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Abstract

Background: Cefazolin is used as a prophylactic antibiotic to reduce surgical site infections (SSIs). Obesity has been

identified as a risk factor for SSIs. Cefazolin dosing recommendations and guidelines are currently inconsistent for obese

patients. As plasma and target-site exposure might differ, pharmacokinetic data from the sites of SSIs are essential to

evaluate treatment efficacy: these data can be obtained via tissue microdialysis. This analysis was designed to evaluate

the need for dosing adaptations in obese patients for surgical prophylaxis.

Methods: Data from 15 obese (BMImedian ¼ 52.6 kg m�2) and 15 age- and sex-matched nonobese patients (BMImedian ¼ 26.0

kg m�2) who received 2 g cefazolin i.v. infusion for infection prophylaxis were included in the analysis. Pharmacokinetic

data from plasma and interstitial space fluid (ISF) of adipose tissue were obtained and analysed simultaneously using

nonlinear mixed-effects modelling. Dosing regimens were evaluated by calculating the probability of target attainment

(PTA) and the cumulative fraction of response (CFR) for plasma and ISF using unbound cefazolin concentration above

minimum inhibitory concentration 100% of the time as target (fT>MIC ¼ 100%). Dosing regimens were considered

adequate when PTA and CFR were �90%.

Results: Evaluation of cefazolin doses of 1 and 2 g with redosing at either 3 or 4 h by PTA and CFR in plasma and ISF found

2 g cefazolin with redosing at 4 h to be the most suitable dosing regimen for both obese and nonobese patients (PTA >90%
and CFR >90% for both).

Conclusions: This model-based analysis, using fT>MIC ¼ 100% as a target, showed that cefazolin dosing adaptations are

not required for surgical prophylaxis in obese patients.
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Editor’s key points

� Perioperative dosing recommendations for cefazolin,

used as a prophylactic antibiotic to reduce surgical

site infections, are currently inconsistent for obese

patients.

� Pharmacokinetic data for cefazolin from plasma and

interstitial space fluid (ISF) of adipose tissue obtained

by microdialysis for obese and nonobese surgical

patients receiving prophylactic cefazolin were ana-

lysed simultaneously using nonlinear mixed-effects

modelling.

� In the context of perioperative antibiotic prophylaxis,

administration of 2 g cefazolin i.v. with redosing at 4

h was the most suitable dosing regimen for both

obese and nonobese patients such that no dose

adjustment is necessary.
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Surgical site infections (SSIs) pose a significant risk to patient

safety. However, the incidence of SSIs can be reduced by use of

appropriate perioperative antibiotic prophylaxis.1,2 The inci-

dence of SSI is higher in obese than in nonobese patients.3e5

Obesity is associated with atypical anthropometric values

and pathophysiological alterations that can influence drug

pharmacokinetics. These alterations include changes in body

composition, tissue distribution, and renal and hepatic drug

elimination.6e9 Consequently, standard dosing regimens of

antibiotics might not provide optimal drug exposure in obese

patients, potentially compromising the effectiveness of peri-

operative antibiotic prophylaxis, highlighting the need for

identifying optimal prophylactic dosing regimens for obese

patients.

Cefazolin is commonly used for perioperative antibiotic

prophylaxis owing to its activity against pathogens frequently

encountered in SSIs, such as Escherichia coli and Staphylococcus

aureus.10,11 Some studies have investigated the need for peri-

operative prophylactic cefazolin dosing adjustments for obese

patients, but the results are contradictory.12 Although the

majority of evidence supports standard dosing for cefazolin (2

g, short-term i.v. infusion), three out of four studies that

applied modelling and simulation frameworks concluded the

opposite.13e15 In addition, a second antibiotic dose is recom-

mended after twice its half-life,16e18 which would be 3e4 h

after the first dose in the case of cefazolin, but this recom-

mendation has not been investigated conclusively.

For cefazolin, the pharmacokinetic/pharmacodynamic (PK/

PD) target has been set to unbound drug concentration in

plasma above minimum inhibitory concentration (MIC) 100%

of the operation time.19 To evaluate the safety and effective-

ness of perioperative antibiotic prophylaxis, it is also essential

to measure drug concentrations at the site of potential infec-

tion (interstitial space fluid [ISF] of soft tissue),20,21 as drug

exposure in plasma might not reflect exposure in the ISF.

Unbound drug concentrations from the ISF can be obtained by

microdialysis, a minimally invasive sampling technique to

obtain target-site concentrations.22 Pharmacometric models,

which allow simultaneous integration and analysis of data

from different sources (e.g. measurements from plasma and
ISF), can be used to simulate concentrationetime profiles to

investigate the influence of obesity on the probability of

achieving a specific PK/PD target.

We aimed to evaluate the adequacy of clinically relevant

cefazolin dosing regimens (i.e. dose and dosing intervals) for

obese patients for perioperative antibiotic prophylaxis and to

derive dosing recommendations by application of modelling

and simulation techniques. We leveraged published PK data

from obese and nonobese patients, integrating observed

cefazolin concentrations in both plasma and ISF.
Methods

This is a post hoc, exploratory analysis of a study that was

approved by the Leipzig University Ethics Committee dated on

July the 12th, 2013 (No. 121-13-28012013) and the Federal

Institute of Drug and Medical Devices dated on May the 10th,

2013 (BfArM No. 4038808). It was registered in the EU Clinical

Trials Register (EudraCT registration No. 2012-004383-22) and

the German Clinical Trials Register dated on August the 27th,

2013 (registration No. DRKS00004776). The study was designed

in accordance with the principles of the Declaration of Hel-

sinki. Written informed consent was obtained from every

enrolled participant.
Study design and patient population

Details about the study design, sample size calculation, and

inclusion and exclusion criteria have been described.23,24

Briefly, data were obtained from a prospective, controlled,

single-centre, open-label clinical trial. During the trial, 15

obese patients (BMI �35 kg m�2) undergoing bariatric surgery

and 15 nonobese patients (18.5 kg m�2 � BMI � 30 kg m�2)

undergoing elective abdominal surgery were enrolled. The

groups were matched according to participant age and sex.

All participants were administered a single dose of 2 g

cefazolin by i.v. infusion over 30min after induction of general

anaesthesia. Blood samples to obtain plasma samples were

collected at 0.5, 1, 2, 3, 4, 5, 6, and 8 h after the start of cefazolin

infusion. Plasma samples collected at 0.5, 1, 4, and 8 h un-

derwent ultrafiltration to measure unbound cefazolin con-

centration. Microdialysis catheters (CMA 63 microdialysis

probe, cut-off 20 000Da, membrane length 30mm; CMA, Kista,

Sweden) were inserted into the ISF of the subcutaneous adi-

pose tissue of both upper arms (right and left) 90 min before

cefazolin administration. Microdialysis samples (flow rate ¼ 2

ml min�1) were collected in intervals of 0e0.5, 0.5e1, 1e1.5,

1.5e2, 2e3, 3e4, 4e5, 5e6, 6e7, and 7e8 h after the dose. Ret-

rodialysis was performed after the end of the sampling period,

collecting 3� 15-min samples per participant, and used as the

calibration method for microdialysis by calculation of relative

recovery (RR). RR was used to calculate ISF concentrations

from microdialysate concentrations. Assays and sampling

preparation and storage have been described.24
Pharmacokinetic model development and evaluation

Data from all sources (plasma, microdialysis, and retrodialysis)

were analysed simultaneously for model development. The

model was parameterised in terms of cefazolin unbound con-

centrations. Based on the PK insights of a published non-

compartmental analysis (NCA) of these plasma and ISF data,24

for the compartmental nonlinear mixed-effects modelling
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approach, one-, two-, and three-compartment models were

tested. Linear, saturable (nonlinear) and combined (linear plus

saturable) plasma protein binding models were evaluated to

characterise the relationship between total and unbound

cefazolin concentrations. Microdialysis concentrations were

analysed using the integrated dialysate-based approach.25,26

Interindividual variability in PK behaviour was evaluated

on all model PK parameters. Inclusion of microdialysis intra-

catheter and intercatheter variability on RR was also evalu-

ated. Additive, proportional, and combined residual variability

models were tested to account for deviations between pre-

dictions and observed data.

To explain potential differences in cefazolin exposure be-

tween obese and nonobese patients, the impact of different

body size descriptors on PK parameters (volume of distribution

and flow) was evaluated: allometric scaling, with fixed and

estimated exponents, based on total body weight (TBW), lean

body weight (LBW),27 ideal body weight (IBW),28 adjusted body

weight (ABW),29 and the LBW/fat mass (FM)30 and normal fat

mass31 approaches were evaluated. The impact of clinical and

participant characteristics on cefazolin clearance, estimated

glomerular filtration rate, and age, was evaluated. The impact

of obesity on protein binding parameters and RR was evalu-

ated in a categorical way (different parameters for obese and

nonobese patients).

Intermediate PK models were evaluated with standard

goodness-of-fit plots (e.g. observed vs predicted concentra-

tions and residuals vs population prediction and time). Pre-

dictive model performance was evaluated by visual predictive

checks (n¼1000), whereas the precision of the estimated pa-

rameters was assessed by sampling importance resampling.
Dosing regimen simulation and evaluation

The developed PK model was leveraged to perform Monte

Carlo simulations (n¼1000). Simulations were performed for

three reference patients: nonobese (TBW ¼ 70 kg, FM ¼ 24.8%,

BMI ¼ 24.2 kg m�2), obese (TBW ¼ 95.1 kg, FM ¼ 29.5%, BMI ¼
33.0 kg m�2), and morbidly obese (TBW ¼ 127 kg, FM ¼ 39.5%,

BMI¼ 44.0 kgm�2). Aminimum inhibitory concentration (MIC)

�4 mg L�1 was chosen, which is the clinical breakpoint for

nonresistant Escherichia coli and Staphylococcus aureus

(EUCAST32). The PK/PD target used to evaluate the adequacy of

therapy was unbound cefazolin concentration exceeding MIC

100% of the time (fT>MIC ¼ 100%) after 8 h.19 Dosing regimens

were considered adequate for a reference patient when 90% of
Table 1 Summary of participant characteristics. ABW, adjusted bo
filtration rate; FM, fat mass; IBW, ideal body weight; LBW, lean body

Participant characteristics Nonobese (n¼

Sex, n (%)
Male 5 (33.3)
Female 10 (66.7)

Age (yr), median (range) 45 (21e65)
eGFR (CKDEPI) (ml min�1), median (range) 103.8 (86.1e
BMI (kg m�2), median (range) 26.0 (18.7e2
TBW (kg), median (range) 78.0 (50.0e9
LBW (kg), median (range) 45.6 (34.2e7
ABW (kg), median (range) 59.4 (52.3e8
IBW (kg), median (range) 59.4 (52.3e8
FM (kg), median (range) 25.0 (15.8e3
the simulated concentrationetime profiles achieved this PK/

PD target, specifically when the probability of target attain-

ment (PTA) was �90%.33 To evaluate bacterial infection sce-

narios when the MIC is unknown, as for surgical prophylaxis,

cumulative fraction of response (CFR),34 a weighted average of

PTA over theMIC distribution of the pathogens of interest,was

calculated. As with PTA analysis, dosing regimens were

considered adequate when CFR was �90%.33 Four different

dosing regimens (of dosing plus redosing) were simulated for

each reference patient (30-min infusion for all administered

doses): 1 g (redosing 1 g at 3 h), 1 g (redosing 1 g at 4 h), 2 g

(redosing 2 g at 3 h), and 2 g (redosing 2 g at 4 h).
Software

Modelling was performed in NONMEM v7.4.3 (Icon Develop-

ment Solutions, Ellicott City, MD, USA). PsN (Perl Speaks

NONMEM) v4.8.1 was used to access NONMEM through Pirana

v2.9.6 (Certara, Princeton, NJ, USA). R v4.2.1 with RStudio

(Boston, MA, USA) was used for data management, data visu-

alisation, and processing of modelling results. Simulations

were performed using mrgsolve R package v1.0.6.
Results

Data were collected from 15 obese participants with a median

BMI of 52.6 kg m�2 (range 39.5e69.3 kg m�2) and 15 age- and

sex-matched nonobese patients with a median BMI of 26.0 kg

m�2 (range 18.7e29.8 kg m�2). An overview of participant

characteristics can be found in Table 1.
Pharmacokinetic model

The final model was a two-compartment model with linear

elimination (Fig. 1 and Table 2). Cefazolin protein binding was

best characterised by a saturable binding model

(Supplementary Fig. S1) with a maximum binding capacity of

247 mg L�1 (95% confidence interval [CI] 207e286 mg L�1) and a

dissociation constant of 65.3 mg L�1 (95% CI 49.9e80.7 mg L�1),

meaning that a maximum of 247 mg L�1 of cefazolin can be

bound in plasma and that, at 65.3 mg L�1 unbound cefazolin,

half of the binding partner sites are occupied. Microdialysate

concentrations were attributed to the peripheral compartment

and converted to ISF concentrations by estimated RR. A sig-

nificant effect of obesity was found (RRobese ¼ 23.3%, 95% CI

18.6e28.0%; RRnonobese ¼ 41.1%, 95% CI 30.4e51.8%). Of note,
dy weight; BMI, body mass index; eGFR, estimated glomerular
weight; TBW, total body weight.

15) Obese (n¼15) All (n¼30)

5 (33.3) 10 (33.3)
10 (66.7) 20 (66.7)
45 (25e65) 45 (21e65)

121.7) 133 (82.8e269) 119 (82.8e269)
9.8) 52.6 (39.5e69.3) 34.7 (18.7e69.3)
6.0) 155 (123e200) 109 (50.0e200)
2.4) 69.3 (54.9e96.1) 64.3 (34.2e96.1)
5.2) 102 (80.4e128) 81.0 (52.3e128)
5.2) 63.9 (48.7e79.0) 61.2 (48.7e85.2)
4.2) 84.2 (48.8e122) 41.5 (15.8e122)
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Table 2 Summary of model parameter estimates for unbound
cefazolin and precision by sampling importance resampling.
mD, microdialysis; Bmax, maximum binding capacity; CI, con-
fidence interval; CL, clearance; CV, coefficient of variation; FM,
fat mass; Kd, dissociation constant; LBW, lean body weight; Q,
intercompartmental flow; R, scaling factor in the LBW/FM
approach (fraction scaled with LBW); RD, retrodialysis; RR,
relative recovery; SIR, sampling importance resampling; TF,
tissue factor; V1, central volume of distribution; V2, peripheral
volume of distribution. *Implementation of the LBW/FM
approach. yFixed parameters.

Parameter (unit) Parameter
estimate

SIR 95%
CI

Fixed-effects parameters
CL (L h�1) 17.9 16.6e19.2
V1, (L) (LBW ¼ 64.3 kg)* 22.9 19.2e26.5
Exponent V1 1y e

Q (L h�1) (LBW ¼ 64.3 kg)* 56.8 49.2e66.9
Exponent Q 0.75y e

V2 (L) (LBW ¼ 64.3 kg, FM ¼ 41.5)* 34.3 32.4e36.9
R (%) 76.4 64.9e86.0
Bmax (mg L�1) 247 219e289
Kd (mg L�1) 65.3 55.8e79.9
TF (%) 65.5 59.4e70.9
RRobese (%) 23.3 19.4e29.1
RRnonobese (%) 41.1 35.3e48.8
Interindividual variability,
CV (%)

CL 21.9 17.9e29.0
V1 40.1 28.7e56.4
Q 54.8 42.0e72.9
V2 12.4 6.33e18.6
Bmax 9.20 5.66e12.9
RR 43.3 22.8e63.0
Intercatheter 58.6 42.6e80.7
Intracatheter 90.3 73.8e110
Residual variability, CV (%)
Plasma proportional error 35.7 33.9e37.7
mD proportional error 52.1 50.4e54.0
RD proportional error 28.9 23.8e36.3
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differences in RR are microdialysis technique- and tissue-

related. A tissue scaling factor (TF ¼ 0.655, 95% CI 0.574e0.736)

relating predicted concentrations in the peripheral compart-

ment to ISF concentrations was identified, and was not

different between obese and nonobese patients (Table 2).

Interindividual variability was included on all PK parame-

ters, except Kd, and was low to moderate (coefficient of vari-

ation [CV] �54.8%). Furthermore, interindividual variability

was included in RR (CV ¼ 43.3%), as well as intracatheter and

intercatheter variability (CV ¼ 90.3% and 58.6%, respectively).

Both plasma total and unbound microdialysis and retro-

dialysis data were best characterised by a proportional resid-

ual variability model.

Models with fixed exponents and estimated exponents for

allometric scaling performed similarly. Fixed exponents were

preferred because of their mechanistic foundations. Model

performance (based on the Akaike information criterion) was

similar between the LBW/FM30 approach and allometric

scaling based on ABW29 (AICLBW/FM ¼ 2500, AICABW ¼ 2494).

The LBW/FM approach was chosen because of its physiologi-

cally motivated foundations and interpretability. The chosen

model showed good predictive performance and characterised

the data well (Supplementary Figs S2eS4). Based on the LBW/

FM approach, 23.6% of cefazolin peripheral volume of distri-

bution was found to depend on FM, whereas the remaining

fraction (76.4%) depended on LBW. The central volume of

distribution and intercompartmental flow scaled linearly with

LBW. No clinical or participant characteristics were found to

have an impact on cefazolin clearance (17.9 L h�1). No signif-

icant differences between obese and nonobese participants

were found for protein binding.
Dosing regimen simulation and evaluation

To evaluate the need for dosing adjustments in obese patients,

unbound plasma and ISF concentrationetime profiles were

simulated for nonobese, obese, and morbidly obese reference

patients (Fig. 2). Probability of target attainment analysis was

performed evaluating up to MIC ¼ 4 mg L�1, the clinical
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breakpoint for cefazolin for both E. coli and S. aureus

(EUCAST32). Overall, PTA was found to be similar in nonobese

reference patients compared with obese and morbidly obese

reference patients. When the MIC was �2 mg L�1, all four

evaluated dosing regimens were adequate for both unbound

plasma and ISF (Fig. 3) PTA evaluation. However, different
results were obtained when evaluating PTA in plasma

compared with ISF with MIC ¼ 4 mg L�1. In particular, 1 g

(redosing 1 g at 3 h) and 2 g (redosing 2 g at 4 or 3 h) were found

to be adequate dosing regimens (PTA �90%) for all three

reference patients in plasma, whereas 1 g (redosing 1 g at 4 h)

was found to be inadequate (PTA <90%) (Fig. 3b) (PTA was

mailto:Image of Fig 2|eps
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60.9% in nonobese, 73.4% in obese, and 74.5% in morbidly

obese). However, when PTAwas evaluated in ISF, 1 g (redosing

1 g at 3 h) (Fig. 3e) was found inadequate for all three reference

patients (PTA was 85.5% in nonobese, 75.1% in obese, and

61.2% in morbidly obese).

Similar to PTA analysis, CFR analysis did not show different

results betweennonobese, obese, andmorbidly obese reference

patients (Fig. 4). All evaluated dosing regimens reached CFR

�90% for all three reference patients in both plasma and ISF.

No differences in PTA and CFR results between nonobese

and obese patients were observed under any of the evaluated

scenarios. Based on the performed PTA and CFR analyses, 2 g

(redosing 2 g at 4 h) appeared as the most suitable dosing

regimen whenMIC is unknown or MIC¼ 4mg L�1. However, in

the case of known MIC �2 mg L�1, 1 g (redosing 1 g at 4 h) was

also found to be an adequate dosing regimen. Ultimately, no

benefit of redosing at 3 h compared with 4 h was observed

under any of the evaluated dosing regimen scenarios for all

three reference patients.
Discussion

The need for more than 2 g doses of cefazolin in obese patients

for perioperative antibiotic prophylaxis has been studied and
debated with differing results. We evaluated the adequacy of

clinically relevant cefazolin dosing regimens for surgical pro-

phylaxis based on exposure in plasma and ISF of adipose tis-

sue, the usual site of infection. Using fT>MIC ¼ 100% as a target,

we did not find any clinically relevant influence of obesity. A

second dose after 4 h was sufficient in the context of periop-

erative antibiotic prophylaxis with an administration of 2 g.

The data presented in this study were previously published

and analysed using noncompartmental analysis (NCA).24 The

NLME approach of this study confirmed the NCA results

revealing no clinically relevant differences in cefazolin con-

centrations between obese and nonobese patients. Based on

the evaluated scenarios, our results agree with the majority of

PK and outcome studies conducted12,35e38 to investigate the

need for a higher cefazolin dose in obese patients, concluding

it is not needed. Based on these results, the higher incidence of

SSIs observed in obese patients does not appear related to

inadequate cefazolin dosing regimens. The large range in pa-

tient BMI (18.7e69.3 kg m�2) included in this study allowed us

to characterise PK differences between obese and nonobese

patients based on differences in body composition. However,

these PK differences were not considered to be clinically

relevant in terms of dosing regimen adequacy. However,

because a higher incidence of SSIs and lower plasma and ISF
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concentrations are observed in obese patients early after

dosing, whether time-related targets are not the best efficacy

measure must be considered and could be explored in future

studies.

Although this analysis agrees with previous findings, it

further suggests that doses lower than 2 g could be sufficient.

However, practically, because the MIC cannot be established

in a prophylactic setting, 2 g remains the recommended dose

for obese and nonobese patients. Nonetheless, in a local

setting when the MIC distribution is known, the same alter-

native dosesmight be considered for both obese and nonobese

patients. One modelling and simulation study that concluded

that obese patients require a dose adaptation did not include a

control group (nonobese) and the majority of samples were

collected only up to 2.5 h after dosing,13 whereas the other two

included only pregnant women as obese population14 or

included a low number of patients (n¼15).15 These differences

from the present study design and study population might

explain the different conclusions obtained.

For perioperative antibiotic prophylaxis, it is typically rec-

ommended to redose after twice the half-life of the antibiotic.

However, because the reported half-life for cefazolin ranges

between 1.5 and 2 h, redosing at 3 and 4 hwas evaluated in this

study. No benefits of redosing after 3 h were observed

compared with redosing at 4 h at a dose of 2 g. Therefore, for

practical reasons, redosing is recommended 4 h after the first

cefazolin administration for longer surgical procedures.
We acknowledge that the sample size of patients included

in the study (n¼30) is a limitation. However, it has to be

considered a large sample when compared with other micro-

dialysis studies. Because systemic and target-site exposure

might differ,20,21 being able to perform such evaluations at the

probable site of infection is of great value.

Saturable binding of cefazolinwas observed and quantified,

consistent with previous studies.15,39,40 However, albumin is

considered the main binding partner for cefazolin, and its

concentration is much higher than the maximum binding

capacity estimated in this study. Nevertheless, the nonlinear

binding behaviour has been observed consistently, suggesting

that the binding mechanisms remain unclear.

No impact of participant or clinical characteristics was

included for cefazolin clearance. As cefazolin is mostly elim-

inated renally, an impact of estimated glomerular filtration

rate (eGFR) on clearance could be expected. All eGFR calcula-

tionmethods point towards increased renal function for obese

individuals; however, obesity is a risk factor for chronic kidney

disease.7 Therefore, identification of eGFR to explain expected

clearance differences between obese and nonobese patients

might be nontrivial. To overcome this, in future studies,

measurements of GFR should be performed. Lastly, although

use of PK/PD targets is well established to link drug exposure

to efficacy, data on clinically measured outcome endpoints

should, in the future, be collected, at least in observational

settings.
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In conclusion, with the evaluated condition, this study

showed that in the context of perioperative antibiotic pro-

phylaxis with cefazolin, no dose adjustment is necessary in

obese patients. In general, initial administration of 2 g cefa-

zolin i.v. with redosing at 4 h intraoperatively is sufficient.
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