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“There is nothing like looking, if you want to find something. You certainly usually find 
something, if you look, but it is not always quite the something you were after”. 
 
 

— J.R.R. Tolkien, “The Hobbit“. 
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SUMMARY 

The use of functional traits in ecology has enhanced our understanding of tree strategies and 

the ecological processes affecting ecosystem functioning in forests. However, while most 

research in the field focused on species-level trait differences, recent studies have 

emphasized the importance of examining variation within species (intraspecific) and even 

within individual trees (intraindividual). For instance, this variation can play a crucial role in 

how trees mediate species interactions at local scales, including tree-tree interactions or tree-

mycorrhizal fungi interactions. Consequently, understanding trait variation patterns along 

species diversity gradients is vital to addressing functional changes in forests under the 

ongoing loss of species. 

This thesis explores the patterns of intraspecific and intraindividual leaf trait variation 

in trees as response to tree and mycorrhizal fungal diversity. Using leaf-level data from several 

thousands of leaves and spectroscopy to predict leaf functional traits, I studied trait variation 

along experimental diversity gradients in subtropical China (‘BEF-China’ experimental 

platform) and temperate Germany (‘MyDiv’ experiment). Overall, I aimed to assess changes 

individual trees’ strategy in response to species diversity, study changes in intraspecific and 

intraindividual trait variation with tree species diversity, understand the contribution of 

intraspecific and intraindividual variation to community functional diversity, and explore the 

relationship between intraindividual variation and trait covariation. 

First, by working in the MyDiv experiment I aimed at understanding how tree species 

richness in combination with mycorrhizal fungal diversity drives changes in functional traits 

and in intraindividual variation. I found that specific leaf area increased with tree species 

richness, while the carbon-to-nitrogen ratio decreased with arbuscular mycorrhizal fungal 

richness. Intraindividual variation in traits from the leaf economics spectrum decreased with 

increasing tree species richness, suggesting a role of intraindividual variation in tree-to-tree 

interactions. Last, I could not find differences between two groups of trees associated 

preferably with a type of mycorrhizal fungi (arbuscular mycorrhiza trees and ectomycorrhiza 

trees) regarding their acquisitive versus conservative strategy. 
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Second, by working in the BEF-China experimental platform I aimed at elucidating how 

intraspecific trait variation and intraindividual trait variation respond to tree species richness 

and how they contribute to the functional diversity of forest stands. Intraspecific trait 

variation decreased with tree species richness to generate niche complementarity between 

conspecifics, while there was a negative effect of tree species richness on intraindividual 

variation of stomatal morphology. Further, the organization of trait variation within 

individuals and populations significantly contributes to functional diversity of forests, 

particularly in mixed stands. 

Last, by using data from the BEF-China experimental platform, I explored the 

relationship between intraindividual trait variation and trait covariation, and assessed how 

this relationship is affected by tree species diversity. I found that intraindividual trait variation 

increases with trait covariation, meaning that trees with more coordinated traits show greater 

variability in leaf traits. This relationship was influenced by the identity of the nearest 

neighbor. These results suggest that intraindividual leaf trait variation requires strong trait 

coordination to prevent maladaptive phenotypic syndromes. Additionally, I found that 

intraindividual variation in leaf calcium was negatively correlated with the neighborhood’s 

Shannon diversity. 

The primary patterns found in this thesis highlight the significance of tree species 

diversity in driving intraspecific and intraindividual trait variation. Across two different 

experiments, I observed that species diversity influences intraindividual trait variation. 

Further, even though its role in tree-tree interactions remains uncertain, high intraindividual 

variation may arise in low-diversity stands in order to improve water use efficiency or as a 

result of higher differentiation between sun and shade leaves. Intraspecific variation was 

influenced by tree species diversity as well, likely due to resource partitioning. Specifically, 

populations in monocultures exhibited a conservative strategy with high variability among 

conspecifics, whereas conspecifics in mixed stands converged toward similar acquisitive 

traits. In addition, mycorrhizal fungal diversity also influenced trait expression, suggesting 

that a greater number of fungal species enables trees to access more nutrients, particularly 

nitrogen. 
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The thesis concludes that intraindividual and intraspecific trait variation are important 

but often overlooked aspects of trait-based ecology. The findings reveal that tree species 

exhibit variation at various levels of biological organization, adjusting traits in response to 

species diversity and fungal communities. Recognizing these sources of variation may be key 

to understanding the assembly of ecological communities and plant-plant interactions. Since 

functional traits respond to environmental drivers, but simultaneously affect ecosystem 

functioning, future research should focus on linking trait variation across multiple levels of 

biological organization to biodiversity-ecosystem functioning. 
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ZUSAMMENFASSUNG 

Die Verwendung funktioneller Merkmale in der Ökologie hat unser Verständnis der 

Baumstrategien und der ökologischen Prozesse, die das Funktionieren von Ökosystemen in 

Wäldern beeinflussen, verbessert. Während sich die meisten Forschungsarbeiten auf diesem 

Gebiet jedoch auf die Unterschiede zwischen den einzelnen Arten konzentrierten, haben 

neuere Studien die Bedeutung der Untersuchung von Variationen innerhalb der Arten 

(intraspezifisch) und sogar innerhalb einzelner Bäume (intraindividuell) hervorgehoben. Diese 

Variation kann zum Beispiel eine entscheidende Rolle dabei spielen, wie Bäume auf lokaler 

Ebene Arteninteraktionen eingehen, einschließlich Baum-Baum-Interaktionen oder Baum-

Mykorrhiza-Interaktionen. Folglich ist das Verständnis der Muster der Merkmalsvariation 

entlang von Gradienten in der Artenvielfalt von entscheidender Bedeutung, um funktionelle 

Veränderungen in Wäldern angesichts des fortschreitenden Artenverlusts zu verstehen. 

In dieser Arbeit werden die Muster der intraspezifischen und intraindividuellen 

Variation von Blatteigenschaften bei Bäumen als Reaktion auf die Vielfalt von Bäumen und 

Mykorrhizapilzen untersucht. Unter Verwendung von mehreren Tausend Blättern und 

Spektroskopie zur Vorhersage von funktionellen Blatteigenschaften habe ich die 

Merkmalsvariation entlang experimenteller Diversitätsgradienten im subtropischen China 

(Versuchsplattform „BEF-China“) und im gemäßigten Deutschland (Experiment „MyDiv“) 

untersucht. Insgesamt wollte ich die Veränderungen in der Strategie einzelner Bäume in 

Abhängigkeit von der Artenvielfalt bewerten, Veränderungen in der intraspezifischen und 

intraindividuellen Merkmalsvariation mit der Baumartenvielfalt untersuchen, den Beitrag der 

intraspezifischen und intraindividuellen Variation zur funktionellen Vielfalt der Gemeinschaft 

verstehen und die Beziehung zwischen intraindividueller Variation und Merkmalskovariation 

erforschen. 

Zunächst wollte ich durch meine Arbeit im MyDiv-Experiment verstehen, wie der 

Baumartenreichtum in Kombination mit der Mykorrhizapilz-Diversität Veränderungen in den 

funktionellen Merkmalen und in der intraindividuellen Variation bewirkt. Dabei habe ich 

herausgefunden, dass die spezifische Blattfläche mit dem Reichtum an Baumarten zunahm, 

während das Kohlenstoff-Stickstoff-Verhältnis mit dem Reichtum an arbuskulären 

Mykorrhizapilzen abnahm. Die intraindividuelle Variation bei Merkmalen, die zur 
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Blattökonomie (leaf economic spectrum) beitragen nahm mit zunehmendem 

Baumartenreichtum ab, was auf eine Rolle der intraindividuellen Variation bei Interaktionen 

zwischen Bäumen hindeutet. Schließlich konnte ich zwischen zwei Gruppen von Bäumen, die 

vorzugsweise mit einer Art von Mykorrhizatypassoziiert sind (arbuskuläre Mykorrhiza-Bäume 

und Ektomykorrhiza-Bäume), keine Unterschiede in Bezug auf ihre Nährstoffökonomie 

feststellen. 

Zweitens wollte ich durch meine Arbeit in der BEF-China-Versuchsplattform 

herausfinden, wie die intraspezifische Merkmalsvariation und die intraindividuelle 

Merkmalsvariation auf den Baumartenreichtum reagieren und wie sie zur funktionellen 

Vielfalt von Waldbeständen beitragen. Die intraspezifische Merkmalsvariation nahm mit dem 

Baumartenreichtum ab, um Nischenkomplementarität zwischen Artgenossen zu erzeugen, 

während ich einen negativen Effekt des Baumartenreichtums auf die intraindividuelle 

Variation der Stomata-Morphologie feststellte. Darüber hinaus trägt die Organisation der 

Merkmalsvariation innerhalb von Individuen und Populationen erheblich zur funktionellen 

Vielfalt von Wäldern bei, insbesondere in Mischbeständen. 

Schließlich habe ich anhand von Daten aus der BEF-China-Versuchsplattform die 

Beziehung zwischen intraindividueller Merkmalsvariation und Merkmalskovariation 

betrachtet und untersucht, wie diese Beziehung durch die Baumartenvielfalt beeinflusst wird. 

Dabei habe ich herausgefunden, dass die intraindividuelle Merkmalsvariation mit der 

Merkmalskovariation zunimmt, was bedeutet, dass Bäume mit stärkerkoordinierten 

Merkmalen eine größere Variabilität bei funktionellen Blatteigenschaften aufweisen. Diese 

Beziehung wurde durch die Identität des nächsten Nachbarbaumes beeinflusst. Diese 

Ergebnisse legen nahe, dass die intraindividuelle Variation von Blatteigenschaften eine starke 

Merkmalskoordination erfordert, um maladaptive phänotypische Syndrome zu verhindern. 

Darüber hinaus habe ich festgestellt, dass die intraindividuelle Variation des 

Blattkalziumgehaltes negativ mit der Shannon-Diversität der benachbarten Bäume korreliert 

war. 

Die in dieser Arbeit gefundenen primären Muster unterstreichen die Bedeutung der 

Baumartenvielfalt für die intraspezifische und intraindividuelle Merkmalsvariation. In zwei 

verschiedenen Experimenten konnte ichzeigen, dass die Artenvielfalt die intraindividuelle 
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Merkmalsvariation beeinflusst. Auch wenn die Rolle der intraspezifischen Variation bei den 

Interaktionen zwischen Bäumen noch ungewiss ist, könnte eine hohe intraindividuelle 

Variation in Beständen mit geringer Artenvielfalt entstehen, um die Wassernutzungseffizienz 

zu verbessern oder Ergebnis einer stärkeren Differenzierung zwischen Sonnen- und 

Schattenblättern sein. Die intraspezifische Variation wurde auch durch die Baumartenvielfalt 

beeinflusst, was wahrscheinlich auf Ressourcenpartitionierungzurückzuführen ist. 

Insbesondere Populationen in Monokulturen wiesen eine konservative Strategie mit hoher 

Variabilität unter den Artgenossen auf, während Artgenossen in gemischten Beständen zu 

ähnlichen   akquisitiven Merkmalen konvergierten. Darüber hinaus beeinflusste auch die 

Vielfalt der Mykorrhizapilze die Ausprägung der funktionellen Merkmale, was darauf 

hindeutet, dass eine größere Diversität von Mykorrhizapilzen den Bäumen den Zugang zu 

mehr Nährstoffen, insbesondere Stickstoff, ermöglicht. 

Insgesamt kommt die Arbeit zu dem Schluss, dass intraindividuelle und 

intraspezifische Merkmalsvariationen wichtige, aber oft übersehene Aspekte der 

merkmalsbasierten Ökologie sind. Die Ergebnisse zeigen, dass Baumarten auf verschiedenen 

Ebenen der biologischen Organisation variieren und ihre Merkmale in Abhängigkeit von der 

Artendiversität und den Mykorrhizapilzgemeinschaften anpassen. Die Berücksichtigungdieser 

Variationsquellen kann der Schlüssel zum Verständnis des Aufbaus ökologischer 

Gemeinschaften und der Interaktionen zwischen Pflanzen sein. Da funktionelle Merkmale auf 

Umweltfaktoren reagieren, sich aber gleichzeitig auf das Funktionieren des Ökosystems 

auswirken, sollte sich künftige Forschung darauf konzentrieren, die Merkmalsvariation auf 

verschiedenen Ebenen mit dem Funktionieren der Biodiversität und des Ökosystems zu 

verknüpfen. 
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CHAPTER 1 

GENERAL INTRODUCTION 

Trait variation across scales 

With ca. 2 million of species living on earth (Costello et al., 2012), biodiversity encompasses a 

large number of organisms differing in their ecological strategy (Díaz et al., 2016; Carmona et 

al., 2021; Junker et al., 2023). Understanding these strategies is one of the most persistent 

and fundamental challenges in ecology (Westoby et al., 2002). In plants, one of the most 

diverse groups on earth, differences in ecological strategies are enormous and explain 

adaptations to different environments. As an example, there are important differences 

between alpine plants that are characterized by small sizes and physiological adaptations that 

allow them to survive long periods in cold environments and covered by snow, and tropical 

trees that can grow tall and tend to be strong competitors for light (Díaz et al., 2016). That is 

why, ecologist have developed several frameworks that allow to describe plant ecological 

strategies, for example r/K strategist theory (MacArthur & Levins, 1967), CSR 

(competitive/stress-tolerant/ruderal) framework (Grime, 1979), and Raunkiaer’s life forms 

(Raunkiaer, 1934). However, in the last two decades, the use of functional traits has emerged 

as a new promising tool to understand plant ecological strategies with great potential to 

explain community dynamics and ecosystem functioning (Díaz & Cabido, 2001; Westoby et 

al., 2002; Violle et al., 2007). Functional traits are morphological, biochemical, physiological, 

structural, phenological, or behavioral characteristics that can be measured at the individual 

level and directly or indirectly affect overall plant fitness (Lavorel et al., 1997; Violle et al., 

2007). Among all of them, some functional traits have been especially useful to define plant 

ecological strategies. This is the case, for example, for specific leaf area, which is closely 

related to leaf lifespan and the strategy of the plant in terms of the acquisition of resources 

(Wright et al., 2004). As a result, functional traits have been widely used (1) to describe 

patterns of biodiversity (Díaz et al., 2016; Testolin et al., 2021; Weigelt et al., 2021), (2) to 

better understand ecological processes such as the sorting of species depending on the 

environment (McGill et al., 2006; Pavoine & Bonsall, 2011; Götzenberger et al., 2012) or biotic 

interactions (Kraft et al., 2015), and (3) to elucidate the biodiversity-ecosystem functioning 

relationship (Díaz & Cabido, 2001). 
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 Most of the patterns of functional trait variation have been described considering 

contrasts between species’ trait values (Wright et al., 2004; Díaz et al., 2016). Therefore, 

species were usually described by functional trait measurements collected from few 

individuals from one or few populations and averaged at the species level. However, there is 

substantial variation within species that typically arises from genetic differences, but also it 

can be the result of phenotypic plasticity (Schlichting, 1986; Pigliucci, 2005; Valladares et al., 

2007). That is why, there are, for example, dissimilarities between different population from 

the same species or between individuals belonging to the same population. Indeed, Siefert et 

al. (2015) showed that, on average for some of the most commonly used functional traits, 

intraspecific variation represented about one quarter of the total trait variability across 

ecological communities. Further, recent studies have highlighted the importance of 

considering intraspecific trait variation when studying the patterns of ecological strategies 

(Violle et al., 2012; Wong & Carmona, 2021; Chacón-Labella et al., 2023). Intraspecific 

variation occurs as a response to both the abiotic environment and biotic interactions 

(Westerband et al., 2021). Indeed, a growing body of literature focused on understanding the 

phenotypic variation as response to environmental gradients (Benavides et al., 2021; Kühn et 

al., 2021), to multiple abiotic factors such as temperature (Albert et al., 2010; Scheepens et 

al., 2010) or water availability (Hajek et al., 2016; Welles & Funk, 2021), or to changing 

environments (Valladares et al., 2014; Matesanz & Ramírez-Valiente, 2019). In contrast, the 

patterns of intraspecific trait variation in response to species interactions have been much 

less studied, which, however, could be crucial to understand species coexistence (Hart et al., 

2016). For instance, the same species can shift its trait expression in order to adopt a more 

competitive strategy (Carmona et al., 2019), as a way to avoid competition with other plant 

species (Mason et al., 2011; Wilson & Stubbs, 2012) or in response to diversity as a result of 

higher niche partitiioining (Davrinche & Haider, 2021). Further, Bolnick et al., (2011) 

suggested that the trait variability within a population could be crucial to understand the 

patterns of intraspecific competition, and should be highest in monospecific communities as 

a way to reduce intraspecific competitive interactions. Therefore, these shifts and the trait 

variability within populations emerge as potential mechanisms involved in species 

interactions. 
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 Recently, ecologists went beyond in the study of trait variation by considering the 

changes in functional traits within the same individual (hereafter referred to as intraindividual 

trait variation; Herrera, 2009). Intraindividual trait variation occurs in modular organisms, 

such as plants (but also others like corals; García-Cárdenas et al., 2023), whose body plan is 

based on copies of the same organ and/or structure (De Kroon et al., 2005). Therefore, as a 

result of phenotypic plasticity, the same individual can produce different leaves (Winn, 1996; 

Valladares & Niinemets, 2008; Møller et al., 2022), flowers (March-Salas et al., 2021) or fruits 

(Sobral et al., 2019) with the same genetic information, but different expression of it (Herrera 

et al., 2022). For example, if we focus on leaves, which are the main organ for photosynthesis, 

the same plant can exhibit differences between the top or sun leaves, which are exposed 

directly to the sunlight, and the bottom or shade leaves, which tend to receive less direct light 

(Escribano-Rocafort et al., 2016). In this case, there is spatial specialization within the same 

plant (Laurans et al., 2024), with sun leaves showing high photosynthetic rates and a drought 

tolerance strategy and shade leaves showing lower photosynthetic rates and are shade 

tolerants. This variability tends to be larger in trees, as they have high modularity and a long 

lifespan (Escribano-Rocafort et al., 2016), but it also important in perennial herbs, as reported 

for Onobrychis viciifolia (March-Salas et al., 2021) or Helleborus foetidus (Herrera et al., 2015). 

Further, intraindividual trait variation has been observed to be target of natural selection 

(Herrera et al., 2022) and to influence ecosystem functioning (Proß et al., 2023; Sobral, 2023). 

Intraindividual trait variation can also overcome intraspecific trait variation in some cases 

(Herrera et al., 2015; Møller et al., 2024), a finding that had been previously neglected. 

Therefore, there is a growing need to understand the drivers of intraindividual trait variation 

to better understand ecological strategies in plants. These environmental drivers can be light 

(Møller et al., 2024), nutrient (Davrinche & Haider, 2024) or water availability (Møller et al., 

2022, 2024), but also biotic drivers such as herbivory or plant-plant interactions (Herrera, 

2017). Speaking of the latter, intraindividual trait variation could decrease in response to local 

diversity (Proß et al., 2021), and, even though there are not yet enough studies on this topic, 

it has been suggested that intraindividual variability could reduce niche overlap between 

conspecific neighbours that directly interact. That is why, there is urge to understand if, as it 

happens with intraspecific trait variation, intraindividual trait variation is also a mechanism 

that could reduce competitive interactions. 
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Functional diversity and trait variation 

Understanding the diversity of functional traits (i.e. functional diversity) remains important 

as it positively influences ecosystem stability (de Belllo et al., 2021), ecosystem productivity 

(Bongers et al., 2021) and other ecosystem functions as well as the provisioning of ecosystem 

services (Cadotte et al., 2011). Functional diversity is often measured by using a range of 

different indices that reach higher values as the differences between trait values increase. As 

we have seen in the previous section, both intraspecific and intraindividual trait variation can 

represent substantial proportions of trait variation. Consequently, assessments failing to 

account for intraspecific and intraindividual trait variation may inaccurately estimate 

functional diversity occurring in reality. For instance, metrics of functional diversity of 

communities considering intraspecific and intraindividual trait variation should have larger 

values than those relying on species’ mean values only (Wong & Carmona, 2021). This 

difference may be less evident at a global scale, where the variation occurring within species 

may be neglectable compared to the differences between species living in completely 

different biomes and, thus, with extremely contrasting ecological strategies. However, at local 

scales, such as a forest stand or a grassland, the functional diversity of communities is 

significantly higher when intraspecific trait variation is taken in account (Puglielli et al., 2024). 

In addition, these differences are expected to be even higher if intraindividual variation is also 

considered (Palacio et al., 2019). As a result, it remains important to assess the contribution 

of intraspecific and intraindividual trait variation to functional diversity. Specifically, as the 

extent of both intraspecific and intraindividual trait variation may change in response to 

species interactions, it remains unclear how functional diversity and the contributions of 

intraspecific and intraindividual trait variation to it change in response to species interactions. 

Based on the idea that plants may enhance niche partitioning with neighbouring plants, 

Escudero et al. (2021) suggested that the contribution of intraspecific trait variation to 

functional diversity of communities should be higher in species-poor communities compared 

to species-rich ones. However, evidence is still missing on this topic. 

 

Patterns of trait covariation in plants 

In the framework of trait variation, traits do not vary independently, but instead co-vary to 

optimize some functions at the cost of others (Armbruster et al., 2014). For example, there 
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are well-studied patterns of covariation in plants such as the relationship between time of 

reproduction and plant longevity, which is strongly related to plant height (Westoby et al., 

2002; Wright et al., 2004; Díaz et al., 2016) or the covariation between the investment of 

carbon in the roots and the ability of collaboration with fungal partners (Bergmann et al., 

2020; Weigelt et al., 2021). However, the most-studied covariation pattern is the leaf 

economics spectrum (LES), which describes a trade-off between “conservative” leaves that 

have a longer lifespan and higher survival probability in response to abiotic and biotic hazards, 

and cheaply constructed “acquisitive” leaves which have higher photosynthetic rates (Wright 

et al., 2004). As a result of these patterns of covariation, there is a limited number of trait 

designs. For instance, species with higher nitrogen content in the leaves (which is strongly 

related to photosynthetic activity) cannot have a long lifespan (Osnas et al., 2013). Therefore, 

the functional variability across traits in ecological communities increases as a result of 

decreasing trait covariation (Dwyer & Laughlin, 2017; Gross et al., 2024). The same patterns 

of trait covariation also appear at the intraspecific level (Gorné et al., 2020), which suggest 

that the patterns of trait covariation and the relationship with trait diversity could be 

conserved across levels of biological organization (Boucher et al., 2013). However, we are still 

lacking empirical knowledge on what is happening at the intraindividual level. Studies using 

leaf-level data suggest that patters of trait covariation in leaves correspond to those described 

comparing only species’ mean values (Proß et al., 2021), but still do not delve into the 

relationship between trait covariation and intraindividual trait variation. 

 

Trait variation and ecosystem functioning in forests 

In the current scenario of biodiversity loss (Barnosky et al., 2011; Hooper et al., 2012), 

assessing the role of intraspecific and intraindividual variation on species interactions, as well 

as their changes in response to diversity and their contribution to functional diversity, could 

contribute to our understanding on the relationship between biodiversity and ecosystem 

functioning (Chacón-Labella et al., 2023). This could be especially relevant in forests, as we 

have already seen that trees show high variation in the expression of traits due to their 

longevity and modularity (Laurans et al., 2024). Many tree species are declining worldwide 

(Betts et al., 2017; BGCI, 2021; Boonman et al., 2024) and forests are suffering strong 
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degradation leading to the loss of local diversity (Grantham et al., 2020). Further, even though 

forest cover has increased in some parts of the globe (Hansen, 2013), many of these forest 

stands correspond to tree plantations which are used to reduce harvesting pressure on 

natural forests and as a nature-based solution to mitigate climate change and restore 

degraded land, but are usually composed of single fast-growing tree species (Messier et al., 

2022). As a result, the decline of tree species diversity should also affect their phenotypic 

variability in terms of differences between species (García-Valdés et al., 2018), but, as we 

have previously seen, this could also affect the trait variation occurring within species. In 

order to better understand the responses of intraspecific and intraindividual trait variation to 

the loss of species, which may be key to understand changes in ecosystem functioning, tree 

diversity experiments have emerged as an important tool (Bruelheide et al., 2014, 

Vanhellemont et al., 2016). Typically, tree diversity experiments aim at studying the effect of 

biodiversity on specific ecosystem functions in forests. For instance, tree diversity 

experiments have already shown that tree diversity promotes productivity (Huang et al., 

2018), stability in productivity (Schnabel et al., 2021) and resistance to drought (Fichtner et 

al., 2020; Sachsenmaier et al., 2024), among others. Nevertheless, apart from their 

importance to understand ecosystem functioning, tree diversity experiments also provide an 

interesting setting to study changes in intraspecific and intraindividual trait variation by 

providing different scenarios of tree-tree interactions (Trogisch et al., 2021). For example, 

Davrinche & Haider (2021) and Proß et al. (2024) used tree diversity experiments to study 

changes in the expression of leaf functional traits and patterns of intraindividual leaf trait 

variation, respectively. Last, forest degradation does not only affect trees, but also has an 

effect on other organisms interacting with trees which are of special interest for forest 

functioning. For instance, mycorrhizal fungi, which improve soil nutrient uptake (Kaschuk et 

al., 2009; Smith & Smith, 2011), are also affected as a result of human activities (Ma et al., 

2021), with potential effect on tree functioning, including tree’s ecological strategy and the 

expression of traits (Fei et al., 2022). That is why, novel tree diversity experiments that 

consider not only the effect of tree diversity, but the diversity of mycorrhizal fungi (Ferlian et 

al., 2018) can also be useful to understand the patterns of trait variation in forests. 
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Outline of the thesis 

This thesis aims at elucidating the patterns of intraspecific and intraindividual trait variation 

in response to biodiversity. To address this knowledge gap, I used leaf-level data collected 

along experimental gradients of diversity in tree diversity experiments. Thus, I studied 

different facets of trait variation (intraindividual trait variation, intraspecific trait diversity, 

individual mean trait values) in response to two drivers: tree taxonomic diversity and 

mycorrhizal fungal diversity. Specifically, the main objectives were to (Figure 1): (1) assess 

individual trees’ changes from a slow-growth, conservative strategy to a fast-growth, 

acquisitive strategy in response to species diversity (Chapter 2), (2) understand changes in 

intraspecific trait variability with tree species diversity (Chapter 3), (3) study patterns of 

intraindividual trait variability in response to tree species diversity (Chapter 2, Chapter 3, 

Chapter 4), (4) understand the contribution of intraspecific and intraindividual variability to 

community functional diversity (Chapter 3), and (5) explore the relationship between 

intraindividual variation and trait covariation (Chapter 4). Specifically, I hypothesized that: (1) 

there is a shift from a conservative leaf strategy to an acquisitive leaf strategy with higher tree 

and mycorrhizal fungal diversity, (2) intraspecific trait variability decreases with tree species 

richness, (3) intraindividual trait variability decreases with tree species richness, (4) the 

contribution of intraspecific and intraindividual variability to functional diversity of forest 

stands is expected to decrease with increasing tree richness, and (5) intraindividual trait 

variability is limited by trait covariation. I investigated these questions in the BEF-China tree 

diversity experiment, in subtropical China, and in the MyDiv tree diversity experiment, in 

central Germany. As my approach implied the collection and the processing of a large dataset, 

I used leaf spectroscopy, a high-throughput method, together with statistical tools for 

prediction (including both convolutional neural networks and partial least square regression), 

for the estimation of leaf functional traits from measured samples. 

In Chapter 2, “Tree and mycorrhizal fungal diversity drive intraspecific and 

intraindividual trait variation in temperate forests: Evidence from a tree diversity 

experiment”, I collected leaf-level data from MyDiv, a tree diversity experiment that relies on 

the combination of gradients of tree species richness and mycorrhizal associations to study 

the patterns of individual mean trait values and intraindividual trait variation in response to 

tree and mycorrhizal fungal diversity.  



22 
 

In Chapter 3, “Intraspecific and intraindividual trait variability decrease with tree 

species richness in a subtropical tree biodiversity experiment”, I collected leaf-level data along 

an experimental tree species richness gradient in BEF-China, in order to understand how 

intraspecific diversity within populations and intraindividual trait variation change with tree 

species richness. Further, I aimed to explore their importance for the functional diversity of a 

community.  

In Chapter 4, “Within-individual leaf trait variation increases with phenotypic 

integration in a subtropical tree diversity experiment” I used a large leaf-level dataset to 

explore the relationships between intraindividual trait variation and the trait covariation 

occurring at the individual level and the effect of the identity of the closest neighbor and 

neighborhood diversity on this relationship. Further, I studied how this relationship was 

modulated by the surrounding tree species diversity.  

Finally, in Chapter 5, I propose a synthesis of the presented studies and their results, 

bringing together the effects of tree and mycorrhizal fungal diversity and comparing the 

results from a subtropical (BEF-China) and a temperate (MyDiv) tree diversity experiment. I 

use my results to interprent how trait variation enables to mediate tree species interactions, 

and how these mechanisms could be relevant for the functioning of forests. Last, I discuss the 

possibility of moving beyond established approaches in trait-based ecology by considering 

novel frameworks that take in account both intraspecific and intraindividual variation. 
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FIGURE 1 Graphical overview of the primary research questions and hypotheses that were addressed 
in this thesis. The figure presents two scenarios, a low diversity scenario (characterized by low tree 
species richness and low diversity of mycorrhizal fungi) and a high diversity scenario (characterized by 
high tree species richness and high diversity of mycorrhizal fungi). In this thesis, I expected to find (a) 
a shift from a conservative leaf strategy to an acquisitive leaf strategy with higher tree and mycorrhizal 
fungal diversity. Regarding (b) intraspecific and (c) intraindividual trait variability, I expect them to 
decrease with increasing tree richness “+” and “-” indicate higher and lower, respectively.  (d) The 
contribution of intraspecific and intraindividual variability to functional diversity of forest stands is 
expected to decrease with increasing tree richness. Finally, I expect that (e) intraindividual trait 
variability is limited by trait covariation, and thus, intraindividual trait variability is higher when trait 
covariation is low. Different tree species are represented by different crown colours, while the 
diversity of arbuscular mycorrhizal fungi (in green) and ectomycorrhizal (in blue) is shown through the 
number of different polygon shapes. The numbers on the circles correspond to the chaprtes in which 
the research questions are studied. 
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CHAPTER 2 

Tree and mycorrhizal fungal diversity drive intraspecific and intraindividual trait variation 

in temperate forests: Evidence from a tree diversity experiment 

This Chapter is published in Functional Ecology as: 

Castro Sánchez‐Bermejo P, Monjau T, Goldmann K, Ferlian O, Eisenhauer N, Bruelheide H, Ma 
Z, Haider S. 2024. Tree and mycorrhizal fungal diversity drive intraspecific and intraindividual 
trait variation in temperate forests: Evidence from a tree diversity experiment. Functional 
Ecology 38: 1089-1103. https://doi.org/10.1111/1365-2435.14549 
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ABSTRACT 

1. The study of tree species coexistence is crucial to understand the assembly of forest 

communities. In this context, trees adjust their traits in response to the interactions with 

other trees and, specifically, as a result of the competition for resources. Further, mycorrhizal 

fungal diversity and associations are important drivers of ecosystem functioning in forests, 

but their role as drivers of intraspecific trait variation has been disregarded. Here, we studied 

intraspecific trait variation of trees in response to tree and mycorrhizal fungal diversity. 

2. We sampled 3200 leaves from 640 trees belonging to 10 native, deciduous species in a tree 

diversity experiment in Central Germany. This experiment relies on the combination of 

gradients of tree richness and mycorrhizal associations. To handle large amounts of leaf 

samples, we acquired leaf-level spectral data and used deep learning to predict values for five 

leaf traits from the leaf economics spectrum (LES): specific leaf area, leaf dry matter content, 

carbon to nitrogen ratio, carbon content and phosphorus content. For every tree, we 

calculated the mean value for every trait and two multi-trait functional indices (functional 

richness and functional dispersion) based on values for individual leaves. Finally, we used 

sequencing-based data to assess the richness of mycorrhizal fungi associated with the trees. 

3. We found that tree and mycorrhizal fungi richness had an effect on different leaf functional 

traits. Specifically, tree richness positively affected specific leaf area and, additionally, had a 

negative effect on the functional indicies, which revealed that the phenotypic diversity within 

the tree crown decreased with tree species richness. In addition, leaf carbon to nitrogen ratio 

decreased with increasing arbuscular mycorrhizal fungal richness in both arbuscular and 

ectomycorrhizal tree species. Finally, we did not find differences between arbuscular and 

ectomycorrhizal trees regarding their location within the LES. 

4. Our results suggest that trees modify their strategy in response to local tree diversity, not 

only by shifting trait values but also by shifting the variability intraindividually. In addition, 

higher mycorrhizal fungal diversity does not seem to lead to higher complementarity, but 

instead, tree and mycorrhizal fungi affect different aspects of leaf traits. 

Keywords: arbuscular mycorrhiza, ectomycorrhiza, intraindividual trait variation, intraspecific 

trait variation, leaf economics spectrum, plant–plant interactions 
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INTRODUCTION 

Biotic interactions shape species diversity in local communities through processes of 

competition and facilitation among others (Brännström et al., 2012; Chesson, 2000; Ricklefs, 

2010). Referring to classical coexistence theories, each species is characterized by a particular 

niche framed by abiotic and biotic factors, where it avoids to be outcompeted by other local 

species (Grinnell, 1917). As plants need a common base of resources, this suggests that 

competition is the main type of plant–plant interaction (Hughesdon, 1927; Wright et al., 

2014), and similarities in the resource uptake pathways of plants lead to a strong niche 

overlap and consequently higher competition for resources (Adler et al., 2018). However, 

such explanations for plant species coexistence have been criticized for being too simplistic 

(Escudero & Valladares, 2016), and there is growing demand to consider the variation within 

species when studying plant–plant interactions (Valladares et al., 2015). The reason behind is 

that species are not static entities, but instead are flexible, and plants adjust their functional 

traits (i.e. morphological, physiological or phenological characteristics that influence growth, 

reproduction or survival; Violle et al., 2007) via: (1) genetic adaptation (Baron et al., 2015) 

and (2) phenotypic plasticity, that is the ability of genotypes to express alternative phenotypic 

syndromes (Jump & Peñuelas, 2005; Stotz et al., 2022; Valladares et al., 2007). By adapting 

and shifting functional traits, individuals are able to reduce competition for limiting resources 

(Burns & Strauss, 2012; Roscher et al., 2018). 

Differences in resource-use strategies are reflected by the expression of dissimilar 

functional traits (Suding et al., 2003). Across all functional traits in plants, leaf traits can be 

reliable proxies for resource-use strategies as summarized by the leaf economics spectrum 

(LES; Wright et al., 2004). The LES reflects a trade-off between a leaf's lifespan and its 

maximum photosynthetic rate (Díaz et al., 2016; Wright et al., 2004). In general, leaves with 

high values for traits related to photosynthetic activity, like high specific leaf area and high 

nitrogen concentration, are typically associated with higher resource acquisition, faster 

growth rates, and a lower investment in leaf construction and protective tissues. Therefore, 

the LES describes the resource-use strategy of plants which range from an acquisitive, growth-

related strategy to a long-lived, conservative strategy (Pietsch et al., 2014; Poorter et al., 

2009; Reich et al., 1997, 1999; Scheepens et al., 2010). Although the LES originally described 

differences between species, there is evidence that the gradient of the LES also occurs within 
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species at the individual level (classically referenced as intraspecific trait variation; Fajardo & 

Siefert, 2018; Niinemets, 2015). It even reflects the diversity of alternative phenotypic 

syndromes within the same plant (Intraindividual trait variation; Herrera, 2017), and it can 

therefore be assumed that plants adjust their LES traits in order to mediate biotic interactions. 

This is especially true in the case of trees because, as a result of their longevity, it is crucial for 

them to adjust to local conditions within their lifespan instead of adapting through generation 

turnover like short-lived plants as forbs and grasses (Trogisch et al., 2017). As an increasing 

number of species in a community typically results in higher complementarity in the use of 

resources (Barry et al., 2019), trees in rich communities tend to show higher values for 

acquisitive-related traits compared to those in monospecific communities (Davrinche & 

Haider, 2021; Deschamps et al., 2023; Felix et al., 2023). Further, recent studies suggest that 

the extent of intraindividual trait variation could help to cope with micro-environmental 

conditions (March-Salas et al., 2021; Møller et al., 2022) but also with biotic interactions. 

Therefore, trees in monospecific communities have been suggested to display highly different 

leaf traits within their crown, probably to avoid competition with interacting conspecific 

neighbours (Proß et al., 2021). 

Apart from plant–plant interactions, organisms from other trophic levels which are 

directly interacting with trees may act as drivers of leaf trait expression and variation 

(Tedersoo et al., 2020). Among the different plant interactions with other guilds, mycorrhizal 

associations, which improve soil nutrient uptake, may be among the most important ones 

(Kaschuk et al., 2009; Smith & Smith, 2011). Due to the variety of different nutrient uptake 

processes, the diversity of mycorrhizal associations seems to increase resource niche 

partitioning between plants (Bever et al., 2010; Hazard & Johnson, 2018; Klironomos et al., 

2000; Wagg et al., 2015). Among all the different mycorrhizal types, there are two which are 

dominant, especially in trees: (1) arbuscular mycorrhizal fungi (intracellular symbioses 

dominated by Glomeromycota; AMF), which is the most abundant mycorrhizal type occurring 

in ca. 74% of angiosperm species (Trappe, 1987), and (2) ectomycorrhizal fungi (intercellular 

symbioses; EMF), which is a common type among temperate tree species. In the case of AMF, 

several studies suggested that more diverse AMF communities can improve nutrient uptake 

by providing plants access to different resource pools (Horsch et al., 2023; Jansa et al., 2005; 
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Wagg et al., 2015) and, besides the fewer studies carried out, similar results have been found 

for EMF communities (Leake, 2001). 

Even though trees can interact with different types of mycorrhizal fungi 

simultaneously (Heklau et al., 2021, 2023), species have a preferred type of mycorrhizal 

partner (Brundrett & Tedersoo, 2018) and, thus, they are classified depending on the 

mycorrhizal host types as arbuscular mycorrhizal (AM) or ectomycorrhizal (EM) trees. In 

addition, due to evolutionary differences between host plant species as well as differences in 

the strategy of the mycorrhizal fungal types, AM and EM trees show strong differences in their 

resource-use strategy (Shi et al., 2020). Specifically, AM trees typically employ a more 

acquisitive strategy in terms of economic traits (Averill et al., 2019). Further, AM trees tend 

to show a greater extent of intraspecific variation in traits from the LES compared to EM trees 

(Shi et al., 2020), even though there are exceptions in the case of some EM trees (Niinemets, 

2015). Therefore, this suggests that AM and EM trees could show dissimilarities in their 

response to plant and mycorrhizal fungal diversity described above, and it is expected that 

AM trees show higher intraspecific variation in response to the diversity of species (of both 

trees and fungi) compared to EM trees. 

Tree diversity experiments manipulate the number of species while standardizing 

confounding factors like varying tree density or abiotic conditions (Bruelheide et al., 2014). 

Therefore, they are useful set-ups to examine intraspecific changes of functional traits in trees 

in response to species richness. To explore the effect of tree species richness, mycorrhizal 

fungal richness and mycorrhizal types on LES traits, we studied the trait values and 

intraindividual trait diversity from ca. 640 trees representing 10 native deciduous tree species, 

five of them known to be primarily associated with arbuscular mycorrhizal fungi and the other 

five with ectomycorrhizal fungi, in the MyDiv tree diversity experiment located in Central 

Germany (Ferlian et al., 2018). In contrast to other tree diversity experiments, here a 

treatment of species richness is combined with different plot compositions of tree species 

differing in their host mycorrhizal type (either AM or EM). We hypothesized that (1) as 

nutrient partitioning is expected to be enhanced by the richness of species (both tree and 

fungal), trees increase the mean values of acquisitive-related traits in response to tree and 

mycorrhizal fungal richness, and (2) intraindividual trait diversity is highest in monocultures 

to accomplish niche differentiation between individual trees and decreases with increasing 
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tree and mycorrhizal fungal richness. Due to the nature of AM plants, which seem to be more 

responsive with respect to intraspecific trait-environment responses, (3) these responses to 

tree and mycorrhizal fungal richness are expected to be stronger in AM than EM tree species. 

 

MATERIALS AND METHODS 

Study site 

This study was conducted in the MyDiv experiment, which is a biodiversity–ecosystem 

functioning (BEF) experiment located at the Bad Lauchstädt Experimental Research Station of 

the Helmholtz Centre for Environmental Research–UFZ in Saxony-Anhalt, Germany (51°23′ N, 

11°53′ E; Figure 1a). The climate is temperate with a mean annual temperature of 8.8°C 

(monthly mean temperatures ranging from 0.8°C in January to 17.3°C in July) and mean 

annual precipitation of 484 mm (data obtained from Altermann et al., 2005 and 

https://www.worldclim.org/). The soil type is described as haplic Chernozem, which is very 

fertile and characterized by a stable aggregate structure, high water-retention and base 

saturation as well as high bioturbation rates (Altermann et al., 2005). The experiment was 

established in 2015 and is comprised by 80 plots (Figure 1b). It includes a set of 10 native 

deciduous angiosperm tree species, with five species each being primarily associated with 

arbuscular mycorrhizal fungi (AM; Acer pseudoplatanus L., Aesculus hippocastanum L., 

Fraxinus excelsior L., Prunus avium L. and Sorbus aucuparia L.) or with ectomycorrhizal fungi 

(EM; Betula pendula Roth., Carpinus betulus L., Fagus sylvatica L., Quercus petraea Liebl., Tilia 

platyphyllos Scop.) (Table S1; Ferlian et al., 2018). The design is based on the combination of 

different numbers of tree species and trees of the same or different host mycorrhizal types. 

Tree species were planted following a tree species richness gradient from monospecific plots 

(one species) over two-species mixtures up to four-species mixtures (Ferlian et al., 2018). The 

two- and four-species mixtures comprised only AM- or only EM-associated tree species or a 

balanced combination of AM- and EM-associated species (Figure 1). Every level of tree 

richness and mixture of mycorrhizal host types was replicated 10 times, thus allowing to have 

a comprehensive set of possible combinations (see Ferlian et al., 2018 for details). In every 

plot, 140 trees were planted at a distance of 1 m in a regular grid to mix species to the greatest 

extent possible (Figure 1c). In order to avoid edge effects, every plot has a 1.5 m buffer area 

https://www.worldclim.org/
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consisting of the outermost tree rows and a core area of 8 × 8 m. A plastic cover was placed 

on the ground to prevent the growth of understory vegetation. 

 

FIGURE 1 Location of (a) the MyDiv experiment in Germany, (b) plots in the experiment (adapted from 
Ferlian et al., 2018), (c, d) design of the tree species quadrats and (e) description of leaf sampling. As 
shown in (c), two tree species quadrats (TSQ) per plot were sampled in the inner part of the plots (light 
grey background) in order to avoid edge effects. Leaves from each individual within a TSQ were 
collected from the side pointing towards the focal line where trees interact (d, e). Five leaves were 
sampled from different heights of the tree, ranging from the lowest part of the crown to the top of 
the canopy. 

 

Field sampling 

As an extension of the tree-species pair design described in Trogisch et al. (2021) to study 

interactions among two directly neighbouring trees, sampling followed the tree-species 

quadrats design, which aims to study the interaction between four trees (hereafter, 

referenced as tree-species quadrat, TSQ; Figure 1d). In every plot, two TSQs were sampled, 

which resulted in 160 sampled TSQs containing a total of 640 sampled trees. 

Sampling took place from mid to late August 2021. From each tree, we collected leaves 

along the interaction line between the TSQ partners, that is the focal point where the joint 

interaction of the four individuals is expected to be maximal (Figure 1d). In order to cover the 

trait variation of the whole tree individual, we sampled at five different heights. At each 

height, we cut one fully developed leaf free from mechanical or pathogen damage. This 

resulted in a total of 3200 collected leaves. Immediately after collection, leaves were 
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conserved in sealable plastic bags with a moistened tissue. The samples were transported in 

an isothermal bag equipped with cooling bags to prevent desiccation. In the laboratory, the 

samples were temporarily stored at 6–8°C. In addition to this sampling (hereafter, referred to 

as ‘regular’ sampling), we collected a so-called calibration set that we used to train models 

for leaf trait prediction based on spectroscopy. This independent calibration set included leaf 

samples from 20 trees of each of the 10 species, resulting in a total of 200 sampled individuals. 

The leaves were collected at random heights and orientations within the tree crown across 

all species richness and mycorrhizal host type combinations. To ensure sufficient material for 

the laboratory analyses, a different number of leaves per tree was sampled, according to the 

size of the species-specific leaves (see Table S1). 

 

Laboratory analyses 

For the samples of the calibration set, we determined five morphological and chemical leaf 

traits, representing different dimensions of plant growth strategy and being key components 

of the LES (Reich, 2014; Wright et al., 2004; Figure 2): specific leaf area (SLA; leaf area/leaf dry 

mass; Kazakou et al., 2006; Niinemets & Kull, 1994; Reich et al., 1992; Reich et al., 1997; Reich 

et al., 1999), leaf dry matter content (LDMC; leaf dry mass/leaf fresh mass; Niinemets, 1999; 

Niinemets, 2001; Poorter et al., 2009; Poorter & Bergkotte, 1992; Westoby et al., 2002), 

carbon to nitrogen ratio (C:N; Niinemets et al., 2007; Pérez-Harguindeguy et al., 2003), carbon 

content (C) and phosphorus content (P; Hevia et al., 1999; Raaimakers et al., 1995; Tuohy et 

al., 1991). Leaf trait selection was based on previous analyses on the identification of 

independent and orthogonal sources of leaf trait variation (Figure S1) and the ability to obtain 

high-quality leaf trait predictions (see Section 2.5). Immediately after sampling, the fresh 

leaves of the calibration samples were weighed and scanned with a resolution of 300 dpi. The 

leaf area of the scans was analysed with the WinFOLIA software (Regent Instruments, Quebec, 

Canada). To determine the dry weight, we dried the leaves for 72 h at 60°C and weighed them 

again. Resulting from the leaf dry mass and the leaf fresh mass, both LDMC and SLA were 

calculated. Then, we grounded the dried leaves into a homogenous powder. To determine 

the P content, we used a spectrophotometric assay with the acid molybdate technique. We 

analysed C and N contents with an elemental analyser (Vario EL Cube, Elementar, 

Langenselbold, Germany) and calculated the C:N ratio. 
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FIGURE 2 Leaf traits included in our study, ecological function of each trait and literature describing 
them. Yellow and red colour indicate that a trait is indicator of a conservative or an acquisitive 
strategy, respectively (according to the leaf economics spectrum LES; Wright et al., 2004). 

 

Near-infrared reflectance spectroscopy 

Current chemical analyses on single leaves are usually limited due to the lack of sufficient 

material from individual leaves. Thus, we used visible–near infrared spectrometry (Vis-NIRS), 

a technique of massive-phenotyping, to predict individual leaf trait values based on 

calibration models (Escudero et al., 2021; Foley et al., 1998). As reflectance depends on the 

size, density and shape of leaf tissues and their chemical compounds (Asner et al., 2014; Costa 

et al., 2018; Serbin et al., 2014), Vis-NIRS can be used for estimating morphological traits and 

leaf nutrients. For all leaves (regular and calibration samples), we acquired reflectance spectra 

with a portable Vis-NIRS device (ASD “FieldSpec4” Wide-Res Field Spectroradiometer, 

Malvern Panalytical Ltd, Almelo, Netherlands) in the laboratory immediately after collection. 

Reflectance was measured across the full range of the solar radiation spectrum (250–

2500 nm), by taking three repeated measures on the adaxial side of each leaf while avoiding 
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main veins. The equipment was optimized regularly with a calibration white panel 

(Spectralon, Labsphere, Durham, New Hampshire, USA). For each measurement, 10 spectra 

were averaged internally to reduce noise. Outlier removal of spectral data was performed by 

using the Local Outlier Factor (LOF) method (Breunig et al., 2000) as in Li et al. (2023) and, 

additionally, a visual inspection of the spectra was performed (see Figure S2a). 

 

Leaf traits prediction 

Leaf traits prediction and consecutive statistical analyses were conducted in the R 

environment with R version 4.1.3 (R Core Team, 2021). As deep learning has recently emerged 

as a promising tool in trait-based ecology (Perry et al., 2022; Vasseur et al., 2022), we used a 

convolutional neural network (CNN) approach for leaf trait prediction based on the spectral 

data. First, input spectra were augmented from 2501 to 12,906 features by using 

transformations based on a combination of standard normal variates and Savitzky–Golay 

derivatives (Figure S3; Passos & Mishra, 2021). Samples within the calibration set were split 

into a training and a test set which accounted for a proportion of 70% and 30%, respectively. 

Then, a CNN composed of one convolutional layer followed by three dense layers was fitted 

to train the samples for every trait (see Figure S3). In order to avoid overfitting, batch 

normalization was applied after the convolutional layer (Vasseur et al., 2022). 

Hyperparameter tuning for every CNN was performed independently for every trait, by 

adjusting the number of filters, their size for the convolutional layers, and the number of 

nodes in the dense layers (see Table S2). For model optimization, an Adam algorithm and a 

loss function based on the mean squared error were used (Passos & Mishra, 2022). CNNs 

were trained using a Keras framework and a TensorFlow backend as implemented in the 

‘Keras’ package (Kalinowski, 2023). We tested the predictive ability of the CNNs by assessing 

the coefficient of determination for the predicted and measured values in the test set (R2test) 

and in the whole calibration set (R2model). As technical problems occurred during the 

laboratory analysis of leaf phosphorus concentration, we only had a reduced number of 

calibration samples for this trait. Therefore, to ensure the training of the CNN for this trait, 

we used additional and comparable samples from four deciduous species (Fagus sylvatica, 

Fraxinus excelsior, Quercus robur, Tilia cordata) collected by Proß et al. (2023) in the nearby 

Kreinitz experiment. This addition of samples aimed to represent the broadest trait space 
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possible, in order to better reflect possible variation in our samples, as recommended in 

Burnett et al. (2021). Mean R2model of the trained CNNs for each trait was 0.83 ± 0.10 

(mean ± standard deviation), with a maximum R2model for SLA (0.94) and minimum for 

phosphorus (0.71; see Figure S4). Eventually, these trained CNNs were used for predicting 

trait values of leaves from the regular set of samples. After leaf trait prediction, we excluded 

ca. 175 predicted trait values for every trait as they were lying outside a 95% confidence 

interval around the predicted values' distribution (Figure S2b). 

 

Mycorrhizal fungal richness 

In order to quantify mycorrhiza fungal richness associated to the trees, we used the metrics 

of arbuscular mycorrhizal and ectomycorrhizal fungi abundance measured in Ferlian et al. 

(2021; see Figure S5). To assess AMF and EMF richness, 200 root samples, one per plot and 

tree species, were taken in November 2019. In total, Ferlian et al. (2021) collected root 

samples from all species in all plots (excluding 12 samples that could not be assigned reliably 

to the correct tree species and, therefore, were excluded). They collected rootlets for every 

sampled tree and harvested those rootlets with 10 EM root tips in the case of EM trees or 10 

lateral roots in the case of AM trees. Fungal species were identified by using Illumina 

sequencing (see Ferlian et al. (2021) for details). Based on these data, for every tree occurring 

in a plot, we calculated rarefied richness of AMF and EMF (hereafter, referenced as AMF and 

EMF richness) as implemented in the ‘vegan’ package. AMF and EMF reads per sample were 

rarefied to the minimum number of reads in every mycorrhizal type (Figure S5). Additionally, 

to avoid potential collinearity between predictors in further analyses, AMF and EMF richness 

where rescaled between 0 and 1 for every tree species, with 0 being the minimum richness 

of a specific fungal type (AMF or EMF) associated to a specific tree species, and 1 the highest 

richness of the same fungal type associated to the tree species. 

 

Statistical analyses 

In order to identity the main sources of trait variation, differences between mycorrhizal types, 

and to better understand changes in trait variation in further analyses, we first performed a 
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principal component analyses of the predicted traits in every leaf. We used the prcomp 

function from the ‘stats’ package. 

To characterize changes in the resource-use strategy of individual trees, we calculated 

the mean value of every trait in every tree. We tested the interacting effect of species 

richness, mycorrhizal fungal richness (AMF richness and EMF richness), and host type (either 

AM or EM trees) on mean trait values per tree by performing linear mixed-effects models. 

The models included the mean trait value as response variable, and the interaction effect of 

the log2-transformed species richness with both AMF and EMF richness and with the host 

type (AM or EM tree species) as fixed effects. Tree species identity as well as TSQ nested in 

plot, in turn nested in species composition were added as crossed random effects. We first 

fitted a “beyond optimal” model, which included all the fixed effects. By including subsets of 

the predictors, all possible models that varied in their fixed effects (including the intercept 

only model) were fitted using a maximum likelihood estimator. For all these models, the 

Akaike information criterion corrected for small sample sizes (hereafter referenced as AICc) 

was calculated. We selected all models with ΔAICc lower than 2 as competing models holding 

similar information, and followed the principle of parsimony to prioritize the simplest model 

with the smallest number of predictors among all competing models (Burnham & Anderson, 

2004; Richards et al., 2011). Finally, we assessed the significance of factors by comparing 

models with and without each factor selected in each model using a likelihood ratio test (Zuur 

et al., 2009). We used diagnostic plots of the residuals to study the assumptions of normality, 

homoscedasticity and linearity in our models: residuals versus fitted values plots, histograms 

of the residuals, and Q-Q plots for the deviance of the residuals (Figure S7). In order to avoid 

biases in the estimation of mean trait values, for every trait, only trees for which there was 

information available for the five leaves were considered for the analyses. Therefore, the final 

number of trees ranged between 499 and 521, depending on the trait considered (Table S3). 

In order to assess the trait diversity for each tree, we used two functional indices 

which reveal complementary indices in the functional hypervolume: (1) functional richness 

(FRic) and (2) functional dispersion (FDis). FRic aims at detecting reductions of the niche space 

occupied by individuals (Botta-Dukát & Czúcz, 2016; Cornwell et al., 2006), while FDis 

describes whether the distribution of leaves in a trait space of a tree is clustered or dispersed 

(Laliberte & Legendre, 2010). To calculate these indices, we first obtained a leaf-by-leaf trait 
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distance matrix per tree by using Euclidean distance and, next, for every tree we computed 

both indices through a principal coordinate analysis (PCoA) based on this distance matrix. In 

order to test the interacting effect of species richness, AMF richness, EMF richness and host 

mycorrhizal type (either AM or EM trees) on the functional indices, we followed the same 

approach as described above for the mean trait values. We also checked the normality, 

linearity and homoscedasticity of the residuals by using diagnostic plots (Figure S8). Again, to 

avoid biases in the assessment of the functional indices, for the analyses we only used trees 

for which there were less than four missing values across all leaves and traits. 

 

RESULTS 

The first three axes of the PCA explained more than 80% of the total variation in our dataset 

(35% explained by the first axis, 25% explained by the second axis, and 21% explained by the 

third axis; see Figure 3). The first axis was strongly related to LDMC, leaf C, and SLA (with 

loadings 0.66, 0.54, and −0.46, respectively). The second axis was mainly related to leaf C:N, 

followed by SLA and leaf C (with loadings 0.70, −0.54, and −0.42 respectively). Finally, the 

third axis of the PCA was related to leaf P and C:N (with loadings 0.82 and −0.47, respectively). 

In this PCA, AM and EM trees were clearly separated along the second axis, with AM trees 

displaying higher values for leaf C:N. In contrast, the two groups were not divided along the 

first and third PCA axes. 

 

 



43 
 

 

FIGURE 3 Main axes of a principal component analyses (PCA) for five leaf functional traits, including 
plots for (a) the first against the second component, (b) the first against the third component and (c) 
the second against the third component. Based on the loadings of every PCA axis, the first axis 
represents the variation in growth strategy, the second the variation in nitrogen content and the third 
one the variation in P content. The size of every plot is proportional to the portion of the variance 
explained by every combination of two axes (60% for the first and the second component, 55% for the 
first and the third component, and 45% for the second and the third component). The colour of the 
symbols represents the host mycorrhizal type (green: AM trees, blue: EM trees). Density plots for the 
distribution of the two mycorrhizal types in the main axes of the PCA are included in the margins of 
the PCA plots with the percentage of shared area between density distributions indicated on them. 

 

Changes in mean values were found for SLA, C:N and C in the simplest models (Figure 4), 

although the drivers of these changes were different in every case (Figure S9a, c, d; Table S4). 

In the case of SLA, there was a significant effect of tree richness (p = 0.01; Table 1), suggesting 

that there was an increase in mean SLA with tree richness (Figure 4a). The simplest model for 

C:N suggests that AMF richness had a significant negative effect on mean C:N (p = 0.04; Figure 

4b). In addition, we found that AM trees had higher values of C:N compared to EM trees 

(p < 0.01). Accordingly, the results for C revealed that EM trees displayed higher values of this 

trait compared to AM trees (p = 0.02; Figure 4c). Finally, among our results we did not find 

any effect of our predictors on mean LDMC and P in the simplest models. 
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FIGURE 4 Main effects obtained in the simplest models for the mean values of (a) SLA, (b) C:N and (c) 
C content for AM and EM trees (in green and blue, respectively). Shaded areas in (a) and (b) represent 
the confidence intervals at 95%. Density plot (b) and raincloud plot in (c) indicate differences between 
AM and EM trees in terms of C:N and C, respectively. Large dots in (b) and (c) indicate the mean values 
of AM (green) and EM (blue) trees. 
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TABLE 1 Summary of the simplest linear mixed models. Estimates (standard errors) and significance assessed with likelihood-ratio tests are shown. The 
acronyms correspond to the different predictors (TR = tree richness; AMF = AMF richness; EMF = EMF richness; and MT = host mycorrhizal type), and 
interactions between predictors are indicated by “X”. 

  

TR AMF EMF MT 

                    TR 

R2m R2c 

      TR TR TR AMF X 

TR TR TR AMF AMF EMF X X X X AMR 

X X X X X X AMF AMF EMF EMR X 

AMF EMF MT EMF MT MT X X X X EMR 
      EMF MT MT MT X 

                    MT 

Functional traits 

SLA 0.279(0.4)*                             0.02 0.71 

LDMC                               0.00 0.80 

C:N   -4.762(1.353)*  -1.123(0.545)**                       0.27 0.66 

C       1.358(0.557)*                       0.18 0.77 

P                               0.00 0.69 

Functional indices 

-0.002(0.001)**               0.02 0.03 

FDis -0.003(0.001)*               0.01 0.07 
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For both functional indices, we found an effect of species richness (Figure S10; Table S5) with 

a significant decrease in different properties of the hypervolume along the tree richness 

gradient (p < 0.01 and p = 0.04 for FRic and FDis, respectively; Figure 5). 

 

FIGURE 5 Main effects obtained in the simplest models for (a) functional richness (FRic) and (b) 
functional dispersion (FDis) of individual trees. Grey areas represent the confidence intervals at 95% 
and symbols the observed values for the two host mycorrhizal types (green: AM trees, blue: EM trees). 

 

DISCUSSION 

By using five traits of the LES from 485 to 514 tree individuals, depending on the trait, in a tree 

diversity experiment in Central Germany, we investigated how mean trait values and 

intraindividual trait diversity of AM and EM trees vary in response to the interacting effect of 

tree and mycorrhizal fungal richness. We found a consistent decrease of trait diversity within 

the canopy with increasing tree richness, whereas tree richness only had an effect on trees' 
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mean SLA. Moreover, a key result was that aboveground traits, such as C:N, can also be 

affected by soil fungal richness. 

Assuming that niche differentiation is determined by both tree richness and 

mycorrhizal fungal richness, we expected that both components interacted in driving 

intraspecific responses in our experiment. However, we found that tree and mycorrhiza 

diversity acted on different leaf traits. First, effects of tree richness on the growth strategy of 

trees were observed for SLA, which is related to the photosynthetic rate of the tree and, 

therefore, is one of the main proxies for a fast growth strategy (Reich et al., 1997; Wright et 

al., 2004). The increase of SLA in response to plant diversity has been described before and 

seems to respond to the complementarity in the use of resources (Felix et al., 2023). Thus, the 

decrease in competition for resources in mixtures would allow trees to show a more acquisitive 

strategy. Despite the lack of significant effects for other traits, we observed negative trends of 

LDMC in response to tree diversity (see Figure S9b), which also seem to be aligned with the 

changes from a conservative to an acquisitive strategy as a result of increasing 

complementarity in mixtures (Davrinche & Haider, 2021). Also, in the specific case of trees, 

SLA is strongly dependent on the availability of the light within the canopies. Therefore, a 

higher canopy stratification can lead trees to maximize photosynthesis in light-limited 

environments by decreasing leaf toughness and increasing SLA (Roberts & Paul, 2006; Williams 

et al., 2020). Indeed, in the case of our experimental site, the higher levels tree diversity are 

associated to a higher stratification that may contribute to explain the changes in SLA observed 

here (Ray et al., 2023). In addition, the decrease of C:N in response to AMF richness could be 

related to a better supply of nitrogen to the tree when the richness of these fungi is high as 

suggested by Powell and Rillig (2018). As AMF are efficient in nutrient uptake in dry soils 

(Querejeta et al., 2003) this effect could be especially noticeable in our study site where the 

precipitation is rather low (mean annual precipitation of 484 mm). However, this remains 

speculative as we are lacking empirical evidence regarding the improvement of soil nitrogen 

uptake by AMF in our experimental site. Further, it is remarkable that this pattern for C:N was 

encountered both for AM and EM tree species, which suggests that, despite the higher host-

specificity of AMF in our study site (Ferlian et al., 2021), EM trees are not only linked to AMF 

through dual mycorrhization (see Figure S12; Heklau et al., 2021; Teste et al., 2019), but may 

also benefit from AMF richness. For instance, the dual mycorrhization of EM trees might be 
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especially beneficial during dry periods (Querejeta et al., 2009), which might explain the 

advantage of these trees during droughts shown in Sachsenmaier et al. (2024) for our study 

site. Last, EMF richness did not have any significant effect on the traits studied, which suggest 

that even though EMF diversity can affect the uptake of nutrients (Khokon & Meier, 2023), this 

does not necessarily have an effect on the leaf strategy of the tree. All these changes in leaf 

functional traits, even though seem to be rather small and not significant for all traits, could 

have an effect on ecosystem functioning. First, while our approach of leaf trait prediction 

allows processing large sample sizes, it might underestimate the responses of leaf traits. 

Indeed, this may be the case of C and P, for which the higher impreciseness of the prediction 

(R2 test is 0.65 and 0.66, respectively) might fail to detect a correlation with the predictors 

(Burnett et al., 2021). Further, intraspecific shifts in leaf traits, as the ones detected for SLA 

and N, may have an effect on different facets of ecosystem functioning (e.g. leaf herbivory, 

light capture) even if the variation within species is small compared to the variability found 

among them (Chacón-Labella et al., 2023; Williams et al., 2020). That is why, the effects of 

intraspecific trait variation on ecosystem functioning deserve further attention to better 

understand diversity effects in forests. 

Recent studies have shown that the ability of plants to display different trait syndromes 

in repeated organs of the same individual may have important ecological and evolutionary 

implications (Herrera, 2017; Sobral, 2023; Sobral & Sampedro, 2022). Indeed, our approach, 

which suggests that for evaluating the growth strategy of trees not only shifts in mean trait 

values should be considered but also the changes in the phenotypic variability of leaves within 

the canopy (Escribano-Rocafort et al., 2017; Proß et al., 2021), reveals that the intraindividual 

diversity of leaf traits changes as a result of tree-tree interactions. Also, these changes in 

intraindividual diversity rarely act on single traits, but occur in different dimensions of the trait 

space (see Figure S11). Our results suggest that higher intraindividual diversity could be of 

great importance in monospecific communities where only intraspecific interactions are 

present. As an explanation for this, we propose that intraindividual trait diversity may help to 

reduce niche overlap between conspecific neighbours that directly interact (Castro Sánchez-

Bermejo et al., 2023). Additionally, in the case of species-rich communities and as an extension 

of the framework proposed for intraspecific trait variation (Helsen et al., 2017), the reduced 

intraindividual trait diversity may contribute to niche packing (i.e. high phenotypic similarity 
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between conspecifics from the same population; Violle et al., 2012), which is an adaptative 

strategy to reduce niche overlap between heterospecific neighbours. Even though we suggest 

that our results explain the importance of intraindividual trait variation for avoiding niche 

overlap, we should also consider two complementary hypotheses to explain our results, which 

are: (1) intraindividual trait diversity in leaves may improve plant performance in intraspecific 

interactions by, for example, improving light capture (Møller et al., 2022), and (2) 

intraindividual trait diversity could be a mechanism to cope with unpredictability of the 

environment (March-Salas et al., 2021) in monospecific communities, as these tend to show 

less environmental stability (Mori et al., 2017). 

Previous literature supports that AM and EM tree species differ in their strategy for 

resource acquisition and suggest that AM trees have a fast and acquisitive strategy, while EM 

trees show a slow conservative strategy (Deng et al., 2023; Shi et al., 2020; Tedersoo et al., 

2020; Tedersoo & Bahram, 2019). Specifically, it has been suggested that the higher 

acquisitiveness of AM trees could rely on the better mobilization and use of nutrients in their 

inorganic form (Averill et al., 2019; Phillips et al., 2013). Nevertheless, our results provide 

limited support to such general assumptions, and only for leaf C content, we found a significant 

difference which suggests that EM species invested more in leaf support. Rather, among the 

species included in the experiment, it seems that growth strategies are species-specific within 

the host mycorrhizal types, and there are AM trees with more acquisitive strategies (e.g. 

Fraxinus excelsior; see Figure S13), while others have a conservative strategy (e.g. Sorbus 

aucuparia). The same applies to EM species (Tilia platyphyllos, as an example, has an 

acquisitive strategy, while Fagus sylvatica has a more conservative strategy). Instead, as 

reflected by the PCA, host mycorrhizal types seem to mainly differ in C:N. Thus, EM trees seem 

to be more efficient in capturing nitrogen (Fellbaum et al., 2012; Tedersoo & Bahram, 2019), 

which explains the higher nitrogen content in the leaves resulting in the lower C:N ratio in EM 

as compared to AM trees (see Figure S14). While the main differences found between AM and 

EM trees suggest differences in N uptake, our results give only limited support to the 

differences in leaf P. However, we had expected differences in leaf P between the two host 

mycorrhizal types, because AM trees are described as efficient P capturers as a result of the 

symbiosis with AMF (Rosling et al., 2016). A possible explanation for the absence of this 

relationship in our study might be the soil type at the MyDiv experimental site, which was a 
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nutrient-rich Chernozem, and the former land use, which was intensive agricultural use with 

high P fertilizer application (Ferlian et al., 2018). Finally, contrary to other studies on AM and 

EM trees, our experimental design did not include any gymnosperm species, which are EM 

trees in most cases (Averill et al., 2019) and show a conservative strategy in their leaf strategy 

(Díaz et al., 2016). Thus, our study suggests that the common belief in ecology of EM trees 

being more conservative than AM trees is not necessarily true, and, in the case of the 

temperate forests of central Europe, the higher conservativeness of EM trees could arise from 

the differences between gymnosperms and angiosperms instead of the mycorrhizal type. 

 

CONCLUSIONS 

Our work has novel implications to understand the assembly of forests and, specifically, how 

trees modify their resource-use strategy in response to biotic interactions, not only by shifting 

their trait values, but also the diversity of phenotypic syndromes within individual trees. In 

addition, we found little empirical support for our hypotheses, which related trees' resource-

use strategy to the interactive effect of tree and mycorrhizal fungal richness via 

complementarity in the use of resources (Barry et al., 2019). In contrast, our study shows that 

tree and mycorrhizal diversity act on different traits and, therefore, suggest that tree diversity 

is not enough to explain all intraspecific responses in forests but better knowledge on the tree-

mycorrhiza interactions is needed to more comprehensively understand how trees respond to 

biotic interactions. 
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SUPPORTING INFORMATION 

FIGURE S1 Principal component analyses and correlations between nine leaf functional traits. 

FIGURE S2 Data cleaning process for the spectral and predicted trait data. 

FIGURE S3 Analytical framework used to generate convolutional neural networks (CNNs) to 

predict leaf traits from spectral data based on the calibration set. 

FIGURE S4 Correlation between predicted and measured traits values to test the quality of 

convolutional neural networks (CNNs) to predict leaf traits from spectral data. 

FIGURE S5 Violin plots for AMF richness and EMF richness in the different mycorrhiza 

treatments in the MyDiv experiment. 

FIGURE S6 Rarefaction of arbuscular mycorrhizal fungal (AMF) and ectomycorrhizal fungal 

(EMF) richness 

FIGURE S7 Diagnostic plots for assumptions of normality, homoscedasticity and linearity in the 

linear mixed-effects models for the mean values of traits. 

FIGURE S8 Diagnostic plots for assumptions of normality, homoscedasticity and linearity in the 

linear mixed-effects models for functional richness (FRic) and functional dispersion (FDis). 

FIGURE S9 Competing models for the drivers of the mean value of SLA, LDMC, C:N, C, and P. 

FIGURE S10 Competing models for the drivers of indices of intraindividual trait diversity. 

FIGURE S11 Results for the drivers of the variance of SLA, LDMC, C:N, C and P. 

FIGURE S12 Boxplots for the AMF and EMF richness associated with every tree species. 

FIGURE S13 Two main axes of a principal component analyses (PCA) for five leaf functional 

traits for 10 tree species. 

FIGURE S14 Results for the drivers of the mean of nitrogen leaf content. 

TABLE S1 Tree species in the MyDiv experiment and their mycorrhizal type. 

TABLE S2 Layers and hyperparameters used for building a convolutional neural network for 

every trait. 
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TABLE S3 Species included in our study and number of individuals for every trait and functional 

indices (FDis and FRic) included in the analyses. 

TABLE S4 Model selection for the analyses of the drivers of the mean value for five functional 

traits. 

TABLE S5 Model selection for the analyses of the drivers of the multi-trait functional indices. 
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FIGURE S1 (a) principal component analysis (PCA) and (b) pairwise correlations between nine leaf 
functional traits measured in our calibration dataset. Colors in (a) indicate the contribution (in 
percentage) of the traits to the first PCA axis. 

 

 

 

 

 

 

 

 

 



62 
 

 

FIGURE S2 Excluded data (in red) from our (a) spectra and (b) predicted trait data. All spectral data 
excluded had a Local Outlier Factor (LOF) higher than 2 (Li et al., 2023), but no spectral data was 
excluded during the process of visual inspection. Data excluded in trait prediction was out of a 95% 
confidence interval for every trait. 
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FIGURE S3 Analytical framework used to generate convolutional neural networks (CNNs) to predict leaf 
traits from spectral data based on the calibration set. (a) Spectral data were obtained for every tree 
and measurements of leaf functional traits were performed in the laboratory. A data augmentation 
procedure was used (a.1) by generating synthetic spectra based on standard normal variates and 
Savitzky-Golay derivative. Additionally, samples within the calibration set were split into a training and 
a test set which accounted for a proportion of 70% and 30%, respectively. Split was performed 
perpendicular to the main axes of a principal component analysis of the spectra to ensure the diversity 
of samples in both sets (Griffith & Anderson, 2019). (b) CNNs were composed by: (b.1) convolutional 
layers which perform convolutional operations followed by a max-pooling of values; (b.2) four dense 
layers with nodes which receive an input and produce an output via an activation function. (c) To test 
the predictive ability of the CNNs, we obtained the coefficient of determination for the predicted and 
measured values (c.1) in the test set (R2

test) and (c.2) in the whole calibration set (R2
model). 
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FIGURE S4 Correlation between predicted and measured traits values in (a, b, c, d, e) the test set (R2
test) and in (f, g, h, I, j) the whole calibration set (R2

model) 
for SLA, LDMC and C:N, C, P. Numbers inside the panels indicate the coefficient of determination.
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FIGURE S5 Violin plots for (a) arbuscular mycorrhizal fungal (AMF) richness and (b) ectomycorrhizal 

fungal (EMF) richness in the different mycorrhiza treatments in the MyDiv experiment (AMF in yellow, 

AMF + EMF in blue and EMF in black). The richness of mycorrhizal fungi had been previously rarefied 

to the minimum number of reads obtained through next-generation sequencing techniques applied to 

root samples of trees in the experiment. Asterisks indicate significant differences (p < 0.05) according 

to post-hoc Tukey tests (***, p < 0.001; **, p < 0.01; *, p < 0.05; and ns, not significant) based in 

generalized linear mixed-models to study the effects of the treatments of the MyDiv experiment (based 

on different tree richness and host mycorrhizal types combinations). In addition, the linear mixed-

models revealed that the richness of AMF and EMF was not affected by tree richness. 
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FIGURE S6 Rarefaction curves of (a) arbuscular mycorrhizal fungal richness and (b) ectomycorrhizal 
fungal richness to the minimum number of reads obtained through next-generation sequencing 
techniques applied to root samples of trees in the experiment.  
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FIGURE S7 Diagnostic plots for assumptions of normality, homoscedasticity and linearity in the linear 
mixed-effects models for the mean values of traits. 
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FIGURE S8 Diagnostic plots for assumptions of normality, homoscedasticity and linearity in the linear 
mixed-effects models for functional richness (FRic) and functional dispersion (FDis). 

 

 

 



69 
 

 

FIGURE S9 Effects in the simplest model (color) and competing models (grey; ∆AICc < 2) for the mean 
value of (a) SLA, (b) LDMC, (c) C:N, (d) C and (e) P, with 95% confidence intervals. The acronyms 
correspond to the different predictors (TR = tree richness; AMR = AMF richness; EMR = EMF richness; 
and MT = host mycorrhizal type), and interactions between predictors are indicated by “x”. For host 
mycorrhizal type positive and negative coefficients indicate higher and lower values of EM trees 
compared to AM trees, respectively. 
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FIGURE S10 Effects in the simplest model (green) and competing models (grey; ∆AICc < 2) for (a) functional 
richness and (b) functional dispersion (FDis), with 95% confidence intervals. The acronyms correspond to 
the different predictors (TR = tree richness; AMR = AMF richness; EMR = EMF richness; and MT = host 
mycorrhizal type), and interactions between predictors are indicated by “x”. For host mycorrhizal type 
positive and negative coefficients indicate higher and lower values for EM trees compared to AM trees, 
respectively. 
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FIGURE S11 Effects in the best model (color) and competing models (grey; ∆AICc < 2) for the variance 
of (a) SLA, (b) LDMC, (c) C:N, (d) C and (e) P, with 95% confidence intervals. Variance was estimated for 
every trait in every tree. The acronyms correspond to the different predictors (TR = tree richness; AMR 
= AMF richness; EMR = EMF richness; and MT = host mycorrhizal type), and interactions between 
predictors are indicated by “x”. For host mycorrhizal type positive and negative coefficients indicate 
higher and lower values of EM trees compared to AM trees, respectively.  
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FIGURE S14 Boxplots for (a) AMF and (b) EMF richness (rarefied to the minimum number of reads 
obtained through next-generation sequencing techniques) associated to every tree species. The 
boxplots are ordered in the x-axis in (a) and (b) according to the mean value of AMF and EMF richness 
associated with every species, respectively. AM and EM trees are represented in green and blue, 
respectively.  
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FIGURE S13 Two main axes of a principal component analyses (PCA) for five leaf functional traits for (a) Acer pseudoplatanus, (b) Aesculus hippocastanum, (c) 
Fraxinus excelsior, (d) Prunus avium, (e) Sorbus aucuparia, (f) Betula pendula, (g) Carpinus betulus, (h) Fagus sylvatica, (i) Quercus petraea, (j) Tilia platyphyllos. 
AM and EM trees are represented in green and blue, respectively. 
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FIGURE S14 Effects in the best model (color) and competing models (grey; ∆AICc < 2) for the (a) mean 
of N, with 95% confidence intervals and main effects in response to AMF richness and the interaction 
between EMF richness and mycorrhiza type. The acronyms correspond to the different predictors (TR 
= tree richness; AMR = AMF richness; EMR = EMF richness; and MT = host mycorrhizal type), and 
interactions between predictors are indicated by “x”. For host mycorrhizal type positive and negative 
coefficients indicate higher and lower values of EM trees compared to AM trees, respectively. Green 
and blue colours in (b) indicate AM and EM trees, respectively. 
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TABLE S1 Tree species in the MyDiv experiment and their mycorrhizal type with the number of leaves 
per individual tree which were collected for the calibration set of samples 

Species Family Mycorrhizal type Num. Leaves per ind. for calibration set  

Acer pseudoplatanus L. Sapindaceae AM 3 

Aesculus hippocastanum L. Sapindaceae AM 2 

Fraxinus excelsior L. Oleaceae AM 2 

Prunus avium L.  Rosaceae AM 3 

Sorbus aucuparia L. Rosaceae AM 2 

Betula pendula Roth. Betulaceae EM 5 

Carpinus betulus L. Betulaceae EM 3 

Fagus sylvatica L. Fagaceae EM 3 

Quercus petraea Liebl. Fagaceae EM 3 

Tilia platyphyllos Scop. Malvaceae EM 3 
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TABLE S2 Layers and hyperparameters used for building a convolutional neural network for every 
trait 

Layer Hyperparameter SLA LDMC C:N C P 

1 dimension convolutional layer Number of filters 2 2 1 2 1 

1 dimension convolutional layer Kernel size 50 2 25 50 100 

Batch normalization layer -      
Max-pooling layer Pool size 2 2 2 2 2 

Layer flatten -      
Layer dense Number of nodes 128 64 64 64 64 

Layer dense Number of nodes 32 16 16 16 16 

Layer dense Number of nodes 8 4 4 4 4 

- Epochs 5000 7000 1000 1000 100 

- Validation split 0.2 0.2 0.2 0.2 0.2 

Note: -, no hyperparameter to tune. 
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TABLE S3 Species included in our study and number of individuals for every trait and 
functional indices (FDis and FRic) included in the analyses. 

Species Family 

Host 
mycorrhizal 
type 

Tree 
richness 
treatment 

Mycorrhiza 
diversity 
treatment SLA LDMC CN C P FDis/FRic 

Acer pseudoplatanus L. Sapindaceae AM 1 Mono 14 9 15 16 15 16 

   2 Mono 15 14 15 16 15 16 

   2 Mix 2 3 4 4 4 4 

   4 Mono 8 8 11 11 11 11 

   4 Mix 5 6 6 6 6 6 
Aesculus hippocastanum L. Sapindaceae AM 1 Mono 14 10 14 13 11 14 

   2 Mono 12 9 13 13 13 13 

   2 Mix 6 4 8 6 8 8 

   4 Mono 12 12 11 12 9 12 

   4 Mix 6 5 5 5 5 6 
Fraxinus excelsior L. Oleaceae AM 1 Mono 16 15 16 14 13 16 

   2 Mono 16 16 16 13 13 16 

   2 Mix 6 7 7 7 6 7 

   4 Mono 13 11 13 7 12 13 

   4 Mix 5 7 7 5 6 8 
Prunus avium (L.) L. Rosaceae AM 1 Mono 14 15 13 15 12 15 

   2 Mono 16 16 15 12 15 16 

   2 Mix 4 4 2 4 4 4 

   4 Mono 15 14 15 14 14 16 

   4 Mix 6 6 6 6 6 6 
Sorbus aucuparia L. Rosaceae AM 1 Mono 5 10 9 14 15 16 

   2 Mono 14 15 11 14 15 16 

   2 Mix 6 7 3 8 7 8 

   4 Mono 12 13 9 12 13 14 

   4 Mix 4 6 3 6 5 6 
Betula pendula Roth Betulaceae EM 1 Mono 16 16 13 10 4 16 

   2 Mono 15 15 14 7 15 15 

   2 Mix 7 8 8 7 8 8 

   4 Mono 16 16 15 8 13 16 

   4 Mix 8 8 6 6 6 8 
Carpinus betulus L. Betulaceae EM 1 Mono 8 11 15 16 9 16 

   2 Mono 13 10 16 15 10 16 

   2 Mix 6 8 8 8 6 8 

   4 Mono 15 16 16 16 11 16 

   4 Mix 6 6 8 8 6 8 
Fagus sylvatica L. Fagaceae EM 1 Mono 6 4 10 12 4 14 

   2 Mono 10 9 15 14 13 16 

   2 Mix 5 6 6 3 3 7 

   4 Mono 8 14 12 14 11 15 

   4 Mix 3 6 6 5 4 6 
Quercus petraea (Matt.) Liebl. Fagaceae EM 1 Mono 9 16 15 13 16 16 

   2 Mono 14 16 14 15 15 16 

   2 Mix 6 7 5 7 6 7 

   4 Mono 12 12 11 11 12 12 

   4 Mix 8 8 7 8 8 8 
Tilia platyphyllos Scop. Malvaceae EM 1 Mono 13 12 10 8 14 15 

   2 Mono 12 8 14 13 13 16 

   2 Mix 5 7 4 7 6 7 

   4 Mono 13 12 15 13 14 16 

   4 Mix 5 7 4 6 8 8 

Total     485 500 514 503 488 589 
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TABLE S4 Model selection for the analyses of the drivers of the mean value for five functional traits. 
The simplest models which include a subset of predictors in the rest of the competing models are 
marked in bold. The acronyms correspond to the different predictors (TR = tree richness; AMF = AMF 
richness; EMF = EMF richness; and MT = host mycorrhizal type), and interactions between predictors 
are indicated by “X”. Whether the predictor is present is indicated by “+”. 

Trait TR MT AMF EMF 

TR TR TR MT MT AMF TR TR TR MT TR 

df ∆AICc R2m R2c 

X X X X X X X X X X X 

MT AMF EMF AMF EMF EMF MT MT AMF AMF MT 
      X X X X X 
      AMF EMF EMF EMF AMF 
          X 
          EMF 

SLA + +   +           9 0.00 0.10 0.73 

 +               7 0.62 0.02 0.71 

 + +  + +    +       11 1.00 0.10 0.73 

 + +              8 1.01 0.11 0.73 

 + + +  +           10 1.10 0.10 0.73 

 + +  +     +       10 1.34 0.11 0.73 

 + +  +   +  +       11 1.45 0.11 0.73 

 +  +             8 1.68 0.02 0.71 

 + +  + +  +  +       12 1.71 0.11 0.74 

 + +  + +           10 1.86 0.11 0.73 

 +   +   +         9 1.98 0.02 0.71 

LDMC  +  +            8 0.00 0.06 0.79 

    +            7 0.19 0.00 0.79 

  +              7 0.63 0.07 0.79 

                6 0.87 0.00 0.80 

  +  +     +       9 1.35 0.07 0.79 

  + + +            9 1.86 0.06 0.79 

  + + +    +  +      11 1.87 0.07 0.79 

 + +  + +           10 1.90 0.08 0.79 

 + +   +           9 1.98 0.09 0.80 

C:N  + +             8 0.00 0.27 0.66 

 + + +             9 1.10 0.27 0.66 

 + + +   +          10 1.22 0.27 0.66 

  + + +            9 1.78 0.26 0.66 

C  +              7 0.00 0.18 0.77 

 + +              8 1.86 0.18 0.77 

  + +             8 1.92 0.18 0.77 

  +  +            8 1.97 0.17 0.77 

P                6 0.00 0.00 0.69 

   +             7 1.53 0.00 0.69 

  +              7 1.54 0.01 0.70 

    +            7 1.83 0.00 0.69 

Note: ∆AICc, delta of Akaike information criterion; R2m, marginal R2; R2c, conditional R2. 
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TABLE S5 Model selection for the analyses of the drivers of the multi-trait functional indices. The 
simplest models which include a subset of predictors in the rest of the competing models are marked 
in bold. The acronyms correspond to the different predictors (TR = tree richness; AMF = AMF richness; 
EMF = EMF richness; and MT = host mycorrhizal type), and interactions between predictors are 
indicated by “X”. Whether the predictor is present is indicated by “+”. 

 TR MT AMF EMF 

TR TR TR MT MT AMF TR TR TR MT TR 

df ∆AICc R2m R2c 

X X X X X X X X X X X 

MT AMF EMF AMF EMF EMF MT MT AMF AMF MT 
      X X X X X 
      AMF EMF EMF EMF AMF 
          X 

                    EMF 

FRic +               7 0.00 0.02 0.03 

 + + +     +        10 0.68 0.03 0.04 

 + + +  +   +        11 1.11 0.03 0.04 

 + + +   +  +        11 1.42 0.03 0.04 

 + +              8 1.68 0.02 0.03 

 +  +             8 1.83 0.02 0.03 

 + +   +           9 1.85 0.02 0.04 

 +  + +      +      10 1.86 0.02 0.03 

 + + +  + +  +        12 2.00 0.03 0.04 

FDis + +   +           9 0.00 0.01 0.07 

 + + +  +           10 0.49 0.03 0.07 

 + + +  +   +        11 0.75 0.03 0.07 

 +               7 1.15 0.01 0.07 

 + + +  + +  +   +     13 1.35 0.04 0.08 

 + +              8 1.44 0.02 0.07 

 +  +             8 1.55 0.01 0.07 

 + + +  + +          11 1.71 0.03 0.08 

 + + +  + +  +        12 1.79 0.03 0.08 

 + + +     +        10 1.80 0.02 0.07 

 + + +             9 1.82 0.02 0.07 

Note: ∆AICc, delta of Akaike information criterion; R2m, marginal R2; R2c, conditional R2. 
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CHAPTER 3 

Intraspecific and intraindividual trait variability decrease with tree species richness in a 

subtropical tree biodiversity experiment 
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X, Haider S. 2024. Intraspecific and intraindividual trait variability decrease with tree species 
richness in a subtropical tree diversity experiment. bioRxiv 2024-11. 
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ABSTRACT 

Phenotypic variability within tree species responds to local tree species richness. However, 

we lack evidence on how different sources of trait variation shape tree-tree interactions. 

Along a diversity gradient from one to eight tree species, we sampled 4,568 leaves from 381 

trees to study changes in intraspecific and intraindividual leaf trait variability and assessed 

their contribution to community functional diversity. Intraspecific variability decreased with 

tree species richness, while intraindividual variability barely responded. Functional overlap 

between conspecific trees increased with tree species richness and through intraindividual 

variation, but was reduced through intraspecific variability, meaning that intraspecific 

variability may reduce intraspecific competitive interactions while intraindividual variability 

could arise due to varying microenvironmental conditions within the canopy. Last, 

intraspecific and intraindividual variability explained high community functional richness and 

divergence, respectively, especially in mixtures. Our findings emphasize that fine-scale 

variability influences tree-tree interactions and can be a driver of local functional diversity. 

 

Teaser 

Trait variability within tree species decreases with species diversity and explains high forest 

functional diversity. 
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INTRODUCTION 

Plant trait-based ecology focuses on phenotypic differences as a way to understand ecological 

and evolutionary processes (1–3). While the field has typically focused on differences 

between species, substantial trait variation occurs at different levels of biological organization 

(among populations, between individuals within the same population, or within individuals; 

4, 5) which could be important to understand adaptations to the environment (6) and species 

coexistence (7). For instance, in response to competition, individuals are able to shift the trait 

expression to adopt a more conservative strategy in the use of resources (8) or to prevent 

local competitive exclusion by increasing dissimilarities with other individuals (9). However, 

while these shifts have been widely studied, less attention has been paid to the variability of 

traits within the same population, hereafter referred to as intraspecific trait variability (i.e. 

the extent of the differences between the trait values of individuals from the same population 

of a species). 

Intraspecific trait variability within populations may reduce intraspecific competition 

by allowing individuals from the same species (conspecifics) to exploit alternative resources 

(10, 11). Therefore, given that conspecifics acquire and use resources in a similar way, 

intraspecific trait variability is expected to be larger in species-poor communities. Further, 

intraspecific trait variability depends not only on intraspecific competition but also on niche 

availability (12). That is why, when the number of species in a community increases (which 

commonly results in resource partitioning; 13), trees tend to become more dissimilar from 

the heterospecific neighbors. As a result, species may adopt a so called niche packing strategy 

characterized by the exploitation of a specific resource in a specific manner, resulting in lower 

intraspecific trait variability compared to monocultures (14). For example, conspecific trees 

in monocultures have been found to produce leaves with different specific leaf areas (SLA) to 

exploit different sections of the light gradient; by contrast, in mixed communities, as species 

specialize in exploiting specific parts of the canopy space, conspecifics tended to produce 

leaves with similar SLA (15). As a result, limited intraspecific variability may act as a 

mechanism that would allow species to exploit different niches, resulting in species 

complementarity in species-rich communities (16). In fact, recent studies found that 

intraspecific leaf variability of plant populations decreased with increasing plant diversity (14, 
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17, 18). However, these results contrast with other studies and with the responses found for 

other tree organs other than leaves (19–22). For instance, Yang et al. (22) suggested that 

inferior competitor species may express higher intraspecific trait variability, especially in 

seedling roots, to reduce the chances of being outcompeted when growing with a strong 

competitor species. These contrasting results among studies propose that there is no general 

direction of change of intraspecific trait variability in response to species diversity, but that it 

likely depends on the specific interaction partners as well as the plant organ studied.  

Scaling down in the levels of biological organization, intraindividual variability, i.e., the 

extent of different trait values across different repeated architectural units of the plant body 

structure (e.g. leaves from the same plant; 23–25), could also matter for plant-plant 

interactions. Such plastic responses are especially noticeable in trees because they have a 

great potential to express intraspecific and intraindividual trait variability due to their 

longevity and extensive modularity (26). For instance, as the light interception by leaves is a 

key factor in competition (27), trees express different leaf phenotypes within individuals to 

adjust to light exposure (e.g. leaves directly exposed to sunlight show higher photosynthetic 

rates and lower drought tolerance than shade leaves; 27, 28). Additionally, it has been 

suggested that plants can experience intraindividual changes in eco-physiological traits that 

may eventually lead to enhanced water-use efficiency (29) or cope with environmental 

unpredictability (30). As tree composition affects crown packing and, therefore, light 

exposure, leaves also respond to the surrounding diversity (15). In fact, intraindividual leaf 

variability in trees was observed to decrease with local tree species diversity (15, 31) and it 

has been suggested that, similarly to intraspecific variability, high intraindividual leaf 

variability could support intraspecific complementarity (functional complementarity between 

conspecifics). This would imply that, under scenarios of high intraindividual variability, 

conspecifics may tend to be dissimilar in their leaves by exploiting new niches. Nevertheless, 

this role of intraindividual variation in interactions between trees and the mechanisms 

involved remain still unclear. For instance, these changes can be useful for trees growing in 

monocultures, where canopy density and structural diversity are lower and therefore 

temperatures less buffered compared to mixtures (32). That is why, in order to clarify whether 

intraindividual variability generates intraspecific complementarity, it is important to 
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understand the patterns of intraindividual variability along tree species diversity gradients as 

well as its effect on how different conspecifics overlap in their traits. 

Functional diversity (i.e. the extent of phenotypic differences in a community) is one 

of the most common tools in trait-based ecology (33) and can reveal key facets of ecosystem 

functioning (e.g. net primary productivity, biochemical cycles) and community assembly (e.g. 

environmental filtering, limiting similarity; 1, 34). Functional diversity estimations typically 

consider a single mean trait value for each species; this strategy reduces the amount of trait 

measurements but neglects trait variation within species (2). Nevertheless, intraspecific trait 

variability can account for a non-negligible proportion of the total trait variability within and 

across ecological communities (4, 35). Further, approaches considering intraindividual trait 

variability have shown that the sum of the variation occurring intraspecifically and 

intraindividually may be even larger than the differences between species in the case of some 

leaf traits such as SLA or leaf nitrogen content (5, 36). This shows the importance of studying 

species traits beyond single mean trait values to quantify community functional diversity, 

especially at local scales and in species-poor communities (37–40). Therefore, it has been 

suggested that the different sources of trait variation occurring within species, from the 

variability between populations to the intraindividual variability, could affect community 

functional diversity (41). In recent years, different methods to incorporate variability into 

functional diversity metrics have been developed (37, 42–45). The use of these methods 

allows testing the notion that community functional diversity is higher when considering 

intraspecific or intraindividual variability (41, 46), as well as understanding how this effect 

changes with species richness.  

Here, we studied the patterns of intraspecific and intraindividual leaf trait variability 

in a tree diversity experiment in subtropical China (BEF-China; 47). By using leaf spectroscopy, 

we estimated seven morphological and chemical leaf traits in 381 tree individuals from eight 

species along a tree species richness gradient with monocultures and mixtures of 2, 4 and 8 

tree species. We assessed population functional trait variability by using two functional 

indices that measure different facets of the functional space (functional richness and 

functional divergence) at the intraspecific (mean trait values of individual trees) and the 

intraindividual level (leaf trait values within an individual tree), respectively. Further, we 

assessed intraspecific overlap as the shared trait space between the trait distributions of 
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conspecific trees belonging to the same population. Specifically, we aimed (1) to determine 

how tree species richness affects intraspecific and intraindividual leaf trait variability (Fig. 1A), 

and (2) to assess the direct and indirect effects (via intraspecific and intraindividual variability) 

of tree species richness on intraspecific trait overlap. Further, we used a framework that 

allows including hierarchical sources of trait variation on community functional diversity, from 

the population level to the leaf level, passing through the individual level (37, 48), and null 

models to identify which sources of variation within species affect functional diversity (Fig. 

1B). With this, we aimed (3) to characterize the influence of intraspecific and intraindividual 

variability on the functional diversity of a community across levels of tree species richness. 

We hypothesized that: 

H1: Intraspecific and intraindividual variability decrease with increasing tree species 

richness (Fig. 1A).  

H2: Intraspecific overlap increases with tree species richness along a spectrum from 

high intraspecific complementarity in monocultures to low intraspecific complementarity in 

mixed communities (H2a; Fig. 1A). Intraspecific overlap increases with tree species richness 

via a decreasing intraspecific and intraindividual variability (H2b). 

H3:  As the organization of intraspecific and intraindividual trait variability is expected 

to contribute to community functional diversity, the observed functional diversity of tree 

communities is expected to be higher than the functional diversity measured from null 

models that randomize different sources of trait variation (H3a; Fig. 1B). Moreover, the 

deviations of observed functional diversity from null models decrease with tree species 

richness due to the expected responses of intraspecific and intraindividual trait variability 

with the number of species in a community (H3b; see H1). Last, these differences are expected 

to be highest in null models that randomize trait variation at the lowest level of biological 

organization measured (i.e. leaf level), as these randomizations imply random intraspecific 

and intraindividual variability (H3b). 
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Fig. 1. Expected patterns along the experimental tree species richness gradient. Along the tree 
species richness gradient, we expect (A) a reduction of intraspecific trait variability (i.e. differences 
between the mean trait values of individual trees) and of intraindividual trait variability (i.e. 
differences between the trait values within a tree; represented as error bars around points of 
individual mean trait values), which would result in increasing intraspecific overlap (i.e. shared trait 
space between trees belonging to the same population). Curves represent the trait distributions of 
populations, with inner stacked curves belonging to the trait distribution of tree individuals. The 
structure of trait variation within species can influence community functional diversity and that is 
why (B) we expect functional diversity in observed communities (represented as a baseline with a 
grey dashed line) to be higher compared to the functional diversity of virtual assemblages (colored 
values) for which different sources of trait variation have been randomized. Specifically, we expect 
that the functional diversity of observed communities would be more similar to those assessed with 
models that randomize the identity of the populations (pink points) compared to those assessed with 
models that randomize the identity of the trees (purple points), and the total pool of leaves within a 
species (blue points), respectively. In addition, we expect these differences to be higher with low tree 
species richness due to the importance of intraspecific and intraindividual trait variability in the 
functional diversity of species-poor communities. 
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RESULTS 

Responses of intraspecific and intraindividual variability to tree species richness 

The first two axes of a principal component analysis (PCA) on the leaf-level values of seven 

functional traits (N = 4,568) explained 68% of the total variation in our dataset (Fig. 2A). PC1 

was strongly associated with leaf dry matter content (LDMC), specific leaf area (SLA) and leaf 

carbon content (C) (with loadings -0.94, 0.89 and -0.73, respectively; Table S1) and reflected 

differences in the acquisition of resources from conservative leaves to acquisitive leaves. PC2 

was related to leaf nitrogen content (N), leaf phosphorus (P) and stomatal density (SDens), 

followed by stomatal size (Ssize) (with loadings 0.75, 0.64, 0.63 and -0.42, respectively) and 

reflected differences in nutrition status, which seems to be closely linked to the stomatal 

morphology. 
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Fig. 2. Main axes of leaf trait variation and effect of tree species richness on intraspecific and 

intraindividual leaf trait variability. (A) Biplot for the first two axes of a principal component analysis 

(PCA) of seven functional traits predicted for leaves collected in eight tree species growing in a 

subtropical tree diversity experiment (N = 4568; colored points: mean species values). Data are based 

on spectroscopically predicted trait values of leaves collected from trees growing along an 

experimental species richness gradient with mixtures of 1, 2, 4 and 8 tree species. The color gradient 

visualizes different probability densities, with red colors corresponding to portions of the space 

displaying the highest densities of observations. The first component (PC1) reflects a gradient from 

“conservative” leaves (towards the left) that are expected to have a longer lifespan and higher survival 

probability in response to abiotic and biotic hazards than cheaply constructed “acquisitive” leaves 

(towards the right) which are expected to have higher photosynthetic rates (Fig. S2, S3). The second 

component (PC2) reflects a gradient in nutrition status and stomatal morphology ranging from “low 

nutrient content” and “water spender” leaves (towards the bottom) with low photosynthetic capacity 

and few large stomata to “high nutrient content” and “water saver” leaves that could show high 

photosynthetic rates and have many small stomata that could decrease stomatal conductance quickly 

in response to water shortage (49, 50). Colors and leaf silhouettes correspond to the different tree 

species included in the study (Table S3). Regression estimates from linear mixed-effects models to 

study intraspecific and intraindividual variability of PC1 and PC2 (B) show a significant decrease in 

intraspecific functional richness of PC1 with increasing tree diversity (P = 0.01) and a significant 

decrease of intraindividual functional divergence of PC2 (P = 0.04). Regression coefficients are shown 

for the intraspecific level (top, N = 63) and intraindividual level (bottom, N = 381). Colors represent 

the significance as determined by a likelihood ratio test (black P < 0.05, grey P > 0.05). 
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Overall, intraspecific leaf trait variability within populations decreased with tree species 

richness. First, analyses with single axes of leaf trait variation, which aimed to detect changes 

associated with specific axis of leaf trait variation, revealed that intraspecific variability in PC1 

decreased with tree species richness (P = 0.01 for functional richness (FRic; the extent of the 

functional volume of the population); Fig. 2B, Table S2). However, this effect was not 

significant for the intraspecific variability of PC2. Second, we estimated trait probability 

densities based on both PC1 and PC2 (multivariate FRic) to assess the main changes in the 

total trait space. This analysis revealed that tree species richness also had a significant 

negative effect on multivariate FRic (P = 0.047, N = 63; Fig. 3A). In contrast, we found no effect 

of tree species richness on multivariate functional divergence (FDiv; the degree to which the 

abundance in the trait space is distributed towards the extremes of the functional volume) (P 

= 0.36; Fig. 3C). The results for intraspecific variability contrast with the effects found for the 

intraindividual level, as only intraindividual FDiv of PC2 responded negatively to tree species 

richness, and this response was small (P = 0.04; Fig. 2B). This result is consistent with the 

effects of tree species richness on the intraindividual FRic of stomatal density (P = 0.03; Fig. 

S1). We found no effect of tree species richness on any of the multivariate functional indices 

used at the intraindividual level (FRic and FDiv with P = 0.51 and P = 0.69, respectively; N = 

381; Fig. 3B, D). 
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Fig. 3. Effect of tree species richness on leaf trait variability at the intraspecific and intraindividual 

levels, as reflected by two multivariate functional indices. Lines correspond to the results of linear 

mixed-effects models that show (A) a significant decrease of intraspecific functional richness (FRic) 

with increasing tree species richness (P = 0.047, N = 63) and non-significant effects of tree species 

richness on (C) intraspecific functional divergence (FDiv) and (B, D) intraindividual FRic and FDiv (N = 

381). Data are based on measurements of seven morphological and chemical leaf traits in an 

experimental species richness gradient with monocultures and mixtures of 2, 4 and 8 tree species. 

Grey bands represent a 95% confidence interval. Colors correspond to the different tree species 

included in the study (Table S3), whose identity was included as a random effect in our models. 
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Effects of intraspecific and intraindividual trait variability on intraspecific overlap 

We used a structural equation model (SEM) to understand the relationships leading 

conspecific trees to overlap in the functional trait space of their population (Fig. S4, S5). Our 

model fit the data well (Fisher’s C = 0.68, df = 2, P = 0.76, N = 63). We found that changes in 

the intraspecific overlap (the mean overlap between the functional volumes of conspecific 

trees within a population; Fig. 4) are well explained by tree species richness and multivariate 

intraspecific and intraindividual FRic (marginal R2 = 0.57, conditional R2 = 0.72). Intraspecific 

FRic significantly decreased with tree species richness (P = 0.04) and had in turn a negative 

impact on intraspecific overlap (P < 0.001). However, we did not find any effect of tree species 

richness on intraindividual FRic (P = 0.49), and we found an increase of intraspecific overlap 

with intraindividual FRic (P < 0.001). Additionally, tree species richness also had a direct 

positive effect on intraspecific overlap (P = 0.01). These results remained qualitatively similar 

in SEMs with functional indices based on single axes of trait variation (PC1 or PC2 of Fig. 2A; 

Fig. S6).   
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Fig. 4. Piecewise structural equation model (SEM) studying the mechanisms driving the intraspecific 

overlap in leaf functional traits. The SEM tests the direct effect of tree species richness on intraspecific 

overlap as well as its indirect effects mediated via multivariate intraspecific and intraindividual 

variability, which is expressed as functional richness (FRic) here, but see Fig. S6 for a non-simplified 

SEM in which intraspecific and intraindividual functional divergence (FDiv) were also included. Data 

are based on multivariate functional indices measured at the intraspecific and intraindividual level for 

eight tree species growing along an experimental species richness gradient with monocultures and 

mixtures of 2, 4 and 8 tree species. The width and color of the arrows indicate the strength and 

direction of the effect, with blue arrows showing positive effects and red arrows negative ones. 

Significant results are represented by solid lines while non-significant relationships are represented 

by semi-transparent lines. Asterisks indicate significant effects (*p < 0.05, ***p < 0.001). The marginal 

and conditional R2 (R2m and R2c, respectively) are indicated for every model of the piecewise SEM.  
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Effects of trait variation on community functional diversity 

In order to study the importance of intraspecific and intraindividual trait variability in the 

assessment of functional diversity of a community and its dependence on species richness, 

we built four null models that randomized trait probability densities at three different levels 

where trait variation arises (Fig. 5, S7, S8). This approach ensured that simulated assemblages 

had identical tree species composition as the observed communities, but differed in the trait 

variability within species. Specifically, the sources of random trait variation differed between 

the four null models: (1) random population model (assuming random trait distribution of the 

populations in an assemblage, but within the constraints of the species to which each 

population belongs), (2) random tree model (assuming random trait distribution among trees 

from the same population, but within the constraints of the species to which each tree 

belongs), (3) random leaf model (assuming random trait distribution among leaves from the 

same tree, but within the constraints of the species to which each tree belongs) and (4) 

population-restricted random leaf model (assuming random trait distribution among leaves 

from the same tree, but within the constraints of the population to which each tree belongs; 

see methods for details on the null models). Based on 500 simulations we calculated the 

standardized effect sizes (SESs) of FRic and FDiv for every type of null model and every 

sampled community to determine how much the observed functional diversity deviates from 

what would be expected under the null models. We then used linear mixed-effects models to 

study differences in SESs among null models and along a gradient of tree diversity (Fig. S8).  

We found a significant interaction between tree species richness and the type of 

model on SESFRic (P < 0.001, N = 128; Table S4). Specifically, SESFRic did not differ from 0 in 

the random population model, suggesting no differences between the FRic of null models and 

observed communities. Still, SESFRic became significantly higher than 0 with increasing tree 

species richness in the random tree null model and the population-restricted random leaf 

model, suggesting that FRic in the diverse observed communities was higher compared to 

FRic from the null models. In the case of the random leaf model, SESFRic was lower than 0 

with low tree species richness and similar to 0 in the highest levels of tree diversity, suggesting 

that in monocultures, observed SESFRic values were lower compared to the null model, and 

there were no differences between the null model and observed FRic in diverse communities. 

A significant interaction was also found for SESFDiv (P < 0.001, N = 128), but for this functional 
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index the random population and the random tree models did not differ from 0 and only the 

random leaf and population-restricted random leaf models were significantly higher than 0 in 

more diverse communities, suggesting that only for these two last null models the observed 

values of FDiv were higher than the ones from the null models in diverse communities. All 

analyses remained qualitatively similar when studying functional indices on single axes of trait 

variation (PC1 or PC2 of Fig. 2A; Fig. S9). 
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Fig. 5. Differences between observed and random values of community functional diversity along a 
species richness gradient for four null models that randomized different sources of trait variation. 
We built (A) null models that differ in the level of biological organization in which the randomization 
was performed (population level, tree level or leaf level; Figure S7) based on leaf-level data collected 
from plots with 1, 2, 4 or 8 tree species. Data are based on standardized effect sizes (SES) assessed for 
every null model and functional index (functional richness (FRic) and functional divergence (FDiv)). 
Linear mixed-effects models showed that the responses of (B) SESFRic and of (C) SESFDiv to tree species 
richness depended on the type of null model (P < 0.001 and P = 0.01, respectively; N = 120). SESs are 
lower than zero (below the dashed line) when the observed values of functional diversity are lower 
than the simulated ones, while SESs are higher than zero when the observed values are higher than 
the simulated ones. Semi-transparent bands represent a 95% confidence interval. Points correspond 
to the mean value of SESs and error bars represent their standard deviation. Boxplots for comparing 
the values for the SESs in different models are included in the right panels. 
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DISCUSSION 

With our study, we show that intraspecific leaf trait variability correlated negatively with tree 

species richness and in turn, had a strong negative correlation with intraspecific trait overlap 

within a community. We interpret this to indicate that trees of a given species are on average 

functionally more similar in species-rich communities than when they are growing in 

monoculture. In contrast, intraindividual leaf trait variability was weakly correlated with tree 

species richness, but strongly and positively correlated with intraspecific trait overlap. We 

interpret that, as the leaves within each tree become functionally more similar, the trait 

expressions of individual trees become more dissimilar to each other. Our results also show 

that the organization of intraspecific and intraindividual variability influences community 

functional diversity, especially at higher levels of tree species diversity. 

 

Leaf intraspecific and intraindividual trait variability decrease along tree species richness 

gradients 

Our approach allowed us to study how trait variability responded negatively to tree species 

richness in terms of functional variation between and within individuals (H1). The negative 

association of tree species richness with functional variability between individuals of a species 

is consistent with the theoretical predictions suggesting that higher intraspecific variability 

would minimize intraspecific competitive interactions in monocultures, while intraspecific 

variability is of secondary importance for species coexistence in species-rich communities (10, 

14, 51, 52). Indeed, responses of intraspecific variability in leaf traits were found to decrease 

with species richness in observational studies (18), and also in other BEF-experiments (15), 

supporting the idea that leaf variability between conspecifics is a mechanism for 

complementarity in trees. However, these results contrast with previous observational 

studies on trees that found an increase in intraspecific trait variability with tree species 

richness (19–21). These studies mentioned that higher structural complexity (i.e. the 

structural diversity in the occupancy of the aboveground space) could release competition, 

allowing species to occupy a larger niche space. In fact, most of the responses found in these 

studies involved architectural traits (e.g. crown projection area), for which increasing tree 

species richness often leads to higher complexity in canopy space-filling (53, 54). However, 
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most of these studies were observational and included trees differing in age and distance 

from neighbors. Such heterogeneous settings would impede, for instance, separating the 

variability arising from neighborhood diversity from that associated to ontogeny (55, 56). 

Our results also indicate that variability in the leaf economics spectrum (LES, 56), 

accounts for most of the changes at the intraspecific level (as indicated by the results of 

functional richness for PC1). Therefore, most of the variability occurs between conservative 

leaves which are expected to have a long lifespan and high resistance against abiotic and 

biotic hazards, and acquisitive leaves with short lifespans which are expected to be fast in the 

acquisition of resources and efficient in photosynthetic activity (58, 59). This pattern is 

consistent with the responses found in other studies for SLA (15), a trait widely used as a 

proxy for acquisitiveness. It suggests that conspecifics adjust their leaf design in terms of 

resource use (some individuals more conservative and some more acquisitive), resulting in 

intraspecific coexistence. Consistently, we found a trend towards a positive effect of tree 

species richness on intraspecific trait overlap (H2a). These results reinforce the idea that 

species richness leads to the convergence of conspecifics in their leaf phenotypic space, 

resulting in higher niche packing of species due to the higher similarity between conspecifics 

in the resource-use strategy (H2b).  

Recent studies suggest that intraindividual variability, which primarily relies on 

epigenetics and phenotypic plasticity (23), has evolved in natural populations in order to 

adapt to changing environmental conditions (29, 30, 60). However, this source of variation 

has been widely disregarded and its role in the context of tree-tree interactions remains 

largely unclear. Proβ et al. (15) suggested that intraindividual variability in leaves could act in 

a similar way as intraspecific variability, meaning that higher intraindividual variability could 

minimize competitive interactions among conspecifics. Therefore, intraindividual trait 

variability should be higher in monocultures compared to mixtures. However, while a clear 

decrease in intraindividual variability in response to tree species richness previously reported, 

these studies did not explore how this could be related to intraspecific trait overlap (31, 61). 

In contrast, our results indicate that intraindividual leaf variability promotes trait overlap 

within a population, suggesting that the role of intraindividual variability in intraspecific 

complementarity could have been overestimated (H2b). Further, tree diversity seems to 

affect intraindividual variability in nutrition status and stomatal morphology, with more 
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similar leaves in mixtures than monocultures (as indicated by the results of functional 

divergence for PC2 and functional richness for stomatal density; H1). Additionally, we have 

observed differences between leaves from the bottom and the top of the tree crown (Fig. 

S10), with lower stomatal density at the bottom compared to that at the top.  Therefore, 

higher intraindividual differentiation in leaves may appear due to the higher photosynthetic 

activity of leaves in the upper part of the canopy, as higher photosynthetic rates require 

higher CO2 assimilation via stomata (62). Indeed, this may be consistent with the alignment 

between nutrient concentration and stomatal density we found. Thus, the lack of clear 

stratification of the canopy in monocultures (53) could result in a higher differentiation in the 

photosynthetic capacity between sun and shade leaves, which would be expected to affect 

stomatal morphology. As an additional explanation, as diversity can reduce water stress in 

mixtures (63) and provide microclimate buffering due to higher canopy density (32), stronger 

differentiation between “water spender” and “water saver” leaves within individuals could 

appear as a mechanism to cope with water stress in monocultures. In this context, it makes 

sense that leaves in the upper part of the crowns, which are exposed to higher evaporative 

demand, adopt a “water saver” strategy that allows them to respond more quickly to water 

stress (64). Indeed, intraindividual variability has already been suggested as a mechanism to 

prevent water stress in the case of perennial herbaceous species (29). In sum, our data 

suggest that intraindividual variability in tree-tree interactions is associated with intraspecific 

overlap and may arise as a response to varying light and microclimatic conditions within the 

canopy and the (associated) environmental stressors that trees face. 

 

Intraspecific and intraindividual trait variability shapes the high functional diversity in 

ecological communities 

Our results, interpreted in terms of the deviation of observed functional diversity from null 

models, showed that the structure of intraspecific and intraindividual trait variability 

contribute positively to communities’ functional diversity (H3a). While differences among 

species are still the most prominent source of trait variation, intraspecific and intraindividual 

variability can represent almost half of the total leaf trait variability in our species, especially 

in the case of predicted leaf nitrogen and phosphorus contents (37; Fig. S11). Therefore, it 
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becomes reasonable that the variability within species will also partly explain how functional 

diversity is distributed (65). Surprisingly, although we expected to find a higher contribution 

of trait variability in monocultures, the increase of the divergence from the null models 

suggests that intraspecific and intraindividual trait variability contributed more to functional 

diversity in species-rich communities (H3b). One possible explanation is that trees tend to 

differ in trait values from the other trees in the community (from the same or a different 

species). As a result, this would lead to an increase in the functional diversity of the 

community that would be more noticeable as the number of species increases (18). 

Differences between the deviations in different null models revealed that intraspecific 

and intraindividual trait variability contribute to different facets of functional diversity (H3c). 

In the case of intraindividual variability, the negative departure of FRic from the random leaf 

null model indicate that, as different populations are exposed to different environmental 

conditions, the leaves belonging to the same population are highly similar among them 

compared to other leaves from the same species. Further, the coincidence in the 

discrepancies between the observed and expected FRic in the random tree and the 

population-restricted random leaf null models may mean that higher FRic in observed 

communities is only attributable to intraspecific trait variability. In contrast, the higher 

observed functional divergence (FDiv) in comparison to the expectations of the random leaf 

and the population-restricted random leaf null models suggests that communities have a 

more multimodal distributions, that is, there are several modes (“peaks”) across the 

functional space, resulting from intraindividual trait variability. Indeed, while the role of 

intraspecific variability in producing multimodal trait distributions had already been studied 

(66), our results indicated that this effect could be amplified when considering intraindividual 

variability. This means that, even within one experimental plot, there is not a unique optimal 

trait value, but different optimal leaf designs are expressed. This is consistent with previous 

literature, as due to microenvironmental conditions along the tree crown, multiple leaf 

designs can be expressed in order to maximize fitness (67), affecting the distribution of traits 

in the community. Interestingly, while we found differences between the observed functional 

diversity and the expectations in the random tree, random leaf and population-restricted 

random leaf model, observed populations did not depart significantly from randomly chosen 

populations for either functional richness or functional divergence. This suggests that, despite 
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the responses found for intraspecific trait overlap, population identity does not matter for 

functional diversity. However, we should be careful when interpreting this result because, 

while we did not find differences in the contributions of different populations from the 

experiment presented here, populations in natural systems with higher environmental 

heterogeneity could differ substantially in their contribution to the functional diversity of the 

community (44).  

In summary, both intraspecific and intraindividual trait variability affected the 

distribution of functional diversity. This outcome provides a better understanding of how the 

variation within species influences functional diversity and supports the idea that intraspecific 

variability is an important component to be considered when studying the functional diversity 

of ecological communities at fine or local scales (40, 65). Additionally, we show that 

intraindividual variability does not only matter for the ecological processes occurring at the 

population level (68), but also shapes the trait distribution of ecological communities. 

 

Outlook 

Using a trait dataset that accounts for hierarchical sources of trait variation for eight tree 

species across a gradient of tree species richness, we showed that trait variability within and 

between individual trees is relevant for understanding patterns of intraspecific functional 

diversity. Traits are a response to pressures from the abiotic and biotic environment, but 

simultaneously affect ecosystem functioning (69). For instance, intraspecific variability in 

trees has also been shown to be an important factor increasing primary productivity (70), and 

similar effects are expected for intraindividual trait variability (61). Therefore, understanding 

the patterns of trait variation could reveal new facets of the mechanisms behind ecosystem 

functioning. Altogether, our study demonstrates the importance of considering biological 

units below the population or species level in trait-based ecology, thus highlighting the 

importance of moving from a species-based trait ecology to an individual-based trait ecology, 

that could enable better understanding of processes occurring at the local scales 
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MATERIALS AND METHODS 

Study site and experimental design 

This study was conducted in a biodiversity–ecosystem functioning (BEF) experiment, the BEF-

China tree diversity experiment, located in Xingangshan, in Jiangxi Province, China (lat. 

29°08′11″N, long. 117°90′93″E). While BEF-China was primarily created to investigate 

ecosystem functions in planted areas with different levels of tree-species diversity, thereby 

simulating the impact of species extinction, this experiment has also been used to address 

intraspecific changes of trees in response to their biotic context (71). The climate is 

subtropical with a mean annual temperature of 16.5°C (ranging from 0.4°C in January to 

34.2°C in July) and mean annual precipitation of 1,821 mm (72). We worked on ‘Site A’, where 

trees were planted in 2009 and which extends over an area of 27 ha with an elevation ranging 

from 205 to 275 m a.s.l. and slopes from 8.5° to 40° (3; Fig. S12). In each plot, 400 saplings 

were planted in a uniform grid with 1.29-meter spacing, with species randomly allocated to 

planting positions. In the experiment, the trees are arranged according to the ‘broken-stick’ 

design outlined by Bruelheide et al. (47). This design involves dividing the species pool into 

two equal groups for each subordinate richness level. From the total pool of 24 species, we 

worked with eight tree species: Castanea henryi Rehder & E.H. Wilson, Castanopsis 

sclerophylla (Lindl. & Paxton) Schottky, Choerospondias axillaris (Roxb.) B.L.Burtt & A.W.Hill, 

Liquidambar formosana Hance, Nyssa sinensis Oliv., Quercus serrata Murray, Sapindus 

mukorossi Gaertn. and Triadica sebifera (L.) Small (see Table S3 for details on species family); 

in plots ranging from the monoculture to the 8-species mixture passing through 2- and 4-

species mixtures. Hence, all species are equally represented at every species richness level. 

 

Field sampling 

Sampling took place from mid-August to mid-September 2023. In every plot, we randomly 

chose six individuals from every species, and every species was sampled in two plots at each 

diversity level. This results in a total of 384 trees from eight different species in 30 plots. 

However, the theoretical number of 384 trees was reduced to 381 due to the high mortality 

of Triadica sebifera in one of the plots, where we found only three individuals for that 

population. In order to capture the variability of the whole individual, from each tree we 
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collected 12 fully developed leaves free from apparent mechanical or pathogen damage at 

three different heights and four different orientations of the crown, resulting in 4,572 leaves. 

Immediately after collection, leaves were stored in sealable plastic bags with moistened 

tissue. Samples were transported in an isothermal bag equipped with cooling bags to prevent 

dehydration. In the laboratory, samples were temporarily stored at 6–8 °C for a maximum of 

12 hours before further processing. 

In addition, we collected independent sets of leaf samples in order to predict the leaf 

economics spectrum (LES) and stomata trait values for the samples of the regular set based 

on the relationship between reflectance spectra and measured trait values of the calibration 

and stomata sets (see `leaf trait prediction` section for details). As the methods for measuring 

traits from the LES were incompatible with the methods used to measure stomata traits, we 

used two independent sets for these predictions: calibration LES set and calibration stomata 

set. For the calibration LES set, we included 20 leaf samples per species across all species 

richness levels, collected at different heights and orientations within the crown, in order to 

maximize the sampled scenarios (i.e., combinations of species considering closest neighbors, 

different positions of the leaf within the crown, and the tree's location within the 

experiment). Each of the 160 samples was composed of four leaves on average depending on 

the leaf size, to ensure sufficient material for laboratory analyses. For the calibration stomata 

set we collected 16 leaves per species (totaling 128 samples), also covering all species richness 

levels and four different heights within the tree crown. 

 

Spectroscopy and laboratory analyses 

Visible-near infrared spectrometry (Vis-NIRS) is emerging as a high-throughput phenotyping 

technique to manage large sample sizes and predict individual leaf trait values using 

calibration models (39, 73). For all leaves (regular, calibration LES and calibration stomata 

samples), we acquired reflectance spectra with a portable Vis-NIRS device (ASD “FieldSpec4” 

Wide-Res Field Spectroradiometer, Malvern Panalytical Ltd, Almelo, Netherlands). 

Reflectance was measured across the full range of the solar radiation spectrum (350-2500 

nm) by taking three repeated measures on the adaxial side of each leaf while avoiding main 

veins. The equipment was optimized regularly with a calibration white panel (Spectralon, 
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Labsphere, Durham, New Hampshire, USA). For each measurement, ten spectra were 

averaged internally to reduce noise. A splice correction was applied to the spectral data to 

minimize the disjunctions between the three sensors of the ASD FieldSpec (VNIR, SWIR1 and 

SWIR2, with ranges 350-1000 nm, 1001-1800 nm and 1801-2500 nm, respectively). Therefore, 

the splicing regions were configured according to the points between sensors (from 750 to 

1000 and from 1800 to 1950; 74)). After splice correction, outlier detection was performed 

by using a similar procedure as in Li et al. (75). First, all spectra were visually inspected in the 

laboratory after acquisition. Additionally, for every species separately, we calculated the local 

outlier factor of every spectrum (76) and hence considered as outliers 25 spectra that had a 

value higher than 2 for the local outlier factor (Fig. S13).  

For the samples of the calibration LES set, we determined five morphological and 

chemical leaf traits which are assumed to reflect a plant's strategy in terms of the investment 

of nutrients and dry mass in the leaves (59, 77) and are key components of the leaf economics 

spectrum (57, 58): specific leaf area (SLA; leaf area divided by leaf dry mass; mm²/mg), leaf 

dry matter content (LDMC; leaf dry mass divided leaf fresh mass; mg/g), carbon content (C; 

%), nitrogen content (N; %), and phosphorus content (P; µg/g). Additionally, from the 

calibration stomata set, two traits involved in the regulation of the use of water regulation 

were assessed: stomatal density (SDens; mm⁻²) and stomatal size (SSize; µm). In our 

experiment, these two traits have been shown to represent an orthogonal source of leaf 

variation relative to the traits from the leaf economics spectrum (78, 79). After collection, the 

saturated fresh leaves of the calibration LES samples were weighed (DeltaRange Precision 

Balance PB303-S; Mettler-Toledo GmbH, Gießen, Germany) and scanned at a resolution of 

300 dpi to measure leaf area (WinFOLIA; Regent Instruments, Quebec, QC, Canada). Leaves 

were oven-dried at 80°C for 72 h and weighed to calculate SLA and LDMC. Dried leaves were 

ground (Mixer Mill 400; Retsch, Haan, Germany), and 200 mg of the resulting powder was 

used for a nitric acid digestion. After the digestion, P was measured through a molybdate 

spectrophotometric method (UV-VIS Spectrophotometer UV-1280; Shimadzu, Duisburg, 

Germany) (80). Additionally, we used an elemental analyzer (Vario El Cube; Elementar, 

Langenselbold, Germany) to gas-chromatographically determine C and N contents. Imprints 

for measuring SDens and SSize were taken from fresh leaves of the calibration stomata set by 

applying transparent nail polish to the abaxial leaf surface and peeling it off once it dried 
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naturally (81). Afterward, stomata were counted at three different locations of the imprints 

by using an optical microscope (Zeiss Axiostar Plus) with a magnification of 400×. SDens of 

every leaf were estimated as the mean number of stomata divided by the area of the field of 

view. A magnification of 1000× was used later for assessing the length of the guard cells in 

three randomly selected stomata for every imprint. SSize of every leaf was calculated as the 

mean guard cell length. 

 

Leaf trait prediction 

The calibration LES and calibration stomata datasets (spectral data and corresponding trait 

measurements) were then divided into train and test sets, which account for a proportion of 

75% and 25%, respectively. Finally, after excluding the spectral region between 350 and 399 

nm for subsequent analyses due to the typical large amount of sensor noise in this region 

(82), we used a convolutional neural network (CNN) approach for leaf trait prediction based 

on the spectral data (31). First, input spectra from the train and test sets were augmented 

from 2,501 to 12,255 wavelength features by using transformations based on a combination 

of standard normal variates and Savitzky-Golay derivatives (83). Then, a CNN composed of 

one convolutional layer followed by three dense layers was fitted to train the samples. To 

avoid overfitting, batch normalization was applied after the convolutional layer (84). 

Hyperparameter tuning for every CNN was performed independently for every trait, by 

adjusting the number of filters, their size for the convolutional layers, and the number of 

nodes in the dense layers (Table S5). For model optimization, an Adam algorithm and a loss 

function based on the mean squared error was used (85). We tested the predictive ability of 

the CNNs by assessing the coefficient of determination (R2) and the root mean squared error 

(RMSE) for the predicted and measured values in the test set and in the train set. The mean 

R2 of the test set was 0.74 ± 0.15 (mean ± standard deviation), with a maximum R2 for SLA and 

LDMC (both 0.91) and minimum for P (0.54). The mean R2 of the train set was 0.80 ± 0.14, 

with a maximum for LDMC (0.96) and minimum for P (0.62; Fig. S14, S15). These trained CNNs 

were used for predicting trait values of leaves from the regular set of samples. After leaf trait 

prediction, we excluded, on average across all traits, 3.46% of the predicted trait values 

(1.35%  for SLA, 1.78% for LDMC, 3.31% for C, 3.85% for N, 5.14% for P, 4.30% for SDens and 
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4.52% for SSize; Fig. S16, Table S6) as they lay outside the interval formed by the median, plus 

or minus 3 median absolute deviations (86). This threshold for excluding predicted data was 

chosen as these values seemed unrealistic and were negative in some cases (Fig. S17). Leaf 

trait predictions and consecutive statistical analyses were conducted in the R environment 

with R version 4.1.3 (87). 

 

Metrics of intraindividual and intraspecific trait variability 

We identified the main axes of functional trait variability by performing principal component 

analyses (PCA) on the scaled predicted functional traits of all our leaves. Then, by using a 

Horn’s parallel analysis to choose axes of trait variability, as implemented in the `paran` 

package (88), we selected the first two axes, which accounted for 67.94% of the variability in 

our dataset (44.04% and 23.89% explained by the first and second axis, respectively; see Fig. 

2, S2, S3, Table S1) and showed adjusted eigenvalues  > 1 (3.03 and 1.64 for the first and the 

second axis, respectively). Due to the presence of missing values in our dataset as a 

consequence of the removal of extreme predicted trait data (see `Leaf trait prediction` 

section), missing values were imputed using a PCA-based method as implemented in the 

`missMDA` package (89) for every species independently prior to the PCA described above. 

This procedure, while avoiding unrealistic values, may also underestimate intraspecific and 

intraindividual variation. 

The selected axes were used to measure the leaf intraindividual and intraspecific trait 

variability of a given individual or population, respectively, by estimating trait probability 

densities (37, 90) using the package `TPD` (48; Fig. S18). Therefore, we assessed trait 

variability by considering probabilistic multivariate trait distributions with two dimensions 

(PC1 and PC2). Further, trait variability for single axes (for PC1 and PC2 independently) was 

also assessed. First, by considering leaf-level values on PC1 and PC2, we compiled a trait 

probability density for every individual tree as an approach to intraindividual trait variability 

(Fig. S7). We estimated the bandwidth of the kernel functions by using an unconstrained 

bandwidth matrix as implemented in the `ks` package (91) and applied a 5% quantile 

threshold to the trait probability densities. In order to calculate intraspecific trait variability, 

we first assessed the mean PCA scores of every tree individual by using a bootstrap approach 
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(45) and used the individual-level data to assess trait probability densities for all populations 

(following the same procedure as described for the trait probability densities of individuals). 

In both cases (individual and species levels), from the trait probability densities, we calculated 

two functional indices that describe two components of trait variability: (1) functional 

richness (FRic) indicates the total extent of the trait probability density and aims to detect 

changes in the niche space of individual trees and of the populations (37, 92), respectively, 

and (2) functional divergence (FDiv) indicates the degree to which the abundance within the 

functional trait space is distributed toward the edge of the functional volume and, therefore, 

describes whether the distribution of leaves and tree individuals, respectively, in the trait 

space is clustered or dispersed (37, 48, 93). Last, the trait probability densities measured for 

individual trees based on leaf-level data were used to assess the intraspecific trait overlap as 

the mean overlap between all the trees belonging to the same population (37). Both 

functional indices and intraspecific trait overlap were estimated by using the `TPD` package 

(48). 

 

Statistical analyses 

To assess the effect of tree species richness on leaf intraindividual and intraspecific trait 

variability (for both multivariate functional indices and functional indices for PC1 and PC2), 

we used linear mixed-effects models (LMMs) with the functional indices as a response 

variable and tree species richness (log2-transformed) as a fixed factor. In addition, tree 

diameter at breast height (DBH) and slope of the terrain in the position of the tree were 

included as covariates in the model for intraindividual variability, while the mean slope of the 

terrain in the plot was included as a covariate in the model for intraspecific trait variability 

due to its variability across the study site (Fig. S12). We included species identity and plot 

identity nested in tree composition of the plot as crossed random effects in the model of 

intraindividual trait variability, and species identity and tree composition of the plot as 

random effects in the model of intraspecific trait variability. We used diagnostic plots of the 

residuals to study the assumptions of normality, homoscedasticity and linearity in our models: 

residuals vs fitted values plots, histograms of the residuals and Q-Q plots for the deviance of 

the residuals. Then, we tested the significance of fixed effects using likelihood ratio tests (94). 
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Finally, we assessed the quality of fit of our model by calculating the marginal and conditional 

R2, which address the variance explained only by fixed effects and the variance explained by 

the entire model including the random effects, respectively. 

In order to assess the effects of tree species richness on intraspecific leaf trait overlap 

and how this effect is mediated by the intraspecific and intraindividual leaf trait variability, 

we used a Piecewise Structural Equation Model (piecewise SEM) as implemented in the 

`piecewiseSEM` package (95). Here, species identity was included as a random effect. First, 

we defined the conceptual model as a set of regressions, representing the relationships 

between the variables and fit linear mixed models (LMMs) based on these relationships (Fig. 

S4). Correlated error terms were included between indices of intraindividual trait variability 

and between indices of intraspecific trait variability. The mean slope of the plot was included 

as a covariate in the models for intraspecific and intraindividual trait variability. Then, the 

model fit was evaluated based on d-separation test and Fisher's C statistics (95). Eventually, 

as intraindividual and intraspecific functional divergence did not show any significance and 

weak standard estimates, we reduced the SEM by excluding these two metrics and the 

correlated error terms. All of these results remained qualitatively similar when using the full 

and the reduced SEM (Fig. S6). 

 

Null models for functional diversity 

In order to assess the effects of intraspecific and intraindividual trait variability in the 

assessment of functional diversity of a community and its relationship with species richness, 

we used null models that randomized different sources of trait variation occurring within the 

species. 

First, observed functional diversity in every plot was assessed by using sums of trait 

probability densities from the leaf-level to the community level, therefore, expanding to the 

individual level the trait probability density framework for functional diversity developed in 

Carmona et al. (38; Fig. S7). Thus, based on the leaf-level data (level 1), we estimated trait 

probability density for individuals (level 2) and, afterwards these trait probability densities 

were summed at the species level (considering the given species in a population; level 3). 
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Finally, by summing the trait probability densities of the different populations occurring in a 

community we obtained final trait probability densities at the community level (level 4). The 

community trait probability densities were then used to assess FRic and FDiv as metrics of 

functional diversity in a plot. For this last step, the contribution of the trait probability density 

of every population was weighted according to the sum of wood volume of every species in 

the central area of every plot (including the 36 trees in the centre of the plot). To assess the 

wood volume (WV) of the trees, basal area and height were measured in 2022 and the 

conversion factor calculated by Huang et al. (96) for our study species in our study site was 

used to estimate wood volume as: 

𝑊𝑉 = 0.5412 𝑚3𝑚−3 − 0.1985 𝑚−3 ×  𝑏𝑎𝑠𝑎𝑙 𝑎𝑟𝑒𝑎 ×  ℎ𝑒𝑖𝑔ℎ𝑡                                            (1) 

Following this framework, we ran simulations randomizing hierarchically different sources of 

variation occurring within the species (Fig. S8). Therefore, these null models simulated 

communities with the same species composition and abundances, but they randomized data 

on different steps of the framework for measuring functional diversity (Fig. S12): 

(1) Random population null model: The trait probability densities of every population 

were calculated based on observed data and, afterwards, these population trait 

probability densities were shuffled for every species. This model aims to test which is 

the effect of considering the functional identity of the population in the plot. 

(2) Random tree null model: The trait probability densities of all trees were calculated 

based on the observed leaf values and the trees were shuffled for every species. This 

model aims to test the effect of intraspecific variability on community functional 

diversity. 

(3) Random leaf null model: Leaf values were shuffled for every species before calculating 

functional diversity. This model aims to detect the whole effect of the variability 

occurring within species (intraspecifically and intraindividually) on functional diversity. 

As the intraindividual variability tends to be clustered around the centroid of every tree and 

trees in the same population are more similar to each other compared to trees from other 

populations (Fig. S3), the random leaf null model could represent highly unrealistic scenarios. 

Therefore, we decided to build another null model for the assignment of random leaves in 

which the pool of leaves was more restricted than in the “random leaf null model” model: 
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(4) Population-restricted random leaf null model: Leaf values were shuffled for every 

population before calculating functional diversity. This model aims to detect the effect 

of the whole variability occurring within populations (intraspecific and intraindividual 

variability) in functional diversity. 

We simulated 500 null assemblages for every plot and every type of null model. We visually 

inspected the changes and stabilization of the mean and variance of every null distribution 

with an additive number of simulations (Fig. S19). Finally, to assess the differences between 

the observed and the simulated values of the functional indices we used standardized effect 

sizes (SES) as in Gotelli and McCabe (97) 

𝑆𝐸𝑆 =  
𝐹𝐷𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑− 𝑚𝑒𝑎𝑛(𝐹𝐷𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑)

𝑆𝐷(𝐹𝐷𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑)
                                                                                                (2) 

Where FD corresponds to any of the measured functional indices. SESs were calculated 

independently for every plot and type of null model. To test the effects of tree species 

richness and the type of null model on the SES for every functional index, we used LMMs and 

included the plot identity nested in tree species composition, as a random effect. In every 

model, we included the SES of every functional index as a response variable. Thus, we fitted 

two models with tree species richness (log2 transformed), type of the null model, and their 

interaction as response variables. Then, we tested the significance of fixed effects by using 

likelihood ratio tests, following the same procedure described previously for LMMs fitted for 

the intraspecific and intraindividual trait variability. All LMMs were fitted using the ‘lmer’ 

function in the ‘lmerTest’ package (98). We considered that the fitted null model coefficients 

were significantly different from the random scenario when the 95%-confidence intervals did 

not overlap with zero. 
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SUPPORTING INFORMATION 

Fig. S1. Regression coefficients for the effects of tree species richness on the intraspecific and 

intraindividual variability on seven leaf functional traits and two main axes of leaf trait 

variability. 

Fig. S2. Results of a principal component analysis (PCA) of seven leaf functional traits 

belonging to eight different tree species. 

Fig. S3. Location of eight sampled species in a functional trait space assessed by a principal 

component analysis (PCA) for seven leaf functional traits. 

Fig. S4. Conceptual model representing the relationships between variables that could affect 

intraspecific overlap in leaf functional traits. 

Fig. S5. Effect of tree species richness on intraspecific overlap. 

Fig. S6. Results of non-simplified piecewise structural equation models (SEM) studying the 

mechanisms driving the intraspecific overlap in leaf functional traits. 

Fig. S7.  Conceptual framework for measuring community functional diversity based on 

individual leaf trait values (following the approach of Carmona et al. 2016 (37)). 

Fig. S8. Conceptual framework for the null model approach based on the randomization of 

different sources of variation. 

Fig. S9. Results of linear mixed-effects models to test the joint effect of tree species richness 

and the type of null models on standardized effect sizes (SES) of two univariate functional 

indices (functional richness (FRic) and functional divergence (FDiv)) calculated from the two 

main axes of leaf variation (PC1 and PC2) and for four different sources of trait variation. 

Fig. S10. Differences in stomatal density across different positions in the tree crown. 

Fig. S11. Bar plots for the variance partitioning of leaf variation. 

Fig. S12. Location and slope of the sampled trees within the experimental site. 

Fig. S13. Leaf reflectance spectra for the eight study species. 

Fig. S14. Scatter plot of predicted and measured trait values in the test and the train samples. 
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Fig. S15. Evolution of the error during the training of convolutional neural networks for trait 

prediction. 

Fig. S16. Bar plot and heatmap of the distribution of missing trait data in the leaf-level dataset. 

Fig. S17. Excluded values from predicted leaf-level data for seven leaf functional traits. 

Fig. S18. Analytical framework used to assess the metrics of intraindividual variability, 

intraspecific variability and intraspecific overlap. 

Fig. S19. Evolution of mean and variance of simulated values of FRic and FDiv from different 

null models with increasing number of randomizations. 

Table. S1. Summary of a principal component analysis for seven leaf functional traits, 

including loadings, standard deviation, proportion of the variance explained by each 

component and the adjusted eigenvalue obtained in a Horn’s parallel analysis. 

Table. S2. Results for linear mixed-effects models studying the effects of tree species richness 

on multivariate functional indices used to estimate intraspecific variability, intraindividual 

variability and intraspecific overlap. 

Table. S3. Species included in the study. 

Table. S4. Results for linear mixed-effects models studying the effects of tree species richness 

and type of null model on standardized effect sizes of two functional indices. 

Table. S5. Layers and hyperparameters used for building a convolutional neural network for 

every trait, and coefficient of determination (R2) and root mean squared error (RMSE) for the 

test and the train samples. 

Table. S6. Distribution of missing trait data in the leaf-level dataset across species and traits. 

 

 



 

 

121 
 

 

Fig. S1. Regression coefficients for the effects of tree species richness on the intraspecific and 
intraindividual variability on seven leaf functional traits and two main axes of leaf trait variability. 
Regression coefficients for the effects of tree species richness on the intraspecific and intraindividual 
variability on seven leaf functional traits and two main axes of leaf trait variability. The effects of tree 
species richness on intraspecific and intraindividual variability were studied for seven functional traits 
(specific leaf area (SLA), leaf dry matter content (LDMC), leaf carbon content (C), leaf nitrogen content 
(N), leaf phosphorus content (P), stomatal density (SDens) and stomatal size (SSize)) and for two main 
axes of leaf trait variability (PC1 and PC2). Colors represent the significance as determined by a 
likelihood ratio test (red p < 0.05, pink < 0.01, grey p > 0.05). 



 

 

122 
 

 

Fig. S2. Results of a principal component analysis (PCA) of seven leaf functional traits belonging to eight different tree species. (A) Main axes of a principal 
component analysis, including the location for every leaf and arrows representing the eigenvalues of every trait in the PCA axes, and (B) radar plot representing 
the eigenvalues of the traits in the two main axes. The first axis represents the variation in growth strategy, with lower values associated with a conservative 
strategy while higher values correspond to an acquisitive strategy. The second axis mainly associates with stomata density (SDens) and leaf P and N. This 
suggests that higher evapotranspiration rates linked to higher SDens might be associated with a higher content of P and N, which are key nutrients for 
photosynthetic activity (1). 
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Fig. S3. Location of eight sampled species in a functional trait space assessed by a principal component analysis (PCA) for seven leaf functional traits. Each 
panel corresponds to a different species, dots represent the mean trait values of every tree (centroid) and lines connect the centroid to the individual values 
of the leaves belonging to the tree. The figure suggests that there are differences between species in terms of their leaf strategy (e.g. Castanopsis sclerophylla 
has a more conservative growth strategy compared to Triadica sebifera) and in terms of the extent of their intraspecific variation (e.g. Nyssa sinensis and 
Castanea henryi show high intraspecific variability compared to other species). 
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Fig. S4. Conceptual model representing the relationships between variables that could affect 
intraspecific overlap in leaf functional traits. Tree species richness is expected to affect negatively 
the intraspecific and intraindividual trait variability (for both indices), while these are expected to have 
a negative effect on the intraspecific overlap. This was expected as intraindividual and intraspecific 
trait variability were hypothesized to act as mechanisms to guarantee complementarity in intraspecific 
interactions. The slope of the plot was included as a covariate in the analyses in order to control for 
it, but hypotheses were not formulated for its effect on the other variables. Red lines represent 
negative relationships, blue lines represent positive relationships and dashed lines indicate correlated 
error terms. 
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Fig. S5. Effect of tree species richness on intraspecific overlap. The line corresponds to the results of 
a linear mixed-effects model that shows a significant increase of intraspecific overlap with increasing 
tree species richness (P = 0.03, N = 63). Grey bands represent a 95% confidence interval. Colors 
correspond to the different tree species included in the study, whose identity was included as a 
random effect in our models. The slope of the terrain was included as a covariate in the model. 
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Fig. S6. Results of non-simplified piecewise structural equation models (SEM) studying the 
mechanisms driving the intraspecific overlap in leaf functional traits. Results are shown for (A) a 
complete SEM based on the conceptual model defined in Fig. S4, and for SEMs based on the variability 
on the two main axes of trait variation: (B) PC1 and (C) PC2. The width and color of the arrows indicate 
the strength and direction of the effects. Significant results are represented by solid lines while non-
significant relationships are represented by semi-transparent lines. The marginal and conditional R2 
are indicated for every model of the piecewise SEM. 
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Fig. S7.  Conceptual framework for measuring community functional diversity based on individual 
leaf trait values (following the approach of Carmona et al. 2016 (37)). As an example, we used a 
community with two species (species 1 in green and species 2 in red). First (Level 1), we applied kernel 
density functions to the leaf trait values (represented by the leaf’s position on axis 1 and axis 2 of a 
PCA; Fig. 3) of every tree. Next, we summarized the kernel density functions to get one trait probability 
density for every tree (Level 2). After this, we calculated the sum of the trait probability densities of 
all trees belonging to the same population to get the population trait probability density (Level 3). 
Finally, we aggregated the population trait probability densities (Level 4). In this step, each trait 
probability density was rescaled according to the relative abundance of the species in the community. 
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Fig. S8. Conceptual framework for the null model approach based on the randomization of different 
sources of variation. Null models differ in the process for generating simulated communities by 
randomizing different steps of the framework for measuring functional diversity as shown in Fig. S7. 
The result in every case is an assemblage with the same species composition and abundances as the 
observed one, but different levels of the variability occurring within the species were randomized. (A) 
The random population null model is generated by randomizing the population trait probability 
densities generated in step 3 by using as a pool all the different population trait probability densities 
calculated for that species. (B) The random tree null model is generated by randomizing the tree trait 
probability densities generated in step 2 by using as a pool all the different tree trait probability 
densities calculated for that species in any community. (C) The random leaf null model is generated 
by randomizing the leaves that are used to estimate the trait probability densities of trees by using as 
a pool all the different leaves for that species across the whole experiment. Finally, (D) The population-
restricted random leaf null model is generated by randomizing the leaves that are used to estimate 
the trait probability densities of trees by using as a pool all leaves for that species within the 
population. 
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Fig. S9. Results of linear mixed-effects models to test the joint effect of tree species richness and the 
type of null models on standardized effect sizes (SES) of two univariate functional indices (functional 
richness (FRic) and functional divergence (FDiv)) calculated from the two main axes of leaf variation 
(PC1 and PC2) and for four different sources of trait variation. Linear mixed-effects models show a 
significant effect of the interaction of tree species richness and the type of model on SES(FRic) in the 
case of both axes (P = 0.002 for PC1 and P < 0.001 for PC1) and a significant effect of this interaction 
in the cases of SES(FDiv) in PC2 (P < 0.001), but this effect was not significant in the case of the 
SES(FDiv) of PC1 (P = 0.17). However, in the case of SES(FDiv) of PC1, the effects of tree species richness 
and the type of model were still significant (P < 0.001 in both cases). 
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Fig. S10. Differences in stomatal density across different positions in the tree crown. Leaves of the 
calibration stomata set (see `Field sampling` section for description of the calibration stomata) were 
collected at different heights within the tree crown (bottom, middle low, middle high and top). A linear 
mixed-effects model to study differences in stomatal density (SDens) across different crown positions 
revealed significant differences between the top and the bottom (P = 0.03 as revealed by a Tukey post-
hoc text). Black points and error bars represent estimate and confidence intervals, respectively. Every 
tree species is represented in a different color. 
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Fig. S11. Bar plots for the variance partitioning of leaf variation. Variance partitioning was studied 
for (A) the main axes of leaf variation found in a principal component analyses (PC1 and PC2; Fig. 2A), 
(B) independently for seven functional traits related to plant resource and water use (specific leaf 
area, SLA; leaf dry matter content, LDMC; leaf carbon content, C; leaf nitrogen content, N; leaf 
phosphorus content, P; stomatal density, SDens; stomatal size, SSize) and (C) jointly for the seven leaf 
traits mentioned. Variance partitioning in (A) and (B) was assessed by using an intercept only linear 
mixed-effects model with only random effects (leaf nested in tree, in turn nested in population, in turn 
nested in species identity), while we used a permutational multivariate analysis of variance 
(PERMANOVA) with the nested structure described as a predictor for the variance partitioning in (C).   
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Fig. S12. Location and slope of the sampled trees within the experimental site. (A) Trees were 
sampled across 30 plots distributed in different parts of the experiment. (B) Density plots of the slope 
of every species in every plot (based on interpolated values of the slope of the terrain obtained from 
a 5 m resolution digital elevation model available at https://data.botanik.uni-halle.de/bef-
china/datasets/53). 

 

https://data.botanik.uni-halle.de/bef-china/datasets/53
https://data.botanik.uni-halle.de/bef-china/datasets/53
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Fig. S13. Leaf reflectance spectra for the eight study species. Spectra of all leaves collected by species (represented in different panels and different colors). 
Lines in black represent those spectra, which were excluded for subsequent analyses as they had a local outlier factor higher than two. Dotted vertical lines 
represent the limits between the sensors of the spectroradiometer use.
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Fig. S14. Scatter plot of predicted and measured trait values in the test and the train samples. Correlation lines correspond only to the correlation between 
the predicted and measured values in the test samples. The dashed grey lines indicate the optimal fit in every case. The color of the points corresponds to 
the distance of the value from the optimal fit (dark blue colors indicate short distance while yellowish colors correspond to higher distances). 
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Fig. S15. Evolution of the error during the training of convolutional neural networks for trait prediction. Changes in the mean squared error in the loss 
function for all samples in the training set (in brown) and for a subset of samples used for validation during the training (in blue) were registered with an 
increasing number of epochs during the training process of the convolutional neural networks.
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Fig. S16. Bar plot and heatmap of the distribution of missing trait data in the leaf-level dataset. (A) 
Represents a bar plot for the number of missing values for every trait (colored by species). In (B), 
vertical colored lines represent missing values and their distribution across the dataset (as ordered in 
the original dataset). 
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Fig. S17. Excluded values from predicted leaf-level data for seven leaf functional traits. Data 
excluded in trait predictions (showed in red) laid outside the interval formed by the median, plus or 
minus 3 median absolute deviations, as represented by the dashed vertical lines. 
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Fig. S18. Analytical framework used to assess the metrics of intraindividual variability, intraspecific 
variability and intraspecific overlap. All metrics were assessed by using (A) the leaf-level trait matrix. 
Due to missing values in the matrix, a principal component analyses (PCA)-based imputation approach 
was used to predict the missing data from the existing ones. With the completed dataset via 
imputation, (B) we performed a PCA to reduce the dimensionality of our data and used the first two 
principal components which together explained almost 70% of the variation. While, (C) trait 
probability densities were estimated for individual trees from this data, (D.1) mean values were 
obtained for individual trees in order to assess (D.2) trait probability densities for the intraspecific trait 
variability. From all these trait probability densities (the ones at the individual level and the population 
level) functional richness and functional divergence were used to estimate intraindividual and 
intraspecific trait variability. Last, (E) the trait probability densities estimated at the individual level for 
conspecifics (individuals from the same species occurring in the same plot) were used to estimate the 
mean intraspecific overlap of a species in a plot.
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Fig. S19. Evolution of mean and variance of simulated values of FRic and FDiv from different null 
models with increasing number of randomizations. In order to assess the quality of using 500 
randomizations, the changes in the mean (represented by lines) and the variance (represented as 
dashed areas) of functional diversity indices were studied in response to the number of 
randomizations for the null models of (A) random population, (B) random tree, (C) random leaf and 
(D) population-restricted random leaf null model. Colors correspond to the different plots included in 
our study.
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Table. S1. Summary of a principal component analysis for seven leaf functional traits, including 
loadings, standard deviation, proportion of the variance explained by each component and the 
adjusted eigenvalue obtained in a Horn’s parallel analysis. 

Trait PC1 PC2 PC3 PC4 PC5 PC6 PC7 

SLA 0.90 0.07 -0.03 -0.31 -0.01 0.28 -0.15 

LDMC -0.94 0.19 -0.07 0.16 0.08 -0.06 -0.22 

C -0.73 0.29 0.19 -0.44 -0.38 -0.03 0.02 

N 0.46 0.75 0.16 -0.21 0.28 -0.29 -0.01 

P 0.38 0.64 0.46 0.40 -0.25 0.09 -0.01 

SDens -0.64 0.63 -0.18 -0.03 0.24 0.32 0.09 

SSize -0.32 -0.42 0.81 -0.09 0.24 0.09 0.00 

Standard deviation 1.75 1.29 0.98 0.72 0.64 0.53 0.28 

Proportion of variance 0.44 0.23 0.14 0.08 0.06 0.04 0.01 

Cumulative Proportion 0.44 0.68 0.82 0.89 0.95 0.99 1.00 

Adjusted eigenvalue 3.03 1.64 0.94 0.53 0.42 0.31 0.13 
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Table. S2. Results for linear mixed-effects models studying the effects of tree species richness on 
multivariate functional indices used to estimate intraspecific variability, intraindividual variability 
and intraspecific overlap. Estimates (standard errors) and significance assessed with likelihood ratio 
tests are shown. The slope of the terrain (slope) was included as a covariate in the models for 
intraspecific variability and intraspecific overlap, while the models for intraindividual variability 
included slope and diameter at breast height (DBH) as covariates. 

Level Index Tree species richness Slope DBH R2m R2c 

Intraspecific FRic -0.75 (0.36)* 0.07 (0.06) - 0.06 0.17 

Intraspecific FDiv -0.003 (0.004) -0.0005 (0.001) - 0.04 0.11 

Intraindividual FRic -0.40 (0.68) -0.03 (0.05) 0.06 (0.02)* 0.03 0.29 

Intraindividual FDiv -0.001 (0.002) 0.0001 (0.0003) 0.0001 (0.0001) 0.00 0.01 

- Intraspecific overlap 0.02 (0.01)* -0.002 (0.001) - 0.06 0.29 

Note: R2m, marginal R2; R2c, conditional R2;  

*p < 0.05.  
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Table. S3. Species included in the study. Species names and families from World Flora Online 
(https://www.worldfloraonline.org/; accessed 19 June 2024). 

Species Family 

Castanea henryi Rehder & E.H.Wilson Fagaceae 
Castanopsis sclerophylla (Lindl. & Paxton) Schottky Fagaceae 
Choerospondias axillaris (Roxb.) B.L.Burtt & A.W.Hill  Anacardiaceae 
Liquidambar formosana Hance Altingiaceae 
Nyssa sinensis Oliv. Nyssaceae 
Quercus serrata Murray Fagaceae 
Sapindus mukorossi Gaertn. Sapindaceae 
Triadica sebifera (L.) Small Euphorbiaceae 

 

 

 

 

 

 

 

 

 

 

 

https://www.worldfloraonline.org/
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Table. S4. Results for linear mixed-effects models studying the effects of tree species richness and 
type of null model on standardized effect sizes of two functional indices. Significance assessed with 
likelihood ratio tests are shown. The interaction between the predictors is indicated by “:”. 

Response variable Tree species richness Type of null model Tree species richness : Type of null model R2m R2c 

SESFRic *** *** *** 0.26 0.61 

SESFDiv *** *** *** 0.40 0.68 

Note: R2m, marginal R2; R2c, conditional R2;  

***p < 0.01.  



 

 

144 
 

Table. S5. Layers and hyperparameters used for building a convolutional neural network for every 
trait, and coefficient of determination (R2) and root mean squared error (RMSE) for the test and the 
train samples. 

Layer Hyperparameter SLA LDMC C N P SDens SSize 

Spectral region - 

400-

2500 

400-

2500 

400-

2500 

1500-

2400 

1500-

2400 

400-

2500 

400-

2500 

1 dimension convolutional layer Number of filters 2 2 1 2 2 2 2 

1 dimension convolutional layer Kernel size 50 2 35 77 77 2 1 

Batch normalization layer - Yes Yes Yes Yes No Yes No 

Max-pooling layer Pool size 2 2 2 2 2 2 2 

Layer flatten - Yes Yes Yes Yes Yes Yes Yes 

Layer dense Number of nodes 128 64 128 64 256 128 64 

Layer dense Number of nodes 32 16 32 16 64 32 16 

Layer dense Number of nodes 8 4 4 4 16 8 4 

- Epochs 500 2000 1000 1500 120 150 700 

- Validation Split 0.2 0.2 0.2 0.2 0.2 0.2 0.01 

R2 test - 0.91 0.91 0.7 0.85 0.54 0.64 0.64 

RMSE test - 18.19 20.71 1.13 0.16 5.29 120.7 3.05 

R2 train - 0.93 0.96 0.61 0.91 0.62 0.76 0.83 

RMSE train - 14.94 13.72 0.88 0.13 4.74 118.11 1.71 
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Table. S6. Distribution of missing trait data in the leaf-level dataset across species and traits. 

 

SLA LDMC C N P Sdens Ssize Mean 

Castanea henryi 3 (0.07%) 3 (0.07%) 92 (2.01%) 22 (0.48%) 30 (0.66%) 79 (1.73%) 41 (0.9%) 38.57 (0.84%) 

Castanopsis sclerophylla 34 (0.74%) 37 (0.81%) 14 (0.31%) 46 (1.01%) 28 (0.61%) 19 (0.42%) 92 (2.01%) 38.57 (0.84%) 

Choerospondias axillaris 0 (0%) 0 (0%) 23 (0.5%) 11 (0.24%) 28 (0.61%) 1 (0.02%) 5 (0.11%) 9.71 (0.21%) 

Liquidambar formosana 4 (0.09%) 3 (0.07%) 5 (0.11%) 32 (0.7%) 33 (0.72%) 14 (0.41%) 22 (0.48%) 16.14 (0.35%) 

Nyssa sinensis 15 (0.33%) 21 (0.46%) 4 (0.09%) 4 (0.09%) 12 (0.26%) 2 (0.04) 28 (0.61%) 12.28 (0.27%) 

Quercus serrata 4 (0.09%) 11 (0.24%) 5 (0.11%) 5 (0.11%) 13 (0.28%) 62 (1.36%) 3 (0.07%) 14.71 (0.32%) 

Sapindus mukorossi 1 (0.02%) 2 (0.04%) 0 (0%) 31 (0.68%) 66 (1.44%) 1 (0.02%) 7 (0.15%) 15.43 (0.34%) 

Triadica sebifera 0 (0%) 0 (0%) 0 (0%) 22 (0.48%) 22 (0.48%) 0 (0%) 5 (0.11%) 7 (0.15%) 

Total 61 (1.34%) 77 (1.69%) 143 (3.13%) 173 (3.79%) 221 (4.84%) 178 (3.9%) 203 (4.44%) 150.86 (3.3%) 
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CHAPTER 4 

Within-individual leaf trait variation increases with phenotypic integration in a subtropical 

tree diversity experiment 

This Chapter is published in New Phytologist as: 

Castro Sánchez‐Bermejo P, Davrinche A, Matesanz S, Harpole WS, Haider S. 2023. Within‐
individual leaf trait variation increases with phenotypic integration in a subtropical tree 
diversity experiment. New Phytologist 240: 1390-1404. https://doi.org/10.1111/nph.19250 
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SUMMARY 

Covariation of plant functional traits, that is, phenotypic integration, might constrain their 

variability. This was observed for inter- and intraspecific variation, but there is no evidence of 

a relationship between phenotypic integration and the functional variation within single plants 

(intraindividual trait variation; WTV), which could be key to understand the extent of WTV in 

contexts like plant–plant interactions. 

We studied the relationship between WTV and phenotypic integration in c. 500 trees 

of 21 species in planted forest patches varying in species richness in subtropical China. Using 

visible and near-infrared spectroscopy (Vis-NIRS), we measured nine leaf morphological and 

chemical traits. For each tree, we assessed metrics of single and multitrait variation to assess 

WTV, and we used plant trait network properties based on trait correlations to quantify 

phenotypic integration. 

Against expectations, strong phenotypic integration within a tree led to greater 

variation across leaves. Not only this was true for single traits, but also the dispersion in a tree's 

multitrait hypervolume was positively associated with tree's phenotypic integration. 

Surprisingly, we only detected weak influence of the surrounding tree-species diversity on 

these relationships. 

Our study suggests that integrated phenotypes allow the variability of leaf phenotypes 

within the organism and supports that phenotypic integration prevents maladaptive variation. 

Keywords: leaf functional traits, niche complementarity, phenotypic integration, plant–plant 

interactions, trait-based ecology, within-individual trait variation. 
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INTRODUCTION 

Trait-based plant ecology assumes that plant attributes, that is, functional traits, mediate 

community assembly and ecosystem processes (Violle et al., 2007; Shipley et al., 2016). 

Traditionally, this discipline focused on mean differences between species' traits (i.e. 

interspecific trait variation) to address ecological questions related, for example, to plant 

coexistence or niche differentiation, ignoring that trait variation may also occur within species 

(i.e. intraspecific variation; Bolnick et al., 2011; Violle et al., 2012). However, by only 

considering interspecific trait variation we might fail to explain ecosystem processes at the 

spatial scales where individuals interact and, indeed, it is agreed that ignoring variability within 

species can lead to biased conclusions (Bolnick et al., 2011; de Bello et al., 2011; Chase, 2014). 

Recently, there has been a growing effort to understand the role of variation at lower levels of 

biological organization (Escudero & Valladares, 2016; Hart et al., 2016; Escudero et al., 2021). 

While variation among individuals within a species (i.e. intraspecific trait variation) has gained 

attention (Hart et al., 2016; Des Roches et al., 2018), only few studies addressed the ecological 

role of intraindividual trait variation (WTV; see Table 1). Intraindividual trait variation (WTV) 

refers to the plastic responses of plant individuals to express different trait values across 

different repeated architectural units of the plant body structure (De Kroon et al., 2005; 

Herrera et al., 2015; Herrera, 2017). Far from being ‘phenotypic noise’, plants show 

intraindividual responses in, for example, leaf (Winn, 1996; Valladares & Niinemets, 2008; 

Møller et al., 2022), fruit (Sobral et al., 2019) or flower traits (March-Salas et al., 2021). 

Furthermore, this variation may affect plant performance (Herrera, 2009, 2017) and can have 

evolutionary consequences (Herrera et al., 2022; Sobral & Sampedro, 2022). 
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Table 1. Definition of acronyms and abbreviations used. 

Acronym/abbreviation Definition 

WTV Intraindividual trait variation 

PIind Individual phenotypic integration 

BEF Biodiversity-ecosystem functioning  
Vis-NIRS Visible and near infrared-spectrometry  

SLA Specific leaf area 

LDMC Leaf dry matter content 

C:N Carbon to nitrogen ratio 

C Carbon leaf content 

N Nitrogen leaf content 

Mg Magnesium leaf content 

K Potasium leaf content 

Ca Calcium leaf content 

P Phosphorous leaf content 

FRic Functional richness 

FDis Functional Dispersion 

SD Standard deviation 

LMM Linear Mixed Model 

AIC Akaike Information criterion 

 

The variation of one trait is not necessarily independent from the variation of other traits. 

Indeed, there are numerous and complex trait relationships resulting from genetic, 

developmental, and/or functional trade-offs and allometric constraints (Gould & Lewontin, 

1979; Wright et al., 2004; Huneman, 2010; Armbruster et al., 2014; Nielsen & Papaj, 2022). For 

example, a reduction in specific leaf area (SLA) is usually coupled with an increase in leaf dry 

matter content (LDMC; Wright et al., 2004). Under this premise, traits vary in a coordinated 

way to optimize some functions at the cost of others (Messier et al., 2017; Vasseur et al., 2022). 

As a result, it is suggested that phenotypic integration (i.e. the pattern of coordination and 

covariation among traits reflected by the amount of significant correlations between traits, 

Schlichting & Pigliucci, 1998; Gianoli & Palacio-López, 2009; Armbruster et al., 2014) could play 

a role in constraining trait variation (Valladares et al., 2007; Matesanz et al., 2021). This 

assumption is also based on the impossibility of the evolution of organisms that can reach an 

optimal value for every trait simultaneously (Rees, 1993; Laughlin & Messier, 2015). That is 

why under scenarios of strong phenotypic integration, only a subset of possible trait 

combinations will exist due to the presence of strong constraints from functional trade-offs 

(Laughlin et al., 2017). Thus, different levels of phenotypic integration may be associated with 

the expression of plastic responses (He et al., 2021; Homeier et al., 2021; Silva et al., 2021; Li 
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et al., 2022; Xie & Wang, 2022). However, while previous evidence describing the relationship 

between phenotypic integration and trait variation stems from studies on interspecific and 

intraspecific trait variation, the relationship between plant individuals' phenotypic integration 

(PIind; i.e. the number of significant correlations among traits between different repeated units 

of the same individual) and WTV is not known (but see Escribano-Rocafort et al., 2017). 

Therefore, understanding this relationship is crucial to assess the extent and intrinsic limits of 

WTV in modular organisms. To our knowledge, the only study focusing on PIind and WTV 

simultaneously suggested that for olive trees (Olea europaea) with higher leaf PIind, leaf WTV 

tended to be lower (Escribano-Rocafort et al., 2017). According to these results, and similarly 

to what has been found at higher levels of biological organization (He et al., 2021), differences 

in PIind among individuals might explain differences in WTV. It could be therefore expected that 

individuals with higher PIind would be limited in their WTV. Therefore, phenotypic integration 

could affect the amount of WTV as a response to abiotic and biotic drivers. 

Resource competition is considered a major component of plant–plant interactions. In 

theory, each individual inhabits a particular niche where it competes for resources with its 

local neighbors (Cabal et al., 2021). Accordingly, it is well established that there are stabilizing 

mechanisms that support species coexistence through functional differentiation and niche 

complementarity (Wright et al., 2014). Also, within species, niche complementarity between 

individuals of the same population can diminish the strength of intraspecific competition, since 

individuals from the same species need common resources and share similar uptake pathways 

(Grime, 1973; Tilman et al., 1982). Such niche complementarity through trait variation within 

species is particularly important in communities with low taxonomic diversity and, hence, high 

levels of intraspecific competition (Gross et al., 2008; Götzenberger et al., 2012). In this 

context, as WTV may improve efficiency in the use of resources (Møller et al., 2022), it has 

been suggested as a mechanism to foster niche complementarity and reduce intraspecific 

competition for resources among plants interacting directly (Davrinche et al., 2023). Indeed, 

WTV was reported to decrease with taxonomic diversity of the local neighborhood (Proß et al., 

2021). However, as WTV is expected to be limited by phenotypic integration (Escribano-

Rocafort et al., 2017), this could cause plants to fail to produce the optimal suites of traits for 

a given microenvironment (Pigliucci, 2005). Therefore, understanding the effect of 
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neighborhood diversity on WTV and on the WTV-PIind relationship remains crucial to assess the 

role and intrinsic limits of trait variation in plant–plant interactions. 

Leaves are repeated organs within plants with a crucial role in resource acquisition via 

photosynthesis. Furthermore, the light interception by leaves is a key factor in competition 

(Valladares et al., 2016). That is why plants express different leaf phenotypes within the crown 

in order to adjust to the light exposure (Sack et al., 2006; Escribano-Rocafort et al., 2016; 

Mediavilla et al., 2019). In addition, plastic responses in leaf traits are specifically noticeable in 

trees, which have great potential to express WTV as a consequence of their high modularity 

(Watkinson & White, 1986) and, therefore, could provide a suitable model to study the 

relationship between trait variation and phenotypic integration within an individual. As light 

heterogeneity is influenced, among others, by the canopy structure of the community, trees 

are expected to adjust their leaves to the different light exposures generated by different 

levels of taxonomic diversity. Consequently, a tree's leaf WTV may be strongly affected not 

only by the taxonomic identity of the closest tree neighbor but also by the taxonomic diversity 

of the surrounding tree neighborhood (Proß et al., 2021). 

Here, we studied patterns of leaf trait variation and phenotypic integration within 

individual trees and how they were affected by local taxonomic diversity. As the closest 

adjacent tree is expected to have the strongest effect on intraspecific trait variation (Davrinche 

& Haider, 2021), we considered two scales of local taxonomic diversity: taxonomic diversity of 

the local neighborhood, that is, the trees surrounding a focal individual in a community, and 

identity of the closest neighbor. We used the currently largest tree diversity experiment, 

located in subtropical China, and measured nine morphological and chemical leaf traits in c. 

500 individuals from 21 species across plots differing in species composition. We assessed 

different metrics of functional trait variation (WTV) and phenotypic integration for each 

individual tree. We expected that higher PIind constraints WTV (Fig. 1). As higher WTV is 

expected for scenarios of high intraspecific competition, we also expected that the WTV-PIind 

relationship depends on taxonomic diversity. Specifically, we hypothesized that the constraint 

should be more pronounced in scenarios of high taxonomic diversity (i.e. in diverse 

communities and, especially, when trees are directly interacting with a heterospecific adjacent 

neighbor) due to the lower ecological relevance of WTV in these environments (Fig. 1). 

Contrary, in scenarios of low taxonomic diversity, trees are expected to prioritize the display 
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of alternative leaf designs, even if integration is high. We expected the constrain of PIind on 

WTV for the WTV of individual traits and also for metrics of multitrait functional diversity. 

 

Fig. 1 Expected relationship between individual phenotypic integration (PIind) and intraindividual trait 
variation (WTV) at different levels of tree diversity. PIind is expected to constrain WTV at both levels of 
taxonomic diversity (Hypothesis 1), indicated in the figure through color variation in leaves. However, 
as WTV is an important mechanism to drive niche differentiation as response to intraspecific 
competition, we expect the WTV-PIind relationship to depend on the local taxonomic diversity, including 
both the identity of the adjacent neighbor and the diversity of species in the neighborhood (Hypothesis 
2). Thus, the constraint of WTV by PIind should be less pronounced in scenarios of low taxonomic 
diversity. Networks on the bottom of the x-axis represent two scenarios of PIind, where lines (‘edges’) 
connecting points indicate coordination between two traits. Thus, low PIind (left) occurs when the 
number of coordinated pair of traits is low, while high PIind (right) indicates that the number of 
coordinated pair of traits is high. Zoom areas show the leaf WTV of a target tree (denoted by variable 
colored points within the crown) in different contexts of taxonomic diversity (represented by the shape 
and transparency of the tree silhouettes surrounding the target tree). 

 

 



 

 

155 
 

MATERIALS AND METHODS 

Study site 

This study was conducted in a biodiversity–ecosystem functioning (BEF) experiment, the BEF-

China tree diversity experiment, located in Xingangshan, in Jiangxi Province (lat. 29°08′11″N, 

long. 117°90′93″E; Fig. 2a). BEF-China was designed to study ecosystem functions in planted 

patches of varying tree-species richness, hence simulating the effect of species extinction on 

the functioning of ecosystems. The climate is subtropical with a mean annual temperature of 

16.5°C (ranging from 0.4°C in January to 34.2°C in July) and mean annual precipitation of 

1821 mm (data from the adjacent Wuyuan County, Yang et al. (2013)). The natural vegetation 

in the region is dominated by mixed broadleaved forests with similar number of deciduous and 

evergreen species, but with evergreen species dominating in terms of abundance (Bruelheide 

et al., 2011; Su et al., 2020). The experiment consists of two sites, A and B, where trees were 

planted in 2009 and 2010, respectively (Bruelheide et al., 2014; Fig. 2b). Site A extends over an 

area of 27 ha with an elevation ranging from 205 to 275 m asl and slopes from 8.5° to 40°. Site 

B has a size of > 23 ha with an elevation ranging from 113 to 182 m asl and slopes ranging from 

15° to 43°. In the experiment, trees are arranged following the ‘broken-stick’ design described 

in Bruelheide et al. (2014). This design is based on the partitioning of the pool of species in 

every site into two equal groups at each subordinate richness level. Thus, from the total pool 

of 40 species in both sites (see Bruelheide et al. (2014) for details on the plant species), plots 

range from the 24-species mixture to the monoculture passing through 16-, 8-, 4- and 2-species 

mixtures (Fig. 2c). Hence, at each site, all species are equally represented at every species 

richness level. In every plot, 400 saplings from local nurseries were planted in a regular grid 

with a distance of 1.29 m, with species randomly assigned to planting positions. 
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Fig. 2 Location of (a) the biodiversity–ecosystem functioning (BEF)-China experiment, (b) sites of the 
experiment and (c) plots within the sites, and (d, e) design of the tree-species pair sampling. The BEF-
China experiment (a) is located in subtropical China (Xingangshan, Jiangxi Province). The map also 
shows in addition the distribution of subtropical forests in China (Olson et al., 2001). The experiment 
consists (b) of two sites (A and B) distanced by c. 5 km. Each site contains plots differing in the number 
of planted species (c). The black dots in (c) indicate the plots where sampling took place for this study. 
As shown in (d), within plots we selected at least one tree-species pair, consisting of two adjacent trees 
directly interacting, and defined the local neighborhood of a tree-species pair as the group of 10 trees 
that were directly surrounding the tree-species pair. For every tree-species pair, we sampled leaves at 
five different heights (sampling points) along the vertical plane between the trees (interaction plane), 
which is represented by the dashed line (e). 
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Field sampling 

Sampling followed the tree-species pair design as described in Trogisch et al. (2021), which 

focuses on the interaction of a pair of directly adjacent neighbors (hereafter, referenced as 

tree-species pair) and the interaction of this tree-species pair with the surrounding local 

neighborhood (Fig. 2d). Hence, by sampling both trees in a tree-species pair, the design allows 

to study the interaction between WTV and individual phenotypic integration (PIind) at two 

different fine scales of local taxonomic diversity: the species identity of the tree-species pair 

partner, that is, the tree's closest neighbor (conspecific vs heterospecific); and the taxonomic 

diversity of the local neighborhood, that is, the 10 trees (or fewer in case of mortality) 

surrounding the tree-species pair. The diversity of the local neighborhood was assessed by 

calculating the Shannon index (Shannon, 1948), considering the frequency of the different tree 

species within the up to 10 neighbor trees of the tree-species pair. 

Sampling took place from late August to early October 2018 and mid-August to mid-

September 2019 for sites A and B, respectively. We sampled a total of 432 trees (216 tree-

species pairs) in 69 plots at site A and 437 trees (219 tree-species pairs) in 57 plots at site B 

(hereafter, referenced as regular set). From each tree, we collected leaves along the 

interaction plane between the tree-species pair partners (the vertical plane where the two 

crowns of the tree-species pair partners meet, Fig. 2e). In order to encompass the variation of 

the whole individual, we sampled at five different heights along the interaction plane. At each 

height, we cut three fully developed leaves free from mechanical or pathogen damage. 

Immediately after collection, leaves were stored in sealable plastic bags with moistened tissue. 

Samples were transported in an isothermal bag equipped with cooling bags to prevent 

dehydration. In the laboratory, samples were temporarily stored at 6–8°C. 

In addition, we collected an independent set of leaf samples for each site (hereafter, 

referenced as calibration sets). The aim of this was to predict the trait values for the samples 

of the regular set based on the relationship between reflectance spectra and measured trait 

values of the calibration set. For the calibration sets, we aimed to include 10 leaf samples per 

species per site across all plots of all species richness levels, collected at different heights and 

orientation within the crown, in order to maximize the sampled scenarios (i.e. combinations 

of species considering the closest neighbor and the local neighborhood, different position of 
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the leaf within the crown and location of the tree within the experimental site). A total of 236 

samples for site A and 252 for site B were collected for the calibration set, with each sample 

composed of 15 leaves on average depending on the leaf size, to ensure sufficient material for 

laboratory analyses. 

 

Laboratory analyses 

The number of leaf samples in the regular set was high, and the material from each leaf was 

too low to conduct all chemical analyses at the leaf level. For this reason, we used visible and 

near-infrared spectrometry (Vis-NIRS), a technique of massive phenotyping, to estimate trait 

values for each individual leaf based on calibration models (Foley et al., 1998; Escudero et al., 

2021). For all leaves (regular and calibration sets), we acquired reflectance spectra with a 

portable Vis-NIRS device (ASD ‘FieldSpec4’ Wide-Res Field Spectroradiometer; Malvern 

Panalytical Ltd, Almelo, the Netherlands). Reflectance was measured across the full range of 

solar radiation spectrum (250–2500 nm), by taking three repeated measurements on the 

adaxial side of each leaf while avoiding main veins. For each of these repeated measurements, 

10 spectra were averaged internally to reduce noise. The equipment was optimized regularly 

with a calibration white panel (Spectralon, Labsphere, Durham, NH, USA). 

For the samples of the calibration set, we determined nine morphological and chemical 

leaf traits which are assumed to reflect a plant's strategy in terms of the investment of 

nutrients and dry mass in the leaves (Pérez-Harguindeguy et al., 2013; Díaz et al., 2016; see 

Supporting Information Table S1). Additionally, these traits are key components of the leaf 

economics spectrum and reflect the most important trade-offs along different leaf designs 

(Wright et al., 2004; Osnas et al., 2013): specific leaf area (SLA; leaf area divided by leaf dry 

mass), leaf dry matter content (LDMC; leaf dry mass divided leaf fresh mass), carbon-to-

nitrogen ratio (C : N), carbon content (C), nitrogen content (N), magnesium content (Mg), 

potassium content (K), calcium content (Ca), and phosphorus content (P). After collection, the 

saturated fresh leaves of the calibration samples were weighed (DeltaRange Precision Balance 

PB303-S; Mettler-Toledo GmbH, Gießen, Germany) and scanned at a resolution of 300 dpi to 

calculate leaf area (WinFOLIA; Regent Instruments, Quebec, QC, Canada). Leaves were oven-

dried at 80°C for 72 h and weighed to calculate SLA and LDMC. Dried leaves were ground 
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(Mixer Mill 400; Retsch, Haan, Germany), and 200 mg of the resulting powder was used for a 

nitric acid digestion. After the digestion, Mg, Ca, and K were analyzed with atomic absorption 

spectrometry (ContrAA 300 AAS; Analytik Jena, Jena, Germany), while P was measured through 

a molybdate spectrophotometric method. Additionally, we used an elemental analyzer (Vario 

El Cube; Elementar, Langenselbold, Germany) to gas-chromatographically determine C and N 

and, from these measurements, C:N. 

Leaf spectra of the samples of the calibration set were analyzed with the Unscrambler 

X software (v.10.1; CAMO Analytics, Oslo, Norway) for all species together but separately for 

site A and site B. The use of multispecies calibrations aimed to cover the broadest trait space 

possible, in order to better reflect the possible variation in our samples (Burnett et al., 2021) 

and allowed for more data to build the calibration model. Spectral pretreatments were applied 

in order to optimize the prediction of traits (normalization, smoothing and 2nd derivate, 

orthogonal signal correction, standard normal variate, detrending according to Barnes et al. 

(1989), or baseline correction). Spectra were then used to fit partial least square regression 

models by using the NIPALS algorithm (Dayal & Macgregor, 1997; Burnett et al., 2021). 

Selection of the partial least square regression models was based on their quality (determined 

by a high R2 value and a low root mean square error for a validation set), parsimony (indicated 

by a low number of factors), and predictive power (determined by a high R2 for predicted vs 

reference value). For site A, R2 for predicted vs reference value of the best models for each 

trait was 66.94 ± 20.23 (mean ± standard deviation), with a maximum R2 for SLA (88.90) and 

minimum for Ca (24.20), while for site B we obtained a mean R2 of 74.60 ± 11.00, with 

maximum and minimum values for SLA (89.88) and Ca (58.84), respectively (see Davrinche & 

Haider (2021) and Davrinche et al. (2023) for methodical details). Finally, these models were 

used to predict the trait values from the reflectance spectra of the samples of the regular set. 

From the three predicted values for each leaf in the regular set (resulting from the three 

repeated measurements per scan), we excluded: negative ones; those with > 5% deviation 

from the range limits of the calibration data; and values outside of the 95% confidence interval 

of the model prediction. The remaining values per leaf were averaged. As a consequence of 

outlier detection, an average of 3.3 ± 1.1% (mean ± SD) of the leaves was removed depending 

on the trait (see Table S2). 
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Metrics of individual phenotypic integration and trait variation 

To accurately estimate PIind and WTV, we only used data from those trees, which met several 

criteria in the regular dataset. Thus, as the study of phenotypic integration requires the lack of 

missing data (He et al., 2020) only leaves with trait data available for all nine traits were 

considered. Furthermore, in order to avoid low accuracy in the metrics for WTV, and especially, 

for PIind, only trees with data from a minimum of 10 leaves were considered (see Fig. S1 for 

details on data selection). Finally, as the underrepresentation of specific sampled species could 

make sample sizes across groups highly unbalanced and, thus, our models unstable (Grueber 

et al., 2011), we only worked with those species which after the filtering described before were 

represented by more than eight individuals. Thus, from the original number of 869 trees from 

27 species, our study included 499 trees from 21 species located in 97 plots and represented 

across different levels of taxonomic diversity (see Tables S3, S4). 

To measure PIind, we first computed for each tree all possible pairwise correlations 

between traits based on the trait values for individual leaves (Fig. S2a). Then, we evaluated the 

significance of the correlations by using permutation tests in which trait values were 

rearranged 20 000 times and pairwise correlations were calculated from each randomization. 

We calculated the P-values based on the permutation distribution of correlations obtained 

from randomizations. These tests were performed by using the function perm.cor.test in the 

jmuOutlier package (Garrenstjmuedu, 2019). Based on our correlation matrix, we built a plant 

trait network for each tree as described in He et al. (2020). To avoid spurious correlations 

among traits, we only considered connections (‘edges’) of significant correlation (P < 0.05) and 

with a Pearson coefficient |ρ| ≥ 0.6 (Aggarwal & Ranganathan, 2016). Importantly, most trait–

trait pairs considered for the network were highly significant (P < 0.01), indicating that the 

considered correlations are not likely statistical noise but, rather, a biological signal (see Figs 

S3, S4). We measured two properties that estimate the tightness of the networks: edge 

density, which measures the proportion of actual connections among traits out of all possible 

connections within a network and, thus, can be used to quantify the connectivity of all traits 

across the whole trait network (Benavides et al., 2021); and degree (Poorter et al., 2014; He et 

al., 2021), which represents a measure of coordination for each trait as it measures the number 

of connections of one focal trait (‘node’) to all others. These properties of the networks were 

assessed by using functions from the igraph package (Csardi, 2021). 
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We assessed multitrait WTV for each tree including all traits by using two indices 

related to different attributes of the functional hypervolume of all leaves in a tree: functional 

richness (FRic); and functional dispersion (FDis). Together, these two indices can reveal two 

different and complementary aspects of trait variation. Functional richness (FRic) measures 

the total functional hypervolume by using the minimum convex volume (Cornwell et al., 2006; 

Botta-Dukát & Czúcz, 2016). This index aims to detect reductions in the niche space occupied 

by individuals (Cornwell et al., 2006). Thus, a higher FRic indicates that an individual occupies 

a greater niche space. Functional dispersion (FDis) measures the distances of leaves to the 

centroid of the functional hypervolume, thus describing whether the distribution of leaves in 

a trait space is clustered or dispersed (Laliberte & Legendre, 2010). To calculate these indices, 

we first obtained a leaf-by-leaf trait distance matrix per tree by using Gower's distance. This 

was calculated with the gowdis function in the FD package (Laliberté et al., 2014). Then, for 

every tree we computed both indices through principal coordinate analysis (PCoA) by using 

the function dbFD from the same package. As these indices can be sensitive to the number of 

observations and in order to account for the different number of leaves per tree (Mason et al., 

2013), we used standardized effect sizes (SES) as described in Gotelli & McCabe (2002). We 

used 500 randomizations in a null-model analysis to ensure accurate estimates of SES values. 

Additionally, we assessed single-trait WTV by using the standard deviation (SD) of each trait 

across all leaves within a tree, as it represents how trait values are spread around the mean 

value (Proß et al., 2021; Fig. S2b). 

 

Statistical analyses 

All statistical analyses were performed in R v.4.02 (R Core Team, 2021). To assess the joint 

effect of PIind and local taxonomic diversity on within-tree trait variation (WTV), we performed 

linear mixed models (LMMs) for the multitrait and single-trait metrics of WTV. To do so, we 

used the two functional indices (SES(FDis) and SES(FRic)) and the SD of each of the nine traits, 

respectively, as response variables, resulting in a total of 11 models. Explanatory variables 

were the two metrics for PIind (edge density in the case of multitrait WTV (SES(FDis) and 

SES(FRic)), and the degree in the case of the models for single-trait WTV (SD)), the diversity of 

the tree-species pair (conspecific vs heterospecific), the Shannon diversity of the local 
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neighborhood of a tree-species pair, and all possible interactions of these variables (including 

the three-way interaction). We included tree-species pair identity nested in plot, in turn nested 

in site, and species identity as crossed random effects in order to account for the design of the 

experiment and differences among species, respectively (see Table S5). These analyses were 

conducted using the lmer function in the lmerTest package (Kuznetsova et al., 2017). We used 

diagnostic plots of the residuals to study the assumptions of normality, homoscedasticity and 

linearity in our models: residuals vs fitted values plots, histograms of the residuals and Q-Q 

plots for the deviance of the residuals. Thus, to meet the premises of homoscedasticity and 

normality of the residuals in the models, SD(SLA), SD(C), and SD(P) were log-transformed and 

SD(LDMC), SD(N), SD(K), and SD(Ca) were square-root transformed. We fitted ‘beyond optimal’ 

models, which included all of the fixed effects to fit the model. Then, by including only subsets 

of the predictors, the AIC was calculated for all possible models that varied in their fixed 

effects. We selected all models with ΔAIC lower than 2 as competing models holding similar 

information and followed the principle of parsimony to prioritize the simplest model with the 

smallest number of predictors among all competing models (Burnham & Anderson, 2004; 

Richards et al., 2011; Harrison et al., 2018). Finally, we assessed the quality of fit of our 

competing models by calculating the marginal and conditional R2, which address the variance 

explained only by fixed effects and the variance explained by the entire model, respectively. 

 

RESULTS 

We found a positive relationship between multitrait WTV and PIind. However, of the two 

multitrait functional indices, only SES(FDis) responded to edge density, which was used to 

quantify PIind at the multitrait level (Table 2). In both competing models, SES(FDis) increased 

with edge density and this response was stronger for trees with a conspecific partner 

(significant interaction of edge density and the diversity of the tree-species pair; Figs 3, 4). 

Furthermore, one of the competing models, but not the simplest model, included a negative 

effect of local neighborhood Shannon diversity, indicating that higher local neighborhood 

diversity was associated with lower SES(FDis; see Fig. S5). The effect of edge density on 

SES(FRic) was included in three of the competing models, but the most parsimonious model 

neither included edge density nor any of the other predictor variables. In the three competing 
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models including edge density among the predictors, two suggested that SES(FRic) increases 

with edge density while the third indicated that the response depends on the identity of the 

closest neighbor, increasing in the case of a conspecific partner and decreasing in the case of 

a heterospecific one (see Fig. S6). This suggests that the effect of edge density on SES(FRic) was 

rather weak and could be attributable to correlations between metrics (see Fig. S4). For the 

most parsimonious model of SES(FDis), marginal R2 accounted for 13% of the variance, and 

17% of the variance was explained when also considering the random effects as well. In the 

case of SES(FRic), for the simplest model, conditional R2 accounted for 8% of the variance. 
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Table 2. Competing models to identify the drivers of intraindividual trait variation (WTV).  

Response Int PIind S TSPDiv PIind:S PIind:TSPDiv S:TSPDiv PIind:S:TSPDiv Df delta R2m R2c 

SES(FDis) -3.085 1.992  -0.824  ×   9 0 0.133 0.174 

 -3.021 2.002 -0.075 -0.845  ×   10 1.471 0.135 0.177 

SES(FRic) -0.493 0.236       7 0 0.005 0.093 

 -0.374        6 0.585 0 0.084 

 -0.339 -0.08  -0.244  ×   9 1.48 0.01 0.109 

 -0.503 0.24 0.011      8 1.942 0.005 0.1 

log(SLASD) 2.385 0.089       7 0 0.062 0.709 

 2.374 0.088  0.023     8 1.557 0.062 0.71 

 2.401 0.088 -0.019      8 1.671 0.062 0.71 

 2.292 0.106  0.15  ×   9 1.853 0.063 0.712 

sqrt(LDMCSD) 3.889 0.242       7 0 0.163 0.267 

 3.691 0.238 0.21 0.295   ×  10 1.115 0.169 0.272 

 3.513 0.278 0.21 0.585  × ×  11 1.401 0.173 0.273 

 3.907 0.242 -0.025      8 1.94 0.163 0.268 

(C:N)SD 2.069 0.299       7 0 0.123 0.344 

 2.177 0.295 -0.127      8 0.1 0.126 0.345 

 1.987 0.337 0.137  ×    9 1.017 0.127 0.348 

 2.044 0.297  0.052     8 1.773 0.123 0.343 

log(CSD) -0.805 0.08 -0.037      8 0 0.093 0.745 

 -0.831 0.08       7 0.632 0.092 0.743 

 -0.838 0.089 0.009  ×    9 0.989 0.093 0.744 

 -0.848 0.079  0.03     8 1.067 0.093 0.744 

 -0.82 0.08 -0.03 0.019     9 1.543 0.093 0.745 

sqrt(NSD) 0.308 0.02       7 0 0.145 0.416 

 0.304 0.02  0.007     8 0.55 0.147 0.415 

 0.313 0.019 -0.005      8 0.924 0.146 0.414 

 0.312 0.018  -0.007  ×   9 1.947 0.148 0.418 

MgSD 0.469 0.033 -0.059 -0.023 ×    10 0 0.048 0.789 

 0.44 0.042 -0.018 -0.023     9 1.055 0.046 0.79 

 0.424 0.042  -0.017     8 1.255 0.046 0.788 

 0.415 0.041       7 1.294 0.045 0.787 

 0.451 0.033 -0.051  ×    9 1.57 0.046 0.788 

 0.474 0.033 -0.064 -0.031 ×  ×  11 1.935 0.048 0.789 

sqrt(KSD) 0.544 0.09 0.152 0.299 × × × × 13 0 0.124 0.549 

 0.699 0.057  0.098  ×   9 0.75 0.116 0.533 

 0.717 0.057 -0.021 0.092  ×   10 0.758 0.118 0.537 

 0.761 0.044       7 1.65 0.11 0.531 

 0.7 0.056 0.00 0.116  × ×  11 1.755 0.118 0.538 

 0.776 0.043 -0.019      8 1.777 0.111 0.535 

sqrt(CaSD) 1.003 0.049 -0.029      8 0 0.155 0.427 

 1.013 0.049 -0.033 -0.012     9 1.352 0.156 0.428 

log(PSD) -2.468 0.094       7 0 0.055 0.853 

 -2.486 0.094  0.032     8 0.252 0.056 0.852 

 -2.455 0.094 -0.015      8 1.588 0.056 0.852 
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The simplest model for each trait according to the parsimony principle is highlighted with a grey 
background. For each model, information about the estimates of all the included explanatory variables, 
degrees of freedom, delta of Akaike information criterion (AIC), and marginal and conditional R2 are 

provided. ‘×’ indicates that the interaction term was included in the model. See Fig. S5 for more details 
in the effect sizes of the variables included in the competing models. Int, intercept; PIind, individual 

phenotypic integration; S, Shannon diversity of the local neighborhood; TSPDiv, tree-species pair 
diversity; Df, degrees of freedom for the model; R2m, marginal R2; R2c, conditional R2. 
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Fig. 3 Effects of the predictors in the simplest (red) and competing models (gray; ∆AICc < 2) for (a) the 
standarized effect size of functional dispersion (SES(FDis)) and (b) functional richness (SES(FRic)), and 
the standard deviation (SD) of (c) specific leaf area (SLA), (d) leaf dry matter content (LDMC), (e) carbon-
to-nitrogen content (C : N), (f) leaf carbon content (c), (g) leaf nitrogen content (n), (h) leaf magnesium 
content (Mg), (i) leaf potassium content (K), (j) leaf calcium content (Ca), and (k) leaf phosphorous 
content (P), with 95% confidence intervals. Log and square-root transformations of the variables were 
indicated for every trait by log and sqrt, respectively. The acronyms correspond to the different 
predictors (PIind, individual phenotypic integration; S, Shannon diversity of the local neighborhood; 
TSPDiv, tree-species pair diversity), and interactions between predictors are indicated by ‘:’. For tree-
species pairs, positive and negative coefficients indicate higher and lower values for conspecific tree-
specific pairs compared with heterospecific tree-specific pairs, respectively. The lack of red error bars 
in (b) indicates that the simplest model for FRic did not include any predictor. 
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Fig. 4 Effects of PIind obtained in the simplest model according to the parsimony principle for (a) 
standardized effect size of functional dispersion (SES(FDis)), (b) standardized effect size of functional 
richness (SES(FRic)), (c) log-transformed standard deviation (SD) of specific leaf area (log(SLASD)), (d) 
square-root-transformed SD of leaf dry matter content (sqrt(LDMCSD)), (e) SD of carbon-to-nitrogen 
ratio ((C : N)SD), (f) log-transformed SD of carbon leaf content (log(CSD)), (g) square-root-transformed SD 
of leaf nitrogen content (sqrt(NSD)), (h) SD of leaf magnesium content (MgSD), (i) square-root-
transformed SD of leaf potassium content (sqrt(KSD)), (j) square-root-transformed SD of leaf calcium 
content (sqrt(CaSD)), and (k) log-transformed SD of leaf phosphorous content (log(PSD)). Colored areas 
represent the confidence intervals at 95%. No effect was found for SES(FRic) in the simplest model (see 
Fig. 3; Table 2). Network diagrams on the upper panel illustrate the gradient from low to high PIind. 
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In the single-trait analyses, WTV (quantified through trait SD) increased with increasing PIind 

(quantified through degree, i.e. the number of significant associations of that trait with others) 

in all competing models (Table 2; Fig. 4c–k). In contrast, the effect of taxonomic diversity and 

its role in mediating the response of single-trait WTV to PIind was not included in all competing 

models. Local neighborhood Shannon diversity appeared as a predictor in at least one of the 

competing models for each trait (see Figs 3, S7–S15), suggesting that Shannon diversity of the 

local neighborhood may cause a decrease in WTV. However, only in the case of Ca this effect 

was included in the simplest model (Fig. 5). Similarly, tree-species pair diversity (conspecific vs 

heterospecific) was maintained as a predictor in at least one competing model for all traits, 

but never in the simplest model. For all traits, except for Mg and Ca, there was slightly more 

WTV in trees with conspecific partners. Interactions between PIind and local neighborhood 

Shannon diversity were found among some of the competing models for C : N, C, K and Ca, 

suggesting in most cases that the response of WTV to PIind could be slightly stronger when local 

neighborhood diversity decreases. In the case of the interaction between degree and tree-

species pair diversity, this effect was present among some of the competing models for SLA, 

LDMC, N, and K, but the effect of the interaction was inconsistent across traits (see Figs S7, S8, 

S11, S13). In most cases, marginal R2 accounted for a small portion of the total variance in the 

simplest models (varying between c. 5% in the case of Mg and P and c. 15% for the models of 

SLA, LDMC, N, and Ca), but conditional R2 accounted for a greater portion of the variance 

(varying from c. 27% in P to c. 85% in P; see Table 2). This suggests that even though we found 

a correlation between PIind and WTV, the predictive ability of these models is rather low. 
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Fig. 5 Relationship between intraindividual variation of leaf calcium (square-root transformed standard 
deviation (SD)) and Shannon diversity of the local neighborhood (see Table 2). Gray areas represent the 
confidence intervals at 95%. 

 

DISCUSSION 

By using multiple leaves from each of 499 tree individuals from 21 species in a tree diversity 

experiment in subtropical China, we assessed whether WTV is influenced by PIind, and how 

tree-species diversity affects this relationship. Contrary to our expectation, our results showed 

that high individual WTV was associated with higher PIind. We found this response for FDis, a 

metric including all traits measured and reflecting the mean distance of each leaf to the 

centroid in a multidimensional trait space (i.e. how much a tree's leaves differ from the average 

trait values of all leaves of this tree), and for single traits' SD (i.e. leaves' deviation from the 

tree's mean considering single traits). To our knowledge, this is the first study showing such a 

consistent positive relationship between the integration of the phenotype and WTV. In 

contrast to the consistent response of FDis, the total trait hypervolume estimated by FRic did 

not show a clear pattern. Referring to the best and simplest model, the positive associations 

between WTV and PIind were mediated by taxonomic diversity only in the case of FDis, for 
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which the response was stronger in conspecific tree-species pairs. Furthermore, WTV of leaf 

Ca showed a decrease in response to local neighborhood Shannon diversity. 

In disagreement with our first hypothesis, our results suggest that PIind and WTV did not 

follow the same pattern described for higher levels of biological organization (inter- and 

intraspecific trait variation). The trade-off between trait variation and phenotypic integration 

is a widely spread statement in ecology (Valladares et al., 2007) and was observed for 

interspecific trait variation (Dwyer & Laughlin, 2017; He et al., 2021; Silva et al., 2021) and 

intraspecific trait variation (Carvalho et al., 2020; He et al., 2021). However, at the 

intraindividual level of biological organization used here, most metrics of trait variation 

showed an increase with PIind. Therefore, far from representing a constraint, PIind seems to be 

coupled with variation within an individual. Our results suggest that there is a link between the 

need of individuals to express alternative leaf designs and the maximization of the trait–trait 

coordination. As stated by Armbruster et al. (2014) and Zimmermann et al. (2016), phenotypic 

integration could act as a facilitator of adaptation by reducing maladaptive uncoordinated 

variation. Indeed, this could be a strategy that would allow individuals to maximize their fitness 

while adjusting to heterogenous microenvironmental conditions within the canopy. However, 

even though the general patterns observed point out an increase in WTV with increasing PIind, 

the use of two complementary functional indices revealed that there are still intrinsic limits to 

trait variation (Valladares et al., 2007; Auld et al., 2010). While FDis was positively related to 

PIind, the total functional space filled by the individual (represented by FRic; Cornwell et al., 

2006) tended to remain unaffected by PIind. Thus, our results suggest that instead of occupying 

a larger niche volume, individual trees with higher PIind fill a similar trait space, but there are 

differences in the density and distribution of individual leaves within this trait space (Fig. 6). 

Leaves tend to be located in the inner part of the trait hypervolume when PIind is low and move 

toward the extremes as PIind increases. As a result, it seems that even though the studied trees 

increase leaf diversity with PIind, trait variation is not unlimited (Valladares et al., 2007). 
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Fig. 6 Conceptual representation of the occupancy of the functional trait space under scenarios 
of (a) low and (b) high individual phenotypic integration (PIind), as suggested by our results. 
While overall trait space does not change, leaves (black points) tend to increase their distance 
to the centroid with higher PIind. Red arrows in (b) indicate the direction of the change detected 
by functional dispersion. Network diagrams illustrate scenarios of low and high PIind. 

 

Overall, we found weak effect of taxonomic diversity on WTV, suggesting that WTV could 

facilitate intraspecific plant–plant interactions by promoting slight niche complementarity. 

First, in the case of single traits, local neighborhood Shannon diversity reduced WTV of leaf Ca, 

and similar trends were found in at least one competing model for all other traits. Therefore, 

our results, even though are rather weak, suggest that trees may display higher WTV in 

monospecific communities. Indeed, this is consistent with similar patterns found for trees in a 

similar experiment in the tropics (Proß et al., 2021). Second, the identity of the closest 

neighbor mediated the WTV-PIind relationship, as shown by the results for FDis, supporting that 

the positive effect of phenotypic integration on trait variation is stronger for trees with a 

conspecific closest neighbor. This result evidences that the role of phenotypic integration to 

prevent uncoordinated variation is even more important in the context of intraspecific 

competition. Thus, as higher WTV could facilitate intraspecific interactions by, for example, 

improving the efficiency of light capture (Møller et al., 2022) and providing niche 



 

 

172 
 

complementarity (Proß et al., 2021), the steeper relationship with PIind in the presence of a 

conspecific may prevent maladjustment of leaf designs (Armbruster et al., 2014). Considering 

these responses to taxonomic diversity and taking in account that WTV represents a great 

portion of the total trait diversity occurring within a species (Herrera et al., 2015), we suggest 

that coexistence of individuals is not only driven by inter- and intraspecific trait variation. 

Rather, WTV could also constitute a mechanism that fosters niche complementarity. 

  Furthermore, the lack of strong responses of most single traits to taxonomic diversity 

(either heterospecificity of the closest neighbor or Shannon diversity of the local 

neighborhood) could have two complementary explanations: as drivers of trait variation act 

on multiple traits simultaneously, multitrait approaches reflect variation patterns better than 

single-trait analyses (Albert et al., 2010); and the relationship between WTV and taxonomic 

diversity could be hampered by other important drivers of WTV such as plant–animal 

interactions, and environmental factors like resource availability and climate predictability. 

Regarding plant–animal interactions, there is a growing literature showing the effect of 

pollination and seed dispersal on WTV of reproductive traits (Sobral et al., 2010, 2019) and, 

specifically for the case of leaves, antagonistic interactions such as leaf herbivory have been 

suggested to select for higher WTV (Herrera, 2017). Concerning resource availability, 

Davrinche et al. (2023) showed that the relationship between WTV in leaves and diversity was 

dependent on the availability of nutrients in the soil. Last, higher WTV has been proposed to 

be an adaptive strategy to cope with unpredictability in rain regimes (March-Salas et al., 2021). 

  While the variance explained by the predictors was not large, a large proportion of the 

variance in our data was attributed to random effects, including species identity and the 

location of the tree within the experiment. Species identity explains differences in trait 

variation (Mudrák et al., 2019), supporting that species differing in their evolutionary history 

and adaptations exhibit differences in their plastic responses (Schlichting, 1986; Davidson et 

al., 2011). Furthermore, because of its large spatial extent, the BEF-China experiment 

comprises environmental heterogeneity concerning, for example, slope, soil nutrients, and 

erosion (Scholten et al., 2017), and it already has been observed that these differences 

influence intraspecific variation in the trees' crown shape (Perles-Garcia et al., 2022). Indeed, 

as WTV also changes in response to small differences in abiotic conditions within the same 
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habitat (Sobral et al., 2019), it seems that differences in WTV among individuals could also be 

explained by their location within the experiment. 

 

Concluding remarks 

We aimed to provide new insights into the functional constraints of WTV, which, even though 

it is still widely understudied, seems to play a role in ecological processes (Sobral & Sampedro, 

2022) and could be key for plants to adaptively respond to future scenarios of global change 

(March-Salas et al., 2021). Although WTV is not unlimited, our study supports that integrated 

phenotypes maintain dissimilar leaf designs within the organism. This means that high PIind is 

needed to express large WTV and, as shown by our results, this is particularly important in the 

case of intraspecific interactions, where WTV could act as a stabilizing mechanism. 

Furthermore, if we aim to better understand WTV and its adaptive role for plants/trees in the 

response to future environmental conditions (Nicotra et al., 2010), it should acknowledge that 

PIind also responds to abiotic factors (García-Verdugo et al., 2009) and, therefore, following 

research on WTV and its limits should consider not only the WTV-PIind relationship but also its 

changes across environmental conditions. 
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SUPPORTING INFORMATION 
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Fig. S2 Analytical framework used to obtain the metrics of phenotypic integration and trait 

variation for every tree. 

Fig. S3 P values for trait-trait correlations. 

Fig. S4 Testing independency between metrics of trait variation and phenotypic integration. 

Fig. S5 Effect plots for all competing models for SES(FDis). 

Fig. S6 Effect plots for all competing models for SES(FRic). 

Fig. S7 Effect plots for all competing models for SLA. 

Fig. S8 Effect plots for all competing models for LDMC. 

Fig. S9 Effect plots for all competing models for C:N. 

Fig. S10 Effect plots for all competing models for C. 

Fig. S11 Effect plots for all competing models for N. 

Fig. S12 Effect plots for all competing models for Mg. 

Fig. S13 Effect plots for all competing models for K. 

Fig. S14 Effect plots for all competing models for Ca. 

Fig. S15 Effect plots for all competing models for P. 

Table S1 Leaf traits included in our study, their ecological function and literature describing 

them. 

Table S2 Number and percentage of scans and leaves excluded in the process of outlier 

removal for every trait in every site of the experiment. 

Table S3 Species included in our study and number of individuals in both study sites included 

in the analyses. 
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Table S4 Number of plots, TSPs and trees sampled across all richness levels in the BEF-China 

experiment included in the analyses. 

Table S5 Structure of the linear mixed models to study the relationship between individual 

phenotypic integration and trait variation under different scenarios of local taxonomic 

diversity. 
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Fig. S1 Data selection process before statistical analyses. (a) First, leaf-level trait data collected for 16 species in site A and data collected for 14 species in site 
B in 2019 were merged together, resulting in a dataset of leaf-level trait data for 869 trees belonging to 27 species. (b) Afterwards, we filtered the data in 
order to select the suitable information to perform further analyses. For this selection only leaves with trait data available for all nine traits (SLA, LDMC, C:N, 
C, N, Ca, K, Mg and P) were considered, as the study of phenotypic integration requires the lack of missing data. Further, in order to avoid the low accuracy 
in the metrics for intraindividual trait variation (WTV), and especially, for phenotypic integration (PIind), only trees with data for a minimum of 10 leaves were 
considered. In this process data for 372 trees were excluded. (c) Finally, after the filtering processes, six species out of the 27 were underrepresented and, 
thus, 12 trees belonging to these species were discarded for further analyses. Excluded species are marked in light grey. In addition, 17 trees completely 
surrounded by dead trees (i.e. lack of surrounding neighborhood) were excluded. The result was a dataset with leaf-level data for 499 trees from 21 species 
represented across the different levels of taxonomic diversity considered in the sampling design (see Table S3). 
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Fig. S2 Analytical framework used to obtain the metrics of (a) phenotypic integration and (b) trait 
variation for every tree. The metrics of individual phenotypic integration (edge density and degree) 
were addressed by using (a.1) correlation matrices and (a.2) permutation tests to evaluate which 
correlations were significant. Then, the significant correlations were used to build the (a.3) plant trait 
network, which describes the degree of every trait and the edge density of the network. The metrics of 
intraindividual trait variation for single traits were addressed by using (b.1) the standard deviation (SD) 
of every trait. Multi-trait functional indices were addressed by (b.2) constructing a distance matrix 
considering the Gower distance between individual leaves. Based on the distance matrix (b.3) we built 
a Principal Coordinates Analysis (PCoA). Finally, we assessed (b.4) Functional Dispersion (FDis) and 
Functional Richness (FRic) from Euclidean distances based on leaf scores obtained from PCoA axes. 
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Fig. S3 Histogram of all p values of the trait-trait correlations considered significant. correlations of a 
trait with itself were not included here as the p value is always 0 in those cases. The dot and error bars 
below indicate the mean (0.007) and the 95% confidence interval of the p values, As indicated by the 
dashed lines, most of the p values were lower than 0.01, while the presence of p values near the 
threshold of 0.05 was minimal. 
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Fig. S4 Testing independency between metrics of trait variation and phenotypic integration. We 
shuffled the values of every trait 100 times and assessed functional dispersion (FDis), functional 
richness (FRic), the standard deviation of every trait (SD), edge density (ED) and the degree of every 
trait for every randomization. Then, for every randomization we calculated the Pearson correlation 
coefficient between the metrics of trait variation and the metrics of phenotypic integration (Manly, 
2018). We considered that the randomizations were significantly different from zero when their 95% 
confidence intervals did not overlap with zero. For the correlations between degree and SD (c-k), we 
found in every case that the random correlations were distributed around zero, suggesting that these 
metrics were not correlated. For the correlations between multi-trait functional indices and edge 
density (a and b) we found that random correlations tended to be slightly over 0. However, in the case 
of FDis (a), the observed correlation was significantly higher than those occurring by chance, which 
suggest that the observed pattern in the linear mixed-effect models does not occur due to correlated 
metrics. 

. 
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Fig. S5 Effect plots for all competing models for SES(FDis). Interactions with TSP diversity (TSPDiv) are 
represented in different colors (blue for conspecific and brown for heterospecific). The results for the 
simplest model that we prioritized to interpret the results are highlighted in the box marked in bold. 
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Fig. S6 Effect plots for all competing models for SES(FRic). Interactions with TSP diversity (TSPDiv) are 
represented in different colors (blue for conspecific and brown for heterospecific). The results for the 
simplest model that we prioritized to interpret the results are highlighted in the box marked in bold. 
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Fig. S7 Effect plots for all competing models for SLA. Interactions with TSP diversity (TSPDiv) are 
represented in different colors (blue for conspecific and brown for heterospecific). The results for the 
simplest model that we prioritized to interpret the results are highlighted in the box marked in bold. 
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Fig. S8 Effect plots for all competing models for LDMC. Interactions with TSP diversity (TSPDiv) are 
represented in different colors (blue for conspecific and brown for heterospecific). The results for the 
simplest model that we prioritized to interpret the results are highlighted in the box marked in bold. 
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Fig. S9 Effect plots for all competing models for C:N. Interactions with local neighborhood Shannon 
diversity (Shannon) are represented with different color intensity (darker colors for higher values of 
Shannon diversity). The results for the simplest model that we prioritized to interpret the results are 
highlighted in the box marked in bold. 
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Fig. S10 Effect plots for all competing models for C. Interactions with local neighborhood Shannon diversity (Shannon) are represented with different color 
intensity (darker colors for higher values of Shannon diversity). The results for the simplest model that we prioritized to interpret the results are highlighted 
in the box marked in bold. 
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Fig. S11 Effect plots for all competing models for N. Interactions with TSP diversity (TSPDiv) are 
represented in different colors (blue for conspecific and brown for heterospecific). The results for the 
simplest model that we prioritized to interpret the results are highlighted in the box marked in bold. 
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Fig. S12 Effect plots for all competing models for Mg. Interactions with TSP diversity (TSPDiv) are represented in different colors (blue for conspecific and brown 
for heterospecific). Interactions with local neighborhood Shannon diversity (Shannon) are represented with different color intensity (darker colors for higher 
values of Shannon diversity). The results for the simplest model that we prioritized to interpret the results are highlighted in the box marked in bold. 
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Fig. S13 Effect plots for all competing models for K. Interactions with TSP diversity (TSPDiv) are represented in different colors (blue for conspecific and brown 
for heterospecific). Interactions with local neighborhood Shannon diversity (Shannon) are represented with different color intensity (darker colors for higher 
values of Shannon diversity). The results for the simplest model that we prioritized to interpret the results are highlighted in the box marked in bold. 



 

 

195 
 

 

Fig. S14 Effect plots for all competing models for Ca. The results for the simplest model that we 
prioritized to interpret the results are highlighted in the box marked in bold. 
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Fig. S15 Effect plots for all competing models for P. The results for the simplest model that we 
prioritized to interpret the results are highlighted in the box marked in bold. 
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Table S1 Leaf traits included in our study, their ecological function and literature describing them. 

Trait Abbreviation Units Ecological function  References 

Specific leaf area SLA mm²/mg Resource acquisition, 
photosynthetic rate, 
relative growth rate, 
shade-tolerance.  

Reich et al. (1992); Niinemets 
and Kull (1995); Reich et al. 
(1997); Reich et al. (1999); 
Kazakou et al. (2006); Legner et 
al. (2014) 

Leaf dry matter content LDMC mg/g Structural support of the 
leaf, herbivory resistance, 
leaf tissue density, leaf life-
span, relative growth rate. 

Poorter & Bergkotte (1992); 
Niinemets & Kull (1995); 
Niinemets (1999); Niinemets 
(2001); Westoby et al. (2002); 
Kazakou et al. (2006); Poorter 
et al. (2009); Pérez‐
Harguindeguy et al. (2013)  

Leaf carbon to nitrogen 
ratio  

C:N g/g Structural support of the 
leaf, leaf tissue density, 
leaf life-span. 

Poorter & Bergkotte (1992); 
Niinemets et al. (2007) 

Leaf carbon content  C % Leaf palatability, leaf lignin 
content, leaf density, 
relative growth rate and 
structural leaf support, 
water use efficiency. 

Poorter & Bergkotte (1992); 
Niinemets et al. (2007); 
Kazakou et al. (2006); Pérez-
Harguindeguy et al. (2003) 

Leaf nitrogen content  N % Net photosynthetic 
capacity, relative growth 
rate and N availability in 
the soil, leaf life-span and 
leaf decomposability. 

Reich et al. (1992); Enríquez et 
al. (1993); Cornelissen et al. 
(1997); Reich et al. (1997); 
Reich et al. (1999); Niinemets 
et al. (2002); Kazakou et al. 
(2006) 

Leaf magnesium content  Mg mg/g Leaf senescence, Mg 
availability in the soil. 

Rao et al. (1987); Kobayashi 
(2015); Pérez-Harguindeguy et 
al. (2003) 

Leaf potassium content  K mg/g Nitrogen use efficiency, K 
availability in the soil, 
relative growth rate. 

Pérez-Harguindeguy et al. 
(2003); Xu et al. (2020) 

Leaf calcium content  Ca mg/g Ca availability in the soil, 
relative growth rate, leaf 
senescence. 

Poovaiah, & Leopold (1973), 
Pérez-Harguindeguy et al. 
(2003) 

Leaf Phosphorus content  P mg/g Net photosynthetic 
capacity, relative growth 
rate, P availability in the 
soil, leaf life-span. 

Tuohy et al. (1991); Raaimakers 
et al. (1995); Hevia et al. 
(1999); Pérez-Harguindeguy et 
al. (2003) 
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Table S2 Number and percentage of scans and leaves excluded in the process of outlier removal for 

every trait in every site of the experiment. 

Site A 

Trait SLA LDMC CN C N MG CA K P 

original number of scans 15257 15257 15257 15257 15257 15257 15257 15257 15257 

final number of scans 14492 14684 14500 14644 14399 14676 14280 14381 13862 

original number of leaves 5067 5067 5067 5067 5067 5067 5067 5067 5067 

final number of leaves 4816 4944 4845 4895 4822 4906 4937 4800 5006 

% of excluded scans 5.01 3.76 4.96 4.02 5.62 3.81 6.40 5.74 9.14 

% of excluded leaves 4.95 2.43 4.38 3.39 4.84 3.18 2.57 5.27 1.20 

Site B 

Trait SLA LDMC CN C N MG CA K P 

original number of scans 17874 17874 17874 17874 17874 17874 17874 17874 17874 

final number of scans 16867 17245 16920 16608 16878 15679 16674 17041 16777 

original number of leaves 5958 5958 5958 5958 5958 5958 5958 5958 5958 

final number of leaves 5650 5755 5767 5808 5748 5895 5844 5725 5752 

% of excluded scans 5.63 3.52 5.34 7.08 5.57 12.28 6.71 4.66 6.14 

% of excluded leaves 5.17 3.41 3.21 2.52 3.52 1.06 1.91 3.91 3.46 
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Table S3 Species included in our study and number of individuals with con-specific and hetero-specific 
neighbors in both study sites included in the analyses. Species names and families are taken from 
Tropicos (http://www.tropicos.org/; accessed 22 August 2022). 
 

Species Family Leaf habit 
Site A Site B 

Con-sp Hetero-sp Con-sp Hetero-sp 

Liquidambar formosana Hance Altingiaceae Deciduous 14 7 0 0 

Daphniphyllum oldhamii Hayata Daphniphyllaceae Evergreen 0 0 15 11 

Elaeocarpus chinensis Hook.f. ex Benth. Elaeocarpaceae Evergreen 0 0 19 12 

Sapium sebiferum (L.) Roxb. Euphorbiaceae Deciduous 5 3 0 0 

Castanea henryi Rehder & E.H.Wilson Fagaceae Deciduous 7 6 0 0 

Castanopsis eyrei Tutch. Fagaceae Evergreen 4 5 0 0 

Castanopsis fargesii Franch. Fagaceae Evergreen 0 0 26 16 

Castanopsis sclerophylla (Lindl. & Paxton) 
Schottky 

Fagaceae Evergreen 15 10 13 8 

Cyclobalanopsis glauca Oerst. Fagaceae Evergreen 15 11 16 9 

Cyclobalanopsis myrsinifolia (Blume) Oerst. Fagaceae Evergreen 16 4 0 0 

Lithocarpus glaber Nakai Fagaceae Evergreen 17 9 0 0 

Quercus fabri Hance Fagaceae Deciduous 8 1 0 0 

Quercus phillyreoides A.Gray Fagaceae Evergreen 0 0 7 6 

Quercus serrata Thunb. Fagaceae Deciduous 8 4 0 0 

Cinnamomum camphora (L.) J.Presl Lauraceae Evergreen 0 0 11 7 

Machilus leptophylla Hand.-Mazz. Lauraceae Evergreen 0 0 10 4 

Machilus thunbergii Siebold & Zucc. Lauraceae Evergreen 0 0 12 11 

Manglietia fordiana Hu Magnoliaceae Evergreen 0 0 13 10 

Nyssa sinensis Oliv. Nyssaceae Deciduous 4 7 0 0 

Alniphyllum fortunei Makino Styracaceae Deciduous 0 0 15 14 

Schima superba Gardner & Champ. Theaceae Evergreen 18 8 16 12 
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Table S4 Number of plots, tree-species pairs and trees sampled across all richness levels in the BEF-
China experiment included in the analyses. Tree-species pairs (both conspecific and hetrospecific) 
were selected across a large number of plots differing in richness in order to represent the different 
situations of conspecifity and diversity in the local neighborhood across all species. 

Site Richness Number of plots consp TSP Heterosp TSP Trees in consp TSPs Trees in hetosp TSPs 

A 

1 18 29 0 49 0 

2 11 22 11 39 14 

4 10 9 17 15 23 

8 6 7 16 13 19 

16 0 0 0 0 0 

24 6 10 14 15 19 

B 

1 15 29 0 53 0 

2 12 35 20 63 31 

4 7 14 25 25 42 

8 3 6 12 11 17 

16 4 7 12 12 19 

24 5 5 6 9 11 

  
Total: 97 

Total: 173 Total: 133 Total: 304 Total: 195 

  Total: 306 Total: 499 

TSP, tree-species pair; Consp, conspecific; heterosp, heterospecific 
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Table S5 Structure of the linear mixed models to study the relationship between individual 
phenotypic integration and trait variation under different scenarios of local taxonomic diversity. 

Response variable Fixed factors Random effects 

SES(FDis) Edge density * TSP Diversity * Local Diversity Species + Site/Plot/TSP Identity 

SES(FRic) Edge density * TSP Diversity * Local Diversity Species + Site/Plot/TSP Identity 

log(SLASD) SLADegree * TSP Diversity * Local Diversity Species + Site/Plot/TSP Identity 

sqrt(LDMCSD) LDMCDegree * TSP Diversity * Local Diversity Species + Site/Plot/TSP Identity 

(C:N)SD C:NDegree * TSP Diversity * Local Diversity Species + Site/Plot/TSP Identity 

log(CSD) CDegree * TSP Diversity * Local Diversity Species + Site/Plot/TSP Identity 

sqrt(NSD) NDegree * TSP Diversity * Local Diversity Species + Site/Plot/TSP Identity 

MgSD MgDegree * TSP Diversity * Local Diversity Species + Site/Plot/TSP Identity 

sqrt(KSD) KDegree * TSP Diversity * Local Diversity Species + Site/Plot/TSP Identity 

sqrt(CaSD) CaDegree * TSP Diversity * Local Diversity Species + Site/Plot/TSP Identity 

log(PSD) PDegree * TSP Diversity * Local Diversity Species + Site/Plot/TSP Identity 

TSP, Tree-Species pair 
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CHAPTER 5 

SYNTHESIS 

Despite the importance of functional traits in ecological processes, trait variation still holds 

many unresolved aspects, especially regarding the variation within species and individuals. In 

particular, the responses of this variation to diversity, which could reveal key facets of species 

interactions and biodiversity-ecosystem functioning (BEF), have been often disregarded. 

Since BEF experiments provide a useful setting for studying experimental gradients of species 

diversity and trees express high plasticity in functional traits, I looked into the patterns of 

intraspecific and intraindividual trait variation along tree and mycorrhizal fungi species 

gradients in tree diversity experiments. In this chapter, I summarize my findings and expand 

on their meaning and implications in a broader context, to contribute to a better 

understanding of processes underlying trait variation and discuss the potential implications 

that this could have for ecosystem functioning. 

 

Summary of the results 

In Chapter 2, I studied changes in the individual mean trait values and intraindividual trait 

variation in a tree diversity experiment that relies on the combination of gradients of tree 

richness and mycorrhizal associations. I found that both tree diversity and mycorrhizal fungal 

diversity drive changes in functional traits. Specifically, specific leaf area (SLA) increased with 

increasing tree species richness and the carbon to nitrogen ratio (C:N) decreased with 

increasing arbuscular mycorrhizal fungal richness. This suggests that both aboveground and 

belowground diversity contribute to trait variation. In addition, I found a decrease of 

intraindividual variation of traits from the leaf economics spectrum (LES) with increasing tree 

species richness, highlighting a potential role of intraindividual trait variation in tree-tree 

interactions. Last, I could not find differences between two groups of trees associated 

preferably with arbuscular mycorrhizal fungi and ectomycorrhiza fungi, respectively, 

regarding their acquisitive versus conservative strategy. 

In Chapter 3, I studied changes in intraspecific trait variability within populations and 

intraindividual trait variation along an experimental gradient of tree species richness. I found 
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that intraspecific trait variability decreased with increasing tree species richness and 

intraindividual variation of traits associated with the stomatal morphology decreased with 

increasing tree species richness. Further, I found that intraspecific trait overlap of conspecifics 

is small, when intraspecific variability is high, but high when intraindividual variation is high. 

This suggests that intraindividual trait variation may not be related to complementarity, but 

could instead appear as a mechanism to improve water use efficiency or as a result of higher 

differentiation between sun and shade leaves in the canopy. Last, by using a framework that 

allows including hierarchical sources of trait variation for calculating functional diversity of 

communities, I found that the organization of the trait variation within individuals and within 

populations is important for functional diversity, especially in mixed stands. 

In Chapter 4, by using a large leaf-level dataset for ca. 500 trees, I explored the 

relationship between intraindividual trait variation and trait covariation. I found that 

intraindividual variation in leaf traits increases with trait covariation, meaning that trees with 

more coordinated traits exhibit greater variability in leaf traits. This relationship was 

influenced by the identity of the closest neighbour, suggesting that the positive effect of trait 

covariation on intraindividual trait variation is stronger for trees with a conspecific closest 

neighbor. These results indicate that intraindividual leaf trait variation requires strong 

coordination of traits and functions in order to avoid the expression of maladaptive 

phenotypic syndromes. In addition, I found that intraindividual variation of leaf calcium was 

negatively associated with the Shannon diversity of the neighborhood. 

 

Intraindividual variation: patterns and role in tree-tree interactions 

In Chapter 2, Chapter 3 and Chapter 4 I showed that intraindividual trait variation is not a 

neglectable part of trait-based ecology, but functional traits can vary subindividually in 

response to drivers that also have an effect at higher levels of biological organization (Herrera, 

2017). In Chapter 3 I discussed that intraindividual trait variation could represent up to one 

quarter of total trait variation in leaves and it can even overcome intraspecific trait variation 

in traits, such as leaf phosphorous (P) or leaf nitrogen content (N). It is also important 

mentioning that intraindividual trait variation is not “phenotypic noise” that occurs randomly, 

but results from patterns of phenotypic integration conserved across scales. For instance, I 
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found that trade-offs between conservative and acquisitive traits also emerge when 

comparing different leaves within the same tree (as seen in Chapter 4) or when using leaf-

level data to study the main axes of trait variation. Specifically, I found trade-offs between 

SLA or N and leaf dry matter content (LDMC) as we expect from the leaf economics spectrum 

framework (Wright et al., 2004). Further, in Chapter 3 I found that patterns of leaf trait 

covariation, such as the orthogonal variation of the leaf economics spectrum and the stomatal 

morphology, which describes a trade-off between the density and size of the stomata in the 

leaf, aligned with studies that used species-level data to demonstrate the existence of 

different syndromes shaping leaf form and function (Kröber & Bruelheide, 2014; Schnabel et 

al., 2021). However, in this case I also found that the content of nutrients seems to be aligned 

with leaf stomatal traits, indicating that, leaf photosynthetic capacity, which is strongly 

related to N and P, may be tightly related to the gas exchange of the leaves (Tanaka et al., 

2013).  

Only recently intraindividual trait variation became of interest in ecological studies 

and, since then, researchers have been trying to understand its responses to different drivers 

to better understand the ecological meaning of this source of phenotypic variation. For 

instance, March-Salas et al. (2021) studied the responses of reproductive traits to variability 

in precipitation regime and suggested that intraindividual variation could emerge as a 

mechanism to cope with environmental uncertainty. Further, Møller et al. (2022, 2024) 

studied the patterns of intraindividual variation of Galium odoratum in response to light and 

water availability and suggested that intraindividual variation, especially in leaf traits, could 

explain adaptative mechanism related to efficiency in the use of resources. Regarding species 

interactions, in this thesis I aimed to explore the role of intraindividual trait variation in tree-

tree interactions. In Chapter 1 I hypothesized that intraindividual trait variation was highest 

in monocultures and decreased with increasing tree species richness. While my finding overall 

confirmed this trend, there were differences regarding the statistical significance of the 

results depending on the experiment. In Chapter 2 I showed that, for the MyDiv experiment 

(Germany), the intraindividual variation of traits from the leaf economics spectrum 

significantly decreased with tree species richness. These results are aligned with those of Proß 

et al. (2023) in the Kreinitz experiment, located at ca. 100 km from our experimental site. 

Nevertheless, the corresponding patterns of intraindividual trait variation in BEF-China were 
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much weaker. In Chapter 4, I showed that leaf calcium content was the only trait responding 

to Shannon diversity of the neighborhood, and no significant responses for LES traits were 

found in Chapter 3. Indeed, responses of intraindividual variation in LES traits in species from 

BEF-China have been shown to be complex and dependent on other environmental variables 

such as soil microbiome or soil nutrients (Davrinche & Haider, 2024). The differences between 

experiments could rely on (1) climate, (2) species pool, (3) experimental design, (4) 

environmental heterogeneity within the experiment or (5) age of the experiment. As for the 

climate, the regions present differences regarding their temperature and precipitation (Figure 

1a, b), with MyDiv being colder and drier compared to BEF-China. Interestingly, our results 

contrast with previous evidence suggesting that phenotypic plasticity of species tends to be 

lower in colder and drier climates (Stotz et al., 2021). However, as MyDiv is located in a 

temperate region, which usually shows higher climatic variability compared to subtropical 

regions where BEF-China is located, the ability of plants to exhibit plasticity in intraindividual 

variability could be prominent in this region as a mechanism to cope with climate variability 

(March-Salas et al., 2021). Regarding the pool of species, even though some of the MyDiv 

species were more related, as many were members of the same family (this is the case for 

the Betulaceae or Rosaceae family), there was not a clear segregation in terms of phylogenetic 

relatedness between species belonging to different experiments (Figure 1c). However, it 

seems that MyDiv species have higher values for traits related to an acquisitive strategy 

compared to the species from BEF-China (Figure 1d). This is probably because the pool of 

species in the MyDiv experiment only include deciduous species, which are typically more 

acquisitive (Pringle et al., 2010). As phenotypic plasticity of conservative species is often lower 

because the production of alternative phenotypes is likely to be unsustainable (Valladares et 

al., 2007; Stotz et al., 2022), this could explain why the response of intraindividual variation 

only shows a trend but it is rarely significant for BEF-China (but see below a discussion about 

intraspecific trait variation in both tree diversity experiments in the section `Intraspecific 

responses: From conservative heterogenous populations to acquisitive homogenous 

populations`). Further, regarding the experimental design, experiments differ in the extent of 

the plots and the planting distance within them, with BEF-China having larger plots and higher 

planting distance compared to MyDiv. For instance, even though the tree species richness 

gradient was smaller in MyDiv compared to BEF-China, the higher planting density in MyDiv 
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results in high canopy density and may lead to larger differences in intraindividual trait 

variability between monocultures, where crowns of the trees overlap substantially, and 

mixtures, where there is a stratification of the canopy (Ray et al., 2023). Last, there is a lot of 

microenvironmental variation in BEF-China that could blurr responses (e.g. slope, altitude, 

orientation). Indeed, Davrinche et al. (2023) showed that the responses of intraindividual trait 

variation were dependent on the changes of soil nutrients in the BEF-China experiment. 

 

 

 

 

 



 

 

210 
 

 

FIGURE 1 Comparison of the (a) location, (b) climate and (c, d) sampled species between BEF-China 
(red violet) and MyDiv (dark purple). (b) The different tree diversity experiments show differences 
regarding their mean annual temperature (16.5°C in BEF-China and 8.8°C in MyDiv) and precipitation 
(1821 mm in BEF-China and 484 mm in MyDiv) and, therefore, they are located in different biomes 
according to the Whittaker classification (Whittaker, 1975). Background colours in (b) correspond to 
the different biomes as defined by Whittaker. The phylogenetic tree of sampled species in both 
experiments is shown in (c), with the outer circles representing the rescaled mean values of three 
functional traits that are key components of the leaf economics spectrum (specific leaf area (SLA); leaf 
dry matter content (LDMC); leaf nitrogen content (N)) for every species. Red colours in (c) are 
associated with low trait values and blue values indicate high trait values. The phylogenetic tree was 
generated by using the ´V.PhyloMaker´ R package (Jin & Qian, 2019). Further, the density plots for the 
mean trait values of the species in each experiment are shown in (d). The percentage in every of the 
density plots corresponds to the shared area between both experiments. The schemes in (e) show the 
extent of a plot and the distribution of the trees within this in both experiments. Every point in (e) 
represents the planting position of a tree. 
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The decrease of intraindividual trait variation with increasing tree species richness was 

expected as intraindividual variation could facilitate intraspecific interactions. Specifically, it 

was suggested that higher leaf variability in the canopy would allow conspecific trees to be 

more phenotypically dissimilar and therefore reduce intraspecific competition (Proß et al., 

2021). I tested for this mechanism on Chapter 3, and contrary to our expectations higher 

intraindividual variation caused conspecifics to share more trait features. Therefore, our 

results suggest that intraindividual variation was not related to species niche partitioning as I 

hypothesized from the results in Chapter 2. However, in Chapter 3 I suggest that the 

responses of intraindividual trait variation to tree species diversity could be related to the 

microenvironmental conditions in monocultures. As the microclimate buffer is smaller in 

monocultures or stands with low species richness, increased intraindividual variation could 

emerge in these stands due to their role for coping with environmental variability mentioned 

before (Møller et al., 2022, 2024). As an alternative explanation, I suggest that higher leaf 

variability may emerge as greater differentiation between sun and shade leaves as a result of 

the canopy structure. Therefore, an interesting topic for future research would be how 

intraindividual variability is related to canopy structure and how diversity and canopy 

structure affect the epigenetics of the plant individuals. 

 

Intraspecific responses to species diversity: from conservative heterogenous populations 

to acquisitive homogenous populations 

Scaling-up in the levels of biological organization, our results show that differences between 

trees within the same species are also related to tree-tree interactions. Intraspecific trait 

variation has attracted ecologists in recent years, as studying its extent and patterns could 

reveal new facets of species interactions (Hart et al., 2016). Indeed, intraspecific interactions 

have been shown to be involved, among others, in plant-animal interactions (Gorné et al., 

2020; Westerband et al., 2021; Arroyo-Correa et al., 2024), predator-prey interactions 

(Bolnick et al., 2011; Allesina et al., 2021), and, as we saw in previous chapters, tree-tree 

interactions. In Chapter 2 I showed that the phenotypes of trees are respond to species 

diversity. Specifically, our results suggested that increase in SLA was related to species 

diversity, probably as a result of higher resource-use complementarity in mixed stands (Barry 
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et al., 2019). In fact, similar results were already shown by Davrinche & Haider (2021) for BEF-

China, suggesting that the shift from conservative to acquisitive with increasing tree species 

richness occurs in both of our experimental settings. In addition, in Chapter 3 I showed that 

intraspecific diversity of populations was decreasing with tree species richness. All this 

information together suggests that, in forests, tree species diversity may drive intraspecific 

variation from conservative heterogeneous populations, where trees adopt a more 

conservative trait strategy and maximize phenotypic dissimilarities, to acquisitive 

homogenous populations where trees from the same species converge towards an optimal 

trait value. Additionally, these results may point out strong differences between the 

mechanisms involved in intraspecific and interspecific competitive interactions. Indeed, if 

trait similarity is the main driver of the intensity of competitive interactions, plants with 

similar traits should compete more strongly (MacArthur & Levins, 1967; Mason et al., 2011). 

In contrast, individuals could also converge towards optimal trait values if competitive 

interactions were driven by trait hierarchy instead of trait differences. Therefore, for our 

context of tree diversity experiments, the results from Chapter 4 suggest that intraspecific 

interactions are driven by trait dissimilarities, while the shift to a more acquisitive strategy 

with increasing tree diversity found in Chapter 2 suggests that interspecific competitive 

interactions depend on the optimal values of traits. 

 

Species diversity as drivers of leaf functional traits 

The overall goal of BEF research is to understand how diversity can influence ecosystem 

functioning. In this framework, we have seen how traits, which may be the link between 

biodiversity and ecosystem functioning, respond to the diversity of different organisms. First, 

as I have discussed in the previous sections of this chapter, the diversity of tree species drives 

trait variation (shifts towards a more acquisitive trait strategy, decrease of intraspecific and 

intraindividual trait variability). These results could be explained by resource partitioning in 

diverse forest stands (Barry et al., 2019). In fact, resource partitioning, that is related the 

acquisition of resources (light, water, nutrients) and how different species have different 

requirements and manners for the uptake of those (Mckane et al., 2002; Kahmen et al., 2006), 

could explain the use of a more acquisitive strategy in mixed stands. Further, in Chapter 2, I 
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further analysed diversity effects in forest by considering, not only the most visible part of 

forest (i.e. trees), but also the diversity of mycorrhizal fungi associated with the roots of the 

trees. Mycorrhizal fungal communities have been shown to be important components of 

forests and are drivers of ecosystem functioning (Ferlian et al., 2018; Deng et al., 2023). Our 

results suggest that the diversity of mycorrhizal fungal communities (specifically, arbuscular 

mycorrhizal fungal communities) can enhance nutrient uptake and, therefore, affect leaf 

traits in the tree. This indicates that the drivers of trait variation in forests (and potentially, 

ecosystem functioning) go beyond considering the effects of tree-tree interactions, but the 

interactions with other organisms and trophic guilds could also have an effect on forest 

functioning. Thus, our results contribute to numerous studies suggesting that ecosystem 

functioning in forests may be also driven by other biotic interactions, including tree-soil 

organisms’ interaction (Luo et al., 2023). Thus, in view of these results, I suggest that future 

research should address how the diversity of different trophic guilds can jointly affect 

functional traits in trees. 

 

Conclusions and future directions: towards novel frameworks for community assembly and 

ecosystem functioning 

As described above, functional traits are useful tools to describe the phenotypic variability of 

life and relate to the main axes of phenotypic variation (Wright et al., 2004; Díaz et al., 2016). 

In addition, functional traits are essential tools to understand the ecological processes 

shaping ecological communities (McGill et al., 2006; Pavoine & Bonsall, 2011; Götzenberger 

et al., 2012; see Figure 2a). As trait variation is important for coexistence, in this thesis I 

studied the patterns of intraspecific and intraindividual variation in response to species 

diversity (of trees and mycorrhizal fungi). Thus, my results may contribute to a better 

understanding of how trait variation changes in order to reduce competitive tree-tree 

interactions in forests. Further, the results highlight the need of going beyond in the use of 

functional traits to study ecological processes in local assemblages (both populations and 

communities). Violle et al. (2012) took an important step by suggesting a novel framework for 

including intraspecific trait variation in community ecology (Figure 2b). Thus, this new 

perspective started to consider that the filters shaping ecological communities affected not 
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only species selection but also the selection of specific phenotypes of the species. In addition, 

considering this variation within species allows to understand why certain species are able to 

coexist in ecological communities. However, as plants are the result of the repetition of the 

same structure or organ along the body plan (branches, leaves, flowers, etc.), Herrera (2024) 

suggested that individuals can be studied as a collection of phenotypes. As our results suggest 

that intraindividual variation changes with species diversity, and contribute to a growing body 

of literature studying the responses of intraindividual variation to different abiotic and biotic 

drivers (Sobral et al., 2019; March-Salas et al., 2021; Møller et al., 2022, 2024), I suggest that 

there is a need of going beyond established approaches in trait-based ecology to study of the 

assembly of plant communities (see Figure 2c). Specially in forests, where we have already 

seen that intraindividual variation can be enormous (Escribano-Rocafort et al., 2016), this 

would allow to better understand different ecological processes. Indeed, this novel 

framework would allow to study new facets of the trait space (e.g. how much variation within 

individuals is selected, how much do plants from the same or different species overlap in the 

trait space) that, especially at local scales where trees interact, could help to understand 

ecological processes such as environmental filtering or limiting similarity. However, there are 

still many limitations in order to consider intraspecific and intraindividual variation. Apart 

from the technical challenge, which could be overcome thanks to the use of new technologies 

such as spectroscopy, it is still unknown how abiotic and biotic drivers would jointly shape 

intraindividual trait variation. That is why, future research should focus on understanding the 

contributions of intraspecific and intraindividual responses in ecological communities, not 

only by experimentally manipulating the species composition in the community as in the 

experiments I used here, but also by understanding these patterns along environmental 

gradients (for example, temperature or water availability gradients). This would help to 

elucidate, for instance, if the assembly of ecological communities depends on traits that can 

vary intraindividually (e.g. leaf traits) or if, in contrast, is mediated by other traits. 
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FIGURE 2 Framework for the assembly of ecological communities considering (a) one single value per 
species (mean field approach), (b) individual level data and (c) intraindividual level data by 
representing plants as trait distributions, based on figure 2 by Violle et al. (2012). In every case, a 
regional pool of four species (represented in different colours) is filtered by external filters, i.e. 
assembly processes operating on the regional pool, and internal filters, i.e. assembly processes 
internal to the community (represented by dashed lines), giving as a result the observed community. 
In (a) the filters act on species, while in (b) and (c) these filters select for specific phenotypes. In 
addition, in (c) the selection occurs on traits, but also on the distribution of traits within an individual. 

 

So far in this section, we have seen that functional traits are the result of abiotic and biotic 

factors. Nevertheless, at the same time, functional traits drive ecosystem functioning (Díaz & 

Cabido, 2001; Violle et al., 2007). For example, trait differences between species have been 

able to explain productivity in BEF-China (Bongers et al., 2021) and have been proposed to be 

the Holy Grail to link diversity to ecosystem functioning (Díaz & Cabido, 2001). However, the 

role of functional traits as predictors of ecosystem functioning has also been often reported 

to be weak or non-existing in the context of BEF research (van der Plas et al., 2020; Chacón-

Labella et al., 2023). In this thesis I made use of biodiversity-ecosystem functioning (BEF) 

experiments to understand the patterns of trait variation to species diversity, but I did not 

study how intraspecific and intraindividual variation jointly drive different facets of ecosystem 

functioning. For instance, intraspecific trait variation has been shown to affect arthropod 
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herbivory (Bu et al., 2017) and productivity (Raffard et al., 2019), among others. Less is known 

about the role of intraindividual variation, but it has been suggested to influence plant-animal 

interactions (Herrera, 2017) or carbon fluxes (Sobral, 2023). Interestingly, Proß et al. (2023) 

demonstrated in tree diversity experiments that intraindividual leaf variation was positively 

related to tree growth (that could be related to stand productivity). That is why, I hypothesize 

that these sources of trait variation could contribute substantially to ecosystem functioning 

and help to clarify the role of functional traits in the relationship between diversity and 

ecosystem functioning. Therefore, future directions in the study of trait variation should 

attempt to link trait variation across scales to ecosystem functioning.  

Overall, my results point out the complexity of the mechanisms underpinning diversity effects 

and the role of trait variation to mediate coexistence. Tree species show plasticity in their 

phenotype in order to adapt to the species composition of the stand where they grow 

(including the tree composition of the stand and the fungal community interacting with the 

tree) at different levels of biological organization. This could present new challenges, but also 

possibilities, for the understanding of plant responses, diversity patterns and for improving 

our scaling from traits to ecosystem functioning. 
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APPENDICES 

Author contributions 

Chapter 2 

PCS-B and SH conceived the idea and designed methodology; TM collected the leaf trait data 

with assistance from PCS-B and SH; KG and OF collected the mycorrhizal diversity data; PCS-

B analysed the data with assistance from SH and HB; PCS-B led the writing of the manuscript. 

All authors contributed critically to the draft and gave final approval for publication. My 

overall contribution was 70 %. 
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