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eLife Assessment
This valuable study uses a massive and long-term experimental data set to provide solid evidence 
on how tree diversity affects host-parasitoid communities of insects in forests. The work will be of 
interest to ecologists working on biodiversity conservation, community ecology, and food webs.

Abstract Environmental factors can influence ecological networks, but these effects are poorly 
understood in the realm of the phylogeny of host-parasitoid interactions. Especially, we lack a 
comprehensive understanding of the ways that biotic factors, including plant species richness, 
overall community phylogenetic and functional composition of consumers, and abiotic factors 
such as microclimate, determine host-parasitoid network structure and host-parasitoid community 
dynamics. To address this, we leveraged a 5-year dataset of trap-nesting bees and wasps and their 
parasitoids collected in a highly controlled, large-scale subtropical tree biodiversity experiment. We 
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tested for effects of tree species richness, tree phylogenetic, and functional diversity, and species 
and phylogenetic composition on species and phylogenetic diversity of both host and parasitoid 
communities and the composition of their interaction networks. We show that multiple compo-
nents of tree diversity and canopy cover impacted both, species and phylogenetic composition of 
hosts and parasitoids. Generally, phylogenetic associations between hosts and parasitoids reflected 
nonrandomly structured interactions between phylogenetic trees of hosts and parasitoids. Further, 
host-parasitoid network structure was influenced by tree species richness, tree phylogenetic diver-
sity, and canopy cover. Our study indicates that the composition of higher trophic levels and corre-
sponding interaction networks are determined by plant diversity and canopy cover, especially via 
trophic links in species-rich ecosystems.

Introduction
Understanding the ecological consequences of biodiversity loss is an increasingly important task 
in ecology, given the ongoing biodiversity crisis (Isbell et al., 2023). Representing the interdepen-
dencies among organisms, ecological networks reflect whether and how species interact with each 
other across trophic levels, playing an indispensable role in assessing ecosystem stability and integ-
rity (de Ruiter et al., 1995; Harvey et al., 2017). Changes in network structure of higher trophic 
levels usually coincide with variations in their diversity and community composition, which could be 
in turn affected by the changes in producers via trophic cascades (Barnes et al., 2018; Gonzalez 
et al., 2020). However, we still lack a generalizable framework for how these networks and especially 
phylogenetic interdependencies among species respond to biodiversity loss in ecosystems, such as 
changes in the tree diversity of forests (Tylianakis et al., 2008; Grossman et al., 2018). To better 
understand species coexistence and its role for biodiversity conservation, we must further study the 
mechanisms on dynamics of networks from multiple perspectives (Tittensor et al., 2014; Brondizio 
et al., 2019), e.g., top-down or bottom-up. Previous studies have shown asymmetric effects of top-
down and bottom-up across trophic levels (Vidal and Murphy, 2018), shaping multitrophic commu-
nities together (Hunter et al., 1992). Moreover, the diversity and community composition of higher 
trophic levels could also be driven by microclimate, through, e.g., vegetation structure, and canopy 
cover (Fornoff et al., 2021; Perlík et al., 2023).

The host-parasitoid networks that unite bottom-up and top-down processes in many ecosystems 
are prone to strong alterations due to environmental change (Tylianakis et  al., 2006; Jeffs and 
Lewis, 2013). Insect parasitoids attack and feed on and eventually kill their insect hosts (Godfray 
and Godfray, 1994). Parasitoids are thought to be particularly sensitive to environmental changes 
(Hance et al., 2007), because species in higher trophic levels usually have smaller population sizes 
and the fluctuations in their host populations may cascade up to impact the parasitoids. Therefore, 
insect host-parasitoid systems are ideal for studying the relationships between community-level 
changes and species interactions (Jeffs and Lewis, 2013). Previous studies mainly focused on the 
influence of abiotic factors, such as elevation and habitat structure, on host-parasitoid interactions 
(e.g., Valladares et  al., 2012; Maunsell et  al., 2015; Grass et  al., 2018), and interaction struc-
ture (e.g., Cagnolo et al., 2011). However, the role of multiple components of plant diversity (i.e., 
taxonomic, functional, and phylogenetic diversity) in modifying host-parasitoid interaction networks 
remains poorly explored (but see Staab et al., 2016). Recent studies mainly focus on basic diversity 
associations between hosts and parasitoids (Ebeling et al., 2012; Schuldt et al., 2019; Guo et al., 
2021). These studies have demonstrated both direct and indirect effects (i.e., one pathway and more 
pathways via other variables) of plant diversity on both host and parasitoid diversity, possibly via 
increased niche space and resource availability (Guo et al., 2021). Nevertheless, how these patterns 
propagate to their interaction networks is still unclear. Moreover, the effects of changing plant compo-
sition extend beyond sole plant species richness. Namely, the other diversity components (e.g., plant 
phylogenetic diversity) have been shown to better predict diversity-dependent bottom-up effects 
on host-parasitoid networks (e.g., Staab et al., 2016; Staab et al., 2021). It is especially important 
to take phylogenetic dependencies (e.g., phylogenetic diversity or phylogenetic congruence) within 
and between the trophic levels into account (Webb et  al., 2002; Emerson and Gillespie, 2008). 
This makes it vital to account for multiple dimensions of biodiversity (e.g., taxonomic, phylogenetic, 
functional) and relevant trophic interactions (Peralta et al., 2015; Volf et al., 2017; Wang et al., 
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2020). These components might jointly affect host-parasitoid networks in a system with high species 
diversity. Forests have garnered special attention lately, because they represent complex and large 
ecosystems susceptible to global change (De Frenne et al., 2021; Popkin, 2021). Understanding 
how multiple dimensions of biodiversity modulate the effects of tree diversity loss on the structure 
and interaction strength of host-parasitoid networks clearly requires further study (Staab et al., 2016; 
Fornoff et al., 2019).

Here, we use standardized trap nests for solitary cavity-nesting bees, wasps, and their parasit-
oids in a large-scale subtropical forest biodiversity experiment to test how multiple dimensions of 
tree diversity and community composition influence host-parasitoid network structure. A multifaceted 
approach is particularly important when considering that associations between trophic levels might 
be nonrandom and phylogenetically structured (Volf et al., 2018; Wang et al., 2020). We aimed to 
discern the primary components of the diversity and composition of tree communities that affect 
higher trophic level interactions via quantifying the strength and complexity of associations between 
hosts and parasitoids. We expected that (a) multiple tree community metrics, such as species, phylo-
genetic, and functional diversity, and species community composition can structure host and para-
sitoid community compositions, especially via phylogenetic processes (e.g., lineages of trophic levels 
diverge and evolve over time), as species interactions often show phylogenetic conservatism (e.g., 
Pellissier et al., 2013; Peralta et al., 2015). Further, we hypothesized that (b) host-parasitoid networks 
will be more complex and stable with increasing tree species richness due to increased number of 
potential links from higher richness of hosts and parasitoids, and (c) both community and interaction 
network changes can also be related to abiotic factors, such as microclimate driven by canopy cover, 
which might play a role in structuring Hymenoptera communities (Haddad et  al., 2011; Fornoff 
et al., 2021). By better understanding the tree diversity impacts, the phylogenetic relationships, and 
the effects of abiotic factors, we can begin building a generalized framework for understanding host-
parasitoid interactions in forest ecosystems.

Results
Overall, 34,398 brood cells were collected from 13,267 tubes across 5 years of sampling (2015, 2016, 
2018, 2019, and 2020). Six families of hosts and seventeen families of parasitoids were identified. 
Among them, we found 56 host species (12 bees and 44 wasps, mean abundance and richness are 
400 and 45, respectively, for each plot) and 50 parasitoid species (38 Hymenoptera and 12 Diptera, 
mean abundance and richness are 14 and 9, respectively, for each plot). The full species list and 
their abundances are given in Supplementary file 1a. Overall, our sampling was adequate for anal-
ysis (especially for hosts), as confirmed by the sampling completeness evaluation (Figure 1—figure 
supplement 1).

Community composition of hosts and parasitoids
Host species composition was significantly related to the species and phylogenetic composition of 
the trees and parasitoid communities (see nonmetric multidimensional scaling [NMDS] axis scores 
in Figure 1; i.e., preserving the rank order of pairwise dissimilarities between samples), as well as 
to canopy cover, tree phylogenetic mean pairwise distance (MPD), elevation, and eastness (sine-
transformed radian values of aspect) (Figure 1a, Table 1, Supplementary file 1b). Parasitoid species 
composition was significantly associated with host phylogenetic diversity, tree functional diversity, 
tree MPD, eastness, and elevation, and was significantly related to tree species composition, host 
species composition, and canopy cover (Figure 1b, Table 1, Supplementary file 1c). Host phylo-
genetic composition was affected by tree species composition, tree MPD, tree functional diversity, 
canopy cover, eastness, elevation, and was especially affected by parasitoid species and phylogenetic 
composition (Figure 1c, Table 1, Supplementary file 1d). For parasitoid phylogenetic composition, 
significant relationships were found with tree species and phylogenetic composition, host species 
composition, tree functional diversity, canopy cover, elevation, and eastness (Figure  1d, Table  1, 
Supplementary file 1e). The PERMANOVA also highlighted the important role of canopy cover 
for host and parasitoid community (Supplementary file 1f–i). The Mantel test revealed a consis-
tent pattern with the NMDS analysis, highlighting a pronounced relationship between the species 
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composition of hosts and parasitoids (Supplementary file 1j). However, the correlation between the 
phylogenetic composition of hosts and parasitoids was not significant.

An effect of host composition on the composition of the parasitoid communities was further indi-
cated by a significant parafit test (p=0.032) for testing the hypothesis of coevolution between a clade 

Figure 1. Associations among tree, host, and parasitoid species and phylogenetic composition. Ordination plot of the nonmetric multidimensional 
scaling (NMDS) analysis of (a) host species composition, (b) parasitoid species composition, (c) host phylogenetic composition, and (d) parasitoid 
phylogenetic composition across the study plots (filled circles) in the BEF-China experiment. Stress = 0.23, 0.23, 0.24, and 0.20, respectively. Arrows 
indicate significant (at p<0.05) correlations of environmental variables with NMDS axis scores. Lengths of arrows are proportional to the strength of the 
correlations. Red crosses refer to the host or parasitoid species in each community. See Supplementary file 1b–e in the Supplementary Materials for 
abbreviations and statistical values.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Sampling completeness assessment.

Figure supplement 2. Overview of the study plot distribution along the two experimental tree diversity sites of BEF-China (a: Site A, b: Site B).

https://doi.org/10.7554/eLife.100202
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of hosts and a clade of parasites, suggesting nonrandom associations in the phylogenetic structure of 
parasitoid and host communities (Figure 2, Figure 2—figure supplement 1).

Host-parasitoid network associations
The linear regression model results indicated that host vulnerability and linkage density were signifi-
cantly positively associated with tree species richness. However, robustness of parasitoids was nega-
tively correlated with tree species richness, while other environmental covariates had no significant 
effects (Table 2, Figure 3; except for elevation, which was marginally significantly related to robust-
ness). Interaction evenness was significantly negatively associated with canopy cover, and interac-
tion evenness was also negatively related to eastness (Figure 4c; Table 2). Parasitoid generality was 
only marginally associated with canopy cover, and was not related to tree species richness or the 
other environmental variables. In the alternative models (tree species richness replaced by tree MPD), 
host vulnerability and linkage density were significantly positively related to tree MPD (Figure 4a 
and b; Supplementary file 1k), while robustness of parasitoids was negatively related to tree MPD 
(Figure 4—figure supplement 1, Supplementary file 1k). The results of other network metrics (para-
sitoid generality and interaction evenness) were consistent with those of the primary models. Tree 
mean nearest taxon distance (MNTD) was unrelated to any network indices. It should be noted that 
the effects of tree species richness on host-parasitoid networks (i.e., host generality, parasitoid vulner-
ability, and linkage density) are more pronounced at one site. Since no directional differences were 
observed in the effects of tree species richness (Table 2), with all effects of tree species richness being 

Table 1. Environmental correlates of dissimilarity matrixes with predictors (nonmetric multidimensional scaling [NMDS] on Morisita-
Horn dissimilarity) across the study plots.
Significant p-values are indicated in bold. See Supplementary file 1b–e for the complete information.

Host species 
community

Parasitoid species 
community

Host phylogenetic 
community

Parasitoid phylogenetic 
community

Tree phylogeny NMDS1 0.225 0.422 0.386 0.274

Tree phylogeny NMDS2 0.003 0.12 0.128 0.024

Tree composition NMDS1 0.001 0.001 0.001 0.001

Tree composition NMDS2 0.604 0.418 0.433 0.031

Canopy cover 0.001 0.001 0.001 0.004

Tree species richness 0.035 0.122 0.100 0.094

Elevation 0.005 0.007 0.001 0.001

Eastness 0.079 0.045 0.04 0.001

Northness 0.49 0.837 0.821 0.340

Slope 0.031 0.507 0.507 0.959

Tree FD (Rao’s Q) 0.094 0.019 0.021 0.031

Tree MPD 0.005 0.021 0.013 0.223

Host phylogeny NMDS1 – 0.016 – 0.584

Host phylogeny NMDS2 – 0.027 – 0.914

Host composition NMDS1 – 0.001 – 0.008

Host composition NMDS2 – 0.169 – 0.138

Parasitoid phylogeny NMDS1 0.001 – 0.001 –

Parasitoid phylogeny NMDS2 0.462 – 0.058 –

Parasitoid composition 
NMDS1 0.001 – 0.001 –

Parasitoid composition 
NMDS2 0.014 – 0.001 –

https://doi.org/10.7554/eLife.100202
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Figure 2. Dendrogram of phylogenetic congruence for the host species (below) and associated parasitoid species (above) recorded in the study. 
Each rectangle represents a different superfamily (for host species) or family (for parasitoid species). H1: Pompilidae, H2: Apoidea, H3: Vespidae; 
P1: Sarcophagidae, P2: Phoridae, P3: Bombyliidae, P4: Trigonalyidae, P5: Mutillidae, P6: Megachilidae, P7: Chrysididae, P8: Ichneumonidae, P9: 
Chalcidoidea. The trophic network of hosts and parasitoids was nonrandomly structured (parafit test: p=0.032). Host and parasitoid species names are 
given in Figure 2—figure supplement 1.

Figure 2 continued on next page

https://doi.org/10.7554/eLife.100202
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either positive or negative but one being significant, we have presented the overall pattern of these 
effects on the network indices (Figures 3 and 4).

The results of the null model analysis suggested that our metrics calculated by the observed 
network were significantly different from a random distribution (72, 71, and 77 out of 85 values for 
parasitoid generality, host vulnerability, and linkage density, respectively; all values for robustness, and 
interaction evenness), strongly demonstrating that interactions between species were not driven by 
random processes.

Discussion
Our study demonstrates that tree species richness and phylogenetic diversity play key roles in modu-
lating interacting communities of hosts and parasitoids. These interactions are further structured by 
the phylogenetic associations between hosts and parasitoids. Moreover, canopy cover partly deter-
mined host-parasitoid network patterns, including host vulnerability, linkage density, and interaction 
evenness. To some extent, this result supports a recent finding that the structure of host-parasitoid 
networks is also mediated by changes in microclimate (Fornoff et al., 2021), which is directly related 
to canopy cover. These patterns were highly associated with multiple tree diversity metrics (tree 
species, phylogenetic, and functional diversity), and compositional changes which are key to under-
stand how host-parasitoid interactions may be impacted by biodiversity loss of lower trophic levels in 
food webs through trait- and phylogeny-based processes.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Dendrogram of phylogenetic congruence for the host species (below) and associated parasitoid species (above) recorded in the 
study, showing the species name for hosts and parasitoids.

Figure 2 continued

Table 2. Summary results of linear models for parasitoid generality, host vulnerability, robustness, linkage density, and interaction 
evenness of host-parasitoid network indices at the community level across the tree species richness gradient.
Standardized parameter estimates (with standard errors, t- and p-values) are shown for the variables retained in the minimal models.

Est. SE t p

Parasitoid generality Intercept 0.176 0.016 10.96 <0.001

Canopy cover 0.033 0.016 2.03 0.046

Host vulnerability Intercept 2.873 0.08 35.89 <0.001

Elevation –0.140 0.08 –1.66 0.101

Tree species richness: Site A 0.150 0.13 1.20 0.234

Tree species richness: Site B 0.230 0.11 2.12 0.037

Robustness of parasitoids Intercept 0.630 0.01 84.43 <0.001

Tree species richness: Site A –0.022 0.01 –1.99 0.049

Tree species richness: Site B –0.019 0.01 –1.90 0.061

Linkage density

Intercept 2.038 0.04 50.99 <0.001

Elevation –0.078 0.04 –1.85 0.069

Tree species richness: Site A 0.106 0.06 1.70 0.094

Tree species richness: Site B 0.106 0.04 2.68 0.009

Intercept 0.511 0.009 59.12 0.025

Interaction evenness Canopy cover –0.037 0.007 –5.06 <0.001

Eastness –0.018 0.007 –2.50 0.015

https://doi.org/10.7554/eLife.100202
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Community composition associations
Host species composition was influenced by several factors, including the species and phylogenetic 
composition of trees and parasitoids, tree diversity (species richness and MPD), and other abiotic 
factors such as elevation and slope (Figure 1a; Table 1). The effects of tree diversity and composition 
on host species composition agree with previous study where solitary bee and wasp species compo-
sitions were related to plant community structure (e.g., Loyola and Martins, 2008). It seems likely 
that these results are based on bee linkages to pollen resources and predatory wasp linkages to the 
diverse of food sources, which may themselves be closely linked to resource heterogeneity increasing 
with tree species richness (Reitalu et al., 2019; Staab and Schuldt, 2020).

We also found that tree MPD, FD, and species composition affect parasitoid species composition 
(Figure 1b; Table 1), similarly as other studies that have found significant relationships between plant 

Figure 3. Bivariate relationships between tree species richness and network indices. Community-level relationships of network between tree species 
richness and (a) vulnerability, (b) linkage density, and (c) robustness of parasitoids. Values were adjusted for covariates of the final regression model. 
Regression lines (with 95% confidence bands) show significant (p<0.05) relationships. Note that axes are on a log scale for tree species richness.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Correlations among the predictors used in the study.

Figure 4. Bivariate relationships between tree MPD, canopy cover and network indices. Community-level relationships of network between tree 
phylogenetic mean pairwise distance and (a) vulnerability and (b) linkage density and community-level relationships of network between canopy cover, 
and (c) interaction evenness. Values were adjusted for covariates of the final regression model. Regression lines (with 95% confidence bands) show 
significant (p<0.05) relationships.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Community-level relationships of networks between tree phylogenetic mean pairwise distance (MPD) and robustness of 
parasitoids.

https://doi.org/10.7554/eLife.100202
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and parasitoid diversity in forests, including tree phylogenetic diversity (Staab et al., 2016), functional 
diversity (Rodríguez et al., 2019), and structural diversity (Schuldt et al., 2019). Similar to predators 
(Chen et al., 2023), parasitoids might also be more active or efficient with increasing tree community 
dissimilarity due to higher prey resources or lower intraguild parasitism caused by more diverse habi-
tats (Finke and Denno, 2002). On the other hand, our results also show that host species composition 
and parasitoid species composition relate to each other and their phylogenetic compositions, which 
are structured by tree communities to some extent. This pattern could propagate to the adjacent two 
higher trophic interactions through both top-down and bottom-up control.

Both host and parasitoid phylogenetic compositions were related to tree species composition 
(Figure 1c and d; Table 1). This pattern has important implications for cascading effects among trophic 
levels, in that producer communities (i.e., trees) could structure a higher trophic level community (i.e., 
parasitoids) via an intermediate trophic level (i.e., hosts). However, only parasitoids responded to 
tree phylogenetic composition. This may be because there are many caterpillar-hunting wasps in our 
host communities, and the community composition of caterpillars were usually correlated with tree 
phylogenetic communities (Wang et al., 2019). Therefore, the prey organisms highly associated with 
tree phylogenetic composition (e.g., caterpillars) might indirectly determine predatory wasp (host) 
phylogenetic composition, similarly as recently found for interactions between plants, caterpillars, 
and spiders (Chen et al., 2023). This could be further tested by analyzing the availability of food 
directly used by the wasps (e.g., caterpillars). For parasitoids, tree phylogenetic composition might 
drive the process of community assembly through trophic cascades (e.g., from plants to parasitoids 
via herbivores and host wasps) (Webb et al., 2002; Cavender-Bares et al., 2009). Additionally, para-
sitoid phylogenetic composition can be indirectly influenced by tree canopy structural diversity (e.g., 
host availability in plots with higher heterogeneity; Schuldt et al., 2019), which can be determined by 
conserved traits across tree phylogenies (Webb et al., 2002). The phylogenetic associations between 
hosts and parasitoids exhibited a nonrandom structure (significant parafit correlation; Figure  2) 
between the phylogenetic trees of the host and their parasitoids (see also Peralta et al., 2015). Such 
pattern could be further confirmed by the significant association between host phylogenetic compo-
sition and parasitoid phylogenetic composition (Figure 1c), which suggested that their interactions 
are phylogenetically structured to some extent. However, this significant pattern was observed only in 
the NMDS analysis and not in the Mantel test, suggesting that the nonrandom interactions between 
hosts and parasitoids cannot be solely explained by community similarity. Instead, the phylogenetic 
associations between hosts and parasitoids appear to be more intricate, warranting further investiga-
tion in future studies.

Moreover, the species and phylogenetic compositions of hosts and parasitoids were also related to 
canopy cover, which has been considered especially important to microclimate (Sobek et al., 2009; 
Fornoff et al., 2021). In future studies, it will be useful to incorporate other, more direct metrics of 
microclimate, such as local temperature and humidity, to determine the proximal drivers of these 
microclimatic effects (Ma et al., 2010; Fornoff et al., 2021).

Community-level host-parasitoid networks
Tree species richness did not significantly influence the diversity of hosts targeted by parasitoids 
(parasitoid generality), but caused a significant increase in the diversity of parasitoids per host species 
(host vulnerability) (Figure 3a; Table 2). This is likely because niche differentiation often influences 
network specialization via potential higher resource diversity in plots with higher tree diversity 
(López-Carretero et al., 2014). Such positive relationship between host vulnerability and tree species 
richness suggested that host-parasitoid interactions could be driven through bottom-up effects via 
benefit from tree diversity. For example, parasitoid species diversity increases more than host diversity 
with increasing tree species richness (Guo et al., 2021), resulting in an increase of host vulnerability at 
community level. According to the enemies hypothesis (Root, 1973), which predicts a positive effects 
of increasing plant richness on natural enemies of herbivores, the higher trophic levels in our study 
(e.g., predators and parasitoids) would benefit from tree diversity and, thereby, regulate herbivores 
(Staab and Schuldt, 2020). Indeed, previous studies at the same site found that bee parasitoid rich-
ness and abundance were positively related to tree species richness, but not to the abundance and 
richness of their bee hosts (Fornoff et al., 2021; Guo et al., 2021). Because our dataset considered 
all hosts and reflects an overall pattern of host-parasitoid interactions, the effects of tree species 

https://doi.org/10.7554/eLife.100202
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richness on parasitoid generality might be more complex and difficult to predict, as we found that 
neither tree species richness nor tree MPD were related to parasitoid generality. Future research 
should further explore these patterns by incorporating temporal scales and decomposing interactions 
across different functional groups (e.g., pollinators such as bees and predators such as wasps).

Linkage density was positively related to tree species richness (Figure 3b; Table 2), supporting the 
food web theory, which predicts in our case that network complexity (linkage density) depends on 
the number of plants (Blüthgen and Staab, 2024). It was expected that higher trophic levels would 
be more robust, less influenced by perturbations from lower trophic levels, when plant diversity is 
higher, as more potential interactions at lower trophic levels should theoretically increase redundancy 
and resilience of connected higher levels (Blüthgen and Klein, 2011; Fornoff et al., 2019). Although 
trees were not directly included as a trophic level in our networks, potential network complexity 
increased with tree species richness, likely enabling higher network stability/resistance (Ebeling et al., 
2011; Staab et al., 2015). For example, a network might be more sensitive to extinctions because 
of key species loss due to lower linkage density and lower redundancy (Blüthgen and Staab, 2024). 
However, parasitoid robustness was negatively related to tree species richness (Figure 3c; Table 2). 
Dilution effects may explain this, as plots with higher richness held fewer individuals of a given tree 
species. If there are strong prey item (caterpillars, grasshoppers, etc.) preferences for one species, 
there may be fewer individuals per area or they may be more densely aggregated and less likely to 
be encountered by parasitoids. This increased stochasticity in parasitoid wasps could benefit hosts by 
reducing parasitism pressure overall, weakening top-down controls.

Similar to tree species richness, tree MPD was also positively correlated with host vulnerability and 
linkage density (Figure 4a and b), meaning that the mean number of parasitoids per host species and 
number of links within the host-parasitoid system can also be promoted by tree MPD. This is in agree-
ment with several recent studies showing that plant phylogenetic diversity not only affects herbivores 
but also higher tropic levels (Pellissier et al., 2013; Staab and Schuldt, 2020; Wang et al., 2020). 
Our results suggest that the specialization and complexity of higher trophic levels can also be affected 
by plant phylogenetic diversity. This pattern can be traced to the effects of habitat heterogeneity 
caused by tree species richness and MPD on higher trophic levels via bottom-up control. The effects 
of tree MPD were consistent with effects of tree species richness on robustness of parasitoids to host 
loss. This result suggests that higher trophic levels are sensitive to changes in both plant phylogenetic 
relatedness and taxonomic species dissimilarity via trophic interactions, even the hosts are not all 
directly interacting with plants, bees excluded. Therefore, it may be that stronger linkages (e.g., more 
pronounced diversity effects on the network structure) would be found when exclusively exploring 
such plant-herbivore-parasitoid systems.

Interaction evenness was significantly negatively related to canopy cover (Figure 4c), further rein-
forcing the important role of canopy cover-modulated microclimate (likely temperature and humidity) 
for trophic interactions (Sobek et al., 2009; Fornoff et al., 2021). Our results agree with a previous 
study on ants, where plant-insect interactions were more even with more open canopies (Dáttilo and 
Dyer, 2014). In our case, canopy cover might change Hymenoptera species evenness and then further 
influence interaction evenness. Certain host species tended to nest in plots with higher canopy cover, 
which might decrease the interaction evenness by favoring parasitoids of fewer, more dominant hosts. 
This pattern would become more significant when more host and parasitoid species are in a plot, 
given the positive relationship between higher trophic level diversity and canopy cover.

Future prospects
Overall, our study enables new insights into the dynamics of host-parasitoid interactions under varying 
canopy conditions, an important step toward building a synthetic model for such biodiversity. A key 
finding was that although parasitoids and hosts respond to tree species richness, the effects of para-
sitoids on hosts were more pronounced than those of hosts on parasitoids. However, whether this 
pattern holds for other antagonistic interactions requires further investigation. Different trophic levels 
and functional groups of species responded differently to experimental changes in plant communities 
(Fornoff et al., 2021; Guo et al., 2021). This highlights the complexities of building multitrophic 
networks and calls for more studies across habitat types and taxa, to test the generality of our find-
ings. Future studies should also consider the role of host/parasitoid functional traits, because they 
might play a critical role in modifying network structures and ecosystem functioning.

https://doi.org/10.7554/eLife.100202
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Materials and methods
Study sites design
This study was conducted in the BEF-China biodiversity experiment, which is the largest tree diver-
sity experiment worldwide. The experiment is located in a subtropical forest near Xingangshan, 
Jiangxi province, south-east China (29°08′–29°11′N, 117°90′–117°93′E). The mean annual tempera-
ture is 16.7°C and mean annual precipitation 1821 mm (Yang et  al., 2013). The experiment 
includes two study sites (Site A and Site B), 4 km apart from each other, that were established in 
2009 (Site A) and 2010 (Site B), respectively. A total of 566 plots (25.8 m×25.8 m) were designed 
on the two sites, and per plot 400 trees were initially planted in 20 rows and 20 columns with a 
planting distance of 1.29 m. A tree species richness gradient (1, 2, 4, 8, 16, and 24 species) was 
established at each site, based on a species pool of 40 local, broadleaved tree species (Bruelheide 
et al., 2014). The tree species pools of the two plots are nonoverlapping (16 species for each site). 
The composition of tree species within the study plots is based on a ‘broken-stick’ design (see 
Bruelheide et al., 2014).

For our study, at both sites (Site A and Site B) eight plots of each tree species richness level (1, 2, 
4, 8) were randomly selected, as well as six and two plots of 16 and 24 mixtures. In addition, at Site 
B eight additional monocultures were sampled (Fornoff et al., 2021), resulting in 48 plots in Site B, 
including 16 monocultures, eight plots for each 2, 4, 8 mixtures and six and two plots for 16 and 24 
mixtures (there are 8 overlapping tree species across 24 mixtures at the two sites). In total, 88 study 
plots were used (40 plots on Site A and 48 plots on Site B, see Figure 1—figure supplement 2).

Sampling
We collected trap nests monthly to sample solitary bees and wasps (Staab et al., 2018) in the 88 
plots from September to November in 2015 and April to November in 2016, 2018, 2019, and 2020. 
For each plot, we installed two poles with trap nests (11 m apart from each other and 9 m away 
from the nearest adjacent plots) along a SW-NE diagonal (following the design of Ebeling et al., 
2012). Each pole stood 1.5 m above ground, and each trap nest consisted of two PVC tubes (length: 
22 cm ×diameter: 12.5 cm) filled with 75 ± 9 (SD) reed internodes of 20 cm length and diameters 
varying between 0.1 and 2.0 cm (Staab et al., 2014; Fornoff et al., 2021). Every month, we sampled 
the reeds with nesting hymenopterans and replaced them with internodes of the same diameter. All 
the samples were reared in glass test tubes under ambient conditions until specimens hatched. We 
identified hatched hosts and parasitoids to species or morphospecies (Supplementary file 1a) based 
on reference specimens (vouchered at the Institute of Zoology, CAS, Beijing). We were interested 
in the general patterns of host-parasitoid interactions at the community level, so for the analysis we 
did not distinguish between the two life-history strategies of parasitoids (true parasitoids and klep-
toparasitoids, including hymenopteran and dipteran parasitoids) because they both have the same 
ecological result, death of host brood cells. We evaluated our sampling completeness with r package 
‘iNEXT’ (Hsieh et al., 2016).

DNA extraction and amplification
All specimens were sequenced for a region of the mitochondrial cytochrome c oxidase subunit 
I (COI) gene (Hebert et  al., 2003). We extracted whole-genomic DNA of hosts and parasitoids 
using DNeasy Blood & Tissue Kits (QIAGEN GmbH, Hilden, Germany), following the manufactur-
er’s protocols. COI sequences of samples were amplified using universal primer pairs, LCO1490 
(​GGTC​​AACA​​AATC​​ATAA​​AGAT​​ATTG​G) as the forward primer and HCO2198 (​TAAA​​CTTC​​AGGG​​
TGAC​​CAAA​​AAAT​​CA) or HCOout (​CCAG​​GTAA​​AATT​​AAAA​​TATA​​AACT​​TC) as the reverse primer. We 
carried out polymerase chain reactions (PCRs) in 96-well plates with 30  μl reactions containing 
10 μl ddH2O, 15 μl Premix PrimeSTAR HS (TaKaRa), 1 µl of each primer at 10 μM, and 3 μl template 
genomic DNA using a thermo cycling profile. The PCR procedure is as follows: 94°C for 1 min; 94°C 
for 1 min, 45°C for 1.5 min and 72°C for 1.5 min, cycle for 5 times; 94°C for 2 min, 58°C for 1.5 min 
and 72°C for 1 min, cycle for 36 times; 72°C for 5 min. We performed all PCRs on an Eppendorf 
Mastercycler gradient, which were then visualized on a 1% agarose gel. Samples with clean single 
bands were sequenced after PCR purification using BigDye v3.1 on an ABI 3730xl DNA Analyser 
(Applied Biosystems).

https://doi.org/10.7554/eLife.100202
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Sequence alignment and phylogenetic analysis
We applied MAFFT (Katoh et al., 2002) to align all sequences, then translated the nucleotides into 
amino acids via MEGA v7.0 (Kumar et  al., 2016) to check for the presence of stop codons with 
manual adjustments. Host and parasitoid sequences were then aligned against the references using a 
Perl-based DNA barcode aligner (Chesters, 2019).

We employed two strategies to improve the phylogenetic structure of a DNA barcode phylogeny, 
which demonstrably improve resulting phylogeny-based diversity indices (Macías-Hernández et al., 
2020). These include the integration of (a) molecular sequences of the plot data and (b) phylogenetic 
relationships from other molecular datasets. Integration was achieved following Wang et al., 2020, 
and Chesters, 2020: reference DNA barcodes of Hymenoptera and Diptera were downloaded from 
the BOLD API (https://bench.boldsystems.org/index.php/API_Public), which were variously processed 
(e.g., to retain only fully taxonomically labeled barcodes, to remove low-quality or mislabeled entries, 
and to dereplicate to a single exemplar per species), and then aligned (Chesters, 2019). A single 
outgroup was included for which we selected the most appropriate insect order sister to Diptera 
and Hymenoptera (Misof et al., 2014), a representative of the order Psocoptera (Psocidae, Psocus 
leidyi). We then constructed a phylogeny of the references and subjects, with references constrained 
according to the method described earlier (Chesters, 2020). A number of backbone topologies were 
integrated for setting hard and soft constraints, including a transcriptomics-derived topology (Ches-
ters, 2020), a mitogenome tree of insects (Chesters, 2017), Diptera-specific trees (Wiegmann et al., 
2011; Cranston et al., 2012; Ament, 2017), and Hymenoptera-specific trees (Peters et al., 2011; 
Branstetter et  al., 2017; Cardinal, 2018). The constrained inference was conducted with RaxML 
version 8 (Stamatakis, 2014) under the standard GTRGAMMA DNA model with 24 rate categories. 
According to the backbone trees used, most taxa present were monophyletic with a notable excep-
tion of Crabronidae, for which there is emerging phylogenomic evidence of its polyphyly (Sann et al., 
2018).

Tree phylogenetic diversity, functional diversity, and environmental 
covariates
The phylogenetic diversity of the tree communities was quantified by calculating wood volume-
weighted phylogenetic MPD (Tucker et al., 2017). Tree wood volume was estimated from data on 
basal area and tree height (Bongers et al., 2021) measured in the center of each plot. Moreover, 
to represent variations toward the tips of the phylogeny beyond MPD, we additionally calculated 
MNTD, which is a measure that quantifies the distance between each species and its nearest 
neighbor on the phylogenetic tree (Webb, 2000). Phylogenetic metrics of trees (tree MPD and 
MNTD) were calculated based on a maximum likelihood phylogenetic tree available for the tree 
species in our study area (Michalski et al., 2017). Considering that predatory wasps mainly feed 
on herbivorous caterpillars, we calculated tree functional diversity to test the indirect effects on 
hymenopteran communities and relevant network indices. Specifically, seven leaf traits were used 
for calculation of tree functional diversity, which was calculated as the MPD in trait values among 
tree species, weighted by tree wood volume, and expressed as Rao’s Q (Ricotta and Moretti, 
2011), including specific leaf area, leaf toughness, leaf dry matter content, leaf carbon content, 
ratio of leaf carbon to nitrogen, leaf magnesium content, and leaf calcium content. These func-
tional traits were commonly related to higher trophic levels in our study area, such as herbivores 
and predators (Wang et al., 2020; Chen et al., 2023), which are the main food resources of our 
predatory wasps. All of the traits were measured on pooled samples of sun-exposed leaves of a 
minimum of five tree individuals per species following standard protocols (Pérez‐Harguindeguy 
et al., 2003).

As our analyses mainly compare community patterns among study plots, we additionally consid-
ered potential effects of environmental variation by using plot means of slope, elevation, ‘eastness’ 
(sine-transformed radian values of aspect), and ‘northness’ (cosine-transformed radian values of 
aspect) as environmental covariates that characterize the heterogeneity of the study plots. We also 
accounted for the potential effects of canopy cover at plot level for host-parasitoid interactions, as 
it can structure hymenopteran communities (Perlík et al., 2023). Canopy cover was calculated as in 
Fornoff et al., 2021, based on hemispherical photographs.

https://doi.org/10.7554/eLife.100202
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Statistical analysis
All analyses were conducted in R 4.1.2 with the packages ape, vegan, picante, bipartite, and caper 
(http://www.R-project.org). Prior to analysis, samples from the 5 years (2015, 2016, 2018, 2019, and 
2020) were pooled at the plot level to discern overall and generalizable effects permeating this 
system. We excluded three plots with no living trees because of high mortality, resulting in 85 plots 
in the final analysis.

Composition of trees, hosts, and parasitoids
The species and phylogenetic composition of trees, hosts, and parasitoids were quantified with NMDS 
analysis based on Morisita-Horn distances. The minimum number of required dimensions in the NMDS 
based on the reduction in stress value was determined in the analysis (k=2 in our case). We centered 
the results to acquire maximum variance on the first dimension, and used the principal components 
rotation in the analysis. The phylogenetic composition was calculated by MPD among the host or 
parasitoid communities per plot with the R package ‘picante’ applying the ‘mpd’ function. To test 
the influence of study plot heterogeneity on these relationships, we fitted their standardized values 
(see vectors in Supplementary file 1b) to the ordination on the basis of a regression with the NMDS 
axis scores (Quinn and Keough, 2002). NMDS was widely used to summarize the variation in species 
composition across plots. The two axes extracted from the NMDS represent gradients in community 
composition, where each axis reflects a subset of the compositional variation. These axes should not 
be interpreted in isolation, as the overall species composition is co-determined by their combined 
variation. For clarity, results were interpreted based on the relationships of variables with the composi-
tional gradients captured by both axes together. For the analysis, we considered tree species richness, 
tree functional and phylogenetic diversity, canopy cover, and environmental covariates (elevation, 
eastness, northness, and slope) as plot characteristics. We assessed the significance of correlations 
with permutation tests (permutation: n=999). To strengthen the robustness of our findings based 
on NMDS, we further validated the composition results using Mantel test and PERMANOVA (with 
‘adonis2’) for correlation between communities and relationships between communities and environ-
mental variables.

Phylogenetic match of hosts and parasitoids
In addition, we used a parafit test (9999 permutations) with the R package ‘ape’ to test whether 
the associations were nonrandom between hosts and parasitoids. This is widely used to assess host-
parasite co-phylogeny by analyzing the congruence between host and parasite phylogenies using 
a distance-based matrix approach. The species that were not attacked by parasitoids or failed to 
generate sequences were excluded from the analyses. For species abundance and composition, see 
Supplementary file 1a.

Host-parasitoid interactions
We constructed quantitative host-parasitoid networks at community level with the R package ‘bipar-
tite’ for each plot of the two sites. Bees and wasps were considered together as hosts because there 
were too few abundant bee species to analyze separate interaction networks for bees and wasps. We 
calculated five indices to quantitatively characterize the structure of the interaction networks (Blüthgen 
and Staab, 2024): weighted parasitoid generality (effective number of host species per parasitoid 
species), weighted host vulnerability (effective number of parasitoid species attacking a host species), 
robustness (degree of network stability), linkage density (degree of network specialization), and inter-
action evenness (degree of network evenness). Parasitoid generality was defined as the weighted 
mean number of host species per parasitoid species, Gqw =‍

∑J
j=1

Aj
m 2Hj

‍, with Aj being the number of 
interactions of parasitoid species j, m the total number of interactions of all species, and Hj the Shannon 
diversity of interactions of parasitoid species j. Host vulnerability was the weighted mean number of 
parasitoid species per host species, vulnerability =‍

∑I
i=1

Ai
m 2Hi

‍ (Bersier et al., 2002). Robustness was 
defined as the area under the extinction curve, reflecting the degree of decreases of one trophic 
level with the random elimination species of the other trophic levels, here using the robustness index 

for higher trophic levels (i.e., parasitoids). For linkage density, 
‍
Lq = 0.5

(∑J
j=1

Aj
m 2Hj +

∑I
i=1

Ai
m 2Hi

)
‍
, we 

used the realized proportion of possible links between the two trophic levels as the mean number of 
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interactions per species across the entire network (Tylianakis et al., 2007). Interaction evenness was 
defined as ES = ‍−

∑
i
∑

j pijlnpij/lnIJ ‍, which is used to describe Shannon’s evenness of network inter-
actions (Dormann et al., 2009). To check whether all network indices significantly differ from chance 
across all study plots, we used Patefield null models (Dormann et al., 2009) to compare observed 
indices with simulated values (10,000 times).

Linear models
To test the effects of tree species richness, tree phylogenetic, and functional diversity, as well as 
canopy cover and the other environmental covariates (including slope, elevation, eastness, and 
northness) on the five network indices (vulnerability, generality, linkage density, interaction evenness, 
robustness of parasitoids), we used simple linear models. For our analyses, we included the interac-
tions between site and tree species richness, site and tree MPD, and site and tree functional diversity 
as predictors. Given the strong correlation between tree species richness and tree MPD (Pearson’s 
r=0.74, p<0.01), we excluded tree MPD in the models where tree species richness was a predictor. To 
evaluate the potential effects caused by tree MPD, we also ran alternative models where tree species 
richness was replaced with tree MPD. We simplified all models by gradually removing nonsignificant 
factors to obtain the most parsimonious model with the lowest AICc (Table 2, Supplementary file 1k). 
To ensure that the analyses were not strongly affected by multicollinearity, the correlations among all 
predictors were tested (Figure 3—figure supplement 1), and variance inflation factors of our statis-
tical models were checked.
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