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Kurzreferat: 

Anhand von 53 Patienten, die in ihrer Kindheit oder Jugend an einem soliden Malignom 

oder Hodgkin-Lymphom erkrankten und im Rahmen der Therapieprotokolle der GPOH 

behandelt wurden, erfolgte die Bestimmung des Knochenstatus mittels eines neuen 

Osteodensitometrieverfahrens, der Digitalen X-Ray-Radiogrammetrie (DXR). An im 

Rahmen der onkologischen Nachsorge angefertigten Röntgenaufnahmen der linken Hand 

wurden retrospektiv die Knochenmineraldichte (DXR-BMD) und der Metakarpalindex 

(DXR-MCI) analysiert. Zusätzlich wurden die zum Zeitpunkt der Röntgenaufnahmen 

ermittelten anthropometrischen Daten sowie Laborparameter erfasst und ausgewertet.  

Es fand sich eine positive Korrelation der DXR-Parameter mit dem Alter, der Körperhöhe 

und dem BMI. Zudem wiesen Jungen im Mittel höhere DXR-BMD-Werte auf als Mädchen. 

Nach Einteilung der Patienten entsprechend der kumulativen Dosis in drei Gruppen je 

Zytostatikum wurden die DXR-Parameter der einzelnen Dosisgruppen untereinander 

verglichen. Das Alter und Geschlecht zeigten hierbei einen signifikanten Einfluss. Bei der 

Mehrzahl der Zytostatika fand sich kein signifikanter Unterschied zwischen den Gruppen. 

Eine Abnahme der Knochendichte im Rahmen der Zytostatikatherapie zeigte sich nicht. 

Jedoch ließ sich unerwartet mit steigender kumulativer Prednisolondosis ein Anstieg der 

DXR-Parameter nachweisen, was auch nach Literaturstudium nicht erklärbar war.  

Anschließend wurden die DXR-Parameter der Patienten mit denen eines aus 497 Kindern 

und Jugendlichen bestehenden gesunden Referenzkollektivs verglichen. Auch hier 

bestand kein signifikanter Unterschied zwischen erkrankten und gesunden Kindern.  

 

Schlüsselwörter:  
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Bone mineral densitiy – BMD – Metakarpalindex – MCI 
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Abkürzungsverzeichnis 

ALL   – Akute lymphatische Leukämie 

AML   – Akute myeloische Leukämie  

AON   – Avaskuläre Osteonekrosen 

AP   – Alkalische Phosphatase 

BMD   – bone mineral density, Knochenmineraldichte 

BMI   – Body Mass Index 

COSS   – German-Austrian-Swiss Co-operative Osteosarcoma Study Group 

CT   – cortical thickness, Kortikalisdicke 

DAL  – Deutsche Arbeitsgemeinschaft für Leukämieforschung und – behandlung       

im Kindesalter 

DXA   – Dual-energy X-Ray-Absorptiometry 

DXR   – Digitale X-Ray-Radiogrammetry 

GHD   – Growth hormone deficiency, Wachstumshormonmangel  

GPOH  – Gesellschaft für Pädiatrische Onkologie und Hämatologie 

HD-MTX  – Hochdosis-Methotrexat  

KA   – Knochenalter 

KOF   – Körperoberfläche 

LESS    – Late Effects Surveillance System 

LWS   – Lendenwirbelsäule 

M   – männlich  

MCI   – metacarpal index, Metakarpalindex 

MTX   – Methotrexat 

NHL   – Non-Hodgkin-Lymphom 

OBW   – outer bone width, äußerer Knochendurchmesser 

PBM   – Peak bone mass 

QUS   – Quantitativer Ultraschall 

(p)QCT  – (periphere) quantitative Computertomografie  
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RöA   – Röntgenaufnahme  

ROI   – Region of interest 

SD   – Standardabweichung (Standard deviation) 

Sig.   – Signifikanz  

SIOP   – International Society of Pediatric Oncology 

TG   – Therapiegruppe 

TSH   – Thyreotropin 

VCR   – Vincristin  

VP 16   – Etoposid  

W   – weiblich 

ZNS   – Zentrales Nervensystem 
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1. Einleitung 

1.1. Maligne Erkrankungen im Kindes- und Jugendalter: 

Häufigkeiten und Prognose 

Jährlich erkranken in Deutschland etwa 1.800 Kinder und Jugendliche an einem 

Malignom. Durchschnittlich sind 15 pro 100.000 der unter 15-jährigen Kinder betroffen. 

Nach den akuten Leukämien, die ein Drittel der onkologischen Erkrankungen ausmachen, 

folgen die soliden Tumoren. Unter diesen bilden mit einem Anteil von 20% die Tumoren 

des Zentralnervensystems (ZNS) die größte Diagnosegruppe (92). Mit abnehmender 

Häufigkeit treten maligne Lymphome, Tumoren des sympathischen Nervensystems, 

Weichteilsarkome, Nieren-, Knochen- und Keimzelltumoren auf, während Karzinome im 

Kindesalter sehr selten beobachtet werden (43, 92). 

Hinsichtlich der Altersverteilung der Malignome ist zu beobachten, dass embryonale 

Tumoren und die akute lymphatische Leukämie (ALL) meist bereits in den ersten sechs 

Lebensjahren auftreten, während ältere Kinder vergleichsweise häufiger an 

Knochentumoren und Lymphomen erkranken (43). 

In Deutschland werden über 90% aller Kinder und Jugendlichen mit onkologischen 

Erkrankungen in circa 25 aktiven Therapieoptimierungsstudien der GPOH einheitlich 

behandelt (173). Diese multizentrischen Studien haben in den letzten drei Jahrzehnten 

erheblich zur Verbesserung der Behandlungsqualität und somit der Überlebenschancen 

onkologischer Patienten beigetragen, so dass inzwischen gute Prognosen erreicht werden 

können (43, 62). Die 5-Jahres-Überlebensraten aller malignen pädiatrischen 

Erkrankungen sind von weniger als 10%–20% in den 50er und 60er Jahren heute auf 

über 80% angestiegen (43, 92). Abhängig von der Tumorentität können derzeit 

Überlebensraten von 60 bis über 90% erreicht werden (43, 50, 92, 162, 176).  

Aufgrund der gestiegenen durchschnittlichen Lebenserwartung nimmt die Anzahl der 

Überlebenden zu, die im Kindesalter eine onkologische Therapie erhalten haben. Die 

Überwachung dieser Patienten ist notwendig, um Spätfolgen der intensiven Chemo- und 

Radiotherapie rechtzeitig erkennen und behandeln zu können (108). In den 

Therapieoptimierungsstudien steht neben der Prognoseverbesserung seit den 80er 

Jahren gleichzeitig die Vermeidung von Nebenwirkungen und Langzeitfolgen der 

Therapie, u.a. auf den Knochenstoffwechsel, im Blickpunkt des wissenschaftlichen 

Interesses (43).  
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1.2. Knochenstoffwechsel im Kindes- und Jugendalter   

Der Knochen unterliegt im Kindes- und Jugendalter bedingt durch Wachstum und  

Pubertät erheblichen quantitativen und qualitativen Veränderungen. Während des 

Wachstums steigt die Skelettmasse fortschreitend. Die so genannte peak bone mass 

(PBM) wird definiert als die maximal erreichte Knochenmasse, die zum Ende der 

Knochenreifung vorhanden ist (20, 116). Studien konnten beweisen, dass eine möglichst 

hohe PBM eine entscheidende Bedeutung bei der Prävention der Osteoporose und 

assoziierter Frakturen erlangt. Ein hoher Ausgangswert stellt eine wichtige 

Knochenmassereserve im höheren Lebensalter dar (43, 127, 133, 177). Eine geringere 

PBM bedingt ein höheres Osteoporose- und damit Frakturrisiko (133, 134, 169, 238). 

Die PBM wird durch Interaktion unterschiedlicher Faktoren beeinflusst. Unter diesen 

Faktoren machen genetische Faktoren den größten Anteil aus. In Zwillingsstudien 

konnten hereditäre Faktoren bis zu 90% der Schwankungen in der Knochenmasse 

erklären (169, 238). Dazu zählen beispielsweise der Vitamin-D- oder Östrogenrezeptor-

Genotyp (127, 170, 190, 238). Alter, Körperhöhe, Körpergewicht und BMI korrelieren 

signifikant mit der Knochenmineraldichte (BMD) (3, 48, 65, 84, 135, 169, 170). Bei 

gesunden Kindern korrelieren BMD und Knochenalter (KA) positiv miteinander. Kinder mit 

verzögertem Wachstum weisen hingegen eine Retardierung des KA und damit eine 

verminderte Knochendichte auf (134). Es konnte gezeigt werden, dass das KA am besten 

geeignet ist, die Knochenmasse bei Kindern vorherzusagen (84). 

Ein Fünftel der Schwankungen in der PBM lassen sich durch exogene bzw. 

Umweltfaktoren erklären. Folgende Umweltfaktoren spielen beispielsweise eine Rolle:  

 Ernährungsfaktoren: Kalzium- und Vitamin-D-Aufnahme, Unterernährung bzw. 

Anorexie (3, 127, 142, 169, 191, 238) 

 Körperliche Aktivität / Training (42, 49, 115, 142, 169, 189, 234) 

 Endokrinopathien: Wachstumshormonmangel (61, 67, 142), Hypogonadismus 

(142) 

 Medikamente: Glukokortikoide, Antikonvulsiva, Methotrexat (MTX). 

Das Alter des Erreichens der PBM wird kontrovers diskutiert. Es existieren keine 

einheitlichen Aussagen. Bei präpubertären Kindern bestehen noch keine 

geschlechtsspezifischen Unterschiede der Knochenmasse. Mit Beginn der Pubertät, bei 

Mädchen etwa ab dem 11. Lebensjahr und bei Jungen zwei Jahre später, steigt die 

Knochenmasse kontinuierlich. Der steilste Anstieg ist dabei bis zum 16. Lebensjahr zu 

beobachten, wobei Jungen einen steileren Anstieg der Knochenmasse aufweisen (169, 
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201, 224). Die Mehrheit der PBM (bis zu 80-90%) wird während der späten Adoleszenz 

(etwa 18. Lebensjahr) erreicht, gefolgt von einem akzelerierten Anstieg (Konsolidation). 

Sie erreicht schließlich ihr Maximum in der dritten bis vierten Lebensdekade (18, 27, 27, 

54, 74, 124, 201, 224). Bei Mädchen beginnt der Erwerb der Knochenmasse zwar früher, 

sie erreichen jedoch eine geringere PBM als Jungen (129, 163). Nach Erreichen der PBM 

beginnt der Knochenmassenverlust (54). 

Zu erwähnen ist, dass die PBM in unterschiedlichen Skelettregionen zu verschiedenen 

Zeiten erreicht wird, so z. B. in den langen Röhrenknochen (Radius, Tibia) später als am 

Schenkelhals und der Wirbelsäule (116). 

 

1.3. Definition der Osteoporose und Bedeutung im Kindesalter 

Der Begriff Osteoporose wurde 1993 auf der „International Consensus Development 

Conference“ in Hongkong definiert: 

 „Die Osteoporose ist eine systemische Skeletterkrankung, die durch eine verminderte 

Knochenmasse und eine Verschlechterung der Mikroarchitektur des Knochens 

gekennzeichnet ist. Dies führt zu einer krankhaft erhöhten Knochenbrüchigkeit mit 

erhöhtem Frakturrisiko.“ (1, 95) 

Die densitometrische Klassifikation der Osteoporose erfolgt auf Grundlage der WHO-

Richtlinien anhand des T- und Z-Scores (Tab. 1) (95, 96, 225, 231). 

Tab. 1: Klassifikation der Osteoporose 

Bezeichung Definition 

Normaler Knochen -1 SD < T-Score < +1 SD 

Osteopenie (geringe Knochenmasse) -2,5 SD < T-Score  < -1 SD 

Osteoporose T-Score < - 2,5 SD, keine Fraktur 

Schwere/manifeste Osteoporose T-Score < -2,5 SD + Fraktur 

 

Der T-Score bezeichnet die Standardabweichung (SD) der gemessenen BMD des 

Patienten vom Durchschnittswert einer gesunden, geschlechtsspezifischen 

Referenzpopulation gleicher ethnischer Herkunft im Alter von 30 Jahren.  

Der Z-Score ist die SD der gemessenen BMD des Patienten von der mittleren BMD eines 

alters- und geschlechtsgleichen Referenzkollektivs gleicher ethnischer Herkunft (215). 
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Die Osteoporose ist nicht nur eine Erkrankung des Erwachsenenalters, sie tritt inzwischen 

auch häufiger im Kindesalter auf. Gründe dafür sind zum einen der vermehrte Einsatz von 

Glukokortikoiden in der Therapie entzündlicher und chronischer Erkrankungen (38, 136) 

und zum anderen chronische Erkrankungen selbst. Neoplasien wie Leukämien, 

Neuroblastome, Lymphome und Hirntumoren begünstigen durch Knocheninfiltration oder 

die onkologische Therapie die Entstehung einer Osteoporose (99, 144, 155). Die Zöliakie 

(76, 117), zystische Fibrose (34, 139) und entzündliche Darmerkrankungen (89) können 

durch Malabsorption zur Osteoporose führen. Auch bei Endokrinopathien wie dem 

Hypogonadismus, der Hyperthyreose (204) oder dem Morbus Cushing findet man eine 

verminderte Knochenmasse.  

Als Ursachen der Osteoporose im Kindesalter kommen weiterhin in Frage: idiopathische 

juvenile Osteoporose als primäre Osteoporoseform, genetische Ursachen (Osteogenesis 

imperfecta, Turner-Syndrom, Marfansyndrom, Homocystinurie) (41, 239), Diabetes 

mellitus, Anorexia nervosa (3, 191), Mangel- bzw. Fehlernährung, Vitamin-D-Mangel (29), 

chronische Leber-, Darm- oder Nierenerkrankungen, Rheumatoide Arthritis, Medikamente 

(Heparin, Antikonvulsiva, Immunsuppressiva, Kortikosteroide, MTX) und 

Inaktivität/Immobilisation (42, 49, 142). 

 

1.4. Zytostatika und ihre Nebenwirkungen 

Die in der pädiatrischen Onkologie angewandten Zytostatika entstammen 

unterschiedlichen Substanzgruppen (222): 

 alkylierende Substanzen: Stickstofflost-Derivate (Cyclophosphamid, Ifosfamid, 

Melphalan), Alkylsulfonate (z. B. Busulfan), Procarbazin und Dacarbazin 

 Antimetabolite: Folsäure-Analoga (MTX), Purin-Analoga (Thioguanin, 6-

Mercaptopurin), Pyrimidin-Analoga (Cytarabin, Gemcitabin) 

 Pflanzliche Zytostatika: Vincaalkaloide (Vincristin, -blastin), Etoposid 

 Zytostatische Antibiotika: Actinomycin D, Anthrazykline (Doxo-, Daunorubicin) 

 Platin-Verbindungen (Cis- und Carboplatin)  

Die onkologische Therapie, die neben der Chemotherapie auch die operative und 

Strahlentherapie einschließt, ist mit verschiedenen akuten und chronischen 

Nebenwirkungen assoziiert. Diese werden in den folgenden Kapiteln ausführlicher 

besprochen. 
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1.4.1. Akute und verzögert auftretende Nebenwirkungen 

Neben akuten Nebenwirkungen wie Myelosuppression, Alopezie und 

Schleimhautschädigungen geht die Chemotherapie mit einer Vielzahl an 

Allgemeinsymptomen (9, 101, 111, 154, 182, 222) und reversiblen oder chronischen 

Organschäden einher. Leberfunktionsstörungen (8, 45), Neuropathien (35, 52, 112), 

Enzephalopathien (2, 132), Kardiomyopathien (113, 240) sowie Hörschäden spielen eine 

Rolle (40, 102). Eine weitere kontrollbedürftige dosislimitierende Nebenwirkung ist die 

Nephrotoxizität. Die Ifosfamid- und Platin-induzierte Nephropathie hat jeweils, bedingt 

durch Tubulusfunktionsstörungen und vermehrte renale Elektrolytexkretion, 

Serumelektrolytverschiebungen mit einhergehenden Veränderungen im Kalzium- und 

Phosphat- sowie Magnesiumhaushalt zur Folge (10, 106, 114, 183, 187, 195). 

1.4.2. Spätfolgen der onkologischen Therapie 

Patienten mit Hirntumoren und Hodgkin-Lymphomen sind einem besonders hohen Risiko 

für Therapiespätfolgen ausgesetzt. Neben chronischen Organschäden sind primär die 

Endokrinopathien zu nennen, die zum Großteil als Folge der Strahlentherapie auftreten. 

Unter den Zytostatika-induzierten endokrinologischen Störungen sind insbesondere die 

Gonadotoxizität und Infertilität zu nennen. Bei Frauen manifestieren sich 

Fertilitätsstörungen durch eine Amenorrhoe (15, 19) und frühzeitige Ovarialinsuffizienz 

bzw. Menopause (104, 110). Infolge der vorzeitigen Ovarialinsuffizienz kann es zu 

spinalen Knochendichteverminderungen kommen. Bei Männern hingegen konnten im 

Rahmen der Gonadotoxizität mit einhergehender Azoospermie bisher keine BMD-

Veränderungen beobachtet werden (81, 103, 180).  

Bedingt durch strahleninduzierte Schäden im Bereich der Hypothalamus-Hypophysen-

Achse treten neuroendokrine Störungen wie Wachstumshormonmangel, zentrale 

Schilddrüsendysfunktionen, hypogonadotroper Hypogonadismus bis hin zum 

Panhypopituitarismus auf (37, 39, 51, 58, 66). Weiterhin kann es infolge 

Schädelbestrahlung zu Gewichtsproblemen kommen (148).  

Bestrahlungen im Halsbereich haben Störungen der Schilddrüse zur Folge, wie Struma- 

und Knotenbildung sowie eine Hypo- oder Hyperthyreose (37, 39, 58, 184, 188). 

Neben den Endokrinopathien kann die intensive Krebstherapie mit schwerwiegenden 

Organspätfolgen verbunden sein. Besonders gefürchtet ist die Entwicklung von 

Zweitneoplasien (17, 90, 198, 212).  

Daneben kommen als Therapiespätfolgen in Frage: chronische Organschäden, 

kardiovaskuläre Störungen (Schlaganfälle, Koronare Herzkrankheit, frühzeitige 
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Arteriosklerose) (30, 66, 82) sowie neuropsychiatrische bzw. neurokognitive Spätfolgen 

(51, 241). 

 

1.5. Onkologische Therapie und ihre Nebenwirkungen auf den 

Knochen    

Kinder mit malignen Erkrankungen sind bedingt durch die Erkrankung selbst oder die 

Komplikationen der intensiven onkologischen Therapie einem erhöhten Risiko für 

Störungen der Knochenmineralisation ausgesetzt.  

1.5.1. Zytostatika und ihr Einfluss auf den Knochenstoffwechsel 

Zahlreiche Zytostatika haben Einfluss auf die Knochendichte, das Knochenwachstum und 

die allgemeine Skelettentwicklung, wobei der trabekuläre Knochen metabolisch aktiver 

und somit chemosensitiver ist als der kortikale Knochen (47, 97). 

Nephrotoxische Zytostatika, darunter Ifosfamid und die Platinderivate, beeinflussen durch 

proximale Tubulusschädigung den Kalzium- und Phosphathaushalt und führen zur 

Hypokalzämie und Hypophosphatämie (10, 106, 114, 167, 183). In bis zu 10% der Fälle 

wird die Entwicklung eines renalen Fanconi-Syndroms mit Glukosurie, Proteinurie, 

Aminoazidurie und renalem Phosphat- und Bikarbonatverlust beobachtet. Im Rahmen des 

Fanconi-Syndroms kann es bei pädiatrischen Patienten zu hypophosphatämischer 

Rachitis, Wachstumsstörungen sowie Veränderungen der Knochenmineraldichte kommen 

(106, 114, 165, 183, 186, 194). Die Platin-induzierte Hypomagnesiämie führt zur 

verminderten Aktivität der Osteoblasten und Osteoklasten, was eine Osteopenie sowie 

Verdünnung der Wachstumsfugen bedingt (223). An Ratten mit Hypomagnesiämie konnte 

man beobachten, dass das trabekuläre Knochenvolumen abnimmt, die Anzahl an 

Osteoblasten sinkt und die Knochenresorption durch vermehrte Anzahl an Osteoklasten 

zunimmt. Im Serum führt die Hypomagnesiämie zu einem Abfall von Parathormon und 

1,25-(OH)2-Vitamin D (171, 172, 223).  

Auch für die Zytostatika Vincristin (VCR), Etoposid (VP16), Dauno- und Doxorubicin, 

Cyclophosphamid, Cisplatin, Asparaginase und Actinomycin D konnte in verschiedenen In 

vitro-Studien und in Tierexperimenten ein negativer Einfluss auf den Knochenstoffwechsel 

und das Knochenwachstum nachgewiesen werden. Es wurden unterschiedliche 

Mechanismen identifiziert, die zur Entwicklung einer Osteopenie beitragen (33, 46). Durch 

Suppression der Chondrozytenproliferation in den Wachstumsfugen und Reduktion der 



 14 

Zelldichte in der Proliferationszone wird das Knochenwachstum beeinträchtigt (210, 211, 

237). 

Der Folsäureantagonist MTX kann im Rahmen einer Osteopathie zu Knochenschmerzen, 

Frakturen oder einer Osteopenie bzw. Osteoporose führen. Erstmals wurde die MTX-

Osteopathie bei Leukämiepatienten beschrieben (53, 140, 158, 192). Durch Suppression 

der Osteoblastenaktivität sowie durch Stimulation der Osteoklasten-Rekrutierung trägt 

MTX zur Entwicklung einer Osteopenie bei (126, 205, 230). Zusätzlich wird durch MTX 

das Wachstum negativ beeinflusst. Der Antimetabolit induziert eine Apoptose in den 

Chondrozyten, supprimiert die Chondrozytenproliferation und reduziert die Dicke der 

Wachstumsfugen (236). 

Kortikosteroide führen durch eine Vielzahl von direkten und indirekten Mechanismen zu 

einer sekundären Osteoporose mit erhöhtem Frakturrisiko insbesondere am trabekulären 

Knochen, dabei typischerweise im Bereich der Lendenwirbelsäule (LWS) (11, 31, 107, 

161, 165, 218). Der größte und schnellste BMD-Verlust ereignet sich im ersten Jahr der 

Therapie gefolgt von einer Art Plateau (31, 233). 

Durch Hemmung der Osteoblastogenese und der Osteoblastenaktivität sowie durch 

Steigerung der Osteoklastenaktivität und Apoptose der Osteozyten tragen Kortikosteroide 

zu einer Verminderung der Knochenmineralisation bei (31, 118, 153, 161, 227, 229, 233). 

Eine gesteigerte renale Kalziumausscheidung und verminderte intestinale 

Kalziumresorption begünstigt eine negative Kalziumbalance. Es resultieren ein 

sekundärer Hyperparathyreoidismus und folglich eine erhöhte Knochenresorption und 

verminderte Knochendichte (31, 69, 118, 153, 161, 161, 227, 233). Ein weiterer 

Mechanismus, durch den Kortikosteroide zur Osteoporose beitragen, ist die 

Beeinflussung des endokrinen Systems. Durch verminderte Sekretion der hypophysären 

gonadotropen, der adrenalen und gonadalen Hormone kommt es zum Hypogonadismus 

(119, 152, 161, 233). Zudem beeinträchtigen Glukokortikoide die lokale somatotrope 

Wirkung von GH und IGF-I (91, 233).  

Eine weitere Nebenwirkung im Rahmen der Kortikosteroidtherapie ist die Entwicklung 

ischämischer avaskulärer Knochennekrosen (AON). Ihde und De Vita beschrieben als 

eine der Ersten den Zusammenhang zwischen einer Kortikosteroid-enthaltenden 

Kombinationschemotherapie und der Entwicklung von AON bei vier Lymphom-Patienten 

(83). In einer retrospektiven Untersuchung an 1409 Kindern mit Hochrisiko-ALL konnte bei 

9,3% der Patienten eine AON insbesondere im Bereich der gewichttragenden Gelenke 

innerhalb von drei Jahren nach Therapiebeginn diagnostiziert werden (125). 
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Die Pathogenese und Ätiologie von Osteonekrosen ist noch nicht vollständig geklärt. 

Steroide bewirken unter anderem durch Erhöhung der Fettzellmasse im Knochenmark 

nichttraumatische mikroskopische Fettembolien in den Endarterien verschiedener Organe 

(72, 157, 199). Weiterhin kann es im Rahmen einer Steroidosteoporose zu 

stressinduzierten (Mikro-) Frakturen der Knochentrabekel kommen, die eine Zerstörung 

intratrabekulärer Blutgefäße bewirken und eine Nekrose zur Folge haben. Eine erhöhte 

Blutviskosität und Gerinnbarkeit spielen in der Pathogenese ebenfalls eine Rolle (72, 

199). AON konnten jedoch auch infolge einer Chemotherapie ohne Glukokortikoide 

beobachtet werden (71, 123, 146). Dabei scheinen Cyclophosphamid und MTX potentielle 

Risikofaktoren darzustellen (55, 146).  

1.5.2. Strahlentherapie und ihr Einfluss auf den Knochen 

Neben der Zytostatikatherapie hat auch die Strahlentherapie einen negativen Einfluss auf 

den Knochenstoffwechsel und das Wachstum bei Kindern. Der dosisabhängige Effekt der 

Bestrahlung zeigt sich an allen Komponenten des wachsenden Knochens, sowohl an der 

Epiphyse als auch der Dia- und Metaphyse und der Knorpelmatrix (60, 165). Es besteht 

ein direkter zytotoxischer Effekt auf die Chondrozyten der Epiphyse (211). Durch 

Störungen der Chondro- und Osteogenese kommt es zu einem frühzeitigen Schluss der 

Epiphysenfugen und folglich zur axialen Knochenverkürzung mit einhergehender 

Wachstumsretardierung (60, 165).  

Ein indirekter Effekt der Strahlentherapie auf das Knochenwachstum und die 

Knochenmineraldichte entsteht durch die Bestrahlung der neuroendokrinen Achse (60, 

75, 227). Der strahleninduzierte Wachstumshormonmangel (GHD) und zentrale 

Hypogonadismus bedingen eine Wachstumsretardierung und BMD-Abnahme (36, 80, 93, 

179, 221, 227). Der Hypothalamus ist strahlensensitiver als die Hypophyse und wird bei 

Dosen von weniger als 40-50 Gy geschädigt. Dosen ab 18 Gy können zu einem GHD 

führen. Der genaue Mechanismus, durch den die Schädelbestrahlung die 

Knochenmineraldichte reduziert, ist noch unklar. Jedoch stellen Hypogonadismus und 

GHD entscheidende Faktoren dar (80, 159).  

Der durch Bestrahlung der Reproduktionsorgane bedingte primäre Hypogonadismus führt 

bei Frauen ebenfalls zu einer verminderten Knochendichte. Ovarielle Dysfunktion und 

vorzeitige Menopause sind mit Bestrahlungsdosen von ≥10 Gy bei präpubertären und ≥5 

Gy bei pubertären Frauen assoziiert (227).  
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1.5.3. Knochenstatus nach Therapie einer ALL im Kindesalter 

Der Knochenstatus bei Langzeitüberlebenden einer onkologischen Erkrankung im 

Kindesalter wurde an Leukämie-Patienten ausführlich untersucht. Sie weisen signifikant 

geringere BMD-Werte auf als andere onkologische Patienten und sind einem erhöhten 

sekundären Osteopenie- bzw. Osteoporoserisiko bis zu 20 Jahre nach Therapie 

ausgesetzt (7, 11, 99, 219, 226). Es ließ sich nachweisen, dass diese Patienten bereits 

bei Diagnosestellung eine BMD-Verminderung aufweisen können (70, 220). Das legt den 

Verdacht nahe, dass der Erkrankungsprozess selbst durch leukämische 

Knocheninfiltration zu Veränderungen im Knochenmetabolismus bei Kindern beiträgt (11). 

Die Pathogenese der Osteopenie bzw. Osteoporose pädiatrischer ALL-Patienten ist 

multifaktoriell. Patientenalter (über zehn Jahre), Geschlecht (männlich), Rasse (Weiße) 

und Schädelbestrahlung korrelieren mit Verminderungen der BMD (5, 7, 11, 99, 200, 

221). Kinder ohne Schädelbestrahlung weisen signifikant höhere BMD-Werte auf als 

Patienten mit positiver Strahlenanamnese (99, 226). Des Weiteren tragen die 

Kortikosteroid- und/oder MTX-Therapie sowie Hormonmangelsyndrome zur Entwicklung 

einer Osteoporose bei Langzeitüberlebenden einer ALL bei (32, 122, 140, 158, 192). 

1.5.4. Knochenstatus nach Therapie solider Tumoren im Kindesalter 

Neben Studien zur ALL existieren Untersuchungen, die ihr Augenmerk auf 

Veränderungen des Knochenstoffwechsels und der Knochenmineraldichte bei 

pädiatrischen Patienten mit soliden Tumoren gelegt haben. 

Das endokrine System Überlebender eines Hirntumors im Kindesalter wird, wie bei der 

ALL, sowohl durch die Strahlen- als auch durch die Chemotherapie beeinflusst (36, 75, 

122, 155). Die Schädelbestrahlung kann neben einem GHD einen Hypogonadismus und 

eine Hypothyreose zur Folge haben (14, 36, 122, 155). Bestrahlte Hirntumorpatienten 

weisen aufgrund dieser multiplen Endokrinopathien ein erhöhtes Osteoporoserisiko auf 

(75, 147) (siehe auch Kapitel 1.4.2. und 1.5.2.). Daneben spielt die lokale 

Strahlentherapie der LWS zusätzlich eine Rolle bei einem lokalen Knochenverlust (155). 

Auch Langzeitüberlebende eines Osteosarkoms zeigen Veränderungen des 

Knochenmetabolismus. Holzer et al. konnten bei 65% der erwachsenen Probanden, die in 

ihrer Kindheit aufgrund eines hochmalignen Osteosarkoms u.a. mit MTX behandelt 

wurden, BMD-Defizite aufzeigen. Nur 17 Patienten (35%) wiesen normale BMD-Werte auf 

(79). Kaste et al. fanden heraus, dass das Risiko für BMD-Defizite nach Therapie eines 

Sarkoms signifikant mit dem Alter bei Diagnose und der kumulativen 

Cyclophosphamiddosis  steigt (98). 
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Bedingt durch Hormonmangelsyndrome, Strahlentherapie des Skeletts und die 

medikamentöse Therapie mit Kortikosteroiden und MTX haben auch Lymphom-Patienten 

ein erhöhtes Risiko für BMD-Verminderungen (78, 144, 174).  

Des Weiteren weisen Überlebende eines Wilmstumors oder Neuroblastoms ein erhöhtes 

Osteoporoserisiko auf (5, 100, 150). 

Faktoren neben der Therapie, die die Entwicklung einer Osteoporose bei pädiatrischen 

Tumorpatienten begünstigen, sind allgemeine Lifestyle-Faktoren wie Nikotinabusus, 

Fehlernährung (Kalzium- und Vitamin D-Mangel) und geringe körperliche Aktivität 

während der Therapie (12, 68, 85, 200, 226). Zudem scheinen zirkulierende Zytokine wie 

TNF bei der Pathogenese der tumorbezogenen Osteopenie eine Rolle zu spielen (16, 

226). 

 

1.6. Osteodensitometrische Verfahren 

1.6.1. Osteodensitometrie im Kindesalter 

Aufgrund der zunehmenden Zahl an Erkrankungen und Therapieregimen, die Wachstum 

und Entwicklung beeinflussen können, steigt in den letzten Jahren das Interesse an der 

Knochendichtemessung im Kindesalter.  

Folgende nicht-invasive Osteodensitometrie-Verfahren finden in der Pädiatrie Anwendung 

(21, 105, 129, 130, 143, 202, 203, 213) (Tab. 8, Seite 85): 

 2-Spektren-Röntgenabsorptiometrie (dual energy X-ray absorptiometry, DXA) 

 Quantitative Computertomografie (QCT) / periphere QCT (pQCT) 

 Digitale X-Ray-Radiogrammetrie (DXR) 

 Quantitativer Ultraschall (QUS) 

Methode der Wahl ist die DXA, auf der die Osteoporose-Definition der WHO basiert und 

für die auch die größte vorhandene Datenbasis vorliegt. Auch für die pQCT existieren 

bereits deutsche Normwerte für das Kindesalter. 

1.6.2. DXR – Vor- und Nachteile der klinischen Anwendung 

Die Digitale X-Ray-Radiogrammetrie (DXR) als relativ neues Osteodensitometrieverfahren 

gewinnt in den letzten Jahren zunehmend an klinischer Bedeutung. Es wurden bereits 

Referenzwerte sowohl für das Erwachsenen- als auch für das Kindes- und Jugendalter 
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publiziert. Dabei existieren Normwerte für ein kaukasisches, nordamerikanisches, afro-

amerikanisches und asiatisches Kollektiv sowie eigene regionale Referenzwerte (18, 27, 

121, 129, 156, 181, 201, 214, 225, 235).  

Grund für das wachsende Interesse an dieser Methodik ist unter anderem der geringe 

Präzisionsfehler, in der Literatur angegeben mit 0,16-2,7% (120), 0,6% (166) und 0,61-

0,68% (88), der sich durch das vollautomatisierte objektive Messverfahren, den sehr 

geringen Weichteilfehler sowie die hohe Anzahl an Messungen, die zu jeder BMD-

Berechnung beitragen, erklären lässt (28, 166). 

Weitere Vorteile bestehen in der einfachen Handhabung, dem geringen Zeitaufwand und 

der bedienerunabhängigen Verfahrensweise. Eine externe Änderung der Regions of 

interest (ROI) durch den Anwender ist gerätetechnisch nicht möglich (88, 166). Es konnte 

eine hohe Reproduzierbarkeit nachgewiesen werden (120).  

Die Filmqualität oder -marke, der Film-Fokus-Abstand oder das Belichtungslevel haben 

keinen Einfluss auf die Berechnung von DXR-BMD und –MCI. Es konnte jedoch ein 

signifikanter Einfluss der Röhrenspannung auf die BMD-Berechnung festgestellt werden, 

so dass diese konstant gehalten werden sollte (25, 120). Eine Beeinflussung der 

Messresultate durch überlagerndes Weichteilgewebe kann ausgeschlossen werden (28). 

Für die DXR als retrospektiv anwendbare und kosteneffektive Methode ist ausschließlich 

die Anfertigung einer Röntgenaufnahme der linken Hand notwendig, woraus sich eine 

geringere Strahlenexposition (Strahlendosis 2-5 µSv) im Vergleich zur DXA ergibt. Bei 

Kindern mit chronischen Erkrankungen werden im Rahmen der Diagnostik häufig 

Handröntgenaufnahmen zur KA-Bestimmung angefertigt. Diese können dann zusätzlich 

zur Knochendichtemessung genutzt werden, ohne den Patienten einer erneuten 

Strahlenbelastung auszusetzen (120).  

Ähnlich wie die DXA ist die DXR ein zweidimensionales Messverfahren, das 

ausschließlich die Ermittlung der Knochenmasse (in g/cm²) ermöglicht. Erst sekundär wird 

diese in ein Dichtemaß umgerechnet (129). Weiterhin erlaubt die DXR nur eine 

Bestimmung der kortikalen BMD am peripheren Knochen, während bei der DXA der 

trabekuläre Knochenverlust auch an axialen Messorten quantifiziert wird (166).  

Eine hohe Korrelation der DXR-Parameter mit den DXA-Werten konnte mehrfach in 

Studien bewiesen werden (18, 166, 225). Jedoch ist ein direkter Vergleich der DXR-BMD 

und der DXA-BMD der LWS nicht möglich, da Wirbelkörper zum Großteil aus 

trabekulärem Knochen bestehen. Die DXR kann daher nicht das Ausmaß der 

Demineralisation des gesamten Skeletts abschätzen (130). 
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Die Anwendbarkeit der Methodik bei Kindern mit einem KA unter sechs Jahren ist 

aufgrund des mangelnden Kontrastes zwischen Weichteilgewebe und Knochen 

eingeschränkt, die Knochenränder der Metakarpalknochen werden durch die Software 

nicht ausreichend erkannt (121, 129, 201, 214).  

Die BMD-Berechnung an Ausdrucken von initial digitalen Bildern ist ebenfalls limitiert. Der 

Reproduzierbarkeitsfehler ist signifikant höher im Vergleich zu konventionellen 

Ausdrucken. Ursache ist ein verstärktes Verwischen der Konturen durch den 

Druckprozess (120).  

1.6.3. DXR-Anwendung bei Kindern und Jugendlichen mit chronischen 

Erkrankungen 

In den letzten Jahren wurden verschiedene Arbeiten zur Anwendbarkeit der DXR im 

klinischen Alltag bzw. im Rahmen klinischer Studien veröffentlicht. Besonderes Interesse 

fand darin die Untersuchung der BMD bei Patienten mit chronischen Erkrankungen. 

Einige der Untersuchungen befassen sich mit dem Vergleich der DXR mit bisher 

etablierten Methoden wie der DXA, dem QUS oder der QCT.  

Mentzel et al. und van Rijn et al. untersuchten mittels DXR die BMD an Kindern und 

Jugendlichen mit chronisch-entzündlichen Darmerkrankungen. Bei einem Teil der 

Patienten konnten sie DXR-BMD-Verminderungen im Sinne einer Osteopenie 

nachweisen. Die Ergebnisse der Studie von Mentzel et al. korrelierten signifikant mit DXA-

BMD-Werten der LWS oder des proximalen Femurs (130, 214).  

Ebenso quantifizierten Mentzel et al. bei nierentransplantierten Kindern den BMD-Verlust 

mittels DXR. Bei drei von 22 Patienten war der DXR-BMD auf < -2,5 SD reduziert. Zwölf 

Patienten waren osteopenisch (131).  

Anhand dieser Studien an chronisch erkrankten Kindern konnten die Autoren belegen, 

dass die DXR eine bei Kindern gut anwendbare Technik darstellt und zur Evaluierung des 

peripheren Knochenstatus sowie zur Abschätzung des Osteoporoserisikos geeignet ist.   

1.6.4. DXR-Anwendung bei Kindern und Jugendlichen mit 

onkologischen Erkrankungen 

Van Rijn et al. untersuchten in ihrer Arbeit die Korrelation der DXR mit der DXA als 

Standardmethode der Osteodensitometrie an pädiatrischen Patienten mit ALL bzw. einem 

Wachstumshormonmangel (213). Die Autoren konnten in beiden Populationen eine 

signifikante Korrelation beider Messmethoden nachweisen.  
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1.6.5. DXR-Anwendung im Erwachsenenalter 

Im Erwachsenenalter legen die Untersuchungen zur DXR-Methode das Hauptaugenmerk 

auf die Rheumatoidarthritis (RA) und die Osteoporose. Es ließen sich Vorteile der DXR 

gegenüber der DXA bei RA-Patienten nachweisen (22-24, 77, 86, 87). Weiterhin ist die 

DXR geeignet, um postmenopausale Frauen mit einer Osteoporose zu identifizieren (21). 

Eine signifikante Korrelation von QUS, pQCT und den DXA-Parametern mit denen der 

DXR konnte mehrfach belegt werden (23, 24, 59, 151).  

Somit bestätigen o.g. Studien die DXR als gute diagnostische Methode zur 

Quantifizierung des Knochendichteverlustes. 

 

1.7. Problemstellung  

In den letzten Jahrzehnten hat sich die Prognose von Kindern mit onkologischen 

Erkrankungen deutlich gebessert, so dass immer mehr Patienten das Erwachsenenalter 

erreichen. Gründe für die hohen Heilungsraten und die verbesserte Behandlungsqualität 

liegen insbesondere in einer einheitlichen Behandlung der Patienten im Rahmen von 

multizentrischen Therapieoptimierungsstudien. Während die Kurzzeitfolgen und 

Nebenwirkungen der onkologischen Therapie gut bekannt sind, weiß man derzeit noch 

wenig über mögliche Langzeitfolgen der intensiven Behandlung. 

Bereits in zahlreichen Studien wurde der Knochenstoffwechsel nach Therapie eines 

pädiatrischen Tumors untersucht. Standardmethode für die Knochendichtemessung in 

den meisten Untersuchungen ist die DXA.  

Ein relativ neues Osteodensitometrie-Verfahren ist die in dieser Arbeit angewandte 

Digitale X-Ray-Radiogrammetrie (DXR). Diese Methode wurde bisher selten im Kindes- 

und Jugendalter zur Beurteilung der Knochenmineraldichte eingesetzt. Eine hohe 

Korrelation der DXR-Parameter mit denen der DXA konnte mehrfach bewiesen werden.  

Grundlage der hier vorliegenden Arbeit ist die Annahme einer verminderten 

Knochendichte bei Kindern und Jugendlichen nach onkologischer Therapie. Dabei soll ein 

pädiatrisches Patientenkollektiv mit soliden Tumoren oder Hodgkin-Lymphomen 

betrachtet werden, das im Rahmen der Therapieprotokolle der GPOH mit Chemo- 

und/oder Radiotherapie behandelt wurde. Anhand von bereits vorliegenden 

Röntgenaufnahmen der linken Hand soll retrospektiv der Knochenstatus dieser Patienten 

mittels DXR untersucht und mit dem einer gesunden Kontrollgruppe verglichen werden. 
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Hierbei sollen folgende Fragen beantwortet werden:  

 Gibt es einen Anhalt für Veränderungen des Knochenstatus im Vergleich zu einem 

gesunden Referenzkollektiv? 

 Sind mögliche Veränderungen abhängig von den verabreichten Zytostatika und 

deren Dosierung? 

 Bestätigen sich die in der Literatur erfassten alters-, gewichts- und 

geschlechtsspezifischen BMD- und MCI-Unterschiede?   
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2. Material und Methoden 

2.1. Patientencharakteristik 

2.1.1. Patientenanzahl, Diagnosen und Geschlecht  

Das untersuchte Patientenkollektiv besteht aus insgesamt 53 Patienten, davon 29 

weiblichen und 24 männlichen Geschlechts, die in ihrer Kindheit oder Jugend an einem 

soliden Malignom oder einem Hodgkin-Lymphom erkrankten. Alle Patienten wurden in der 

Klinik für Pädiatrische Hämatologie und Onkologie des Universitätskinderklinikums 

Magdeburg im Zeitraum von März 1988 bis Juli 2006 behandelt und befanden sich nach 

Therapieende in ambulanter Nachsorge.  

In dieser Arbeit wurden patientenbezogene Daten, Therapiedaten sowie archivierte 

Röntgenaufnahmen (RöA) der linken Hand retrospektiv analysiert.  

Anzahl, Geschlechtsverteilung und Alter der Patienten sind in Tab. 2 dargestellt. 

Tab. 2: Häufigkeit und Geschlechtsverteilung der Patienten  

Diagnose Anzahl 

Patienten (n) 

Häufigkeit 

Patienten (%) 

Weiblich 

(n) 

Männlich 

(n) 

Alter von – bis 

(Jahre) 

Hodgkin-Lymphom 23 43,4 11 12 8,4 – 25,3 

Ewingsarkom 7 13,2 7 0 10,7 – 22,4 

Osteosarkom 7 13,2 2 5 10,5 – 29,0 

Rhabdomyosarkom 6 11,3 3 3 8,7 – 19,1 

Wilmstumor 4 7,5 2 2 8,9 – 17,1 

Medulloblastom 4 7,5 3 1 8,4 – 17,4 

Neuroblastom 2 3,8 1 1 13,1 – 14,5 

Gesamt 53 100 29 24 8,4 – 29,0 

2.1.2. Therapie 

Alle Patienten wurden diagnosespezifisch im Rahmen von Therapieprotokollen der GPOH 

medikamentös mittels Polychemotherapie behandelt. 69,8 % der Patienten (n=37) wurden 

zusätzlich bestrahlt, 30,2 % (n= 16) erhielten keine Radiotherapie.  
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Einzelheiten zur Anzahl und Verteilung der Patienten in die entsprechenden Therapie- 

oder Risikogruppen sowie Randomisierungsarme der jeweiligen Therapiestudien sind 

Tab. 9 im Anhang zu entnehmen (Tab. 9, Seite 86). 

In dieser Arbeit wurden die Patienten entsprechend der verabreichten kumulativen 

Medikamentendosierungen pro Zytostatikum in drei Gruppen eingeteilt, wobei eine 

Gruppe das jeweilige Zytostatikum nicht erhielt (kumulative Dosis entspricht Null). Tab. 10 

fasst die Patientengruppen zusammen (Tab. 10, Seite 87).   

Nachfolgend sind die verabreichten mittleren und maximalen Medikamentendosen aller 

Patienten dargestellt, einschließlich derer mit der kumulativen Dosis Null (Tab. 3).  

Tab. 3: Kumulative Zytostatikadosen aller Patienten (einschließlich Patienten mit kumulativer 

Dosis 0,0 mg/m²)  

Zytostatika Dosis Mittelwert 

(mg/m²) 

Dosis Median 

(mg/m²) 

Dosis Maximum 

(mg/m²) 

Anthrazykline 238,68 160,0 530,0 

Methotrexat 16230,51 0,0 144000,0 

Cyclophosphamid 1872,08 0,0 10500,0 

Ifosfamid 22059,14 0,0 102000,0 

Platinderivate 553,386 0,0 4500,0 

Actinomycin D 2,116 0,0 12,0 

Vincaalkaloide 14,698 16,1 46,5 

Etoposid 973,148 1000,0 4150,0 

Prednisolon 1411,13 0,0 4200,0 

Procarbazin 2054,72 0,0 9000,0 

 

Tab. 11 stellt ebenfalls die kumulativen Zytostatikadosen der Patienten dar, wobei die 

Patientengruppe mit der kumulativen Dosis Null nicht mit einbezogen wurde (Tab. 11, 

Seite 88). 

2.1.3. Röntgenaufnahmen 

Von den 53 Patienten wurden insgesamt 64 RöA (bis zu vier RöA pro Patient) in der 

Universitätsklinik für Diagnostische Radiologie und Nuklearmedizin Magdeburg im 

Zeitraum von September 1998 bis Februar 2008 angefertigt und mittels DXR ausgewertet. 
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In der statistischen Auswertung wurde jeweils ausschließlich die zuletzt angefertigte RöA 

berücksichtigt.  

Lebensalter: Zum Zeitpunkt der RöA waren die Patienten im Alter von 6,3 bis 29,0 

Jahren (Mittelwert 17,2; Median 17,2 Jahre). Das Alter der weiblichen Patienten lag im 

Mittel bei 17,1, das mittlere Alter der Jungen bei 17,3 Jahren. Die RöA wurden 0,1 bis 

15,8 Jahre (Mittelwert 5,5, Median 5,2 Jahre) nach Therapieabschluss angefertigt.  

Knochenalter: Nach Anfertigung der RöA wurde das KA unter Verwendung der Methode 

von Greulich und Pyle bestimmt (63). Das KA des Patientenkollektivs lag zwischen 5,5 

Jahren und einem ausgereiften KA (Mittelwert 15,1, Median 16,0 Jahre). Als ausgereift 

wurde bei Mädchen ein KA ab 16 und bei Jungen ab 18 Jahren definiert. 26 Patienten 

wiesen ein ausgereiftes und 27 Patienten ein nicht ausgereiftes KA auf. Hinsichtlich des 

Knochenalterstatus wurde unterschieden zwischen einem normalen, retardierten oder 

akzelerierten KA jeweils in Bezug auf das Lebensalter (Tab. 4). 

Tab. 4: Knochenalterstatus des Patientenkollektivs 

Knochenalter-Status Anzahl der Patienten Häufigkeit in % 

normal 49 92,5 

retardiert 3 5,7 

akzeleriert 1 1,9 

2.1.4. Anthropometrische Daten 

Die zum Zeitpunkt der RöA ermittelten anthropometrischen Daten wurden den z. T. 

archivierten Patientenakten entnommen.  

Körperhöhe: Die Körperhöhe des gesamten Patientenkollektivs lag im Mittel bei 164,3 

cm (Median 167,0 cm). Die Maße der männlichen Patienten betrugen 119,5 bis 194 cm, 

die der weiblichen 115,8 bis 181,4 cm. 46 Patienten hatten zum Zeitpunkt von 53 RöA 

eine altersgerechte Körperhöhe. Vier Patienten waren zum Zeitpunkt von acht RöA 

kleinwüchsig, d. h. ihre Körperhöhe lag unterhalb der 3. altersbezogenen Perzentile 

(entspricht < -2 SDS). Bei einer Patientin nach Therapie eines Medulloblastoms wurden 

im Verlauf von vier Jahren insgesamt vier RöA angefertigt, wobei sie zum Zeitpunkt aller 

Aufnahmen kleinwüchsig war. Bei einer weiteren Patientin mit Medulloblastom lag die 

Körperhöhe ebenfalls zum Zeitpunkt von zwei RöA unterhalb der 3. altersbezogenen 

Perzentile. Drei Patienten waren zum Zeitpunkt der RöA hochwüchsig. Ihre Körperhöhe 

lag oberhalb der 97. Perzentile der Altersnorm (> +2 SDS bezogen auf das Lebensalter). 
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Body mass index: Der Body mass index (BMI) des Patientenkollektivs wurde zwischen 

14,48 und 41,33 kg/m2 (Mittelwert 21,62, Median 21,3 kg/m2) errechnet. Bezogen auf das 

Lebensalter ließ nur ein Patient einen BMI > 2 SDS erkennen, d. h. er war übergewichtig. 

Zwei Patienten waren zum Zeitpunkt von vier RöA untergewichtig (BMI < 2 SDS bezogen 

auf das Lebensalter), darunter eine Patientin nach Therapie eines Medulloblastoms zum 

Zeitpunkt von drei RöA. 51 Patienten des Patientenkollektivs wiesen zum Zeitpunkt von 

59 RöA Normalgewicht auf (-2 SDS ≤ BMI ≤ 2 SDS). 

2.1.5. Laborparameter 

Neben den Patientendaten wurden Laborparameter am Tag der RöA ausgewertet, die 

jedoch nicht bei jedem Patienten vollständig vorlagen. Folgende laborchemische 

Auffälligkeiten stellten sich dar:  

Der Serum-Kalzium-Wert war bei 41 Patienten bestimmt. Fünf der 41 Patienten zeigten 

eine Hyperkalzämie, keiner eine Hypokalzämie.  

Der Serum-Phosphat-Wert wurde bei 32 Patienten bestimmt, wovon ein Patient eine 

Hyperphosphatämie und vier Patienten eine Hypophosphatämie aufwiesen.  

Das Parathormon im Serum lag bei neun Patienten vor und war nur bei einem Patienten 

erniedrigt.  

Die Werte der Alkalischen Phosphatase im Serum konnten bei 28 Patienten ausgewertet 

werden. Neun Patienten wiesen dabei eine Erhöhung auf. 

Zur Ermittlung der Nierenfunktion wurden die Werte für Kreatinin, Cystatin C und die 

Phosphatreabsorption analysiert. Drei Patienten wiesen sowohl erhöhte Kreatinin- als 

auch Cystatin C-Werte auf. Bei einer Patientin war zusätzlich eine reduzierte 

Phosphatreabsorption auffällig. Bei weiteren zehn Kindern und Jugendlichen waren 

entweder Kreatinin oder Cystatin C erhöht oder die Phosphatreabsorption vermindert.  

Des Weiteren wurden die vorliegenden Schilddrüsenparameter zum Zeitpunkt der RöA 

ausgewertet: Bei insgesamt neun Patienten wurde aufgrund einer Hypothyreose L-

Thyroxin® oder Euthyrox® substituiert. Das basale TSH lag bei 42 Patienten am Tag der 

Anfertigung von 49 RöA vor. Davon wiesen fünf Patienten pathologisch erhöhte Werte im 

Sinne eine Hypothyreose und drei Patienten erniedrigte TSH-Werte auf. Eine Patientin 

zeigte nach Therapie eines metastasierten Medulloblastoms trotz täglicher 

Substitutionstherapie mit L-Thyroxin bei einer ihrer zwei RöA eine hypothyreote 

Stoffwechsellage. Vier Patienten waren latent hypothyreot, wobei zwei dieser Patienten 

bisher keine Substitutionstherapie erhielten. Eine Hyperthyreose im Rahmen der 

Substitutionstherapie mit Euthyrox® fand sich bei einer Patientin, die aufgrund eines 
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Hodgkin-Lymphoms in Behandlung war. Nur eine Patientin wies eine latente 

Hyperthyreose auf. Insgesamt 37 Patienten zeigten am Tag von 41 RöA eine euthyreote 

Stoffwechsellage. 

Bei einer 18-jährigen Patientin, die aufgrund eines Ewingsarkoms behandelt wurde, 

bestand laborchemisch der Verdacht einer Ovarialinsuffizienz. Es lag ein erhöhtes FSH 

(>170 mU/ml) bei gleichzeitig vermindertem Estradiol (< 73,4 pmol/l) vor. 

 

2.2. Therapieoptimierungsstudien 

Alle Kinder und Jugendlichen des Patientenkollektivs wurden im Rahmen von 

Therapieoptimierungsstudien der GPOH diagnosespezifisch und risikoadaptiert 

behandelt.  

 

2.3. Digitale computer-assistierte X-Ray-Radiogrammetrie (DXR) 

Die Knochenmineraldichte (bone mineral density = BMD, g/cm²) und der Metakarpalindex 

(MCI) der drei mittleren Metakarpalknochen wurden unter Anwendung des Pronosco X-

Posure Systems (Version 2.0, Sectra Pronosco A/S, Vedbaek, Dänemark) mittels DXR, 

einem Computer-assistiertem Bildanalyseverfahren (CAD: computer assisted detection), 

anhand konventioneller analoger RöA der nicht-dominanten Hand ermittelt.  

Die Digitale Radiogrammetrie basiert auf den Prinzipien der klassischen 

Radiogrammetrie. Diese ist charakterisiert durch die Messung von Distanzen an 

konventionellen Röntgenbildern des Knochens zur Beurteilung des Skelettsystems und 

der Knochendichte (201). Die Nutzung der Kortikalisdicke als Maß für die 

Knochenfestigkeit wurde ursprünglich 1960 von Barnett und Nordin vorgestellt. Sie 

berechneten erstmals den Metakarpalindex (13, 129, 141, 225). Durch zunehmende 

Verfeinerung der traditionellen Radiogrammetrie und durch die Anwendung 

computerbasierter Bildanalysen konnte die Präzision und Zuverlässigkeit dieser Methodik 

mehr und mehr verbessert werden (18, 225).  

Das Pronosco X-Posure System besteht aus einem hochauflösenden 300-dpi (dots per 

inch) Flachbettscanner, einem auf Windows - basierenden Computer mit einer 

systemeigenen Software, einem Bildschirm und einem Drucker, Tastatur und Mouse.  

In regelmäßigen Abständen fordert das System einen Scannertest, wobei durch 

Einscannen eines zum System gehörigen Testblattes die Qualität der Bildanalyse 
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überprüft wird. Im Anschluss an den erfolgreich abgeschlossenen Test können weitere 

Hand-RöA mittels DXR ausgewertet werden.  

Die RöA der nicht-dominanten Hand wird mittels Scanner eingelesen und digitalisiert. Das 

Scannen und die automatisierte Analyse der Röntgenbilder dauern wenige Minuten. Das 

System selbst kontrolliert dabei die Qualität der eingescannten Bilder, identifiziert die 

notwendigen Knochenstrukturen und unterbricht den Messvorgang im Falle einer 

ungenügenden Bildqualität und Identifikation. In diesem Zusammenhang kann das 

Pronosco X-Posure System nur Knochenstrukturen von Patienten erkennen, die älter als 

sechs Jahre sind. Um die Knochen im Röntgenbild lokalisieren zu können, wendet das 

Pronosco X-Posure System einen modellbasierten Algorhythmus an. Diese Methode der 

Bildverarbeitung ist bekannt als Active Shape Model (ASM). Nach Identifikation der 

Diaphysen der drei mittleren Metakarpalknochen erkennt und lokalisiert die Software 

automatisch die Regions of interest (ROI) im Bereich der Metakarpalia II, III und IV. Die 

ROI werden dabei am schmalsten Knochenabschnitt platziert. Die Länge der ROI variiert 

zwischen 1,6 cm am vierten, 1,8 cm am dritten und 2,0 cm am zweiten 

Metakarpalknochen. Die analysierten Bilder mit den ROI werden auf dem 

Computermonitor dargestellt, so dass der Systemnutzer die korrekte Position der ROI 

kontrollieren kann. Der Bediener muss die Lage der ROI bestätigen, eine manuelle 

Korrektur und Modifikation der ROI durch den Anwender ist jedoch nicht möglich (Abb. 1). 

Innerhalb jeder ROI werden die endostalen (inneren) und periostalen (äußeren) Kanten 

der kortikalen Knochenanteile automatisch erkannt. Dadurch wird die Knochendiaphyse 

automatisch in zwei kortikale Regionen und eine endostale bzw. medulläre Region 

aufgeteilt. Diese Trennung ermöglicht die Messung einer mittleren kortikalen Dicke 

(cortical thickness = CT) und eines durchschnittlichen Außendurchmessers (outher bone 

width = OBW) an jedem der drei Metakarpalia bzw. ROI. Zur Berechnung der CT tragen 

der radiale und ulnare kortikale Knochenanteil bei (Abb. 2). 
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Abb. 1: Automatische Lokalisation der ROI durch das Pronosco X-Posure System (26) 

                                                                

Abb. 2: Definition von Kortikaler Dicke (CT) und Außendurchmesser (OBW) am 

Metakarpalknochen (166) 

 

Die Scannerauflösung (300 dpi ≈  5.5 lp/mm) ermöglicht annähernd 118 Messungen pro 

Zentimeter entlang einer ROI. Beispielsweise beträgt bei einer Messregion des dritten 

Metakarpalknochens von 1,8 cm die Anzahl der Messungen 1,8 x 118 ≈ 200. Es erfolgt 

eine Mittelwert-Berechnung der Variablen OBW und CT aus den einzelnen Messungen. 
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Die so genannte Bone Volume per Area als Annäherung zur Knochendichte wird für jeden 

Metakarpalknochen aus CT (T) und OBW (W) des Knochens berechnet. Die VPA ist 

definiert als Knochenvolumen pro projizierte Fläche. Unter der Annahme, dass der 

Knochen die Form eines Zylinders besitzt, lautet die Formel zur Berechung der VPA: 

VPA = π x T x (1 – T/W) 

Zur Verbesserung der Präzision wird eine kombinierte VPA als ein Mittelwert aus den drei 

Metakarpalknochen berechnet, wobei der vierte Metakarpalknochen aufgrund einer 

limitierten klinischen Bedeutung sowie geringeren Präzision geringer bewertet wird:   

VPAmc=(VPA2+VPA3+0,5VPA4)/2,5  

Die DXR bringt die VPA mit der BMD über die allgemeine proportionale Beziehung 

zwischen Masse m eines homogenen Körpers und Volumen V des Körpers in 

Verbindung: m = ρ x V. In Bezug auf die BMD ist ρ die Volumendichte der 

Mineralsubstanz des Knochens. Trotz einiger individueller Schwankungen der 

Volumenmineraldichte ρ kann eine gute Annäherung der BMD durch Multiplikation der 

VPA mit einer entsprechenden Dichtekonstante (≈1.2 g Ca/cm³) erreicht werden. Das 

System korrigiert den BMD-Wert um die Streifung und die Porosität des kortikalen 

Knochens. Die Porosität wird ähnlich wie die CT und OBW des Knochens von den 

Bilddaten geschätzt. Der Porositätsindex für jeden beteiligten Knochen ist ein struktureller 

Parameter mit Werten zwischen 1 und 19. Die Porosität ist definiert als prozentualer 

Raumanteil der lokalen Intensitätsminima (Löcher) des kortikalen Knochens in Beziehung 

zur gesamten Kortikalisfläche. Sie quantifiziert den Anteil der Hohlräume bzw. Poren in 

der Kortikalis, d. h. den prozentualen Knochenanteil, der nicht von kompaktem Knochen 

eingenommen wird. Durch Mittelwertberechnung aus den beteiligten Knochen und durch 

entsprechende Skalierung wird ein kombiniertes Porositätsmaß p ermittelt, um eher einen 

Volumen-Anteil widerzuspiegeln als einen projizierten Flächenanteil. In der Regel ist p der 

drei Metakarpalia weniger als 2%. Die Streifung drückt die Unregelmäßigkeiten der 

inneren Oberfläche des kortikalen Knochens aus. Sie ist ein visuelles Phänomen an RöA 

und ist charakterisiert als longitudinale Streifung im Bereich der endostalen Region 

zwischen den inneren kortikalen Knochenkanten. Die endgültige Abschätzung der DXR-

BMD wird folgendermaßen berechnet: 

DXR-BMD [g/cm²]= c x VPAcomb x (1-p). 

Die Skalierungskonstante c wurde empirisch ermittelt, so dass DXR-BMD durchschnittlich 

dem BMD-Wert des distalen Radius gleicht, der mittels DXA (Hologic QDR-2000 

Densitometer, Waltham, Mass, USA) gemessen wurde. Zur Berechnung wurden Daten 

von 264 kaukasischen amerikanischen Frauen im Alter von 20 bis 80 Jahren genutzt. Die 
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Konstante gleicht VPA sowohl an die Volumenmineraldichte des kompakten Knochens als 

auch die typischen Formcharakteristika der betroffenen Knochen an. 

Der Metakarpalindex (DXR-MCI) ist ein Indikator der Knochenstärke und basiert auf den 

physischen Dimensionen des Knochens. Für den DXR-MCI werden die mittlere CT (T) 

und der mittlere OBW (W) für jeden Knochenanteil ins Verhältnis gesetzt (141). 

DXR-MCI = 2 T / W 

Der Gesamt-DXR-MCI der drei Metakarpalia wird ebenfalls als gewichteter Durchschnitt 

berechnet: 

DXR-MCI= (DXR-MCI2 + DXR-MCI3 + 0,5DXR-MCI4)/2,5 

(26, 166, 213, 225). 

 

2.4. Statistische Auswertung 

Alle RöA dieser Arbeit wurden im Rahmen klinischer Routine- und 

Nachsorgeuntersuchungen erhoben. Es wurden keine zusätzlichen Röntgenbilder zu 

Studienzwecken angefertigt.  

In die statistische Auswertung ging nur eine RöA pro Patient ein, dabei wurden die Daten 

zum Zeitpunkt der zuletzt angefertigten RöA des Patienten berücksichtigt. Ältere 

Röntgenbilder von Patienten, bei denen mehrere angefertigt wurden, gingen in die 

Berechnungen nicht mit ein. 

Die statistische Auswertung der Daten erfolgte mit dem Programmsystem SPSS, Version 

15. 

Zunächst wurde der Einfluss von Geschlecht und Alter auf DXR-BMD und DXR-MCI 

überprüft. Dazu wurde in Einzelanalysen der t-Test für unabhängige Stichproben bzw. der 

Korrelationstest nach Pearson verwendet. Die gemeinsame Betrachtung beider 

Einflussfaktoren erfolgte mittels Kovarianzanalyse. 

Vergleiche der DXR-BMD- und DXR-MCI-Werte zwischen den Zytostatika-Untergruppen 

wurden in einem ersten Schritt unter Verwendung der einfaktoriellen Varianzanalyse 

durchgeführt. In Kovarianzanalysen wurden gleichzeitig Geschlecht und Alter 

berücksichtigt. 

Beim Vergleich der DXR-BMD- und DXR-MCI-Werte zwischen Patienten- und 

Referenzgruppe kam zunächst der t-Test für unabhängige Stichproben zum Einsatz. Um 
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auch hierbei den Einfluss von Geschlecht und Alter zu berücksichtigen, wurden einerseits 

univariate und andererseits Kovarianzanalysen gerechnet. 

Als Signifikanzniveau bei den statistischen Tests wurde eine Irrtumswahrscheinlichkeit 

von =0.05 (alle p-Werte < 0.05 gelten als signifikant) angenommen. 
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3. Ergebnisse 

3.1. DXR-Parameter in Abhängigkeit von Alter, Körperhöhe, 

Geschlecht und BMI  

3.1.1. DXR-BMD und -MCI in Abhängigkeit von Alter und Körperhöhe 

Wie bereits in der Literatur mehrfach dargelegt, untersuchten wir ebenfalls anhand 

unseres Patientenkollektivs den Einfluss von Alter und Körperhöhe auf die DXR-

Parameter. Auch hier bestätigte sich eine positive Korrelation der DXR-BMD mit dem Alter 

(r=0,716, p<0,001) und der Körperhöhe (r=0,845, p<0,001). Ebenso besteht ein positiver 

Zusammenhang des DXR-MCI mit dem Alter (r=0,642, p<0,001) und der Körperhöhe 

(r=0,556, p<0,001) (Tab. 5, Abb. 3-6, Tab. 12, Seite 88, Tab. 13, Seite 89) 

Tab. 5: DXR-Parameter in Abhängigkeit vom Alter 

Alter in Jahren Anzahl 

weiblicher 

Patienten 

Anzahl 

männlicher 

Patienten 

DXR-BMD in 

g/cm² Mittelwert 

DXR-MCI 

Mittelwert 

8-11 5 4 0,407 0,352 

12-14 4 3 0,520 0,420 

15-16 3 5 0,564 0,431 

17-18 5 4 0,535 0,427 

19-20 5 4 0,575 0,474 

 21 7 4 0,593 0,497 
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Abb. 3: DXR-Parameter in Abhängigkeit vom Alter weiblicher Patienten 
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Abb. 4: DXR-Parameter in Abhängigkeit vom Alter männlicher Patienten 
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Abb. 5: DXR-Parameter in Abhängigkeit von der Körperhöhe weiblicher Patienten 
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Abb. 6: DXR-Parameter in Abhängigkeit von der Körperhöhe männlicher Patienten 

 

3.1.2. DXR-Parameter in Abhängigkeit vom Geschlecht 

Bei beiden DXR-Parametern zeigten sich (in der Tendenz signifikante) 

geschlechtsspezifische Unterschiede. Die DXR-BMD der weiblichen Patienten liegt mit 

einem Mittelwert von 0,516 ± 0,075 g/cm² unter dem der männlichen Patienten (0,557 ± 

0,087 g/cm²), p=0,071.  

Hingegen liegt der DXR-MCI der männlichen Patienten im Mittel bei 0,417 ± 0,065  und 

damit unerwartet unterhalb des Mittelwertes der weiblichen Patienten (0,453 ± 0,073), 

p=0,063. 

3.1.3. DXR-Parameter in Abhängigkeit vom BMI 

Neben dem Einfluss von Alter, Körperhöhe und Geschlecht zeigt sich auch eine 

Abhängigkeit vom BMI – so korrelieren DXR-BMD (r=0,534, p<0,001) und DXR–MCI 

(r=0,476, p<0,001) signifikant mit dem BMI (Tab. 14, Seite 89, Abb. 7). 
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Abb. 7: DXR-Parameter in Abhängigkeit vom BMI (obere Abb. alle Patienten, untere Abb. 

ohne Patientin mit BMI = 41,33 g/cm²) 

 

3.2. DXR-Parameter in Abhängigkeit von der kumulativen 

Zytostatikadosis 

Wie in Tab. 10 dargestellt, wurden die Patienten entsprechend der verabreichten 

kumulativen Zytostatikadosis je Medikament in drei Gruppen eingeteilt (Tab. 10, Seite 87). 

Die jeweiligen Gruppen wurden untereinander hinsichtlich ihrer DXR-Parameter 

verglichen. Da das Patientenalter (p <0,001) und -geschlecht (p 0,015) einen signifikanten 

Einfluss auf DXR-BMD und DXR-MCI haben, wurden beide Einflussgrößen in die 

Berechnungen einbezogen. 
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3.2.1. DXR-BMD in Abhängigkeit von der kumulativen Zytostatikadosis 

unter Berücksichtigung der Einflussgrößen Alter und Geschlecht 

Unter Berücksichtigung von Alter und Geschlecht ließ sich bei der Mehrzahl der 

Zytostatika kein signifikanter Unterschied zwischen den drei Dosisgruppen hinsichtlich der 

DXR-BMD-Werte nachweisen. Einzig die Anthrazyklin- (p 0,02) und Prednisolon-Gruppen 

(p 0,014) unterscheiden sich signifikant voneinander. 

Abb. 8 und 9 stellen die mittleren DXR-BMD-Werte der Anthrazyklin- und Prednisolon-

Guppen dar. 
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Abb. 8: Mittlere DXR-BMD-Werte der Anthrazyklin-Dosisgruppen 

B MD  in g /c m²

0,48

0,5

0,52

0,54

0,56

0,58

0,6

0,62

keine 1500-3500 mg/m² > 3500 mg/m²
 

Abb. 9: Mittlere DXR-BMD-Werte der Prednisolon-Dosisgruppen 
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Hierbei zeigten Patienten ohne Anthrazyklin-Therapie die geringste DXR-BMD. Patienten 

mit einer kumulativen Anthrazyklin-Dosis von 120 - 250 mg/m² hingegen wiesen die 

höchsten DXR-BMD-Werte auf.  

Bei den Patienten mit Prednisolontherapie fand sich mit steigender kumulativer Dosis eine 

Zunahme der DXR-BMD. Unerwartet wurde sowohl bei den weiblichen als auch bei den 

männlichen Patienten mit der höchsten kumulativen Prednisolondosis (> 3500 mg/m²) die 

höchste DXR-BMD gemessen, während Patienten ohne Prednisolon-Therapie die 

geringsten DXR-BMD-Werte aufweisen. 

3.2.2. DXR-MCI in Abhängigkeit von der kumulativen Zytostatikadosis 

unter Berücksichtigung der Einflussgrößen Alter und Geschlecht 

Ähnlich den DXR-BMD-Werten verhält es sich mit den DXR-MCI-Werten. Auch hier 

stellen Alter und Geschlecht signifikante Einflussfaktoren dar. Unter Einberechnung beider 

Größen unterscheiden sich folgende Zytostatikagruppen signifikant voneinander (siehe 

auch Abb. 10-16): 

 Anthrazykline: p = 0,017 

 Ifosfamid: p = 0,026 

 Actinomycin D: p = 0,003 

 Vincaalkaloide: p = 0,033 

 Etoposid: p = 0,023 

 Prednisolon: p = 0,003 

 Procarbazin: p = 0,013 

Analog der DXR-BMD fällt auf, dass Patienten mit der höchsten kumulativen 

Prednisolondosis die höchsten DXR-MCI-Werte aufweisen, während bei Patienten ohne 

Prednisolontherapie der geringste DXR-MCI ermittelt wurde.  

Ebenso verhält es sich mit Procarbazin, mit steigender kumulativer Dosis nimmt auch hier 

der DXR-MCI zu.  

Hingegen konnte gesehen werden, dass mit zunehmender Ifosfamid-, Vincaalkaloid- 

sowie Etoposiddosis der DXR-MCI abnimmt. Patienten, deren Therapie diese 

Medikamente nicht beinhaltete, wiesen den höchsten DXR-MCI auf. 
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Abb. 10: Mittlere DXR-MCI-Werte der Anthrazyklin-Dosisgruppen 
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Abb. 11: Mittlere DXR-MCI-Werte der Ifosfamid-Dosisgruppen 
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Abb. 12: Mittlere DXR-MCI-Werte der Actinomycin D-Dosisgruppen 
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Abb. 13: Mittlere DXR-MCI-Werte der Vincaalkaloide-Dosisgruppen 
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Abb. 14: Mittlere DXR-MCI-Werte der Etoposid-Dosisgruppen 
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Abb. 15: Mittlere DXR-MCI-Werte der Prednisolon-Dosisgruppen 
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Abb. 16: Mittlere DXR-MCI-Werte der Procarbazin-Dosisgruppen 

 

3.3. Vergleich der Patientengruppe mit einer Referenzgruppe 

Die Referenzgruppe besteht aus 497 Kindern und Jugendlichen im Alter von 4,2 bis 18,0 

Jahren (Mittelwert 11,6, Median 11,8 Jahre) ohne onkologische Grunderkrankung oder 

zytostatische Therapie in der Vergangenheit. Alle Referenzpatienten wurden zur 

Beurteilung des Wachstums und der körperlichen Entwicklung in der endokrinologischen 

Spezialsprechstunde der Universitätskinderklinik Magdeburg vorgestellt. Häufigster 

Vorstellungsgrund war die Berechnung der prospektiven Erwachsenengröße. Mittels 

klinischer Untersuchung sowie Kardiokarpogramm ließ sich bei allen Jungen und 

Mädchen ein pathologisches Geschehen ausschließen. Eine Grunderkrankung, die den 

Knochenstoffwechsel beeinflusst, bestand bei keinem der Referenzpatienten. 

Tab. 6 stellt die Alters- und Geschlechtsverteilung der Patienten- und Referenzgruppe im 

Vergleich dar. 

Die DXR-BMD- und DXR-MCI-Werte der Patienten- und Referenzgruppe unterscheiden 

sich signifikant voneinander (p<0,001), wobei die Messwerte der Patientengruppe im 

Mittel höher liegen als die der Referenzgruppe. Es lässt sich ein signifikanter Einfluss des 

Geschlechtes auf beide DXR-Parameter nachweisen. Aber auch getrennt nach dem 

Geschlecht betrachtet, bleibt der signifikante Unterschied der DXR-Parameter zwischen 

den Gruppen bestehen.  

Die mittleren DXR-BMD- und - MCI-Werte beider Gruppen sind in Tab. 7 aufgeführt. Abb. 

17 stellt die Mittelwerte der DXR-BMD-Werte geschlechtsspezifisch grafisch dar. 
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Tab. 6: Vergleich von Alter und Geschlecht der Patienten- und der Referenzgruppe 

 Patientengruppe Referenzgruppe 

Anzahl Patienten (n) 53 497 

Weiblich 29 241 

Männlich 24 256 

Alter Mittelwert (Jahre) 17,2 11,6 

Alter Median (Jahre) 17,2 11,8 

Alter SD (Jahre) 5,0 2,8 

Alter Minimum (Jahre) 8,4 4,2 

Alter Maximum (Jahre) 29,0 18,0 

Perzentile 25 (Jahre) 14,2 9,7 

Perzentile 50 (Jahre) 17,2 11,8 

Perzentile 75 (Jahre) 20,3 13,6 

 

Tab. 7: Die DXR-Parameter der Patienten- und Referenzgruppe 

 Patientengruppe Referenzgruppe 

DXR-BMD Mittelwert gesamt (g/cm²) 0,535 0,460 

DXR-BMD SD gesamt (g/cm²) 0,082 0,070 

DXR-BMD Mittelwert weibliche Probanden (g/cm²) 0,516 0,455 

DXR-BMD Mittelwert männliche Probanden (g/cm²) 0,557 0,464 

DXR-MCI Mittelwert gesamt 0,437 0,380 

DXR-MCI SD gesamt 0,071 0,057 

DXR-MCI Mittelwert weibliche Probanden 0,453 0,391 

DXR-MCI Mittelwert männliche Probanden 0,417 0,370 
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Abb. 17: DXR-Parameter (obere Abbildung DXR-BMD, untere Abbildung DXR-MCI): 

Mittelwerte und Konfidenzintervalle der Patienten- und Referenzgruppe unter 

Berücksichtigung des Geschlechtes 

 

Das Patientenalter zeigt einen hochsignifikanten Einfluss auf die DXR-BMD- und -MCI-

Werte beider Gruppen. Unter Berücksichtigung dieser Einflussgröße werden die zuvor 

ermittelten Unterschiede zwischen Patienten- und Referenzgruppe aufgehoben (Abb. 18). 

Die DXR-Messwerte der Patienten- und Referenzgruppe unterschieden sich demzufolge 

nicht, so dass die onkologische Therapie scheinbar keinen Einfluss auf die DXR-BMD und 

den DXR-MCI hat.  
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Abb. 18: DXR-Parameter (obere Abbildung DXR-BMD, untere Abbildung DXR-MCI): 

Mittelwerte und Konfidenzintervalle der Patienten- und Referenzgruppe: 1. ohne 

Berücksichtigung weiterer Einflussfaktoren; 2. unter Berücksichtigung des Geschlechtes; 

3. unter Berücksichtigung von Alter und Geschlecht. 

 

3.4. Betrachtung einzelner Patienten hinsichtlich 

anthropometrischer Daten und der Laborwerte in Bezug auf die 

DXR-BMD 

Bei drei der 53 pädiatrischen Patienten wurde ein retardiertes Knochenalter ermittelt, die 

übrigen Patienten (92,5%) zeigten ein normales Knochenalter.  

Eine 18-jährige Patientin mit Ewingsarkom wies drei Monate nach Ende der 

Chemotherapie ein KA von 15,5 Jahren auf. Zudem war diese Patientin mit einem BMI 

von 15,45 kg/m² bezogen auf ihr Alter untergewichtig. Laborchemisch stellte sich bei ihr 
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der Verdacht einer Ovarialinsuffizienz. Ihr DXR-BMD-Wert (0,422 g/cm²) lag mehr als 2 

SD unterhalb der Altersnorm, somit bestand bei ihr eine Osteoporose (129, 156).  

Ebenso wurde bei einer anderen Patientin mit Ewingsarkom im Alter von 14,7 Jahren ein 

retardiertes KA von zwölf Jahren ermittelt. Sie war außerdem zum Zeitpunkt der RöA 

kleinwüchsig. Die Phosphat- und Calcium-Werte lagen im Normbereich, allerdings unter 

der Therapie mit Calcitriol. Ihr DXR-BMD-Wert (0,432 g/cm²) lag in Abhängigkeit von den 

verwendeten Referenzwerten zwischen -1SD und -2SD (129) bzw. 2 SD unterhalb der 

Altersnorm (156), sie wies also eine Osteopenie bzw. Osteoporose auf.  

Die dritte Patientin mit retardiertem KA war eine 8-jährige Patientin mit 

Rhabdomyosarkom mit einem KA von 5,5 Jahren. Auch hier fielen eine Körperhöhe 

unterhalb der dritten altersbezogenen Perzentile sowie eine Osteopenie (DXR-BMD 0,369 

g/cm²) auf (156).  

Eine Patientin mit Medulloblastom war zum Zeitpunkt von vier RöA kleinwüchsig und zum 

Zeitpunkt von drei RöA untergewichtig. Bei ihr wurde eine Hypophyseninsuffizienz 

diagnostiziert. Sie erhielt L-Thyroxin und zum Zeitpunkt der letzten zwei RöA, mit 16,3 und 

17,4 Jahren, zusätzlich Wachstumshormon. Das Knochenalter war stets normal, 

allerdings bestand zum Zeitpunkt aller vier RöA eine Osteoporose. 

Ebenso konnte bei einem 15,6-jährigen Patienten mit Medulloblastom 1,3 Jahre nach 

Beenden der onkologischen Therapie eine Osteopenie festgestellt werden (DXR-BMD = 

0,474 g/cm²). Er wies ein normales Knochenalter auf und war normalwüchsig. 

Eine andere Patientin mit Medullobastom war zum Zeitpunkt von zwei RöA (mit 8,6 und 

10,1 Jahren) kleinwüchsig, jedoch konnte bei ihr stets eine normale Knochendichte 

gemessen werden. Unter der Therapie mit L-Thyroxin wies sie zum Zeitpunkt der ersten 

RöA eine hypothyreote Stoffwechsellage auf. 

Auch bei der vierten Patientin mit Medullobastom konnten im Alter von 6,7 und 8,4 Jahren 

unauffällige DXR-BMD-Werte gemessen werden. Allerdings wurden bei ihr zum Zeitpunkt 

der zweiten RöA eine Epiphysiolysis capitis femoris sowie eine Pubertas praecox 

diagnostiziert. 

Insgesamt vier Patienten zeigten laborchemisch eine Hypophosphatämie. Drei davon 

wiesen Normwerte für die DXR-BMD auf. Darunter befand sich eine 22,3-jährige Patientin 

8,5 Jahre nach Therapie eines Ewingsarkoms, die neben der Hypophosphatämie 

außerdem eine verminderte Phophatreabsorption aufwies. Bei ihr wurde bereits Phosphat 

in Form von Reducto spezial® substituiert.  
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Bei einer 12,5-jährigen Patientin mit Wilmstumor mit Hypophosphatämie bzw. 

Phosphatdiabetes und zusätzlich erhöhten Werten für Cystatin C und Alkalische 

Phosphatase konnte in Abhängigkeit von den verwendeten Referenzwerten eine normale 

Kochendichte (129) bzw. eine Osteopenie (156) festgestellt werden (DXR-BMD = 0,433 

g/cm²). Diese Patientin wies ein normales KA auf und war normalwüchsig. 

Eine weitere Patientin mit Wilmstumor im Alter von 8,9 Jahren war ebenfalls osteopenisch 

(DXR-BMD = 0,336 g/cm²). Auch bei ihr wurden erhöhte Werte für Cystatin C, Alkalische 

Phosphatase und Kreatinin ermittelt. Kalzium und Phosphat waren normwertig.  

Eine Patientin mit Ewingsarkom war zum Zeitpunkt von zwei RöA, im Alter von 18,6 und 

19,6 Jahren, osteopenisch (DXR-BMD = 0,496 bzw. 0,508 g/cm²). Knochenalter und 

Körpergröße lagen in der altersentsprechenden Norm. Bei ihr ließen sich erhöhte Werte 

für Kreatinin und Cystatin C sowie eine verminderte Phosphatreabsorption feststellen. Sie 

wurde bereits mit Phosphat und Calcitriol behandelt. 

Ein Patient mit Neuroblastom erkrankte im Alter von neun Jahren, 1,5 Jahre nach Ende 

der Neuroblastom-Behandlung, zusätzlich an einem T-NHL. Im Alter von sechs Jahren 

wurde bei dem Patienten ein Ifosfamid-induziertes renales Fanconi-Syndrom 

diagnostiziert. Er entwickelte im Verlaufe eine Hypothyreose und wurde entsprechend 

substituiert. Außerdem erfolgte die Behandlung mit Calcitriol und zum Zeitpunkt der 

zweiten RöA mit Testosteron. Die DXR-BMD war zum Zeitpunkt von drei RöA, d. h. mit 

6,3 Jahren, 12,0 und 13,1 Jahren, jeweils normwertig. Knochenalter, Größe und Gewicht 

lagen jeweils in der altersentsprechenden Norm.  
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4. Diskussion  

4.1. Steigende Lebenserwartung bei Kindern mit 

Krebserkrankungen – Ursachen, Folgen und Bedeutung der 

Nachsorge 

Über 90% der Patienten mit Tumoren im Kindes- und Jugendalter werden derzeit im 

Rahmen von Therapieoptimierungsstudien deutschlandweit behandelt. Neben 

international verfügbarem Fachwissen gehen auch Erkenntnisse aus 

Nachbeobachtungsstudien in die Protokolle ein. Eine dieser Nachbeobachtungsstudien ist 

das Late Effects Surveillance System (LESS), das 1990 im Auftrag der GPOH gegründet 

wurde, um Spätfolgen in der pädiatrisch-onkologischen Nachsorge prospektiv zu erfassen 

und geeignete diagnostische Maßnahmen zur Identifizierung von Risikogruppen zu 

etablieren (128).  

In den letzten Jahrzehnten haben sich dank verbesserter risikoadaptierter Radio- und 

Chemotherapie- sowie operativer Verfahren die Prognose und damit auch die 

Lebenserwartung von Kindern und Jugendlichen mit malignen Erkrankungen stetig 

verbessert. Inzwischen werden beispielsweise 10-Jahres-Überlebensraten von über 90% 

bei Patienten mit Hodgkin-Lymphom beschrieben. Folglich steigt auch die Prävalenz 

erwachsener Langzeitüberlebender, aber auch derer mit therapie- und 

krankheitsbedingten Spätfolgen. Besondere Bedeutung haben hierbei die Spätfolgen, die 

mit einer jahrelangen Latenz zur Erkrankung und Therapie auftreten. Die engmaschige 

Langzeitbetreuung ehemaliger pädiatrischer Krebspatienten scheint daher notwendig, um 

Spätfolgen rechtzeitig erkennen und adäquat behandeln zu können. Lange 

Beobachtungszeiträume sind für die Nachsorge notwendig und gehen über das Kindes- 

und Jugendalter hinaus. Entsprechende Empfehlungen für eine strukturierte Nachsorge 

werden unter anderem auch in den Therapieoptimierungsstudien gegeben.  

Nach zahlreichen retrospektiven Untersuchungen zu Spätfolgen wurde 1998 von der 

LESS-Arbeitsgruppe eine prospektive Nachsorgestudie initiiert. Die LESS-Nachsorge 

erfasst neben Kindern auch Erwachsene. Im Rahmen von standardisierten 

Nachsorgeplänen werden Organ- und risikoadaptierte Untersuchungen durchgeführt. 

Diese umfassen neben der körperlichen und neurologischen Untersuchung u.a. die 

Tanner-Stadien, die Audiometrie, kardiologische und pulmologische Untersuchungen, die 

Überprüfung der Nierenfunktion und die  Erfassung der Lebensqualität. Eine retrospektive 



 47 

Studie zur Ifosfamid-induzierten Nephropathie erfasst zwar u.a. auch die Beeinflussung 

des Wachstums mittels Bildung von Standard Deviation Scores. Untersuchungen zum 

Knochenstoffwechsel sind in der LESS-Nachsorge bisher jedoch noch nicht inbegriffen 

(109).  

Neben chronischen Organschäden, Endokrinopathien, neuroendokrinen Störungen und 

Zweitneoplasien werden in den letzten Jahren jedoch zunehmend Folgen der intensiven 

onkologischen Therapie sowie der Krebserkrankung auf den Knochenstoffwechsel 

beschrieben. Dazu wurden bereits zahlreiche Arbeiten publiziert, wobei sich ein Großteil 

der Untersuchungen auf den Knochenstatus Langzeitüberlebender einer ALL bezieht. 

Aber auch solide Tumoren, wie Osteosarkome oder Hirntumoren, wurden hinsichtlich ihrer 

Auswirkungen auf die Knochenmineraldichte untersucht. In der Mehrzahl der 

Publikationen fand hier jedoch die DXA als Osteodensitometrieverfahren Verwendung.  

  

4.2. DXR – ein neues Osteodensitometrieverfahren  –  

Die klinische Bedeutung der Osteoporosediagnostik durch Bestimmung der 

Knochenmineraldichte im Kindesalter hat in den letzten Jahren zugenommen (129, 213). 

Grund dafür sind unter anderem neue Therapiekonzepte und zahlreiche chronische 

Erkrankungen, die Wachstum und Entwicklung beeinflussen können, so auch die 

onkologische Therapie. Allerdings sind nicht alle Osteodensitometrieverfahren zur 

Anwendung in der Pädiatrie geeignet.  

Die Standardverfahren im Kindesalter stellen derzeit die DXA und die QCT dar. 

Limitierender Faktor der QCT ist neben den hohen Kosten auch die hohe 

Strahlenbelastung. Sie ist daher als Screeningmethode ungeeignet. Methode der Wahl 

zur Beurteilung des Knochenstatus sowohl im Kindes- als auch im Erwachsenenalter ist 

derzeit die DXA. Sie ist in der Lage die Knochendichte an unterschiedlichen 

Knochenarealen zu messen. Es liegen allerdings keine ausreichenden DXA-

Referenzwerte für Kinder vor, und auch eine Angabe von T-Werten bei Patienten unter 18 

Jahren ist nicht möglich. 

Eine kostengünstige und leicht verfügbare Alternative zur DXA stellt die in dieser Arbeit 

angewandte Methode, die DXR, dar. Für dieses noch relativ neuartige 

Osteodensitometrieverfahren wurden inzwischen Referenzwerte sowohl für das 

Erwachsenen- als auch für das Kindes- und Jugendalter publiziert (18, 27, 121, 129, 201, 

214). Die DXR basiert auf den Prinzipien der klassischen Radiogrammetrie und 

kombiniert diese mit einer digitalen Bildanalyse.  
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Die Geschichte der Radiogrammetrie ist lang und geht bis in die frühen 1960er Jahre 

zurück. 1960 wurde diese neue Technik von Barnett und Nordin präsentiert. Die Messung 

erfolgte an den Metakarpalknochen von RöA der nicht-dominanten Hand und wurde in der 

Mitte des zweiten Metakarpale angewandt (13, 225). Durch Addition der zwei 

Kortikalisdicken und Division durch die Gesamtknochendicke entwickelten sie den sog. 

Metakarpalindex (MCI) bzw. den Barnett und Nordin Index (13, 18, 129, 141, 225). Dieses 

kostengünstige und uneingeschränkt verfügbare Verfahren geht allerdings aufgrund der 

anwenderabhängigen Bestimmung der endostalen Grenze und des Schaftmittelpunktes 

mit einer großen Ungenauigkeit einher. In den 1970er Jahren haben sich sowohl 

Röntgenaufnahmetechniken als auch die Radiogrammetrie selbst weiterentwickelt, z. B. 

durch den Einsatz genauerer Messwerkzeuge. In den letzten Jahren hat der vermehrte 

Einsatz von Computern und die damit verbundene computergestützte Bild- und 

Texturanalyse sowie die zunehmende Nutzung peripherer Densitometrieverfahren erneut 

das Interesse an der Radiogrammetrie geweckt (166, 201, 225). Eine automatisierte 

Lokalisation der ROI sowie die hohe Anzahl von Messungen an multiplen Stellen konnten 

die Präzision dieser Methodik weiterhin deutlich verbessern (225). 

Verschiedene Studien konnten eine Korrelation der DXR-Messergebnisse mit denen der 

DXA belegen. Dabei korrelieren die DXR-Parameter sowohl mit den DXA-BMD-Werten 

des Unterarmes als auch mit denen der LWS und des Femurs (18, 166, 225). So konnten 

auch Van Rijn et al. bei pädiatrischen Patienten mit ALL eine signifikante Korrelation 

beider Messmethoden nachweisen (213). Vorteile gegenüber der DXA bestehen u.a. in 

der retrospektiven Anwendbarkeit, der geringeren Strahlenexposition und dem geringeren 

Weichteilfehler.  

Die (p)QCT ermöglicht im Gegensatz zur DXR und DXA eine dreidimensionale 

Darstellung des Knochens und damit die Bestimmung einer echten Knochenmineraldichte 

und geht daher mit einer hohen Präzision einher. Böttcher et al. konnten eine signifikante 

Korrelation der DXR-Parameter mit den pQCT-Messdaten ermitteln (23).  

Der QUS stellt ebenfalls eine Methode zur Beurteilung des Knochenstatus im Kindesalter 

dar, wobei ausschließlich die Beurteilung der Knochenstruktur und nicht der 

Knochendichte möglich ist. Von Vorteil sind die geringen Kosten und die fehlende 

Strahlenbelastung. Böttcher et al. konnten jedoch anhand von erwachsenen Patienten mit 

RA zeigen, dass der QUS im Vergleich zur DXR nicht für alle Fragestellungen geeignet ist 

(24). Auch Goerres et al. stellten in ihrer Untersuchung an Patienten mit Gonarthrose fest, 

dass der QUS im Vergleich zur DXR nicht ausreichend in der Lage ist, Patienten mit 

einem Osteopenierisiko zu identifizieren (59).  
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Tab. 8 fasst die Vor- und Nachteile o.g. Verfahren zur Knochendichtemessung zusammen 

(Tab. 8, Seite 85). 

Die DXR stellt folglich eine kosteneffektive, retrospektiv anwendbare Alternative zu den 

bisher angewandten Osteodensitometrieverfahren mit einfacher Handhabung, geringer 

Strahlenbelastung und nachgewiesen hoher Präzision und Reproduzierbarkeit dar. 

.  

4.3. Vergleich der Ergebnisse mit den bisher publizierten Daten 

In der hier vorliegenden Arbeit wurden RöA der linken Hand von insgesamt 53 

pädiatrische Patienten mittels DXR untersucht, die in ihrer Vergangenheit an einem 

soliden Tumor oder Hodgkin-Lymphom erkrankt waren und im Rahmen von 

Therapieprotokollen der GPOH behandelt wurden. Nach Einteilung der Patienten in 

jeweils drei Dosisgruppen je Zytostatikum wurden die DXR-Parameter in Bezug auf 

anthropometrische Daten und Medikamentendosis analysiert und mit einem gesunden 

Referenzkollektiv verglichen. 

4.3.1. DXR-Parameter in Bezug auf anthropometrische Daten 

In dieser Arbeit ließ sich erwartungsgemäß ein Anstieg der DXR-Parameter mit dem Alter, 

der Körperhöhe und dem BMI nachweisen. Weiterhin bestätigte sich ein 

geschlechtsspezifischer Unterschied von DXR-BMD und –MCI, wobei die DXR-BMD der 

männlichen Patienten im Mittel oberhalb des DXR-BMD-Wertes der weiblichen Patienten 

lag.  

Einen altersabhängigen Anstieg von DXR-BMD und DXR-MCI konnten auch Böttcher et 

al., Malich et al. und Toledo et al. in ihren Arbeiten an gesunden Kindern und 

Erwachsenen nachweisen (27, 121, 201). Ebenso sahen Böttcher et al. in ihrer 

Untersuchung eine positive Korrelation der DXR-BMD mit Körperhöhe und –gewicht (28). 

Die geschlechtsspezifischen Unterschiede der DXR-Parameter wurden unter anderem 

auch von van Rijn et al., Böttcher et al. und Malich et al. beschrieben (27, 121, 214). 

Die Abhängigkeit der Knochenmineraldichte von den oben beschriebenen Merkmalen 

wurde neben Studien zur DXR auch in zahlreichen Arbeiten zum Knochenstoffwechsel mit 

Anwendung der DXA als Standardmethode der Osteodensitometrie analysiert (48, 65, 

135, 169). 



 50 

4.3.2. Einfluss der Zytostatika auf die Knochenmineraldichte 

Die Bedeutung der PBM für die weitere Knochenentwicklung und die Entwicklung einer 

Osteoporose ist ein häufig untersuchtes Thema in der Literatur. Ein hoher Ausgangswert 

der PBM erlangt dabei eine entscheidende Bedeutung bei der Prävention der 

Osteoporose im höheren Lebensalter (43, 127, 133, 177). Durch unterschiedliche 

endogene und exogene Faktoren kann die PBM beeinflusst werden. Neben Alter, 

Körperhöhe, BMI sowie genetischen Faktoren nehmen exogene Faktoren, wie Ernährung, 

körperliche Aktivität, Endokrinopathien und auch Medikamente, Einfluss auf die 

Knochendichte (3, 48, 115, 127, 135, 169, 170, 234, 238). Unter den Medikamenten sind 

insbesondere Glukokortikoide, Antikonvulsiva, aber auch Zytostatika zu nennen. Über 

verschiedene Mechanismen scheinen zytostatische Medikamente die BMD zu vermindern 

und die Knochenstruktur zu verändern. Hierzu wurden zahlreiche In vivo- und In vitro-

Studien publiziert.  

Nachfolgend sollen die Ergebnisse der hier vorliegenden Arbeit hinsichtlich 

zytostatikabedingter DXR-BMD- und -MCI-Veränderung mit den Daten aus der Literatur 

verglichen werden. 

 

Alkylantien und Platinderivate – Nephrotoxische Zytostatika: 

Betrachtet man die Cyclophophamid- und Ifosfamidgruppen jeweils untereinander, macht 

es zunächst den Anschein, dass Patienten mit höheren Cyclophophamid- oder 

Ifosfamiddosen geringere DXR-BMD-Werte aufweisen als Patienten ohne Therapie mit 

Alkylantien. Gleiches gilt für die Platinderivate. Aufgrund des signifikanten Einflusses von 

Alter und Geschlecht auf die DXR-Parameter lassen sich in dieser Arbeit allerdings keine 

signifikanten Veränderungen des Knochenstatus im Rahmen der Alkylantien- oder 

Platintherapie feststellen.       

Hingegen konnte in der Literatur bewiesen werden, dass nephrotoxische Zytostatika den 

Knochenmetabolismus beeinflussen. Nephrotoxische Chemotherapeutika, wie Alkylantien 

oder Platinderivate, führen über Tubulusschädigung oder Störung der glomerulären 

Funktion zur Nephropathie und damit sekundär zu Knochenveränderungen.  

Die Ifosfamid-induzierte Nephropathie manifestiert sich hauptsächlich durch eine proximal 

tubuläre Schädigung, seltener durch eine glomeruläre Dysfunktion. Loebstein et al. 

ermittelten für die Ifosfamid-induzierte Nephrotoxizität eine Inzidenz von 41,1%. 

Laborchemisch präsentierte sich in deren Arbeit die proximal tubuläre Schädigung bei 

einem Großteil der Patienten durch eine Hypophosphatämie, gefolgt von einer 
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Hypomagnesiämie und Proteinurie. 9.2% der Patienten entwickelten eine generalisierte 

proximale Tubulopathie oder ein renales Fanconi-Syndrom. Sieben Patienten litten an 

einer chronisch tubulären Dysfunktion, die eine Phosphatsubstitution erforderlich machte. 

Vier dieser sieben Patienten entwickelten zudem eine hypophosphatämische Rachitis 

(114). Auch Skinner et al. konnten bei sechs von 23 Patienten eine hypophosphatämische 

Rachitis unter Alkylantien-Therapie nachweisen (186). Oben beschriebene 

Nierenschäden mit einhergehenden laborchemischen Veränderungen wie 

Hypophosphatämie (durch vermehrte Phosphatausscheidung), Hypomagnesiämie und 

Aminoazidurie konnten ebenso von andere Autoren bestätigt werden (10, 106, 108, 167, 

183, 186, 186, 194, 196).  Auch das seltene Vollbild des renalen Fanconi-Syndroms mit 

Glukosurie, Proteinurie und renalem Phosphat- und Bikarbonatverlust wurde mehrfach 

beschrieben (106, 167, 185). Ein Zusammenhang zwischen renalem Fanconi-Syndrom 

und Veränderungen der Körperhöhe bzw. der Knochenmineraldichte sowie einem 

rachitischem Krankheitsbild bei Kindern wird angenommen (106, 183). In einer 

Untersuchung von Shore et al. wiesen 84% der Patienten mit Ifosfamid-Nephrotoxizität 

eine Hypophosphatämie auf. Außerdem wurde bei diesen Patienten eine signifikant 

geringere Körperhöhe gemessen. Sie nahmen an, dass renale Veränderungen zu 

Störungen im Wachstum und der Knochenentwicklung führen (183). Auch Stöhr et al. 

sahen Einschränkungen des Wachstums im Rahmen einer renalen Tubulopathie (194). 

Die Ifosfamid-Nephropathie ist eine meist reversible toxische NW, wobei auch chronische 

Fälle mit persistierenden renalen Veränderungen möglich sind (56, 185, 194). 

Auch Platinverbindungen können im Rahmen einer Nephropathie zur Reduktion der 

glomerulären Filtrationsrate oder zu Serumelektrolytverschiebungen, darunter bevorzugt 

einer Hypomagnesiämie, aber auch Hypophosphatämie oder -kalzämie, führen. Die 

Hypomagnesiämie kann eine verminderte Knochenbildung zur Folge haben und die 

Wachstumsfugen verdünnen. Durch Hemmung der Aktivität der Osteoblasten und 

Osteoklasten kann eine Osteopenie resultieren (223). 

Des Weiteren konnte für Cisplatin in vitro ein direkter Effekt auf die Chondrozyten der 

Wachstumsfugen und somit ein negativer Einfluss auf das Knochenlängenwachstum 

festgestellt werden (164, 211). 

Ebenso hat Cyclophosphamid Einfluss auf die Zellproliferation und -apoptose der 

Wachstumsfugen und damit auf das Knochenwachstum. Im Tierexperiment induziert 

Cyclophosphamid die Apoptose der Chondrozyten in der Proliferationszone der 

Wachstumsfugen, was eine Abnahme der Zelldichte in der Proliferationszone, eine 

verminderte Dicke der Wachstumsfugen und ein gestörtes longitudinales 

Knochenwachstum zur Folge hat (232, 237, 242). 
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Anthrazykline – Kardiotoxische Zytostatika: 

Anthrazykline sind für ihre Kardiotoxizität bekannt. Es existieren nur wenige 

Untersuchungen zum Knochenstoffwechsel. In der hier vorliegenden Arbeit ließ sich kein 

signifikanter DXR-BMD-Abfall im Rahmen der Anthrazylin-Therapie nachweisen.   

Allerdings ließ sich in vitro ein Einfluss der Anthrazykline auf den Knochenstoffwechsel 

belegen. Doxorubicin hemmt in vitro die Chondrozytendestruktion in den 

Wachstumsfugen und folglich das Längenwachstum der Knochen (209, 211). Van 

Leeuwen et al. bewiesen an Ratten, dass Doxorubicin das Längenwachstum der Tibia 

negativ beeinflusst. Im Vergleich zu einer Kontrollgruppe war das Längenwachstum in der 

Doxorubicin-Gruppe um 18% vermindert (210). Auch in späteren Arbeiten an Ratten 

konnten van Leeuwen et al. ähnliche Ergebnisse ermitteln. Sie wiesen nach, dass 

Doxorubicin die Wachstumsfugen verdünnt, so dass diese sensibler gegenüber 

Scherkräften sind und folglich schneller Risse bzw. Frakturen im Bereich der 

Epiphysenfugen auftreten können (208, 209).  

Friedlaender et al. untersuchten die Wirbelknochen histomorphologisch nach Therapie mit 

Doxorubicin und MTX und wiesen eine 11,5%ige bzw. 26,9%ige Volumenabnahme des 

trabekulären Knochens nach. Beide Medikamente verringern die Knochenbildungsrate um 

nahezu 60%. Als Ausdruck des toxischen Effektes auf die Osteoblasten zeigte sich ein 

reduziertes Volumen und eine verminderte Dicke des Osteoids, wobei die Anzahl der 

Osteoblasten nicht beeinflusst wird (57). 

Ebenso trägt Daunorubicin in vitro zur Osteopenie bei, indem es die Osteoblastenfunktion 

beeinträchtigt, die Typ-I-Kollagensynthese reduziert, die Aktivität der Alkalischen 

Phosphatase vermindert und die Knochenmineralisation hemmt (46). 

 

Actinomycin D: 

In der hier vorliegenden Arbeit ließen sich keine signifikanten DXR-BMD-Veränderungen 

unter Actinomycin D-Therapie ermitteln. 

Wie bereits für Doxorubicin beschrieben, beeinflusst auch Actinomycin D in vitro die 

Chondrozyten der Wachstumsfugen und hemmt somit das Längenwachstum der Knochen 

(164, 211). Untersuchungen zur Knochenmineraldichte unter oder nach Actinomycin D-

Therapie wurden bisher nicht publiziert. 
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Vincaalkaloide und Etoposid: 

Wie bereits bei den zuvor beschriebenen Zytostatika konnte in dieser Arbeit auch für die 

Vincaalkaloide und Etopsid kein siginifikanter Unterscheid zwischen den Dosis-Gruppen 

gesehen werden.  

Ähnlich wie Daunorubicin tragen Vincristin und Etoposid durch Störung der 

Osteoblastenfunktion und durch verminderte Knochenmineralisation in vitro zur 

Osteopenie bei. Ebenso reduzieren beide Medikamente die Typ I-Kollagensynthese und 

beeinflussen die Aktivität der Alkalischen Phosphatase (46). Für Etoposid konnte in vitro 

außerdem dosisabhängig ein negativer Effekt auf die Chondrozytenzahl der 

Wachstumsfugen und die Chondrozytenkoloniebildung festgestellt werden (164). 

 

Prednisolon – Sekundäre Osteoporose als häufige Nebenwirkung:   

Kortikosteroide sind als Ursache einer sekundären Osteoporose hinreichend bekannt. Die 

Pathogenese ist multifaktoriell, über verschiedene direkte und indirekte Mechanismen 

scheinen sie den Knochenstoffwechsel negativ zu beeinflussen. Hierbei konnte ein 

dosisabhängiger Effekt auf den Knochenstoffwechsel und damit auch auf das 

Frakturrisiko nachgewiesen werden (216, 217). 

Durch Hemmung der Knochenkollagensynthese, der Osteoblastogenese und 

Osteoblastenaktivität sowie über eine gesteigerte Osteoklastenaktivität und verlängerte 

Überlebenszeit der Osteoklasten tragen sie zu einer Verminderung der 

Knochenmineralisation bei (31, 118, 153, 161, 228, 229, 233). Zudem führt die Therapie 

mit Kortikosteroiden zur Apoptose von Osteozyten (229). Des Weiteren nehmen sie 

Einfluss auf den Kalziumstoffwechsel und bedingen durch eine negative Kalziumbalance 

einen sekundären Hyperparathyreoidismus mit erhöhter Knochenresorption (31, 69, 118, 

153, 161, 227, 233). Weiterhin führt die Kortikosteroidtherapie durch verminderte 

hormonelle Sekretion zu einem Hypogonadismus und beeinträchtigt die lokale 

somatotrope Wirkung von GH und IGF-I (91, 119, 152, 161, 233). Durch Kombination aller 

Wirkmechanismen hat die Therapie mit Prednisolon ein erhöhtes Osteopenie-

/Osteoporoserisiko zur Folge.  

Weiterhin können Kortikosteroide ischämische avaskuläre Knochennekrosen 

verursachen. Diese Nebenwirkung wurde in der Literatur, betrachtet man ausschließlich 

die onkologischen Erkrankungen, am häufigsten im Zusammenhang mit Lymphomen und 

Leukämien beschrieben (4, 83, 125, 137, 149, 206). Die Prävalenz symptomatischer AON 

bei Patienten mit ALL schwankt in der Literatur zwischen 1,1% und 9,3% (4, 125, 197).  
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Entgegen den in der Literatur vorbeschriebenen Erkenntnissen ließ sich in der hier 

vorliegenden Untersuchung bei den Patienten mit Prednisolon-Therapie keine 

Verminderung der Knochendichte nachweisen. Es bestand zwar ein signifikanter 

Unterschied zwischen den einzelnen Patientengruppen, allerdings zeigte sich mit 

steigender kumulativer Prednisolon-Dosis unerwartet ein Anstieg der DXR-BMD, während 

Patienten ohne Kortikosteroidtherapie den niedrigsten DXR-BMD-Wert aufwiesen. Ähnlich 

verhielt es sich mit dem DXR-MCI. Hier zeigten sich ebenfalls ansteigende Werte mit 

zunehmender Prednisolon-Dosis. Dieser beschriebene Anstieg der DXR-Parameter unter 

der Kortikosteroidtherapie lässt sich auch nach Literaturstudium nicht hinreichend 

erklären. 

Bei einem 19-jährigen Patienten mit Hodgkin-Lymphom, der Prednisolon in einer 

kumulativen Dosis von 4200 mg/m² erhielt, wurde im Alter von 15 Jahren, zwei Jahre 

nach Therapieende, ein Knocheninfarkt im linken Femur diagnostiziert. Weitere ossäre 

Nebenwirkungen im Rahmen der Prednisolon-Therapie wurden in diesem 

Patientenkollektiv nicht erfasst. 

 

Procarbazin – ein gonadotoxisches Zytostatikum: 

Unter Berücksichtigung der Einflussfaktoren Patientenalter und –geschlecht ließ sich auch 

unter den Procarbazin-Gruppen kein signifikanter Unterschied bezüglich der DXR-BMD 

nachweisen.  

In der Literatur sind bisher keine Daten zu Knochendichteveränderungen im Rahmen 

einer Procarbazin-Therapie publiziert. Jedoch werden Fertilitätsstörungen beschrieben, 

insbesondere beim männlichen Geschlecht. Patienten mit Hodgkin-Lymphom sind daher 

besonders gefährdet, gonadale Schäden zu entwickeln. Diese äußern sich dosis- und 

altersabhängig bei Jungen in einer Azoospermie oder Dysspermie und bei Mädchen in 

einer vorzeitigen Ovarialinsuffizienz. Kreuser et al. konnten nachweisen, dass Frauen mit 

therapieinduzierter vorzeitiger Ovarialinsuffizienz eine signifikant geringere spinale 

Knochendichte besitzen als Frauen mit normaler Ovarialfunktion nach Therapie. Die 

Männer zeigten in dieser Untersuchung keinen Knochendichteverlust (103). Auch Howell 

et al. untersuchten die Knochendichte bei Frauen mit zytostatikainduzierter Amenorrhoe 

nach Therapie maligner hämatologischer Erkrankungen. Sie konnten nur bei sieben von 

33 Patientinnen einen BMD-Z-Score < -2 SD feststellen. Die unbehandelte frühzeitige 

Ovarialinsuffizienz führte in dieser Studie nur in einem geringen Grad zur Reduktion der 

Knochenmineraldichte (81).  
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Knochendichteveränderungen unter Procarbazin-Therapie scheinen also im Rahmen der 

Gonadotoxizität möglich, konnten in der hier vorliegenden Arbeit aber nicht nachgewiesen 

werden. 

 

Methotrexat – MTX-Osteopathie: 

Ein signifikanter Einfluss der MTX-Dosis auf die DXR-Parameter konnte in dieser Arbeit 

nicht nachgewiesen werden, es zeigte sich kein DXR-BMD-Abfall bei Patienten mit höher 

dosierter MTX-Therapie. 

Hingegen wird in der Literatur eine Osteopathie im Zusammenhang mit der MTX-Therapie 

mehrfach diskutiert. Erstmals wurde die MTX-Osteopathie bei Kindern mit Leukämie und 

low-dose-MTX-Behandlung beschrieben (158, 178, 192, 193). Diese Knochenpathologie 

äußert sich durch Knochenschmerzen, eine Osteopenie und/oder (Mikro-)Frakturen, 

bevorzugt an der unteren Extremität (53, 140, 158, 168, 178, 192, 193). Ragab et al. 

beschrieben bei fünf von elf ALL-Kindern eine Osteoporose mit assoziierten Frakturen 

(158). Auch Stanisavljevic und Babcock diagnostizierten bei 20 von 37 Patienten, die mit 

MTX behandelt wurden, eine Osteopenie einhergehend mit Knochenschmerzen. Sieben 

Patienten erlitten multiple Frakturen (192). In einer weiteren Studie beschrieben Nesbit et 

al. bei 26 von 216 Leukämie-Patienten ähnliche Symptome einer MTX-Osteopathie (140). 

Auch bei Osteosarkom-Patienten mit High-dose-Applikation von MTX konnte in einer 

Untersuchung bei 9% der Patienten (acht von 87) eine MTX-Osteopathie diagnostiziert 

werden. Alle acht Patienten zeigten eine Osteopenie, sechs Kinder wiesen z. T. multiple 

Frakturen auf. Auffällig in dieser Studie war eine Tendenz der MTX-Osteopathie zum 

jüngeren Alter hin (53).  

Radiologische Zeichen der MTX-Osteopathie sind neben der Osteopenie dichte 

Kalzifikationszonen, scharf umrissene Epiphysen sowie pathologische Frakturen 

bevorzugt im Bereich der Metaphysen. Des Weiteren kann es im Rahmen dieser 

Knochenpathologie zu einer eingeschränkten Frakturheilung kommen (165). 

Tierexperimentell und an Kindern mit ALL zeigte sich, dass sich nach längerer Low-dose-

MTX-Therapie eine Osteopenie entwickeln kann. Grund dafür ist einerseits die 

Suppression der Osteoblastenaktivität und eine gehemmte Differenzierung der frühen 

Osteoblasten, andererseits die Stimulation der Osteoklasten-Rekrutierung (44, 126, 205, 

211, 230). MTX supprimiert die Knochenbildung und steigert gleichzeitig die 

Knochenresorption (126, 230). Wheeler et al. stellten fest, dass MTX durch Hemmung der 

DNA-Synthese zu einer verminderten Replikation der Osteoblasten führt. Hingegen ist die 

Anzahl der Osteoklasten gesteigert, was beweist, dass MTX ausschließlich die 
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Knochenbildung und nicht die Knochenresorption hemmt und folglich zur Osteopenie und 

einem erhöhten Frakturrisiko beiträgt (230). Die verminderte Knochenbildung äußert sich 

laborchemisch durch erniedrigte AP- und Osteocalcin-Werte (126). In vitro supprimiert 

MTX die Aktivität der AP dosisabhängig (205).  

Auch Xian et al. wiesen tierexperimentell an Ratten einen negativen Einfluss von MTX auf 

Wachstum und Knochendichte nach. MTX induziert eine Apoptose der Chondrozyten und 

supprimiert die Chondrozytenproliferation. Außerdem reduziert der Antimetabolit die 

Expression der Kollagen-II-mRNA sowie die Dicke der Wachstumsplatten. Im 

angrenzenden metaphysären Knochen waren sowohl die Produktion des primären 

trabekulären Knochens reduziert als auch das Knochenvolumen der sekundären 

Spongiosa vermindert, was auf die verminderte Proliferation der Osteoblasten und 

Präosteoblasten zurückzuführen ist (236). Van Leeuwen et al. konnten ebenfalls ein 

vermindertes Knochenlängenwachstum der Tibia an Ratten mit MTX-Therapie belegen. 

Das Wachstum war im Vergleich zu einer Kontrollgruppe um 5% vermindert (210). 

 

4.4. Onkologische Patienten und ihr Knochenstoffwechsel 

Die mittels DXR ermittelten Werte des Patientenkollektives wurden mit denen eines 

gesunden Referenzkollektives verglichen, das aus 497 Kindern und Jugendlichen im Alter 

von 4,2 bis 18,0 Jahren (Mittelwert 11,6 Jahre) bestand.  

Ein signifikanter Unterschied der DXR-BMD- und -MCI-Werte zwischen der Patienten- 

und Referenzgruppe konnte nicht erfasst werden. Ein DXR-BMD- oder –MCI-Abfall bei 

Patienten nach onkologischer Therapie ließ sich in dieser Arbeit nicht nachweisen. 

In der Literatur hingegen gelang vielfach der Nachweis von Knochendichteveränderungen 

bei onkologischen pädiatrischen Patienten. Am besten untersucht wurde der 

Knochenstatus an Langzeitüberlebenden einer ALL. Diese Patienten unterliegen einem 

erhöhten Risiko für eine Osteopenie oder Osteoporose. BMD-Verminderungen lassen 

sich bis zu 20 Jahre nach Therapieabschluss nachweisen (7, 11, 73, 99, 145, 207, 226). 

Patienten, die eine ALL überlebt haben, weisen signifikant geringere BMD-Werte auf als 

Überlebende einer anderen malignen Erkrankung (7, 226). 

Henderson et al. zeigten in einer Studie an 24 ALL-Überlebenden, dass die 

Knochendichte bis zu zwölf Monate nach Beenden der Therapie signifikant unterhalb 

einer alters- und geschlechtsgleichen gesunden Gruppe lag. Alter und 

Schädelbestrahlung korrelierten hierbei mit dem BMD-Abfall (73). Auch Kaste et al. sahen 
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im Durchschnitt vier Jahre nach Therapieende bei 68% der Patienten BMD-Werte 

unterhalb einer alters- und geschlechtsgleichen Kontrollgruppe (99). 

Aber auch BMD-Veränderungen schon vor Therapiebeginn oder während der Therapie 

wurden beschrieben (70, 160, 207). Van der Sluis et al. stellten eine signifikante Abnahme 

der BMD der LWS bereits vor Induktionstherapie fest. Diese verminderten Werte 

persistierten bis zu drei Jahre nach Therapieabschluss (207). In einer weiteren Arbeit 

konnten ebenfalls vor Behandlungsbeginn Veränderungen des Knochenstoffwechsels und 

der Knochenmasse nachgewiesen werden. Osteocalcin und 1,25-Dihydroxyvitamin D3 

waren bereits bei Diagnosestellung vermindert. Auch während der Polychemotherapie bei 

Hochrisikopatienten bestand eine diffuse Osteopenie, die bei 39% der Patienten von 

Frakturen begleitet war (70). Zu ähnlichen Ergebnissen kamen Atkinson et al. (12). Rayat 

et al. fanden zum Zeitpunkt der Diagnosestellung bereits bei 30% der Patienten eine 

Osteopenie und bei 11% eine Osteoporose (160). 

Verschiedene Ursachen werden diskutiert und konnten aufgedeckt werden, die zur 

Entstehung der Osteoporose bei ALL-Patienten beitragen. Zum einen scheint der 

Erkrankungsprozess selbst Knochenveränderungen auszulösen (12, 70, 160), zum 

anderen spielen Alter, Geschlecht, Schädelbestrahlung, Rasse, MTX-Gaben sowie 

Hormonmangelsyndrome eine Rolle bei der Entstehung der sekundären Osteoporose 

oder Osteopenie bei ALL-Patienten (7, 32, 68, 73, 97, 99, 122, 145, 200, 221). Ein 

entscheidender Faktor bei der Pathogenese der Osteoporose ist allerdings die 

Kortikosteroid-Therapie. Aber auch körperliche Inaktivität, Fehlernährung sowie 

Nikotinabusus während der ALL-Therapie stellen Risikofaktoren für BMD-Verminderungen 

dar (64, 68, 85, 160, 200, 226).    

Ähnliches gilt für Patienten mit soliden Tumoren. In den letzten Jahren wurden vor allem 

Patienten mit Hirntumoren auf Veränderungen der Knochenmineraldichte hin untersucht. 

Bedingt durch die Schädelbestrahlung und die zytostatische Therapie stellen 

Endokrinopathien die Hauptursache für BMD-Verminderungen bei dieser Patientengruppe 

dar (36, 75, 155). 

In einer Arbeit an zwölf Patienten mit Z. n. Hirntumor stellten Petraroli et al. zum Zeitpunkt 

einer ersten DXA-Messung (mittleres Patientenalter 16,4 Jahre) bei neun Patienten ein 

Wachstumshormonmangel (GHD), bei drei Patienten ein Hypogonadismus und bei sechs 

Patienten eine Hypothyreose fest. Elf der zwölf Patienten wiesen BMD-Werte unterhalb 

der Norm auf. Den höheren Knochenverlust im Bereich der LWS führten die Autoren 

dabei auf die lokale spinale Strahlentherapie und den Effekt des Hormonmangels 

vorwiegend auf den trabekulären Knochen zurück. Bei einer zweiten DXA-Messung 
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(mittleres Patientenalter 17,5 Jahre) zeigten allen Patienten einen GHD, sechs eine 

Hypothyreose und zwei Patienten einen Hypogonadismus (155). Auch Clarson et al. 

beschrieben einen GHD und eine primäre Hypothyreose als Folge der kraniellen 

Strahlentherapie (36). 

Odame et al. diagnostizierten in ihrer Untersuchung bei 44% der Hirntumorpatienten eine 

Osteopenie und bei 20% eine Osteoporose. Sie fanden heraus, dass Patienten nach 

Schädelbestrahlung signifikant häufiger an einer Osteoporose oder Osteopenie leiden als 

Patienten ohne  Bestrahlung (147). 

Barr et al. stellten im Durchschnitt sieben Jahre nach Therapie eines Hirntumors einen 

mittleren Abfall des BMD-Z-Scores der LWS  auf -1,05 und des Femurs auf -0,84 fest. 

Neun Patienten waren osteopenisch, darunter auch fünf von sechs Patienten mit 

Wachstumshormonsubstitution. Zehn Patienten zeigten normale BMD-Werte (14). 

Auch in unserer Arbeit konnten bei zwei der vier Medulloblastom-Patienten verminderte 

DXR-BMD-Werte ermittelt werden, wobei bei einer Patientin zum Zeitpunkt von vier 

Röntgenaufnahmen eine Hypophyseninsuffizienz bestand, die aufgrund des 

Kleinwuchses eine Wachstumshormonsubstitution erforderlich machte. Außerdem wurde 

sie aufgrund einer Hypothyreose mit L-Thyroxin behandelt. 

Man kann also zusammenfassen, dass Patienten mit einem Hirntumor aufgrund multipler 

Endokrinopathien einem erhöhten Osteoporose-Risiko ausgesetzt sind. 

Auch Langzeitüberlebende eines Osteosarkoms wurden hinsichtlich ihres 

Knochenmetabolismus untersucht. Holzer et al. schlossen in ihre Studie 48 erwachsene 

Probanden ein, die in ihrer Kindheit oder Jugend aufgrund eines hochmalignen 

Osteosarkoms nach COSS-Therapieprotokollen behandelt wurden. Die Chemotherapie 

beinhaltete unter anderem die Gabe von Hoch-Dosis-MTX. Zehn Patienten konnten hier 

als osteoporotisch und 21 als osteopenisch identifiziert werden. Nur 17 Patienten zeigten 

normale BMD-Werte, d. h. 65% des Patientenkollektivs wiesen BMD-Defizite auf, die 

möglicherweise im Rahmen einer MTX-Osteopathie zu bewerten sind (79). Kaste et al. 

fanden heraus, dass das Risiko für BMD-Defizite nach Sarkom-Therapie signifikant mit 

dem Alter bei Diagnose, aber auch mit der kumulativen Cyclophosphamiddosis steigt (98). 

Unter den sieben Osteosarkom-Patienten der hier vorliegenden Arbeit befand sich nur ein 

28-jähriger Patient mit einer verminderten DXR-BMD. In Anwendung der Erwachsenen-

Referenzwerte von Wüster et al. handelt es sich bei ihm um eine Osteopenie (235). 

Allerdings erhielt er im Rahmen des COSS-Interim-Protokolls kein Cyclophosphamid, 

jedoch MTX mit 132000 mg/m². Die anderen sechs Patienten wiesen normale DXR-BMD-

Werte auf.  
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Auch an Lymphom-Patienten (Hodgkin-Lymphom und NHL) konnten in der Literatur 

mehrere Jahre nach Therapie verminderte BMD-Werte gemessen werden (78, 144, 174). 

Als Ursachen werden zum einen Hormonmangelsyndrome wie der zytostatikainduzierte 

Hypogonadismus, zum anderen die Kortikosterid- und MTX-Therapie sowie die 

Strahlentherapie des Skelettes diskutiert (78, 144). 

Kelly et al. konnten in ihrer Arbeit nachweisen, dass erwachsene Überlebende eines 

pädiatrischen soliden Tumors einem erhöhten Risiko ausgesetzt sind, wenigstens eine 

regionale vorzeitige Osteopenie oder Osteoporose zu entwickeln. Sie schlossen 38 

Probanden mit der Diagnose eines Lymphoms, Sarkoms, Neuroblastoms oder eines 

Wilmstumors ein, die vor ihrem 16. Lebensjahr behandelt wurden. Die 

Knochendichtemessung erfolgte im Alter von 12-32 Jahren. 50 % der Patienten wiesen 

eine Osteopenie oder Osteoporose auf, davon zehn im Bereich der LWS oder an 

multiplen Stellen, sechs nur an der oberen Extremität, und drei Patienten hatten eine 

isolierte unilaterale Osteopenie/-porose der unteren Extremität. Fünf von sechs Patienten 

mit einem Knochensarkom einer Extremität hatten wenigstens eine regionale Osteopenie 

oder Osteoporose der betroffenen Extremität. Die Autoren stellten einen direkten 

Zusammenhang zwischen der Anzahl der verabreichten Zytostatika und dem Auftreten 

einer Osteopenie oder Osteoporose der unteren Extremität fest. Allerdings ließ sich kein 

einzelner Therapiebestandteil (Zytostatika, Bestrahlung, Kortikosteroide) als potentiell 

ursächlicher Faktor isolieren (100). 

Das Osteopenie-Risiko von Überlebenden eines Wilmstumors konnte in zwei weiteren 

Studien bestätigt werden (138, 150).  

Auch in unserer Arbeit wurden bei zwei der vier Wilmstumor-Patienten reduzierte DXR-

BMD-Werte ermittelt, wobei bei einer Patientin laborchemisch ein Phosphatdiabetes 

bestand. 

Ebenso fanden wir bei vier der sieben Ewingsarkom-Patienten eine Osteopenie oder 

Osteoporose. Zwei Patientinnen wiesen ein retardiertes KA auf, eine Patientin wurde 

bereits mit Phosphat und Calcitriol behandelt. 

Ähnliche Ergebnisse wurden bei den Patienten nach Therapie eines Rhabdomyosarkoms 

ermittelt. Hier wurde bei vier von sechs Patienten eine Osteopenie festgestellt. 

Hingegen konnte bei nur zwei von 23 Patienten mit Hodgkin-Lymphom eine verminderte 

DXR-BMD gemessen werden. 21 Patienten wiesen normale Werte auf. Trotz normaler 

Knochendichte wurde bei einem Patienten zwei Jahre nach Therapieende ein 

Knocheninfarkt im linken Femur diagnostiziert, wobei die RöA vier Jahre nach 

Diagnosestellung angefertigt wurde.  
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In einer prospektiven Studie untersuchten Arikoski et al. an insgesamt 46 Kindern mit neu 

diagnostiziertem Tumor die longitudinalen BMD-Veränderungen bis sechs Monate nach 

Diagnosestellung. Sowohl Patienten mit einer Leukämie oder einem Lymphom, als auch 

Kinder mit einem soliden Tumor wurden hinsichtlich ihres Knochenstoffwechsels 

analysiert. Der mittels DXA ermittelte BMD-Wert war zum Diagnosezeitpunkt normal, 

während nach sechs Monaten Therapie eine signifikante BMD-Abnahme im Vergleich 

zum Vorwert auffällig war. Der BMD-Verlust während der sechs Beobachtungsmonate 

stellte sich bei präpubertären Kindern höher dar als bei pubertären Patienten. Die 

Knochendichte unterschied sich zwischen den einzelnen Diagnosegruppen nicht. 

Laborchemisch zeigten sich bereits zum Diagnosezeitpunkt eine gesteigerte 

Knochenresorption und eine verminderte Knochenbildung. Nach sechs Monaten 

normalisierten sich die Knochenbildungsmarker, wobei die Resorption weiterhin gesteigert 

war und somit eine negative Bilanz des Knochenstoffwechsels vorlag. Es konnte keine 

Korrelation der BMD-Reduktion mit einer spezifischen antineoplastischen Substanz 

nachgewiesen werden (5). 

In einer weiteren Arbeit konnten Arikoski et al. an neudiagnostizierten Krebspatienten 

beweisen, dass diese bereits bei Diagnosestellung sowie nach einem Jahr verminderte 

1,25-OH-VitaminD3-Konzentrationen aufweisen. Zudem konnten erhöhte Konzentrationen 

der Knochenresorptionsparameter ermittelt werden (6). 

Es ist ersichtlich, dass die Genese der sekundären Osteoporose bei 

Langzeitüberlebenden einer malignen Erkrankung im Kindes- und Jugendalter 

multifaktoriell ist. Neben Chemo- und Radiotherapie haben insbesondere allgemeine 

Lifestyle-Faktoren wie Rauchen, Fehlernährung und körperliche Inaktivität während der 

Krebstherapie Einfluss auf die Knochenmineraldichte (12, 68, 85, 200, 226). Auch 

Endokrinopathien wie der GHD und Sexualhormonmangel spielen eine Rolle bei der 

Pathogenese der Osteopenie/Osteoporose (36, 39, 80, 81, 94, 104, 110, 179).  

Zirkulierende Zytokine scheinen bei der Pathogense der tumorbezogenen Osteopenie 

ebenfalls von Bedeutung zu sein. So haben die proinflammatroischen Zytokine TNF α und 

IL-6 eine stark inhibierende Wirkung auf die Knochenbildung, sie können auf 

verschiedene Knochenstoffwechselparameter Einfluss nehmen und führen letztlich zu 

einem Knochenmasse- und -dichteverlust (16, 226). TNFα induziert in höheren 

Konzentrationen eine Apoptose in den Osteoblasten (31, 175). 

Insgesamt hat die intensive, multimodale onkologische Therapie das Potential, komplexe 

hormonelle, metabolische und ernährungsbedingte Effekte zu bewirken, die den Erwerb 

der Skelettmasse bei Kindern beeinträchtigen. Folglich ist es möglich, dass 
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Langzeitüberlebende einer Krebserkrankung das Erwachsenalter bereits mit einer 

verminderten PBM erreichen und damit im späteren Leben einem erhöhten 

Osteoporoserisiko ausgesetzt sind. 

 

4.5. Kritische Analyse und Schlussfolgerung: 

Die Mehrzahl der oben genannten Arbeiten befasst sich ausschließlich mit einer 

Tumorentität und kann anhand der Messergebnisse der Knochendichtemessung 

Rückschlüsse auf den Tumor bzw. die Therapie ziehen. In der hier vorliegenden 

Untersuchung wurden sieben Tumorentitäten innerhalb eines vergleichsweise kleinen 

Patientenkollektivs ausgewählt, wobei beim Medulloblastom beispielsweise nur vier 

Patienten und beim Neuroblastom nur zwei Patienten eingeschlossen wurden. Lediglich 

die Zahl der Patienten mit Hodgkin-Lymphom ist mit 23 Patienten z.T. vergleichbar mit 

den publizierten Untersuchungen. Aufgrund der geringen Patientenzahl war es in unserer 

Arbeit nicht sinnvoll, die Ergebnisse der Knochendichtemessung auf den jeweiligen Tumor 

zu beziehen. Stattdessen wurden die einzelnen Zytostatika hinsichtlich ihrer Wirkung auf 

die DXR-BMD untersucht. Außerdem wurde das Patientenkollektiv mit einem gesunden 

Referenzkollektiv verglichen. Die Messergebnisse der Patienten wurden retrospektiv 

erhoben, die RöA wurden 0,1 bis 15,8 Jahre, im Mittel 5,5 Jahre, nach Abschluss der 

Therapie angefertigt. Hiervon wurden 27 der 53 RöA (50,9%) mehr als fünf Jahre und nur 

fünf RöA (9,4%) zehn Jahre nach Therapieende angefertigt. 

Entgegen den Ergebnissen der Literatur ließ sich allerdings in der hier vorliegenden Arbeit 

kein negativer Effekt der onkologischen Therapie auf die DXR-BMD nachweisen. Kein 

Zytostatikum ließ sich eindeutig mit Knochendichteverminderungen in Verbindung 

bringen. Stattdessen fiel auf, dass mit steigender kumulativer Prednisolondosis die DXR-

BMD zunimmt. Eine Osteopenie im Rahmen der Glukokortikoidtherapie konnte also nicht 

nachgewiesen werden. 

Möglicherweise sind das zu kleine Patientenkollektiv oder die zu kurze Zeitspanne 

zwischen Therapieende und Röntgenaufnahme ursächlich für die Abweichung der 

Ergebnisse von den Daten aus der Literatur.  

Unabhängig von den hier vorliegenden Ergebnissen konnte jedoch in zahlreichen 

Untersuchungen bewiesen werden, dass onkologische pädiatrische Patienten einem 

erhöhten Osteoporose- und somit auch erhöhtem Frakturrisiko ausgesetzt sind. Sowohl 

die onkologische Erkrankung selbst als auch die intensive onkologische Therapie können 

durch verschiedene Mechanismen die Knochendichte vermindern, die Pathogenese des 
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Knochendichteverlustes ist hierbei multifaktoriell. Insbesondere Patienten, die mit 

nephrotoxischen Zytostatika, MTX oder Kortikosteroiden behandelt wurden, sowie 

Patienten mit Bestrahlung vor allem der Neuroachse gehören zu den Risikopatienten und 

müssen engmaschig nachbetreut werden. Endokrinopathien, Elektrolytverschiebungen 

und Knochendichteveränderungen müssen hierbei rechtzeitig erkannt werden.  

Wie lange der Knochenstoffwechsel onkologischer Patienten kontrolliert werden sollte, 

lässt sich anhand der bisher durchgeführten Untersuchungen nicht ausreichend sagen. 

Oben genannte Publikationen zeigen jedoch, dass BMD-Verminderungen bei 

Langzeitüberlebenden eines pädiatrischen Tumors bis zu 20 Jahre nach Therapie 

nachzuweisen sind. Folglich sind Knochendichtemessungen bis ins Erwachsenenalter 

notwendig, um Langzeitfolgen, die mit einer jahrelangen Latenz auftreten, rechtzeitig 

erkennen und behandeln zu können. Prospektive Studien hierzu sind notwendig.  

Die DXR ist geeignet, Knochendichteveränderungen auch bei Kindern und Jugendlichen 

aufzuzeigen und stellt hierbei eine gute Alternative zu den bisher etablierten 

Osteodensitometrieverfahren dar, insbesondere der DXA. Auf Grund der einfachen 

technischen Voraussetzungen und Handhabung ist sie vielseitig anwendbar. Die im 

Rahmen der Knochenalterbestimmung angefertigten Handröntgenaufnahmen können 

ohne zusätzliche Strahlenbelastung zur Knochendichtemessung genutzt werden. Die 

DXR ist sowohl zur Diagnostik als auch zum  longitudinalen Therapiemonitoring geeignet. 
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5. Zusammenfassung 

Dank verbesserter Diagnostik- und Therapiemaßnahmen erreichen immer mehr Kinder 

und Jugendliche mit Krebserkrankungen das Erwachsenenalter. Dadurch steigt auch die 

Prävalenz Überlebender mit Spätfolgen, darunter auch derer mit Nebenwirkungen auf den 

Knochenstoffwechsel.  

Zahlreiche In vivo- und In vitro-Studien sowie klinische Untersuchungen bestätigen den 

negativen Einfluss der zytostatischen Therapie auf die Knochenentwicklung. 

Insbesondere Patienten mit ALL und Lymphomen aber auch mit soliden Tumoren wie     

z. B. Hirntumoren sind einem erhöhten Osteoporoserisiko ausgesetzt. 

Die in dieser Arbeit angewandte Methode zur Knochendichtemessung, die digitale X-Ray-

Radiogrammetrie ist ein relativ neues computerbasiertes Osteodensitometrieverfahren mit 

Vorteilen gegenüber der DXA. Viele Studien bestätigen die DXR als gute diagnostische 

Methode zur Beurteilung des Knochenstatus auch im Kindesalter. Zur Ermittlung der 

DXR-Parameter benötigt man ausschließlich eine Handröntgenaufnahme, was eine relativ 

geringe Strahlendosis erfordert, so dass dieses Verfahren in der Pädiatrie durchaus 

angewendet werden kann. Es existieren bereits Normwerte auch für das Kindesalter.  

In der hier vorliegenden Arbeit wurden retrospektiv RöA der linken Hand von 53 

Patienten, die in ihrer Kindheit oder Jugend aufgrund eines Hodgkin-Lymphoms oder 

soliden Tumors behandelt wurden, mittels DXR untersucht. Anschließend wurden die 

Knochenstatusparameter DXR-BMD und DXR-MCI in Bezug auf die zum Zeitpunkt der 

RöA erfassten anthropometrischen Daten und die verabreichten Zytostatikadosen 

analysiert und mit einem gesunden Referenzkollektiv verglichen.  

Ähnlich den Ergebnissen vorangegangener Arbeiten fand sich eine positive Korrelation 

der DXR-Parameter mit dem Alter, der Körperhöhe und dem BMI. Zudem wiesen Jungen 

im Mittel höhere DXR-BMD-Werte auf als Mädchen. 

Für keines der untersuchten Zytostatika ließ sich eine signifikante Verminderung der 

Knochendichte nachweisen. Unerwartet zeigte sich jedoch mit steigender kumulativer 

Prednisolondosis ein Anstieg der DXR-Parameter, was anhand der bisherigen 

Erkenntnisse aus der Literatur nicht erklärbar ist. Auch ein Vergleich der DXR-Parameter 

der Patienten mit denen des Referenzkollektivs ergab keinen signifikanten Unterschied.  

Die in der Literatur ermittelten Ergebnisse bezüglich des Knochenstatus onkologischer 

pädiatrischer Patienten bestätigten sich in der hier vorliegenden Arbeit somit nicht. 

Prospektive Untersuchungen zum Knochenstoffwechsel auch über das Kindes- und 

Jugendalter hinaus sollten sich anschließen.  
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7. Anhang 

Tab. 8: Vor- und Nachteile der osteodensitometrischen Messverfahren im Kindesalter 

Verfahren Vorteile Nachteile 

2-Spektren-Röntgen-

absorptiometrie (dual 

energy X-ray 

absorptiometry, DXA) 

- geringe Strahlendosis (5-10 

µSv) 

- kurze Scanzeit (5-10 min) 

- hohe in vivo-Präzision 

- Messung an verschiedenen 

Skelettregionen (LWS, Radius, 

Oberschenkelhals, Ganzkörper) 

- Möglichkeit der Bestimmung 

von Fettanteil und 

Körperkomposition 

- größte vorhandene Datenbasis, 

Osteoporosedefinition 

- zweidimensionale Messung: nur 

Ermittlung der Knochenmasse 

(g/cm²) möglich, die sekundär in ein 

Dichtemaß umgerechnet wird 

-Abhängigkeit der Messergebnisse 

(BMD) von der Körpergröße  

- keine getrennte Messung von 

Spongiosa und Kortikalis möglich 

- hoher Weichteilfehler (bis zu 14 %) 

- keine allgemein gültigen 

Normwerte für Kinder, daher keine 

T- und Z-Werte 

Quantitative 

Computertomografie 

(QCT)/ periphere QCT 

(pQCT) 

- dreidimensionale 

Darstellungechte 

Knochenmineraldichte (g/cm³) 

- getrennte Beurteilung von 

Spongiosa und Kortikalis  

- pQCT geringe Strahlendosis  

(1-2 µSV) 

- kurze Scanzeit 

- hohe Präzision/geringer 

Messfehler 

- hohe Kosten, daher als 

Screeningmethode ungeeignet 

- QCT hohe Strahlenbelastung 

(etwa 100 µSv) 

-pQCT: Messort entspricht nicht 

immer den Stellen, an denen 

klinisch bedeutsame 

Knochenbrüche auftreten 

Quantitativer 

Ultraschall (QUS) 

- keine Strahlenbelastung 

- geringe Kosten 

- gerätetechnisch einfach 

 

- geringe Reproduzierbarkeit 

- nur Beurteilung der 

Knochenstruktur, keine Aussage 

über Knochendichte möglich 
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Tab. 9: Anzahl und Verteilung der Patienten pro Therapieoptimierungsstudie              

(TG = Therapiegruppe, R = Randomisierungsarm, SR = Standardrisiko, HR = Hochrisiko) 

Diagnose Anzahl 
Patienten  

Therapieoptimierung
s-studien der GPOH 

Anzahl Patienten pro 
Therapieoptimierungsstudie 

Hodgkin-
Lymphom 

23 DAL-HD 90  
- TG 1 
- TG 2 

Insgesamt 2 
1 
1 

  HD 95  
- TG 1 
- TG 2 
- TG 3 

Insgesamt 17 
7 (1 mit Rezidivchemotherapie) 
1 
9 

  HD 2002 
- TG 1 
- TG 2 
- TG 3 

Insgesamt 4 
1 
1 
2 (1 zunächst Therapiebeginn mit 
ALCL99)  

Ewing-
sarkom 

7 CESS 86 1 (mit Rezidivchemotherapie) 

  EICESS 92 im SR-Zweig 1 

  EURO E.W.I.N.G 99  
- R1 8 VAI 
- R1 1 VAI + 7 VAC 

Insgesamt 5 
3 
2 

Osteo-
sarkom 

7 COSS 96 
- Niedriges Risiko 
- SR-Zweig 1 
                                       
- SR-Zweig 2                         

Insgesamt 5 
1 
3 (1 zunächst Therapiebeginn mit 
CWS96) 
1 

  COSS-Interim 1 

  EURAMOS-1/COSS 
- Good responder 
MAPifn 

 
1 

Rhabdo-
myosarkom 

6 CWS 96  
- HR-Arm A 
- HR-Arm B 

Insgesamt 6 
1 
5 (1 mit 2x Rezidivchemo-therapie) 

Medullo-
blastom 

4 HIT 2000 
- HIT 2000-AB4 
- MET-HIT 2000-AB4 
- MET-HIT 2000-BIS4 

Insgesamt 4 
2 
1 
1  

Wilmstumor 4 SIOP93-1/GPOH 
- intermediäre Malignität 
- hohe Malignität 

4  
2 (1 mit Rezidivchemotherapie) 
2 

Neuro-
blastom 

2 NB 90 
- Stadium IVS 
- Stadium IV + autologe 
Stammzelltrans-
plantation 

Insgesamt 2 
1 
1 (zusätzlich Zweitmalignom T-NHL  
Therapie entsprechend NHL-BFM 95 
TG1) 
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Tab. 10: Einteilung der Patienten in die Zytostatika-Dosisgruppen  

Zytostatikum/Wirkstoffgruppe Dosisgruppe entsprechend der 
kumulativen Dosis 

Patientenanzahl 

Anthrazykline Keine Gabe 
120-250 mg/m² 
>250 mg/m² 
 

5 
28 
20 

Methotrexat Keine Gabe 
1000-60000 mg/m² 
> 60000 mg/m² 
 

43 
4 
6 

Cyclophosphamid Keine Gabe 
1000-4000 mg/m² 
> 4000 mg/m² 
 

30 
16 
7 

Ifosfamid Keine Gabe 
4000-50000 mg/m² 
> 50000 mg/m² 
 

28 
13 
12 

Platinderivate Keine Gabe 
350-1499 mg/m² 
> 1499 mg/m² 
 

32 
11 
10 

Actinomycin D Keine Gabe 
1,5-4 mg/m² 
> 4 mg/m² 
 

35 
8 
10 

Vincaalkaloide Keine Gabe 
5-16,9 mg/m² 
> 16,9 mg/m² 
 

7 
23 
23 

Etoposid Keine Gabe 
1500-4000 mg/m² 
> 4000 mg/m² 
 

23 
17 
13 

Prednisolon Keine Gabe 
1500-3500 mg/m² 
> 3500 mg/m² 
 

29 
13 
11 

Procarbazin Keine Gabe 
3000-5500 mg/m² 
> 5500 mg/m² 
 

35 
7 
11 
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Tab. 11: Kumulative Zytostatikadosen - ohne Berücksichtigung der Patienten, die das 

Medikament nicht erhielten (≙ kumulative Dosis 0,0 mg/m²) 

Zytostatika Anzahl 

Patienten 

(n) 

Dosis 

Mittelwert 

(mg/m²) 

Dosis 

Median 

(mg/m²) 

Dosis 

Minimum 

(mg/m²) 

Dosis 

Maximum 

(mg/m²) 

Anthrazykline 48 263,54 181,08 120,00 530,00 

Methotrexat 10 86021,70 120000,00 1000,00 144000,00 

Cyclophosphamid 23 4313,91 4000,00 1000,00 10500,00 

Ifosfamid 25 46765,37 36000,00 4000,00 10200,00 

Platinderivate 21 1396,64 1480,00 352,90 4500,00 

Actinomycin D 18 6,23 4,50 1,50 12,00 

Vincaalkaloide 46 16,93 16,81 3,50 46,50 

Etoposid 30 1719,23 1341,35 125,00 4150,00 

Prednisolon 24 3116,25 3200,00 1590,00 4200,00 

Procarbazin 18 6050,00 6000,00 3000,00 9000,00 

 

 

 

Tab. 12: DXR-Parameter in Abhängigkeit von der Körperhöhe weiblicher Patienten 

Körperhöhe  

weiblichen 

Patienten (cm) 

Anzahl Patienten DXR-BMD in g/cm² 

Mittelwert 

DXR-MCI Mittelwert 

120-149,9 7 0,418 0,371 

150-159,9 5 0,496 0,435 

160-169,9 11 0,55 0,475 

170-190 6 0,585 0,524 
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Tab. 13: DXR-Parameter in Abhängigkeit von der Körperhöhe männlicher Patienten 

Körperhöhe 

männliche 

Patienten (cm) 

Anzahl Patienten DXR-BMD in g/cm² 

Mittelwert 

DXR-MCI Mittelwert 

120-159,9 4 0,401 0,323 

160-169,9 4 0,576 0,431 

170-179,9 7 0,581 0,423 

180-200 9 0,599 0,444 

 

 

 

Tab. 14: DXR-Parameter in Abhängigkeit vom BMI 

BMI (kg/m²) Anzahl Patienten DXR-BMD Mittelwert (g/cm²)  DXR-MCI Mittelwert 

14-15,9 5 0,400 0,340 

16-17,9 7 0,481 0,414 

18-19,9 7 0,548 0,441 

20-21,9 10 0,532 0,436 

22-23,9 12 0,576 0,470 

24-25,9 5 0,565 0,441 

> 25,9 7 0,584 0,463 
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