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Abstract 

I 

Abstract 

 

Chemical separation systems are essential across various industries, but they are often highly 

energy intensive. Reducing the energy demand for separation is an important step to lower 

production costs, minimize environmental impacts, and promote the sustainable development 

of separation technologies. The energy efficiency of separation systems depends not only on 

the operating conditions but also on the selection of separating agents used to facilitate the 

separation, such as solvents or adsorbents. Computer-aided molecular and process design 

(CAMPD) can be used to identify the optimal separating agents and operating conditions. 

However, this design method is usually challenging because it often uses nonlinear 

mathematical models to describe the complex overall system. These models must then be 

integrated into an optimization problem, which requires advanced numerical methods to 

maximize the overall performance of the cross-scale system. 

In this dissertation, several data-driven approaches are proposed to accelerate computer-aided 

molecular, material, and process design. These approaches cover various applications for 

efficient separation systems, including optimal molecular design, large-scale material 

screening, process optimization, and integrated molecular/material and process design. 

To accelerate the identification of optimal separating agents, data-driven models are developed 

to predict separation performance based on the properties or structures of the separating agents. 

These models are further used to identify the optimal separating agents through surrogate-based 

optimization or large-scale screening to maximize separation performance in specific 

applications. For molecular discovery, molecular property targeting and molecular mapping 

methods are introduced and demonstrated to be effective for optimal solvent design. For 

materials discovery, two types of machine learning models are developed: an end-to-end model 

for accurate predictions and an interpretable model that provides insights into the predictions. 

Both models are very efficient and suitable for large-scale screening of metal-organic 

frameworks (MOFs) targeting energy-efficient gas separation. 

Furthermore, a data-driven CAMPD approach is proposed to integrate the identification of 

optimal molecules and materials into process optimization. This method combines data-driven 

process models, optimization algorithms, and molecular property targeting for the 

simultaneous design of optimal molecules/materials and process parameters, improving the 
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overall process performance. Taking one step further, Bayesian optimization is integrated into 

the data-driven CAMPD approach to reduce the high data demand typically required for 

accurate surrogate modeling. The resulting BayesCAMPD approach offers a data-efficient and 

closed-loop solution to CAMPD tasks by iteratively performing data-driven modeling, 

surrogate-based optimization, and solution validation. 

The effectiveness of the data-driven approaches proposed in this dissertation is demonstrated 

using two different separation processes, extractive distillation and pressure swing adsorption. 

These approaches are practical and computationally efficient in advancing the development of 

efficient separation systems with broad applications in chemical engineering. 
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Zusammenfassung 

 

Chemische Trennprozesse sind in verschiedenen Industrien wichtig, aber oft sehr 

energieintensiv. Den Energieverbrauch für Stofftrennungen zu reduzieren, ist ein wesentlicher 

Schritt zur Senkung der Produktionskosten und zur Minimierung der Umweltauswirkungen. 

Daher muss eine nachhaltige Entwicklung von energiesparenden Trenntechnologien gefördert 

werden. Die Energieeffizienz von Trennsystemen hängt nicht nur von den 

Betriebsbedingungen ab, sondern auch von der Auswahl der Hilfsstoffe, die zur Erleichterung 

der Trennung eingesetzt werden, z. B. Lösungsmitteln und Adsorbenzien. Mit Hilfe des 

computergestützten Molekül- und Prozessdesigns (CAMPD) können die optimalen Hilfsstoffe 

und Betriebsbedingungen ermitteln werden. Diese Design-Methode ist jedoch oft schwierig, 

da hierbei häufig nichtlineare mathematische Modelle zur Beschreibung des komplexen 

Gesamtsystem verwendet werden und diese Modelle dann auch noch in ein 

Optimierungsproblem integriert werden müssen. Dieses Problem kann nur mit 

fortgeschrittenen numerischen Methoden gelöst werden, um die Gesamtleistung des Systems 

(Molekül/Material/Prozess) skalenübergreifend zu maximieren. 

In der vorliegenden Dissertation werden verschiedene datengetriebene Ansätze vorgeschlagen, 

um das computergestützte Molekül-, Material- und Prozessdesign zu beschleunigen. Diese 

Ansätze decken verschiedene Anwendungen von effiziente Trennsysteme ab, darunter 

optimales Moleküldesign, großangelegtes Material-Screening, Prozessoptimierung und 

integriertes Molekül-/Material- und Prozessdesign. 

Um das Auffinden von optimal geeigneten Molekülen und Materialien zu beschleunigen, 

werden datengetriebene Modelle entwickelt, mit denen man die Trennleistung auf der 

Grundlage der Eigenschaften oder Strukturen der Stofftrenn-Hilfsmittel abschätzen kann. 

Diese Modelle werden weiterhin verwendet, um die optimalen Hilfsstoffe durch Surrogat-

basierte Optimierung oder großangelegtes Screening zu identifizieren, um die Trennleistung in 

spezifischen Anwendungen zu maximieren. Im Bereich der Moleküloptimierung werden die 

Methodiken „Molekül-Eigenschafts-Targeting“ und „Molekül-Mapping“ für ein effizientes 

optimales Lösungsmitteldesign eingeführt und deren Wirksamkeit anhand von Beispielen 

demonstriert. Im Bereich der Materialoptimierung werden zwei Arten von maschinellen 

Lernmodellen entwickelt: ein End-to-End-Modell für akkurate Vorhersagen und ein 
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interpretierbares Modell, welches Einblicke in die Vorhersagen bietet. Beide Modelle sind sehr 

gutgeeignet für das großangelegte Screening von metallorganischen Gerüstmaterialien (MOFs) 

zur energieeffizienten Gastrennung. 

Weiterhin wird ein datengetriebener CAMPD-Ansatz vorgeschlagen, um die Ermittlung 

optimaler Moleküle und Materialien in die Prozessoptimierung zu integrieren. Diese Methode 

kombiniert datengestützte Prozessmodelle, Optimierungsalgorithmen und „Molekül-

Eigenschafts-Targeting“, um gleichzeitig optimale Moleküle/Materialien und 

Prozessparameter zu entwerfen, wodurch die Gesamtleistung des Prozesses verbessert wird. In 

einem weiteren Schritt wird die Bayes’sche Optimierung in den datengestützten CAMPD-

Ansatz integriert, um den oft hohen Datenbedarf für eine genaue Surrogat-Modellierung zu 

reduzieren. Der daraus resultierende BayesCAMPD-Ansatz bietet eine dateneffiziente und 

geschlossene Lösung von CAMPD-Aufgaben, indem er datengestützte Modellierung, 

Surrogat-basierte Optimierung und Lösungsvalidierung iterativ durchführt. 

Die Wirksamkeit der in der Dissertation vorgeschlagenen datengestützten Ansätze werden 

anhand von zwei verschiedenen Trennprozessen, der extraktiven Destillation und der 

Druckwechseladsorption, demonstriert. Sie sind praktisch und rechnerisch effizient bei der 

Entwicklung effizienter Trennsysteme mit breiten Anwendungsmöglichkeiten in der 

chemischen Technik. 
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1 Introduction 

1.1 Motivation and objectives 

Chemical processes are essential across numerous industries, including petrochemicals, 

pharmaceuticals, manufacturing, agriculture, and many others. They enable the transformation 

of energy and raw materials into products important for other industrial sectors and final 

consumers.1 The chemical industry is the largest industrial energy consumer and accounts for 

around one-quarter of total industrial energy consumption. In 2020, it consumed 383 billion 

kilowatt hours, representing more than half of the electricity and heat used by all private 

households in Germany.2 In the chemical industry, the components of large quantities of 

chemical mixtures are separated into purer forms. Such chemical separation processes are 

fundamental but energy intensive, contributing to approximately 10–15% of global energy 

consumption.3 Therefore, reducing energy demand is crucial to lower production costs and 

minimize environmental impacts, promoting the sustainable development of chemical 

industries. This aligns with “Design for Separation” and “Maximize Efficiency” of the 12 

Principles of Green Engineering. 

Over the years, significant efforts have been dedicated to the chemical sector to improve energy 

efficiency, focusing on reducing fuel and power energy consumption. As a matter of fact, a 48% 

reduction in energy consumption has been achieved since 1990.1 Optimizing chemical 

separation processes is a direct way to reduce energy demands and production costs while 

enhancing product quality and system efficiency, resulting in efficient and sustainable 

production. By performing process optimization, the optimal operating conditions such as 

pressure and temperature can be determined. Beyond process optimization, the selection of 

appropriate chemicals is essential for efficient chemical separation processes, as they directly 

affect energy consumption, economic feasibility, and environmental impact. For instance, 

selecting a suitable solvent can significantly reduce separation difficulty, energy demand, and 

solvent usage. This can be systematically achieved through computer-aided molecular design 

(CAMD) to identify the optimal chemicals for specific separation processes. Furthermore, 

integrating process optimization with the selection of chemicals usually leads to enhanced 

energy efficiency, which is achieved through computer-aided molecular and process design 

(CAMPD). CAMPD is an important method in the research and development stage across 

various engineering applications, focusing on the determination of suitable chemicals (such as 
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solvents and adsorbents) and optimal process operating conditions to achieve specific 

objectives such as minimized energy demands or production costs. 

Common CAMPD methods often combine mathematical models and optimization algorithms. 

Mathematical models are used to describe all phenomena relevant to the system under 

investigation, such as thermodynamics, molecular properties, phase equilibrium, conservation 

laws, reaction kinetics, and unit operations, among others. Once the optimization problem is 

formulated with these models, optimization algorithms are used to solve it and identify the best 

solution for specified criteria. However, the complexity of these mathematical models can lead 

to difficulties in solving the optimization problem, requiring sophisticated numerical methods 

and solvers. This is particularly noticeable for large and complex systems, where many 

mathematical models with different levels of nonlinearity and nonconvexity are integrated, 

posing significant computational challenges for optimization. 

Recent advances in data-driven approaches, particularly machine learning (ML), have offered 

promising solutions to various engineering tasks. Leveraging available data and advanced ML 

techniques, data-driven models can be developed to capture the behaviors of complex systems 

and guide their optimization. This has been proven practical in different science and 

engineering applications, such as materials discovery and designs4,5. In addition, these 

strategies are gaining attention in surrogate modeling for complex systems. Surrogate models 

with high computational efficiency are developed to replace complex mathematical models. 

Consequently, the optimization difficulty can be significantly reduced by using these efficient 

surrogate models. 

In the early stage of process development, the focus is primarily on process-level performance 

indicators such as product quality, energy demand, and economic benefit. Equipment- and 

phase-level performance, such as temperature distribution and vapor-liquid equilibrium, can 

be temporarily ignored. Given these, it is often sufficient and more efficient to develop 

surrogate models for the entire system to estimate important process-level performance, rather 

than developing surrogate models for every mathematical model involved. Therefore, data-

driven approaches can be considered effective and efficient for the CAMPD to discover better 

molecules and materials for efficient separation systems and identify optimal operating 

conditions that maximize overall system performance. 
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This dissertation explores the potential of advanced data-driven approaches for Process 

Systems Engineering (PSE) applications, with a particular focus on computer-aided molecular, 

material, and process design, to accelerate the optimal design of efficient separation systems. 

It aims to provide practical data-driven solutions for a broad range of applications in chemical 

and materials engineering, while also offering valuable insights for industrial practices and 

future research in the field. Accordingly, the research strategy will focus on data-driven 

solutions to achieve the following objectives. 

• Optimal molecular design of solvents for extractive distillation. 

• Identification of optimal metal-organic frameworks (MOFs) as adsorbents for gas 

separation. 

• Integrated design of solvents and extractive distillation processes. 

• Integrated design of MOFs and pressure swing adsorption processes. 

1.2 Outline 

Chapter 2 provides an overview of the research fundamentals related to molecular design, 

materials discovery, and process optimization in separation systems. It also introduces 

computational techniques such as data-driven modeling, mathematical optimization, and 

Bayesian optimization. 

Part I (Chapters 3 and 4) focuses on molecular discovery. Chapter 3 introduces molecular 

property targeting and molecular mapping techniques for optimal molecular design and 

demonstrates their effectiveness through the optimal design of solvents for extractive 

distillation. Chapter 4 introduces a data-driven CAMPD approach that incorporates the 

molecular property targeting technique for efficient integrated molecular and process design. 

Additionally, Bayesian optimization is integrated to improve the CAMPD approach by 

reducing data demand for accurate surrogate modeling. Both data-driven CAMPD approaches 

are demonstrated by the integrated design of solvents and extractive distillation processes. 

Part II (Chapters 5 and 6) focuses on materials discovery. Chapter 5 develops two types of 

machine learning models for the identification of optimal MOFs. Both approaches are 

demonstrated efficient for large-scale adsorbent screening targeting energy-efficient gas 

separation. Chapter 6 integrates MOF selection with process optimization. Both simulation-
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based and data-driven optimization approaches are conducted for selecting suitable adsorbents 

and designing efficient pressure swing adsorption systems. 

Chapter 7 concludes the dissertation by summarizing its contributions and suggesting 

directions for future research. 

Figure 1-1 illustrates the sequence and interrelations among the four chapters that constitute 

the original contributions of this dissertation (Chapters 3–6). 

 

Figure 1-1. Schematic outline of the dissertation. 

 

Some results and parts of this dissertation have been published6-9 or are intended for future 

publication and, therefore, will not be explicitly cited within this dissertation. The main content 

of Chapters 3–6 is primarily based on the following works. 

• Wang Z, Zhou T, Sundmacher K. Data-driven integrated design of solvents and 

extractive distillation processes. AIChE Journal. 2023; 69(12): e18236 

• Wang Z, Zhou Y, Zhou T, Sundmacher K. Identification of optimal metal–organic 

frameworks by machine learning: Structure decomposition, feature integration, and 

predictive modeling. Computers & Chemical Engineering. 2022; 160: 107739. 
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• Wang Z, Zhou T, Sundmacher K. Interpretable machine learning for accelerating the 

discovery of metal–organic frameworks for ethane/ethylene separation. Chemical 

Engineering Journal. 2022; 444: 136651. 

• Wang Z, Zhou T, Sundmacher K. Molecular property targeting for optimal solvent 

design in extractive distillation processes. In: Kokossis AC, Georgiadis MC, 

Pistikopoulos E, eds. Computer Aided Chemical Engineering. Elsevier; 2023: 1247–

1252. 

• Wang Z, Zhou T, Sundmacher K. BayesCAMPD: Data-efficient and closed-loop 

integrated molecular and process design using Bayesian optimization. To be submitted. 

• Wang Z, Zhou T, Sundmacher K. Integrated adsorbent selection and process design: 

Simulation-based and data-driven optimization approaches. To be submitted. 
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2 Fundamentals 

2.1 Separation processes 

In chemical production systems, one of the major tasks is separating large quantities of 

chemical mixtures into pure components. Chemical separation processes such as distillation, 

drying, and evaporation, are typically the most energy-requiring operations in chemical and 

petroleum refining industries, accounting for about half of US industrial energy use and 10–

15% of the nation’s total energy consumption.3 Reducing the energy demand of separation 

processes is a pivotal step to lower production costs and minimize environmental impacts, 

promoting the sustainable development of chemical production systems. 

2.1.1 Extractive distillation 

Distillation is the process of separating components of a liquid mixture by successive 

evaporation and condensation according to their different boiling points. It is one of the most 

widely used separation techniques in various industrial applications, such as oil refineries, 

petrochemical plants, and natural gas processing facilities.10 However, it is the major energy-

intensive separation process as 49% of the energy consumed in separation processes is used for 

distillation.3 

For components with high relative volatility, distillation is the preferred separation process due 

to the ease of achieving high purity. However, for mixtures with close boiling points (such as 

C4, C5, and C6 hydrocarbons) or mixtures that form azeotropes (such as ethanol/water and 

acetone/methanol), the separation by conventional distillation processes becomes challenging 

and energy intensive. In such cases, alternative techniques such as extractive distillation are 

considered effective in facilitating separation and reducing energy consumption. 

In extractive distillation, a suitable solvent that interacts with a preferred affinity for one of the 

components is introduced to alter the relative volatility of mixtures being separated, allowing 

for efficient separation through regular distillation.11,12 Extractive distillation has been widely 

applied in the petrochemical and pharmaceutical industry for difficult-to-separate mixtures 

such as acetone/methanol13-16 and ethanol/water17-20. In general, for a binary mixture, the ED 

process consists of two columns, i.e., an extractive distillation column (EDC) and a solvent 

recovery column (SRC). In the EDC, solvent is fed to the upper part. One of the components 

is purified and obtained in the distillate, and the other is withdrawn with the solvent from the 
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bottom. The bottom product is then taken to the SRC, in which the other component is obtained 

in the distillate, and the solvent is recovered and recycled from the bottom (Figure 2-1). 

 

Figure 2-1. ED process for separating close-boiling or azeotropic mixtures. 

2.1.2 Pressure swing adsorption 

Separating and purifying gas mixtures are critical across various industries. Pressure swing 

adsorption (PSA) is a versatile technique that leverages the varying affinities of different gases 

for a specific adsorbent material.21 By manipulating operating pressures, PSA efficiently 

separates the desired gas component through concessive adsorption and desorption. 

PSA can efficiently produce high-purity gases and can be tailored for the separation of various 

gas mixtures depending on the chosen adsorbent. Selective adsorbent materials (e.g., activated 

carbon, zeolites, etc.) are used to preferentially adsorb the target or undesired gas species at 

high pressures. The PSA system then swings to a lower pressure to release the adsorbed gas. 

For example, PSA can be used to produce high-purity oxygen from air.22,23 Specifically, air is 

fed into a vessel containing adsorbents that preferentially adsorb nitrogen over oxygen, 

allowing pure oxygen to be produced. Once the adsorbent reaches its adsorption capacity, it 

can be regenerated by decreasing the pressure, thus releasing the adsorbed nitrogen. 

PSA has numerous applications beyond oxygen production, such as industrial production of 

high-purity nitrogen24,25, removal of carbon dioxide in hydrogen manufactured by natural gas 

reforming26-28, and separation of carbon dioxide in biogas upgrading29-31. Moreover, in the 

frame of carbon capture and storage, active research is underway to explore PSA for capturing 

CO2 from power plants to mitigate greenhouse gas emissions.32-34 

Compared to cryogenic distillation, PSA systems are energy-efficient because they operate at 

near-ambient temperatures. The industrial separation of olefins from paraffins for light 
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hydrocarbons typically relies on high-pressure cryogenic distillation at low temperatures, 

which requires significant energy input from refrigeration systems.3,35 In such cases, PSA 

systems can be considered an energy-efficient solution. 

 

Figure 2-2. VPSA process for gas separation. 

 

Vacuum pressure swing adsorption (VPSA) is a variation of PSA technology, where the 

adsorption step is performed at pressures higher than ambient and the desorption is achieved 

under vacuum. VPSA processes have superior regeneration effects and high product recovery 

rates. A PVSA cycle typically consists of four steps: pressurization, adsorption, blowdown, 

and evacuation/desorption (Figure 2-2). 

Taking N2/CO2 separation with CO2-selective adsorbents as an example, the cycle operates as 

follows: 

• Pressurization. The adsorption column begins at the low pressure (desorption pressure, 

PL). Pressurized feed is used to raise the pressure of the column from PL to high pressure 

(adsorption pressure, PH). 

• Adsorption. Once the column is pressurized, the valve at the end of the column is opened 

and the pressurized feed flows through the column. CO2 is adsorbed and N2 exits from 

the end. 

• Blowdown. Once the column has become saturated with CO2, the inlet valve is closed, 

and the column is depressurized by opening the valve at the end of the column. 

• Evacuation. After the column is depressurized, the valve at the front end is opened while 

the valve at the end of the column is closed. CO2 is recovered by decreasing the pressure 

to vacuum. Once the CO2 is removed, the adsorption column is ready for the next cycle. 
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2.2 Separating agents 

In chemical separation processes, a mass separating agent is a chemical added to facilitate the 

separation of desired components, resulting in reduced energy consumption, improved product 

purity, or relaxed experimental conditions. The selection of a separating agent is critical for the 

separation process as it directly influences the separation efficiency, economic viability, and 

environmental impact. 

2.2.1 Organic solvent 

Organic solvents are versatile chemicals widely used across numerous scientific disciplines 

and industries due to their ability to dissolve a vast array of substances. Their applications 

include dissolving reactants to facilitate reactions, extracting valuable components from natural 

resources, and purifying solid compounds through recrystallization among others.36-41 In 

extractive distillation, an organic solvent is commonly used to alter the relative volatility of 

close-boiling or azeotropic mixtures to be separated, allowing for improved separation 

efficiency and reduced energy consumption. 

The selection of solvent is key for the viability of an extractive distillation process, and 

therefore, different aspects should be considered for the selection of a suitable solvent.11,12 First, 

the solvent should be able to manipulate the relative volatility of components to be separated. 

For instance, the solvent should have a high selectivity, i.e., preferential interaction with one 

component over the other in terms of a binary mixture. Second, it is essential that the solvent 

can be recovered easily to recycle the solvent back to the extractive distillation column. That 

is to say, the solvent should have a high relative volatility with the preferentially interacting 

compound. Third, often but not exclusively, the introduced solvent should not form an 

azeotrope with the components to be separated. Additionally, other properties of the solvent 

also influence the separation performance. For instance, low heat capacity and enthalpy of 

vaporization can reduce energy demand. Environmental, health, and safety impacts can be 

considered to improve sustainability. 

In addition to organic solvents, other types of separating agents such as ionic liquids, deep 

eutectic solvents, and mixtures of different solvents are increasingly being explored for 

efficient extractive distillation. Further comprehensive introductions of these advanced 

solvents can be found in recent works and reviews.42-44 
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2.2.2 Metal-organic framework 

Metal-organic frameworks (MOFs) have emerged as an extensive class of crystalline materials, 

due to their large surface area, high porosity, and customizable functionality.45 These 

characteristics make MOFs highly versatile for a wide range of potential applications in gas 

separation, gas storage, catalysis, and beyond.46-52 Their modular building blocks (i.e., metal 

nodes and organic linkers) enable the tailoring of MOF structures with desirable properties for 

specific applications. This has been confirmed by the successful synthesis of tens of thousands 

of novel MOFs over the past decade.53,54 For instance, a new MOF structure called CALF-20 

is reported as a promising adsorbent for industrial-scale CO2 capture, because of its high CO2 

adsorption capacity, high CO2 selectivity over N2, and stability during adsorption-desorption 

cycles.55 

Compared to traditional adsorbents such as activated carbon and zeolites, MOFs offer several 

key advantages, including exceptional surface area, diverse structures, and tunable pore 

structure and functionality.56 This translates to highly selective adsorption, allowing them to 

capture desired molecules while excluding undesired ones. Additionally, the enhanced 

adsorption capacity can significantly improve efficiency and productivity in large-scale 

separation processes. Despite these attractive features, some challenges remain. Stability has 

been considered an important factor limiting their applicability. MOFs can be susceptible to 

degradation under certain conditions, such as exposure to moisture, high temperatures, or 

specific chemicals.57 Moreover, scalability and cost-effectiveness are major concerns, as large-

scale production for industrial applications can be difficult and expensive. However, the 

potential benefits of MOFs make them a highly promising area of research with the potential 

to revolutionize various adsorption applications. Researchers are actively working to overcome 

these challenges to unlock the full potential of MOFs for large-scale industrial applications. 

In addition to MOFs, other types of adsorbents such as covalent organic frameworks and 

composites of different porous materials are increasingly being explored for efficient 

adsorption. Further comprehensive introductions of these advanced adsorbents can be found in 

recent works and reviews.58-60 

2.3 Computer-aided molecular and process design 

In the past, most separating agents such as solvents and adsorbents used in the chemical 

industry were not systematically selected or designed, primarily depending on domain 
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knowledge and expert experience.61 Thus, these separating agents may not be the optimal 

candidates to meet the separation requirements. In this context, identifying better alternatives 

through systematic screening or design strategies can improve energy efficiency of separation 

processes, and therefore, reduce emissions and pollution. 

Computer-aided molecular design (CAMD) offers a promising approach for the systematic 

selection and design of solvents that fulfill a set of target molecular properties or process 

performance indicators.62-64 By leveraging modern molecular property models and process 

models, CAMD methods have been widely used to design solvents for various applications, 

including gas absorption65, liquid-liquid extraction66,67, chemical reaction68-71, and extractive 

distillation72-74 among others74-76. 

While many CAMD studies endeavor to discover chemicals with the ultimate goal of being 

incorporated into industrial processes, few have explicitly considered the complex relationship 

between a particular molecule and the process.77,78 This relationship unfortunately is essential 

since process performance is often highly sensitive to the chosen molecule. For separation 

processes such as extraction, crystallization, and adsorption, their feasibility and efficiency are 

highly dependent on not only the process operating conditions, but also the selection of 

separating agents.63,79-81 Taking their interplay into account, the selection of separating agents 

and optimization of separation processes should be carried out simultaneously. Therefore, the 

process design needs to be integrated into the CAMD for efficient separation. This integrated 

approach is known as computer-aided molecular and process design (CAMPD), where 

molecules and processes are optimized simultaneously to improve the overall process 

performance. Different CAMPD approaches have been successfully applied to a wide range of 

processes, such as liquid-liquid extraction82-84, gas absorption85-87, pressure swing 

adsorption88,89, extractive distillation90, and chemical reaction91-93. 

2.4 Computational techniques 

2.4.1 Data-driven modeling 

Mathematical models are fundamental to the simulation, optimization, and control of chemical 

processes.94,95 Accurate modeling and simulation of processes usually benefit from the 

increasing complexity of underlying models, which also leads to increased computational 

demands in applications such as process optimization.96 To address this challenge, different 
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strategies such as surrogate modeling have been developed to replace complex models, thereby 

reducing the computational effort in function evaluation and model-based optimization.97,98 

With the continuous advances in artificial intelligence and related subjects (e.g., machine 

learning, data science, and digitalization), data-driven techniques are transforming and 

revolutionizing both fundamental research and industrial practices across various disciplines.99-

103 In recent years, data-driven modeling has received substantial attention for its ability to 

effectively handle large datasets and approximate complex systems96,102,104,105, providing 

practical solutions for a wide range of applications106-114. 

Data-driven modeling creates shortcut models for complex systems that are computationally 

expensive or unknown. In chemical and process engineering, data-driven models are usually 

built based on Kriging98,107,113,115 and artificial neural networks (ANNs)108,116-119, and they are 

subsequently used to replace the original physics-based models to alleviate computational 

burdens in process optimization. Some examples of applications in engineering fields include 

optimization of distillation columns98,107, optimization of carbon fiber production plant120, and 

control of pharmaceutical manufacturing system121. These studies demonstrate that data-driven 

models enable computationally efficient optimizations. Overall, data-driven modeling has been 

recognized as an emerging tool to build surrogate models (with high accuracy and low 

complexity) to capture the behavior of complex systems, enabling the efficient design and 

optimization of chemical processes. 

2.4.2 Mathematical optimization 

Mathematical optimization involves finding the best solution from all possible solutions to 

maximize or minimize a function. In terms of a function f defined on a domain X, the goal of 

optimization (in the case of minimization problems) is to systematically search the domain for 

a point 𝒙∗ ∈ 𝑋 such that 𝑓(𝒙∗) ≤ 𝑓(𝑥) for all 𝒙 ∈ 𝑋. Typically, X is a subset of the Euclidean 

space ℝ𝑛 , often constrained by a set of conditions that elements of X have to satisfy. The 

domain X is known as the search space, and the elements of X are called candidate solutions. 

The function f is called the objective function, and a feasible solution that minimizes the 

objective function is the optimal solution. 

In general, three key components are integrated when formulating an optimization problem: 

objective function, decision variable, and constraint. Formulating an optimization problem 

involves translating a real-world problem into the mathematical equations and variables 



2 Fundamentals 

13 

comprising these three components. The objective function f is the function to be optimized 

(minimized or maximized). The decision variables, often denoted as the vector x, are the 

unknown and controllable parameters that need to be adjusted to optimize the objective 

function. These variables can be discrete or continuous. Constraints define the feasible region 

within which the optimization algorithm must search for the optimal solution, limiting the 

possible values for the decision variables. Constraints can be divided into two categories: 

equality constraint h and inequality constraint g. 

An optimization problem (for minimization) can be generally formulated as: 

 min 
𝒙

𝑓(𝒙) 

s.t. ℎ(𝒙) = 0 

 𝑔(𝒙) ≤ 0 

 𝒙 ∈ ℝ𝑛 

The objective function is optimized with respect to decision variables in the presence of 

constraints on those variables. If an optimization problem involves more than one objective 

function to be optimized simultaneously, it is called multi-objective optimization. These 

objectives usually conflict with each other. For example, in terms of materials for Aerospace 

engineering, one might want to minimize both cost and weight while maximizing strength. 

Since improving one objective often degrades at least one of the other objectives, trade-offs 

can be identified, leading to a Pareto set of optimal solutions. All these Pareto optimal solutions 

are considered equally good. To solve multi-objective optimization problems, various 

algorithms are available, such as linear scalarization, epsilon-constraint method, and 

evolutionary algorithms.122 

Optimization problems arise in various applications across different fields. In chemical 

production systems, process optimization is regularly applied to identify the operating 

conditions that maximize process efficiency and productivity under given product quality 

constraints. First, mathematical models of the process are developed and validated using 

experimental data. These models are then used as in silico representation of the process, 

allowing for the determination of optimal operating conditions using either derivative-based or 

derivative-free algorithms.123 
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2.4.3 Bayesian optimization 

Bayesian optimization is a sequential design strategy used to optimize expensive-to-evaluate 

functions.124,125 Unlike classical optimization techniques, Bayesian optimization routines rely 

on a statistical model that approximates the function of interest, guiding the algorithm to make 

the most informed decisions.126 This model is computationally cheaper to evaluate than the 

actual objective function and can efficiently direct the search for the optimal solution. Bayesian 

optimization can deliver impressive performance even when optimizing complex functions 

under limited evaluation budgets. 

One of the key advantages of Bayesian optimization is that it does not require the objective 

function to have a known mathematical form. Instead, it considers the objective function as a 

black box, requiring only measurements at selected points on demand.126 In Bayesian 

optimization, the unknown objective function is treated as a random function, and a prior 

(usually a Gaussian process model) is placed over it. The optimization process follows three 

main steps. Modeling: Using the available data (i.e., initial observations of the objective 

function), the prior is updated to form the posterior distribution (i.e., Gaussian process model 

trained with the initial dataset) over the objective function. Optimization: The posterior 

distribution, in turn, is used to construct an acquisition function, which is used to determine the 

point to make the next observation (i.e., the optimal solution for the objective function) by 

using mathematical optimization techniques. Validation: After the objective function at the 

suggested point is validated, the newly observed information is added to the dataset to update 

the posterior. This modeling-optimization-validation procedure iterates until the termination 

condition is reached (e.g., budget exhausted). In general, Bayesian optimization can efficiently 

explore the search space and identify the optimum for the objective function being studied. 

In the context of data-driven modeling for complex systems, developing sufficiently accurate 

surrogate models to describe system behaviors often necessitates extensive data covering the 

entire region of interest (e.g., the operation window of a separation unit in a chemical 

process).116 However, obtaining such data can be resource-intensive. Due to the limited data 

and high dimensionality encountered in engineering design tasks, constructing a globally valid 

approximation model remains difficult. For such situations, data-efficient approaches are of 

great importance in alleviating the burden of data collection, where Bayesian optimization can 

stand out. 
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As a data-efficient optimization method, Bayesian optimization is particularly advantageous 

for high-dimensional optimization problems where the objective function is difficult or 

expensive to evaluate. Evidenced by successful applications in reaction condition 

optimization127-130, materials discovery131-134, and reactor design135,136, Bayesian optimization 

exhibits remarkable advantages in achieving state-of-the-art performance with minimal 

experimental or computational costs, making it a valuable tool for complex, high-dimensional 

optimization problems in engineering and scientific research. 
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3 Optimal Solvent Design for Extractive Distillation 

Processes 

 

This chapter introduces molecular property targeting and molecular mapping techniques for 

optimal molecular design. They are developed based on the continuous-molecular-targeting 

(CoMT) approach137, which considers a continuous molecular structure space in terms of 

property-related parameters. Characterizing molecular structures by molecular properties, the 

molecular property targeting and molecular mapping approaches circumvent discrete 

molecular decisions in the optimal molecular design. 

In this chapter, solvents are optimally designed for extractive distillation (ED) processes by 

directly targeting desirable molecular properties. First, data-driven process models are 

established to estimate key performance indicators of the ED process with the most important 

process-relevant properties of the solvent. Subsequently, solvent design is performed in two 

steps: molecular property targeting and molecular mapping. In the first step, optimal molecular 

properties are obtained from model-based optimization, and hypothetical target molecules 

featuring the desirable properties are thereby generated. In the subsequent step, real solvents 

that approximate the optimal property profiles of hypothetical molecules are identified from a 

real solvent database. 

The proposed molecular property targeting approach is illustrated using an industrially relevant 

case: the separation of the close-boiling mixture 1,3-butadiene/1-butene (C4H6/C4H8), as 

introduced in Appendix A. 

3.1 Data-driven process modeling 

To efficiently evaluate the performance of solvents in separation systems, process models that 

reflect the impact of solvents on the process performance are required. Such models can also 

be used for the optimal design of solvents to discover better alternatives that present improved 

process performance while satisfying desired separation requirements. 

Mechanistic models across different levels of separation systems (molecular interaction, 

thermodynamics, phase equilibrium, mass and energy transfer, etc.) are commonly used to 

provide insights for simulation and optimization purposes. In a data-driven manner, efficient 
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process surrogate models can be built to directly link solvents to their corresponding process 

performance indicators, achieving efficient process evaluation and optimization (Figure 3-1). 

Such models can direct the design of solvents by identifying the optimal values of molecular 

properties that maximize the process performance. For the C4H6/C4H8 separation, N-methyl-2-

pyrrolidone (NMP) is recognized as a benchmark solvent since it is commercially used in 

butadiene extraction processes.138-140 The optimal operating conditions are pre-determined by 

process optimization using NPM as the solvent. Subsequently, under these operating conditions, 

the optimal solvent design is carried out. Thus, it can be considered as the search for potentially 

better alternatives to the industrially used solvent NMP for butadiene extraction. For 

simplification, in this chapter, only the extractive distillation column (EDC) is considered to 

demonstrate the molecular property targeting method for the optimal solvent design. The entire 

ED process consisting of EDC and solvent recovery column (SRC) are further considered in 

the CAMPD in Chapter 4. 

 

Figure 3-1. Data-driven modeling of the ED process for the optimal solvent design. 

 

Taking advantage of the CoMT method141, discrete molecular decision variables are 

circumvented by defining a hypothetical molecule that is represented by continuous parameters, 

i.e., process-relevant molecular properties. Five molecular properties are considered, including 

selectivity at infinite dilution, molar heat capacity, molecular weight, density, and viscosity. 

Selectivity at infinite dilution (S) is used to describe the capability of solvents in purifying 

C4H8 in the EDC. The selectivity of C4H6 over C4H8 at infinite dilution is expressed as, 
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𝑆C4H6/C4H8

∞ =
𝛾C4H8

∞

𝛾C4H6
∞   

where γ is the infinite dilution activity coefficient. It is calculated at 25 °C in this case. 

Molar heat capacity (Cp) reflects the energy demand in heating the solvent-contained mixtures. 

It is calculated at 25 °C and 1 bar in this case. Molecular weight (MW) is easy to obtain and 

can characterize the boiling point of the solvent to a large extent. Moreover, density () and 

viscosity () are considered because they affect the transport of materials in the system. Both 

are calculated at 25 °C and 1 bar in this case. 

The dataset for data-driven modeling contains input-output pairs for 126 organic solvents 

selected from the Aspen Plus component database142. The inputs are the aforementioned five 

process-relevant molecular properties of the solvent. The outputs are the key performance 

indicators of the ED process, including product purity (C4H8 purity of the EDC distillate, xC4H8) 

and energy demand (described by EDC reboiler heat duty, QEDC). The dataset is generated by 

rigorous process simulation in Aspen Plus based on the UNIFAC thermodynamic model. It is 

randomly divided into two sets, i.e., a training set (80%) for model development and a test set 

(20%) for model evaluation. Feature scaling is applied to the input space using z-score 

normalization. 

Table 3-1. Hyperparameters and corresponding options for hyperparameter optimization. 

Hyperparameter Options 

The number of hidden layers (NHL) 1, 2 

The number of neurons in each hidden layer (NHN) [1, 4] 

Activation function ELU, Sigmoid, Softplus, Tanh 

 

Feedforward neural network (FNN), the most straightforward type of artificial neural networks, 

is used to build the data-driven process model and implemented using PyTorch143. To constrain 

model complexity and reduce overfitting, the FNN has up to two hidden layers with a 

maximum of four neurons in each layer subject to hyperparameter optimization. Different types 

of non-linear activation functions are considered, including exponential linear unit (ELU), 

Sigmoid, Softplus, and hyperbolic tangent (Tanh).144 To determine the optimal FNN 

architectures for data-driven process models, five-fold cross-validation is performed for the 
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optimization of hyperparameters. Hyperparameters and their corresponding options are 

provided in Table 3-1. 

Table 3-2. Optimal hyperparameter settings. 

Model NHL NHN Activation function 

xC4H8 1 2 Sigmoid 

QEDC 1 4 Softplus 

 

With the optimal FNN hyperparameters identified by the five-fold cross-validation (Table 3-2), 

process models are developed using the training data and evaluated using the test data. The 

process performance of each solvent is predicted using five models derived from the five-fold 

cross-validation, and the point and the error bar in Figure 3-2 show the average and standard 

deviation of these predictions, respectively. As they present satisfactory accuracy in the 

prediction of C4H8 purity and reboiler heat duty, the data-driven models are subsequently used 

for the optimal solvent design. 

 

Figure 3-2. Performance of the data-driven models for (A) C4H8 purity and (B) reboiler heat duty. 

3.2 Molecular property targeting 

Based on the developed data-driven models, a multi-objective optimization problem is 

formulated to maximize the C4H8 purity while minimizing the heat duty, as follows: 

 min 
𝒚

(1 − 𝑓C4H8(𝒚), 𝑓𝑄(𝒚)) 

s.t. 𝒚𝐿 ≤ 𝒚 ≤ 𝒚𝑈 
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where fC4H8 and fQ are the data-driven models for the estimation of C4H8 purity and reboiler 

heat duty, respectively, y is the molecular property space, and L and U denote the lower and 

upper bounds. Box constraints are set on each variable based on the corresponding minimum 

and maximum values from the dataset. The lower and upper bounds of each molecular decision 

variable are summarized in Table 3-3. 

Table 3-3. Upper and lower bounds of molecular decision variables. 

Variable Symbol Unit Lower bound Upper bound 

Selectivity at infinite dilution S – 0.844 1.642 

Molar heat capacity Cp J/(mol·K) 114.7 395.5 

Molecular weight MW g/mol 71.12 172.27 

Density  kg/m3 701 1618 

Viscosity  mPa·s 0.23 8.43 

 

The multi-objective optimization problem is solved using the non-dominated sorting genetic 

algorithm (NSGA-II)145 implemented in Pymoo146. With a population size of 100, the 

optimization converges in 100 generations, obtaining a set of Pareto-optimal solutions (i.e., 

hypothetical target solvent molecules). The hypothetical molecules are considered to be the 

optimal solutions in the design space. Figure 3-3 depicts the objective function values for the 

hypothetical target molecules featuring optimal molecular properties. Z-score normalization is 

applied to the heat duty (i.e., objective function 2) so that the magnitudes of two objective 

functions are comparable. 

 

Figure 3-3. Multi-objective optimization results for the optimal solvent design. 
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3.3 Molecular mapping 

With the industrially used solvent NMP as the benchmark, the target is to find better solvent 

alternatives that allow for a higher C4H8 purity and a lower reboiler heat duty under the given 

operating conditions. Figure 3-4 shows the estimated process performance for hypothetical 

molecules (in gray) and benchmark solvent NMP (in green). The hypothetical molecules are 

closer to the ideal point than NMP, demonstrating that the molecular property targeting step 

successfully identifies better solutions. 

 

Figure 3-4. Process performance estimated by the data-driven models for hypothetical molecules, 

NMP, and real solvent candidates. 

 

In the molecular mapping step, the hypothetical target molecules obtained from the molecular 

property targeting are mapped into real solvents. The molecular mapping is performed by 

searching a large database consisting of 1259 real solvents, which is derived from the Aspen 

Plus component database142 with the exclusion of solvents used in the development of data-

driven models. A preliminary criterion to find the real solvents closest to the hypothetical target 

molecules is based on the Euclidean distance in the molecular property space. Thereby, optimal 

real solvents that approximate the optimal property values are identified. 

Nineteen solvent candidates are obtained from the molecular mapping. Their estimated process 

performance is also presented in Figure 3-4. It is observed that two solvent candidates are 

closer to the ideal point than the hypothetical molecules. Therefore, they could in principle 

show better process performance than the hypothetical molecules. A detailed simulation of the 

ED process on the 19 solvent candidates proves that 16 of them are technically viable to achieve 

the separation of C4H6/C4H8. Among them, nine solvents present decreased reboiler heat duty 

yet lower C4H8 purity compared to NMP under the identical operating conditions. Besides, 
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three solvents, methyl cyanoacetate, glutaronitrile, and 1,4-dicyano-2-butene (blue dots from 

bottom to top in the green area of Figure 3-5), are better alternatives to the benchmark solvent 

NMP, because they allow for a higher product purity and lower energy demand under the 

specified operating conditions. Vertical and horizontal lines in green represent the C4H8 purity 

and heat duty achieved by the benchmark solvent. 

 

Figure 3-5. Process performance evaluated via rigorous process simulation. 

 

Table 3-4. Molecular properties and the corresponding process performance of the solvents. 

Solvent NMP Methyl cyanoacetate Glutaronitrile 1,4-Dicyano-2-butene 

CAS number 872-50-4 105-34-0 544-13-8 18715-38-3 

Molecular formula C5H9NO C4H5NO2 C5H6N2 C6H6N2 

S 1.642 1.753 1.666 1.689 

MW (g/mol) 99.13 99.09 94.12 106.13 

 (kg/m3) 1027 1117 983 1002 

Cp (J/(mol⋅K)) 161.7 192.5 191.0 200.9 

 (mPa·s) 1.89 2.82 6.17 7.13 

xC4H8 0.9904 0.9965 0.9960 0.9972 

QEDC (MW) 5.059 4.198 4.394 4.761 

 

For the three solvent candidates, their molecular properties and corresponding process 

performance are summarized in Table 3-4. These solvent candidates have similar molecular 

properties (except for viscosity) to the benchmark solvent NMP. A correlation analysis 

performed on the dataset indicates that a solvent with a higher selectivity at infinite dilution 
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could lead to a higher C4H8 purity. This can also be inferred from Table 3-4. All three solvent 

candidates have higher selectivity and higher C4H8 purity than NMP. Therefore, the infinite 

dilution selectivity of the solvent can be considered a vital property in designing solvents for 

energy-efficient separation of C4H8 and C4H6. 
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4 Integrated Design of Solvents and Extractive 

Distillation Processes 

 

Chapter 3 presents a data-driven CAMD approach focusing on the optimal solvent design 

under specified process operating conditions. However, process optimization is not considered 

to identify the optimal operating conditions that maximize process performance for the optimal 

solvent. Therefore, in this chapter, two data-driven CAMPD approaches are introduced to 

integrate molecular and process design, aiming to determine both the optimal molecules and 

the operating conditions simultaneously. 

In Section 4.1, an efficient CAMPD approach is proposed for integrated molecular and process 

design using data-driven modeling. Data-driven process surrogates are developed to directly 

estimate key process performance indicators based on solvent properties and process operating 

parameters. Surrogate-based optimization is then employed to enhance process performance, 

through which optimal solvent properties and corresponding process parameters are obtained. 

Real solvents that approximate these optimal properties are subsequently identified from a 

large solvent database. Finally, the performance of the optimal solvent and corresponding 

process parameters is validated by rigorous process simulations. 

To reduce data demand and improve the CAMPD efficiency further, BayesCAMPD approach 

is proposed in Section 4.2 for the integrated molecular and process design using Bayesian 

optimization. This approach offers a data-efficient and closed-loop solution for data-driven 

CAMPD, enabled by an iterative process of data-driven modeling, model-based optimization, 

and solution validation. By inferring from observed data, BayesCAMPD continuously suggests 

and validates promising molecular and process settings until convergence. 

Both data-driven CAMPD approaches are illustrated by the separation of 1,3-butadiene/1-

butene (C4H6/C4H8) using extractive distillation, which is the same case considered for the 

data-driven CAMD approach as discussed in Chapter 3. 

4.1 Data-driven integrated molecular and process design 

In CAMPD, solvent physical properties and process parameters are optimized simultaneously 

to maximize the overall process performance. Taking advantage of the CoMT method137, 



4 Integrated Design of Solvents and Extractive Distillation Processes 

26 

discrete molecular decision variables are circumvented by defining a hypothetical molecule 

that is represented by continuous parameters, i.e., molecular physical properties. 

In a data-driven manner, process models are built to directly link both solvent properties and 

process parameters with their corresponding process performance (Figure 4-1). Using such 

models, the CAMPD problem can be efficiently solved to identify an ideal hypothetical solvent 

(represented by a set of optimal properties) and the corresponding optimal process operating 

conditions showing the highest process performance. In a subsequent step, the hypothetical 

target molecule is mapped onto real solvents, which is consistent with the molecular property 

targeting and molecular mapping methods introduced in Chapter 3. Data and code for 

implementing the data-driven CAMPD approach in this section are available in the GitHub 

repository147. 

s  

Figure 4-1. Schematic diagram of data-driven integrated solvent and process design. 

4.1.1 Data-driven process modeling 

To enable CAMPD, data-driven process models are developed to estimate key process 

indicators based on solvent properties and process operating conditions. In addition to the five 

molecular properties introduced in Section 3.1, relative volatility at infinite dilution is 

considered to characterize the difficulty of recovering solvent in the solvent recovery column 

(SRC). Relative volatility between the solute (i.e., C4H6) and solvent at infinite dilution () 

in the SRC reflects the separation efficiency in the solvent recovery step. The relative volatility 

of C4H6 over the solvent at infinite dilution is expressed as,148 

𝛼C4H6/solvent
∞ =

𝑃C4H6
0

𝑃solvent
0 ∙

𝛾C4H6
∞

𝛾solvent
∞   
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where P0 is saturated vapor pressure. It is calculated at 25 °C in this case. 

Therefore, a total of six molecular properties are considered in the CAMPD problem, including 

selectivity at infinite dilution, relative volatility at infinite dilution, molar heat capacity, 

molecular weight, density, and viscosity. In addition to the solvent properties, seven process 

parameters are considered in the CAMPD. In both EDC and SRC, the number of stages (N), 

reflux ratio (R), and operating pressure (P) are considered key process parameters for 

optimization, in addition to the solvent-to-feed ratio (S/F). The solvent-to-feed ratio is a global 

variable associated with the entire ED process, while other process parameters are local 

variables involved either in the EDC or SRC. Thus, in total 13 decision variables are considered. 

The number of stages is a discrete variable while other variables are continuous. 

Data-driven process models are established for the EDC and SRC separately instead of the 

entire ED process, because the computational cost of data generation and modeling increases 

exponentially with the number of process parameters considered. The dataset for data-driven 

process modeling contains input-output pairs for 130 different solvents derived from the Aspen 

Plus component database142. For each solvent, the process performance is calculated under 

different process parameters by rigorous process simulations in Aspen Plus based on the 

UNIFAC thermodynamic model. By performing a full factorial design of computational 

experiments (DoCE) as shown in Table 4-1, the EDC and SRC datasets are obtained, 

containing ~560k and ~396k data points, respectively. 

Table 4-1. Full factorial DoCE of process parameters for initial sampling. 

Column Variable Considered levels Unit 

EDC NEDC 40, 45, 50, 55, 60, 65, 70, 75, 80 – 

 REDC 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 – 

 PEDC 3.5, 4.0, 4.5, 5.0, 5.5, 6.0 bar 

 S/F 1, 2, 3, 4, 5, 6, 7, 8 – 

SRC NSRC 8, 10, 12, 14, 16, 18, 20 – 

 RSRC 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0 – 

 PSRC 3.5, 4.0, 4.5, 5.0, 5.5, 6.0 bar 

 S/F 1, 2, 3, 4, 5, 6, 7, 8 – 
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As process models are built for EDC and SRC separately, the inputs include six properties of 

the solvent and four process parameters (N, R, P, and S/F). The outputs are the key performance 

indicators of the ED process, including product purity (C4H8 purity in the EDC distillate and 

C4H6 purity in the SRC distillate, denoted by xC4H8 and xC4H6) and energy demand (described 

by the reboiler heat duty of the EDC and SRC, QEDC and QSRC). Thus, four data-driven process 

models need to be trained to evaluate the process performance from the solvent properties and 

process parameters. The feedforward neural network (FNN) is used to build data-driven 

process models using PyTorch143. Each of the datasets is randomly split into two subsets, i.e., 

a training set (80%) for model development and a test set (20%) for evaluation. 

To determine the optimal FNN architectures for data-driven process models, five-fold cross-

validation is performed to optimize model-related hyperparameters using the training data. 

Hyperparameters considered for optimization and their corresponding options are provided in 

Table 4-2. To constrain model complexity and reduce overfitting, the FNN has up to two 

hidden layers with a maximum of 24 neurons in each layer. Different types of non-linear 

activation functions are considered, including ELU, Sigmoid, Softplus, and Tanh.144  

Table 4-2. Hyperparameters and corresponding options for hyperparameter optimization. 

Hyperparameter Options 

The number of hidden layers (NHL) 1, 2 

The number of neurons in each hidden layer (NHN) [8, 24] 

Activation function ELU, Sigmoid, Softplus, Tanh 

 

Table 4-3. Optimal hyperparameter settings. 

Model NHL NHN Activation function 

xC4H8 2 14 Softplus 

QEDC 1 13 ELU 

xC4H6 1 14 Sigmoid 

QSRC 2 22 Softplus 

 

By minimizing the average prediction errors on the validation data in the five-fold cross-

validation, the optimal hyperparameter settings are determined (Table 4-3). 
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Figure 4-2. Performance of the data-driven models on the training data for (A) xC4H8, (B) xC4H6, (C) 

QEDC, and (D) QSRC. 

 

 

Figure 4-3. Performance of the data-driven models on the test data for (A) xC4H8, (B) xC4H6, (C) QEDC, 

and (D) QSRC. 
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Using the optimal FNN architectures, process models are developed with the training data and 

evaluated with the test data. It takes 30 minutes to complete the training of these process models 

for xC4H8, xC4H6, QEDC, and QSRC. All models present high accuracy on both training and test 

data (Figure 4-2 and Figure 4-3), enabling accurate estimations of the process performance 

given molecular properties of the solvent and process parameters. The distribution of data in 

Figure 4-2 and Figure 4-3 is indicated by colors where red and blue represent high and low 

densities of data points, respectively. 

4.1.2 Model-based optimization and solvent mapping 

Based on the data-driven process models, a multi-objective optimization problem, that aims to 

minimize the total number of distillation stages and the total heat duty, is formulated to identify 

the optimal solvent properties and process parameters. 

 min
𝒚,𝒛

 (𝑁𝐸𝐷𝐶 + 𝑁𝑆𝑅𝐶 , 𝑓𝑄EDC
(𝒚, 𝒛) + 𝑓𝑄SRC

(𝒚, 𝒛)) 

s.t. 𝑓𝑥C4H8
(𝒚, 𝒛) ≥ 0.995 

 𝑓𝑥C4H6
(𝒚, 𝒛) ≥ 0.995 

 𝒚𝐿 ≤ 𝒚 ≤ 𝒚𝑈 

 𝒛𝐿 ≤ 𝒛 ≤ 𝒛𝑈 

where f is the developed data-driven model, y and z denote the solvent property and process 

parameter spaces, respectively, and L and U denote the lower and upper bounds. Box 

constraints are set on each variable based on their corresponding minimum and maximum 

values from the dataset. Among all the decision variables involved in the CAMPD, the number 

of stages (i.e., NEDC and NSRC) is a discrete variable while the others are continuous variables. 

The lower and upper bounds of the decision variables are summarized in Table 4-4. 

The multi-objective optimization problem is solved using the NSGA-II145 implemented in 

Pymoo146, where a rounding operator is applied for discrete variables. With a population size 

of 1000, it terminates at the 100th iteration reaching the maximal number of evaluations. This 

generates a set of Pareto-optimal solutions consisting of optimal hypothetical molecules 

(represented by solvent properties) and corresponding process parameters. Figure 4-4 depicts 

the objective function values for the optimal solutions. As two objective functions are defined 

based on the total number of distillation stages and the total reboiler heat duty, min-max 

normalization and z-score normalization are respectively applied to them so that their 
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magnitudes are comparable. Such an integrated design problem is solved within one minute, 

indicating that the data-driven modeling approach can substantially reduce the optimization 

complexity and enable efficient CAMPD. 

Table 4-4. Upper and lower bounds of decision variables involved in the CAMPD. 

Variable Symbol Unit Lower bound Upper bound 

Selectivity at infinite dilution S – 0.907 1.642 

Relative volatility at infinite dilution log10() – 1.326 5.944 

Molar heat capacity Cp J/(mol·K) 125.9 413.0 

Molecular weight MW g/mol 70.09 200.32 

Density  kg/m3 712 1182 

Viscosity  mPa·s 0.34 2.47 

Number of stages in the EDC NEDC – 40 80 

Reflux ratio of the EDC REDC – 1.00 10.00 

Operating pressure of the EDC PEDC bar 3.50 6.00 

Number of stages in the SRC NSRC – 8 20 

Reflux ratio of the SRC RSRC – 0.20 2.00 

Operating pressure of the SRC PSRC bar 3.50 6.00 

Solvent-to-feed ratio S/F – 1.00 8.00 

 

 

Figure 4-4. Multi-objective optimization results for the CAMPD. 

 

In the follow-up step, the obtained hypothetical target molecules (Pareto solutions 

characterized by a set of optimal properties for each solution) are mapped onto real solvents. 

Such solvent mapping is performed by searching a large database consisting of 1248 solvents, 
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which is derived from the Aspen Plus component database142 with the exclusion of solvents 

used in the development of data-driven models. The identification of real solvents closest to 

the hypothetical target molecules is based on the Euclidean distance in the molecular property 

space scaled by z-score normalization. 

 

Figure 4-5. Pareto front obtained in the multi-objective process optimization for the solvents 

identified by CAMPD. 

 

After searching for the optimal real solvents to match the hypothetical molecules, nine solvent 

candidates are obtained. To find their corresponding optimal process parameters, process 

optimization is performed for each solvent based on the data-driven process models. In the 

optimization, the molecular properties are fixed, and the process parameters are regarded as 

decision variables. For seven solvents, the process optimization successfully generates Pareto-

optimal solutions that potentially satisfy the purity specifications (Figure 4-5). For the other 

two solvents, the process optimization fails to give any solution because of the insufficient 
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separation capability of the solvent, or the high energy demand required for the studied 

separation task. 

Rigorous simulations of the ED process are performed for these seven solvents to evaluate their 

actual process performance. Compared to the process simulation, it is found that the developed 

models generally underestimate the product purity and slightly overestimate the heat duty 

(Figure 4-6). In terms of 2,3-butanedione, it cannot satisfy the purity specifications as the C4H8 

purity of the EDC distillate is lower than 99.5% (Figure 4-6C). Although some solutions in 

the methyl acetoacetate case can approach the purity specifications, the required energy 

demand for the ED process is relatively high (Figure 4-6D). Acetylacetone and acetic 

anhydride (Figure 4-6A and E) are considered suitable candidates as high product purity and 

low energy demand can be simultaneously achieved. 

 

Figure 4-6. Process performance estimated by the data-driven models and evaluated via rigorous 

simulations for the solvents identified by CAMPD. 
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4.1.3 Comparison and analysis 

To benchmark the performance of identified optimal solvents, N-methyl-2-pyrrolidone (NMP) 

is used as a reference solvent since it is commercially used in butadiene extraction processes.138-

140 The optimal process parameters for NMP are obtained by data-driven modeling and 

surrogate-based optimization, and therefore such an NMP-based ED process can be considered 

as a benchmark for the data-driven CAMPD. First, datasets for the EDC and SRC are generated 

through rigorous process simulation in Aspen Plus based on the UNIFAC thermodynamic 

model. The process performance is evaluated under different process parameters generated by 

the DoCE shown in Table 4-1. After removing simulation data with errors, the EDC and SRC 

datasets contain 4312 and 2036 data points, respectively. Considering the FNN 

hyperparameters listed in Table 4-5, the optimal settings (Table 4-6) are determined using 

five-fold cross-validation. 

Table 4-5. Hyperparameters and corresponding options for hyperparameter optimization. 

Hyperparameter Options 

The number of hidden layers (NHL) 1, 2 

The number of neurons in each hidden layer (NHN) [1, 16] 

Activation function ELU, Sigmoid, Softplus, Tanh 

 

Table 4-6. Optimal hyperparameter settings. 

Model NHL NHN Activation function 

xC4H8 2 10 Tanh 

QEDC 2 11 ELU 

xC4H6 2 9 Tanh 

QSRC 2 15 ELU 

 

Given the optimal hyperparameter settings, surrogates for the ED process that use NMP as the 

solvent are established with the training data. All models show sufficiently high accuracy on 

both training and test data (Figure 4-7), indicating their strong applicability. 
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Figure 4-7. Performance of the data-driven models for the NMP-based ED process in predicting (A) 

xC4H8, (B) xC4H6, (C) QEDC, and (D) QSRC. 

 

Based on the data-driven process models, a multi-objective optimization problem is formulated 

to identify the optimal process parameters for the NMP-based ED process. 

 min
𝒛

 (𝑁𝐸𝐷𝐶 + 𝑁𝑆𝑅𝐶 , 𝑓𝑄EDC
(𝒚, 𝒛) + 𝑓𝑄SRC

(𝒚, 𝒛)) 

s.t. 𝑓𝑥C4H8
(𝒛) ≥ 0.9945 

 𝑓𝑥C4H6
(𝒛) ≥ 0.9945 

 𝒛𝐿 ≤ 𝒛 ≤ 𝒛𝑈 

where f is the developed data-driven model, and z is the process parameter space. The 

constraints on the product purity are slightly relaxed because of the difficulties encountered in 

identifying feasible solutions. 

The multi-objective optimization problem is solved using the NSGA-II145 implemented in 

Pymoo146, where a rounding operator is applied for discrete variables. It converges in 205 

iterations with a population size of 100, obtaining a set of Pareto-optimal solutions (i.e., optimal 

process parameters). Figure 4-8 depicts the objective function values for the NMP-based ED 

process under the optimal process parameters. 
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Figure 4-8. Multi-objective optimization results for the NMP-based ED process. 

 

Subsequently, a detailed simulation of the NMP-based ED process is performed under the 

optimal process parameters obtained from the surrogate-based process optimization. Compared 

to the process simulation, the developed models accurately estimate the heat duty whereas 

slightly underestimate the product purity (Figure 4-9). 

 

Figure 4-9. Process performance estimated by the data-driven models and evaluated via rigorous 

simulations for the NMP-based ED process. 

 

The process parameters showing the best process performance in the dataset are regarded as 

the reference. Compared to the reference process, the optimal ED process obtained from the 

surrogate-based process optimization reduces the total heat duty by 2.66%. The energy-saving 

is not significant because the reference process is already approaching the global optimum. The 

optimal process parameters and corresponding process performance for the reference and 

optimal ED process are provided in Table 4-7. Such an optimal NMP-based ED process 

obtained from the surrogate-based process optimization is further considered a benchmark for 

the data-driven CAMPD. 
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Table 4-7. Optimal process parameters and corresponding process performance. 

  Reference process Optimal process 

Process parameter NEDC 75 80 

 REDC 4.00 5.99 

 PEDC 3.50 3.50 

 NSRC 12 12 

 RSRC 0.60 0.60 

 PSRC 3.50 3.50 

 S/F 3.00 2.48 

Process performance xC4H8 0.9955 0.9956 

 QEDC 16.66 16.87 

 xC4H6 0.9954 0.9955 

 QSRC 12.85 11.85 

 QH 29.51 28.72 

 

For each of the seven solvents identified by the data-driven CAMPD, its optimal solution is 

extracted for comparison, as shown in Figure 4-10. The region in green indicates that the purity 

constraint of 0.995 is satisfied. It is observed that two solvent candidates (acetylacetone and 

acetic anhydride) show lower heat duty than the benchmark solvent NMP while satisfying 

purity specifications. The other five solvents either show a higher heat duty or are unable to 

satisfy the purity requirements. 

 

Figure 4-10. Process performance of the identified optimal solvent candidates. 
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The physical properties of the two solvent candidates, optimal process parameters, and the 

corresponding process performance are summarized in Table 4-8. For better reference, the 

values for NMP are included as well. The two solvent candidates have similar molecular 

properties with NMP (except relative volatility and viscosity). It can be found that for the 

solvent showing a high selectivity, a low solvent-to-feed ratio (S/F) and a high reflux ratio in 

the EDC (REDC) are generally required to satisfy the purity specifications. On average, the two 

solvents identified from CAMPD can reduce the overall heat duty (QH) of the ED process by 

5.42% compared to the benchmark. 

Table 4-8. Molecular properties of NMP and two candidate solvents, optimal process parameters, and 

the corresponding process performance. 

  Benchmark Candidate 1 Candidate 2 

Solvent Name NMP Acetylacetone Acetic anhydride 

 CAS number 872-50-4 123-54-6 108-24-7 

 Molecular formula C5H9NO C5H8O2 C4H6O3 

Solvent property S 1.642 1.473 1.701 

 log10() 3.664 2.012 2.344 

 Cp 161.7 163.2 160.9 

 MW 99.13 100.12 102.09 

  1027 969 1074 

  1.89 0.76 0.84 

Process parameter NEDC 80 79 69 

 REDC 5.99 9.29 9.87 

 PEDC 3.50 3.50 3.50 

 NSRC 12 8 10 

 RSRC 0.60 1.38 0.95 

 PSRC 3.50 3.50 3.50 

 S/F 2.48 2.13 1.99 

Process performance xC4H8 0.9956 0.9965 0.9952 

 QEDC 16.87 18.27 18.11 

 xC4H6 0.9955 0.9963 0.9952 

 QSRC 11.85 9.30 8.65 

 QH 28.72 27.57 26.76 
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4.2 Data-driven integrated molecular and process design using 

Bayesian optimization 

Section 4.1 demonstrated that the ED process can be accurately approximated in a data-driven 

manner, and the data-driven CAMPD approach can efficiently identify the optimal solvents 

and process operating conditions to reduce energy demand. However, such a data-driven 

approach involves substantial computational costs for data generation, which is required to 

develop sufficiently accurate models for the system being investigated. This can be a notable 

drawback for its applications. To reduce data demand and improve the efficiency of the 

proposed data-driven CAMPD approach, a Bayesian optimization-based method, called 

BayesCAMPD, is introduced in this section. In BayesCAMPD, closed-loop optimization is 

accomplished by integrating data-driven modeling, model-based optimization, and solution 

validation. This iterative process can reduce the data demand for accurate surrogate modeling, 

leading to more efficient optimization. In this section, a key improvement in data-driven 

modeling is that surrogate models are built for the entire ED process, rather than for two 

separate columns. This is made possible by the data-efficient Bayesian optimization, which 

allows for accurate modeling with reduced data demand. 

BayesCAMPD is performed to simultaneously identify optimal solvent and process parameters 

to maximize the performance of the ED process. The search space is defined by both molecular 

and process variables. Molecular variables are molecular properties including selectivity at 

infinite dilution (S), molar heat capacity (Cp), and heat of vaporization (ΔHvap). They are 

calculated at 25 °C and 1 bar and used to represent molecular variables in surrogate modeling. 

The property design space (upper and lower bounds) is defined by the corresponding maximum 

and minimum property values of 1563 solvents derived from the Aspen Plus component 

database142. Process-related variables include the number of stages (N), reflux ratio (R), and 

operating pressure (P) for both extractive distillation column (EDC) and solvent recovery 

column (SRC), along with the solvent-to-feed ratio (S/F) for the entire ED process. The design 

space is kept the same as in Section 4.1. In summary, three molecular variables (S, Cp, and 

ΔHvap) and seven process variables (NEDC, REDC, PEDC, NSRC, RSRC, PSRC, and S/F) are 

considered. Among all the decision variables, the number of stages (i.e., NEDC and NSRC) is 

discrete while the others are continuous variables. Table 4-9 lists the upper and lower bounds 

for all decision variables considered in the CAMPD. 
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Table 4-9. Upper and lower bounds of decision variables considered in the CAMPD. 

Variable Symbol Unit Lower bound Upper bound 

Selectivity at infinite dilution S – 0.01 456.12 

Molar heat capacity Cp J/(mol·K) 19.21 1853.12 

Heat of vaporization ΔHvap kJ/mol 19.95 258.08 

Number of stages in the EDC NEDC – 40 80 

Reflux ratio of the EDC REDC – 1.00 10.00 

Operating pressure of the EDC PEDC bar 3.50 6.00 

Number of stages in the SRC NSRC – 8 20 

Reflux ratio of the SRC RSRC – 0.20 2.00 

Operating pressure of the SRC PSRC bar 3.50 6.00 

Solvent-to-feed ratio S/F – 1.00 8.00 

 

4.2.1 BayesCAMPD workflow 

Figure 4-11 illustrates the BayesCAMPD workflow, which mainly involves four phases and 

is described as follows. 

 

Figure 4-11. Schematic diagram of the BayesCAMPD workflow. 

 

Phase 1: Initialization. BayesCAMPD starts with an initial dataset of labeled data. Process 

parameters are generated using Latin hypercube sampling (LHS) and solvents are randomly 

selected from the solvent list, forming pairs of solvents and process parameters as the initial 

samples. Subsequently, process performance in terms of product purity and reboiler heat duty 

is obtained as sample labels by rigorous simulation in Aspen Plus using the UNIFAC 

thermodynamic model. It should be noted that process performance data may not be available 

for some samples due to convergence issues encountered in process simulation. Under this 
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situation, additional pairs of solvent and process parameters are generated for process 

simulation using random sampling, until enough initial labeled samples are collected. 

Phase 2: Data-driven modeling. Using the collected data, surrogate models are developed to 

quickly estimate process performance based on solvent properties and process parameters. 

Given the capability for uncertainty estimation and efficiency with small datasets, the Gaussian 

process is used for surrogate modeling. It is implemented with Scikit-learn149 using a squared 

exponential kernel as the covariance function. Z-score normalization is applied to the output 

data. Additionally, prior to surrogate modeling, data transformation is performed to convert 

purities into real numbers using the logit function. Accordingly, inverse transformation is 

performed for purity prediction. This guarantees that the predicted product purity always falls 

into the range between 0 and 1. 

𝛼 = logit(𝑝) = log (
𝑝

1−𝑝
)  

𝑝 = logit−1(𝛼) =
1

1+𝑒−𝛼  

Phase 3: Model-based optimization. In Bayesian optimization, an acquisition function is used 

to guide the navigation over the search space to identify promising solutions. Expected 

improvement is a commonly used acquisition function that evaluates the expected amount of 

improvement in the objective function, which is calculated using mean and standard deviation 

values estimated by the surrogate model of the objective function. To find the optimal solution, 

optimization is performed to maximize the expected improvement. Consequently, the optimal 

solvent properties and process parameters that have the potential to minimize the objective 

function (e.g., energy demand) while satisfying constraints (e.g., product purity) are identified. 

Considering the complexity of such a mixed-integer nonlinear optimization problem, it is 

solved using the differential evolution algorithm implemented in SciPy150. As a result, an 

optimal hypothetical molecule described by solvent properties and the corresponding optimal 

process parameters are simultaneously determined. In a follow-up step, the obtained 

hypothetical molecule is mapped onto real solvents by minimizing its Euclidean distance to the 

hypothetical target molecule in the property space. The above stochastic optimization is 

performed five times and consequently, five pairs of solvent and process parameters are 

suggested as promising solutions for further validation. The above-described optimization 

problem is formulated as follows: 
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 max 
𝒚,𝒛

𝐸𝐼(𝒚, 𝒛) 

s.t. 𝑔𝐿 ≤ 𝑔(𝒚, 𝒛) 

 𝒚𝐿 ≤ 𝒚 ≤ 𝒚𝑈 

 𝒛𝐿 ≤ 𝒛 ≤ 𝒛𝑈 

where EI is the acquisition function (i.e., expected improvement of the CAMPD objective 

function) and g is the surrogate model for purity constraint; y and z denote solvent property and 

process parameter spaces, respectively; L and U represent the lower and upper bounds, 

respectively. 

Phase 4: Solution validation. For the suggested candidate solutions, rigorous process 

simulation is performed to evaluate their performance. Promising solvent and process 

parameters are identified if the solution is validated to present improved objective function 

value while satisfying purity constraints. Lastly, the closed-loop BayesCAMPD workflow 

continues by incorporating these newly labeled samples and updating the model (Phase 2). 

An early stopping criterion with a patience of 20 iterations is employed. Specifically, the entire 

workflow terminates if the objective function of suggested solutions shows no improvement in 

20 consecutive iterations. It is worth noting that issues may arise over iterations in two 

circumstances: (i) the optimization in Phase 3 fails to find a feasible solution satisfying the 

constraints, and (ii) the validation in Phase 4 fails due to the convergence issues in process 

simulation. In both circumstances, BayesCAMPD cannot gain new knowledge about the 

process. Therefore, extra sampling and labeling are performed to obtain 10 additional labeled 

samples to augment the dataset. In short, BayesCAMPD continuously proposes and validates 

promising solvents and process parameters until the entire workflow terminates. Data and code 

for implementing the BayesCAMPD approach in this section are available in the GitHub 

repository151. 

Figure 4-12 illustrates the differences between the BayesCAMPD approach and the data-

driven CAMPD approach introduced in Section 4.1 (denoted as OneshotCAMPD). The 

OneshotCAMPD approach can be considered a conventional data-driven route where CAMPD 

is performed in a one-shot manner without Bayesian optimization. Surrogate models are 

usually constructed using a relatively large dataset, followed by model-based optimization to 

maximize process performance. Process simulations are conducted to validate process 

performance and consequently, identify the optimal solution. Although the BayesCAMPD 
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approach adopts the same modeling-optimization-validation strategy, it is conducted in a 

closed-loop manner. Starting with a relatively small dataset, it continuously enlarges the dataset 

and updates the model with new samples acquired from sequential optimization and validation. 

In addition, the surrogate model should be able to estimate prediction uncertainty, which is 

crucial for considering explore-exploit tradeoffs in searching for optimal solutions. Overall, the 

OneshotCAMPD has a higher data demand to accurately approximate the system, which poses 

a huge challenge to high dimensional and complex problems. In comparison, the 

BayesCAMPD has a significantly lower data demand, whereas increased computational 

resources are necessary for repeated modeling and optimization. 

 

Figure 4-12. Comparison between the OneshotCAMPD and BayesCAMPD workflows. 

4.2.2 BayesCAMPD performance 

For simplicity, the reboiler heat duty (QH) of the entire ED process is used to describe the 

energy demand. Taking different sizes of initial samples into account, the BayesCAMPD is 

performed to minimize the objective function of QH. As different initial datasets are collected, 

BayesCAMPD has different starting points and consequently, the optimization can vary 

significantly. The optimal solvent and process parameters featuring minimized QH are 

identified when the BayesCAMPD workflow terminates. As shown in Figure 4-13A, six out 

of eight cases achieve improved performance. “Start” and “End” respectively represent the best 

observation in the initial dataset and the optimal solution obtained. For some cases, “End” 

points are absent, indicating that the BayesCAMPD fails to identify feasible solutions. 

Compared to their corresponding initial best observation, these six cases decrease QH by 10.11 

MW on average. 
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Furthermore, the computational costs associated with labeling, modeling, and optimization for 

each case are displayed in Figure 4-13B. Initial labeling corresponds to the process simulation 

performed to collect the initial labeled dataset, while extra labeling refers to the process 

simulation performed for extra sampling and solution validation. Modeling cost is directly 

related to the model development using Gaussian processes, and optimization cost accounts for 

the identification of optimal solutions based on established surrogate models. The cost of initial 

labeling increases with the size of initial samples, while the cost of modeling and optimization 

depends on the number of iterations executed in the BayesCAMPD. This explains the less 

computational time for the cases with 256 and 896 initial samples, which only undergo 20 

iterations. Due to the small dataset and high modeling efficiency, the labeling and modeling 

costs are insignificant compared to the optimization cost. 

 

Figure 4-13. Performance of BayesCAMPD starting with different sizes of initial samples: (A) 

process performance represented by QH and (B) computational costs associated with labeling, 

modeling, and optimization. 

 

The CAMPD problem with constraints on product purity has a high complexity, which poses 

a substantial challenge for BayesCAMPD to obtain practically feasible solutions. First, model-

based optimization should be able to obtain feasible solutions satisfying the constraints. 

Different numbers of iterations executed in BayesCAMPD lead to a varying number of 

optimization attempts (1 iteration includes 5 optimization attempts, orange circles in Figure 

4-14A). For the eight cases considered, an optimization success rate of 42.9% is achieved on 

average (blue bars in Figure 4-14B), which demonstrates the complexity of such a constrained 

optimization task. Second, the suggested solution should be able to be validated by process 
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simulation. The number of converged simulations is presented in Figure 4-14A with green 

squares, and a simulation success rate of 53.0% is achieved on average (green bars in Figure 

4-14B). Overall, the above low success rates indicate difficulties in finding feasible solutions. 

Lastly, the validated feasible solution can be considered as an optimal solution provided that it 

presents a lower objective function value while satisfying product purity specifications. All 

three aspects demonstrate the challenge of BayesCAMPD, as failures can take place at every 

step. This is evident in the two cases starting with 256 and 896 initial samples, where 

BayesCAMPD fails to obtain promising solutions within 20 iterations (Figure 4-13). 

 

Figure 4-14. Analysis of optimizations and simulations within the BayesCAMPD starting with 

different sizes of initial samples: (A) number of total optimization attempts, optimization successes, 

and simulation successes, and (B) success rates of optimizations and simulations. 

 

Therefore, BayesCAMPD is rerun for the two cases with a higher patience of stopping criterion, 

increased from 20 to 30 iterations. As it turns out, both cases successfully identify feasible 

solutions, leading to an average decrease of 5.34 MW in QH compared to their respective initial 

best observations (Figure 4-15). However, this improvement comes with an increase in 

computational costs. This supplementary investigation underscores that, by allowing for a 

higher patience in the stopping criterion, feasible solutions with improved performance can be 

obtained at the expense of increased computational costs. 
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Figure 4-15. Performance of the BayesCAMPD with a patience of 30 in the stopping criterion: (A) 

process performance represented by QH and (B) computational costs. 

 

The results of the six successful BayesCAMPD executions are listed in Table 4-10 with their 

validated process performance. Chemical formula, CAS number, and molecular properties of 

each solvent are provided in Table 4-11. 

Table 4-10. Optimal solvents and process parameters identified by BayesCAMPD. 

Initial  

sample size 
Optimal solvent 

Optimal process parameter 
QH  

(MW) NEDC REDC 
PEDC 

(bar) 
NSRC RSRC 

PSRC 

(bar) 
S/F 

128 o-Nitroanisole 50 10.00 4.15 17 0.40 5.62 1.86 29.45 

384 Ethylene glycol 73 1.02 4.65 11 0.53 3.53 1.00 10.74 

512 Glycolaldehyde 79 9.08 6.00 8 1.79 4.34 3.41 31.86 

640 Glycolaldehyde 73 7.17 6.00 16 0.20 3.50 3.90 28.51 

768 Ethylene glycol 71 10.00 6.00 20 1.54 4.46 1.00 23.87 

1024 Acetic anhydride 70 3.19 3.58 13 1.87 3.53 2.68 21.92 

 

Among the six successful cases, the one starting with 384 initial samples obtains the best 

process performance, where ethylene glycol is identified as the optimal solvent. For this case, 

details of the BayesCAMPD performance are further illustrated. The BayesCAMPD executes 

46 iterations, with several improvements in process performance observed at the 1st, 3rd, 4th, 5th, 

15th, 18th, and 26th iterations. The best solution is found at the 26th iteration, decreasing QH 

down to 10.74 MW (Figure 4-16A). Feasible solutions refer to candidate solutions suggested 
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by optimization that are successfully validated via process simulation and satisfy purity 

constraints, while infeasible solutions are those violating the purity constraints. The green step 

line depicts the changes in QH of the best observations. The validated product purity of all the 

candidate solutions is presented in Figure 4-16C-D. 

Table 4-11. Information on the optimal solvents identified by BayesCAMPD. 

Solvent Chemical formula CAS number S Cp (J/(mol·K)) ΔHvap (kJ/mol) 

o-Nitroanisole C7H7NO3 91-23-6 2.779 120.7 73.67 

Ethylene glycol C2H6O2 107-21-1 6.896 148.4 67.22 

Glycolaldehyde C2H4O2 141-46-8 1.511 159.3 62.85 

Acetic anhydride C4H6O3 108-24-7 1.701 160.9 47.07 

 

 

Figure 4-16. Performance of BayesCAMPD starting with 384 initial samples: (A) process 

performance of candidate solutions represented by QH, (B) accumulated computational costs, (C) 

C4H8 purities of solutions, and (D) C4H6 purities of solutions. 

 

As shown in Figure 4-16A, although lots of feasible solutions are identified, most of them 

present slightly higher QH values than their current best observations. After executing for 20 

iterations without any further improvement (from iteration 27 to iteration 46), the stopping 

criterion is satisfied and BayesCAMPD terminates at the 46th iteration. As shown in Figure 

4-16B, the case starting with 384 initial samples takes approximately 4 hours, with the 

optimization cost accounting for the majority. The cost for data-driven modeling is negligible 

due to the high efficiency of Gaussian processes on small datasets. 
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As ethylene glycol has been identified as the optimal solvent, further process optimization is 

performed to refine its optimal process parameters. For this purpose, BayesCAMPD has a 

smaller search space as molecular decision variables are constant. The optimal process 

parameters are determined by the BayesCAMPD approach with the identical modeling-

optimization-validation procedure. 

Taking different sizes of initial samples into account, the BayesCAMPD is performed to 

minimize the objective function of QH. Excluding the case starting with 1024 initial samples, 

the remaining ones fail to identify feasible solutions presenting improved process performance 

while satisfying purity constraints (Figure 4-17). 

 

Figure 4-17. Performance of BayesCAMPD for process optimization starting with different sizes of 

initial samples: (A) process performance represented by QH and (B) computational costs. 

 

For the case using 1024 initial samples, it obtains the optimal solution at the 4th iteration and 

terminates at the 24th iteration (Figure 4-18). Although feasible solutions satisfying purity 

constraints are obtained at the 5th and 17th iterations, they fail to achieve an improved process 

performance. As a result, BayesCAMPD successfully determines the optimal process 

parameters and reduces the heat duty further to 10.33 MW, representing a further decrease of 

3.8% on the objective function. It runs for 24 iterations with approximately 1.5 hours. Process 

parameters and corresponding process performance of both solutions identified by CAMPD 

and process optimization are provided in Table 4-12. 
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Figure 4-18. (A) Process performance of candidate solutions represented by QH, (B) accumulated 

computational costs of the BayesCAMPD, (C) C4H8 purity of solutions, and (D) C4H6 purity of 

solutions. 

 

Table 4-12. Optimal process parameters determined by CAMPD and process optimization. 

Method 
Optimal process parameter Process performance 

NEDC REDC PEDC NSRC RSRC PSRC S/F QH (MW) xC4H8 xC4H6 

CAMPD 73 1.02 4.65 11 0.53 3.53 1.00 10.74 1.0000 0.9998 

Process  

optimization 
62 1.00 5.38 11 0.20 3.50 1.00 10.33 1.0000 0.9993 

 

4.2.3 Comparison and analysis 

For comparison, the CAMPD is performed using the OneshotCAMPD approach. To ensure 

consistency, the Gaussian process is used for data-driven modeling, as implemented in the 

BayesCAMPD approach. Based on the established surrogate models for the entire ED process, 

optimization is performed to minimize the objective function, and promising solutions are 

suggested for post-hoc validation. 

Due to the one-shot characteristics of modeling and optimization, the OneshotCAMPD 

approach typically requires far more amount of initial data to accurately approximate the 

system across the full search space. In addition to the eight sample sizes investigated for 

BayesCAMPD (i.e., ranging from 128 to 1024), six larger sizes ranging from 1536 to 4096 are 

also considered. To increase the probability of identifying practically feasible solutions, 20 

stochastic optimization attempts are performed in OneshotCAMPD. As a result, feasible 
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solutions are obtained in 8 out of the in total 14 cases, presenting a decreased QH value of 1.48 

MW on average (Figure 4-19A). Therefore, the OneshotCAMPD approach can improve the 

process performance in an open-loop manner, which has also been demonstrated in Section 

4.1. However, the improvement is very limited compared to that achieved by the 

BayesCAMPD. As OneshotCAMPD exploits, rather than explores, the search space, the 

optimization prefers a local search around the best observation to obtain better solutions. 

Therefore, a good starting point (i.e., a good sample in the initial dataset) is crucial to obtain 

promising solutions using the OneshotCAMPD approach. 

 

Figure 4-19. Performance of OneshotCAMPD starting with different sizes of initial samples: (A) 

process performance represented by QH and (B) computational costs associated with labeling, 

modeling, and optimization. 

 

In general, the computational cost of OneshotCAMPD increases with the size of initial samples 

(Figure 4-19B), whereas it is lower than that of the BayesCAMPD due to the avoidance of 

repeated modeling and optimization. Nevertheless, the BayesCAMPD approach can achieve 

significantly better performance at an affordable computational cost, offering a 

computationally efficient solution for data-driven CAMPD tasks. 
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5 Accelerated Screening of Metal-Organic Frameworks 

for Pressure Swing Adsorption 

 

In this chapter, data-driven approaches are introduced to expedite the screening of metal-

organic frameworks (MOFs) for gas separation applications. 

In Section 5.1, an end-to-end machine learning (ML) method integrating feature learning is 

proposed to predict adsorption capacity of MOFs. By combining feature embedding and 

molecular graph convolution, this approach learns both chemical and geometric features from 

MOF building blocks, which are subsequently used to correlate MOF adsorption capacity. Such 

ML models can accurately and efficiently estimate the adsorption capacity of MOFs from their 

structures, accelerating the discovery of MOFs with high selectivity for gas separation. 

In Section 5.2, an interpretable ML method that combines feature engineering with 

straightforward tree-structure models is introduced to predict the adsorption preference of 

MOFs. Using different feature engineering methods, numerical descriptors or fingerprints that 

characterize MOF structures are calculated and subsequently used to correlate MOF’s 

adsorption preference. Such ML models can provide interpretable and easy-to-understand 

insights into the model’s decision-making, thereby facilitating the discovery of MOFs with 

specific adsorption preferences for gas separation. 

Both approaches for MOF screening are illustrated by the separation of ethylene/ethane 

(C2H4/C2H6), as introduced in Appendix B. 

5.1 MOF screening using end-to-end ML models 

5.1.1 Computational details 

MOF dataset 

The hypothetical MOF (hMOF) database consists of 137,953 MOF structures, constructed 

from a library of 102 building blocks derived from known MOF structures.152 To make this 

database machine-readable, several actions are undertaken to extract building blocks, identify 

topologies, and analyzing chemical information of the MOF structures from their 

crystallographic information files (CIFs). First, the MOF structures are translated into the 
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MOFid and MOFkey identifiers using the algorithm developed by Bucior et al.153 Next, the 

building blocks and underlying topological networks of the MOF structures are extracted from 

these identifiers. Finally, data cleaning is performed to refine the MOF database. The data 

cleaning steps are as follows: 

(1) Remove MOFs sharing duplicate MOFkey to ensure uniqueness, resulting in 45,254 

remaining MOFs. 

(2) Remove MOFs with incomplete MOFkey to ensure that both the chemical information 

and topology have been successfully identified, resulting in 39,676 remaining MOFs. 

(3) Remove MOFs with invalid organic linker molecules, resulting in 33,480 MOFs. 

(4) Retain only MOFs consisting of at most two types of organic linkers to reduce structural 

complexity, resulting in 9156 MOFs. 

These 9156 MOFs, with identified chemical and topological information, are subsequently 

employed for molecular simulation and model development. 

Molecular Simulation 

Data is crucial to discover relationships between material structures and their process-relevant 

properties. While experimental data is always preferred for predictive modeling, it is often 

scattered and scarce. In this context, the grand canonical Monte Carlo (GCMC) simulation is 

recognized as a powerful tool for MOF discovery, due to its high efficiency in simulating the 

adsorption capacity of MOFs with satisfying accuracy.154,155 

To evaluate the adsorption capacity of MOFs, GCMC simulations are performed using 

RASPA156. Each simulation includes 5000 equilibration cycles, followed by 20,000 production 

cycles. Interactions between non-bonded atoms are modeled by the Lennard-Jones (LJ) 

potential157 with a cutoff distance of 12 Å. The LJ parameters for the relevant MOF atoms are 

taken from the DREIDING158 and Universal159 force fields. The LJ parameters between atoms 

of different types are calculated using the Lorentz-Berthelot mixing rule. The number of unit 

cells is adjusted so that each dimension of the simulation cell is at least twice the cutoff distance. 

Ethane and ethylene molecules are modeled using the united atom model of the Transferable 

Potentials for Phase Equilibria (TraPPE) force field160, where the two-site LJ potential161,162 

describes both molecules. For several known MOFs, a good agreement between GCMC 

simulation results and experimental measurements from the literature35,163-166 is observed 

(Figure 5-1), confirming the reliability of the configurations used in the GCMC simulations. 
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In addition, MOF geometric properties, such as void fraction and surface area, are computed 

using RASPA156, while pore diameters are calculated with Zeo++167. 

 

Figure 5-1. Comparison between experimental and GCMC simulated single-component C2H4 and 

C2H6 uptakes at 1 bar (296 K for MOF-505163 and UTSA-20163, 298 K for Mg-MOF-74164 and ZIF-

735, 303 K for ZIF-8165, and 316 K for MAF-49166). 

 

With the adsorption capacity obtained from GCMC simulations, performance metrics such as 

deliverable capacity and selectivity can be calculated. The deliverable capacity N is defined 

as the difference between the uptakes at adsorption and desorption conditions, and the 

selectivity S is a key metric indicating the efficacy of an adsorbent for gas separation. 

∆𝑁𝑖 = 𝑁𝑖,𝑎𝑑𝑠 − 𝑁𝑖,𝑑𝑒𝑠 

𝑆𝑖/𝑗 =
𝑁𝑖

𝑁𝑗
/

𝑦𝑖

𝑦𝑗
 

where i and j are indexes of gas species, Ni is the uptake of the gas species i, and yi is the mole 

fraction of gas i in the bulk phase. 

Neural Network Architecture 

An integrated neural network architecture is proposed to extract both chemical and geometric 

information of MOF structures and to estimate adsorption capacity, as illustrated in Figure 5-2. 

After decomposing MOF structures into metal nodes and organic linkers, chemical features are 

extracted by feature embedding and molecular graph convolution, respectively. Meanwhile, 

geometric features including embedded topology information and five key geometric 

properties (i.e., void fraction, pore limiting diameter, largest cavity diameter, and volumetric 

and gravimetric surface areas) are captured. Finally, these chemical and geometric features are 

combined to predict adsorption capacity. 
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Figure 5-2. Schematic diagram of the proposed ML framework. 

 

In the featurization stage, metal nodes and topologies are represented by chemical formulas 

and topology identifiers (e.g., “[Zn][Zn]” for the Zn paddlewheel metal node and “pcu” for the 

primitive cubic lattice topology) and encoded into real-valued vectors by word embedding. 

Organic linkers exhibit significant structural diversity with the number of heavy atoms ranging 

from 4 to 102. Their chemical information is captured by representing each linker as a 

molecular graph where vertices and edges correspond to atoms and chemical bonds, 

respectively. For MOFs containing different organic linkers, the linkers in each MOF are 

represented as a graph composed of multiple unconnected subgraphs. The features of each atom 

in the organic linker are initially encoded using word embedding and then updated based on 

neighboring node features through graph convolution. After three layers of molecular graph 

convolution, the overall feature of the organic linkers is obtained from the features of all nodes 

using global pooling. 

Finally, all chemical (metal and organic linker) and geometric (topology and geometric 

property) features are concatenated to form the input for a feedforward neural network (FNN) 

with three hidden layers, which are used to predict the adsorption capacity. Notably, all feature 

embeddings, graph convolutions, and the FNN are optimized as a whole to minimize the 

prediction error. Figure 5-3 provides an example to illustrate the decomposition of a MOF 

structure and the subsequent prediction of adsorption capacity. 



5 Accelerated Screening of Metal-Organic Frameworks for Pressure Swing Adsorption 

56 

 

Figure 5-3. Predicting adsorption capacity from the MOF structure: (A) structure decomposition, and 

(B) featurization, feature integration, and prediction from the bottom to the top. 

 

The proposed ML architecture is built using PyTorch168 and PyG (PyTorch Geometric)169. The 

training, validation, and test sets account for 80%, 10%, and 10% of the employed dataset 

(corresponding to 7326, 915, and 915 MOFs). These three sets are used for model training, 

hyperparameter optimization, and model evaluation, respectively. Mean squared error (MSE) 

is used as the loss function. Hyperparameters subject to optimization are listed in Table 5-1. 

To prevent overfitting, an early stopping strategy with a patience of 10 epochs is employed. 

This means that if the model performance on the validation set does not improve for 10 

consecutive epochs, the training process is terminated and the model with the lowest validation 

loss is the optimal model. 

Table 5-1. Hyperparameters considered for the ML model. 

Hyperparameter Options 

The number of neurons in each 

hidden layer 
8, 16, 24, 32 

Activation function Tanh, ELU, ReLU, Sigmoid, Softplus 

Batch size 64, 128, 256 

Graph convolution method169 
GINConv, GCNConv, AGNNConv, ClusterGCNConv, GATConv, 

GraphConv, LEConv, MFConv, SAGEConv 

 

Data and code for implementing the end-to-end ML model in this section are available in the 

GitHub repository170. 
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5.1.2 Analysis of structure-property relationships 

The adsorptive separation of a typical cracked gas mixture (C2H4/C2H6, 15:1)166,171 is studied 

by GCMC simulations at 1 bar and 298 K. Figure 5-4 shows the relationships between the 

MOF geometric properties and C2H4 uptakes at 1 bar and 298 K. The maximal C2H4 uptakes 

occur at void fractions of 0.6–0.8, pore limiting diameters of 4–8 Å, volumetric surface areas 

of 1500–2500 m2/cm3, and gravimetric surface areas of 2000–3500 m2/g. Similar trends are 

observed for C2H6 uptakes at the same adsorption conditions, as shown in Figure 5-5. 

 

Figure 5-4. Relationships between geometric properties and C2H4 uptakes at 1 bar/298 K: (A) void 

fraction, (B) pore limiting diameter, C) volumetric surface area, and (D) gravimetric surface area. 

 

To evaluate the capability of MOFs in separating C2H4 and C2H6, the C2H6/C2H4 selectivity is 

calculated considering both the uptake gap and the gas composition difference. The 

relationships between the C2H6/C2H4 selectivity and MOF geometric properties are visualized 

in Figure 5-6. The top five MOFs with the highest selectivity (larger than 3.5) have a void 

fraction of 0.41, a pore limiting diameter of 3.33 Å, a volumetric surface area of 639 m2/cm3, 

and a gravimetric surface area of 361 m2/g on average. High separation selectivity can be 

achieved by MOFs with relatively low pore limiting diameters and surface areas. However, the 

opposite is not always true. Considering the implicit relationships between the separation 

capacity and geometric properties of MOFs, quantitative models are highly desirable to predict 

the adsorption uptakes and further calculate the selectivity from MOF structures. 
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Figure 5-5. Relationships between geometric properties and C2H6 uptakes at 1 bar/298 K: (A) void 

fraction, (B) pore limiting diameter, (C) volumetric surface area, and (D) gravimetric surface area. 

 

 

Figure 5-6. Relationships between MOF geometric properties and C2H6/C2H4 selectivity at 1 bar/298 

K: (A) void fraction, (B) pore limiting diameter, (C) volumetric surface area, and (D) gravimetric 

surface area. 
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5.1.3 Model development 

Employing the framework in Figure 5-2, two ML models are trained to predict the C2H6 and 

C2H4 equilibrium uptakes, from which the selectivity is determined. Considering all 

hyperparameter combinations, the optimal ML configurations (listed in Table 5-2) are 

determined by the grid search method. The model performance is evaluated with the mean 

absolute error (MAE) and coefficient of determination (R2), as shown in Table 5-3. Adsorption 

uptakes predicted by the ML models are compared with simulation results, as visualized in 

Figure 5-7. In general, ML models achieve satisfying predictions, with an MAE of 5.79 cm3/g 

and 0.77 cm3/g on the test set for C2H4 and C2H6, respectively. Additionally, the two ML 

models show MAE values of 6.03 cm3/g and 0.80 cm3/g on the validation set. 

Table 5-2. Optimal hyperparameter settings. 

Model type Target Optimal hyperparameters 

w/ chemical features C2H4 uptake at 1 bar/298 K 16, Tanh, 256, GINConv 

 C2H6 uptake at 1 bar/298 K 16, ELU, 256, GINConv 

w/o chemical features C2H4 uptake at 1 bar/298 K 32, Softplus, 64, - 

 C2H6 uptake at 1 bar/298 K 24, Sigmoid, 128, - 

 

Table 5-3. Model performance in predicting C2H4 and C2H6 uptakes. 

Target Model type Dataset MAE (cm3/g) R2 

C2H4 uptake at 1 bar/298 K w/ chemical features Training 5.00 0.9259 

  Validation 6.03 0.8871 

  Test 5.79 0.8955 

 w/o chemical features Training 8.63 0.7762 

  Validation 9.33 0.7389 

  Test 9.00 0.7423 

C2H6 uptake at 1 bar/298 K w/ chemical features Training 0.62 0.9419 

  Validation 0.80 0.8994 

  Test 0.77 0.8965 

 w/o chemical features Training 1.12 0.7964 

  Validation 1.21 0.7683 

  Test 1.17 0.7721 
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Figure 5-7. Performance of ML models in predicting (A) C2H4 and (B) C2H6 uptakes at 1 bar/298 K. 

 

The proposed ML method considers both chemical and geometric information of MOFs. To 

demonstrate the importance of MOF chemical features in the prediction of C2H4 and C2H6 

adsorption uptakes, two new ML models are trained using geometric features only. The 

corresponding optimal hyperparameters and model performance are presented in Table 5-2 

and Table 5-3, respectively. When using only the geometric features as inputs, the MAE of the 

model on the identical test set is 9.00 cm3/g and 1.17 cm3/g for C2H4 and C2H6, respectively. 

The removal of chemical features leads to a significant decrease in model performance, which 

can also be observed in Figure 5-8. This indicates that the incorporation of MOF chemical 

information significantly improves prediction accuracy, proving the significance of chemical 

features in the discovery of MOFs for C2H4/C2H6 separation. 

 

Figure 5-8. Performance of ML models on the test set in predicting C2H4 and C2H6 uptakes. 

 

5.1.4 MOF screening 

To demonstrate the application of ML models for identifying optimal MOFs, a large dataset 

comprising 21,384 new MOF structures is extracted from the hMOF database using the data 
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cleaning process described in Subsection 5.1.1. These MOF structures, which contain three 

distinct organic linkers, are more complex than the ones used for model development, which 

contain no more than two types of organic linkers. Subsequently, ML-assisted large-scale 

screening is conducted by employing the developed ML models to predict C2H6 and C2H4 

uptakes. The top 100 MOFs with the highest C2H6/C2H4 selectivity are identified, and GCMC 

simulations are performed to validate their practical performance (Figure 5-9). Although the 

ML models tend to overestimate selectivity, a C2H6/C2H4 selectivity of 5.52 is confirmed by 

GCMC simulations, which is higher than the maximum selectivity of 5.06 in the training 

dataset. Figure 5-10 summarizes the ID numbers, metal nodes, and organic linkers of the top 

three MOFs with the highest GCMC-derived selectivity ranging from 4.94 to 5.52. 

 

Figure 5-9. Comparison between ML predictions and GCMC simulations for the top 100 MOFs. 

 

Importantly, the GCMC simulation for the top 100 MOFs requires over 140 hours, whereas the 

ML-assisted screening of the 21,384 MOFs is completed within 2 minutes, demonstrating the 

high efficiency of ML methods in accelerating MOF discovery. Overall, the integrated ML 

models are accurate and efficient for discovering highly selective MOFs for the separation of 

C2H6 and C2H4. 

 

Figure 5-10. Top MOF candidates identified for the C2H4/C2H6 separation. 
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5.2 MOF screening using interpretable ML models 

5.2.1 Computational details 

Figure 5-11 presents the workflow of developing interpretable ML models for the discovery 

of MOFs for C2H4/C2H6 separation. Feature engineering is first conducted to calculate 

descriptors for MOFs structures. On this basis, ML models can be developed to classify MOFs 

into C2H4-selective or C2H6-selective adsorbents. With the insights obtained by interpreting 

these ML models, promising MOFs featuring desirable structural characteristics can be 

efficiently identified from large databases. 

 

Figure 5-11. Schematic diagram of interpretable ML models for MOF discovery. 

 

MOF Dataset 

The dataset used is identical to that in Section 5.1 and consists of 9156 MOFs with simulated 

C2H6 and C2H4 uptakes, as detailed in Subsection 5.1.1. Based on the simulated adsorption 

data, each MOF is classified as either C2H4-selective or C2H6-selective. C2H4-selective MOFs 

preferentially adsorb C2H4 over C2H6 and have a C2H6/C2H4 selectivity lower than 1, while 

C2H6-selective MOFs preferentially adsorb C2H6 over C2H4 and have a C2H6/C2H4 selectivity 

higher than 1. After excluding MOFs with zero C2H6 and C2H4 uptakes, a refined dataset of 

8800 MOFs with their C2H6/C2H4 selectivity is obtained. Figure 5-12 shows the distribution 

of C2H6/C2H4 selectivity for these 8800 MOFs, where 2617 are identified as C2H4-selective 

adsorbents while the others are C2H6-selective. 
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Figure 5-12. Distribution of the C2H6/C2H4 selectivity of 8800 MOFs. 

 

Feature Engineering 

To characterize MOF structures, two different approaches are used to obtain numerical features 

such as descriptors and molecular fingerprints. Material descriptors can appropriately represent 

the physical, chemical, or topological characteristics of materials in a numerical format. In 

contrast, molecular fingerprints are binary bit strings (i.e., sequences of 0s and 1s) encoded 

from molecular structures. Each bit corresponds to a predefined substructure or functional 

group, and its value indicates the presence or absence of that substructure or functional group. 

Both descriptors and fingerprints can serve as inputs for ML models to predict adsorption 

performance of materials. 

Classic force-field inspired descriptors (CFID)172 are a set of 1557 chemo-structural descriptors. 

It allows differentiating between material structures and provides a great advantage over many 

conventional methods as it is independent of using primitive, conventional, or supercell 

structures of a material. Based on the CIFs of MOF structures, CFID descriptors are calculated 

using Pymatgen173 and Matminer174. 

In terms of molecular fingerprints, two commonly used ones are considered for the 

characterization of MOF structures: MACCS (Molecular ACCess System) keys and PubChem 

fingerprints. MACCS keys contain 166 types of substructures while the PubChem fingerprints 

encode molecular fragments with 881 binary digits. The definitions of substructures and 

fragments for both molecular fingerprints are available in the document175,176. Based on the 

CIFs of MOF structures, MACCS and PubChem fingerprints are calculated using Open 

Babel177 and PaDEL178. 
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Consequently, numerical features including CFID descriptors, MACCS fingerprints, and 

PubChem fingerprints are calculated for the 8800 MOFs and are subsequently used as inputs 

for ML models to predict adsorption performance of materials. 

Interpretable Machine Learning Model 

Random forest (RF), an ensemble of decision tree algorithms, is used as a classification model 

to predict the adsorption preferences of MOFs based on their features (i.e., CFID descriptors 

and two types of molecular fingerprints). Compared to other ML methods such as neural 

networks, the RF is less computationally expensive and more interpretable. For this binary 

classification task, MOFs are categorized as C2H6-selective (positive class) or C2H4-selective 

(negative class). The RF model outputs two probability values ranging from 0 to 1 that indicate 

the likelihood of a MOF being C2H6-selective or C2H4-selective. The summation of these two 

probabilities equals to 1. MOFs with a C2H6-selective probability larger than 0.5 are classified 

as C2H6-selective adsorbents, otherwise, they are classified as C2H4-selective adsorbents. 

Data and code for implementing the interpretable ML model in this section are available in the 

GitHub repository179. 

5.2.2 Model development 

The entire dataset is divided into three parts: training (80%), validation (10%), and test (10%) 

sets. To improve model accuracy, the parameters of the RF model are optimized using the 

training set, while the hyperparameters listed in Table 5-4 are optimized based on performance 

evaluation on the validation set. With the optimal hyperparameters, the performance of the 

final RF model is evaluated using the test set. The model training, hyperparameter optimization, 

and final evaluation are performed using Scikit-learn149. Two statistical metrics, accuracy and 

F1 score, are used to quantify the performance of the ML classification models. 

Table 5-4. Hyperparameters considered for the ML model. 

Hyperparameter Options 

The number of trees (Ntree) 20, 30, 40, 50, 60 

The maximum depth of the tree (Nmax_depth) 16, 20, 24, 28, 32 

The minimum number of samples required to be at a leaf node (Nmin_leaf_sample) 2, 4, 6, 8, 10 

The ratio between the minimum number of samples required to split an 

internal node and Nmin_leaf_sample (Nmin_node_sample/min_leaf_sample) 
2, 3, 4, 5, 6 
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Three RF models are developed using different feature sets: CFID, MACCS, and PubChem. 

Considering all hyperparameter combinations, the optimal hyperparameters are determined by 

the grid search method and listed in Table 5-5. The performance of three RF models is 

summarized in Table 5-6. Among the three models, the CFID-based one is the best with an 

overall accuracy of 0.86 on the test set and a higher F1 score than other models. 

Table 5-5. Optimal hyperparameter combinations for the ML models. 

Model Optimal hyperparameters 

CFID 30, 20, 6, 3 

MACCS 60, 32, 2, 4 

PubChem 60, 32, 2, 3 

 

Table 5-6. Model performance in the prediction of adsorption preference. 

Model 
Accuracy F1 score 

Training Validation Test Training Validation Test 

CFID 0.95 0.90 0.86 0.97 0.93 0.90 

MACCS 0.84 0.78 0.77 0.89 0.86 0.85 

PubChem 0.88 0.82 0.78 0.92 0.88 0.85 

 

The two RF models developed with molecular fingerprints (MACCS and PubChem) show 

similar predictive performance. The PubChem-based model is slightly better than the MACCS-

based model across all sets. Therefore, the PubChem model is selected as the representative 

fingerprint-based model for subsequent analysis, along with the CFID-based model. 

The CFID feature set includes 1557 descriptors (most of them are continuous) to capture MOF 

physical, chemical, and topological information, whereas the PubChem fingerprints only use 

881 binary variables to indicate the presence of specific substructures. Therefore, the CFID 

descriptors provide a more comprehensive representation of MOF structures, resulting in a ML 

model with better performance. 

5.2.3 Model interpretation 

To selectively adsorb trace amounts of C2H6 from abundant C2H4, C2H6-selective MOFs should 

be selected. The CFID- and PubChem-based models have demonstrated their ability to 
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distinguish between C2H4- and C2H6-selective MOFs. To better understand these models, it is 

important to gain insights into how different features impact predictions. 

As the RF is an ensemble tree model, the Tree SHAP algorithm180 is used to interpret model 

predictions. It can quantify the impact of each feature on the model’s output in terms of both 

magnitude (significant or insignificant) and direction (positive or negative) aspects. A positive 

SHAP value indicates that a specific feature has a positive impact on C2H6-selective probability, 

increasing the likelihood of a MOF being classified as C2H6-selective. Conversely, a negative 

SHAP value indicates a negative impact of the feature, leading to a low C2H6-selective 

probability (equivalent to a high C2H4-selective probability). The absolute value of the SHAP 

value represents the significance of impact. 

 

Figure 5-13. Global interpretation (average feature importance) and local interpretation (SHAP value 

distribution) of the CFID-based model. 

 

For the CFID-based model, SHAP values are calculated for each feature and each MOF. Figure 

5-13A shows the averaged importance of features and Figure 5-13B shows the distribution of 

SHAP values for each feature across all MOFs. The top 15 features are presented in descending 

order of importance, which is calculated by the average of the absolute SHAP values. 

Descriptions of these features can be found in the literature172. Notably, the feature “rdf_74”, 

one of the descriptors derived from the radial distribution function, has the largest impact on 

the output of the CFID-based ML model. 
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The color bar in Figure 5-13B represents the scaled value of the features, allowing all features 

to be compared within the same range. From the distribution of the feature values, further 

insights into the feature impact can be obtained. For example, high “rdf_74” values are 

presented in red and generally exhibit negative SHAP values, while low “log_vpa” values are 

presented in blue and also show negative SHAP values. Both conditions result in a lower 

probability of a MOF being C2H6-selective. In other words, C2H6-selective MOFs are not 

supposed to have high “rdf_74” values or low “log_vpa” values. 

Screening MOFs based on these insights is challenging because setting thresholds for 

continuous CFID descriptors is not straightforward. For example, while C2H6-selective MOFs 

should avoid high “rdf_74” values, it is generally difficult to determine the exact cutoff value. 

Moreover, these features are derived from the physical, chemical, and topological properties 

of MOFs, which cannot directly guide the structural synthesis and design of new MOFs. In 

contrast, the PubChem-based model relies solely on binary variables that indicate the presence 

or absence of specific substructures. This makes the PubChem-based model more practical and 

useful for MOF screening as well as functionalization and design. 

 

Figure 5-14. Global interpretation (average feature importance) and local interpretation (SHAP value 

distribution) of the PubChem-based model. 

 

For the PubChem-based model, SHAP values are calculated for each feature and each MOF. 

The top 15 most important PubChem features are shown in Figure 5-14A. They are indicated 

by their indexes in the PubChem fingerprint list and their descriptions are available in the 
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document176. The feature “bit_427” presents the most significant impact on the predictions 

because of its highest average absolute SHAP value. It denotes the molecular substructure 

C#CC, a three-carbon chain with one triple bond. 

When “bit_427” is 1 (presented in red), the substructure C#CC is present in the MOF. It 

generally exhibits negative SHAP values and decreases the probability of a MOF being C2H6-

selective. This suggests that C2H6-selective MOFs usually do not have the substructure C#CC. 

A similar trend is observed for “bit_417” (substructure C#C) and “bit_181” (saturated or 

aromatic six-membered rings containing heteroatoms). Conversely, the presence of “bit_390” 

(C~N~C, carbon-nitrogen-carbon chains) is associated with positive SHAP values, which 

potentially increases the probability of a MOF being C2H6-selective. Thus, carbon-nitrogen-

carbon chains are desirable for C2H6-selective MOFs. This also applies to other substructures, 

such as “bit_619” (CC=CCO), “bit_613” (CNCCC), and “bit_573” (C=CCO). With these 

insights gained from model interpretation, MOFs can be selected or tailor-made based on the 

desired presence of absence of specific substructures. 

5.2.4 MOF screening 

To leverage the insights gained by interpreting the PubChem-based model, the large MOF 

database described in Subsection 5.1.4 is used for MOF screening. First, the PubChem 

fingerprints are calculated for these MOF structures. As these structures are more complex, 

fingerprints cannot be obtained for a small subset (220 MOFs), resulting in 21,164 MOFs being 

available for screening. Using these fingerprints, the presence and absence of specific 

substructures are analyzed to identify highly C2H6-selective MOFs. Finally, GCMC validation 

is conducted exclusively on these promising MOF candidates. 

In MOF screening, considering too few feature specifications can result in a large number of 

MOF candidates, leading to a high simulation cost. Conversely, considering too many features 

may narrow down the pool excessively, potentially excluding some promising MOFs. To 

balance these trade-offs, a threshold of 5% is set to determine the number of features considered 

for screening, ensuring that no more than 5% of the 21,164 MOFs are selected for further 

validation. 

Upon analyzing the top 20 important features, it is found that the requirements for the 3rd and 

9th features (i.e., bit_181 and bit_188) are mutually exclusive. According to Figure 5-14, for a 

MOF to be C2H6-selective, “bit_181” (saturated or aromatic six-membered rings containing 
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heteroatoms) should be absent, while “bit_188” (at least two saturated or aromatic six-

membered rings containing heteroatoms) should be present. The absence of “bit_181” implies 

that MOFs should not contain any saturated or aromatic six-membered rings containing 

heteroatoms, which directly contradicts the requirement for the presence of “bit_188”. 

Therefore, these two features will not be considered in MOF screening. 

Figure 5-15 illustrates the relationship between the number of feature specifications considered 

in screening and the number of MOFs retained. To meet the 5% threshold, 13 features need to 

be considered. These 13 features correspond to the top 15 most important features, excluding 

the 3rd and 9th features. The detailed feature specifications for screening are as follows: 

“bit_427”, “bit_417”, “bit_248”, “bit_251”, “bit_460”, and “bit_183” should be 0 (indicating 

the absence of these corresponding substructures), while “bit_390”, “bit_619”, “bit_613”, 

“bit_573”, “bit_540”, “bit_449”, and “bit_445” should be 1 (indicating the presence of these 

corresponding substructures). After applying these 13 feature specifications, 583 MOFs are 

retained for subsequent GCMC validation. 

 

Figure 5-15. Relationship between the number of feature specifications considered and the number of 

MOFs preserved. 

 

C2H6 and C2H4 uptakes for the 583 MOF candidates are calculated using GCMC simulations. 

After excluding 14 MOFs with zero uptakes, C2H6/C2H4 selectivity is calculated for the 

remaining 569 MOFs, as shown in Figure 5-16. Among them, 93.8% (534 MOFs) are 

successfully validated as C2H6-selective adsorbents, while the remaining 35 MOFs are C2H4-

selective adsorbents. It demonstrates that the insights gained from interpreting the PubChem-

based model enable a practical and efficient discovery of C2H6-selective MOFs from large 

MOF databases. 
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Figure 5-16. GCMC-derived selectivity of the MOF candidates. 

 

Notably, among the 534 identified C2H6-selective MOFs, hMOF-5067000 shows the highest 

C2H6/C2H4 selectivity of 6.46. Its structure is visualized using iRASPA181 and the density 

distribution of the adsorbed C2H4 and C2H6 molecules is calculated from GCMC adsorption 

data, as shown in Figure 5-17A. From the adsorption equilibrium state depicted in Figure 5-18, 

it is observed that C2H4 and C2H6 have similar adsorption sites (around the pore center). Despite 

this, the ratio of adsorbed C2H4 molecules to C2H6 molecules in the crystal is about 2. Given 

that the molar ratio of C2H4 to C2H6 in the bulk phase is 15, a high C2H6/C2H4 selectivity of 

around 7.5 is obtained. This promising MOF structure is not identified by the end-to-end ML 

model in Section 5.1 because its C2H6/C2H4 selectivity is underestimated, yielding a value of 

1.54. 

 

Figure 5-17. (A) Density distribution of adsorbed C2H4 and C2H6 (dark color indicates high density), 

and (B) metal node and organic linkers with key substructures highlighted for hMOF-5067000. 
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Figure 5-18. Locations of C2H4 (in pink) and C2H6 molecule centers (in green) in the crystal of 

hMOF-5067000 at equilibrium state. 

 

Figure 5-17B lists the metal node and three organic linkers that constitute the MOF structure. 

The presence of favorable substructures analyzed from model interpretation is highlighted 

along with their feature indexes. This confirms that the substructures represented by “bit_427”, 

“bit_417”, “bit_248”, “bit_251”, “bit_460”, and “bit_183” are absent in highly C2H6-selective 

MOFs, which fully aligns with the insights gained from the model interpretation. 

The features related to metal nodes are not considered in the MOF screening due to their 

relatively low importance. Nevertheless, it is found that the presence of copper (Cu) generally 

shows positive SHAP values (Figure 5-19), indicating that copper is a favorable metal node in 

C2H6-selective MOFs. This finding is consistent with hMOF-5067000, which features copper 

as its metal node. 

 

Figure 5-19. Global and local interpretations on metal features for the PubChem-based model. 

 

Overall, the structural characteristics identified through model interpretation are valuable and 

useful for discovering MOFs that can selectively adsorb C2H6 over C2H4. 
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6 Integrated Metal-Organic Framework and Pressure 

Swing Adsorption Design 

 

Chapter 5 presents two ML approaches to accelerate the identification of optimal MOFs, 

targeting desired process-relevant properties. However, adsorption process conditions are 

neglected, and the practical performance of MOFs in the adsorption process is not evaluated. 

In this chapter, CAMPD is conducted to identify both the optimal adsorbent and the 

corresponding PSA system simultaneously, where detailed process modeling and optimization 

are considered in the identification of optimal MOFs. 

The integrated material and process design is illustrated by the separation of ethylene/ethane 

(C2H4/C2H6) using pressure swing adsorption, which is the same case studied for the data-

driven MOF discovery discussed in Chapter 5. 

6.1 Adsorption process modeling 

To evaluate the practical performance of adsorbents in an adsorption process, adsorption 

isotherm models are essential because they provide mechanism information of the adsorption 

process. By incorporating mathematical models describing the adsorption process, they can be 

used to determine the optimal operating conditions, which are important for the development 

and optimization of adsorption systems. 

6.1.1 MOF database and molecular simulation 

CoRE MOF 2019 database is a collection of computation-ready, experimental metal-organic 

framework structures.54 Compared to the hMOF database, it contains a wider variety of MOF 

structures that have been experimentally synthesized and show greater diversity in building 

blocks. This database is used to identify suitable adsorbents for C2H4/C2H6 separation using 

adsorption processes. Structures with a disorder are not considered, resulting in a candidate list 

of 10,143 MOFs as potential adsorbents for further evaluation. 

To obtain the adsorption isotherm, the adsorption capacity of MOFs at different pressures is 

required. Therefore, GCMC simulations are performed using RASPA156, for pure ethane and 

ethylene at 298 K and 10 different pressures (from 0.01 to 10 bar). Each simulation includes 

5000 equilibration cycles, followed by 10,000 production cycles. The LJ parameters for the 
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relevant MOF atoms are taken from the Universal force field159. Other settings for the GCMC 

simulation are identical as introduced in Subsection 5.1.1. 

6.1.2 Adsorption isotherm model fitting 

Adsorption isotherm models that describe the variation of gas absorbed with pressure are 

important for the development and optimization of adsorption processes. Based on the 

adsorption data from GCMC simulations, MOFs that have low ethane and ethylene adsorption 

capacities (less than 0.1 mol/kg) are eliminated. As a result, a collection of 9549 MOFs with 

their C2H4 and C2H6 uptakes at 298 K and 10 different pressures is obtained to model adsorption 

isotherms. 

Langmuir equation is used to model the single-component adsorption isotherms for pure ethane 

and ethylene. 

𝑞 =
𝑞𝑠𝑎𝑡𝐾𝑃

1 + 𝐾𝑃
 

where q is the adsorption loading at pressure P, qsat is the saturation adsorption loading, and K 

is the Langmuir adsorption constant. Based on 10 adsorption data points, the parameters are 

estimated using nonlinear least-squares implemented in SciPy150. 

6.1.3 Multi-component adsorption isotherm model 

Multi-component adsorption isotherm model describes the competitive adsorption behavior of 

a mixture of multiple components on the adsorbent. Based on the single-component isotherm 

models, the equilibrium concentration of each component on the adsorbent at given conditions 

can be calculated using the following extended Langmuir equation. 

𝑞𝑖 =
𝑞𝑠𝑎𝑡,𝑖𝐾𝑖𝑦𝑖𝑃

1 + ∑ 𝐾𝑗𝑦𝑗𝑃𝑛
𝑗=1

 

where qi is the adsorption loading of component i, Ki is the Langmuir adsorption constant of 

component i, yi is the mole fraction of component i in the gas mixture, and n is the number of 

components in the gas mixture. As the gas mixture contains ethane and ethylene, n is 2. 

6.1.4 Pressure swing adsorption process 

Vacuum pressure swing adsorption (VPSA), a variation of PSA technology, is considered for 

the separation of C2H4 and C2H6 to produce polymer-grade C2H4 (>99.9%). Descriptions of the 
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VPSA process are introduced in Subsection 2.1.2. Mathematically, the VPSA process is 

described by partial differential algebraic equations (PDAEs) as detailed in Appendix C. A C2 

product of ethylene and ethane (0.85/0.15)182 is considered for separation via the VPSA process. 

Seven key process parameters are considered for optimization: adsorption pressure (PH), 

intermediate pressure (PI), desorption pressure (PL), adsorption time (tads), desorption time (tdes), 

length of adsorption column (L), and feed velocity (u0). To reduce the number of decision 

variables, times for pressurization and depressurization (i.e., pressurization and blowdown 

steps in the VPSA cycle) are not considered. The pressurization and depressurization steps are 

allowed to run until the column is fully pressurized or depressurized, respectively. 

6.2 Sequential MOF selection and PSA optimization 

In this section, the MOF selection and PSA optimization are sequentially conducted. The 

optimal MOFs are first selected according to their process-relevant properties, and then the 

operating conditions of the PSA system are optimized for each MOF selected. 

6.2.1 Adsorbent selection 

Based on the adsorption isotherm data, single-component adsorption isotherm models are fitted 

for each MOF involved. On average, the fitted isotherm models of 9549 MOF structures 

present R2 values of 0.9877 and 0.9780 for ethylene and ethane, respectively. This indicates 

that most of these fitted adsorption isotherm models can accurately describe the pressure-

dependent adsorption behavior of ethylene and ethane on MOFs. Subsequently, equilibrium 

adsorption loadings for mixtures of ethylene and ethane at 1 bar and 298 K are calculated using 

the extended Langmuir equation, and therefore, the C2H6/C2H4 and C2H4/C2H6 selectivity is 

calculated. 

For each MOF in the adsorbent candidate list, the VPSA process is simulated using 50 different 

process parameter settings generated by Sobol sampling. Both one-step and two-step 

purification processes are considered. In one-step purification, C2H6-selective adsorbents are 

preferred. C2H6 is adsorbed and C2H4 product is directly obtained from the adsorption step. 

Conversely, in two-step purification, C2H4-selective adsorbents are preferred. C2H4 is firstly 

adsorbed in the adsorption step and then produced during the evacuation step. For both 

strategies, C2H4 purity is separately visualized with C2H6/C2H4 and C2H4/C2H6 selectivity. In 

the one-step purification, the adsorbents cannot achieve polymer-grade ethylene production 

(Figure 6-1A). However, in the two-step purification, there is a clear trend that high C2H4/C2H6 
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selectivity is essential to achieve high C2H4 purity (Figure 6-1B). This indicates that two-step 

purification using C2H4-selective adsorbents is more effective for polymer-grade ethylene 

production, and that the C2H4/C2H6 selectivity is a crucial factor in the selection of adsorbents. 

Therefore, the following will consider C2H4-selective adsorbents and two-step ethylene 

purification processes. 

 

Figure 6-1. Relationships between selectivity of adsorbents and purity of C2H4 produced from the 

VPSA process via (A) one-step purification and (B) two-step purification. 

 

Moreover, the relationship between C2H4 purity and recovery is presented. In the upper right 

of Figure 6-2A, there is a trade-off between product purity and recovery. High product purity 

usually leads to low product recovery. Focusing on the high-purity region (Figure 6-2B), it is 

not difficult to obtain high-purity products (>99.0%) at good recovery rates. However, 

identifying a suitable adsorbent that can produce polymer-grade ethylene (>99.9%) is 

challenging. This also leads to a recovery rate lower than 0.3. 

 

Figure 6-2. Relationship between purity and recovery of C2H4 produced from the VPSA process 

using different adsorbents: (A) the entire purity-recovery space and (B) the high-purity region. 
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Following the insights gained from the relationship between adsorbent property and separation 

performance (Figure 6-1B), the top 10 MOFs showing the highest C2H4/C2H6 selectivity are 

selected as promising adsorbents for polymer-grade ethylene production. Their unique 

identifiers in the Cambridge Structural Database183 and calculated C2H4/C2H6 selectivity at 1 

bar and 298 K are listed in Table 6-1. Using these unique identifiers, the crystal information 

and structures of MOFs can be obtained from the Cambridge Structural Database183 or the 

CoRE MOF 2019 database54. 

Table 6-1. Adsorbent candidates selected for polymer-grade ethylene production. 

Adsorbent C2H4/C2H6 selectivity 

WOWGEU02 120.08 

TATFOL 76.34 

YEYMEU 66.18 

ASALIP 48.88 

NEFTUP 43.56 

XOPKIX 35.81 

YUNJIB 32.74 

HIDMEO 24.32 

QIVBUT 19.59 

CUKXEM 19.04 

 

Table 6-2. Fitted adsorption isotherm parameters of selected adsorbent candidates. 

Adsorbent qsat,ethane (mol/kg) qsat,ethylene (mol/kg) Ksat,ethane (Pa–1) Ksat,ethylene (Pa–1) 

WOWGEU02 2.1891 0.9072 2.4147×10–7 4.8526×10–9 

TATFOL 0.7597 0.0660 2.3091×10–7 3.4828×10–8 

YEYMEU 17.8415 0.0454 3.7595×10–8 2.2345×10–7 

ASALIP 179.7443 0.0165 4.9173×10–9 1.0932×10–6 

NEFTUP 3.7343 1.8551 1.0666×10–7 4.9291×10–9 

XOPKIX 2.1031 0.4854 1.4190×10–6 1.7166×10–7 

YUNJIB 4.9532 1.5224 4.8386×10–8 4.8088×10–9 

HIDMEO 1.3500 0.9700 8.4779×10–8 4.8515×10–9 

QIVBUT 3.2555 139.6299 4.1195×10–6 4.9020×10–9 
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Figure 6-3. Adsorption data and fitted adsorption isotherm models for ethane and ethylene on 

different adsorbents: (A) WOWGEU02, (B) TATFOL, (C) YEYMEU, (D) ASALIP, (E) NEFTUP, 

(F) XOPKIX, (G) YUNJIB, (H) HIDMEO, (I) QIVBUT, and (J) CUKXEM. 

 

For these adsorbent candidates, their adsorption isotherm data (in dots) and fitted isotherm 

models (in lines) are presented in Figure 6-3. For the first nine adsorbents, the R2 values of 

ethylene isotherm models are higher than 0.9950, indicating the accuracy of these fitted 

isotherm models. However, the fitted isotherm models for ethane generally present a lower 

accuracy due to the relatively low magnitude of the ethane adsorption loadings. The last 
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adsorbent, “CUKXEM”, is excluded for further PSA optimization because of the insufficient 

accuracy of the fitted isotherm models. Isotherm parameters of the first nine selected adsorbent 

candidates are shown in Table 6-2. 

6.2.2 Process optimization 

For each of the nine adsorbent candidates, PSA optimization is performed to determine the 

optimal operating conditions that maximize ethylene recovery, while satisfying the ethylene 

purity constraint of 0.999. 

 max
𝒛

 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦(𝒛) 

s.t. PDAE model 

 𝑝𝑢𝑟𝑖𝑡𝑦 ≥ 0.999 

 𝒛𝐿 ≤ 𝒛 ≤ 𝒛𝑈 

where z denotes the process parameter space, and L and U represent the lower and upper bounds, 

respectively. All process decision variables are continuous, and their upper and lower bounds 

are identical as in the literature184 (Table 6-3). The PSA optimization problem is solved using 

the genetic algorithm (GA) implemented in Pymoo146. A population size of 20 is used for the 

GA-based PSA optimization. 

Table 6-3. Upper and lower bounds of process decision variables. 

Variable Symbol Unit Lower bound Upper bound 

Adsorption pressure PH bar 1 10 

Intermediate pressure PI bar 0.11 3 

Desorption pressure  PL bar 0.1 0.5 

Adsorption time tads s 10 1000 

Desorption time tdes s 10 1000 

Length of adsorption column L m 1 7 

Feed velocity u0 m/s 0.1 2 

 

The optimization problem is also solved using the Bayesian optimization (BO) approach 

introduced in Section 4.2. The initial sample size for the BO approach ranges from 64 to 512, 

and the optimal results are presented for further comparison. In the BO-based PSA optimization, 

the mathematical formulation is modified by replacing the PDAEs that describe the VPSA 
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process with surrogate models that estimate purity and recovery rates based on process 

parameters. 

 max
𝒛

 (𝐸𝐼𝑓𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦
(𝒛), 𝑓𝑝𝑢𝑟𝑖𝑡𝑦(𝒛)) 

s.t. 𝑓𝑝𝑢𝑟𝑖𝑡𝑦 ≥ 0.999 

 𝒛𝐿 ≤ 𝒛 ≤ 𝒛𝑈 

where EI is the acquisition function (i.e., expected improvement of the recovery rate) and f 

represents the surrogate model. The surrogate models are developed using the Gaussian process 

implemented in BoTorch185, and surrogate-based optimization is conducted using the NSGA-

II145 implemented in Pymoo146 with a population size of 20 and a maximum of 100 generations. 

In terms of GA-based process optimization, five out of nine selected MOFs are validated as 

being able to produce polymer-grade ethylene using the VPSA process (Table 6-4). These five 

MOFs are exactly the top five adsorbents showing the highest C2H4/C2H6 selectivity. It 

confirms that high C2H4/C2H6 selectivity is important to achieve high C2H4 purity. Among the 

five adsorbents, only “WOWGEU02” and “YEYMEU” can achieve acceptable recovery rates 

of 0.4830 and 0.2834, respectively. This can also be confirmed by the results of multi-objective 

PSA optimization as shown in Figure 6-4, where the trade-off between purity and recovery is 

identified for each adsorbent. The multi-objective optimization is conducted using the NSGA-

II145 implemented in Pymoo146 with a population size of 100. 

Table 6-4. GA-based PSA optimization results for polymer-grade ethylene production. 

Adsorbent 

Process parameters Performance 

PH 

(bar) 

PI 

(bar) 

PL 

(bar) 

tads 

(s) 

tdes 

(s) 

L 

(m) 

u0 

(m/s) 
Purity Recovery 

WOWGEU02 7.2030 0.1686 0.1538 10.0 968.4 6.97 1.60 0.9990 0.4821 

TATFOL 9.3628 0.1100 0.1000 57.9 132.7 4.62 1.90 0.9990 0.0392 

YEYMEU 9.9173 0.2114 0.1061 10.0 82.5 5.23 1.14 0.9990 0.2832 

ASALIP 9.8909 0.3987 0.1989 10.5 12.9 1.51 1.74 0.9990 0.0398 

NEFTUP 9.9535 0.1138 0.1070 10.2 10.1 3.57 1.30 0.9990 0.0354 

 

In terms of BO-based process optimization, only two adsorbents are validated as being able to 

produce polymer-grade ethylene using the VPSA process (Table 6-5). These two adsorbents 

(i.e., “WOWGEU02” and “YEYMEU”) are the same ones identified by the GA-based 
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optimization. Their recovery rates are 0.4715 and 0.2544, which are slightly lower than those 

achieved by the GA. For the other three adsorbents, “TATFOL”, “ASALIP”, and “NEFTUP”, 

the BO approach cannot find feasible solutions in the PSA optimization. 

 

Figure 6-4. Product purity-recovery trade-off identified by multi-objective PSA optimization: (A) the 

entire purity-recovery space and (B) the high-purity region. 

 

Table 6-5. BO-based PSA optimization results for polymer-grade ethylene production. 

Adsorbent 

Process parameter Performance 

PH 

(bar) 

PI 

(bar) 

PL 

(bar) 

tads 

(s) 
tdes (s) 

L 

(m) 

u0 

(m/s) 
Purity Recovery 

WOWGEU02 7.9029 0.2007 0.1958 10.27 994.19 6.99 1.60 0.9990 0.4711 

YEYMEU 8.9063 0.1539 0.1005 10.81 101.88 4.51 0.21 0.9990 0.2593 

 

 

Figure 6-5. Comparison between GA- and BO-based PSA optimization in (A) the achieved product 

recovery and (B) the corresponding computational cost. 
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Figure 6-5 compares the performance and computational cost of GA and BO-based PSA 

optimization approaches for the nine MOF candidates. While GA outperforms in identifying 

the optimal process parameters for various adsorbents in polymer-grade ethylene production, 

it incurs higher computational costs compared to BO. 

For the investigated PSA system, it is challenging to achieve a high recovery rate for polymer-

grade ethylene production. In this context, two-stage PSA systems offer a viable alternative 

allowing for improved purity and recovery rates, which has been demonstrated on carbon 

capture186-188. To accomplish the C2H4/C2H6 separation using two-stage PSA systems, the C2H4 

purity is initially increased to a certain level (for example 0.99) in the first stage and refined in 

the second stage to satisfy the desired purity (i.e., 0.999). Such a two-stage PSA system can 

maintain high recovery rates without compromising the purity of the final product. For 

simplicity, two stages of the VPSA process are optimized separately using the identical search 

space of process parameters. Both GA and BO approaches are studies. The purity of the product 

obtained in the first stage is set at 0.987. 

Table 6-6. GA-based optimization results for the two-stage VPSA process. 

Adsorbent 
First stage Second stage Total  

recovery Purity Recovery Purity Recovery 

WOWGEU02 0.9870 0.5908 0.9990 0.6474 0.3824 

TATFOL 0.9870 0.1051 0.9990 0.1134 0.0119 

YEYMEU 0.9870 0.5976 0.9990 0.6770 0.4045 

ASALIP 0.9870 0.6688 0.9990 0.7595 0.5079 

NEFTUP 0.9870 0.4920 0.9990 0.4664 0.2295 

XOPKIX 0.9870 0.8724 0.9990 0.8357 0.7290 

YUNJIB 0.9870 0.1858 0.9990 0.1763 0.0328 

HIDMEO 0.9871 0.0965 0.9990 0.0977 0.0094 

QIVBUT 0.9870 0.7854 0.9990 0.5680 0.4461 

 

In terms of the GA-based optimization, all nine adsorbents are demonstrated to produce 

polymer-grade ethylene via the two-stage VPSA process (Table 6-6). Among them, six 

adsorbents achieve a recovery rate higher than 0.20. It is worth noting that some adsorbents 

(e.g., “XOPKIX” and “QIVBUT”) can achieve polymer-grade ethylene production at a high 
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recovery rate using the two-stage VPSA process, although they fail to produce polymer-grade 

ethylene using the one-stage VPSA process. For each adsorbent, the optimal process 

parameters of the two-stage VPSA, determined by the GA-based optimization, are provided in 

Table D-1 and Table D-2 of Appendix D, respectively. 

Similarly, the BO-based optimization demonstrates that all nine adsorbents can produce 

polymer-grade ethylene via the two-stage VPSA process (Table 6-7). Among them, six 

adsorbents achieve an acceptable recovery rate higher than 0.20, which aligns with the results 

obtained from the GA-based optimization. For each of the nine adsorbents, the optimal process 

parameters of the two-stage VPSA, determined by the BO-based optimization, are provided in 

Table D-3 and Table D-4 of Appendix D, respectively. 

Table 6-7. BO-based optimization results for the two-stage VPSA process. 

Adsorbent 
First stage Second stage Total  

recovery Purity Recovery Purity Recovery 

WOWGEU02 0.9873 0.6953 0.9990 0.7062 0.4910 

TATFOL 0.9870 0.1093 0.9990 0.1282 0.0140 

YEYMEU 0.9873 0.6872 0.9990 0.7011 0.4818 

ASALIP 0.9874 0.7486 0.9990 0.7711 0.5773 

NEFTUP 0.9875 0.5206 0.9990 0.5432 0.2828 

XOPKIX 0.9870 0.8943 0.9990 0.8596 0.7688 

YUNJIB 0.9875 0.3066 0.9990 0.3736 0.1145 

HIDMEO 0.9870 0.0974 0.9990 0.0997 0.0097 

QIVBUT 0.9871 0.8330 0.9990 0.6913 0.5758 

 

For both GA- and BO-based optimization, “XOPKIX” is identified as the optimal adsorbent 

for polymer-grade ethylene production using the two-stage VPSA process, as it achieves a 

recovery rate higher than 0.70. In comparison, the total recovery rates of the solutions identified 

by the BO-based optimization are generally higher than those identified by the GA-based 

optimization. In terms of computational cost averaged over the nine adsorbents, the BO-based 

optimization method is 47.3% less expensive than the GA-based method. Overall, the BO 

approach offers a more efficient solution for the optimization of the two-stage VPSA process 

in achieving high recovery rates. 
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Figure 6-6. Comparison between GA- and BO-based two-stage PSA optimization: (A) the achieved 

product recovery and (B) the corresponding computational cost. 

6.3 Integrated MOF and PSA design 

To integrate MOF selection with PSA optimization, the C2H4/C2H6 selectivity of the MOF is 

considered as a decision variable together with the VPSA process parameters. This integrated 

MOF and PSA design task is a CAMPD problem. It is solved to identify the optimal adsorbent 

and operating conditions that maximize ethylene recovery, while satisfying the ethylene purity 

constraint of 0.999. 

 max
𝒚,𝒛

 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦(𝒚, 𝒛) 

s.t. PDAE model 

 𝑝𝑢𝑟𝑖𝑡𝑦 ≥ 0.999 

 𝒚𝐿 ≤ 𝒚 ≤ 𝒚𝑈 

 𝒛𝐿 ≤ 𝒛 ≤ 𝒛𝑈 

where y and z denote the adsorbent property and process parameter spaces, and L and U 

represent the lower and upper bounds, respectively. All the material and process decision 

variables are continuous, and their upper and lower bounds are listed in Table 6-8. Similarly, 

the CAMPD problem is solved using the GA implemented in Pymoo146, with a population size 

of 40. 
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Table 6-8. Upper and lower bounds of material and process decision variables. 

Variable Symbol Unit Lower bound Upper bound 

C2H4/C2H6 selectivity SC2H4/C2H6 – 0.0566 120.0786 

Adsorption pressure PH bar 1 10 

Intermediate pressure PI bar 0.11 3 

Desorption pressure  PL bar 0.1 0.5 

Adsorption time tads s 10 1000 

Desorption time tdes s 10 1000 

Length of adsorption column L m 1 7 

Feed velocity u0 m/s 0.1 2 

 

The CAMPD problem is also solved using the BayesCAMPD approach introduced in Section 

4.2. The initial sample size for the BO-based CAMPD ranges from 64 to 512, and the optimal 

results are presented for further comparison. In the BO-based integrated MOF and PSA design, 

the mathematical formulation is modified by replacing the PDAEs that describe the VPSA 

process with surrogate models that estimate purity and recovery rates based on the material 

property and process parameters. 

 max
𝒚,𝒛

 (𝐸𝐼𝑓𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦
(𝒚, 𝒛), 𝑓𝑝𝑢𝑟𝑖𝑡𝑦(𝒚, 𝒛)) 

s.t. 𝑓𝑝𝑢𝑟𝑖𝑡𝑦 ≥ 0.999 

 𝒚𝐿 ≤ 𝒚 ≤ 𝒚𝑈 

 𝒛𝐿 ≤ 𝒛 ≤ 𝒛𝑈 

where EI is the acquisition function (i.e., expected improvement of the recovery rate) and f 

represents the surrogate model. The surrogate models are developed using the Gaussian process 

implemented in BoTorch185, and surrogate-based optimization is conducted using the NSGA-

II145 implemented in Pymoo146 with a population size of 40 and a maximum of 100 generations. 

For both GA- and BO-based approaches, the molecular property targeting and molecular 

mapping methods introduced in Chapter 3 are adapted to identify real adsorbents from the 

CoRE MOF database during the optimization process. 

First, the one-stage VPSA process is studied for the production of polymer-grade ethylene. The 

GA-based CAMPD approach identifies “WOWGEU02” as the optimal adsorbent that 
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maximizes the recovery rate while satisfying the C2H4 purity constraint of 0.999. The optimal 

process parameters for “WOWGEU02” are listed in Table 6-9. The recovery rate achieved by 

the GA-based CAMPD is 0.4809, closely matching the result obtained from the GA-based PSA 

optimization for the same adsorbent (Table 6-4). In comparison, the BO-based CAMPD 

approach also identifies “WOWGEU02” as the optimal adsorbent but achieves a lower 

recovery rate. 

Table 6-9. Results of the GA-based integrated MOF and one-stage PSA design. 

Adsorbent 

Process parameter Performance 

PH 

(bar) 

PI 

(bar) 

PL 

(bar) 

tads 

(s) 

tdes 

(s) 

L 

(m) 

u0 

(m/s) 
Purity Recovery 

WOWGEU02 5.1667 0.1159 0.1064 10.0 981.1 6.40 0.85 0.9990 0.4809 

WOWGEU02 6.2815 0.2084 0.1859 11.1 645.5 6.02 0.97 0.9991 0.4327 

 

As demonstrated by the sequential MOF selection and PSA optimization in Section 6.2, the 

two-stage VPSA process can achieve polymer-grade ethylene production at higher recovery 

rates. Therefore, the two-stage VPSA process is also considered for the integrated MOF and 

PSA design using both GA- and BO-based methods. It should be noted that, for simplicity, the 

optimal adsorbent and process parameters are separately determined for two stages. The purity 

of the product obtained from the first stage is set at 0.987. 

Table 6-10. Results of the GA- and BO-based integrated MOF and two-stage PSA design. 

Method 
First stage Second stage Total  

recovery Adsorbent Purity Recovery Adsorbent Purity Recovery 

GA XOPKIX 0.9870 0.8957 XOPKIX 0.9990 0.8485 0.7600 

BO XOPKIX 0.9871 0.8921 XOPKIX 0.9990 0.8464 0.7551 

 

In terms of the GA-based CAMPD, “XOPKIX” is identified as the optimal adsorbent for both 

stages of the VPSA process (Table 6-10), resulting in a product recovery rate of 0.7600. 

Similarly, the BO-based CAMPD approach also identifies “XOPKIX” as the optimal adsorbent 

for both stages, achieving a slightly lower product recovery rate of 0.7551. Both approaches 

achieve a nearly identical product recovery rate to that obtained from the BO-based two-stage 

PSA optimization for the same adsorbent (Table 6-7). The optimal process parameters for both 

stages of the VPSA process, as determined by the GA- and BO-based CAMPD approaches, are 
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presented in Table 6-11. Notably, the BO-based CAMPD approach demonstrates a 35.8% 

reduction in computational cost compared to the GA-based approach. 

Overall, the BO-based CAMPD approach is more efficient for the integrated MOF and two-

stage PSA design. The adsorbent “XOPKIX” is an optimal adsorbent for polymer-grade 

ethylene production at a high recovery rate. 

Table 6-11. Process parameters identified by the GA- and BO-based CAMPD approach for the two-

stage VPSA process. 

Method Stage Adsorbent PH (bar) PI (bar) PL (bar) tads (s) tdes (s) L (m) u0 (m/s) 

GA First XOPKIX 3.5094 0.6892 0.1000 10.0 764.1 6.73 0.16 

 Second XOPKIX 2.6927 0.9503 0.1000 29.0 286.3 7.00 0.10 

BO First XOPKIX 3.5269 0.7199 0.1107 11.5 544.7 6.75 1.84 

 Second XOPKIX 5.6059 1.8853 0.1010 10.1 231.8 6.98 1.84 

 

Among the MOFs investigated, only a few are capable of producing polymer-grade ethylene 

with a satisfactory recovery rate using the one-stage VPSA process. However, the two-stage 

VPSA process reduces the separation difficulty, enabling more MOFs to be identified as 

suitable adsorbents for producing polymer-grade ethylene at higher recovery rates. 

In summary, four research strategies are explored for C2H4/C2H6 separation: (1) sequential 

MOF selection and one-stage PSA optimization, (2) sequential MOF selection and two-stage 

PSA optimization, (3) integrated MOF and one-stage PSA design, and (4) integrated MOF and 

two-stage PSA design. When applied to these different strategies, the GA- and BO-based 

approaches exhibit distinct advantages and limitations, particularly in terms of separation 

performance and computational costs. Both approaches are considered practical solutions for 

selecting suitable adsorbents and designing efficient adsorption systems for polymer-grade 

ethylene production. 

Data and code for implementing the sequential and integrated material and process design 

approach in this chapter are available in the GitHub repository189. 
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7 Conclusions and Outlook 

7.1 Summary 

In this dissertation, various data-driven approaches are proposed and demonstrated to 

accelerate computer-aided molecular, material, and process design. These approaches cover a 

wide range of applications, including optimal molecular design, large-scale material screening, 

chemical process optimization, and integrated molecular/material and process design. 

Molecular property targeting and molecular mapping methods are first introduced to enable 

efficient optimal solvent design by characterizing solvents with their molecular properties. 

Data-driven models are developed to calculate key performance indicators of processes based 

on solvent properties, serving as surrogates for mechanistic process models. Optimal solvents 

are identified to maximize the separation performance of extractive distillation processes 

through surrogate-based optimization. The molecular property targeting approach is 

demonstrated to be effective in the optimal molecular design of solvents. 

To integrate molecular design with process optimization, data-driven process models are 

extended to estimate process performance based on solvent properties and process parameters. 

By incorporating data-driven models, optimization algorithms, and the molecular property 

targeting approach, optimal solvents and process parameters that improve process performance 

are efficiently identified and validated. Such a data-driven CAMPD approach proves practical 

for the integrated design of solvents and extractive distillation processes. Taking one step 

further, Bayesian optimization is integrated into the data-driven CAMPD approach to reduce 

the high data demand for accurate surrogate modeling. The resulting BayesCAMPD approach 

offers a data-efficient and closed-loop solution for CAMPD tasks by iterating data-driven 

modeling, surrogate-based optimization, and solution validation. Through the same case study, 

its superiority in computational efficiency and result quality is demonstrated. The use of 

Bayesian optimization significantly reduces data demand, making it particularly beneficial for 

applications with limited data. 

Compared to solvent molecules, MOFs exhibit greater structural complexity, as they consist of 

metal clusters that are connected by organic ligands. To accelerate materials discovery, two 

types of machine learning models are developed for efficient MOF screening: an end-to-end 

model for accurate predictions and an interpretable model that provides insights into the 
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predictions. The end-to-end model utilizes a neural network, that incorporates feature 

embedding and molecular graph convolution, to characterize MOF structures for correlating 

their adsorption capacities. It learns both chemical and geometric features from MOF building 

blocks, enabling accurate and efficient estimation of MOF’s adsorption capacities. The 

interpretable model, on the other hand, combines feature engineering with straightforward tree-

structure models to learn the MOF’s adsorption preference for gas separation. It provides 

understandable insights into the model’s decision-making process, identifying key structural 

characteristics that are crucial for designing high-performance materials. Both approaches are 

efficient for large-scale screening, accelerating the identification of optimal MOFs for energy-

efficient gas separation. 

Process optimization is further integrated with MOF selection to identify suitable adsorbents 

for gas separation from a process-level perspective, where the practical performance of MOFs 

is evaluated using PSA systems. Both simulation-based optimization and Bayesian 

optimization approaches are applied for the sequential MOF selection and PSA optimization, 

as well as for the integrated MOF and PSA design. The consideration of a two-stage PSA 

system allows more MOFs to be identified as suitable adsorbents, capable of achieving high 

product purity and recovery rates. Both approaches are demonstrated as efficient and practical 

for selecting suitable adsorbents and designing efficient adsorption systems, offering distinct 

advantages in solution quality and computational costs across different tasks. 

Overall, these data-driven approaches have proven to be effective and computationally efficient 

in advancing the development of efficient separation systems, with broad applications in 

process systems engineering, materials engineering, and chemical engineering. 

7.2 Limitations and future work 

In terms of the end-to-end ML model, complex MOF structures are decomposed into their 

fundamental building blocks, such as metal nodes and organic linkers. The features of these 

building blocks are learned separately and then aggregated as the MOF features to characterize 

the MOF structures for property prediction. However, this approach does not consider the 

interrelations between different building blocks. The MOF structure can be represented as a 

large molecular graph where metal nodes and organic linkers are vertices and edges, whereas 

the organic linker can be represented as a small molecular graph. Therefore, a hierarchical 

graph convolutional network can be proposed to capture both the local structural information 
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of the individual building blocks and the global structural information of the entire MOF 

structure. This hierarchical approach can learn a more comprehensive representation of MOFs 

and thereby improve predictive accuracy by considering the connectivity and interactions 

between the MOF building blocks. 

For integrated molecular/material and process design, the BayesCAMPD approach has been 

demonstrated practical and efficient through the cases of ED and VPSA processes. Currently, 

all surrogate models in the BayesCAMPD are developed using the Gaussian processes (GP) 

because they are well-suited for small datasets and do not require complex hyperparameter 

optimization. Large datasets are beneficial for BayesCAMPD in guiding optimization, 

particularly for complex systems with numerous decision variables. However, the 

computational cost associated with model development and prediction using GP increases 

exponentially with the size of the datasets. This poses a significant challenge for the 

BayesCAMPD approach in balancing dataset size and computational efficiency. In this context, 

Bayesian neural networks (BNNs) can be considered an alternative solution for surrogate 

modeling due to their ability to handle large datasets and estimate prediction uncertainty. 

Integrating BNNs can improve the scalability of BayesCAMPD for applications involving 

large datasets. However, it is important to limit the hyperparameter search space to ensure 

efficient model training with BNNs. 

For the production of polymer-grade ethylene, identifying MOFs with high recovery rates is 

challenging because of the similar physical and chemical properties of ethylene and ethane. 

The two-stage VPSA process is demonstrated better than the one-stage VPSA, allowing for 

more MOFs to be used for the production of polymer-grade ethylene at high recovery rates. 

Since the two stages are optimized separately, co-optimization of both stages can further 

improve the recovery rate. Additionally, alternative PSA cycles can be explored to accomplish 

the desired separation in a single stage, thereby reducing both capital investments and 

operational costs for polymer-grade ethylene production. 
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Appendix A: Separation of 1,3-Butadiene and 1-Butene 

 

C4 hydrocarbons, co-produced in ethylene production by steam cracking of feedstocks such as 

naphtha, contain significant quantities of valuable unsaturated compounds such as butene, 

isobutylene, and butadiene.190,191 For example, butadiene is an industrially important precursor 

to synthetic rubber, and therefore it needs to be recovered from the C4 mixture. However, 

similar physicochemical properties (especially the boiling point) of these components make 

them very difficult to separate by conventional methods. Adding a suitable solvent into such a 

mixture to alter the relative volatility, and ED can be readily conducted to achieve efficient 

separation. Therefore, for this separation task, it is required to identify a suitable solvent and 

determine the optimal process parameters to extract butadiene from the mixture efficiently. 

For the separation of C4 hydrocarbons (butadiene extraction), organic solvents such as N-

methyl-2-pyrrolidone (NMP), dimethyl formamide (DMF), and acetonitrile (ACN) are 

frequently used in different industrial applications. Among them, the NMP shows distinct 

advantages in energy consumption and environmental impact over other solvents, and it is 

commercially used in BASF’s butadiene extraction technology140. 

 

Figure A-1. ED process for the separation of 1,3-butadiene and 1-butene. 

 

Herein, the separation of a simplified C4 mixture, 1,3-butadiene (C4H6) and 1-butene (C4H8), 

is taken as an example to demonstrate the proposed approaches in Chapters 3–4 for the optimal 

solvent design as well as the integrated solvent and ED design. Solvents that selectively interact 

with C4H6 are considered, and therefore, the C4H8 and C4H6 are produced from the EDC and 

SRC, respectively (Figure A-1). For this purpose, a simplified setup is studied to allow for a 
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clear interpretation of the results. The feed consists of an equimolar mixture of C4H6 and C4H8 

with a total flow rate of 500 kmol/hr. Other process parameters are specified below. 

• In the EDC, pure solvent and feed are introduced to the third stage and the middle of the 

column, respectively. 

• The feed for the SRC is introduced in the middle. 

• The pressure drop at each distillation tray is 1 kPa. 

• The distillate rate is 250 kmol/hr in both EDC and SRC. 

With such an ED process, it is expected to obtain C4H8 and C4H6 products with a purity higher 

than 99.5% in the EDC and SRC distillates, respectively. 
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Appendix B: Separation of Ethylene and Ethane 

 

Ethylene, primarily produced by steam cracking of naphtha, is one of the major industrial 

chemicals used in the production of polymers and industrial chemicals.191,192 In ethylene 

production, the separation of ethylene (C2H4) and ethane (C2H6) is crucial, but challenging and 

energy intensive due to their similar properties. Traditionally, cryogenic distillation is used for 

the industrial separation of C2H4/C2H6 mixtures under high pressures and low temperatures 

(typically 7–28 bar and 183–258 K) with high distillation towers (more than 100 trays), which 

results in high energy demand and capital investment.182,193 In contrast, porous materials-based 

adsorptive separation is a promising alternative due to its high energy efficiency and 

operational simplicity. 

 

Figure B-1. VPSA process for the separation of ethylene and ethane. 

 

Herein, the separation of C2H4/C2H6 is taken as an example to demonstrate the proposed 

approaches in Chapters 5–6 for the accelerated MOF screening as well as the integrated MOF 

and PSA design. Adsorbents that selectively adsorb C2H4 are considered, and therefore, the 

C2H4 is produced through two-step rather than one-step purification (Figure B-1). For this 

purpose, a simplified setup is studied to allow for a clear interpretation of the results (details 

are provided in Appendix C). 

With such a VPSA process, it is expected to obtain ethylene product in polymer grade (>99.9% 

purity) to produce polyethylene. 
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Appendix C: Mathematical Models for Pressure Swing 

Adsorption 

 

Mathematical models describing the VPSA process involve a system of coupled partial 

differential equations (PDEs) and nonlinear algebraic equations taken from Leperi et al.188 and 

Yancy-Caballero et al.184 

The following assumptions are made188: 

• The ideal gas law accurately describes the gas phase. 

• The viscosity of the gas is independent of pressure. 

• There are no radial effects in the concentration, pressure, or temperature in either the gas 

or solid phase. 

• The Ergun equation is used to represent the axial pressure drop. 

• The particle size and void fraction are constant throughout the bed. 

• The linear driving force (LDF) model is used to describe gas diffusion into the adsorbent. 

• The adsorption process is operated at isothermally at 298 K. 

All the equations used to describe the VPSA process are put into dimensionless forms. The 

dimensionless variables are as follows. 

�̅� =
𝑃

𝑃0
, 𝑥𝑖 =

𝑞𝑖

𝑞s
, �̅�𝑧 =

𝑢𝑧

𝑢0
, 𝜏 =

𝑡𝑢0

𝐿
, 𝑍 =

𝑧

𝐿
 

The following component mass balance is used to calculate the mole fraction of ethylene (yi) 

in the gas phase. 
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𝑢0𝐿

𝐷L
 and 𝜓 =

(1−𝜀)

𝜀

𝑅𝑇0𝑞s𝜌s

𝑃0
. The axial dispersion coefficient, DL, is given by the 

following equation: 

𝐷L = 0.7𝐷m + 𝑟p𝑢0  

The mole fraction of ethane is calculated through the equation: 
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𝑦C2H4
+ 𝑦C2H6

= 1 

The overall mass balance results in the following equation for calculating the total pressure: 

𝜕�̅�

𝜕𝜏
= (−�̅�

𝜕�̅�𝑧

𝜕𝑍
− �̅�𝑧

𝜕�̅�

𝜕𝑍
) − 𝜓 ∑

𝜕𝑥𝑖

𝜕𝜏𝑖   

The LDF model is used to calculate the mass transfer between the gas phase and the solid phase. 

𝜕𝑥𝑖
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(𝑥𝑖
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∗

𝑞𝑠
  

The pressure drop throughout the column is calculated using the Ergun equation. 
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�̅�𝑃0

𝑅𝑇0
  

For all the equations above, the parameters used for the PSA simulation are provided in Table 

C-1, and other variables are summarized in Table C-3. 

Table C-1. Parameters used in the VPSA cycle. 

Parameter Symbol Unit Value Reference 

Bed void fraction ε – 0.37 Leperi et al.188 

Radius of adsorbent pellet rp m 1×10–3 Leperi et al.188 

Molar loading scaling factor qs mol/kg 5.84 Leperi et al.188 

Ethylene mole fraction y0 – 0.85 Leo et al.182 

Gas viscosity  Pa·s 1.01815×10–5 Kestin et al.194 

Diffusion coefficient Dm m2/s 1.14×10–5 Mueller and Cahill195 

Ethylene molecular weight MWC2H4 kg/mol 0.0280532 NIST196 

Ethane molecular weight MWC2H6 kg/mol 0.0300690 NIST196 

Ethylene mass transfer coefficient kC2H4 s–1 0.0125 Bachman et al.197 

Ethane mass transfer coefficient kC2H6 s–1 0.0037 Bachman et al.197 

 

To solve these equations, the initial and boundary conditions of the column need to be known. 

Since the first step in the VPSA cycle is the pressurization step, the pressure in the bed is 
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initially at the evacuation pressure. After startup, the initial conditions of each step are assumed 

to be the same as the bed profile at the end of the previous step. 

The boundary conditions for each step are provided in Table C-2. 

Table C-2. Boundary conditions of different steps in the VPSA cycle. 

Step Column end Pressure Mole fraction 

Pressurization Bottom �̅� = �̅�L → 1  𝑦𝑖 = 𝑦0  

 Top 
𝜕�̅�

𝜕𝑍
= 0  

𝜕𝑦𝑖

𝜕𝑍
= 0  

Adsorption Bottom �̅� = 1.02  𝑦𝑖 = 𝑦0  

 Top �̅� = 1  
𝜕𝑦𝑖

𝜕𝑍
= 0  

Evacuation Bottom 
𝜕�̅�

𝜕𝑍
= 0  

𝜕𝑦𝑖

𝜕𝑍
= 0  

 Top �̅� = 1 → �̅�I  
𝜕𝑦𝑖

𝜕𝑍
= 0  

Blowdown Bottom �̅� = 𝑃I̅ → �̅�L  
𝜕𝑦𝑖

𝜕𝑍
= 0  

 Top 
𝜕�̅�

𝜕𝑍
= 0  

𝜕𝑦𝑖

𝜕𝑍
= 0  

 

Using the method of lines, the spatial derivatives are discretized into 10 volume elements by 

the finite volume method (FVM)198 with a weighted essentially nonoscillatory (WENO) 

scheme199. In this way, the system of PDEs is converted into a set of ordinary differential 

equations (ODEs) and solved using the backward differentiation formula (BDF) method200 

implemented in SciPy150. The integration of ODEs is speeded up by leveraging the Numba 

compiler201. 

A single bed is used to simulate the VPSA cycle. Different steps are conducted in sequence 

until a cyclic steady state is achieved, which happens when the changes in the state variables 

are less than 1×10–3 between the final conditions in the last step and the initial conditions in 

the first step in the dimensionless variable. In addition, to ensure no accumulation in the column, 

the ratio of the gas entering the column to the gas exiting the column over the entire cycle needs 

to match within a tolerance of 5×10–3. Once the bed has reached the cyclic steady state, the 

process performances such as product purity and recovery rate are evaluated. 
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Table C-3. Variables involved in mathematical models of the VPSA process. 

Symbol Variable Unit 

Cg Molar concentration mol/m3 

DL Axial dispersion coefficient m2/s 

L Column length m 

P Pressure bar 

P0 Adsorption pressure bar 

𝑃  Dimensionless pressure – 

q Molar loading mol/kg 

q* Equilibrium molar loading mol/kg 

R Universal gas constant J/(mol·K) 

t Time s 

T0 Adsorption temperature K 

u0 Inlet gas velocity m/s 

uz Superficial gas velocity m/s 

�̅�𝑧  Dimensionless gas velocity m/s 

x Dimensionless molar loading – 

x* Dimensionless equilibrium molar loading – 

y Gas mole fraction – 

z Bed length coordinate m 

Z Dimensionless bed length coordinate – 

 Gas viscosity Pa·s 

s Adsorbent density kg/m3 

τ Dimensionless time – 
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Appendix D: Optimal Process Parameters of Two-Stage 

VPSA Processes 

 

Table D-1. Process parameters of the first VPSA stage identified by the GA-based optimization. 

Adsorbent PH (bar) PI (bar) PL (bar) tads (s) tdes (s) L (m) u0 (m/s) 

WOWGEU02 7.7731 1.4283 0.1007 10.6 999.1 7.00 0.50 

TATFOL 5.7421 0.1888 0.1000 21.5 762.8 7.00 0.28 

YEYMEU 8.6273 1.5504 0.1000 10.0 1000.0 7.00 1.45 

ASALIP 6.7450 1.3393 0.1000 10.0 996.4 7.00 0.10 

NEFTUP 2.3785 0.3359 0.1000 10.0 1000.0 7.00 0.75 

XOPKIX 6.8911 1.3868 0.1756 10.0 963.3 7.00 0.10 

YUNJIB 9.2296 0.5443 0.1002 21.8 866.8 7.00 1.18 

HIDMEO 9.3026 0.3214 0.1038 28.4 968.4 7.00 1.88 

QIVBUT 4.2522 1.5880 0.1000 94.8 214.3 3.73 0.10 

 

Table D-2. Process parameters of the second VPSA stage identified by the GA- based optimization. 

Adsorbent PH (bar) PI (bar) PL (bar) tads (s) tdes (s) L (m) u0 (m/s) 

WOWGEU02 7.6876 2.1271 0.1000 10.0 952.8 7.00 0.62 

TATFOL 3.0282 0.1385 0.1000 34.5 999.9 7.00 1.35 

YEYMEU 8.4867 2.5504 0.1001 10.0 935.2 7.00 0.43 

ASALIP 7.8049 2.8819 0.1702 10.0 989.9 7.00 2.00 

NEFTUP 5.6661 0.8768 0.1000 10.0 664.3 7.00 1.83 

XOPKIX 3.5617 1.0008 0.2246 17.1 442.0 7.00 0.10 

YUNJIB 7.9136 0.7657 0.1000 47.2 1000.0 7.00 1.99 

HIDMEO 8.9263 0.3056 0.1000 23.8 847.2 7.00 1.81 

QIVBUT 2.6061 1.3257 0.1760 376.0 147.3 6.82 0.11 
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Table D-3. Process parameters of the first VPSA stage identified by the BO-based optimization. 

Adsorbent PH (bar) PI (bar) PL (bar) tads (s) tdes (s) L (m) u0 (m/s) 

WOWGEU02 1.0998 0.2651 0.1001 10.0 667.3 7.00 2.00 

TATFOL 2.4215 0.1148 0.1003 46.5 912.6 7.00 1.88 

YEYMEU 1.1617 0.2655 0.1031 10.1 678.2 7.00 1.99 

ASALIP 1.1040 0.2717 0.1022 10.1 999.5 7.00 0.11 

NEFTUP 1.0267 0.1452 0.1021 10.0 530.8 7.00 0.48 

XOPKIX 3.7642 0.7311 0.1006 10.0 492.7 7.00 0.15 

YUNJIB 1.4589 0.1101 0.1004 14.1 829.2 7.00 2.00 

HIDMEO 4.0408 0.1415 0.1001 33.2 675.1 7.00 0.84 

QIVBUT 1.7078 0.9931 0.1617 164.7 199.9 3.47 0.75 

 

Table D-4. Process parameters of the second VPSA stage identified by the BO-based optimization. 

Adsorbent PH (bar) PI (bar) PL (bar) tads (s) tdes (s) L (m) u0 (m/s) 

WOWGEU02 1.0151 0.3150 0.1007 10.1 596.5 7.00 2.00 

TATFOL 1.6484 0.1100 0.1002 62.3 714.2 6.99 1.86 

YEYMEU 1.0040 0.2983 0.1005 10.1 844.8 7.00 0.15 

ASALIP 1.3761 0.4937 0.1008 10.0 903.1 6.84 0.10 

NEFTUP 1.5875 0.3062 0.1002 10.0 842.6 7.00 0.86 

XOPKIX 1.8288 0.6479 0.1418 10.2 179.0 6.22 2.00 

YUNJIB 1.0956 0.1101 0.1001 10.5 581.7 7.00 2.00 

HIDMEO 3.6156 0.1266 0.1003 29.6 503.3 6.99 1.64 

QIVBUT 9.9985 1.4201 0.4921 10.0 161.0 2.68 0.69 
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