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Abstract 

Plants response to various biotic and abiotic factors requires not only the de novo synthesis of proteins and enzymes 
but also their precise and timely degradation. The latter is achieved through protein degradation machinery 
such as the ubiquitin proteasome pathway (UPS). The UPS plays a central role in maintaining cellular physiology 
and orchestrating plant response to stresses responses. The UPS regulates all stages of defense response from patho-
gen perception to mounting defense response, this make the UPS a suitable candidate for host manipulation. Viruses 
are obligatory intracellular pathogens and master of manipulating host defense machinery for successful infection 
and spread. Several reports suggest a dynamic interaction between the host UPS machinery and viruses. This review 
focuses on our current understanding of the involvement of UPS in defense against plant viruses and how viruses 
have evolved mechanisms to counter and exploit UPS machinery for their advantage.
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Introduction
Human civilization is sustained by plants which are the 
sources of food and many essential non-food products, 
such as medicines, wood, textiles, rubber, and industrial 
chemicals. Throughout the life cycle, beginning from 
seed germination to senescence and death and defense 
against abiotic and biotic stresses, plants undergo sev-
eral processes that involve coordinated action of dif-
ferent cellular machinery and require a high degree of 

proteome plasticity (Orosa et  al. 2020). These processes 
require the timely synthesis and turnover of regulatory 
proteins when their role is no longer necessary. This pro-
tein turnover is governed by highly sophisticated protein 
degradation pathways known as the Ubiquitin–pro-
teasome systems (UPS) (Sadanandom et  al. 2012) and 
autophagy (Li and Vierstra 2012; Marshall and Vierstra 
2018). The autophagy pathway is responsible for degra-
dation and recycling of cytoplasmic components, includ-
ing proteins, damaged nuclear fragments, dysfunctional 
complexes, and even whole organelles whereas the UPS 
is specifically involved in the turnover of proteins (Hua 
and Vierstra 2011; Marshall and Vierstra 2018). The UPS 
is highly conserved among eukaryotes, and involves an 
intricate array of enzymes and enzyme complexes that 
attach ubiquitin moieties to target proteins, degrade the 
ubiquitylated protein and recycle the ubiquitin moieties 
(Vierstra 2009).

Being sessile in nature, plants are constantly attacked 
by various pathogens including viruses. During evolution, 
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plants have evolved sophisticated mechanisms to per-
ceive the presence of pathogen-specific signatures, and 
this perception activates different downstream defense 
signaling pathways (Jones and Dangl 2006). Viruses are 
tiny, obligate parasites with a small genome size and 
encodes a few multifunctional proteins. Viral proteins 
perform dual functions of hijacking the host’s cellular 
machinery to support viral replication and spread and 
simultaneously neutralizing host defense system. This 
tug-of-war between the host and viruses involves com-
plex multilayered dynamic interactions, and the UPS 
system plays a crucial regulatory role in these processes 
by coordinating host protein turnover and targeting viral 
proteins for degradation. This attribute makes the UPS 
a potent target of viral pathogens to neutralize theUPS 
mediated defense.

There is a considerable amount of research evidence 
available on various host defense pathways such as RNAi, 
hormones-mediated defense, R-gene mediated defense 
in virus resistance, but the role of UPS in defense against 
viral pathogens and in viral pathogenesis have started to 
unfold recently with evidence suggesting both the antivi-
ral and proviral role of host UPS machinery. This review 
discusses the progress made in the past two decades to 
unfold the role of UPS in virus resistance and how viruses 
have evolved mechanisms to counter UPS-mediated host 
defense and even utilize UPS components to neutralize 
host defense.

The plant UPS system
A proteome represents the complete set of proteins 
expressed by a plant during its life cycle. The plant pro-
teome remains dynamic throughout the life cycle and 
requires biosynthesis of new proteins and degradation of 
proteins whose biological function is not required. This 
proteome plasticity is governed by the UPS which ena-
bles plants to alter their proteome in response to devel-
opmental and environmental cues (Smalle et  al. 2003; 
Kurepa et al. 2008; Orosa et al. 2020).

The UPS mediated degradation of a target protein 
begins with covalent attachment of multiple ubiqui-
tin protein subunits, a highly conserved protein among 
eukaryotes, a target protein followed by its degradation 
through 26S proteasome (Callis et  al. 1989; Doroodian 
and Hua 2021). Ubiquitination of a protein is a multistep 
process that involves sequential actions of ubiquitin-
activating (E1), ubiquitin-conjugating (E2), and ubiqui-
tin-ligase (E3) enzymes (Vierstra 2009). In the first step, 
an E1 activates the ubiquitin moiety by forming a high-
energy thioester bond; this activated ubiquitin moiety is 
then transferred to a cysteine residue of E2. In the final 
step, the E2 partners with an E3 and transfers ubiquitin 
to a lysine residue of the target substrate (Vierstra 2009; 

Callis 2014) for in depth details, see (Callis 2014). This 
process is repeated multiple times to obtain polyubiqui-
tinated target protein. The components of the UPS show 
hierarchy in that eukaryote genomes encode for one or 
two E1, 10 s of E2 and 100 s of E3. The first two enzymes 
of this enzymatic cascade are highly conserved in eukar-
yotes with only two E1 protein and 37 predicted E2 
proteins are encoded by Arabidopsis (Downes and Vier-
stra 2005; Dielen et  al. 2010; Callis 2014). On the other 
hand Arabidopsis genome encodes over 1300 E3 ligases 
(Downes and Vierstra 2005; Dielen et al. 2010). The abun-
dance and diversity of E3 ligases compared to E1 and E2 
shows their role in a wide variety of physiological pro-
cess including biotic stress response. For further in depth 
detail on E3 ligases please see (Mazzucotelli et al. 2006; 
Chen and Hellmann 2013).

The polyubiquitinated proteins become the substrate 
of 26S proteasome which is highly conserved in eukary-
otes including plants. The 26S proteasome is composed 
of two subunits: the 19S regulatory particle (RP) and the 
20S core particle (CP) (Voges et al. 1999; Yang et al. 2004; 
Bard et al. 2018). The 19S RP is further composed of two 
subcomplexes: the base and the lid. The base subunit is 
composed of six distinct ATPase subunits and performs 
translocation and unfolding of proteins using the energy 
from ATP hydrolysis, while the lid function as a scaffold 
for targeted protein engagement and deubiquitination. 
The 20S CP has a barrel-like structure composed of two 
sets of α and β rings with distinct peptidase sites. This 
barrel forms a proteolytic core where the degradation of 
target proteins occurs (Vierstra 2009; Dielen et al. 2010; 
Stone 2014).

There is a considerable amount of research evidence 
available on various host defense pathways such as RNAi, 
hormones-mediated defense, R-gene mediated defense 
in virus resistance, but the role of UPS in defense against 
viral pathogens and in viral pathogenesis have started to 
unfold recently with evidence suggesting both the antivi-
ral and proviral role of host UPS machinery. This review 
discusses the progress made in the past two decades to 
unfold the role of UPS in virus resistance and how viruses 
have evolved mechanisms to counter UPS-mediated host 
defense and even utilize UPS components to neutralize 
host defense.

Antiviral roles of the UPS
UPS machinery is highly conserved in eukaryotes and 
plays a vital role in protein turnover, which is central to 
the normal functioning of the cells (Callis and Vierstra 
1990; Bachmair et al. 1990). To successfully establish an 
infection, virus-encoded proteins interact with several 
host proteins and hijack the host’s cellular machinery 
to create a favorable environment for virus replication, 
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translation, and movement. This multipoint interaction 
makes viral proteins a suitable target for UPS-mediated 
degradation for defense against viral pathogens  (Fig.  1). 
Earlier pieces of evidence on the role of the ubiquitin 
pathway in viral defense come from the work of (Dunigan 
et al. 1988; Becker et al. 1993; Reichel and Beachy 2000; 
Jockusch and Wiegand 2003; Takizawa et al. 2005).

Initially, the Ubiquitin pathway was identified as an 
essential component in N-gene-mediated resistance 
against a tobamovirus, tobacco mosaic virus (TMV) 
(Liu et al. 2002). Several viral proteins were identified as 
the target of the UPS-mediated degradation. The move-
ment protein of a Tymovirus, turnip yellow mosaic virus 
(TYMV) was identified as a substrate for ubiquitination 
which undergoes selective proteolysis by UPS machinery 
(Drugeon and Jupin 2002). TYMV RdRp, when expressed 
in insect cells, is phosphorylated by the cellular phos-
phorylase in the putative PEST (Proline, Glutamate, 
Serine, and Threonine) sequence. Post-phosphorylation 
ubiquitination of TYMV RdRp in the insect cells sug-
gests that TYMV RdRp is a target of UPS machinery for 
degradation (Héricourt et al. 2000). Further, site directed 

mutagenesis of TYMV RdRp in PEST sequence and 
lysine residues led to the stabilization of Camborde and 
coworkers provided further evidence for the involvement 
of UPS in the degradation of TYMV RdRp and regulation 
of TYMV replication through site-directed mutagenesis 
of PEST sequence and lysine (Lys) residues. Mutations 
in the PEST sequence and Lys residues led to the stabi-
lization of RdRp (Camborde et  al. 2010). These results 
suggest that the UPS pathway regulates TYMV replica-
tion through the degradation of RdRp. Tombusvirus, 
tomato bushy stunt virus, (TBSV) encoded P33, a rep-
lication cofactor, which functions as an RNA chaperon, 
and p92pol, which is an RdRp, function together in TBSV 
replication. In yeast, these proteins interact with Rsp5p, 
which belongs to the Nedd4 ubiquitin ligase family. 
Interaction of Rsp5p, with P33 and p92pol, causes selec-
tive degradation of p92pol. This selective degradation 
of TBSV p92pol was independent of the HECT domain 
of Rsp5p, responsible for ubiquitination. Thus, suggest-
ing that Rsp5p interaction with p33 and p92 rather than 
ubiquitination is responsible for the inhibition of TBSV 
replication. Further, it was shown that downregulation of 
Rsp5p led to higher replication of TBSV repRNA while 

Fig. 1 A diagram illustrating the viral proteins involved in modulating proteasomal pathway complex. Viral factors such as βC1 and C2 
(begomovirus components) block the ubiquitin pathway and promote viral infection. Consequently, phytohormone signaling gets 
altered, especially JA signaling, which influences the plant’s defense dynamics towards the vector. JAZ = JASMONATE ZIM DOMAIN, 
MYC2 = Myelocytomatosis transcription factors 2, JA-Ile = Jasmonic acid-isoleucine conjugate, Ub = Ubiquitination factors, SKP1 = S-phase kinase 
associated protein 1, CUL1 = Cullin1, and RPS27A = ubiquitin-40S ribosomal protein S27a
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overexpression of Rsp5p inhibited the accumulation of 
TBSV repRNA in yeast (Barajas and Nagy 2010; Qin et al. 
2012). 

In transgenic Arabidopsis plants expressing a GFP 
fused movement protein (MP17) of a Polerovirus, 
potato leafroll virus (PLRV), MP17 localizes to second-
ary branched plasmodesmata (PD) in the source tissue 
but not to simple PD in the sink tissues. Unraveling the 
intracellular transport of MP17 using inhibitors of dif-
ferent components of the intracellular transport system 
indicated that treatment of transgenic plants with a pro-
teasome inhibitor, clasto-lactacystin ß-lactone (CLL) 
led to the aggregation of MP17 in aggresome-like struc-
tures (Vogel et  al. 2007). These results suggest that the 
26S proteasome system targets the MP17 protein in the 
sink tissue. The Potexvirus, potato virus X (PVX) TGBp3 
movement protein is a target of the ER-associated pro-
tein degradation (ERAD) pathway (Ju et al. 2008). Treat-
ment with the proteasome inhibitor MG132 delayed the 
degradation of GFP-tagged TGBp3 and TGBp3 mutants, 
indicating that the proteasome degradation pathway con-
trols the accumulation of wild-type and mutant TGBp3: 
GFP during PVX infection (Ju et al. 2008).

Viral suppressors of RNA silencing (VSRs) are special-
ized proteins that block antiviral RNA silencing machin-
ery at various stages, and UPS-mediated degradation of 

VSRs could be a key strategy for developing resistance 
against plant viruses. This strategy is utilized in rice and 
Nicotiana benthamiana against Tenuivirus, rice stripe 
virus (RSV). Ubiquitin-like protein 5 (UBL5) from rice 
and N. benthamiana targets silencing suppressor P3 pro-
tein through the 26S proteasome pathway. Silencing of 
NbUBL5 promotes infection of RSV, while over-expres-
sion of UBL5 from rice and tobacco confers resistance. 
Further, UBL5 was found to degrade P3 through ubiqui-
tin receptors such as RPN10 and RPN13, and silencing of 
either RPN10 or RPN13 abolished the ubiquitin-medi-
ated degradation of P3 (Chen et al. 2020a).

E3 ubiquitin ligases are flexible and highly diverse 
regulators of the UPS pathway. E3 ligases form the 
core of ubiquitin-mediated defense and act by attach-
ing ubiquitin moieties to the target protein (Chen and 
Hellmann 2013; Kumar et al. 2022). In Nicotiana bentha-
miana, Ubiquitin E3 ligase containing RING domain 
1 (NbUbE3R1) restricts bamboo mosaic virus (BaMV) 
replication through binding with BaMV replicase pro-
tein. Knockdown of NbUbE3R1 via tobacco rattle virus 
(TRV) mediated virus induced gene silencing (VIGS) 
enhanced BaMV replication, while over-expression of 
NbUbE3R1 and its derivatives restrict the accumulation 
of BaMV (Chen et  al. 2019). Beta satellites associated 
with monopartite begomoviruses encode for βC1 protein 

Fig. 2 Schematic image depicting host factor promoting viral proteins or the factors towards ubiquitin mediated proteasomal pathways 
to suppress viral infection. UBL5- ubiquitin like protein 5, RSV- Rice strip virus, NbUbE3R1- Ubiquitin E3 Ligase containing RING domain 1, 
BaMV- Bamboo mosaic virus, RFP1- RING-finger protein 1, TYLCV- Tomato yellow leaf curl virus, RFPH 2–10- RING-finger E3 ubiquitin ligase, RDV- Rice 
dwarf virus, SAMDC3- S-adenosyl Methionine decarboxylase 3, and BSMV- Barly strip mosaic virus
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which function as a pathogenicity factor (Briddon et  al. 
2003; Kumari et  al. 2011). Due to their involvement in 
symptom induction and neutralizing host defense, βC1 
protein becomes a target of the UPS system. An E3 ligase 
RING-finger protein from tobacco termed as NtRFP1 
interacts with a geminivirus, tomato yellow leaf curl virus 
(TYLCV) encoded βC1 protein, which is a pathogenicity 
factor. Further investigation revealed that TYLCV-βC1 
induces the expression of NtRFP1, which in turn ubiq-
uitinates βC1 to promote its degradation by the 26S 
proteasome pathway (Shen et  al. 2016). Supporting the 
evidence, it was also demonstrated that NtRFP1 overex-
pression attenuates symptoms exhibited by either βC1 
alone or by a virus with functional βC1 and silencing of 
NtRFP1 displays enhanced symptom severity in tobacco 
(Shen et al. 2016). Geminivirus, tomato leaf curl Gujarat 
virus (ToLCGV) infection in N. benthamiana overex-
pressing tobacco RDR1 gene (NtRDR1) shows symptom 
recovery, and the plant exhibited reduced expression of 
COP9 complex subunit-7 suggesting the involvement 
of system other than UPS in defense against ToLCGV 
(Prakash et  al. 2020). The RING-finger E3 ubiquitin 
ligase OsRFPH2-10 plays an antiviral role and mediates 
the degradation of rice dwarf virus (RDV) encoded P2 
protein through proteasome pathways during the early 
phase of infection (Liu et  al. 2014). S-adenosylmethio-
nine (SAM) is a vital methyl donor for several pathways 
in plants (Wink 1997). Members of SAM pathways also 
use ubiquitin as a tool of defense against viruses (Mäki-
nen and De 2019). SAM decarboxylase3 (SAMDC3) from 
wheat and N. benthamiana interact with γb of Barley 
stripe mosaic virus and positively regulate the 26S pro-
teasomal pathway against the virus. SAMDC3 is shown 
to ubiquitinate γb in the PEST (Proline, Glutamate, Ser-
ine, and Threonine) domain. Further, overexpression of 
SAMDC3 led to the destabilization of γb and reduced 
viral infection, while the silencing led to enhanced viral 
infection (Li et al. 2022).

Proviral roles of UPS
Viruses, with their limited coding capacity, encode for 
fewer multifunctional and specialized proteins to estab-
lish infection and counter host defense pathways. One 
typical example of viruses evolving specialized proteins 
to counter host defense machinery are VSRs. VSRs have 
been characterized in all the known viruses and exhibit 
a vast diversity of functionality to block RNA silenc-
ing machinery (Baulcombe 2004; Basu et  al. 2014). The 
evolution of VSRs to counter RNA silencing machinery 
and manipulation of miRNAs by viruses led to ques-
tions about how viruses have evolved measures to coun-
ter and even exploit UPS machinery for their benefit. 
Viruses are known to hijack host cellular machinery for 

their advantage, and it is interesting to envision how 
viruses would subvert and exploit different components 
of UPS machinery in their favor if they hijack host UPS 
machinery. With the hijacking of host UPS machinery, 
viruses can neutralize host defense through the degrada-
tion of host defense proteins (Fig. 2). In this section, we 
will emphasize examples of viruses targeting and utilizing 
host UPS machinery to their advantage.

DNA methylation of the cytosine base is a reversible 
epigenetic marker that plays a significant role in regu-
lating gene expression, and transposon and transgene 
silencing (Mahfouz 2010; Wambui Mbichi et  al. 2020; 
Kawakatsu 2020). Plants use DNA methylation to defend 
against DNA viruses (Raja et  al. 2008; Buchmann et  al. 
2009; Yang et al. 2011; Guo et al. 2022). The major play-
ers in the RNA-directed DNA methylation (RdDM) path-
way are methyl group donor SAM, domains rearranged 
methyltransferase2 (DRM2), methyltransferase1 (MET1), 
Chromomethylase2 (CMT2) and Chromomethylase3 
(CMT3). VARIANT IN METHYLATION5 (VIM5) is a 
ubiquitin E3 ligase that directly targets the DNA meth-
yltransferases, METHYLTRANSFERASE 1 (MET1) and 
CHROMO-METHYLASE 3 (CMT3) for degradation 
through the ubiquitin-26S proteasome proteolytic path-
way (Mahfouz 2010; Kawakatsu 2020).

Geminivirus, beet severe curly top virus (BSCTV), 
utilizes VIM5 to reduce symmetric methylation in the 
promoter region (Chen et  al. 2020b). BSCTV infection 
induces VIM5 expression in rosette leaf tissues of Arabi-
dopsis through replication-initiator protein, which acti-
vates the expression of C2 and C3 proteins, leading to 
reduced symmetric methylation in the promoter of C2-3 
and the onset of disease symptoms (Chen et  al. 2020b). 
The same BSCTV-C2 interacts with S-adenosyl-methio-
nine decarboxylase 1 (SAMDC1) (Zhang et  al. 2011), a 
key enzyme, for the maintenance of S-adenosyl-methio-
nine (SAM)/decarboxylated S-adenosyl-methionine 
(dcSAM) balance and trans-methylation. BSCTV-
C2 hijacks the 26S proteasome pathway to stabilize 
SAMDC1 by attenuating the degradation of SAMDC1 to 
counter host DNA methylation-mediated gene silencing 
of the viral genome (Zhang et  al. 2011). Song and cow-
orkers identified a novel major latex protein-like protein 
43 in Nicotiana benthamiana (NbMLP43) that conferred 
resistance to potato virus Y (PVY) infection (Song et al. 
2023). Interestingly, PVY infection strongly induced 
NbMLP43 at the transcription level, but the plants had 
compromised the NbMLP43 protein level. Upon fur-
ther investigation, it was observed that PVY uses UPS 
to degrade NbMLP43 via B-box zinc finger protein 24 
(NbBBX24), a light-responsive factor, which is supported 
by the direct interaction of NbMLP43 with NbBBX24. 
Ubiquitination occurred at lysine 38 (K38) within 
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NbMLP43, and as a proof of concept, non-ubiquitinated 
NbMLP43(K38R) conferred stronger resistance to RNA 
viruses (Song et al. 2023).

The C2 protein from tomato yellow leaf curl Sardinia 
virus (TYLCSV), tomato yellow leaf curl virus (TYLCV), 
and beet curly top virus (BCTV) interacts and interferes 
with the activity of COP9 signalosome (CSN), CSN5 
by derubylation of CUL1. Consequently, the interfer-
ence alters several responses regulated by the CUL1-
based SCF ubiquitin E3 ligases, such as abscisic acid, 
auxins, ethylene, gibberellins, etc., and importantly, the 
jasmonate response to accelerating the viral infection. 
Supporting this observation, methyl jasmonate (MeJA) 
treatment hindered viral infection (Lozano-Durán et  al. 
2011). A similar observation was made in the case of a 
Reovirus, rice black-streaked dwarf virus (RBSDV), 
where the RBSDV encoded P5-1 protein interferes with 
the CSN-mediated derubylation of OsCUL1 in rice by 
interacting with OsCSN5A, affecting the JA responsive 
genes (He et  al. 2020). Unlike C2-expressing transgenic 
Arabidopsis plants, P5-1 overexpression in transgenic 
rice did not overcome the infection upon application of 
JA (He et al. 2020).

Phytohormones are an integral part of the plant life 
cycle and regulate a plethora of processes, e.g., seed 
germination, root and shoot development, reproduc-
tion, flowering, biotic and abiotic responses, etc. Phyto-
hormone-mediated defense signaling forms an essential 
layer of defense against pathogens and activates down-
stream signaling. These signaling pathways rely on the 
UPS, specifically E3 Ub ligases, to perceive and initiate 
signaling transduction. The nexus of phytohormones-
UPS mediated defense signaling transduction becomes 
a crucial target of viruses to neutralize phytohormones-
mediated antiviral defense. The Auxin /indole-3-acetic 
acid proteins (Aux/IAA) family members are short lived 
nuclear proteins that act as a repressor for auxin signal-
ing, and degradation of Aux/IAA via SKP1-Cullin-F-box-
TIR1  (SCFTIR1) is essential for activation of auxin signaling 
(Abel et al. 1994). The crinivirus, tomato chlorosis virus 
(ToCV)-p22, can suppress the auxin signaling by hijack-
ing the ubiquitin pathway in plants to promote ToCV 
infection. The ToCV-encoded p22 protein inhibits auxin 
signaling by binding to the C-terminal of SKP1 and inter-
feres with the formation of SKP1-Cullin-F-boxTIR1 (Liu 
et al. 2021).

NONEXPRESSER OF PATHOGENESIS-RELATED 
PROTEINS1 (NPR1) functions as the master regula-
tor of systemic acquired resistance mediated by salicylic 
acid (Cao et al. 1997; Shah et al. 1997; Ryals et al. 1997). 
A Tenuivirus, rice Stripe Virus (RSV), targets rice NPR1 
(OsNPR1) to modulate SA mediated defense signal-
ing. RSV encoded P2 protein promotes degradation of 

OsNPR1 by enhancing the association of OsNPR1 and 
the cullin-RING ubiquitin ligases OsCUL3a in a salicylic 
acid (SA)-independent manner (Zhang et al. 2023). It is 
important to note that OsNPR1, a master regulator of SA 
signaling, activates jasmonic acid (JA) signaling, which 
is crucial for defense against insect vectors (Zhang et al. 
2023). The activation of JA signaling by OsNPR1 disrupts 
the OsJAZ-OsMYC complex and boosts the transcrip-
tional activation activity of OsMYC2 to modulate rice 
antiviral immunity cooperatively. Interestingly, simi-
lar suppression was also observed in unrelated viruses 
(Zhang et al. 2023). C2 protein of TYLCSV affects down-
stream signaling of several phytohormones such as that 
of auxin, gibberellic acid (GA), ethylene (ET), SA and 
JA by interacting with COP9 signalosome 5 (CSN5) and 
alters the derubylation activity of the CSN (Lozano-
Durán et  al. 2011). Studies using transcriptomics and 
challenge inoculation tools with A. thaliana expressing 
TYLSCV-C2 also support the TYLSCV-C2 mediated 
suppression of JA signaling mediated defense (Rosas-
Díaz et al. 2016).

Plants synthesize JA in response to developmental and 
environmental stimuli such as necrotrophic pathogen or 
herbivore attacks (Howe and Jander, 2008; Campos et al., 
2014). In plants, JA biosynthesis is repressed by JAZ 
repressors, and perception of insect pathogens or her-
bivores induces the synthesis of jasmonoyl-L-isoleucine 
(JA-Ile). JA-Ile interacts with an E3 ligase named SKP1/
CUL1/F-box coronatine insensitive1  (SCFCOI1) to promote 
UPS-mediated degradation of JAZ repressors, thereby 
activating the JA signaling pathway (Ruan et  al. 2019). 
Viruses depend on their insect vector for dispersal inside 
healthy host plants. Virus interference with JA signaling 
compromises the immune system in plants and weakens 
the plant defense against insects in a way that attracts 
the insect vector to the virus-infected plant. This phe-
nomenon is well documented in begomoviruses, where 
the virus applies various strategies to suppress JA sign-
aling by modulating the ubiquitin-mediated proteasomal 
pathway to promote the performance of insect vector or 
attract the vector toward the infected plants to acceler-
ate the spread of the virus. The βC1 protein encoded by 
betasatellite molecule cotton leaf curl Multan betasatel-
lite (CLCuMuB) associated with monopartite begomovi-
ruses cotton leaf curl Multan virus (CLCuMuV) interacts 
with tomato ubiquitin conjugase 3 (SlUBC3) and down-
regulates the ubiquitination of proteins as a counter 
defense. This observation was further supported by the 
evidence that transgenic tobacco plants over-expressing 
CLCuMuB-βC1 had reduced ubiquitinated proteins 
(Eini et  al. 2009). Begomoviruses evolved mechanisms 
to suppress the degradation of JAZ repressor as an effi-
cient strategy to inhibit JA signaling. The CLCuMuB-βC1 
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interacts with S-phase kinase-associated protein (SKP1) 
and Cullin 1 (CUL1), essential components of SCF 
complexes (Jia et  al. 2016). CLCuMuB-βC1 also dam-
ages the integrity of the  SCFCOI1 complex by interfer-
ing with SKP1 and CUL1 to hinder JA responses (Jia 
et al. 2016). Tomato yellow leaf curl virus (TYLCV) also 
adapts a similar strategy to subvert plant defense against 
insect vectors by hijacking the ubiquitin machinery, and 
it is found to be conserved in plants such as tobacco, 
tomato, and Arabidopsis. The TYLCV-C2 interacts with 
RPS27A, essential for the ubiquitin-mediated protea-
somal degradation of the repressor JAZ1 (Li et al. 2019). 
In this case, the expression of JA-responsive genes such 
as MYC2 (basic helix-loop-helix transcription factor)-
regulated genes associated with terpene biosynthesis 
was observed. Suppression of terpenes attracts the insect 
vectors towards the infected plants. The same study also 
reported a similar strategy in another monopartite bego-
moviruses papaya leaf curl China virus (PaLCuCNV) 
(Li et  al. 2019). RDV encoded Pns11 protein interacts 
with rice S-adenosyl-L-methionine synthetase (SAMS), 
which is a key component of the ethylene biosynthesis 
pathway and enhances its enzymatic activity. This inter-
action results in increased ethylene production and ele-
vated susceptibility to RDV. Transgenic plants expressing 
Pns11 or OsSAMS1 had increased levels of RDV while 
the OsSAMS1 knockout plants resisted RDV infection 
more efficiently (Zhao et al. 2017).

The HR response is an essential component of plant 
immunity induced by pathogens-specific signatures and 
cause rapid cells death at the site of infection thus limit-
ing the infection (Jones and Dangl 2006). In recent years, 
our understanding of HR regulation by ubiquitin (Ub) 
and the 26S UPS has grown significantly. Viruses have 
evolved different strategies to counter HR through con-
trolling UPS machinery. Infection of beet necrotic yellow 
vein virus (BNYVV) in sugar beets with the Rz1 resist-
ance gene induces an HR response against BNYVV in 
resistant varieties. Rz1 overcoming BNYVV isolates can 
counter this defense through the BNYVV, P25 protein. 
P25 interacts with sugar beet F-box protein and inhibits 
the formation of SCF complex to counter host defense 
response (Thiel and Varrelmann 2009; Thiel et al. 2012). 
Oat dwarf virus (ODV) belongs to the genus Mastrevi-
rus under the family Geminviridae. The RepA protein 
encoded by ODV was shown to induce HR in non-host 
Nicotiana benthamiana (Qian et  al. 2016). Analysis of 
differential expression of genes (DEGs) revealed a com-
plex and dynamic regulatory network involved in mod-
ulating RepA-induced HR using transient expression 
of ODV RepA (Hou et  al. 2018). Further investigation 
revealed that the RepA-induced HR is due to the inter-
action of RepA with RING-type E3 ligase protein named 

RING-Finger protein (RFP). The overexpression of 
NbRFP1 conferred enhanced resistance against the host, 
while vice-versa was observed when the gene was down-
regulated (Liang et al. 2023).

Conclusion and future perspective
The UPS plays an indispensable role in cellular processes, 
including defense against invading pathogens. The UPS 
machinery can intervene at every step of the virus infec-
tion cycle by targeting viral proteins for degradation. 
Viruses, in turn, have evolved specialized mechanisms 
to counter UPS machinery and even exploit UPS com-
ponents for their advantage. Most studies conducted 
focused on the UPS -virus interactions with one virus but 
in nature the same host is infected by multiple viruses at 
the same time, it would be interesting to study the inter-
action between the UPS system and multiple viruses in 
synergistic and antagonistic virus infections. These stud-
ies could be beneficial to develop durable and broad 
spectrum antiviral strategies. The dynamic interactions 
between viruses and the UPS system occur at the pro-
tein level and requires sensitive techniques to uncover 
this interaction. Due to the weak interactions between 
E3 ligases and their known substrates and the rapid deg-
radation of the target protein, it is challenging to cap-
ture the comprehensive interactome during UPS-virus 
interactions. Traditional molecular biology tools used to 
study UPS-virus interactions include ubiquitin-specific 
antibodies, affinity purification coupled with mass spec-
trometry (AP-MS), yeast two-hybrid screens, use of pro-
teasome inhibitor drugs such as MG132.. To this end, 
new sensitive technologies are required, both in vitro and 
in vivo, that can contribute to the discovery and charac-
terization of still-unknown substrates. The comprehen-
sive understanding of the UPS-virus interactions will 
facilitate the development of virus-resistant plants using 
the modern biotechnological tools such as CRISPR-Cas9 
mediated genome editing of host susceptibility factor.
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