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Referat

Hazard ratios (HRs) sind das am häufigsten verwendete Effektmaß in klinischen Stu-

dien, die einen Ereigniszeit-Endpunkt analysieren. In den letzten Jahren gab es jedoch

zunehmend Kritik an der Verwendung von HRs, vor allem wegen ihrer Nicht-Kollabierbar-

keit und den Herausforderungen bei ihrer (kausalen) Interpretation. Diese Arbeit beleuch-

tet einen weiteren Aspekt und beschäftigt sich mit den Verzerrungen, die entstehen können,

wenn Kovariablen, welche sowohl die Ereigniszeit als auch die Behandlungszuweisung be-

einflussen können, nicht in der Analyse beachtet werden. Fehlspezifikationen des Cox Mo-

dells aufgrund solcher Kovariablen können sowohl in randomisierten als auch in Propensity

Score (PS) gematchten Studien zu verzerrten Behandlungsschätzungen führen. Oft bleibt

jedoch unklar, ob (und ja, welche) Kovariablen für diese Verzerrungen verantwortlich sind.

Die vorliegende Arbeit stellt einen neuen methodischen Ansatz namens Dynamic Land-

marking vor, welcher einen visuellen Hinweis auf verzerrte Effektschätzungen bietet und

hilft, Kovariablen, die diese Verzerrungen verursachen, zu identifizieren. Das Verfahren

basiert auf einer sukzessiven Löschung sortierter Beobachtungen und der wiederholten

Schätzung von Cox Modellen, bis die Anzahl der verbleibenden Ereignisse nicht mehr

ausreicht, um eine valide Schätzung zu liefern. Ergänzend wird in jedem Schritt die

Balance der beobachteten, aber unberücksichtigten Kovariablen anhand der Summe der

quadratischen z-Differenzen bewertet. Durchgeführte Simulationsstudien zeigen, dass Dy-

namic Landmarking ein effektives Werkzeug ist, um verzerrte Behandlungsschätzungen in

den beiden ausgewählten Studiendesigns zu erkennen. Während in randomisierten Stu-

dien relevante prognostische Faktoren identifiziert werden können, die einen Selektionsbias

verursachen, ermöglicht die Methode in PS gematchten Studien die klare Unterscheidung

zwischen prognostischen Faktoren und Confoundern. Darüber hinaus wurde die Methode

genutzt, um den Selektionsbias in 27 randomisierten kontrollierten Studien (RCTs) zu

untersuchen. Dabei konnten keine empirischen Hinweise auf den Selektionsbias gefunden

werden, was darauf hindeutet, dass dieser Bias in vielen Fällen von geringer praktischer

Bedeutung ist. Dies lässt sich vor allem durch kleine Behandlungseffekte und homogene

Patientenpopulationen aufgrund strenger Ein- und Ausschlusskriterien erklären. Zusam-

menfassend zeigt sich, dass Dynamic Landmarking ein geeignetes Instrument zur Prüfung

von Behandlungseffekten aus Cox Modellen ist. Es ermöglicht die Identifikation poten-

zieller Verzerrungen und ihrer Ursachen. Die empirische Analyse von RCTs legt nahe,

dass HRs durch Selektionsbias kaum beeinträchtigt werden und daher in dieser Hinsicht

als zuverlässiges Effektmaß genutzt werden können.
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Abstract

Hazard ratios (HRs) are the most common treatment effect measures in clinical trials

focusing on time-to-event outcomes. However, in recent years there has been increasing

criticism of HRs, particularly regarding their non-collapsibility or with respect to their

(causal) interpretation. This work addresses another critical aspect related to unobserved

or omitted covariates that impact the survival outcome and/or the treatment allocation

but are frequently disregarded. Misspecification of the Cox model due to such covariates

could result in heavily biased treatment estimates, affecting both randomized and propen-

sity score (PS) matched trials. However, researchers frequently lack clarity on whether

(and, if so, which) covariates might induce this bias. Therefore, this work presents a

methodological approach called Dynamic Landmarking, that provides a visual indication

of potentially biased treatment effect estimates obtained from Cox models and identifies

omitted covariates that could cause this bias. The approach is based on successive dele-

tion of sorted observations and gradually refitting Cox models until no sufficient number

of events is contained in the data. In addition, the balance of observed, but omitted co-

variates is assessed using the sum of squared z-differences. Using simulation studies, it

was demonstrated that Dynamic Landmarking indeed serves as an effective visual tool

for detecting biased treatment estimates in both study designs. In randomized settings,

relevant omitted prognostic factors have been identified that cause so-called built-in se-

lection bias. Regarding PS matched trials, Dynamic Landmarking successfully identified

relevant omitted prognostic factors and confounders, making a clear distinction between

them. Furthermore, the method was used to assess the built-in selection bias in individual

patient data from 27 large randomized controlled trials (RCTs). No empirical evidence of

this bias has been found in these studies, which leads to the conclusion that this type of

bias is of limited practical relevance in the majority of cases. This is mainly due to small

treatment effects and homogeneous patient populations resulting from strict inclusion and

exclusion criteria. In summary, Dynamic Landmarking can be used to verify if estimated

treatment effects obtained from a Cox model are biased and whether measured but omit-

ted covariates cause this bias. The empirical investigation of RCTs suggests that HRs are

not materially affected by the built-in selection bias and can therefore be safely used, at

least concerning this aspect.
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1 Introduction and objectives

1.1 Statistical setting

1.1.1 Covariate distribution in randomized and propensity score matched

trials

Randomized controlled trials (RCTs) are considered the gold standard for evaluating re-

search data and efficiently translating results into clinical practice. As highlighted in the

CONSORT statement, they serve as the foundation of evidence-based medicine, provid-

ing the highest level of evidence1. The primary strength of this study design lies in its

high internal validity resulting from the randomization process, which ensures an equal

distribution of both observed and unobserved covariates2–4. In this sense, the treatment

groups analyzed are often referred to as “exchangeable”, defining a condition in which the

treatment groups have comparable risks of an outcome, allowing for valid causal inferences

in the counterfactual framework. This especially implies the possibility of estimating an

average causal treatment effect in RCTs5–7.

However, ethical and practical constraints increasingly require the use of non-randomized

trials to estimate treatment effects. These face the challenge that treatment allocation

may depend on (un-)observed covariates, leading to systematic differences in baseline

characteristics between groups8. Disregarding such differences would lead to heavily bi-

ased treatment effect estimates9. A prominent way to deal with this covariate imbalance is

through propensity score (PS) methods. Rosenbaum and Rubin introduced the PS in 1983

as a balancing score10. It describes the probability pi for an individual i (i = 1, ..., N) to

receive a treatment Zi conditional on a set of observed covariates Xi: pi = P (Zi = 1|Xi).

In the context of RCTs, the true PS equals 0.5, as all individuals have an equal chance of

receiving treatment by design11. In contrast, individuals in a non-randomized trial gener-

ally have varying PS values, which are typically estimated using logistic regression. One

important advantage of the PS lies in its ability to summarize all relevant confounding

factors into a single numerical value. This not only simplifies the analysis, but also reduces

the risk of overfitting in non-randomized trials12. Overall, four different PS methods are

widely used in the literature: matching, stratification, adjustment and inverse probability

of treatment weighting13–15. Under the assumptions of positivity, consistency and uncon-

foundedness, all of the PS methods mentioned provide an unbiased causal treatment effect

estimate if all other assumptions of the model used for data analysis hold. Currently,

propensity score matching (PSM) is especially popular for analyzing medical data, as ev-
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idenced by two systematic reviews covering several medical fields16,17. PSM entails to

create a sample of individuals who share a similar value of the PS. This process leads to,

on average, well-balanced treatment groups, indicating that given the true PS, individuals

who received treatment, and those who did not, have a similar distribution of observed

baseline covariates. Therefore, the resulting sample after PSM can mimic that of an RCT,

especially in terms of exchangeability18–21. Consequently, direct comparisons of outcomes

between individuals in the treatment groups can be made, and treatment effects can be

assessed using metrics identical to those in RCTs.

In recent years, several balance diagnostics have been introduced to examine the compa-

rability of treatment groups according to PSM. One of the most prominent methods is the

use of standardized differences22, which can be calculated for both continuous and binary

covariates by

dcon =
x1 − x2√

s21+s22
2

(1)

dbin =
p̂1 − p̂2√

p̂1(1−p̂1)+p̂2(1−p̂2)
2

(2)

with xi, s
2
i and p̂i being the estimated means, variances and proportions of the treatment

group i (i = 1, 2). The balance measures (1) and (2) compare differences in units of the

pooled standard deviation14. However, Kuss (2013) mentioned some crucial disadvantages

of the standardized difference, including the dependency on sample size in its distribution

and the non-comparability on different scales23. More precisely, the large sample distribu-

tion of the standardized differences converges to a normal distribution with an expected

value of zero and variance n1+n2
n1·n2

, assuming that the true standardized difference equals

zero and that the treatment groups are independent22. To address these limitations, the

z-differences as alternative balance measure were introduced. For continuous and binary

covariates they are defined as

zcon =
x1 − x2√
s21
n1

+
s22
n2

(3)

zbin =
p̂1 − p̂2√

p̂1(1−p̂1)
n1

+ p̂2(1−p̂2)
n2

(4)

where xi, s
2
i , ni and p̂i denote estimated means, variances, sample sizes, and proportions in

the treatment group i (i = 1, 2). Additionally, a z-difference for ordinal covariates zord was

also proposed by Kuss (2013) and in case of nominal covariates it is suggested to calculate
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each binary z-difference for all nominal categories23. The z-differences are asymptotically

N(0, 1)-distributed in RCTs and follow a N
(
0, 12

)
-distribution in a perfectly PS matched

trial11. While the z-difference can be used for describing covariate-specific balance, it is

also possible to construct a global measure for overall-balance of the entire set of covariates

by the sum of squared z-differences (SSQzDiff ). Assuming n continuous, m binary and p

nominal covariates, the SSQzDiff is calculated as

SSQzDiff =
n∑

i=1

z2i,con +
m∑
j=1

z2j,bin +

p∑
k=1

z2k,ord. (5)

In RCTs the SSQzDiff follows an approximate X 2
m+n+p-distribution with an expected

value of m+n+p under the assumptions of no baseline differences, independent treatment

groups and independence of all covariates. In contrast, the expected value of SSQzDiff

equals m+n+p
2 under the same assumptions in a perfectly PS matched trial. Hence, the

distribution of SSQzDiff will in general not depend on the sample size. As an aggregate

measure it provides information on the overall balance of the covariates, making it suitable

as an indicator for determining the success of randomization and PSM24.

1.1.2 Hazards and Hazard Ratios

When analyzing a time-to-event outcome in clinical trials, the Cox model25,26 is commonly

used because it allows dealing with censored observations and provides the hazard ratio

(HR) as a single-number summary of the treatment effect. The Cox model specifies the

hazard of a time-to-event T as

λ(t|X) = lim
∆t→0

P (t < T ≤ t+∆t|T > t,X)

∆t
= λ0(t) · exp(βTX) (6)

where λ0(t) describes an unspecified baseline hazard function that is assumed to be com-

mon for all individuals i (i = 1, ..., N), X is a p × 1 vector of observed covariates with a

corresponding p×1 vector of regression coefficients β. Importantly, the risk set at time t is

composed of individuals that have not yet experienced the event of interest and have not

yet been removed for other reasons, such as censoring. Suppose that model (6) holds for

a covariate vector X = (Xtrt,W)T , where Xtrt is a binary treatment variable and W rep-

resents additional covariates, with corresponding regression coefficients β = (βtrt, βW )T .

Within this framework, the true model is given by

λ(t|X) = λ0(t) · exp(βtrtXtrt + βT
WW). (7)

3



The hazard λ(t|X) defined in model (7) is referred to as conditional hazard with βtrt

summarizing the conditional effect of the treatment Xtrt, providing a subject-specific

interpretation, i.e., what treatment effect can be expected when moving an individual

from one group to the other27. However, if W is either unobserved or omitted from the

model the resulting marginal hazard would be

λ(t|Xtrt) = λ0(t) · exp(βtrtXtrt). (8)

The estimated marginal treatment effect βtrt from model (8) lacks of an individual inter-

pretation, but represents a population-average effect, moving a whole population from one

group to the other28–30. Put differently, λ(t|Xtrt) corresponds to a weighted average of the

individual hazards for those in the risk set at time t, where the weights are determined

by the distribution of W within this risk set. In clinical trials, its common to present and

interpret the treatment effect as a HR that is directly derived from model (6). Assume

therefore again X = (Xtrt,W)T , then

lim∆t→0 P (t < T ≤ ∆t|T > t,Xtrt = 1,W = w)

lim∆t→0 P (t < T ≤ ∆t|T > t,Xtrt = 0,W = w)
=

λ0(t) · exp(βtrt · 1 + βT
Ww)

λ0(t) · exp(βtrt · 0 + βT
Ww)

=
λ0(t) · exp(βtrt · 1) · exp(βT

Ww)

λ0(t) · exp(βtrt · 0) · exp(βT
Ww)

= exp(βtrt)

(9)

yields a single-number summary for the treatment effect, assuming the covariates W to

be equal and time-invariant between the compared individuals. However, exp(βtrt) from

(9) is deceptive for several reasons, which are explained in detail in the following.

1.2 Challenges in estimating Hazard Ratios

Several challenges arise when presenting a HR as main result of a clinical trial. Firstly,

HRs are often misinterpreted as relative risk. Sutradhar and Austin (2018), have empha-

sized that the magnitude of the HR cannot be interpreted as the magnitude of the relative

risk. Yet, it can still suggest the direction of the estimated effect31. As a consequence,

wrongly interpreted HRs provide misleading context in the field of survival analysis and

should therefore be avoided by researchers32. A second important issue arises due to non-

collapsibility of HRs, indicating that the magnitude of the effect measure is changing when

conditioning on a covariate that is associated with the time-to-event28. Bian et al. (2024)

describe the non-collapsibility as a property of a coefficient in a statistical model, stating:

“When focusing on the coefficient of the treatment and collapsing over covariate(s), the
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conditional effect does not equal the marginal effect even in the absence of confounding

and effect modification”33. Consequently, marginal and conditional HR will not provide

the same estimate for a treatment effect34–36. This further implies that different studies

investigating the same time-to-event and treatment but adjust for different covariates will

generally yield diverse estimates for the HR of treatment, even if the theoretical causal

effect will be identical36,37. Moreover, the Cox model relies on certain strong assumptions,

which are often to restrictive for the data. For example, it assumes proportional hazards,

however, there are some scenarios where this assumption does not seem reasonable, such as

early, delayed, diminishing, cure or crossing effects38. In addition, even when the propor-

tional hazards assumption is satisfied, the model must be correctly specified, meaning that

all relevant covariates influencing treatment allocation and/or survival outcomes must be

considered39. This implicitly goes along with the assumption of homogeneity concerning

unobserved or omitted covariates, suggesting that all included individuals are essentially

identical regarding all covariates which are not considered in the model. In other words,

every individual is assumed to have the same baseline risk of experiencing an event with

regard to unobserved or omitted covariates40. Only if this holds for the fitted Cox model,

the conditional treatment effect will be estimated consistently29,41. Please note, in present

work the term “omitted covariate” will from now on refer to a covariate that was measured

during the trial but disregarded from data analysis.

1.2.1 Omitted covariates in randomized controlled trials

In RCTs the HR is typically reported without any adjustments, because authors argue

that randomization ensures, on average, an identical distribution for all observed and

unobserved covariates. However, as highlighted by Hernán (2010) and others, treatment

effect estimates may be biased without adjustments due to built-in selection bias (also

referred to as “the depletion of the susceptible” or “survival of the fittest”)29,42–44. As-

sume again X = (Xtrt,W)T as previously described in Section 1.1.2. Since patients were

randomized with respect to Xtrt, W represents a set of covariates that are unrelated to

treatment allocation but may serve as prognostic factors influencing patients’ survival

time. Researchers are usually interested in the individual-specific treatment effect, which

can be obtained by the conditional Cox model (7). Under the proportional hazards as-

sumption, this model would be correctly specified, providing a conditional HR estimated

by exp(βtrt). However, if any part of W is disregarded, one would employ only a marginal

Cox model (marginal with respect to the omitted covariate), which will in general differ

from the conditional one as the Cox model is non-collapsible28,45. As a direct consequence
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of omitting any covariate of W, “unobserved” heterogeneity will be induced, implying that

the patients differ in their baseline risk concerning this omitted prognostic factor43,44. The

effect is typically mentioned in frailty theory27,46–49. More precisely, without loss of gen-

erality (w.l.o.g.) let higher values of W signify higher baseline risk of getting an event of

interest (indicating more frail or high-risk individuals). Then high-risk individuals tend

to experience the event of interest earlier than low-risk individuals. In addition, having

an effective treatment, which reduces, e.g. the risk of dying, will decrease the prevalence

of high-risk individuals faster in the untreated group (e.g., placebo) than in the treated

group, leading to a systematic selection process that results in non-exchangeable groups

after randomization (see Figure 1).

• • • •
•

• • •
•

• • · · ·

• • • • • • • •
•

• • • · · ·Treatment

Placebo

Baseline 1 year follow-up 2 year follow-up

Baseline Risk

Low High

Figure 1. Built-in selection bias in RCTs due to an omitted prognostic factor. Patients with
higher baseline risk regarding the omitted covariate tend to experience the event of
interest earlier, leading to a systematic selection process during follow-up time. Con-
sequently, patients from treatment and placebo group are non-exchangeable after ran-
domization. Figure is based on Stensrud et al. (2019)43.

Therefore, conditioning the hazard on having survived up to a specific time t will in general

lead to a systematically different distribution of the omitted covariate in the treatment

groups during follow-up39,42. This effect can also be derived from equation (9), showing

that exp(βtrt) contrasts the hazard functions with and without intervention for two sep-

arate groups of individuals: those who survive time t > 0 with treatment (Xtrt = 1) and

those who survive time t > 0 without treatment (Xtrt = 0). These groups will in general

fail to be comparable if unobserved heterogeneity is induced by omitted or unobserved

covariates. In conclusion, the HR is obtained from groups that systematically differ in

omitted characteristics, making them non-comparable. As a result, the HR cannot be

interpreted in a causal manner because the counterfactual framework is disrupted by the
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inherent selection bias28,29,50. It was pointed out by Stensrud et al. (2019), that if omit-

ted covariates are assumed to be multiplicative on the hazard scale, the built-in selection

bias will increase with the magnitude of the treatment effect, the heterogeneity in risk at

baseline and the length of follow-up43. Additionally, higher (right) censoring rates have

been shown to result in less biased treatment effect estimates51.

1.2.2 Omitted covariates in propensity score matched trials

When interpreting treatment effects from PS matched trials, two important assumptions

regarding model specification have to be made. Both, the PS model and the Cox model

have to be correctly specified. Model misspecification in both cases lead to worries about

wrong causal statements52,53. For the PS model (usually logistic regression), all relevant

confounders have to be considered and correctly included. Drake (1993) found that omit-

ting counfounders would lead to substantially biased treatment effect estimates, as there

will be residual confounding bias54. This was also confirmed by Dehejia and Wahba (1999),

who additionally found, that the causal estimates were not sensitive to the specification

of the functional form of the PS, once all important covariates had been included55. The

main issue when omitting a confounder from the PS model arises because the treatment

groups are not comparable after PSM due to residual counfounding bias. This implies

that the treatment groups differ on certain baseline characteristics and are therefore not

exchangeable. Hence, the estimated HR does not yield a causal interpretation. However,

even if the PS model is correctly specified and no unobserved or omitted confounders are

present, there may be prognostic factors that, while not affecting treatment allocation,

could influence patients’ survival outcome. The PS model does not consider such covari-

ates, and neglecting them could introduce built-in selection bias (see Section 1.2.1). As well

as in RCTs, prognostic factors would be equally distributed between the treatment groups

after PSM as they are assumed to be independent of the treatment allocation. However,

if the treatment is effective and the prognostic factor influences the survival outcome, the

consequence would be a systematic elimination of individuals during follow-up, resulting

in the built-in selection bias51,56. Hence, only after PSM the treatment groups would be

exchangeable and estimating a marginal Cox model in a PS matched trial would therefore

not yield a treatment effect estimate with individual-specific interpretation56. Overall,

the main idea of PSM (and randomization respectively) is to ensure that patients in the

treatment groups do not differ in any characteristic except for their treatment allocation.

Additionally, the analyzed population is often assumed to be homogeneous with respect

to omitted covariates, meaning that patients do not differ in their individual baseline risk

7



of getting an event of interest regarding unobserved or omitted covariates (see Figure 2A).

However, two issues could arise when a covariate is omitted from data analysis. On the one

hand, omitting a true confounder from the PS model, would lead to residual confounding

bias, resulting in treatment groups that differ in one (or even more) baseline characteristics

even after PSM. Treatment groups are then non-comparable at baseline as w.l.o.g patients

with higher baseline risk regarding the omitted covariate are more likely to be allocated

into the treatment group (see Figure 2B). On the other hand, omitting a prognostic factor

from the Cox model would result in the previously described built-in selection bias, i.e.

the treatment groups are comparable after PSM, however patients differ in their individual

baseline risk regarding the covariate leading to systematic selection during the follow-up

period (see Figure 2C and Figure 1).

A.

independent omitted covariate

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
Treatment Placebo

B.

omitted confounder

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
Treatment Placebo

C.

omitted prognostic factor

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
Treatment Placebo

Baseline Risk

Low High

Figure 2. Distribution of an omitted covariate after PSM. A. Independent omitted covariate
that does neither influence the time-to-event nor the treatment allocation. Groups
are exchangeable and patients do not differ in their baseline risk of getting an event.
B. Independent omitted confounder influencing both, treatment allocation and time-
to-event. Groups are non-exchangeable after PSM as, w.l.o.g., patients with higher
baseline risk are more likely to receive treatment. C. Independent omitted prognostic
factor only influencing patients time-to-event. Groups are exchangeable after PSM,
but patients differ in their baseline risk of getting an event of interest.
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In both RCTs and PS matched trials, usually a marginal Cox model (that is, model

(8) described in Section 1.1.2) is fitted with treatment as the only variable. Although

one has to specify two models in the non-randomized setting, this also comes with one

main advantage. In case the omitted covariate is correlated with one or more considered

confounders from the PS model, residual confounding and/or built-in selection can be

minimized56–58. Rubin and Thomas (1996) stated that “excluding potentially relevant

variables should be done only [...] when the excluded variables are highly correlated

with variables already in the propensity score model”59. Indeed, recent work found that

replacing a highly correlated covariate instead of the true confounder in the PS model

would result in a relative bias less than 5%57. Due to the correlation, the omitted covariate

will indirectly be considered by the PS model and will consequently be matched by design.
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1.3 Research question

HRs have been criticized during recent years and this criticism is underlined by many

theoretical contributions. One major point involves the omission of covariates that are

disregarded during data analysis. In RCTs such covariates are referred to as prognostic

factors, which induce the built-in selection bias. In PS-matched trials the bias due to

omitted covariates has two potential sources. On the one hand, omitted confounders are

an issue, when covariates determine the treatment allocation and the survival outcome.

Then misspecification of the PS-model might be a result. On the other hand, omitted

prognostic factors in non-randomized studies can also introduce the built-in selection bias

if the Cox model is misspecified. However, researchers often do not know whether and,

if so, which covariates might cause the bias. This is mainly because the HR, as a single-

number summary, provides no indication of whether bias is present or not. Therefore, the

work aims to

1. present a methodological framework, Dynamic Landmarking, designed for RCTs and

PS-matched trials, which visualises whether an estimated HR is subject to built-in

selection or confounding bias and identifies omitted covariates causing it.

2. conduct an empirical investigation of individual patient data from 27 large RCTs,

to assess the magnitude and clinical relevance of the built-in selection bias.
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2 Discussion

2.1 Dynamic Landmarking and its application

Dynamic Landmarking is a methodological approach that provides a visual tool for iden-

tifying whether treatment effect estimates in RCTs and PS matched trials are subject to

built-in selection or confounding bias. Additionally, omitted covariates which are measured

during the trial but omitted from data analysis are investigated whether they induce these

biases. The main idea of Dynamic Landmarking is based on the Landmarking approach

of Van Houwelingen60–62. In a first step, the balanced data (either by randomization or

PSM) is sorted by observation time and a univariable Cox model with treatment as the

only variable is fitted to the full data set. Afterwards, the earliest M (M > 0) observa-

tions are deleted regardless of the event status (censored or time-to-event) and a new Cox

model is fitted to the smaller data set. This procedure of deleting earliest observations

and refitting Cox models is continued until the data set no longer contains a sufficient

number of observations for convergence. In parallel, the SSQzDiff measures the balance

of observed but omitted covariates in each step.

timeTreatment • • • • •

timePlacebo • • • • • • • • •

deleted after

1st step

deleted after

2nd step

deleted after

3rd step

1st step
Cox model + SSQzDiff

2nd step
Cox model + SSQzDiff

3rd step
Cox model + SSQzDiff

PlatzPlatz

Platz

Baseline Risk

Low High

Figure 3. Dynamic Landmarking procedure for the omission of an independent prognostic factor,
which causes built-in selection bias. Approach is based on successive deletion of M
sorted observations (in Figure M = 4 is assumed in each step) and refitting Cox models
for the smaller data set.

Assume again, w.l.o.g., that higher values of the omitted covariates indicate higher base-

line risk. It then seems reasonable that high-risk individuals would generally have shorter

observation times than low-risk patients, as they tend to experience the event earlier.
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Consequently, individuals with higher risk will appear first in the list of observation times

sorted in ascending order and are resultantly deleted at first during Dynamic Landmark-

ing63,64. A graphical illustration of the procedure is given in Figure 3. By collecting

the estimated treatment effects as log(HR) and the SSQzDiff after each deletion step,

two trajectories as functions of remaining observations are obtained (see Figure 4 for an

exemplary illustration of the graphical output from Dynamic Landmarking and Publica-

tions for detailed explanations). Within different simulation scenarios, it was shown that

Dynamic Landmarking is able to visualize treatment effect estimates underlying either

built-in selection or confounding bias resulting from omitted covariates in both study de-

signs. Precisely, a systematic shift in the treatment effect trajectory can be seen, resulting

from the non-random successive deletion of individuals. The simulation study confirmed

previous findings, demonstrating that larger treatment effects and greater influence of

omitted covariates on patients’ survival and/or treatment allocation result in stronger

bias41,43. Additionally, it was also validated that an omission of a covariate, which is

correlated with one included in the PS model, would lead to less biased treatment effect

estimates - at least if the correlation is assumed to be strong51. Furthermore, the method

distinguishes between omitted prognostic factors and omitted confounders. While omit-

ted prognostic factors are balanced in the initial estimation procedure (in both RCTs and

PS-matched trials), omitted confounders exhibit significant imbalance even before the first

deletion step, as they are associated with treatment allocation. Hence, the initial value of

SSQzDiff will give a first hint on the causal direction of the omitted covariate. Through

this differentiation based on the balance, it is not only possible to identify HRs subjected

to bias, but also potential variables causing it. Depending on whether it is a prognostic

factor or a confounder, the statistical analysis must be adjusted (see Figure 5 for recom-

mendations). In addition, if the trajectory of the treatment effect indicates the presence

of bias, but the omitted covariates did not cause it, other statistical models should be

considered (see Section 2.3).

2.2 Evidence of built-in selection bias in randomized controlled trials

Dynamic Landmarking was used to assess the built-in selection bias in a large sample

of RCTs. Concretely, publicly available individual data sets from 32 RCTs, which were

already used for methodological investigation by Kent et al. (2016)65, were considered.

Each trial had a time-to-event outcome; however, to avoid problems with competing risks,

the empirical investigation was restricted to all-cause mortality, which reduced the as-

sessed sample of trials to 27 RCTs, each with more than 1,000 individual observations.
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The RCTs were originally conducted between 1980 and 2010. Most trials (74.1%) were

carried out in the field of cardiovascular research, including the evaluation of interventions

for atrial fibrillation66, acute myocardial infarct67–69, acute stroke70, heart failure71,72 or

hypertension73. Moreover, the sample also included some other conditions, such as pre-

diabetes74,75, chronic hepatitis C76 or acute kidney failure77,78. Dynamic Landmarking

was applied to each RCT while considering a marginal Cox model, which only includes

treatment as variable. Age and sex were used as baseline covariates to measure balance by

SSQzDiff , as these are the only two prognostic factors that were equally collected in all

RCTs. Furthermore, age and sex can reasonably be assumed to be independent which is

a main assumption for the distribution of SSQzDiff (that is X 2
2 for two covariates in each

RCT). Additionally, both age and sex showed a small to medium effect in a univariable Cox

model in each trial, leading to the conclusion that both covariates are prognostic factors

influencing the survival outcome and may therefore induce heterogeneity. An exemplary

illustration of Dynamic Landmarking obtained from the Action to Control Cardiovascular

Risk in Diabetes (ACCORD) blood pressure (BP) trial74 is shown in Figure 4.

Figure 4. Graphical illustration of Dynamic Landmarking in the ACCORD BP trial (M = 10).
Trajectories of treatment effect estimates (solid red line) and SSQzDiff (solid blue
line) as function of remaining observations are shown. Dashed lines symbolize no
treatment effect (red), i.e. log(HR) = 0, and balanced prognostic factors (blue), i.e.
SSQzDiff = 2. The Cox model only includes treatment as variable and balance was
measured using two omitted covariates, namely age and sex.

This RCT aimed to investigate whether therapy targeting normal systolic pressure (i.e.,

below 120 mm Hg) reduces major cardiovascular events in participants with type 2 dia-

betes at high risk for cardiovascular event. Overall survival was examined as secondary
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endpoint74. The study consists of 4,733 patients with M = 10 individuals being deleted at

each step of Dynamic Landmarking. During the deletion process, no systematically chang-

ing treatment effect trajectory was found and only random fluctuations were observed.

In addition, the omitted prognostic factors stayed balanced as indicated by SSQzDiff .

Hence, following the interpretation scheme (see Figure 5), there is no indication that the

estimated hazard ratio is subject to built-in selection bias.

Overall, no empirical evidence of the built-in selection bias was found in the 27 RCTs

investigated, including the ACCORD BP study presented in Figure 4. The absence can

be explained in a simple way: the built-in selection bias would only be notable, if both,

large treatment effects and large heterogeneity (i.e., omitted covariates have high impact

on survival outcome) are present in the data27,43,79. However, very large treatment effects

are uncommon in RCTs because equipoise is expected when conducting an RCT. This is

according to a large review by Djulbegovic et al. (2012), which compared new, experimen-

tal treatments with established ones from 743 RCTs to determine the extent to which the

newer treatments were more effective. The authors showed, that treatment effects are in

general symmetrically distributed, resulting in unpredictability of new treatment effects.

Precisely, only slightly more than one half of new treatments performed better than the

established treatments. Importantly, the time at which the study was conducted did not

affect these results, allowing the conclusion to apply to the studies examined in the this

work80. In addition, the simulation study that was performed showed that there will be a

notable systematic shift in the trajectory of the treatment effect if the true hazard ratio

would be 2 or greater.63 However, the equipoise of treatment effects leads to the fact,

that treatment effects with a magnitude of log(HR) = 1 are only seen in about 3% and

a magnitude of log(HR) larger than 1.5 essentially never occurs80. Even in the case the

treatment effect would be large enough, there still has to be large heterogeneity present in

the data. However, the study population is generally well selected due to strong exclusion

and inclusion criteria and heterogeneity between patients is thus minimized in RCTs. In-

deed, a systematic review comparing 305 trials of treatment for physical condition found,

that more than one half of the studies excluded 75% or more patients due to exclusion

criteria81. This is accompanied by an additional analysis that estimates the variance in

frailty using a univariable gamma frailty model of the 27 RCTs and finds that this variance

is usually close to zero, reflecting a negligible amount of unobserved heterogeneity between

patients in the data63. Furthermore, as mentioned above, the prognostic factors age and

sex showed only a small to moderate effect on the time-to-event, which also indicates

low heterogeneity. A third reason for the absence of the built-in selection bias might be
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the remarkably high censoring rates of the analyzed RCTs. Almost three quarters of the

investigated trials showed an event rate less than 20%. Assuming independent censoring

during the follow-up, less biased treatment effect estimates would be expected, as censored

patients will have no major impact on the built-in selection bias51. Overall, low treatment

effects, low heterogeneity and high censoring rates in the RCTs result in the conclusion

of no empirical evidence of the built-in selection bias in RCTs. Thus, HRs are not as

hazardous as announced in literature, at least with respect to this issue. The warnings

about the built-in selection bias in RCTs are mainly of theoretical nature and have only

little practical relevance in most cases.

2.3 Methods to address biased treatment effect estimates

Dynamic Landmarking provides a visual tool for identifying whether treatment effect esti-

mates from time-to-event analyses in RCTs and PS matched trials are subject to built-in

selection or confounding bias. In addition, the methodological approach could identify

omitted covariates inducing these kinds of biases.

Systematically
changing treatment
effect trajectory?

Systematically
changing SSQzDiff

trajectory?

Treatment effect
estimate is not sub-
ject to confounding
or selection bias

Initial SSQzDiff

high or low?

Bias is not in-
duced by omit-
ted covariates

Omitted
prognostic factors

Omitted con-
founders

Adjust for omitted
prognostic factors
in Cox model

Refit PS model with
omitted confounders

Fit another model
for data analysis

No need for any
modifications

Yes

No

Yes

No

lowhig
h

Figure 5. Interpretation and recommendation for Dynamic Landmarking results. Red box is
related to treatment effect trajectories, blue boxes are related to SSQzDiff -trajectories.
Grey boxes give possible interpretations for course of trajectories and green boxes
provide recommendations for further data analysis.
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Although Dynamic Landmarking identifies the problem, it will not correct for it. There-

fore, the user has to decide how to deal with potentially biased treatment estimates in

such cases. Importantly, one should consider different correcting methods while taking

into account clinical expertise. Overall, the interpretation and recommendation scheme

given in Figure 5 provides an inside in how to deal with the graphical output of Dynamic

Landmarking. In the following, a small selection of correcting methods that might address

the case of systematically changing treatment effect trajectories are is presented.

2.3.1 Dynamic Landmarking identified omitted covariates

In case Dynamic Landmarking identifies omitted covariates that induce built-in selection

or residual confounding bias, then addressing this issue becomes quite straightforward.

Omitting a prognostic factor (i.e., systematically changing treatment effect trajectory

and low initial SSQzDiff -value that increase during the deletion process) can be handled

by simply adjusting the Cox model for the omitted covariate82. This approach can be

applied to both, RCTs and PS matched trials. In PS matched trials residual confounding

bias becomes an issue when omitting a confounder from the PS model. In that case,

Dynamic Landmarking shows high initial SSQzDiff -values and two possible corrections

can be considered. First, adjusting the Cox model for the counfounder might be an option.

A second possibility would be to re-estimate the PS model while considering previously

omitted confounders. Stürmer et al. (2005) found in a systematic review that “there is

little evidence that these methods yield substantially different estimates compared with

conventional multivariable methods”83. This was also confirmed by Elze et al. (2017) who

stated: “PS methods are not necessarily superior to conventional covariate adjustment,

and care should be taken to select the most suitable method”12. Hence, both approaches

are suitable for addressing residual confounding bias caused by omitted covariates84–87.

2.3.2 Dynamic Landmarking did not identify omitted covariates

In case Dynamic Landmarking provides a systematically changing treatment effect trajec-

tory but no systematically changing SSQzDiff can be observed, then omitted covariates

do not cause built-in selection or confounding bias and other statistical models for data

analysis must be considered. The reasons for such a behavior of Dynamic Landmarking

can be numerous. It is possible that the true treatment effect is actually time-dependent,

or that unobserved covariates could cause true unobserved heterogeneity, resulting in un-

measurable built-in selection bias. Furthermore, the PS model could be wrongly specified

or the multiplicative assumption of the Cox model is too restrictive for the analyzed data.
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There are several methods in the literature to address each of these issues, however, the

main challenge is to decide for the correct one depending on the clinical setting. Assume,

e.g., a violation of the proportional hazards assumption, which might be observed in case

of a delayed treatment effect or if a cure effect arises88–90. Then, a more flexible Cox model

with time-varying effects or covariates would be an option for modeling the treatment ef-

fect91–93. Suppose therefore again a covariate vector X = (Xtrt,W)T with corresponding

regression coefficients β = (βtrt, βW )T as previously described in Section 1.1.2. A general

time-dependent treatment effect can be modeled within a Cox model as

λ(t|X) = λ0(t) · exp(g(βtrt, t) ·Xtrt + βT
W ·W) (10)

with βtrt the regression coefficient of the treatment Xtrt, g(βtrt, t) being a specific function

of time t that must be specified by the investigator and W representing a set of other

(time-invariant) covariates with corresponding regression coefficients βT
W . If g(βtrt, t) is a

simple function, it can be written as g(βtrt, t) = βtrt ·g(t) and model (10) can be rewritten

by

λ(t|X) = λ0(t) · exp(βtrt ·Xtrt(t) + βT
W ·W) (11)

with Xtrt(t) = g(t) ·Xtrt. This property shows that a time-varying treatment effect can

be modeled using a time-varying covariate Xtrt(t)
91. Time-dependent effects provide a

flexible method for assessing non-proportionality. However, this approach should be used

with caution. Indeed, if the selected time function is misspecified, the final model will not

be appropriate, leading to biased treatment effect estimates92,93.

Moreover, true unobserved prognostic factors (often referred to as “frailty”), resulting in

unmeasurable heterogeneity, might be an issue. Here, the proportional hazard assumption

holds conditional on the frailty variable, which is usually modeled as random variable Z,

acting in a multiplicative way on the individual hazard27,46,47. More precisely, consider

the above notation and assume W was not measured during the trial. Then the random

variable Z = exp(βT
WW) can be defined and equation (7) can be rewritten as follows

λ(t|Xtrt, Z) = Z · λ0(t) · exp(βtrt ·Xtrt). (12)

Unfortunately, proportional hazards frailty models (12) and non-proportional hazards can-

not be distinguished in a univariate setting of survival data, making the decision on the

right model even more complicated94.

Another opportunity for addressing systematically changing treatment effect trajectories
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detected by Dynamic Landmarking would be to choose a statistical model other than the

Cox model, such as accelerate failure time (AFT) models95 or additive hazard models96.

Both models differ from the Cox model in the assumption of how the effects of the in-

dividual covariates act in the model. While the AFT model assumes that these have a

multiplicative (proportional) effect with respect to the survival time, the additive hazards

model assumes an additive effect on the hazards. A general AFT model can be described

in terms of the survival function by

S(t|X) = S0(exp(−(βtrt ·Xtrt + βT
W ·W)) · t) (13)

where S0 represents the baseline survival function and exp(−(βtrt · Xtrt + βT
W · W)) is

known as acceleration factor depending on a treatment Xtrt and a set of covariates W.

Model (13) assumes that the effects are multiplicative by the accelerated factor on the time

scale of t, making the interpretation of the estimated treatment effect more intuitive97. In

contrast the additive hazards model by Aalen (1989) can be written as

λ(t|X) = λ0(t) + βtrt(t) ·Xtrt + βT
W (t) ·W (14)

where the notation corresponds to the previously described models. Because regression

functions may vary with time, their analysis may reveal changes in the influence of the

covariates over time, which is one of the main advantages of model (14)98. Furthermore,

there are several approaches in case (independent) unmeasured confounders are assumed.

The literature provides a large sample of sensitivity approaches99–103 or suggests to use

instrumental variable approaches104,105 for addressing unmeasured confounders. In case

the PS model is not correctly specified, due to interaction or a time-dependent structure of

the considered covariates, more flexible PS approaches like time-depending PS models51,

PS Calibration83 or large-scale PS106 should be considered. No matter which correction is

chosen, the new model should be confirmed regarding clinical and statistical plausibility.

Hence, in cases where the original Cox model has been modified, Dynamic Landmarking

could help to check whether the modified Cox model still provides treatment effect esti-

mates that are subject to a specific source of bias. In summary, there is a wide selection of

methods for estimating HRs. Dynamic Landmarking as a visual tool assesses whether the

use of a Cox model is appropriate in the specific situation and, if necessary, can help to

identify omitted covariates that still need to be taken into account. However, it does not

provide a specific solution, if systematically changing trajectories are found. The model

adaptation is thus left to the user.
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2.4 Strengths and Limitations

The present work contributes methodological and empirical insights into the field of sur-

vival analysis by introducing an innovative method designed to examine HRs calculated

from a Cox model for potential biases. This approach stands out as a valuable tool for

researchers engaged in clinical trials, offering a systematic technique to identify and under-

stand sources of bias in treatment effects. One of the notable strengths lies in the method’s

ability to identify omitted covariates that might induce built-in selection or confounding

bias into the estimated treatment effects. Omitted covariates represent a common concern

in both RCTs and PS matched trials, as typically more covariates are measured than used

in the final analysis. Dynamic Landmarking helps in identifying covariates that should

be considered for the PS model or for adjustment in the Cox model. Moreover, even

in scenarios where no omitted covariates induce bias, the method remains relevant by

still visualizing treatment effect estimates underlying any different bias. This flexibility

empowers researchers to adapt their survival models, considering factors such as non-

proportional hazards or true unobserved heterogeneity as potential sources of bias. An

additional, noteworthy aspect of the research is the empirical investigation of the clinical

relevance of built-in selection bias in a large sample of RCTs. Since Dynamic Landmark-

ing could hardly provide visual indications of such bias, it was concluded that this issue

is not practically relevant, and RCTs are not substantially distorted by built-in selection

bias. Thus, this work also provides one of the first empirical insights into this, so far,

predominantly theoretical topic, highlighting a main strength.

Some limitations also have to be mentioned. Firstly, Dynamic Landmarking, while suf-

ficient in visually indicating built-in selection and confounding bias, lacks in providing a

specific solution if necessary. The responsibility for correcting the statistical model is thus

shifted to users, who have to decide on the appropriate adaptations to address potentially

biased treatment effect estimates. Secondly, the simulation studies were conducted un-

der assumptions of proportional hazards and non-informative censoring, which introduces

a potential limitation. In real-world scenarios, where these assumptions may not hold,

the results may deviate, raising questions about the generalizability of the findings. Fur-

thermore, the empirical investigation, although extensive, is predominantly derived from

studies in cardiovascular research, offering valuable insights into a particular domain. Yet,

the applicability of the findings to other fields might be restricted. Additionally, the fo-

cus on the balance measurements involving two omitted covariates, namely age and sex,

acknowledges the possibility of other relevant covariates that were not considered in the
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analysis. Lastly, SSQzDiff as an aggregated balance measure neglects correlation among

covariates and should therefore used with caution. This emphasizes the need for further

investigations in this scientific field.

2.5 Conclusion

This work has presented a methodological approach aimed at visually highlighting treat-

ment effect estimates subject to built-in selection or confounding bias in RCTs and PS

matched trials. The method has the main benefit to identify covariates responsible for

such biases. To make valid statements in both study types and, consequently, running

causal inferences, it is imperative to consider relevant confounders and/or prognostic fac-

tors in the data analysis. Unfortunately, in reality, it is not always feasible to collect

data on all covariates. In contrast, during the study, typically more covariates are col-

lected than are ultimately used in the final analysis. The selection of confounders for a

PS model and the choice of factors to be adjusted for in a Cox model heavily depend

on current scientific knowledge and the responsible analyzing authority. Therefore, it is

plausible that important covariates may be overlooked in the analysis and bias is induced.

The Dynamic Landmarking approach presented here addresses precisely this problem and

aims to recognize whether the calculated HR as a single number is subject to potential

bias. Furthermore, the empirical investigation involving 27 RCTs revealed that RCTs

rarely present biased effect estimates. The two main reasons for this result are the small

treatment effects due to equipoise and the low heterogeneity due to strict inclusion and

exclusion criteria. While this is true for most RCTs, it may not hold for every single study.

In such cases, Dynamic Landmarking gives a visual indication by systematically chang-

ing treatment effect trajectories and numerous methods are available to address the bias.

Moreover and to conclude, in agreement with many researchers, it is essential, especially

in survival analysis, to present not just a single HR, but a comprehensive result consisting

of several relative and absolute values, including Kaplan-Meier curves107–109. However,

there is no need to entirely dismiss the HR, especially when the possibility of distortion

can now be examined, at least on a visual basis.

.
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4 Theses

1. Dynamic Landmarking provides a post-hoc diagnosis tool for visualizing whether an

estimated hazard ratio could be distorted by special forms of bias.

2. If a study contains measured but omitted covariates, Dynamic Landmarking can

identify if any of these omitted covariates induce built-in selection or confounding

bias.

3. If omitted covariates cause bias, the methodological approach is able to distinguish

between hazard ratios underlying either confounding or built-in selection bias by

using a global balance measure.

4. In RCTs, Dynamic Landmarking is best at detecting built-in selection bias if the

treatment effect is strong, heterogeneity is large, follow-up is long, and censoring

rate is low.

5. In PS matched trials, the approach works best in identifying residual confounding

bias if the omitted covariates do show both, strong impact on treatment allocation

and strong impact on patients’ survival.

6. If an omitted covariate is highly correlated with an included covariate, both, built-in

selection and confounding bias are less pronounced.

7. Applying Dynamic Landmarking to a large sample of 27 RCTs yields no visually

apparent evidence of built-in selection bias.

8. The absence of the built-in selection bias in RCTs is mainly due to treatment effects

being small and patient populations being homogeneous.

9. Refitting the PS model again, including the identified omitted confounder, provides

one way to address residual confounding bias identified through Dynamic Landmark-

ing, as shown by an empirical example from cardiac surgery.

10. If the methodological approach does not identify omitted covariates inducing built-in

selection or confounding bias, other statistical models need to be considered.

28
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Abstract
The use of hazard ratios as the standard treatment effect estimators for randomized trials with time-to-event outcomes has 
been the subject of repeated criticisms in recent years, e.g., for its non-collapsibility or with respect to (causal) interpreta-
tion. Another important issue is the built-in selection bias, which arises when the treatment is effective and when there are 
unobserved or not included prognostic factors that influence time-to-event. In these cases, the hazard ratio has even been 
termed “hazardous” because it is estimated from groups that increasingly differ in their (unobserved or omitted) baseline 
characteristics, yielding biased treatment estimates. We therefore adapt the Landmarking approach to assess the effect of 
ignoring a gradually increasing proportion of early events on the estimated hazard ratio. We propose an extension called 
“Dynamic Landmarking”. This approach is based on successive deletion of observations, refitting Cox models and balance 
checking of omitted but observed prognostic factors, to obtain a visualization that can indicate built-in selection bias. In a 
small proof-of-concept simulation, we show that our approach is valid under the given assumptions. We further use “Dynamic 
Landmarking” to assess the suspected selection bias in the individual patient data sets of 27 large randomized clinical trials 
(RCTs). Surprisingly, we find no empirical evidence of selection bias in these RCTs and thus conclude that the supposed 
bias of the hazard ratio is of little practical relevance in most cases. This is mainly due to treatment effects in RCTs being 
small and the patient populations being homogeneous, e.g., due to inclusion and exclusion criteria.

Keywords  Cox model · Survival analysis · Hazard ratio · Bias · RCT​

Introduction

Randomized controlled trials (RCTs) are the gold stand-
ard for evaluating treatments and interventions in medical 
research. Randomization guarantees the balance of known 
and, more importantly, unknown or unobserved prognostic 
factors between the intervention and control group. In par-
ticular, randomization ensures that all potential confounding 

factors are distributed equally between groups [14]. For 
describing treatment effects with time-to-event data, the Cox 
model [6, 7] is commonly used because it avoids parametric 
assumptions about the baseline distribution, allows dealing 
with censored observations and provides the hazard ratio as 
an effect measure that is easy to interpret. Due to random 
treatment allocation in RCTs, the hazard ratio is commonly 
estimated without adjustments. Notably, the parameters can 
be estimated consistently and interpreted causally only if the 
Cox model is correctly specified. However, the hazard ratio 
has also been criticized recently because it is non-collapsible 
[18, 21] or only comprehensible when it is (wrongly) inter-
preted and communicated as a relative risk [8, 24].

We focus here on another problem of the hazard ratio, 
which arises when prognostic factors are not observed or 
are measured but not included in the model; in this case, 
selection bias can arise, even in randomized trials (e.g., [1, 
13]). If there are such prognostic factors that influence time-
to-event, as well as an effective treatment, patients in the 
control group tend to experience the event faster, leading 
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to unbalanced treatment arms with increasing follow-up 
time. Consequently, the hazard ratio is estimated from 
groups that differ more and more in their unobserved/omit-
ted baseline characteristics [21]. Such selection effects are 
also well known from frailty models [2, 10, 26]. Several 
authors showed that the hazard ratio does not have a causal 
interpretation if unobserved or omitted prognostic factors are 
present. Additionally, an attenuation of the true conditional 
hazard ratio during the follow-up period can be seen in such 
cases [e.g., 1, 4, 22].

While these issues have been well described in theory 
(e.g., [23, 26]) and demonstrated with large simulation stud-
ies (e.g., [5, 19]), we are not aware of empirical evidence 
of their practical relevance for effect estimation in RCTs. 
To address this limitation, the present investigation uses an 
empirical reanalysis of data from a number of large RCTs 
with survival outcomes to quantify the size of this bias and 
to derive practical implications to address it. In particular, 
this paper focuses on the magnitude of the bias and not on 
the causal interpretation of hazard ratios. First, we introduce 
the Cox model and its built-in selection bias due to measured 
but omitted prognostic factors. Afterwards, we describe the 
method we use to quantify the selection bias  and offer a 
small “proof-of-concept” simulation to assess its validity. In 
Sect. "Empirical investigation", the results from the RCTs 
are presented, followed by a discussion including practical 
recommendations for the use of hazard ratios in RCTs.

The Cox model and its built‑in selection bias

The proportional hazard model is given by

where �0(t) is an unspecified baseline hazard function that 
depends on time t and is assumed to be common across all 
individuals i (i = 1,… ,N) . Furthermore, Xi is a vector of 
observed covariates, and β′ denotes the vector of the cor-
responding regression coefficients. Assuming proportional 
hazards, the hazard ratio for given values of a single binary 
treatment covariate Xtrt , is denoted by

and thus constant over time. However, this only holds for 
a correctly specified model. Misspecification as a result of 
omitted prognostic factors can lead to heavily biased treat-
ment estimates [20]. This bias is more severe with more 
effective treatments and omitted prognostic factors with 
stronger impacts on the outcome. An omitted variable will 

�
(
t|Xi

)
= �0(t)e

��Xi

�(t|Xtrt = 1)

�(t|Xtrt = 0)
= e�

in general induce “unobserved” heterogeneity; that is, indi-
viduals will differ in characteristics that could be explained 
by the omitted variable. Assuming an association between 
the omitted prognostic factor and the probability of an event, 
some individuals will then be more susceptible to the event 
than others are and experience it earlier. However, due to 
effective treatment, frail individuals in the treatment group 
remain longer in the study than those in the control group, 
leading to increasing heterogeneity and increasing bias in the 
hazard ratio as the follow-up continues [13]. More precisely, 
assuming a binary treatment Xtrt and an omitted covariate 
X1 , the true conditional model would be

However, as X1 presents an omitted prognostic factor 
(observed, but not included or even unmeasured), we would 
only fit the marginal model �(t|Xtrt,i) , which does not pro-
vide a conditional, subject-specific interpretation for the 
treatment effect. Instead, we estimate marginal, population-
averaged hazard ratios [4]; not accounting for this result in 
differing treatment estimates.

Measuring selection bias via “Dynamic 
Landmarking” and balance checking

The idea behind our approach is quite simple and based on 
the Landmarking approach by Van Houwelingen et al. [24, 
25]. First, the data set is sorted according to follow-up dura-
tion, and a univariable Cox model is fitted to the full data 
set. Then, gradually, the earliest M observations regardless 
of the event status (time-to-event or censoring) are deleted, 
and a Cox model is refitted for the new, smaller data set. 
After each deletion step, the start of the follow-up interval 
for the new Cox model is moved forwards. More precisely, 
the new time zero for the new Cox model corresponds to 
the follow-up time of the latest of the M deleted individuals 
in the previous step. This procedure of deleting M observa-
tions and refitting the Cox model (which we propose to call 
“Dynamic Landmarking”) is repeated until the data set no 
longer contains a sufficient number of events for conver-
gence in the parameter estimation procedure. All estimated 
Cox models contain only the treatment variable and are not 
adjusted for other measured covariates. Collecting estimated 
regression parameters (as log hazard ratios) that result from 
successive deletion and refitting yields a trajectory in the log 
hazard ratio as a function of the relative number of remain-
ing observations.

In addition, the balance of omitted prognostic factors is 
calculated in each deletion step. To measure the balance in 

�
(
t|Xi

)
= �0(t)e

�trtXtrt,i+�1X1,i .
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the treatment group (henceforth indexed by T) and the con-
trol group (indexed by C), we use z-differences [16]. These 
are N(0, 1)-distributed in a RCT and can be calculated for 
continuous and binary variables as follows:

Here xT , xC, �̂2

T
, �̂2

C
, p̂T , p̂C,NT ,NC denote the respective 

estimated means, variances, proportions, and sample sizes 
of the two groups. In a data set with k independent observed 
(binary and continuous) prognostic factors, the sum of k 
squared z-differences (SSQzDiff ) follows an approximate χ2

k
 - 

distribution with expectation k.
As we consider observed but omitted prognostic fac-

tors here, the imbalance in these prognostic factors can be 
measured by the SSQzDiff  . We expect that individuals with 
higher baseline risk (e.g., due to higher values of an omitted 
prognostic factor) have a shorter time-to-event and are thus 
deleted from the data set earlier. This results in a system-
atic change in the trajectories of both the treatment effect 
estimate and the SSQzDiff  as the “Dynamic Landmarking” 
proceeds. Assessing balance in measured but omitted prog-
nostic factors has two main benefits. First, it is possible to 
check whether randomization succeeded or failed for the 
full data set. Second, important prognostic factors can be 
identified if an increased imbalance is observed from the 
SSQzDiff− trajectory. On the other hand, achieving balance 
in all omitted prognostic factors indicates that these are not 
associated with the time-to-event outcome.

A proof‑of‑concept simulation

In this section, we present the results of a small simula-
tion study, which shows that “Dynamic Landmarking” can 
indeed give a visual indication of selection bias due to the 
omission of a prognostic factor. For this task, we simulate 
different randomized trail scenarios by varying the impact 
of treatment and the impact of the omitted prognostic fac-
tor on the time-to-event. In addition, we considered various 
censoring rates.

Data generation and comparison

For all scenarios, we generated 20 data sets with 5,000 sub-
jects each and the following specifications:

zcont =
xT − xC√
�̂2

T

NT

+
�̂2

C

NC

zbin =
p̂T − p̂C√

p̂T (1−p̂T )

NT

+
p̂C(1−p̂C)

NC

•	 A Weibull baseline hazard function with scale � = 0.1 
and shape � = 1.5

•	 One binary treatment variable Xtrt ∼ Bin(1, 0.5) 
a n d  c o r r e s p o n d i n g  r e g re s s i o n  p a ra m et e r 
�trt ∈ {log(1.25), log(1.5), log(3)}

•	 A normally distributed covariate X1 ∼ N(0, 10) repre-
senting an observed but omitted covariate with different 
influences on survival: �1 ∈ {0, log(1.25), log(3)}

•	 Xtrt and X1 are independent
•	 Different censoring rates, with 10%, 50% or 80% of the 

individuals being right-censored

Furthermore, we assumed proportional hazards and non-
informative censoring for the data generation process. In 
each scenario and for each generated data set, we stepwise 
deleted the earliest M observations ( M = 10 ), fitted Cox 
models with treatment as the only variable and measured 
the balance with respect to the omitted prognostic factor X1 
via the SSQzDiff  . In the scenario in which there is no influ-
ence of X1 on survival, e.g., �1 = 0 , E

(
SSQzDiff

)
= 1 holds. 

Otherwise, that is, in scenarios with �1 ≠ 0 , we would expect 
values of SSQzDiff > 1 as “Dynamic Landmarking” proceeds.

Results

In Fig. 1, we give the results of our proof-of-concept simula-
tion for the medium censoring rate of 50%. In the first col-
umn, the results are shown with no influence of the omitted 
covariate X1 on time-to-event. Therefore, correctly specified 
Cox models including all relevant prognostic factors (that is, 
only treatment) were fitted, and as expected, the trajectories 
of the treatment effect estimates show only random fluc-
tuations around the true conditional hazard ratio. Similarly, 
SSQzDiff  shows no systematic deviations from the expected 
value of one, indicating good balance and the absence of 
selection bias.

In the second and third columns, we present data under 
the assumption that the omitted covariate X1 has a weak 
(column 2) or strong (column 3) influence on the time-
to-event outcome. We observe that a weak effect of treat-
ment on survival, as well as a weak impact of the omitted 
covariate on survival, does not affect the treatment esti-
mates considerably. However, if both have a strong impact 
on the time-to-event, the “Dynamic Landmarking” results 
can show a visible indication of selection bias. We find 
that the hazard ratio is already biased for the full data 
set, which is caused by the difference in the marginal and 
conditional hazard ratios due to the omitted covariate. As 
“Dynamic Landmarking” proceeds, the treatment effect 
estimates systematically change, and correspondingly, the 
SSQzDiff  shows an increasingly compromised balance, indi-
cating the presence of selection bias. This is also true for 
other censoring rates, although the power of the method 
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is somewhat limited for higher censoring rates since cen-
sored individuals have less material impact on the esti-
mates (see supplementary information). In summary, the 
simulation shows that a stronger influence of the omitted 
prognostic factor on time-to-event and a stronger impact 
of the treatment on time-to-event, the more visible the 
potential built-in selection bias and the less balanced the 
omitted prognostic factors. “Dynamic Landmarking” is 
able to detect and visualize the presence of selection bias 
if all other requirements of the Cox model (proportional 
hazards, no time-varying treatment, etc.) are met.

Notably, we do not necessarily expect the trajectories 
of treatment effect estimates to converge towards the null 
because we show the percentage of remaining observations 
rather than the original observation time on the x-axis. 
In particular, fitting a new Cox model after each deletion 
should not be confused with fitting a single full data set and 
the corresponding follow-up time.

Empirical investigation

Data and methods

We used publicly available individual data sets from 32 large 
RCTs already analysed for methodological investigations by 
Kent et al. [15] and described in more detail therein. After 
having approval from the Institutional Review Board of the 
Medical Faculty of the Heinrich-Heine-University Duessel-
dorf from March 2019 (Study No.: 5986R, Registration-ID: 
201,707 4356) we contacted the three clinical study reg-
istries [NHLBI2018, NIDDK2018, GlaxoSmithKline2018] 
and were allowed to reuse data sets that were already used 
for a previous project [17]. To avoid problems with compet-
ing risks, we restricted our analysis to all-cause mortality 
as outcome and were able to include 27 trials (see Table 1), 
each with more than 1,000 individual observations. To 
unify measurement of covariate balance across trials, we 

Fig. 1   Trajectories of treatment effect estimate (left y-axis, red) on 
the log(HR) scale and sum of squared z-differences (right y-axis, 
blue) for balance measurement of the omitted covariate X1 for the 
20 simulated data sets. The thick blue line represents the expected 

value for the squared z-difference balance under randomization, i.e., 
SSQzDiff = 1 . Dashed black lines show the true simulated treatment 
estimate. The results are based on a medium censoring rate, i.e., 50% 
of all individuals were censored
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used patients’ baseline age and sex because these are the 
only two prognostic factors that were available in all trials 
and are accepted to have an influence on survival. We then 
applied the “Dynamic Landmarking” process of stepwise 
deletion ( M = 10 ), fitting a Cox model and balance check-
ing to obtain a trajectory of treatment effect estimates and 
SSQzDiff  for each data set. For the two prognostic factors age 
and sex that were assumed to be independent, SSQzDiff  has 
an expected value of 2 in a randomized setting.

Results

Overall, 18,095 Cox models with treatment as the only 
variable were fitted across all trials. In Fig. 2, we show 
the trajectories of the treatment effect estimates with their 
pointwise 95% confidence intervals and the corresponding 
SSQzDiff  for age and sex for each trial. For most trials, we 
did not see a systematic change in parameter estimates over 
the course of the “Dynamic Landmarking” process. In con-
trast, most trajectories of treatment effect estimates stayed 
remarkably constant and merely showed random fluctua-
tions. In addition, a relevant imbalance in prognostic fac-
tors was rarely seen with SSQzDiff  being close to the expected 
value of 2. Some trials, e.g., DCCT or MAGIC, showed 
a completely erratic behaviour, which might be due to the 
low overall number of deaths in these trials. However, the 
covariate balance of age and sex could still be calculated, as 
SSQzDiff  is computed from all observations of the remaining 
risk set, irrespective of their event status. In conclusion, we 
found no empirical evidence of relevant selection bias in the 
considered trials.

Discussion

There is no visually apparent evidence of selection bias in 
randomized controlled trials; therefore, we conclude that 
hazard ratios are not hazardous in this respect—at least not 
as hazardous as announced in the respective body of litera-
ture. This is the simple and, in our view, rather surprising 
result of our analysis of the original data of 27 large RCTs. 
To arrive at this result, we proposed “Dynamic Landmark-
ing” as a method to visualize the suspected selection, and 

considered scenarios in which the heterogeneity between 
patients is explained by observed but omitted prognostic 
factors. In a small proof-of-concept simulation, we demon-
strated that this method gives an indication of selection bias 
caused by an omitted prognostic factor with a strong influ-
ence on survival. For both, the simulation and the empirical 
data, we fitted Cox models with treatment as the only vari-
able and measured the covariate balance for observed but 
omitted prognostic factors. The simulation showed that a 
stronger influence of the omitted covariate on the survival 
outcome indeed causes a more visible systematic change in 
the treatment effect estimate and an increasing imbalance 
in the omitted covariate itself. Our empirical investigation, 
however, yielded no evidence that this also happens in real 
RCTs. Considering measured but omitted prognostic fac-
tors has two main advantages. First, it is possible to identify 
measured prognostic factors, which would induce selection 
bias if one would not account for them. Second, the case in 
which no measured covariate shows an increased imbalance 
but a systematic changing trajectory of treatment effect esti-
mate is still seen may be explained by unobserved heteroge-
neity or a truly time-dependent treatment effect. Depending 
on which of these cases occurs, the data should be handled 
differently. In the first case, adjusting for the omitted fac-
tor might be sufficient to avoid built-in selection bias. In 
the second case, frailty models [26] or more flexible time-
dependent extensions of the Cox model [3, 11, 12] may be 
used for data analysis. In any case, “Dynamic Landmarking” 
cannot distinguish between true unobserved heterogeneity 
and time-dependent treatment effects.

The explanation for the absence of built-in selection bias 
in the empirical data is likely simple. This bias would only 
occur in RCTs with both very large treatment effects and 
in the presence of a high influence of the omitted covari-
ate on survival (i.e., large “unobserved” heterogeneity) [21, 
23]. However, very large treatment effects are rarely seen in 
RCTs, because we expect equipoise of treatments before the 
trial. Indeed, and as shown in a large Cochrane review [9], 
only slightly more than half of new experimental treatments 
perform better than established treatments when tested in 
RCTs. In particular, log(HR)s with a magnitude larger than 
1 are seen in only about 3% of trials, and log(HR)s with a 
magnitude larger than 2 essentially never occur [9]. In addi-
tion, with respect to patient heterogeneity, study populations 
in RCTs are generally careful selected to increase internal 
validity but at the cost of external validity, thus minimizing 
patient heterogeneity. Indeed, in an additional analysis of 
the RCT data with gamma-frailty models (results shown in 
the supplementary information, see Fig. S3), we saw that the 
estimated frailty variance is usually close to zero, pointing to 
negligible amounts of unobserved heterogeneity.

We must also acknowledge some limitations of our study. 
The RCTs of Kent et al. [15] mainly originate from the field 

Fig. 2   Trajectories of treatment effect estimates (red) and SSQzDiff  
(blue) over the course of “Dynamic Landmarking” for the 27 RCTs. 
Treatment effect estimates on the log(HR) scale and corresponding 
confidence intervals are shown on the left y-axis. Sums of squared 
z-differences 

(
SSQzDiff

)
 for balance measuring of age and sex in all 28 

RCTs are given on the right y-axis. Dashed lines symbolize the case 
of no treatment effect (red) and balanced prognostic factors (blue). 
The x-axis shows the relative number of remaining observations in 
sorted data sets

◂
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of cardiovascular medicine, and thus, the results in other 
clinical disciplines might diverge from those reported here. 
We restricted our analysis to only two prognostic factors 
(age and sex) for imbalance measurement because only these 
two were available in all data sets. We are aware that, in 
addition to these two selected prognostic factors, there may 
be other (unobserved) prognostic factors, which have more 
influence on the survival outcome. Furthermore, we can-
not draw any conclusions for studies that show only very 
few events. Due to the large number of censored patients 
in the data set, no meaningful trajectory can be drawn, and 
no potential systematic change can be identified. We are 
also aware that the selected prognostic factors (age and sex) 
mostly show a weak association with the survival outcome; 
therefore, one would only expect a very slight increase in the 
imbalance. Related to this, the SSQzDiff  as an aggregated bal-
ance measure, could produce less conclusive results if one 
includes prognostic factors without impact on the survival 
outcome for its computation. Last, "Dynamic Landmark-
ing" only gives a visual indication of potential selection bias 
and is only one approach to assess whether the treatment 
estimate changes during the trial. Alternative methods that 
could be considered are already mentioned above [3, 11, 
12]. Further research is necessary to assess which of these 
approaches is most efficient and accurate in detecting built-
in selection bias and whether the relative performance of 
these approaches depends on trial characteristics.

To summarize, we feel that the warnings of the built-
in selection bias in RCTs when using hazard ratios are of 
little practical relevance in most cases and that the hazard 
ratios from most analysed RCTs are not materially affected 
by this bias. The empirical evidence we provide suggests 
that the built-in selection bias does not materially affect the 
results of most RCTs we considered. Therefore, we feel that 
hazard ratios can be safely used to analyse RCTs with time 
to event outcomes, at least with respect to built-in selec-
tion bias. However, although the hazard ratio does not suffer 
from the announced selection bias, its problems in terms of 
interpretability, causality or non-collapsibility remain viru-
lent and should be carefully considered by the biostatistical 
community.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s10654-​023-​01026-z.
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Background
Randomized controlled trials (RCTs) are the gold stan-
dard for evaluating treatment effects in medical research, 
because random treatment allocation should guarantee 
balanced known and unknown covariates in the com-
pared groups, resulting in the absence of confounding 
(for terminology used in manuscript see Tab. S1). How-
ever, even if confounding is minimized after randomiza-
tion, prognostic factors (i.e. covariates that are associated 
with the outcome but not with treatment allocation) may 
still be present. For time-to-event data, the Cox model 
[7, 8] is commonly used for statistical analysis, providing 
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Abstract
Background  Propensity score matching has become a popular method for estimating causal treatment effects in 
non-randomized studies. However, for time-to-event outcomes, the estimation of hazard ratios based on propensity 
scores can be challenging if omitted or unobserved covariates are present. Not accounting for such covariates could 
lead to treatment estimates, differing from the estimate of interest. However, researchers often do not know whether 
(and, if so, which) covariates will cause this divergence.

Methods  To address this issue, we extended a previously described method, Dynamic Landmarking, which was 
originally developed for randomized trials. The method is based on successively deletion of sorted observations 
and gradually fitting univariable Cox models. In addition, the balance of observed, but omitted covariates can be 
measured by the sum of squared z-differences.

Results  By simulation we show, that Dynamic Landmarking provides a good visual tool for detecting and 
distinguishing treatment effect estimates underlying built-in selection or confounding bias. We illustrate the approach 
with a data set from cardiac surgery and provide some recommendations on how to use and interpret Dynamic 
Landmarking in propensity score matched studies.

Conclusion  Dynamic Landmarking is a useful post-hoc diagnosis tool for visualizing whether an estimated hazard 
ratio could be distorted by confounding or built-in selection bias.

Keywords  Cox model, Hazard ratio, Built-in selection bias, Confounding bias
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the hazard ratio as the generic effect measure. Typically, 
in RCTs the Cox model does not include prognostic fac-
tors as covariates. Instead, a marginal Cox model with 
only the treatment as a single covariate is estimated, 
yielding a marginal hazard ratio that is interpreted as a 
population-averaged treatment effect. However, there 
is often interest in understanding treatment effects at a 
subject-specific level. A subject-specific (conditional) 
interpretation of the hazard ratio can only be made when 
conditioning the Cox model on all prognostic factors. 
This particularly means that if a single prognostic factor 
(whether observed or unobserved) is omitted from the 
Cox model, it would prevent the hazard ratio from being 
interpreted on a subject-specific level. More precise, 
assume a proportional hazards model (1)

	 λ (t|Z, U) = λ 0 (t) exp(β ZZ + β U U) � (1)

where λ 0 (t) is an unspecified baseline hazard func-
tion, depending on time t and is assumed to be common 
across all individuals. Furthermore, Z  and U are some 
observed covariates with their corresponding regression 
coefficients β Z  and β U . Then λ (t| Z, U) defines the 
conditional hazard with β Z  summarizing the condi-
tional effect of Z , yielding a subject-specific interpreta-
tion. On the other hand, if U  will be omitted, one would 
estimate model (2), i.e.:

	 λ (t|Z) = λ 0 (t) exp (β ZZ)� (2)

with λ (t| Z) reflecting the marginal hazard, yielding 
an population-averaged interpretation. Importantly, 
conditional and marginal Cox models will not provide 
the same estimates for a treatment effect if additional 
prognostic factors are associated with the time-to-event 
outcome [9, 29, 30]. This circumstance is referred to as 
“non-collapsibility”, indicating that the magnitude of the 
effect measure is changing when conditioning on a prog-
nostic factor [10]. This is often accompanied by the term 
“built-in selection bias”, which can be seen as result of 
conditioning on previous survival within hazard rates. 
More precise, assume an omitted prognostic factors 
(i.e., measured during the trial but omitted from the Cox 
model), which introduces heterogeneity, causing individ-
uals at higher baseline risk (regarding omitted prognos-
tic factors) to expect the event earlier than those at lower 
risk [1, 17]. Given an effective treatment, this would 
result in higher-risk individuals surviving longer in the 
treated group than in the control group. This results in a 
deviation from the marginal and conditional hazard ratio, 
due to conditioning on prior survival. Depending on the 
magnitude of the treatment effect, the influence of the 
omitted prognostic factor on the time-to-event outcome 
and the follow-up time, the magnitude of the built-in 

selection bias changes [5, 28, 31]. Therefore, when aim-
ing for a conditional treatment effect (more precise, con-
ditional on all prognostic factors) in RCTs, all prognostic 
factors have to be included in the Cox model. Please note: 
In the case where treatment is the only prognostic factor 
influencing time-to-event and there are no other prog-
nostic factors, the marginal model and the conditional 
model would give the same value for the marginal and the 
conditional hazard ratio. This is because the Cox model 
would then include all relevant prognostic factors, that is, 
only the treatment allocation, and no other adjustments 
are needed for estimating a conditional treatment effect. 
As a result, non-collapsibility would not be an issue and 
thus built-in selection bias would not occur.

In non-randomized trails, the situation might be more 
complex because confounding becomes an additional 
issue. Here, treatment allocation is generally determined 
by baseline characteristics, leading to systematic differ-
ences between treatment groups [25]. One prominent 
way to address these baseline differences is balancing the 
data by Propensity Score (PS) matching [26, 27]. Here, in 
a first step the PS for each individual is usually estimated 
via a logistic regression model. In a second step the PS is 
used for estimating the treatment effect of interest (that 
is, in our case the hazard ratio) [21]. Under the assump-
tions of positivity, consistency, and unconfounded-
ness for the PS, valid causal statements about treatment 
effects can be made. Misspecification of the PS model 
due to the omission of relevant confounders would lead 
to confounding bias, resulting in a biased treatment effect 
estimate. However, even if the PS model includes all con-
founders, non-collapsibility (and the corresponding built-
in selection bias) plays a role when fitting a Cox model in 
the PS matched trial. Usually, as in RCTs, a marginal Cox 
model with the treatment effect as the single covariate is 
fitted to the data, yielding a marginal (population-aver-
aged) treatment effect estimate. However, when aiming 
for a conditional (subject-specific) treatment effect, the 
Cox model needs to be conditional on all relevant prog-
nostic factors. Note that prognostic factors cannot be 
taken into account by PS models, as the PS addresses the 
association between a covariate and the treatment allo-
cation, which (by definition) is not present in prognostic 
factors. Therefore, when estimating a treatment effect in 
PS matched trials, two potential issues could arise when 
covariates are omitted from the analysis. First, omitting 
a prognostic factor from the Cox model would lead to 
the built-in selection bias. Second, omitting a confounder 
from the PS model would entail confounding bias. Both 
issues have the consequence that the final treatment 
effect estimate differs from the estimate of interest (that 
is, a conditional and unbiased treatment effect) [6, 14]. 
For an overview of concepts and comparison in RCTs 
and PS-matched trials please see Tab. S2.
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The choice of covariates for the PS model and the sub-
sequent outcome model relies on scientific understand-
ing and clinical expertise. This especially introduces the 
possibility of omission of covariates that were measured 
during the trial, but not included in the PS model or, after 
PS matching, in the Cox model. It is therefore of inter-
est to investigate whether an estimated treatment effect 
is subject to confounding bias or built-in selection bias. 
Unfortunately, the hazard ratio provides the effect in a 
single number, not giving a hint for any of these issues. 
Therefore, a recent article introduced a new method, 
Dynamic Landmarking, for diagnosing whether an esti-
mated treatment effect from a Cox model was subject to 
built-in selection bias in RCTs [32]. The original method-
ological approach was designed to detect potential prog-
nostic factors that are measured but omitted from the 
Cox model and could therefore induce built-in selection 
bias.

The aim of the present work is to extend the existing 
Dynamic Landmarking approach to PS matched trials. 
More precisely, we want to use Dynamic Landmarking as 
a post-hoc diagnosing tool in order to check if the esti-
mated hazard ratio could be distorted by confounding 
or built-in selection bias. Moreover, we are interested in 
detecting covariates that were observed (e.g., are pres-
ent in the data set), but omitted from the analysis, which 
could either induce potential built-in selection or con-
founding bias.

First, we describe the extension of Dynamic Landmark-
ing to the PS matched case. Second, we give the results 
of a simulation study to examine how the approach per-
forms in a PS matched trial. Third, we apply the extended 
procedure to a real data set from cardiac surgery and 
finally discuss the results.

Methods
The original Dynamic Landmarking is a methodologi-
cal approach, which provides a visual tool for diagnos-
ing if an estimated treatment effect is subject to built-in 
selection bias. Furthermore, omitted prognostic factors 
that are measured during the trial but omitted from the 
Cox model, are investigated whether they induce built-in 
selection bias. The idea of Dynamic Landmarking is quite 
simple: First, the dataset is sorted by observation time 
and a univariable Cox model only including the treat-
ment is fitted to the full data set. Afterwards, the earli-
est M (M > 0) observations are deleted regardless of 
the event status (observed or censored) and a new uni-
variable Cox model is fitted to the smaller data set. After 
each deletion step, the start of the follow-up interval for 
the new Cox model is moved forwards. More precisely, 
the new time zero for the new Cox model corresponds 
to the follow-up time of the latest of the M deleted indi-
viduals in the previous step. This procedure of deleting 

the earliest M observations and refitting univariable Cox 
models is continued until the data set no longer contains 
a sufficient number of observations for convergence. In 
general, high-risk individuals will have shorter obser-
vation times than low-risk individuals, as they tend to 
expect the event of interest earlier. Consequently, indi-
viduals with higher baseline risk (regarding the omit-
ted prognostic factors) will be deleted earlier during 
Dynamic Landmarking.

In parallel, the balance of omitted prognos-
tic factors is measured in each step by the sum 
of squared z-differences ( SSQzDiff ) [19], with 
SSQzDiff =

∑
z2

con +
∑

z2
bin +

∑
z2

ord +
∑

z2
nom , 

whereby e.g.,

	

zcont =
−
xT − −

xC√
σ̂

2
T

NT
+ σ̂

2
C

NC

and zbin = p̂T − p̂C√
p̂T (1−p̂T )

NT
+ p̂C (1−p̂C )

NC

.

Here 
−
xT ,

−
xC , σ̂ 2

T , σ̂ 2
C , p̂T , p̂C , NT , NC denote the 

respective estimated means, variances, proportions, and 
sample sizes of the two groups (formula for all z-differ-
ences can be found in Formula S1). The SSQzDiff  is a 
global balance measure and follows a chi-squared-distri-
bution with expectation k for k independent covariates.

After each deletion-and-refitting step, the point estima-
tor for the treatment effect and the SSQzDiff  is saved, 
yielding a trajectory depending on the remaining number 
of individuals. Through the systematic removal of indi-
viduals, treatment effects are gradually estimated within 
a population of lower-risk patients, potentially leading 
to a systematic shift in the effect trajectory due to the 
presence of built-in selection bias. Moreover, a potential 
imbalance in omitted prognostic factors arises, manifest-
ing as a systematic shift in the SSQzDiff trajectory [32].

To apply Dynamic Landmarking in non-randomized 
trials, a balancing procedure, e.g. PS matching, has to be 
applied prior to sorting the data regarding the observa-
tion time. Afterward, the original Dynamic Landmark-
ing is carried out. However, note that omitted variables 
in RCTs (by design) can only be prognostic factors. In 
PS matched studies, however, they can be both prog-
nostic factors and confounders. This potentially creates 
two problems, first built-in selection bias due to omis-
sion of prognostic factors and, second, confounding bias 
due to omitted confounders, and of course, both should 
be addressed separately by Dynamic Landmarking. This 
distinction between omitted prognostic factors and omit-
ted confounders can be made by looking at the definition 
of SSQzDiff : Omitting a observed confounder from the 
PS model would result in unbalanced groups after PS 
matching. This is because the association of the omitted 
confounder with the treatment allocation is still pres-
ent, resulting in large values of SSQzDiff  already at the 
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beginning of Dynamic Landmarking, that is, before the 
first deletion step. Omitting a prognostic factor from the 
Cox model on the other hand would still yield balanced 
groups after PS matching resulting in lower initial values 
of SSQzDiff . Hence, initial SSQzDiff -values for the 
full data set will give a first hint on whether the omitted 
variable is a confounder or a prognostic factor.

The following preconditions must be met in order to 
achieve valid results from Dynamic Landmarking: First, 
independent censoring has to be assumed. Second, the 
conditional hazard ratio for treatment is assumed to be 
constant across the population and over time, i.e. propor-
tional hazards hold and treatment effect is time-invari-
ant. Third, for measuring the balance by SSQzDiff at 
least one available covariate has to be omitted from either 
the PS or the Cox model.

Results from a simulation study
Data generation process
We simulated a non-randomized intervention trial with 
Z  denoting the treatment, Y  the time-to-event out-
come, X  a known and measured confounder and U  an 
omitted covariate, see Fig. 1 for the corresponding graph-
ical illustration of the data generation process. Both, X  
and U , follow a standard normal distribution. First, we 
simulated the probability of treatment allocation for each 
subject i from the logistic model

	 logit (pi) = α 0 + α X · Xi + α U · Ui.

For the intercept, α 0 = −1.21 was chosen in order to 
obtain approximately 24% treated individuals, which was 
motivated by the empirical example in Section  “Illus-
tration of the procedure with an example from cardiac 
surgery”. The parameter α X was set to log (3). This 
denotes a strong impact of the confounder X on the 
treatment assignment. Afterwards, we generated the 
actual treatment status Zi from a Bernoulli distribution 
with subject-specific probability pi. We then simulated 
the time-to-event outcome Yi for each individual using 
a Weibull baseline hazard with parameters λ = 0.01 
and γ = 1.5. The final hazard function used was:

	 h (t|Z, X, U) = γ λ tγ −1 · eβ Z Z+β X X+β uU .

For the regression parameter β X  we used the 
value log (3) , which was intended to denote a strong 
impact of X  on the time-to-event outcome. We con-
sidered different effects of U  on treatment allocation 

(
α U ∈ {log (0.5) , log (0.66) , log (0.8) ,

log (1) , log (1.25) , log (2) , log (3)} ). We fur-

ther varied the effect of U  on the time-to-event out-
come by using the following regression coefficients: 
β U ∈ {log (0.5) , log (0.66) , log (0.8) , log (1) ,

log (1.25) , log (1.5) , log (2) , log (3)} .
F u r -

thermore, we assumed various correlations between U  
and X : ρ XU ∈ {0, 0.2, 0.6, 0.9}. Moreover, we con-
sidered different values for the conditional treatment 
effect: β Z ∈ {log (1.25) , log(1.5), log(2), log(3 )} and 
assumed censoring proportions of approximately 10%, 
40% and 80% which were generated using a exponential 
distribution with parameter λ ∈ {0.2,0.6, 0.9}For each 
scenario, we simulated 500 data sets with 5,000 individu-
als each. Please be aware that U  is classified differently 
based on the values of α U and β U U is considered an 
independent covariate when both α U = 0 and β U = 0  a 
prognostic factor when α U = 0 and β U ̸= 0, an instru-
mental variable when α U ̸= 0 and β U = 0, and finally, a 
confounder when both α U ̸= 0 and β U ̸= 0.

Data analyses
For each scenario, we estimated the PS by logistic regres-
sion, including the known confounder X , but excluding 
the covariate U : logit (pi) = α 0 + α X · Xi. We then 
performed a 1:1 PS-matching without replacement. Each 
treated individual was matched with the greedy near-
est available neighbour with a caliper width of 0.2 of the 
standard deviation of the logit of the propensity score [2, 
3]. In a second step, we applied Dynamic Landmarking 
to the PS-matched data set. Therefore, we fitted stratified 
(for the matching stratum) Cox models with treatment as 
the only covariate:

Fig. 1  Graphical illustration for data generation process
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	 hj (t|Z) = h0,j (t) · eβ Z Z � (3)

Here, h0,j  refers to the baseline hazard function for 
matching stratum j. These stratified (for matching stra-
tum) Cox model will be referred to “stratified Cox model” 
from now on. Please note, that U  was omitted from both, 
the PS model and the Cox model, whereas X  was con-
sidered in the PS model in each scenario.

Results
Omitting a prognostic factor – detecting induced built-in 
selection bias
In Fig.  2 we give the results for an omitted prognos-
tic factor U  (i.e., aU = 0), a highly effective treatment 
( β Z = log (3)) and a censoring proportion of 10%. 
Results for smaller treatment effects and higher censor-
ing proportions are given in the supplementary infor-
mation (see Fig. S1 – Fig. S5). Two important things 
should be noted: First, in these scenarios, the PS model 
was correctly specified and built-in selection bias is 
induced by the omission of a prognostic factor. Second, 
the treatment effect trajectory will not be equal to the 
true simulated effect β Z at the beginning of Dynamic 
Landmarking. This is because we show the percentage 

of remaining individuals on the x-axis and not the origi-
nal observation time. As a result, the initial treatment 
effect estimate derived from Dynamic Landmarking cor-
responds to the estimate one would obtain at the end of 
a study using a stratified Cox model. However, since a 
relevant prognostic factor has been excluded, this initial 
estimate is already subject to built-in selection bias, lead-
ing to a discrepancy between the estimated and the true 
simulated effect from the beginning on.

The mean sample size of the PS matched data was 2,402 
in the simulation. In the first column of Fig. 2, U  is inde-
pendent of the confounder X  ( ρ UX = 0). We observe 
that a higher impact of U  on the time-to-event outcome 
causes a more visible systematic shift in the treatment 
effect trajectory. Additionally, all scenarios show low 
initial SSQzDiff -values indicating the omission of a 
prognostic factor that is still balanced between the treat-
ment groups after PS matching. Moreover an increase of 
the SSQzDiff -trajectory is observed during the dele-
tion of the first 50% of observations. Similar results were 
obtained for smaller treatment effects and higher cen-
soring rates. However, as highlighted by serveral authors 
[e.g. 31, 35], the built-in selection bias occurs less promi-
nent in case of smaller treatment effects and smaller 

Fig. 2  Trajectories of treatment effect (left y-axis, red) on the log(HR) scale and sum of squared z-differences (right y-axis, blue) for balance measuring of 
the omitted covariate U  for 500 simulated data sets. Dashed black lines show the true, simulated conditional treatment effect estimate β Z = log (3). 
All scenarios assume the omission of a prognostic factor U , i.e. α U = 0., and a censoring rate of 10%
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prognostic effects. Consequently, in such cases, Dynamic 
Landmarking would identify a less pronounced decline in 
treatment effect trajectories. In the remaining columns, 
we simulated a non-zero correlation between X  and U  
varying it from weak to strong. Here we find that the esti-
mated treatment effect moves closer to the true simu-
lated one if the correlation gets stronger. Importantly, less 
systematic changes in the treatment effect trajectory can 
be observed. This is because the omitted prognostic fac-
tor U  is indirectly accounted for by including X  in the 
PS model, allowing a correction towards the true treat-
ment effect. And of course, the stronger the correlation, 
the closer will the estimated hazard ratio be to the true, 
simulated one [14].

Omitting a confounder – detecting confounding bias
The results of the simulation when omitting a true con-
founder (i.e., α U ̸= 0) from the PS model are shown in 
Fig. 3. We present the results for a true, simulated treat-
ment effect of β Z = log (3) and a censoring proportion 
of 10%. Results for smaller treatment effects can be found 
in the supplementary material (see Fig. S5 and Fig. S6). 
Moreover, negative values of α U  and β U  (and combina-
tions) are considered in Fig. S8 - Fig. S10. Note, that all 
these scenarios cover the case when the PS model is miss-
specified as a relevant confounder is omitted. In addition, 
there are no (omitted) prognostic factors simulated in 
this scenario. In the first column, we again assume that 
an independent confounder has been omitted ( ρ UX = 0
). As in the first simulation (Section “Omitting a prognos-
tic factor – Detecting induced built-in selection bias”), 
we observe a more visible systematic shift in the trajec-
tory of the treatment effects while the influence of U  
on the time-to-event outcome increases. Moreover, the 
systematic shift can be observed more clearly when the 
omitted confounder is strongly associated with treat-
ment allocation (see the first column of Fig.  3A com-
pared to first column of Fig. 3B and C). In other words, 
Dynamic Landmarking better detects confounding bias 
if the association with the treatment allocation is strong 
(i.e., |α u| ≫ 0). The SSQzDiff -trajectories behave in 
an expected way, i.e., achieving extremely high values at 
the beginning of Dynamic Landmarking. Referring to 
the formula of the z-differences, we would expect that 
w.l.o.g. xT > xC  or p̂T > p̂C  respectively. It follows, that 
zcon > 0 (or zbin > 0 reps.) and consequently large ini-
tial values of SSQzDiff  are observed at the beginning of 
Dynamic Landmarking, that is, before the first deletion 
step.

When adding a correlation between U  and X , we find 
that the estimated treatment effects becomes closer to 
the true, simulated treatment effect, the stronger the cor-
relation. In addition, the SSQzDiff  come closer to being 
balanced after PS matching as correlation increases. This 

is because the omitted covariate U  will be matched in 
parallel with the true confounder X , if U  and X  are cor-
related [e.g., 33, 37].

Illustration of the procedure with an example from 
cardiac surgery
We now apply the Dynamic Landmarking approach to 
individual patient data from a non-randomized trial on 
aortic valve implantation in cardiac surgery [12]. Here, 
the effect of transcatheter (either transapical (TA) or 
transfemoral (TF)) aortic valve implantation (TAVI) in 
comparison to a conventional surgical treatment (mini-
mally invasive aortic valve replacement (MIC-AVR)) in 
patients with moderate surgical risk was investigated. In 
the original analysis, the authors used 23 baseline covari-
ates and a 1:1:1 PS-matching algorithm for the three 
treatments TA-TAVI, TF-TAVI, and MIC-AVR to evalu-
ate treatment effects by fitting stratified Cox models to 
the matched data set. For our investigation here, we will 
concentrate on the two-group comparison of MIC-AVR 
vs. TA-TAVI. Comparing a catheter-based intervention 
versus a surgical approach is of special methodological 
interest, because the treatments are applied to distinctly 
different patient populations. Unlike surgical interven-
tions, catheter-based aortic valve implantation does not 
require opening the chest (sternotomy), making it suit-
able for much more medically compromised patients, 
often referred to as “high-risk patients”. For this reason, 
strong confounding is to be expected. Indeed, in the 
original analysis we already noted that the overlap of the 
logit-transformed PS is very small before PS matching 
and covariates are heavily imbalanced between interven-
tion groups. Additionally, a univariable Cox model with 
treatment as the only covariate and overall survival as 
outcome, showed an extremely strong effect of a hazard 
ratio of 6.40 (95%CI: 5.33; 7.69) for the MIC-AVR group 
in comparison to the TA-TAVI group. After PS match-
ing with 13 randomly selected covariates (see Table  1 
for details) the hazard ratio reduced to 2.13 (95%CI 1.31; 
3.45) indicating a strong influence of confounding in the 
crude model. Moreover, considering all 23 covariates 
from the original article yielded a hazard ratio of 1.64 
(95%CI: 1.23; 2.19).

Given this strong degree of confounding, we use the 
dataset for illustrative purposes and assess it in three 
different ways. First, a raw model (without any prior 
PS-matching or any other confounder adjustment) was 
fitted to the data set, which means that we omitted all 
28 covariates from data analysis. Second, a partially PS-
matched data set with 13 (out of 28) randomly included 
covariates was used for Dynamic Landmarking. Hence, 
15 randomly selected covariates were omitted from 
data analysis. We assessed whether the selected covari-
ates for PS matching have an influence on the results and 
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Fig. 3  Trajectories of treatment effect (left y-axis, red) on the log(HR) scale and sum of squared z-differences (right y-axis, blue) for balance measuring 
of the omitted covariate U  for 500 simulated data sets. Dashed black lines show the true, conditional treatment estimate β z = log (3). All scenarios 
assume the omission of a true confounder U  with A: low impact on treatment allocation, i.e., α u = log (1.25)B: moderate impact on treatment alloca-
tion, i.e., α U = log (2). C: high impact on treatment allocation, i.e. α U = log (3)
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therefore repeated the partially matching various times 
using different sets of randomly selected/omitted covari-
ates. All scenarios showed similar results regarding the 
trajectories of Dynamic Landmarking; therefore, we pres-
ent only one representative example in the paper (chosen 
covariates can be found in Table 1). In a third scenario, 
we reproduced the PS matching analysis from the origi-
nal publication, including the 23 original and omitting 
the remaining five covariates. For all scenarios we used 
greedy nearest neighbour procedure with a caliper of 
width, equal to 0.2 of the standard deviation of the logit of 
the propensity score. Actually, the idea of Dynamic Land-
marking is to measure the balance of omitted covariates; 
however, for a real data set it is also important to check 
the balance of the PS matched covariates. Therefore, we 
present the SSQzDiff in Section “Patients’ characteris-
tics before and after PS matching” for both, included and 
omitted covariates. For better clarity, we introduce a spe-
cial notation to separate included and omitted covariates 
for each scenario: An x/y-scenario describes a scenario 
were ‘x’ covariates are included in the PS model and ‘y’ 
covariates are omitted from the data analysis but are used 
for balance measuring during Dynamic Landmarking. 
Analogously, SSQzDiff (x) /SSQzDiff (y) describes 
the sum of squared z-differences for the (‘x’ included)/
(‘y’ omitted) covariates. Table  1 summarizes the three 
scenarios.

Patients’ characteristics before and after PS matching
Table  2 summarizes the preoperative patient charac-
teristics for each scenario. Unsurprisingly, most of the 
characteristics are extremely imbalanced without PS 
matching (0/28-scenario), as both groups strongly differ 
in their baseline characteristics ( SSQzDiff : - / 6,538.44). 
In the 13/15-scenario, 240 pairs could be matched based 
on the following covariates: gender, weight, euroSCORE 
II, German aortic valve score, STS score, hypertension, 
pulmonary hypertension, stroke, PAOD, cerebrovascu-
lar disease, atrial fibrillation, previous MI, and NYHA 
class. Interestingly, the 13/15-scenario improved the 
balance of both, the included and omitted covariates 
( SSQzDiff : 62.20 / 476.63); however, the balance of the 
included covariates is still unsatisfactory, as the expected 
value for a perfect matching would be 6.5 for 13 matched 
covariates [20]. In the 23/5-scenario we utilized the same 
covariates as in the 13/15-scenario and additionally 
included age, year of surgery, height, LVEF, GFR, previ-
ous aortic valve surgery, diabetes mellitus, COPD, CAD, 
and priority status as covariates in the PS model. This 
resulted in 177 pairs hardly differing in terms of preop-
erative covariates and their balance ( SSQzDiff : 27.14 / 
4.66). It can be seen that the variables that were not used 
for PS matching in the 13/15- and 23/5-scenario never-
theless show a decreasing imbalance. This is due to the Ta
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0/28-model (N = 2536) 13/15-model (N = 480) 23/5-model (N = 354)
Variable MIC-AVR 

(n = 1929)
TA-TAVI
(n = 607)

z-Diff/SMD MIC-AVR 
(n = 240)

TA-TAVI 
(n = 240)

z-Diff/SMD MIC-AVR 
(n = 177)

TA-TAVI 
(n = 177)

z-Diff/
SMD

Female 836 (43.3%) 328 (54.0%) -4.62/-0.21 133 (55.4%) 118 (49.2%) 1.37/0.13 88 (49.7%) 87 (49.2%) -0.11/-0.01
Weight 81.04 

(± 16.12)
73.66 
(± 16.06)

-9.86/-0.45 76.17 
(± 16.11)

76.68 
(± 15.58)

0.35/0.03 76.47 
(± 15.89)

77.17 
(± 14.86)

-0.43/-0.04

euroSCORE II 1.62 (± 1.44) 8.77 (± 8.87) 19.78/1.13 3.87 (± 2.70) 6.80 
(± 11.62)

3.80/0.33 5.42 (± 9.5) 3.58 (± 2.69) 2.48/0.21

German Aortic 
Valve score

1.32 (± 0.73) 3.81 (± 3.38) 18.02/1.02 2.35 (± 1.13) 3.40 (± 4.53) 3.48/0.31 3.26 (± 4.71) 2.32 (± 1.19) 2.59/0.28

STS score 1.84 (± 1.37) 7.56 (± 5.89) 23.73/1.34 4.01 (± 2.17) 5.81 (± 7.25) 3.69/0.31 5.49 (± 7.46) 3.97 (± 2.41) 2.58/0.25
Hypertension 1447 (75.0%) 549 (90.4%) -9.90/-0.42 217 (90.4%) 213 (88.8%) 1.15/0.06 156 (88.1%) 157 (88.7%) 0.17/0.02
Pulmonary 
hypertension

177 (9.2%) 202 (33.3%) -11.9/-0.61 56 (23.3%) 56 (25.3%) 0.00/0.00 42 (23.7%) 42 (23.7%) 0.00/0.00

Stroke 37 (1.9%) 51 (8.4%) -5.55/-0.30 18 (7.5%) 23 (9.6%) -1.56/-0.03 9 (5.1%) 11 (6.2%) 0.46/-0.04
PAOD 60 (3.1%) 193 (31.8%) -14.85/-0.81 38 (15.8%) 40 (16.7%) -0.48/-0.02 30 (16.9%) 26 (14.7%) -0.58/-0.05
Cerebrovascular 
disease

89 (4.6%) 140 (23.1%) -10.39/-0.55 36 (15.0%) 27 (11.3%) 2.47/0.09 22 (12.4%) 30 (16.9%) 1.20/0.11

Atrial fibrillation 36 (1.9%) 167 (27.5%) -13.95/-0.78 26 (10.8%) 33 (13.8%) -1.86/0.07 22 (12.4%) 20 (11.3%) -0.33/0.03
Previous MI 58 (3.0%) 100 (16.5%) -8.66/-0.46 12 (5.0%) 14 (5.8%) -0.78/-0.06 15 (8.5%) 15 (8.5%) 0.00/0.00
NYHA class
I
II
III
IV

219 (11.3%)
983 (51.0%)
700 (36.3%)
27 (1.4%)

20 (3.3%)
174 (28.7%)
345 (56.8%)
68 (11.2%)

-14.34/0.47 6 (2.5%)
97 (40.4%)
119 (49.6%)
18 (7.5%)

12 (5.0%)
79 (32.9%)
131 (54.6%)
18 (7.5%)

-0.72/0.04 12 (6.8%)
58 (32.8%)
97 (54.8%)
10 (5.6%)

6 (3.4%)
73 (41.2%)
86 (48.6%)
12 (6.8%)

-0.44/0.01

Age 67.85 
(± 10.98)

81.28 
(± 6.08)

38.24/1.51 76.78 
(± 6.42)

80.59 
(± 6.07)

6.68/0.61 79.38 
(± 6.46)

78.29 
(± 5.53)

1.71/0.18

Year of surgery
2009
2010
2011
2012
2013
2014
2015
2016
2017

74 (3.8%)
146 (7.6%)
168 (8.7%)
218 (11.3%)
273 (14.2%)
352 (18.3%)
323 (16.7%)
236 (12.2%)
139 (7.2%)

16 (2.6%)
41 (6.8%)
49 (8.1%)
76 (12.5%)
97 (16.0%)
113 (18.6%)
121 (19.9%)
53 (8.7%)
41 (6.8%)

0.10/0.03 4 (1.6%)
22 (9.2%)
23 (9.6%)
27 (11.3%)
29 (12.1%)
51 (21.3%)
38 (15.8%)
31 (12.9%)
15 (6.3%)

9 (3.8%)
11 (4.6%)
20 (8.3%)
28 (11.7%)
42 (17.5%)
48 (20.0%)
56 (23.3%)
12 (5.0%)
14 (5.8%)

0.32/0.18 7 (4.0%)
7 (4.0%)
15 (8.5%)
24 (13.6%)
30 (16.9%)
29(16.4%)
43 (24.3%)
12 (6.8%)
10 (5.6%)

7 (4.0%)
18 (10.2%)
14 (7.9%)
19 (10.7%)
27 (15.3%)
37 (20.9%)
29 (16.4%)
17 (9.6%)
9 (5.1%)

-0.81/0.09

Height 170.53 
(± 9.51)

165.49 
(± 9.45)

-11.45/-0.53 166.75 
(± 9.43)

167.29 
(± 9.67)

0.61/0.06 166.98 
(± 10.07)

167.47 
(± 8.96)

-0.49/-0.05

LVEF 60.94 
(± 9.29)

51.25 
(± 12.16)

-18.03/-089 58.01 
(± 10.23)

53.83 
(± 11.42)

-4.22/-0.39 55.95 
(± 9.93)

56.15 
(± 10.78)

-0.18/-0.02

GFR 78.74 
(± 20.25)

55.83 
(± 22.81)

-22.12/-1.06 60.45 
(± 23.16)

64.64 
(± 20.81)

2.09/0.19 63.78 
(± 22.63)

64.77 
(± 23.43)

-0.41/-0.04

Previous aortic 
valve surgery

1 (0.1%) 13 (2.1%) -3.54/-0.20 1 (0.4%) 3 (1.3%) -1.76/-0.09 1 (0.5%) 1 (0.5%) 0.00/0.00

Diabetes 
mellitus

362 (18.8%) 214 (35.3%) -7.73/-0.38 72 (30.0%) 61 (25.4%) 2.23/0.10 53 (29.9%) 50 (28.2%) -0.35/-0.04

COPD 88 (4.6%) 105 (17.3%) -7.93/-0.47 34 (14.2%) 27 (11.3%) 1.93/0.09 21 (11.8%) 21 (11.8%) 0.00/0.00
CAD
1-vessel
2-vessel
3-vessel

171 (8.9%)
75 (3.9%)
46 (2.4%)

99 (16.3%)
83 (13.7%)
214 (35.3%)

-25.94/-0.22 37 (15.4%)
17 (7.1%)
13 (5.4%)

46 (19.2%)
29 (12.1%)
57 (23.8%)

-6.66/-0.10 27 (15.3%)
20 (11.3%)
32 (18.1%)

32 (18.1%)
20 (11.3%)
24 (13.6%)

-0.67/-0.08

Priority urgent 
(emergency)

9 (0.5%) 14 (2.3%) -2.93/-0.16 3 (1.3%) 8 (3.3%) -2.70/-0.14 5 (2.8%) 3 (1.7%) -0.72/-0.08

MELD-Score 7.54 (± 2.16) 8.27 (± 4.98) -3.51/-0.27 9.41 (± 3.77) 9.75 (± 4.53) -0.87/-0.16 9.69 (± 4.36) 9.05 (± 3.37) 1.50/0.23
Diameter of 
aortic valve

23.47 
(± 1.89)

25.88 
(± 2.07)

-25.52/-1.72 22.79 
(± 1.81)

26.02 
(± 2.06)

-18.24/-2.36 26.04 
(± 2.07)

25.89 
(± 1.83)

0.06/0.11

Drainage 
quantity

420.83 
(± 328.31)

486.38 
(± 429.62)

-2.56/-0.24 458.30 
(± 391.12)

489.45 
(± 415.36)

-0.84/-0.11 462.20 
(± 357.03)

471.13 
(± 366.32)

-0.23/-
0.03

Table 2  Patients’ characteristics (italic numbers are matched characteristic in each scenario)



Page 10 of 15Strobel et al. BMC Medical Research Methodology          (2024) 24:316 

anticipated association between included and omitted 
covariates, which results in a parallel matching also for 
the omitted covariates.

Dynamic Landmarking for scenario I (0/28)
In the first scenario, we applied Dynamic Landmarking 
for the raw model without performing any PS matching 
prior to fitting a univariable Cox model with treatment 
as the only covariate. The results can be found in Fig. 4. 
Not surprisingly, we observe a consistently shifting treat-
ment effect trajectory. Upon analysing the balance of 
the 28 omitted covariates, we notice the very high initial 
values of SSQzDiff  (concrete: 6,538.44). Consequently, 
Dynamic Landmarking indicates that these omitted 
covariates might induce confounding bias. This results 
in a biased treatment effect estimate for this model 
(expressed as a hazard ratio of 6.40) due to confounding. 
One approach to rectify this bias would be to employ a 
PS model, taking into account the omitted covariates, 
before fitting the stratified Cox model.

Dynamic Landmarking for Scenario II (13/15)
After PS matching with 13 covariates, we applied the 
Dynamic Landmarking approach and collected the 
regression parameters to draw a trajectory depending 
on the remaining number of observations (see Fig.  5). 
We still observe a systematic shift in the treatment effect 
estimates, at least for the first 50% of deleted patients, 
and correspondingly a decreasing SSQzDiff during the 
procedure. Therefore, as expected from the simulation 
results, a still biased treatment effect estimate is obtained 
in the 13/15-scenario, pointing to confounding bias 
which is induced by the 15 omitted covariates. We fur-
ther observe that the omitted 15 covariates also improve 
their balance after PS matching, indicating that included 
and omitted covariates are correlated. However, this cor-
relation does not appear to be strong enough to obtain 
a treatment effect that is not influenced by confounding 
bias. Consequently, the user either needs to adjust the 
Cox model for the omitted confounders or must include 
them in the initial PS-matching. Dynamic Landmarking 
should be repeated for the enlarged confounder set to 

Fig. 4  Trajectories of treatment effect (left y-axis, red) on the log(HR) scale and sum of squared z-differences (right y-axis, blue) for Scenario I (0/28)

 

0/28-model (N = 2536) 13/15-model (N = 480) 23/5-model (N = 354)
Variable MIC-AVR 

(n = 1929)
TA-TAVI
(n = 607)

z-Diff/SMD MIC-AVR 
(n = 240)

TA-TAVI 
(n = 240)

z-Diff/SMD MIC-AVR 
(n = 177)

TA-TAVI 
(n = 177)

z-Diff/
SMD

preoperative 
haemoglobin 
level

13.77 
(± 1.51)

12.26 
(± 1.69)

7.27/1.33 12.80 
(± 1.77)

12.46 
(± 1.78)

2.06/0.27 12.5 (± 1.72) 12.77 
(± 1.71)

-1.47/-
0.22

preoperative 
creatinine level

0.99 (± 0.49) 1.45 (± 1.08) -10.92/-0.78 1.34 (± 0.99) 1.14 (± 0.47) 2.74/0.36 1.24 (± 0.85) 1.20 (± 0.85) 0.44/0.07

Table 2  (continued) 
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check whether the treatment effect estimate is still influ-
enced by confounding or built-in selection bias.

Dynamic Landmarking for scenario III (23/5)
In the last scenario, all original 23 confounders were 
included as covariates in the PS model. Dynamic Land-
marking shows a treatment effect trajectory with only 

random fluctuations and no systematic change in the 
SSQzDiff -trajectory (see Fig. 6) in this data set. For bal-
ance fitting we used five additional covariates (MELD-
Score, diameter of aortic valve, drainage quantity, 
haemoglobin and, creatinine level) which were measured 
during the trial, but not included in the original analy-
sis by Furukawa (2018). We observe balanced covariates 

Fig. 6  Trajectories of treatment effect (left y-axis, red) on the log(HR) scale and sum of squared z-differences (right y-axis, blue) for Scenario III (23/5)

 

Fig. 5  Trajectories of treatment effect (left y-axis, red) on the log(HR) scale and sum of squared z-differences (right y-axis, blue) for Scenario II (13/15)
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during the whole Dynamic Landmarking process, which 
indicates that these five covariates do not have a relevant 
impact on the treatment effect estimate. To summarize, 
we would conclude that the estimated treatment effect in 
the 23/5-scenario might not be subject to confounding or 
built-in selection bias, as no systematic shift in the treat-
ment effect estimate can be observed.

Discussion
Dynamic Landmarking can be used in PS matched analy-
sis as a post-hoc diagnosing tool to visualize if the esti-
mated treatment effects from a Cox model thread to 
confounding or built-in selection bias. Furthermore, the 
approach can give a hint on whether prognostic factors 
or confounders have been omitted from the data analy-
sis. Depending on the causal direction of the omitted 
covariate, different issues could arise. While an omitted 
prognostic factor would induce built-in selection bias, 
resulting in a difference between conditional and mar-
ginal treatment effect, the omssion of confounders would 
result in confounding bias. We showed by simulation that 
Dynamic Landmarking indeed is able to visualize and 
distiguish between both issues, at least in case of inde-
pendent omitted covariates. More precisely, both built-in 
selesction bias and confounding bias show systematically 
changing treatment effect trajectories during Dynamic 
Landmarking. Furthermore, omitted confounders tend 
to be heavily unbalanced between the groups yielding 
high initial SSQzDiff - values for the full PS matched 

data set. On the other hand, prognostic are still balanced 
after PS-matching, yielding small SSQzDiff -values at 
the Beginning of Dynamic Landmarking, but showing an 
increasing imbalance for the first 50% of deleted obser-
vations while the procedure continues. This is what pre-
vious work also showed for RCTs [32]. Please note that, 
while an inspection of the initial SSQzDiff -values give a 
first hint on the causal direction of the omitted covariate, 
it is important to consider both. This is because omitted 
instrumental variables (i.e., β U = 0, α U ̸= 0) would 
show high intial SSQzDiff -values. However, in such 
cases the treatment effect trajectory will remain stable 
with only random fluctuations (see supplement, Fig. S11).

For omitted covariates, that were independent from 
included ones, we provide an interpretation- and deci-
sion-scheme for Dynamic Landmarking (see Fig. 7). We 
suggest to analyse the visual output of Dynamic Land-
marking in a two-step-algorithm: First the treatment 
effect trajectory has to be regarded. Only if a systematic 
shift is observed in the treatment effect trajectory the 
SSQzDiff -trajectory should be involved and inter-
preted as mentioned. Moreover, to differentiate correctly 
between built-in selection and confounding bias, the user 
has to run the Dynamic Landmarking with each omitted 
covariate seperatly. Please note, that it might be possible 
to observe a systematically changing treatment effect 
tajectory, but no change in the SSQzDiff -trajectory. In 
such cases we would conclude, that the treatment effect 
still cannot be interpreted as time-invariant effect, but it 

Fig. 7  Interpretation and recommendation for Dynamic Landmarking results under the assumption of uncorrelated omitted covariates. Red boxes are 
related to treatment effect trajectories, blue boxes are related to SSQzDiff -trajectories. Grey boxes give possible interpretations for course of trajecto-
ries and green boxes are recommendations for data analysis
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is not possible to identify omitted covariates causing this 
(e.g., there might be some true unobserved/unmeasured 
confounders or prognostic factors [17, 36] which have to 
be accounted for).

In case the omitted covariate(s) are correlated with 
one or more considered confounders from the PS model, 
confounder bias or built-in selection bias can be mini-
mized [11, 14, 15]. Rubin and Thomas (1996) stated that 
”excluding potentially relevant variables should be done 
only [.] when the excluded variables are highly correlated 
with variables already in the propensity score model” 
[27]. Indeed, recent work found that replacing a highly 
correlated (namely, 0.8) covariate instead of the true con-
founder in the PS model would result in a relative bias 
less than 5% [14]. Due to the correlation, the omitted 
covariate will indirectly accounted for in the PS model. 
This result is reflected in the observed behaviour of the 
SSQzDiff trajectories: The stronger the correlation 
between matched confounder and omitted covariate, the 
more balanced is the omitted covariate – at least at the 
initial state of the Dynamic Landmarking procedure.

The primary focus of Dynamic Landmarking is on 
assessing the estimated treatment effect, which is why 
the treatment effect trajectories should be examined 
first when using this approach. Additionally, it can pro-
vide insights into omitted covariates that might need 
to be included in the analysis. However, the approach 
should not be compared or equated with variable selec-
tion methods. While variable selection aims to iden-
tify an appropriate set of covariates before data analysis 
[e.g. 13, 16] Dynamic Landmarking serves as a post-hoc 
tool to verify whether the model assumptions and corre-
sponding effect estimates are valid. We believe that our 
approach should be viewed as a complement to, rather 
than a replacement for, such analyses.

By our empirical example we showed how induced 
confounder bias impacted both, treatment effect and 
SSQzDiff -values. Indeed, the omission of true con-
founders led to a systematically changing treatment effect 
trajectory and a high intial SSQzDiff - values. Addition-
ally, it is important to note that although the omitted 
confounders are correlated with the matched confound-
ers, this correlation alone is insufficient for obtaining an 
estimate of the treatment effect that is not subject to con-
founding bias, as showed in Fig. 5. In practice, one should 
estimate the PS again, including the omitted confounders 
in the PS model and check by a repeated run of Dynamic 
Landmarking, whether the estimates are still biased 
(results see Fig. 6). Of course, in real life the user would 
not intentionally induce bias by omitting confound-
ers, but would immediately assess a well-specified PS 
model using Dynamic Landmarking. If no constant treat-
ment effect trajectory can be obtained by our approach 
we would conclude, that other assumptions (e.g., real 

unobserved covariates or a time-dependent treatment 
effect) might be an explanation for the systematic shift. 
In that case, a more flexible model, e.g., time-dependent 
propensity score [35] or frailty modelling [36], may be 
used for data analysis.

We have to acknowledge some limitations of our work. 
First, Dynamic landmarking is based on the assumption 
that the conditional treatment (conditional on all rel-
evant prognotic factors) is constant over time, implying 
proportional hazards in the data. If this is true, then the 
method is a good diagnostic tool for identifying whether 
a treatment estimate from the Cox model underlies con-
founding or built-in selection bias. In practice, however, 
time-dependent treatment effects may be observed. 
It is already known that it is not possible to distinguish 
between time-dependent treatment estimates (i.e. non-
proportional hazards) and induced heterogeneity (built-
in selection bias) [4, 10, 24]. In fact, this is also true 
for our method. Therefore, as with other methods, an 
assumption about the true effect (here, being constant 
over time and across the population) has to be made.

Second, the SSQzDiff  is an aggregated balance mea-
sure summarizing the global balance of all omitted 
covariates. We showed that the intial SSQzDiff  can 
be used to distinguish between built-in selection bias 
and confounding bias. We analyzed these two issue by 
separate simulation scenarios. In pratice, however, both 
issue can occur at the same time and consequently the 
SSQzDiff  may be estimated for prognostic factors as 
welll as confounders and summarized in one number. It 
should then be noted that the z-difference of confound-
ers dominates the value of the SSQzDiff , as it is natu-
rally larger than the z-difference of a prognostic factor. 
This can complicate the interpretation of the approach in 
such scenarios. One way to correctly distinguish the two 
effects would be to separately perform Dynamic Land-
marking for each omitted covariate.

Third, we focused here on a specific PS method (PS-
matching). Generally, PS-matching has some limita-
tions per se, which have been discussed previously in 
literature [18, 34] and could also be present in our work. 
Related to that, we believe that recent results for optimal 
and matching weights will lead to increasing use of PS-
weighting techniques at the cost of PS-matching [22, 23]. 
It seems of further interest to investigate how Dynamic 
Landmarking will perform in such situations.

Conclusion
Overall and to summarize, we feel that Dynamic Land-
marking is a good visual tool to verify if a Cox model 
used provides a treatment estimate that is not subject 
to confounding or built-in selection bias in PS matched 
trials. One substantial assumption for a valid interpre-
tation of the resulting hazard ratio is that all relevant 
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confounders are considered and no prognostic factors is 
omitted. In practice, however, it will hardly be possible 
to efficiently collect all covariates, confounders as well 
as prognostic factors. While the literature suggests that 
PS-matching can yield valid results in the presence of 
omitted variables if they are correlated with the matched 
confounders, this assertion is applicable only in cases of 
exceptionally strong correlations, which are uncommon 
in practical scenarios [20]. Furthermore, data collec-
tion often involves gathering more variables than those 
used in the final analysis. The choice of covariates for PS 
matching and subsequent analysis relies on current sci-
entific understanding and clinical expertise, but it is also 
influenced by the researcher. Consequently, there is a 
possibility that omitted covariates, which were measured 
but not considered, may introduce built-in selection bias 
or confounding bias. This is precisely where Dynamic 
Landmarking comes into play, providing an opportunity 
to examine whether (and if so, which) covariates could 
distort the treatment effect estimate.
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