to ensure a correct decision is made with high probability. If the hypothesis 
in Step 5 could not be rejected we lower �k to a very small value and base inference 
on this new qk - estimate. It appears that the implemented Genz–Bretz algorithm 
now uses � = 3.5 × �N as reported by Genz and Bretz (2002), which indicates a fur-
ther improvement from 99.73% to 99.95% confidence.

5  Example

The computations are now illustrated on a spatial data set of long-term mean May-to-
June precipitation in the state of Paraná, Brazil (Diggle and Ribeiro 2002). Figure 1 
shows the state along with the 143 weather stations. The data set is freely available 

Fig. 1  Rainfall data (left) and predicted greater exceedance sets (right) for the Paraná data set. Left: 
Weather stations as circles scaled proportionally to May-to-June precipitation amount. Right: Inner and 
outer predicted exceedance sets with � = 0.10 for a threshold value of u = 300mm, as well as plugin-
predictor: G

I
 (green), plugin-predictor (green and red), G

O
 (green, red and black). Inner and outer sets 

obtained by new algorithm (color figure online)
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through the R package geoR (Ribeiro  Jr and Diggle 2018). We use the same fitted 
model as presented by Cressie and Suesse (2020) and choose a distance of 10 km 
between neighbouring grid points resulting in 1,953 grid points. Then we apply 
Universal Kriging using two predictors, the spatial coordinates, and obtain the cor-
responding mean vector �m and covariance matrix �m from the predictive Gaussian 
distribution {Y(si) ∶ i = 1,… ,m}|Z(so) (Stein and Corsten 1991; Le Riche 2014).

We calculate GI and GO with both algorithms, the standard and the newly pro-
posed with � = �� = 0.10 . All computations are done on one core of a HPC, the 
Dell R750 PowerEdge.

First we discuss the results of the new algorithm. In total, 65 hypoth-
eses were rejected to obtain GI , and to obtain GO , 711 hypotheses were 
rejected, yielding |GI| = 65 and |GO| = 1953 − 711 = 1242 grid points. Fig-
ure  1 shows the results of these inner and outer predicted exceedance sets. To 
obtain GI , first 3 hypotheses were rejected in Step 2 (Holm) and then the next 
61 in Step 4 (upper bound). To make decisions about hypotheses 65 and 66 the 
Genz–Bretz algorithm was applied. For hypothesis 65, q̂65 = 0.094992 with an 
upper bound of q̂65 + 𝜖65 = 0.095025 < 𝛼 . Then q̂66 = 0.100426 with lower bound 
q̂66 − 𝜖66 = 0.10038 > 𝛼 , hence we can confidently conclude that H65

0
 must be 

rejected but H66
0

 cannot be rejected. The average time to calculate q̂65 and q̂66 was 
0.38 s with an average error of 𝜖 = 0.000041.

To obtain GO , in Step 2 (Holm) 425 hypotheses were rejected. Then in Step 
3 (upper bound) a further 274 hypotheses could be rejected. Then hypotheses 
700–711 could be rejected with Genz–Bretz (Step 5), for example q̂711 = 0.099525 
with an upper bound of q̂711 + 𝜖711 = 0.099525 + 0.000350 = 0.099876 < 𝛼 . 
For H712

0
 the Genz–Bretz algorithm could not provide a clear answer, 

because the initial estimate of q712 was 0.100208 > 𝛼 but its lower bound is 
q̂712 − 𝜖712 = 0.100208 − 0.000336 = 0.099873 < 𝛼 , making it unclear whether 
q712 is below or above � . Then Step 6 of the algorithm was applied yielding now 
a lower bound of q̂712 − 𝜖712 = 0.100208 − 0.000020 = 0.100189 > 𝛼 . We conclude 
711 hypotheses could be rejected and the remaining could not be rejected, both with 
high confidence.

The less accurate Genz–Bretz algorithm with � = 0.01 for H711
0

 has a very small 
estimated error of 0.000290, which is smaller than the corresponding error of the 
standard algorithm ( 3× standard error) given by

for most reasonable values of B and using q = 0.10 (as � = 0.10).
Using B = 1,000,000 gives an error of 0.00090 and using B = 10,000,000 gives 

0.00028. The more accurate Genz–Bretz with � = 10−6 gave 𝜖 = 1.8 × 10−5 , which 
cannot be matched for any practically reasonable value of B. The required B, using 
z�∕2 = 3 in Eq. (13) based on (19), would be B = 6.24 × 109 . To store even a sin-
gle vector of this size in R allocates a large chunk of memory, in R approximately 
46.5 Gb of memory, making the application of the algorithm to obtain the exceed-
ance sets (on standard computers) impossible.

(19)3

√
q(1 − q)

B
.
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To evaluate the results of the old algorithm  1000 samples each of sample size 
10,000 from the predictive distribution of {Y(si) ∶ i = 1,… ,m}|Z(so) were taken to 
calculate GI and GO for each of the 1,000 samples. Figure 2 shows the histograms 
of the sizes of the sets GI and GO . It can be seen for GI approximately 50% of the 
samples rejected the correct number of 65 hypotheses, showing that the old algo-
rithm gave incorrect results in approximately 50% of all samples (with either 64, 66 
or 67 rejected hypotheses). For GO , interestingly the correct size of 1242 was never 
obtained. The size of |GO| varied considerably from 1229 to 1254, demonstrating the 
inacccurate random results of the standard algorithm.

6  Discussion

We considered a new more precise algorithm to obtain inner and outer predicted 
exceedance sets. A drawback of the algorithm is that currently the Genz–Bretz 
algorithm in the R package mvtnorm is limited up to dimension k = 1000 , even 
though the algorithms could be easily extended beyond 1000. Furthermore the 
Genz–Bretz algorithm computes a Cholesky factorisation for the current covari-
ance matrix �k in step k = 1,… ,m of dimension k × k , see Eq.  (18). The algo-
rithm could be improved by calculating a Cholesky factor once for the full m × m 
covariance matrix � (or better only for those hypotheses for which pk ≤ � lead-
ing to a much smaller submatrix of � ) and then using the upper left submatrix 
of dimension k × k in step k as the Cholesky factor that is needed for qk (this 
repeated use is possible as the hypotheses are already in correct order).

The Monte-Carlo algorithm proposed by Genz (1992) is designed for arbitrary 
bounds. The algorithm could be further adapted using the fact that different qk ’s 
require integration within overlapping domains. Suppose we need to calculate qk 
and qk+1 . Then the integration bounds of the first k integrals are the same, see Eq. 

Fig. 2  Histograms of the size of the inner G
I
 (left) and outer G

O
 (right) predicted exceedance sets with 

� = 0.10 for the Paraná data set based on 1000 samples each of size 10,000 from the predictive distribu-
tion of {Y(s

i
) ∶ i = 1,… ,m}|Z(so)
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(18). In addition, the main algorithm could be computationally improved further 
by simultaneously calculating several probabilities at once using that many bounds 
are identical (avoiding many calculations). We have not implemented and tested 
these possibly more efficient algorithms, as we are unsure about the exact current 
implementation of the algorithm. Future research might shed light on this issue.

7  Conclusion

We proposed a more precise algorithm to obtain inner and outer predicted 
exceedance sets in the sense that the decisions for each hypothesis can often be 
made with very high confidence, with the current implementation of the error 
estimate mostly with at least 99.73% probability. This is in contrast to the stand-
ard simulation-based algorithm where for some hypotheses no clear decision can 
be made, as we have demonstrated on the rainfall data set where in particular the 
sizes of the outer set varied considerably from 1229 to 1254 but never matched 
the true value of 1242 that was obtained from the new algorithm with very high 
confidence. In theory, the accuracy of the standard algorithm can be improved 
by increasing the sample size of the simulated data, but practically the accuracy 
of the new algorithm cannot be matched by the standard algorithm by simply 
increasing the sample size.

We have applied the methodology to a rainfall data set and we have shown some 
erroneous decisions for some regions, the grid points that were not identified to 
be part of GO . For these rainfall data the consequences could be incorrect farming 
investment decisions, however this could have more severe and immediate conse-
quences for other issues, for example when measures to curb nitrate in ground water 
or particulate matter in the air were incorrectly applied or were mistakenly not con-
sidered for some regions.

The methodology is not limited to geospatial data or spatial random fields, but 
it can be applied to any multivariate predictive distribution where its distribution is 
finite, here m. In this sense, this algorithm could be applied to other problems, for 
example calculating exceedance sets based on the predictive distribution of linear 
mixed models, simultaneous autoregressive models or common time series models.
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