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Abstract
In increasing numbers of classrooms worldwide, students use digi-
tal learning software. However, we know little about the trajectories
of usage and the performance within such digital learning software
over the academic year. This study analyzed real-world longitudinal
data from a mathematics learning software used in classrooms in
Germany and the Netherlands (1̃6,000 students who worked on >23
million problems). We evaluated students’ usage and performance
trajectories across an academic year by examining the percentage of
students using the software, worked-through problems, active days
and weeks, as well as performance. Our results indicate a decline
in both usage and performance over the course of the academic
year, with overall lower usage in Germany than in the Nether-
lands. Our findings highlight the need for further research into the
factors maintaining or increasing the usage of and performance
in classroom-integrated digital learning software over extended
periods.
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1 Introduction
Digital learning software for secondary education has been devel-
oped for decades [2, 3, 9, 18] and has seen widespread adoption,
with millions of students using it globally across different plat-
forms (e.g., [19, 22, 24, 27, 32]). While a substantial body of research
has focused on how such software should be constructed to most
effectively support students’ learning (e.g., [1, 15, 21, 25, 31]), sur-
prisingly little is known about its long-term usage once integrated
into classrooms (but see [4, 14]). In particular, it remains to be seen
how consistently (i.e., how often and how intense) students use
digital learning software in naturalistic settings after gaining ac-
cess to it. Additionally, there is only limited understanding of the
trajectories of students’ performance when using digital learning
software over longer periods. Nevertheless, a better understand-
ing of usage and performance trajectories within digital learning
software is vital for optimizing how it is used after it is adopted in
classrooms. Hence, in this study, we sought to investigate trajecto-
ries of students’ usage and performance in a classroom-integrated
digital learning software over the course of an academic year.

1.1 Background
Digital learning software allows researchers to exploit exceptionally
rich data, as each interaction with the software is typically logged.
This loggingmakes data-driven learning analytics approaches possi-
ble [8]. However, there is also a growing interest in theory-informed
learning analytics [17, 33], often drawing on findings from well-
controlled laboratory settings, including self-reported data. Re-
search questions and hypothesesmay be derived from these theories
and can be tested using rich naturalistic data from digital learning
software. For instance, a critical factor that has been shown to affect
students’ learning is their motivation [11, 12].

In fact, there is accumulating evidence suggesting motivational
declines after starting a study program [7, 10, 20, 30]. For instance,
Sutter and colleagues [30] reported that the motivation of college
students attending a statistics course declined over the course of
the semester. Students’ declining motivation was also associated
with reduced performance. These results align with other reports
by Benden and Lauermann [7] who reported motivational declines
over the course of a semester among first-semester college students
attending a math course, particularly after the second week of a
semester. They also found that the degree of motivational decline
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during the second and third week of the semester significantly
predicted students’ performance in the course’s final exam. Looking
at which processes drive these changes in motivation, another
recent study by Lee et al. [20] evaluated motivational changes
across four different college STEM courses (i.e., General Chemistry,
Organic Chemistry, Foundations of Programming, and Introduction
to Computer Science) and observed that components of students’
motivation, such as the course-specific intrinsic value and utility
value, declined over time.

Together, these studies suggest that student motivation typi-
cally declines after starting a study program and that declining
motivation significantly predicts poorer student performance. This
growing body of research highlights the importance of longitudinal
studies to better understand the dynamic trajectories of students’
learning.

These findings have been explained by Expectancy-Value The-
ory [11, 12, 35] or Expectancy-Value-Cost Theory [5, 13]. Both
theories illustrate how motivation influences students’ academic
choices, persistence, and performance. Expectancy-Value Theory
posits that students’ motivation is driven by their expectancy beliefs
(i.e., confidence in task success) and value beliefs (i.e., reasons for
task engagement). Expectancy-Value-Cost Theory further considers
costs, such as mental effort, emotional stress, and opportunity costs,
to account for negative factors that deter students from completing
tasks. Both frameworks address students’ motivation by examin-
ing how beliefs about competence, value, and costs influence their
engagement and performance. As such, both theories assume that
motivation is not static but may change due to situational context,
like the learning environment, tasks, and social interactions.

1.2 Research gap
Notably, all the above-described findings about motivational de-
clines stem from in-person college courses assessing weekly self-
reports of student motivation and final exams as performance mea-
sures. Thus, it is unclear whether such results generalize to digital
learning scenarios. Moreover, a considerable advantage of consid-
ering log data from digital learning software used in naturalistic
settings is that students’ performance is continuously tracked with
each activity, giving a much more fine-grained impression of stu-
dents’ behavior than weekly self-reports. On the other hand, a
direct measurement of motivation via self-reported is typically not
included. However, to asses motivation, other behavioral indicators
can be considered, such as the frequency of using the software, with
lower activity (i.e., fewer worked-through problems and fewer ac-
tive days or weeks per month) indicating lower motivation, whereas
higher activity (i.e., more worked-through problems and more ac-
tive days or weeks per month) indicating higher motivation. In fact,
Expectancy-Value Theory and Expectancy-Value-Cost Theory both
suggest that motivation should be reflected in students’ persistence
in engaging with learning opportunities (e.g., [5, 12]).

1.3 Study overview
In this study, we investigated students’ usage and performance tra-
jectories within a digital learning software used in the Netherlands
and Germany. In particular, we evaluated an extensive dataset from
the digital learning software bettermarks for learning mathemat-
ics, considering students who used this digital learning software

between 2016 and 2023. As indicators for students’ usage trajecto-
ries, we evaluated the number of active days and active weeks per
month. As performance indicators, we evaluated students’ error
rates, problem difficulty, and relative error rates (i.e., error rates
taking into account problem difficulty) when working through
problems within the digital learning software during each month.
Importantly, the studies described above identified the critical is-
sue of motivational declines over time using data from in-person
self-reports and testing, serving as a first step toward addressing
potential remediation of the issue. Similarly, this study aimed to
evaluate whether such motivational declines (reflected by reduced
usage) and in turn performance generalise to trajectories of sec-
ondary students’ long-term usage and performance when using a
digital learning software. Accordingly, we pursued the following
research questions (RQ):

RQ1: Does students’ usage of the digital learning software decline
over the course of the academic year?

RQ2: Does students’ performance within the digital learning
software decline over the course of the academic year?

2 Methods
2.1 The bettermarks dataset
The dataset of the digital learning software bettermarks analyzed
in this study included students from grades 4 to 10 who used the
digital learning software for learning mathematics either in the
Netherlands or in Germany (e.g., [27, 29, 34]). Students who use
the software in the Netherlands are typically in so-called digital
learning classes, with the software substituting traditional paper
workbooks, and thus use the software more systematically than in
Germany, where students typically use the software as a supple-
ment and thus less systematically [4, 27, 28]. bettermarks includes
mathematical topics aligned with the curriculum for both coun-
tries and covers over 100 different topics and over 100,000 different
problems, covering the domains functions, numbers, mensuration,
and geometry. The digital learning software is integrated into class-
rooms and acts as a digital workbook for students. That is, teachers
assign problem sets to students that they work through. The digi-
tal learning software provides feedback and hints to students and
also provides teachers with feedback on students’ performance on
assigned problem sets (i.e., students’ accuracy on typically nine
problems covering the same topic). In addition, the digital learning
software indicates so-called knowledge gaps when detecting mis-
conceptions among students and automatically suggests additional
problem sets to students in order to close it. The dataset of the
digital learning software includes information on all problem sets
a student worked on. In addition to information about the problem
set, the software logs the error rate, date and time when students
worked-through a given problem set. Students may repeat prob-
lem sets as often as they wish. However, the parameterization of
problem sets change with each attempt, discouraging rote memo-
rization and promoting active problem-solving. Figure 1 illustrates
the user interface of the digital learning software currently used
in Germany. The anonymous data set was shared by bettermarks
upon request. The fully anonymous data set comprised no sensitive
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personal information (e.g., gender, age, or sociodemographic sta-
tus). bettermarks was not involved in this study’s design and data
analysis.

Figure 1: The user interface of the bettermarks digital learn-
ing software as currently used in Germany. A: Topics struc-
tured by grade level. B: Examples of included topics stem-
ming from different domains (indicated as different back-
ground colors) suited for sixth-grade students (Klasse 6). C:
When selecting a topic (e.g., Basics of fractions; "Grundla-
gen der Bruchrechnung" in German), users may select be-
tween different subtopics (e.g., Shares of awhole; "Anteile von
einem Ganzen" in German). D: An exemplary list of problem
sets within a subtopic. E-G: Exemplary problems of problem
sets included in this subtopic.

2.2 Inclusion criteria for the present study
We considered students and problem sets these students worked
through based on the following criteria. First, we included students
who registered with bettermarks between July 1st, 2016, and August
31st, 2022. Second, we included all students who used the digital
learning software in the Netherlands or Germany. Third, to calcu-
late students’ error rates, we considered students’ first attempt on
a completed problem set. However, we also considered students’
best attempt and recalculated error rates to assure that our results
were similar for the first and the best attempts. Fourth, we only
looked at students’ usage and performance within their first year
of using bettermarks. This allowed us to compare the same dura-
tion of using the system for different cohorts (i.e., students who
registered in 2016, 2017, 2018, 2019, 2020, 2021, and 2022). Fifth, we
only considered students who used the digital learning software in
each month of the first academic year (i.e., September to May, and
not during the summer holidays when considerably fewer students
generally use the digital learning software). Finally, we only con-
sidered students who registered between July 1st and August 31st
during the summer holidays and then looked at their usage and
performance throughout the first academic school year they used

bettermarks. After we applied these inclusion criteria, our dataset
comprised 1,888 students from Germany (who worked through
1,201,718 problems) and 14,153 students from the Netherlands (who
worked through 22,396,283 problems).

2.3 Data analysis
Our data analysis was conducted using R [23]. To address RQ1 on
evaluating students’ usage trajectories, we considered the number
of worked-through problems, active days, and active weeks per
month for each country as dependent variables and indicators of
students usage. An active day or an active week is when students
worked through one problem set on a day or week. We ran three
hierarchical linear regression models (one for each dependent vari-
able) with the two independent variables month (interval scaled)
and country (as a categorical variable) and a random intercept for
students. We evaluated differences between the two countries as
students’ usage in the Netherlands should be higher [4, 28].

To address RQ2, we evaluated students’ performance, consid-
ering their error rates, problem set difficulty, and relative error
rates for each month and each country. Error rates were obtained
from bettermarks and reflect performance independent of problem
difficulty. We calculated difficulty as the average error rate of each
problem set for all students who worked through this problem
set. As a final indicator for students’ performance, we examined
students’ relative error rates. Relative error rates accounted for
problem set difficulty and can thus be interpreted as error rates
relative to the difficulty of problems. Relative error rates were cal-
culated by subtracting difficulty from individual students’ error
rates (e.g., an error rate of 10% on a problem set with an average
difficulty of 30% resulted in a relative error rate of -20%). Note that
lower and more negative relative error rates indicated better per-
formance. We then ran a hierarchical linear regression model for
each of these three dependent variables (i.e., error rates, difficulty,
and relative error rates), with the two independent variables month
and country and a random intercept for students. Importantly, we
considered students’ first attempts when we evaluated error rates,
problem set difficulty, and relative error rates. However, results on
students’ best attempts were also evaluated (not reported here) and
substantiated the findings on first attempts.

3 Results
Students’ usage and performance trajectories are illustrated in Fig-
ure 2. Statistical details of the hierarchical linear regression models
on indicators of students’ usage are depicted in Table 1 whereas
results for students’ performance measures are given in Table 2.

3.1 RQ1: Usage trajectories
The results of the hierarchical linear regression model for worked-
through problems suggested a significant main effect for month
and for country. The decline of worked-through problems was
significantly more pronounced in the Netherlands than in Germany,
reflected by the significant interaction between the two independent
variables. We observed the same pattern of results for the number
of active days per month as well as the number of active weeks per
month: students from the Netherlands showed significantly more
active days and weeks per month than German students. However,
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Table 1: Students’ usage with respect to problems, days, and weeks.

Problems Days Weeks

Coeffcient estimate SE t p estimate SE t p estimate SE t p

Intercept 172.79 0.99 173.85 <0.001 6.82 0.03 203.44 <0.001 3.29 0.01 310.18 <0.001

Month -8.25 0.12 -67.67 <0.001 -0.25 0.01 -59.57 <0.001 -0.07 0.01 -47.25 <0.001

Country 76.10 0.99 76.57 <0.001 2.67 0.03 79.57 <0.001 0.61 0.01 57.74 <0.001

Month:Country -3.92 0.12 -32.18 <0.001 -0.13 0.01 -30.71 <0.001 -0.02 0.01 -16.31 <0.001

Marginal R2 / Conditional R2 0.197 / 0.425 0.198 / 0.414 0.125 / 0.196

Table 2: Students’ performance with respect to error rates, difficulty, and relative error rates.

Error rates Difficulty Relative error rates

Coeffcient estimate SE t p estimate SE t p estimate SE t p

Intercept 0.28 0.01 142.31 <0.001 0.29 0.01 342.08 <0.001 -0.09 0.01 -47.26 <0.001

Month 0.01 0.01 58.05 <0.001 0.01 0.01 80.25 <0.001 0.01 0.01 50.10 <0.001

Country 0.03 0.01 16.17 <0.001 0.03 0.01 34.25 <0.001 0.03 0.01 18.98 <0.001

Month:Country -0.01 0.01 -15.23 <0.001 -0.01 0.01 -13.02 <0.001 -0.01 0.01 -15.21 <0.001

Marginal R2 / Conditional R2 0.024 / 0.450 0.089 / 0.287 0.019 / 0.463

irrespective of country, active days and weeks declined significantly
over the course of the academic year. This decline was again more
pronounced in the Netherlands than in Germany as indicated by
the significant interaction of the variables months and country. In
sum, the results of these analyses indicated that students’ usage
declined continuously each month over the course of the academic
year. In addition, usage was generally higher in the Netherlands
than in Germany, and the decline in usage was more pronounced in
the Netherlands than in Germany. This may be explained by higher
initial usage in the Netherlands, leading to a steeper decline.

3.2 RQ2: Performance trajectories
We observed a significant decline in performance reflected by sig-
nificantly increasing error rates over the course of the academic
year. Error rates increased for both countries. However, the increase
was more pronounced for Germany than for the Netherlands, as
indicated by the significant interaction of the dependent variables
month and country. Figure 2D depicts that error rates were signifi-
cantly higher in the Netherlands than in Germany at the beginning
of the academic year, but this difference decreased towards the end
of the academic year.

Results for difficulty as the dependent variable indicated that
students worked through significantly more difficult problem sets
towards the end of the academic year and that students from the
Netherlands worked through significantly more difficult problem
sets thanGerman students. A significant interaction betweenmonth
and country further suggested that this difficulty difference between
the two countries decreased over the course of the academic year,
with a steeper difficulty increase observed in Germany than in the
Netherlands.

For relative error rates as the dependent variable, results indi-
cated that these increased over the course of the academic year
for both countries, as indicated by a significant main effect for

month, replicating observed performance declines stated earlier.
In addition, relative error rates were higher in Germany than in
the Netherlands suggesting significantly better performance in the
Netherlands than in Germany. The interaction between month and
country was significant and suggested that this relative error rate
difference between the two countries decreased over the course
of the academic year, with a steeper increase in relative error rate
observed in Germany than in the Netherlands.

Figure 2: Students’ usage and performance of the digital learn-
ing software as a function of months and country separated
for number of worked-through problems (A), number of ac-
tive days (B), number of active weeks (C), error rates (D),
difficulty (E), relative error rate (F) as dependent variables.
Dots illustratemonthly averages for each country and dashed
lines indicate the regression line for each country, respec-
tively.
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4 Discussion
In this article, we evaluated usage and performance trajectories of
students regularly using a digital learning software in the classroom
over the course of an academic year. Our findings indicated that
students’ usage and performance declined with time, reflected by
declines in worked-through problems, active days, and weeks per
month, as well as declining students’ performance. Additionally,
indicators for usage and performance were consistently higher in
the Netherlands, where students’ typically use the software more
systematically [4, 28].

To the best of our knowledge, this study is the first to evaluate
long-term trajectories of students’ usage and performance within a
digital learning software for secondary education employed in a
naturalistic setting (i.e., in classrooms). Such research is important
as enormous efforts have been made to develop and test digital
learning software in (quasi) experimental settings (e.g., [1, 15, 21,
25, 31]). However, there is a scarcity of research examining the
actual usage and performance trajectories when digital learning
software has been implemented in classrooms—without influences
of any kind of experimental manipulation that might bias students’
motivation to keep using the software or performing well due
to the evaluating character of an intervention study, for instance.
Nevertheless, our findings are in line with previous research on
declines in motivation over the course of a semester in tertiary
education [7, 10, 20, 30].

At first sight, these results may be unexpected as they seem to
suggest that students’ performance decreases the longer students
use the learning software over the course of an academic year. How-
ever, it is imperative to emphasize that we did not evaluate learning
gains or how much knowledge students accumulated over time as
done in previous studies on students’ learning gains or performance
gains as a function of students’ usage of a digital learning software
[14, 19, 27]. Instead, we evaluated their overall trajectories of usage
and performance (i.e., error rates and relative error rates on differ-
ent problem sets) separately at specific time points. As the content
of the digital learning software is separated into different topics
(e.g., basics of fractions), and students work through different topics
within the academic year, we did not evaluate continuous learning
trajectory but rather evaluated students’ performance on different
topics which can be more or less independent from each other.
Moreover, the curriculum of problems within each topic is usually
designed in a way that difficulty is steadily increasing within a topic
(i.e., relatively easy problems with illustrations come first, followed
by mere calculation problems of moderate difficulty, and finally
text problems on a given topic, that are typically difficult; [26]).
Therefore, the observed performance decreases do not indicate that
students did not learn over the course of the academic year. Yet, they
indicate that with the academic year progressing, students perform
poorer within the digital learning software—even when accounting
for the difficulty of the worked-through problem sets. This pattern
of results can be explained by motivational declines over the course
of the academic year as observed by others (e.g., [7, 10, 20, 30]. As
such, a decline in performance may depend on the decline in usage
which in turn reflects a decline in motivation. These findings have
considerable implications as discussed in the following.

4.1 Implications
Our findings have implications for practitioners, software devel-
opers, and policymakers who aim to create more supportive and
motivation-enhancing digital learning software environments. These
findings are crucial for practitioners such as teachers and school ad-
ministrators, as they highlight the patterns of students’ declining us-
age and performance when using digital learning software over the
course of the academic year. This suggests a need for practitioners
to actively monitor and adapt how digital learning software is incor-
porated in classrooms. Tailored interventions, such asmore targeted
support, motivational incentives, or adaptions of usage frequency,
may help maintain students’ continuous usage and improve out-
comes over time, ensuring that educational technology is effectively
integrated into long-term teaching approaches. For software devel-
opers, the present findings highlight the need for creating digital
learning software in away that facilitates tomaintain students’ long-
term usage and performance. This may involve additional adaptive
features, or gamification elements that respond to declining moti-
vation and usage over time, as experimental research showed that
game elements mitigate students’ engagement and long-term usage
(e.g., [16]). For policymakers, our findings underscore the relevance
of systematic integration of digital learning software into curricula,
as shown by the overall higher usage in the Netherlands. Policy
interventions may focus on training teachers and students to use
these tools effectively throughout the academic year.

4.2 Limitations and future research
There are some limitations to consider when interpreting the cur-
rent findings. First, we reported on grand averages across all grade
levels implemented within the digital learning software. Thus, fu-
ture research may examine potential differential effects on students’
usage and performance trajectories. For instance, one might assume
that older students who typically have more experience with dig-
ital learning software, as well as better self-regulation capacities,
show less (or even no) decline in usage and performance over time.
Moreover, it is important to note that students using the digital
learning software typically get problems assigned by their teachers.
One might speculate that the observed decline in software usage
(i.e., fewer problems worked through and fewer active days and
weeks) reflects a decrease in teacher-assigned tasks or students’
completion of assignments as the academic year progresses, poten-
tially creating a feedback loop that influences how many problems
teachers assign. However, as the digital learning software is used
very systematically in the Netherlands (even replacing typical work-
books) it seems rather unlikely that teachers incorporate the digital
learning software so much less in their teaching as suggested by
our results. As such, this account remains speculative and future
research is needed to evaluate this explanation. Importantly, future
research should also consider to more prominently examine factors
that maintain or increase students usage and performance over
time. For instance, specific motivational features such as gamifica-
tion elements may lead to flatter usage and performance declines
or may even help to increase motivation and usage [6]. A major
benefit of our study is that we evaluated data from two countries
that used the same software and observed similar usage and per-
formance declines across both countries. This allows to generalize
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the trending effect despite the specific integration of the software
within a country and despite relatively higher usage in the Nether-
lands. However, as with other findings from one digital learning
software, future research should consider to examine whether our
findings generalize across different digital learning software and
across other countries.

4.3 Conclusion
Digital learning software is currently implemented in thousands
of classrooms across the globe, with hardly any research follow-
ing students’ long-term usage and performance trajectories after
its implementation. Our findings indicate usage and performance
declines within a classroom-integrated digital learning software
over the course of an academic year in two countries. This high-
lights the need to further consider data from naturalistic settings
on long-term usage and performance trajectories. It is imperative
to find out whether applied software is used, and if so, how much
and how well students perform within it. The present findings are
a first step to more research on following students long-term us-
age and performance trajectories across different digital learning
software and countries. Finding out how students’ long-term usage
and performance can be maintained or even increased seems vital
to exploit the full potential of digital learning software.
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