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Executive summary 

 

Smallholder farmers in semi-arid West Africa face challenges of low soil fertility, and weak market 

infrastructure which limit their ability to invest in improved farming practices. Additionally, intra- and 

interannual weather variability is very high, which makes any investments very risky. In response to the 

resulting production and income shocks that can result from extreme weather or other factors, farmers 

often rely on temporary coping measures, such as selling farm and household assets and withdrawing 

children from school, resulting in long-term impoverishment. To break these poverty traps, there is a need 

for affordable and sustainable risk management approaches supporting farmers at the farm level. 

Proposed strategies in the literature include risk reduction using stress-resistant crop varieties, 

agroforestry, and conservation agriculture, among others. However, risk reduction often requires 

additional investments, risk transfer options like crop insurance and contract farming on the other hand 

require additional financial means. Despite experimentation with insurance products in sub-Saharan 

Africa, low adoption persists due to factors like high premiums, farmers’ economic behaviour, and 

cognitive factors. To comprehensively manage risks on the farm, it is needed to combine several options 

that include risk reduction, risk transfer, savings and smart risk-taking as single options are not as likely to 

be effective under so many forms of risk and the concurrent need to improve productivity and livelihoods. 

Modelling can support understanding the relationships between productivity, environmental, and 

economic aspects of crop production and inform crop management decisions about resource allocation 

and risk management options under different weather scenarios. However, few studies have investigated 

this considering the effects of weather variability on crop management and resource allocation. This thesis 

introduces an integrated bio-economic modelling approach to optimise resource allocation for smallholder 

mixed crop and livestock farming systems in Northern Ghana. Subsequently, the model is applied to assess 

the probability of two different index-based insurance products to stabilise smallholder Northern Ghana 

farmers’ income and limit asset losses under a range of weather conditions. The effects of basis risk on the 

effectiveness of weather index-based insurance to increase income and reduce asset loss in Northern 

Ghana are further explored. The integrated model combines a process-based crop model, a farm 

simulation model, and an annual optimisation model. Large ensemble weather time series were used to 

drive the crop model simulations, which enables the exploration of a range of weather conditions for 

robust risk climate assessments. First, to evaluate the response of the model under different weather 

conditions, the large ensemble data was categorized into two weather scenarios: good and bad weather. 
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The model accounts for the effects of climate risks on-farm management decisions, which can help in 

supporting investments in sustainable intensification practices, thereby bringing smallholder farmers out 

of poverty traps. The model simulated three different farm types represented in the region based on their 

resource endowment. Data for the thesis was obtained from a household survey conducted by CGIAR 

CASCAID in 2020 and another in-depth survey carried out in 2022. In addition, secondary data was 

obtained from the Ministry of Agriculture Ghana (MoFA), the Ghana Statistical Service and ACRE Africa.  

The results from the integrated model showed that the farm-optimised cropping patterns depend on the 

weather, as the model suggested more diversified cropping patterns that include the cultivation of both 

food and cash crops under bad weather conditions, while less diversified cropping patterns that comprise 

majorly of cash crops like soybeans, rice and groundnut was advised under good weather conditions. 

Furthermore, for the weather index-based insurance, insurance contracts were compared—one covering 

seeding costs and another addressing full input costs to the case of no insurance, as well as the role of 

replanting after crop establishment failure, for effects on crop allocation, incomes, and assets. The result 

indicated that farmers would be better off purchasing seed insurance that incentivises them to replant in 

the event of bad weather, stabilising their incomes and reducing the sale of their assets. These insurance 

options are relatively cheaper than full weather index insurance for the resource-constrained farmers 

considering that extreme weather conditions do not occur regularly. However, despite the usefulness of 

these insurance options, our results further highlight how poorly designed insurance contracts can be 

affected by basis risk, with product basis risk simulated by changing soil depth leading to the highest 

overpayment and underpayment of indemnities compared to the reference scenarios. This has led to 

suggestions that include designing insurance contracts by considering the farmers’ economic and 

environmental conditions.  

This thesis is significant for those designing risk management interventions for smallholder farmers in 

semi-arid West Africa, who are faced with economic and environmental challenges. Focusing on Northern 

Ghana, a region that is affected with high interannual weather variability, alternative risk management 

options that can help farmers to stabilise their income under adverse weather conditions were examined. 

By presenting the probability of outcomes for income and farm assets, particularly through seed insurance 

incentivizing replanting after extreme weather conditions, the thesis provides knowledge to better inform 

the design of insurance products, highlighting differential effects based on farmers’ resource endowment 

and the type of product and extreme weather experienced. Here we see potential that the framework 

could be further developed to use in participatory settings with farmers to explore when the index product 
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leads to losses and in which cases it would provide benefit. The results also suggest the sources of basis 

risk which lead to the greatest error in estimated income and can be used to prioritise new data for 

improving index performance.
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1. Introduction 

1.1. Problem statement and background 

Smallholder farmers in semi-arid West Africa are faced with several constraints consisting of economic, 

production and environmental aspects including poor soil fertility (Raimi et al., 2017), weak market 

infrastructure (Hansen et al., 2019) and lack of access to credit facilities (Mensah et al., 2017). At the same 

time, fluctuating market prices (Zhang et al., 2022), and high levels of intra- and interannual weather 

variability (Bogale, 2015) combine to make on-farm investments in intensification options very risky. The 

situation is anticipated to intensify as weather extremes become more frequent with climate change (IPCC, 

2023). As poverty and food insecurity are prevalent in the region within farming communities (De Jager et 

al., 2018; Tsiboe et al., 2023), the intensification of on-farm production is widely promoted as a means to 

improve yield levels and average on-farm income (Danso et al., 2018; Pretty et al., 2011). With land 

expansion largely unsustainable due to biodiversity and associated ecosystem service loss (Putri et al., 

2019), sustainable intensification (SI) of agricultural production is considered to be an effective alternative 

for smallholder farmers to increase their farm income (Gashu et al., 2019; Pretty et al., 2011). However, 

this is likely to become even more risky considering that weather-related risks including drought and floods 

leading to crop failures, are projected to increase under climate change (Hamsa & Bellundagi, 2017; Lesk 

et al., 2016; Trisos et al., 2022). Despite several initiatives aimed at promoting SI options in semi-arid West 

Africa (Gashu et al., 2019), there has been limited success due to the various constraints, widespread 

poverty and the riskiness of farming in the region (Tang & Hailu, 2020; Yin et al., 2016).  

In the face of climate and market risks, smallholder farmers in SSA have adopted various coping strategies, 

including defaulting on loans, withdrawing children from school for farm work, and cutting back on 

household rations, among others (Birthal et al., 2012; Hansen et al., 2019). However, these measures do 

not offer lasting solutions and have development costs, as most of the affected households may not return 

their household consumption and farming activities to pre-shock levels (Boucher et al., 2024). Overcoming 

these challenges would require combining different risk management options that can support farmers in 

the short term while ensuring the development in the medium term of more sustainable and profitable 

farming systems. Several options have been proposed in the literature to reduce risk, such as the use of 

drought-resistant or stress-adapted crop varieties (Birthal et al., 2012), changing planting dates (Antón et 

al., 2013), conservation agriculture systems that include minimum tillage (Pannell et al., 2014), mulching 

(Alary et al., 2016) and crop rotations (Rusinamhodzi et al., 2011). However, risk reduction is insufficient 
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under extreme climatic shocks and does not necessarily align with the investments needed for longer-

term sustainability and livelihood improvement as farmers are likely to become insolvent in years with 

severe yield failures (Danso et al., 2018; Nafi et al., 2021). Here the need for a broad portfolio of risk 

management is needed, combining risk reduction with risk transfer (Di Marcantonio & Kayitakire, 2017; 

Sibiko et al., 2018), prudent risk-taking and savings among others (Holden & Shiferaw, 2004). 

Informally, many farmers use livestock as a form of insurance. They are normally kept for providing the 

household protein requirements and on-farm traction, though they can be sold in years with extreme crop 

failure to provide liquidity (Herrero et al., 2013). However, this also comes at a cost, as farm animals require 

fodder obtained from crop residues, which may also serve an important purpose for improving soil fertility 

through incorporation into the soil (Alary et al., 2016; Nafi et al., 2021; Pannell et al., 2014). Formal 

insurance options that include crop insurance on the other hand have been discussed as alternative risk 

transfer measures (Ahdika et al., 2019; Leblois et al., 2014), which may enable farmers to invest in SI 

options in the face of climate risks (Aidoo et al., 2014; Bawa, 2019; Hansen et al., 2019; Laube et al., 2012; 

Traore et al., 2017). Several studies have highlighted the usefulness of these insurances particularly under 

extreme weather conditions, however, the adoption rate remains low, with reasons such as high premium 

prices, farmers’ limited trust and understanding of contracts and faulty insurance designs given as the 

reasons for the low subscription rates (Arshad et al., 2016; Di Marcantonio & Kayitakire, 2017; 

Ntukamazina et al., 2017). While opinions concerning the benefits of various insurance types are divided 

(Afshar et al., 2021; Binswanger-Mkhize, 2012; Clarke et al., 2013; Ricome et al., 2017), in addition to their 

high transaction costs (Bulte et al., 2020; Rigo et al., 2022), many authors have expressed concerns that 

crop insurance is expensive for smallholder farmers and have highlighted the need for subsidies (Arshad 

et al., 2016; Binswanger-Mkhize, 2012; Carter et al., 2014; James et al., 2011; Shirsath et al., 2019). Index-

based insurance has been proposed as an alternative and affordable option because their payouts are 

reliant on the realisation of an independent and transparent index rather than basing them on actual yield 

losses (Conradt et al., 2015), offering to reduce the high transaction costs (Rigo et al., 2022), minimise the 

adverse selection risk and promote an efficient and transparent pay-out process (Skees et al., 2001). 

However, these index-based insurance are also affected by basis risk and non-transparency of the index 

(Collier et al., 2009; Conradt et al., 2015; Tadesse et al., 2015), which affects the functionality and 

effectiveness of index-based insurance and leads to low product subscriptions.  

Recognising the importance of insurance in stabilising farm income and as a safety net under extreme 

climatic or agronomic conditions, it is important to assess conditions under which insurance products do 
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and do not provide benefits for certain groups of farmers, including the challenges associated with the 

design, supply, and demand of the products. Given the interactions among farming systems and a host of 

the soil-crop-water-animal-market complexity, system analysis tools are helpful to complement 

experimental and observational approaches to explore a range of options and conditions. System 

modelling tools that integrate biophysical and economic models can support a better understanding of 

trade-offs and synergies between various economic and environmental outcomes associated with farm 

management decisions considering for example, crop and livestock production, soil fertility-related 

processes, on-farm and off-farm labour availability, or crop response to weather and management 

(Barbier, 1998; Ewert et al., 2015; Feola et al., 2012; McDonald et al., 2019). 

While there are several examples of modelling approaches that capture the effects of weather, price, and 

production risks on different farm household components, such as consumption and livelihood (Briner & 

Finger, 2012; McDonald et al., 2019; Zhang et al., 2022), to the best of our knowledge, none have included 

annual feedback on crop management as a result of modified farm-level decisions in response to weather 

influences on crop and fodder production. This is considered crucial in assessing the effects of extreme 

weather or input price spikes on crop management as a yield failure or lack of cash may result in farmers 

having to choose less expensive or more staple crops and management than intended before the shock. 

This may have important consequences when considering the implications for longer-term sustainability 

outcomes for environmental variables like soil organic carbon and biodiversity. Furthermore, the impacts 

of shocks and the assessment of risk management options can be analysed through scenario analysis 

(Arribas et al., 2017), models that are capable of simultaneously evaluating farmers’ response to weather 

shocks and the subsequent effects on farm assets, including livestock or natural capital are still lacking. 

Previous studies have focused on optimising production under risks over a typical planning period, with 

few attempting to account for the effects of shocks on farm trajectories (van Wijk et al., 2014). Such models 

could help to specifically assess the effects of weather insurance on farm income under risks, providing 

more insights on such insurance contracts. While there is a growing literature on the challenges, 

opportunities and willingness to pay for insurance products in SSA (Bogale, 2015; Carter, 1984; Collier et 

al., 2009; Ntukamazina et al., 2017; Tadesse et al., 2015; Yakubu et al., 2016), few studies have examined 

the impact of weather index insurance contracts on farmers’ income considering the large uncertainty in 

weather conditions. Such studies can support efforts to design weather index-based insurance products 

and highlight reasons for low subscriptions among smallholder farming households in SSA. 
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1.2. Research objectives and research design 

Considering the described research gaps, fully described in Chapter 2, the main objective of this PhD thesis 

is to develop an integrated modelling approach to assess risk management options to improve livelihoods 

and longer-term sustainability outcomes in the face of high weather variability. This was investigated for 

the case of smallholder mixed farming systems in Northern Region, Ghana. The specific objectives of the 

thesis are: 

1. To develop a generic bio-economic modelling framework that can capture and assess the 

probability of changes in farm resources in response to weather variability. 

2. To evaluate the performance of different index-based insurance products regarding effects on 

smallholder farmers’ income and assets. 

3. To explore the effects of spatial, temporal and product basis risk on the effectiveness of weather 

Index-based Insurance (WII) to increase income and reduce asset loss. 

1.3. Overview of the thesis structure 

The thesis is structured as follows: Chapter 2 provides a review of relevant literature, whereas Section 2.1 

highlights the risks facing smallholder farmers and different risk management options adopted by the 

farmers., Section 2.2 explores different modelling approaches, and Section 2.3 explores risk management 

options, including risk transfer and risk reduction options. The methods are presented in Chapter 3, 

illustrating the study area, the modelling framework, the data sources, the insurance product evaluated 

and the basis risk scenarios. The results of the thesis are presented in Chapter 4, while the discussions 

around the results of this thesis are presented in Chapter 5. Chapter 6 presents the general summary, the 

recommendations for future research and the contributions to knowledge.
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2. Literature review 

2.1. Insurance as a means of risk transfer 

Several studies have proposed differing risk reduction options as effective means of risk management on 

the farms and as well enable farmers to make sustainable investments (Hansen et al., 2019). Some of the 

proposed strategies include the use of stress-adapted crop varieties (Birthal et al., 2012), changing planting 

dates (Traore et al., 2015), agroforestry systems, diversification or conservation agriculture. The latter 

include practices such as zero tillage (Pannell et al., 2014), mulching (Alary et al., 2016), and crop rotation 

(Rusinamhodzi et al., 2011) to minimise soil disturbance and maintain soil cover (Birthal et al., 2012; Pretty 

et al., 2011). However, some evidence shows that risk reduction as a stand-alone option may not improve 

yields on average or in bad years (Danso et al., 2018; Faye, Webber, Naab, et al., 2018), suggesting other 

risk management strategies, such as risk transfer (Di Marcantonio & Kayitakire, 2017; Sibiko et al., 2018), 

prudent risk-taking (Holden & Shiferaw, 2004) and savings (Farrin & Miranda, 2015), need to complement 

risk reduction.  

Risk transfer strategies such as crop insurance have been extensively explored in the literature as an 

effective risk management approach (Ahdika et al., 2019; Leblois et al., 2014) . These studies position crop 

insurance not only as an efficient means to help farmers cope better with risks but also to enable risk-

taking (Aidoo et al., 2014; Bawa, 2019; Hansen et al., 2019; Laube et al., 2012; Lichtenberg & Iglesias, 2022; 

Traore et al., 2017).  This capacity to take on risks without fear of devastating losses and becoming trapped 

in chronic poverty is crucial for sustainable intensification (Barnett et al., 2008; Rigo et al., 2022). Other 

informal and temporary risk management strategies like liquidating assets, defaulting on loans, 

withdrawing children from school to work on farms as well as reducing household ration (Birthal et al., 

2012; Hansen et al., 2019) are not able to insure the farming households against covariate shocks and they 

are associated with larger costs for the households in the long run (Rigo et al., 2022). However, despite 

the promise of these insurance products and efforts to promote them among smallholder farmers, 

adoption is remarkably low due to unprofitable terms among other reasons, leading various authors to 

suggest that subsidies are required for insurance products (Carter et al., 2014; James et al., 2011; Shirsath 

et al., 2019).  

Different insurance products have been implemented across SSA including satellite-based, area-yield index 

insurance, and index-based livestock insurance among others (Ntukamazina et al., 2017). In Ghana, the 

Ghana Agricultural Insurance Pool (GAIP) was introduced in 2011, providing four insurance products 
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including weather index insurance, area yield index insurance, multi-peril crop insurance, and an insurance 

product for poultry (Abugri et al., 2017; Afriyie-Kraft et al., 2020; Ankrah et al., 2021). However, like many 

other countries in SSA, farmers in the Northern Region of Ghana are faced with capital constraints, so very 

few farmers subscribed to the products (Afriyie-Kraft et al., 2020) due to lack of government subsidies 

(Ankrah et al., 2021). Generally, factors such as high premium rates, the economic behaviour of farmers, 

cognitive failure, and basis risks, among many others are reasons for the low acceptance of insurance in 

SSA (Arshad et al., 2016; Di Marcantonio & Kayitakire, 2017; Ntukamazina et al., 2017).  

The low demand for these instruments calls for the need to evaluate risk transfer as part of larger risk 

management portfolios, combining different options and testing several scenarios. To date, there are few 

systematic studies or modelling approaches to assess the appropriate portfolio of risk management 

options as they vary across different farming contexts. 

2.2. Risk and smallholder farming systems 

Risks and uncertainties have been used interchangeably in the literature (Castro et al., 2018). Hübner et 

al. (2017) defined risk as an uncertain event whose outcomes affect the decision maker’s well-being. 

Distinguishing between risk and uncertainty Hamsa & Bellundagi (2017) defined risk as “imperfect 

knowledge where the probabilities of the possible outcomes are known and uncertainty exists when these 

probabilities are not known” (p. 448). Farmers in semi-arid West Africa are exposed to weather variability 

and market-related volatilities (Zhang et al., 2022), which together with illness and possible labour 

shortages combine to make their livelihood and farming operations very risky (Aidoo et al., 2014; Huet et 

al., 2020; Iddrisu et al., 2018). These risks put smallholder farmers in Northern Ghana in an extremely 

vulnerable position because the majority practice subsistence agriculture with low productivity (Iddrisu 

et al., 2018). These risks have many other economic and social implications for the farmers, as they are 

unable to meet their household needs and food requirements. This situation is worsened by the issue of 

climate weather-related risks, such as drought, flood and their related yield failure, which are projected 

to increase under climate change (Lesk et al., 2016; Trisos et al., 2022). Different coping strategies adopted 

by the farmers have not produced the desired outcome as in many cases they fall deep below the poverty 

lines (Birthal et al., 2012; Boucher et al., 2024; Hansen et al., 2019). This has led to many studies suggesting 

alternative risk management strategies such as the use of drought-resistant crop varieties, changing 

planting dates and conservation agriculture (Birthal et al., 2012; Pannell et al., 2014).  

Climate-related risks have been discussed to create barriers to the adoption of improved technologies and 

practices (Farrin & Miranda, 2015; Hansen et al., 2019), whereby farmers are unable to make long-term 
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investments or even take up innovations that could increase production because they cannot afford such 

investments. In addition, with these risks, the reluctance to adopt innovations increases due to the fear 

of failure as farmers are risk averse, they tend to avoid profitable but risky investments (Di Marcantonio 

& Kayitakire, 2017). Simulation models can be effective in assessing the effect of climate risk on farm 

management outcomes as heat and drought risks can be simulated through the crop model simulations, 

which are the main climatic risks faced by smallholder farmers in SSA. The simulations can also provide a 

probability distribution of crop yield data, which can capture risk due to yield variability. 

2.3. Bio-economic farm models and frameworks for whole farm assessments 

Ex-ante assessments of the possible outcomes of choices and policies are of particular interest to decision 

and policy makers. System modelling tools can provide valuable assessments by simulating various 

scenarios and predicting impacts (McDonald et al., 2019). System modelling approaches as described by 

Feola et al. (2012) include agent-based models, linear programming and system dynamics. Several models 

could also be combined to explain the complex interactions among socio-economic, bio-physical, and 

socio-ecological processes, which are often referred to as bio-economic farm models (Castro et al., 2018; 

Feola et al., 2012; Flichman & Allen, 2013; Wolf et al., 2015). 

Bio-economic farm models (BEFMs) among others can be applied to assess the impacts of changes in 

technology and policies across a range of geographical and climatic conditions (Janssen & van Ittersum, 

2007; Payraudeau & Van Der Werf, 2005). While many definitions of bio-economic models exist, Delmotte 

et al. (2013) defined BEFMs to consist of a biophysical component, which considers spatial and temporal 

variability of the performance (e.g. crop yield) as well as the impacts of agricultural activities. In simple 

terms, they combine aspects across disciplines e.g. agronomic and economics in mathematical 

programming models to provide multi-disciplinary and multi-scale solutions to farm resource allocation 

problems (Flichman & Allen, 2013; Janssen & van Ittersum, 2007; Louhichi, Flichman, et al., 2010).  

Many authors have reviewed the use and application of BEFMs in literature (see Castro et al., 2018; 

Delmotte et al., 2013; Flichman & Allen, 2013; Janssen & van Ittersum, 2007; Payraudeau & Van Der Werf, 

2005 for extensive details on BEFMs). There is a large diversity of BEFMs, including mechanistic and 

empirical models, positive and normative models, single and multiple objective function models, models 

incorporating risk and uncertainties and models incorporating time dynamics (i.e., static and dynamic 

models) (Janssen & van Ittersum, 2007). The inclusion of temporal dynamics is an important consideration 

in classifying BEFMs since the majority of BEFMs are static (Flichman & Allen, 2013; Janssen & van 

Ittersum, 2007; Robert et al., 2016). Comparing dynamic and static models, Castro et al. (2018) noted that 
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dynamic models can be used to examine the effects of different mechanisms before, during and after 

their implementation. Static models are restrictive and conservative; they do not consider the changes in 

the objectives over time. They can show what happens over time but the element of time is not included 

in the models (Castro et al., 2018). Lehmann et al. (2013) developed a static bio-economic model for 

farmers in western Switzerland, which combined a crop growth model with an economic decision model 

that identified optimum management decisions. In their model, they maximised the farmers’ utility while 

optimising farm scale management decisions under different climate and price scenarios. Janssen et al. 

(2010) and Louhichi et al. (2010) introduced a static, generic bio-economic farm model (The Farm System 

Simulator (FSSIM)), which is more suited for an advanced economy country context. FSSIM is linked to an 

econometric extrapolation model and a crop system model. Using mathematical programming, the model 

maximises the farmer’s utility function subject to various resource and policy constraints. Ditzler et al. 

(2019) argue that in the smallholder farmer´s context, the farm enterprise is closely linked with their 

household dynamics and household consumption should be considered.  

In 2013, Louhichi et al., adapted the FSSIM for a developing country context to develop FSSIM-Dev by 

adding household, perennial and aggregation modules of market conditions to the FSSIM. This overcame 

the challenge of assuming that production and consumption decisions for smallholder farmers in 

developing countries are separable. Both models assess the impacts of policies on the sustainability of 

agricultural systems. Groot et al. (2012) presented a bio-economic static whole-farm model (FarmDESIGN) 

which was expanded by Ditzler et al. in 2019. The model is a multi-objective optimisation model used to 

assess the interactions and trade-offs between socio-economic and environmental objectives, such as 

economic performances and organic matter balance. Castro et al. (2018) argue that multiple objective 

function models address land use problems in a more comprehensive way as compared to single objective 

function models of, for example, profit maximisation or risk minimisation. The model of Rǎdulescu et al. 

(2014) considered multiple objectives through the introduction of a mathematical programming model 

for crop planning that included weather, market and environmental risks. The objectives were to minimise 

the environmental risk, maximise the expected return and minimise the financial risk in the presence of a 

set of constraints. Semaan et al. (2007) developed a dynamic model to assess the effects of different policy 

measures on farmer’s revenue and nitrate leaching. The model combined the Erosion-Productivity Impact 

Calculator (EPIC) crop growth model with a multiple objective mathematical programming model at the 

farm level. The economic decision model included a twofold objective of maximising the farmer’s revenue 

and minimising the risk. 
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There has been an increase in the application of bio-economic models in Africa but there remain few 

models which have been applied at the smallholder level (Bidogeza et al., 2015). In 1998, Barbier 

combined a recursive and dynamic linear programming model with a biophysical model to predict yields 

and land degradation in Burkina Faso, concluding that population pressure affects intensification and 

investment in land conservation practices. Similarly, Holden & Shiferaw (2004) applied a bio-economic 

model to analyse the combined effects of land degradation, population growth, market imperfections and 

drought risk on household production, welfare and food security in Ethiopia. Louhichi et al. (2010) coupled 

a biophysical model to a non-linear dynamic model to estimate the amount of soil erosion generated in 

Tunisia. Bidogeza et al. (2015) developed a bio-economic model to analyse the impacts of soil erosion, 

family planning and land consolidation policies on food security in Rwanda. 

However, most of these studies have focused on studying causal effects, including that of climate risk and 

price volatility, land degradation and soil erosion among others, with few investigating farmer´s responses 

to weather and production shocks. Economic models are well suited to describe farmers’ behaviour and 

decision-making process, but they do not account for the agroecological processes underlying agricultural 

production. Biophysical crop models are a significant part of the bio-economic model, in addition to 

providing the BEFMs with simulated grain and biomass yield, they can be used to assess climate change 

impact and risk (Ewert et al., 2015; Webber et al., 2022) and to show interactions with the level of 

intensification. They can also be applied to assess the relationships between land use, organic and 

inorganic fertilizer applications, and output in terms of production and change in soil quality (Feola et al., 

2012; Kruseman, 2000). However, one major limitation of biophysical models is that farm management 

practices are considered as an exogenous input, which is quite constant even after a shock (Webber et al., 

2014). To endogenize management decisions, a biophysical crop modelling framework could be linked 

with a farm simulation and optimisation model to form a bio-economic model. Linking these models in an 

integrated modelling approach will support the understanding of the complex and dynamic interactions 

and most importantly, the feedback among bio-physical, socio-economic, and institutional component 

levels in farming systems (Feola et al., 2012). 

2.3.1. Consideration of risk in models 

In the context of decision-making around intensification in West Africa, it is important to include risks in 

BEFMs as the decision to invest in fertilizers, improved seeds or a new practice can be very risky given 

uncertain weather and price conditions. Several key elements associated with farming including weather, 

market prices, and plant diseases among others are highly unpredictable (Arribas et al., 2017). There is, 
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therefore, a need to consider risk elements on the farm level that affect farmers’ decisions and investment 

options (Hardaker et al., 2004). 

Risk can be included in models through stochastic and non-stochastic programming. Stochastic 

programming is an approach that involves optimising with uncertainty (probabilistic optimisation), while 

non-stochastic programming is deterministic in nature (robust optimisation) (Beyer & Sendhoff, 2007; 

Greenberg, 2005; Murty, 2003). Many stochastic programming models have been applied in literature, 

including quadratic risk programming (i.e. mean-variance analysis), minimisation of total absolute 

deviations (MOTAD), target MOTAD (the safety first model), chance-constrained programming and some 

methods with different variants of stochastic programming using discrete, dynamic or recursive 

approaches (see Arribas et al., 2017; Freund, 1969; Hazell et al., 1987; Kaiser & Messer, 2011).  

A dynamic household model by Holden & Shiferaw (2004) combined a decision model with inter-temporal 

environmental feedback in turn influencing subsequent decisions. The study analysed the effects of 

droughts on household production, welfare and food security by incorporating risk due to stochastic 

rainfall. Louhichi et al. (2010) presented a bio-economic modelling framework, where they coupled the 

EPIC model to a non-linear dynamic programming farm model. With the model, they estimated soil 

erosion associated with current cropping systems. The model accounted for risk and uncertainty in two 

major parameters, i.e. yields and prices. Mosnier et al. (2009) developed a dynamic bio-economic model, 

which was used to simulate production decisions of suckler cow farmers (in France) in a risky environment. 

They focused on the management options of the farmers in the face of price and weather risks to avoid 

losses or to increase their income. Alary et al. (2016) developed a dynamic bio-economic model based on 

the optimisation of a utility function under multiple constraints to simulate the impact of technological 

innovations such as the introduction of direct seeding mulch-based cropping on household income. The 

stochastic optimisation of the expected utility function accounts for farmers’ attitude to risk according to 

the target MOTAD approach.  

Most of the models capture risk only in the objective functions while assuming that the constraints are 

deterministic. This is not entirely the reality as farm resources can also be a source of risk (Kaiser & Messer, 

2011). Chance-constrained programming developed by Charnes & Cooper (1959) is best suited to capture 

right-hand side (RHS) risk in agriculture. Such RHS risks are caused due to fluctuations in weather, affecting 

the availability of farm resources for the farmers (Kaiser & Messer, 2011). Such models have been applied 

by Zhu et al. (1994) and more recently by Geng & Xie (2019). 
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2.4. Risk management   

2.4.1. Weather index insurance 

With the challenges surrounding crop insurance products, particularly that of moral hazards and adverse 

selection of multi-peril, in addition to the high transaction costs (Bulte et al., 2020; Rigo et al., 2022), WII 

has been proposed as an alternative in the literature, offering to reduce the high transaction costs (Rigo 

et al., 2022), minimise the adverse selection risk and promote an efficient and transparent pay-out process 

(Skees et al., 2001). Index-based insurance is proposed as an alternative option because the payouts are 

reliant on the realisation of an independent and transparent index rather than basing them on actual yield 

losses (Conradt et al., 2015). The indices are obtained directly by measuring the weather conditions at 

local weather stations (Conradt et al., 2015; Hill et al., 2019). 

Several authors have suggested that WII can help to stabilise farmers’ income in the face of climate risk 

(Adeyinka et al., 2016; Antón et al., 2013; Berg et al., 2009). For example, Ricome et al. (2017) used the 

ANDERS-CELSIUS model (ANDERS- Agricultural and Development Economics Model for the Groundnut 

Basin in Senegal and CELSIUS- Cereal and Legume crops Simulator under changing Sahelian Environment) 

to evaluate the potential of WII to improve farmers’ income and its impact on adoption of more intensive 

cropping and livestock systems in Senegal, concluding that insurance can improve welfare of farmers in 

the driest area of Senegal. 

However, despite the potential of WII to help smallholder farmers overcome the challenges that come 

with climate shocks, in SSA, the demand for these insurance products have not improved compared with 

the other insurance products (Clement et al., 2018), with many farmers opting for other alternatives in 

most pilot projects (Jensen et al., 2016). Several studies have highlighted reasons such as high premium 

rates, economic behaviours of farmers and non-transparency of the insurance contracts as some of the 

reasons for the persistent low subscription (Arshad et al., 2016; Di Marcantonio & Kayitakire, 2017; 

Ntukamazina et al., 2017). 

2.4.2. Basis risks and its impact on weather index insurance 

In addition to the challenges associated with WII, one main shortcoming of index insurance is the issue of 

basis risk borne by the farmers (Collier et al., 2009; Conradt et al., 2015; Jensen et al., 2016; Michael et al., 

2015; Tadesse et al., 2015), which is a result of imperfect correlation between the index and the losses 

(Rigo et al., 2022). Basis risk can lower farmers’ income when they suffer losses, and the indices are not 

triggered or increase their income when they do not suffer losses, but the indices are triggered. This, 
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therefore, disincentivises the risk-averse farmers from purchasing these insurance contracts (Lichtenberg 

& Iglesias, 2022). 

Typically, three types of basis risk exist, including spatial and temporal basis risk and basis risk due to design 

error also called product basis risk (Afriyie-Kraft et al., 2020; Dalhaus et al., 2018; Leblois et al., 2014; Liu 

et al., 2019). Spatial basis risk arises as a result of too far average distances between the weather stations 

to the farm (Afriyie-Kraft et al., 2020; Clement et al., 2018). Temporal basis risk arises when the insurance 

is not able to account for the losses due to differences in weather conditions during the sensitive growth 

stage of the crop (Clement et al., 2018; Dalhaus et al., 2018), i.e., the basis risk that arises as a result of 

neglecting the temporal patterns of rainfall in terms of intensity and frequency (Muneepeerakul et al., 

2017), while product basis risk occurs due to a faulty index that is unable to predict the actual yield losses 

(Dalhaus et al., 2018). Given the considerable impact of basis risk on the effectiveness of WII, it is, 

therefore, important to understand the extent to which faulty indices can impact farmers’ income under 

shock. Exploring this can improve our understanding of various forms of basis risk and their implications 

for WII. There have been several studies that have explored basis risk, coming up with various definitions 

(Hill et al., 2019; Liu et al., 2019), ways to manage it (Elabed et al., 2013) or reduce its effect (Dalhaus et 

al., 2018; Dalhaus & Finger, 2016) and the different types (Leblois et al., 2014), including extensive reviews 

of other studies (Clement et al., 2018).  

Muneepeerakul et al. (2017) identified rainfall as an unreliable yield indicator, potentially increasing WII's 

basis risk. Kölle et al. (2021) conducted a comparative analysis of satellite-based indices versus 

meteorological indices, concluding that the former could be effective, contingent upon the data quality 

from satellites and yield records. Eltazarov et al. (2023) advanced index insurance quality by incorporating 

satellite-derived soil moisture data to mitigate basis risk in WII. Nevertheless, research evaluating the 

direct impact of basis risk on the incomes of smallholder farmers during shocks is scarce (Jensen et al., 

2016). Furthermore, to date, no studies have concretely quantified the effect of basis risk on WII 

functionality.  
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3. Materials and Methods 

3.1. Study area  

The study was carried out for the Northern Region Ghana, located in the Guinea Savannah agroecological 

zone of Ghana, with a land area of about 26,000 km2 (Northern Regional Coordinating Council, 2023). Until 

a recent re-demarcation into new administrative regions, the zone comprised three main regions, namely 

the Northern Region, Upper West Region, and Upper East Region. The Northern Region has a population 

of about 2.5 million inhabitants and the region is characterised by a period of extremely low rainfall 

between October / November and April / May, often referred to as the dry season, and a rainy season 

period usually from May to October (Braimoh & Vlek, 2004), with an annual rainfall between 750 mm and 

1050 mm and an annual mean temperature between 22.4 0C and 33.9 0C. Impacts of climate change with 

frequent floods, droughts and bushfires are pronounced in the region (Abdul-Razak & Kruse, 2017; 

Alhassan et al., 2019; Iddrisu et al., 2018). Agriculture is the main occupation for the majority of the 

population as it employs about 70% of the population (Amikuzuno & Donkoh, 2012). Crops like maize, rice, 

soybeans, sorghum, cowpea, groundnut and tomato are the most commonly cultivated crops in the 

region, predominantly with intercropping (Callo-Concha et al., 2012), while livestock such as cattle, goats, 

poultry, and sheep are commonly kept by households in the region (Wossen et al., 2014). 

3.2. Sampling technique and farm survey data collection 

In 2020, a survey covering 700 households was conducted across the Upper West Region, Upper East 

Region, and Northern Region during the agricultural cropping season. The analysis was narrowed to 378 

households from the Northern Region, specifically in the Tolon, Savelugu, and Mion districts, aligning with 

the thesis's regional focus. The datasets were used to develop a farm typology, based on socio-economic 

characteristics such as age, gender and farm resource endowments (mainly land and herd size). The data 

was clustered with principal components and cluster analysis into three farm types. These farm types were 

then used to sample farmers from the first survey for a follow-up in-depth survey before the 2022 planting 

season. 15 respondents were randomly selected from each of the farm types, resulting in a total of 45 

households equally distributed among the farm types. From this data, detailed crop and livestock 

production data including household socio-economic data, on-farm and off-farm income, farm assets and 

farm production data were obtained, which were used to parameterise the model. Data were obtained 

through questionnaires added to the JotBi app developed within the CGIAR CASCAID project (CGIAR, 
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2020). Price data for year 2022 including crop and livestock prices were obtained at the current market 

price and validated by experts at the Savanna Agricultural Research Institute in Tamale.  

3.3. Definition of the three farm types considered 

The variables for the typology were selected based on literature, expert opinion, and local context (Berre 

et al., 2019; Gebrekidan et al., 2020; Shukla et al., 2019). Ten variables (Table 1) that best classify the 

households based on income and resource endowments in the dataset were used to cluster the farm 

households. First, the dataset was checked for missing data and outliers, and these were controlled for 

through imputation and list-wise deletion techniques as proposed by Kuivanen (2015) and Shukla et al. 

(2019). 340 households were retained from the 378 households due to missing data and extreme outliers. 

To construct the farm household typology, principal component analysis (PCA) and factor analysis on mixed 

data (FAMD) were carried out on the 340 households. The “FAMD” function within the “FactoMineR” 

package in R software (Version 4.0.2) was used (Le et al., 2008; R Core Team, 2023) because it is best suited 

for both continuous and categorical variables (Kassambara & Mundt, 2020); the package was also used to 

carry out hierarchical clustering to obtain the different typologies (Shukla et al., 2019). From the clustering, 

the farm households were classified into three farm types, comprising 61 low-resource-endowed farms 

(LRE), 181 medium-resource-endowed farms (MRE) and 98 high-resource-endowed farms (HRE) farms, 

respectively. After clustering the farm households, 15 farm households each were randomly selected from 

the farm types for a follow-up survey in 2022 and the integrated model was parameterised based on the 

follow-up survey and extensive expert discussions for a broad overview of the study area.  

Table 1. Summary of variables used for typologies 

Variable Description Unit 

Age Age of household head Years 

Cash at hand Cash at hand at the beginning of the season GHS 

Sex Sex of the household head - 

Household size Number of individuals in the household - 

Herd size Total herd size - 

Input costs Total cost of production GHS / year 

Land size Total land size ha 

Main crop Main crop cultivated by farmer - 

Non-farm income Annual household off-farm income GHS / year 
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Total annual income Total annual household income GHS / year 

GHS1 is the Ghanian Cedi, which is the official Ghanaian currency 

3.4. Modelling framework 

An integrated bio-economic model was developed to simulate outcomes of annual resource allocation 

based on the optimisation of gross margins at the farm level while considering annual crop yield response 

to weather and management. The integrated model consists of a process-based crop model (SIMPLACE- 

website: https://www.simplace.net/) (Faye et al., 2018), a farm simulation model to account for resource 

flows during the year (The Crop Livestock Enterprise Model- CLEM) (Meier et al., 2019), and a newly 

developed optimisation model (see Figure 1) to plan future resource allocation. CLEM simulates financial 

and matter flows in response to annual grain and biomass yield from SIMPLACE, accounting for the effects 

of farm management options on resources. The final stocks from the CLEM simulation and the yield 

expectation from CLEM are input to the annual optimisation model. The three models were grouped to 

iteratively optimise the cropping pattern. A novelty in the integrated model is the use of a large ensemble 

climate forcing dataset, which allowed assessing probabilities of outcomes. A flow chart of the connected 

models, detailing the simulation steps, is provided in Figure 2 (Page 26). To explore the integrated model 

response under different degrees of weather variability, two weather scenarios were created from the 

ensemble data to represent good and bad weather conditions. The integrated model was further adapted 

and simulated to explore ex-post effects of a WII on farmer’s income as well as to explore the effects of 

basis risk on the effectiveness of insurance by factorially combining WII contracts with replanting scenarios 

(details to be discussed later). 

 

 

 
1 GHS as of August 23, 2023, exchanged for 11.24 GHS for 1 US Dollar 

https://www.simplace.net/
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Figure 1. A schematic depiction of the integrated model. The large ensemble climate data is used to 
simulate all scenarios, as shown on the left panel. The middle panel illustrates the integrated model 
comprising the Crop Livestock Enterprise Model (CLEM), the crop model (SIMPLACE), and an annual farm 
optimisation model. The probability of outcomes depicts the results of the model on the right panel, which 
are assessed in terms of probabilities. 
 

The key function of each model and data streams between the models are as follows: 

1. SIMPLACE: simulates crop grain and biomass yield in response to weather, soil, and management. 

These simulations are passed to CLEM annually and to the optimisation model as yield 

distributions across all members within a weather scenario. 

2. CLEM: simulates monetary and resource flows annually and outputs the balances of cash and herd 

size. 

3. Optimisation model: optimises annual resource allocation and the production plan for CLEM. 

3.4.1. Large ensemble weather data used to drive the crop model forcing data 

To capture a large range of possible weather conditions that crops are exposed to, a large ensemble of 

climate modelling data was used. Large ensemble climate modelling data can produce several weather 

realisations for a given period and state of the climate, effectively sampling the whole distribution of 

possible weather (Deser et al., 2020; van der Wiel et al., 2019). A large ensemble of data, which contains 

2000 instances (years) with characteristics consistent with the current climate was generated using the 

EC-Earth global climate model data (Hazeleger et al., 2012). EC-Earth is an Earth system model that 

represents atmosphere, ocean, land, and ice conditions. The large ensemble was used to capture as many 

extreme weather events as possible, consistent with the current climate which are often excluded with 

smaller datasets (including the historical weather record which is only one possible realisation of current 

climate among many). The ensemble consists of 400 members, with each member consisting of a 5-year 

simulation period representing the present-day global climate (as observed in 2011-2015). Details on the 

large ensemble experimental set-up can be found in (van der Wiel et al., 2019). The data were previously 

used in (Goulart et al., 2021; Van Der Wiel et al., 2020; Vogel et al., 2021; Zhang et al., 2022). The data 

were extracted for the grid point closest to the study site, Tamale (090 N and 000 W). The modelled 

temperature and precipitation data were bias-corrected using station data from Nyankpala. For 

temperature, the daily maximum, minimum, and annual cycle were computed using a harmonic function 

(Liersch et al., 2018); simulated data were then corrected by the difference between the harmonic based 

on the observed data and the harmonic based on the simulated data as in Equation 1. 
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𝜇(𝑡) = 𝑎 +  Σ𝑘=1
𝑘 𝑏𝑘 sin(𝑘𝑤𝑡) + 𝑐𝑘𝑐𝑜𝑠 (𝑘𝑤𝑡)     (1) 

where 

𝜇 = Temperature (C) 

t = Day of the year (1-366) 

K = Order of harmonic function determined using Bayesian Information Criterion (BIC) (K = 4) 

w = 2π/365.25 

a, bk and ck are coefficients of the harmonic functions 

The precipitation was corrected monthly using a method from Vogel et al. (2021). The number of 

precipitation days of EC-Earth data was first corrected to the observed number to solve for the drizzle 

effects and the precipitation values of the days with precipitation amounts falling below a threshold were 

set to 0. The threshold was determined by matching the EC-Earth precipitation days to the observed 

precipitation days (≥0.1 mm d-1). After correcting the drizzle bias, the EC-Earth monthly precipitation 

amount was corrected by a multiplicative factor to match the observed monthly precipitation amount. 

3.4.2. Crop model simulations 

A model solution in the SIMPLACE crop model framework was implemented to simulate crop growth in 

response to weather information and key management options (Ewert et al., 2015; Nafi et al., 2021; 

Webber et al., 2014). For the above-ground crop growth module in SIMPLACE, Lintul-5 (Wolf, 2012) was 

combined with a modified version of Slim Water for soil water dynamics (Addiscott & Whitmore, 1991). 

FAO-56 dual evapotranspiration method was used for evapotranspiration (Allen et al., 1998). To simulate 

the interaction between heat and drought, the heat stress module (Gabaldón-Leal et al., 2016), was 

combined with the canopy temperature module (Webber et al., 2016). The crop development, growth and 

grain and biomass yield were simulated in response to daily weather considering soil texture and depth, 

mineral nitrogen availability, and crop management practices such as sowing date, variety, and fertilizer 

applications. Water and nitrogen deficits both lead to reduced radiation use efficiency, which in turn 

reduces leaf area development expansion rates. Water deficit also resulted in higher canopy temperature 

affecting heat stress and increased assimilate partitioning to crop roots. Simulated yields were then 

reduced with an empirical reduction factor to account for yield and biomass reduction of imperfect weed, 

pest, and disease management by using the survey yield data and multiplicative factors. These were 
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introduced to account for yield-reducing influences such as lack of seeds, labour, herbicides, pesticides 

etc. that SIMPLACE was unable to capture. 

The SIMPLACE crop-modelling framework provides CLEM and the optimisation model with a simulation of 

biomass yield and crop nitrogen content as shown in Table 2. Crop model simulations were conducted for 

all the crops cultivated by the farmers namely: soybeans, groundnut, rice, and maize. These were obtained 

from the data obtained in the study area. Maize crop yields were simulated at three levels of nitrogen 

fertilizer application (i.e., maize with low, medium, and high fertilizer rates- fertilizer levels are given in 

section 3.4.3) because maize production in the study area is constrained by fertilizer application and 

intensity (Adzawla et al., 2021). 
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Table 2. Variable inputs-outputs among models. 

 

Type of model 
Base year (Year 1) Subsequent years (Year 2 – 5) 

Variable input Variable output Variable input Variable output 

Crop model 

• Weather and soil 

condition 

• Crop yield distribution • Weather and soil 

condition 

• Crop yield 

distribution 

• Farm management • Crop biomass • Farm management • Crop biomass 

CLEM model 

• Crop yield • Net farm income • Crop yield • Net farm income 

• Crop biomass • Herd size • Crop biomass • Herd size 

• Initial production 

activities 

 • Farm production 

activities: crop choice 

 

Optimisation model 

• Crop yield distribution • Farm production 

activities: crop choice 

• Farm endowments • Farm production 

activities: crop 

choice 

• Crop biomass  • Resource shortages  

• Farm endowments  • Cash at hand  

  • Herd size  
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3.4.3. Management of maize production and fertilizer assumptions 

To classify maize production based on varying fertilizer application intensity, the following procedures 

were carried out: 

1. The whole dataset was matched by crop production and the associated level of fertilizer used.  

2. The farms cultivating maize with zero, low, medium, and high fertilizer levels were then grouped 

based on percentiles. 

3. All land areas, crop types, and applied fertilizers declared as zero or blank were removed. This means 

that the land was either not cultivated or no fertilizer was applied. 

4. Fertilizer rate per hectare was calculated for each plot with the formula in Equation 2: 

𝑞𝑡𝑦𝑓𝑒𝑟𝑡 =
𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑎 𝑏𝑎𝑔

𝐷𝑒𝑐𝑙𝑎𝑟𝑒𝑑 𝑎𝑟𝑒𝑎
         (2) 

where 

𝑞𝑡𝑦𝑓𝑒𝑟𝑡 = 𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑜𝑓 𝑎𝑝𝑝𝑙𝑖𝑒𝑑 𝑓𝑒𝑟𝑡𝑙𝑖𝑧𝑒𝑟𝑠 𝑖𝑛 𝑏𝑎𝑔 

5. Nitrogen proportion was set to 15% unless the percentage is indicated, or the fertilizer product 

applied is urea. 

6. Nitrogen rate per hectare was calculated with Equation 3: 

𝑁𝑟𝑎𝑡𝑒 =
𝐹𝑟𝑎𝑡𝑒 ×𝑁𝑝𝑟𝑜𝑝

100
         (3) 

where 

𝑁𝑟𝑎𝑡𝑒 = 𝑁𝑖𝑡𝑟𝑜𝑔𝑒𝑛 𝑟𝑎𝑡𝑒 𝑖𝑛 𝑘𝑔 𝑝𝑒𝑟 ℎ𝑒𝑐𝑡𝑎𝑟𝑒 

𝐹𝑟𝑎𝑡𝑒 = 𝐹𝑒𝑟𝑡𝑙𝑖𝑧𝑒𝑟 𝑟𝑎𝑡𝑒 𝑖𝑛 𝑘𝑔 𝑝𝑒𝑟 ℎ𝑒𝑐𝑡𝑎𝑟𝑒 

𝑁𝑝𝑟𝑜𝑝 = 𝑁𝑖𝑡𝑟𝑜𝑔𝑒𝑛 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑖𝑛 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 

7. Grain yield from bags was calculated as (Equation 4): 

𝐺𝑛𝑦 =
𝐺𝑛𝑎 ×𝐺𝑟𝑎𝑖𝑛𝑤𝑒𝑖𝑔ℎ𝑡

𝑎
          (4) 

where 

𝐺𝑛𝑦 = 𝐺𝑟𝑎𝑖𝑛 𝑦𝑖𝑒𝑙𝑑 𝑓𝑟𝑜𝑚 𝑏𝑎𝑔 𝑖𝑛 𝑘𝑔 𝑝𝑒𝑟 ℎ𝑒𝑐𝑡𝑎𝑟𝑒 
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𝐺𝑛𝑎 = 𝐺𝑟𝑎𝑖𝑛 𝑎𝑚𝑜𝑢𝑛𝑡 ℎ𝑎𝑟𝑣𝑒𝑠𝑡𝑒𝑑 𝑜𝑛 𝑙𝑎𝑛𝑑 𝑖𝑛 𝑏𝑎𝑔𝑠 

𝑎 = 𝑎𝑟𝑒𝑎 

𝐺𝑟𝑎𝑖𝑛𝑤𝑒𝑖𝑔ℎ𝑡 = 𝐺𝑟𝑎𝑖𝑛 𝑤𝑒𝑖𝑔ℎ𝑡 𝑖𝑛 𝑘𝑔 

8. Rows with zero grain yields per hectare were removed. 

9. Maize was then categorized into three groups based on the nitrogen rate per hectare and the 

categories include maize with low fertilizer intensity: 0-30 N ha-1, maize with medium fertilizer 

intensity 30-90 N ha-1, maize with high fertilizer intensity greater than 90 N ha-1. 

From the classification, maize was simulated at three levels of nitrogen fertilizer application comprising 

maize with low fertilizer intensity applied with 17.5 kg N ha-1 of fertilizer application, maize with medium 

and high fertilizer intensity applied with 49.4 kg N ha-1 and 114 kg N ha-1, respectively. In addition, 

groundnut, soybean, and rice are based on 4 kg N ha-1, 17.4 kg N ha-1, and 49 kg N ha-1 applications, 

respectively. 

3.4.4. Classifying climate ensemble into good and bad weather scenarios 

Classifying climate ensemble members to either the good or bad weather scenario was done based on 

simulated grain yields for each ensemble member. Since the grain yield level varies among the crop types 

(e.g., rice yield above 3000 kg ha−1 vs. soybean yield around 1000 kg ha−1), the relative yield was calculated 

for each crop type (i.e., the yield of a given year divided by the average yield in all 2000 simulation years 

available in the dataset). Thereafter, the mean relative yield was calculated across crop types for each 

ensemble member (5-year simulation), and these mean yields were used to classify the ensemble 

members. The 30 highest and 30 lowest mean relative yield members were grouped into the good and 

bad weather scenarios (referred to as 30 ensemble weather in subsequent sections) and were included in 

the simulation to generate distinct weather responses for testing the integrated model. 

3.4.5. The Crop Livestock Enterprise Model (CLEM) 

The Crop Livestock Enterprise Model (CLEM), developed by the Commonwealth Scientific and Industrial 

Research Organization (CSIRO), is an advanced farm management simulation tool. Leveraging biophysical 

data from crop-soil interactions, CLEM facilitates the exploration of farm management strategies by 

simulating the dynamics of on-farm resource flows against the backdrop of available resources. It 

comprehensively integrates various farm resources—labour, capital, land, and equipment—with key 

agricultural practices, including ploughing, weeding, and fertilizer application, to generate monthly 
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assessments of critical indicators such as net income and food storage capacity (Meier et al., 2019). The 

model encompasses a wide range of inputs, from land and financial resources to labour (spanning both 

household and hired labour) and livestock feed stores, alongside an array of farm management activities 

that extend from crop to livestock management. These elements are meticulously tailored to each farm 

type within CLEM, offering annual projections of resource stocks and farm endowments throughout the 

simulation period. Notably, the model positions livestock as a strategic capital reserve, sold primarily under 

severe economic constraints to safeguard household consumption levels (Herrero et al., 2013). To 

parameterise CLEM, some assumptions were made including the assumption of off-farming income such 

as remittances, livestock sales as fixed income based on the data obtained from the survey and obtaining 

loans to supplement available capital based on the loan limit obtained from the survey data. Details of the 

underlying assumptions in the CLEM are documented in Appendix B.  

3.4.6. Farm optimisation model 

A whole farm chance-constrained model was developed, using the General Algebraic Modelling System 

(GAMS), version 31.2 with the solver DICOPT. The final parameterisation is based on the farmers’ 

production activities in the region. Here, the sources of uncertainty constituting risk were the effects of 

weather scenarios on crop yields and the variation in herd size and cash at hand. To include these risks in 

the optimisation model, the chance-constrained risk optimisation model (Kim et al., 2013; Maher & 

Williams, 1999) was used as: 

𝑀𝑎𝑥 ∶ 𝐶𝐸 = 𝐸(𝐺𝑀) − 𝑅𝑃     (5) 

where 

CE = Certainty equivalence of farmer’s gross margin 

E (GM) = Expected gross margin 

RP = Farmer’s risk premium 

subject to: 

Σ𝑗=1
𝐽 𝑎𝑖𝑗𝑥𝑗  ≤ 𝑏𝑖 𝑖 = 1, … , 𝑛     (6) 

where 

𝑎𝑖𝑗 = 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑖𝑛 𝑖𝑡ℎ 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑓𝑜𝑟 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑥𝑗 

𝑥𝑗 = 𝐿𝑒𝑣𝑒𝑙 𝑜𝑓 𝑗𝑡ℎ𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 

𝑏𝑛(𝑏𝑚) = 𝐸𝑛𝑑𝑜𝑤𝑚𝑒𝑛𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑛𝑡ℎ 𝑖𝑛𝑝𝑢𝑡 (𝑚𝑡ℎ "non certain" input) 

𝑃𝑟𝑜𝑏 [Σ𝑗=1 
𝐽 𝑎𝑚𝑗𝑥𝑗  ≤ 𝑏𝑚]  ≥ 𝛽 𝑚 = 1, … , 𝑀    (7) 
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𝐸(𝐺𝑀) = Σ𝑗=1
𝐽

 𝐸(𝑐𝑚𝑗)𝑥𝑗      (8) 

where 

𝑎𝑛𝑗(𝑎𝑚𝑗) =

𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑚𝑎𝑡𝑟𝑖𝑥 𝑜𝑓 𝑛𝑡ℎ 𝑖𝑛𝑝𝑢𝑡 (𝑚𝑡ℎ "non certain" input) 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑗𝑡ℎ 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦  

𝛽 = 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑙𝑒𝑣𝑒𝑙 

𝐸(𝑐𝑚𝑗) = 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑚𝑎𝑟𝑔𝑖𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑗𝑡ℎ 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦  

 

𝑅𝑃 = 0.5𝜌 Σ𝑖=1
𝐽

Σ𝑗=1
𝐽

𝑉(𝑐𝑚𝑖, 𝑐𝑚𝑗)𝑥𝑖𝑥𝑗     (9) 

where 

𝜌 = 𝐹𝑎𝑟𝑚𝑒𝑟′𝑠 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑟𝑖𝑠𝑘 𝑎𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 

𝑉(𝑐𝑚𝑖 , 𝑐𝑚𝑗)

= 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑡ℎ 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑗𝑡ℎ 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦′𝑠𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑚𝑎𝑟𝑔𝑖𝑛 

𝑥𝑗 ≥ 0 𝑗 = 1, … , 𝑚  

 

Equation 5 indicates that the risk caused by the fluctuation of the contribution margin of activities—which 

is caused by the variation in the yield—is included in the objective function of the model in the form of 

the farmer’s risk premium. However, according to Equation 9, return fluctuations do not affect all farmers 

in the same way because they have different risk attitudes, which is reflected in their risk aversion 

coefficients. Another aspect of risk captured in this optimisation is related to the uncertainty in inputs such 

as cash at hand and herd size (see Equation (7)). It is assumed that the farmer is certain about the 

endowment of some inputs at the beginning of each year (Equation (6)) but is uncertain about others 

(Equation (7)). These constraints with uncertain outcomes are specified to be met with a given probability 

(confidence level) (Kim et al., 2013; Maher & Williams, 1999) i.e., a lower limit (𝛽) to ensure that the 

constraint will be satisfied (Kaiser & Messer, 2011). These constraints contain risks as their outcomes 

depend on several risky factors. To include these risks in the right-hand side of the optimisation model, 

the means and standard deviations were calculated from the distribution (i.e., cash at hand and herd size) 

and included in the chance-constrained programming. Following McCarl & Spreen, (1997), Equation (7) 

was entered into the optimisation model in the mathematical form of Equation (10): 

Σ𝑗=1
𝐽 𝑎𝑚𝑗𝑥𝑗  ≤ 𝐸(𝑏𝑚) −  𝜎𝑏𝑚

(1 −  𝛽)−0.5      (10) 

 

where𝐸(𝑏𝑚) and 𝜎𝑏𝑚
 are the expected value and standard deviation of bm (non-certain input), 

respectively. 
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Equation (9) includes a parameter for risk aversion to account for the risk behaviour of the farmers. As this 

parameter is subjective (Freund, 1956; Hardaker et al., 2004), the model was solved for different risk 

aversion coefficients ranging from low (0) to high (4) (McCarl & Spreen, 1997), each of the results was 

discussed with experts from the region, and the most suitable and efficient production plan was chosen 

for the farmers (Kaiser & Messer, 2011). Risk was incorporated into the objective function using a quadratic 

programming approach (Freund, 1956; Oxana et al., 2002; Preckel et al., 1987). The standard deviation for 

the total gross margin was calculated from the variance-covariance matrix of contribution margins for all 

production activities (Bidogeza et al., 2015). The household utility was measured using discretionary 

income, which is the income available for household use after paying for all essential expenses, including 

household consumption, clothing, school fees, etc. (Bidogeza et al., 2015; Labourte et al., 2009). The 

farming household comprises the household head, their spouses, children, or other people in the 

household who can earn any kind of income. Some assumptions made in the optimisation model include 

feeding the biomass from crop production (obtained from the crop model and updated yearly) to the farm 

ruminants, in addition to grassland and additional feed supplements that may be bought based on the 

feed requirements of the animals and availability. Further, as livestock are held as prized assets in the study 

area, livestock are parameterised as fixed assets and not sold, accounting for all associated costs to keep 

them. (see Appendix D for all assumptions for the constraints and mathematical equations included in the 

optimisation model).  

3.5. The integrated model coupling 

The three models (SIMPLACE, farm optimisation model and CLEM model) were recursively integrated on 

an annual basis for a period of 5 years. As a first step, the crop model simulations were conducted for all 

crop and fertilizer levels for all weather scenarios, scenario members, and years. The resulting data for the 

crop grain and biomass yields were stored in a database for access by the CLEM and optimisation models. 

Further, the resulting yield distributions were used as inputs for the optimisation model. Next, the CLEM 

and optimisation models were parameterised with initial farm management activities from the survey for 

each farm type. Starting with one weather scenario, the simulation proceeded by running the CLEM model 

for the first year of the weather ensembles, which resulted in a distribution of values for the herd size and 

cash at hand. The simulation starts by running CLEM for the first year using every ensemble member to 

obtain 30 independent outputs from the 30 ensemble members. Livestock were only considered sold if 

there was insufficient money to meet household expenditure, also considering available credit. The 
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optimisation model then, simulates annual crop and land allocation, which are updated in CLEM the 

following year (i.e., year 2) as shown in Figure 2. This process was repeated for 5 years to obtain 30 

different outputs from 30 ensemble members. This simulation is also repeated for different risk aversion 

parameters in the optimisation model. This is then repeated for each farm type and weather scenario.  

The model results at the end of the 5-year simulation show the responses of the different farms to the 

various weather conditions and the integrated model was observed for how it captures shock, in this case 

due to weather variability. The same simulation was also done with CLEM without interacting with the 

optimisation model. This was done to compare the results of the current cropping pattern as simulated by 

CLEM (which is comparable to many studies in the literature) with the results of the integrated model 

(which provides a step forward in the possibility of making complete assessments).  



Materials and methods 

26 

 

 

Figure 2: Flow chart of the integrated model. 
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3.6. Scenario definitions 

3.6.1. Insurance-replanting scenarios 

To explore the ex-post effects of a WII on farmers’ income, the integrated model was adapted to include 

two different WII contracts: one less expensive product covering the germination phase and a more 

comprehensive product covering the whole growth period, both compared with a no-insurance reference. 

An agronomic management scenario of replanting (details later) in case of failure of crop establishment 

was also tested for each of the insurance cases. Simulations were conducted for the three insurance 

options: no insurance, seed insurance and full insurance in a factorial combination with the replanting 

scenarios as summarised in Table 3. These options were evaluated for each farm type.  

Table 3: Overview of insurance and replanting scenarios 

Insurance option Growth stage Replanting 

No insurance NA No  Yes 

Seed insurance Germination  No  Yes 

Full weather index-based insurance Germination  No Yes 

 

 

 

 

Vegetative  

Flowering  

Pre-harvest  

 

To incorporate the insurance contracts and the possibility of replanting in the event of yield failure, crop 

simulations were conducted with later planting dates, approx. 1 month after the initial planting date (APNI 

and CSIR, 2022) to assess yields that could be achieved if the farmers replanted. Further, indemnities were 

calculated for all possible weather scenarios and the premiums were also determined. However, for this, 

CLEM simulations were executed for all the 400-weather data ensemble (i.e., the good and bad weather 

classification was not used), generating 400 independent outputs. This was done to explore the response 

of farmers’ income and assets under all weather conditions. In addition, insurance premiums and potential 

indemnity payments were incorporated into the farms' gross margins, thereby enhancing financial 

resilience. The updated model framework and set-up (flow diagram) are shown in Figures A1 and A2 in 

Appendix A1 and A2, respectively.  
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3.6.2. Basis risk scenarios 

To explore the effects of basis risk on farmers’ income, further simulations were conducted with crop yield 

obtained by varying daily precipitation to capture spatial basis risk, changing planting date to capture 

temporal basis risks, and changing soil depth as well as, field capacity to capture product basis risk. The 

simulations were conducted by factorially combining the different insurance options (no insurance, seed 

insurance and full insurance) with replanting scenarios under different yield outputs. For the spatial basis 

risk effect, daily precipitation was reduced by 15% down to 30% and increased up to 30%. Planting dates 

were also increased by 7 days up to 21 days and reduced to 14 days for temporal basis risk. Finally, the soil 

depth was reduced by 30cm and increased up to 30cm for product basis risk as shown in Table 4. For these 

scenarios, simulations were conducted only for the average farms in the study area as the objective was 

to capture the effects of basis risk on insurance but not the differences among the farms. The updated 

model framework is shown in Figure A3 in Appendix A3. 
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Table 4: Overview of simulation experiment for basis risk scenarios 

Basis risk Insurance- WII  Daily precipitation 
changes 

Changes in planting 
dates 

Changes in soil 
(depth, field 
capacity) 

Replanting 

Spatial 

No NA - - NA 

Seed  -30%  - - 

Yes 
 

 -15%  
-5% 
0 

-  
- 
- 

-  
- 
- 

 +10% - - 
    +30%  - - 

Full  -30%  - - 

-15%  
-5% 
0 

-  
- 
- 

-  
- 
- 

+10% - - 

+30%  - - 

Temporal  
 

No - NA - NA 

Seed - 
- 
- 
- 

-14 days - 

Yes 
 

0 - 
+ 7days - 
+ 21 days - 

Full - 
- 
- 
- 

-14 days - 

0 - 

+ 7days - 

+ 21 days - 

Product 

No - - - NA 

Seed - - -30cm 

Yes 
 

 - - 0 
 - - +30cm 

Full - - -30cm 
 - - 0 
 - - +30cm 
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3.7. Weather index insurance options 

Northern Ghana is characterized by high weather fluctuations, with increasingly pronounced impacts of 

climate change (Abdul-Razak & Kruse, 2017; Alhassan et al., 2019). The largely subsistence farming 

households regard maize as the most important staple crop (Antwi-Agyei et al., 2018), comprising a large 

share of their land allocation (Ankrah et al., 2021; Danso et al., 2018; Lucas et al., 2019) and household 

consumption (Nti, 2008). Therefore, in 2023, WII products were developed for maize in collaboration with 

ACRE Africa. ACRE Africa is an insurance service provider in sub-Saharan Africa that provides end-to-end 

risk mitigating options for farmers including access to credit and input, and insured risk 

(https://acreafrica.com/). The choice to develop and assess insurance solutions only for maize was based 

on several considerations. First and foremost, maize response to nitrogen fertilizer in the region is highly 

variable, particularly with rainfall amount and water availability (Danso et al., 2018), making the 

investment in fertilizer very risky and potentially a case where economic returns of fertilizer use could 

justify the use of insurance. Other reasons included the interest of ACRE-Africa in the analysis of income 

effects of such a product and our desire to limit the complexity of the study to one crop. Additionally, 

soybean is commonly grown in the region under contracts, which preclude the use of an insurance 

product, though likely with less favourable terms. The product designed here addresses excess and deficit 

rainfall although temperature also has an impact on the crops, including driving drought stress. 

Precipitation alone was considered as fluctuations in rainfall are considered as the major risk that is faced 

by farmers in sub-Saharan Africa including Ghana (Haile, 2005) and not heat stress (Faye et al., 2018). 

Temperature, which is not as variable, has been indirectly considered in the setting of the precipitation 

index trigger. In other areas where temperature is a major risk, these contracts can be adapted to consider 

the two elements of risk. 

These contracts were developed to achieve the second objective of this thesis of evaluating performance 

of index-insurance products. To include the insurance options in the optimisation model, Equations 8 and 

9 in the optimisation model were updated as Equations 11 and 12 respectively: 

𝐸(𝐺𝑀) = ∑ 𝐸(𝑐𝑚𝑗 + 𝑖𝑛𝑑𝑗)𝑥𝑗  − 𝑅𝑃 + 𝑅 − 𝑃𝑅𝐽
𝑗=1      (11) 

where 

𝑖𝑛𝑑𝑗𝑖𝑠 𝑡ℎ𝑒 𝑖𝑛𝑑𝑒𝑚𝑛𝑖𝑡𝑦 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑑 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑗𝑡ℎ 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑎𝑛𝑑 𝑃𝑅 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑟𝑒𝑚𝑖𝑢𝑚.  

R = all income from non-agricultural sources i.e., off-farm income, income from remittances etc. 

https://acreafrica.com/


Materials and methods 

31 

 

𝑃𝑅 is the insurance premium 

𝑅𝑃 = 0.5𝜌 ∑ 𝛴𝑖=1
𝑗𝑗

𝑖=1  𝑣(𝑐𝑚𝑖 + 𝑖𝑛𝑑𝑗 , 𝑐𝑚𝑗 + 𝑖𝑛𝑑𝑗)𝑥𝑖𝑥𝑗    (12) 

where 

𝑅𝑃 is the risk premium 

ρ is the farmer’s absolute risk aversion coefficient  

𝑣(𝑐𝑚𝑖 + 𝑖𝑛𝑑𝑗, 𝑐𝑚𝑗 + 𝑖𝑛𝑑𝑗) is the variance-covariance matrix of the ith and the jth activity’s 

contribution margin and the indemnities 

As in Equation 12, the contribution margin and indemnities of maize were simulated in different scenarios. 

The gross margins include income from crop production, off-farm income due to employment, income 

from remittances, and income from poultry sales as obtained as from the survey. Non-agricultural income 

sources here are fixed, i.e., they are not subject to risk (Lien et al., 2023), therefore they are not included 

in the calculations of risk premium in Equation 12 above. 

The insurance product developed here covers a period of 120 days with a specific planting date and 

comprises four stages, namely germination drought cover (GC), vegetative drought cover (VC), flowering 

drought cover (FC) and pre-harvest or excessive rain cover (RC) based on the growth phase of the crop 

(Skees et al., 2001). To choose an optimal planting date, the planting dates from the survey were observed 

(average planting date from the survey: June 12th). Further, the dates were discussed with experts who 

are familiar with the region and the current operations of the farmers, and they confirmed that 10th June 

is the optimal planting date stressing that most farmers plant on this date. This is also confirmed in the 

study carried out by Freduah et al. (2019), which states that June is usually regarded as the normal planting 

date in Northern Ghana, while May and July are respectively early and late planting dates in the region. 

Furthermore, the affordability and efficiency of two insurance products, namely seed insurance, and the 

full WII cover were compared. The latter comprises all the covers from day one to day 120. Seed insurance 

is an index insurance that covers the seed germination stage of the maize crop. The cover starts from day 

1 of planting to day 21 after planting. The premium is attached to the purchase of hybrid maize seeds, and 

the price paid per kg will include the sum of the price of seeds and the premium for the insurance. The full 

WII product covers the entire growth cycle, including GC (duration given above), VC from 21 to 65 days 

after planting, FC from 65 to 95 days after planting while the RC covers from 90 to 120 days after planting. 

The combination of these four stages of insurance cover makes the full weather index insurance cover. 
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3.7.1. The weather indices 

Both index products utilize daily rainfall observations from the Tamale (090 N and 000 W) grid point to 

assess risk during the cropping season. Here the extracted data from EC- Earth global climate model data 

for years 2011 to 2015 was used to calculate the weather index. This data was used because they are the 

same data used to run the integrated model, and this would ensure consistency. This was compared with 

the TAMSAT dataset for the same years, which gave comparable results. Triggers are set based on rainfall 

deficits and excesses per growth phase of the historical rainfall events. For the index, temperature and 

evapotranspiration were not considered because the aim was to develop insurance contracts that are as 

close to the study area as possible. Rainfall deficits and excesses were only considered because 

fluctuations in rainfall are considered the major risk faced by the farmers in the region (Haile, 2005). In 

addition, the standardized Precipitation Evapotranspiration Index (SPEI) requires additional inputs to 

compute potential evapotranspiration, which may increase the uncertainty (Hoffmann et al., 2020), 

especially in areas where good-quality and high-resolution climate data are missing, such as the study site 

of this thesis. Meanwhile, the precipitation-based index is more straightforward to calculate and thus 

easier to communicate with farmers. In addition, the drought stress in such regions is largely influenced 

by soil characteristics. The soil is significantly degraded, and thus, water holding capacity is extremely low. 

This implies that the meteorological drought index should be linked with soil data to represent drought 

stress better. 

The trigger for the growth phase where drought is being monitored was determined by calculating the 5th 

percentile of the average daily observed rainfall data as represented by Equation 13 and during the 

maturity phase where excessive rainfall is the main peril, the trigger was determined by 95th percentile of 

the average daily observed rainfall data, as shown in Equation 14. 

Tphase = P0.05(μ(Σ𝑝ℎ𝑎𝑠𝑒
𝑑 ))      (13) 

 

where 

Tphase = 𝑇𝑟𝑖𝑔𝑔𝑒𝑟 𝑓𝑜𝑟 𝐺𝐶, 𝑉𝐶 𝑎𝑛𝑑 𝐹𝐶 𝑔𝑟𝑜𝑤𝑡ℎ 𝑝ℎ𝑎𝑠𝑒 

P0.05 = 5th percentile 

𝑇𝑝ℎ𝑎𝑠𝑒 = 𝑃0.95(𝜇(𝛴𝑝ℎ𝑎𝑠𝑒
𝑑 ))      (14) 

where  
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Tphase = 𝑇𝑟𝑖𝑔𝑔𝑒𝑟 𝑓𝑜𝑟 𝑅𝐶 𝑔𝑟𝑜𝑤𝑡ℎ 𝑝ℎ𝑎𝑠𝑒 

P0.95 = 95th percentile 

3.7.2. Indemnities 

Indemnities were computed individually for each growth phase. For the GC phase, the cumulative rainfall 

over 14-day intervals was calculated starting from day 1 after planting until day 21 after planting (i.e., from 

day 1 to day 14, till day 8 to day 21). For the VC phase, the cumulative rainfall received every 21 days after 

planting, i.e., day 21 to 41 up to day 45 to 65 was calculated. During any period of 21 days, if the total 

rainfall received is less than or equal to the trigger values for the VC phase, a loss will be considered to 

have occurred. The same calculations were made for the FC and the RC phase observing daily cumulative 

rainfall every 14 days and every 21 days, respectively. For the full insurance cover, the maximum payable 

loss cannot exceed 100% of the input costs, the payable loss is divided into 4 for all growth phases, 

comprising 25% each as shown in Table 3. The number of intervals for each growth phase based on the 

daily rainfall data was estimated in Equation 15 to determine the loss compensation per phase. 

𝑁𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = (𝑁𝐷𝑝ℎ𝑎𝑠𝑒 −  𝑅𝑐𝑢𝑚𝑃) + 1    (15) 

where 

𝑁𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠 𝑝𝑒𝑟 𝑝ℎ𝑎𝑠𝑒 

𝑁𝐷𝑝ℎ𝑎𝑠𝑒 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑦𝑠 𝑝𝑒𝑟 𝑝ℎ𝑎𝑠𝑒 

𝑅𝑐𝑢𝑚𝑃 = 𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑟𝑎𝑖𝑛𝑓𝑎𝑙𝑙 𝑑𝑎𝑦𝑠 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑝ℎ𝑎𝑠𝑒 

 

The loss compensation per interval was determined by dividing the maximum loss payable in each phase 

by the total number of intervals as shown in Table 5. The number of intervals where the trigger is set for 

each phase was then obtained. The number of intervals with the trigger set was then multiplied by the 

loss compensation per interval to obtain the percentage of input costs to be paid per phase. 
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Table 5: Input data for indemnities 

Insurance 

type 

Phase Maximum 

loss 

payable* 

Number 

of days in 

phase*** 

Cumulative 

rainfall 

days** 

Number 

of 

intervals 

Loss 

compensation 

per interval 

Cost included 

per phase 

Seed 

insurance 

cover 

Germination 100% 21 14 8 12.5% Seed costs  

Sowing costs 

Full 

insurance 

cover 

Germination 25% 21 14 8 3.1% Seed costs 

Sowing costs 

Vegetative 25% 45 21 25 1% Fertilizer costs 

Herbicide costs 

Flowering 25% 30 14 17 1.5% Weeding costs 

Pre-harvest  25% 30 21 10 2.5% Harvest costs 

* Maximum loss is equal to total input costs covered per phase 
**days per interval used to calculate the cumulative rainfall that is compared to the trigger value 
*** these days can overlap 

The loss compensation per interval shown in Table 5 above was used to calculate the percentage of input 

costs to be paid if there is a payout to the farmer. In addition, the input costs to be paid depends on the 

growth phase of the crop (Table 5). For the seed insurance, there are no partial payments of indemnities, 

i.e., if the index is triggered the farmers get paid but if not, the farmer does not get paid. This is because 

the claims payouts are meant to facilitate the farmers to replant. To obtain a single payout for the seed 

insurance, all the indemnities in the germination phase that were greater than 0 were averaged i.e., cases 

where there were payouts.  

3.7.3. Insurance premium 

The insurance premiums for the different insurance contracts used for the study were calculated by using 

the burning cost analysis method, which is an estimation of the expected losses for an insurance cover 

based on historical claims (Parodi, 2014). Historical payoff average data (HPAD) from 1983 to 2022 for 

Latitude 9.375 and Longitude -1.125 were obtained from ACRE Africa and this data was averaged to obtain 

the historical payoff average (average losses). The HPAD are location specific, and they indicate the 

percentage of historical claims at different growth phases of the crops. The weather data used for the 

historical payoffs were obtained from TAMSAT (website: https://gws-access.jasmin.ac.uk/public/tamsat/) 

for the Northern part of Ghana region. The region was divided into the TAMSAT grid points of 4 km by 4 

https://gws-access.jasmin.ac.uk/public/tamsat/
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km resolution. This historical data ensures that the premiums are farm-specific, reducing adverse selection 

problems (Bucheli et al., 2021). Further, the capital loadings were estimated; an extra cost added to the 

insurance policy to cover for unanticipated losses (Sinha, 2013), which is also one of the key components 

of the risk premium. This is included because if the actual losses are significantly greater than the average, 

the insurance company would require funding from other sources to cover the claims (Parodi, 2014). It 

was calculated by subtracting the calculated average losses from the average catastrophic losses that are 

based on those losses exceeding a certain threshold (95th percentile) and multiplying it by the average cost 

of borrowing for the insurer as shown in Equation 16. 

𝐶𝐿 = 𝐴𝑐𝑏  × (𝑃0.95 −  𝐴𝑙)      (16) 

where 

𝐶𝐿 = 𝐶𝑎𝑝𝑖𝑡𝑎𝑙 𝑙𝑜𝑎𝑑𝑖𝑛𝑔  

𝐴𝑐𝑏 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑏𝑜𝑟𝑟𝑜𝑤𝑖𝑛𝑔 

𝑃0.95 = 95𝑡ℎ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒  

𝐴𝑙 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑙𝑜𝑠𝑠𝑒𝑠 

The average cost of borrowing as obtained from ACRE Africa was 10% and an additional 20% of input cost 

was added as loading for expenses, commission, taxes on agriculture insurance contract and profit of the 

insurer. The pure premium was calculated as the sum of average losses and the capital loadings (Benjamin, 

1986) in Equation 17. The gross premium was then calculated by adding the pure premium, the 

commissions and expenses as shown in Equation 18. 

Pr = 𝐶𝐿 + Average losses     (17) 

where 

Pr = Pure premium (pure risk) 

 

GP = 𝑃𝑟 + Σ(𝐶𝑚)     (18) 

where 

GP = Gross premium 
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𝐶𝑚 = Commissions 

With the additional 20% added for commission, this implies an assumption of 20% loading on the pure 

premium. This should cater for the taxes, expenses, and commissions. The 20% is just an assumption 

benchmarking based on the previous markets in SSA that ACRE Africa has worked in, and this is always 

subject to change based on the commercial arrangements. 

3.8. Replanting and no-replanting 

Replanting after crop failure due to low or excessive rainfall is an effective measure of offsetting yield losses 

(Sisterson & Stenger, 2013), although farmers may choose not to replant due to liquidity concerns (Amare 

et al., 2018). To explore the effects of this additional risk management measure, options for replanting 

during an extreme case of crop failure were included. The crop model simulated yields for an alternative 

planting date (i.e., July 10- one month after the first planting), with the same management practices as 

highlighted above. These simulated yields were used to replace extremely low yields (due to failures of 

crop establishment) in the first planting. For the farmers to replant (in both the seed and full insurance 

options) after an extreme case that leads to crop failure, the indemnity payment indicating the losses must 

exceed a 75th percentile threshold (i.e., the highest 25%) of the indemnity payments. Replanting costs 

were also added for replanting scenarios, and these included the costs of seeds and sowing associated 

costs. In the case of total yield loss and for the no-replanting scenarios, it was assumed that the 

corresponding yields for these extreme cases were zero. This was done to avoid the disparities and 

inaccuracies of accounting for yield losses during crop yield failure. 
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4. Results 

4.1. Farm Typology 

The sampling method applied resulted in the following farm typology, labelled as low-resource-endowed 

farms (LRE), medium-resource-endowed farms (MRE), and high-resource-endowed farms (HRE). The LRE 

farms as shown in Table 6 are farms with relatively smaller land and household sizes. The MRE farms are 

composed of predominantly small household sizes, with relatively average land size, while the HRE farms 

are farms with large household sizes and relatively large farm sizes. 

Table 6: Average socioeconomic information of different farm types 

 Unit LRE* MRE* HRE* 

Adult in household  1 2 2 

Children (between 6 and 18)  1 1 5 

Children (less than 6)  0 0 2 

Remittances GHS/year 300 338 843 

Non-farm income GHS/year 567 1431 482 

Income from livestock sales GHS/year 500 441 1014 

Farm maintenance cost GHS/year 150 208 311 

Energy spending cost  GHS/year 100 83 170 

Household living cost GHS/year 120 735 981 

Cash at hand (beginning of the season) GHS/year 126 1331 2393 

Average amount of loan GHS/year 47 1906 2536 

Loan rate % per month 8 8 8 

Input expenses (GHS) GHS/year 73 663 1757 

Total land area (hectare) ha 0.9 4.0 6.9 

Machinery rental cost (GHS) GHS/year 148 275 462 

Cattle  12 6 6 

Goat  2 9 8 

Sheep  0 3 6 

Poultry  14 19 18 

Animal supplement costs (GHS) GHS/year 12 61 105 

Veterinary visit cost GHS/year 0 10 25 
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*LRE represent low-resource-endowed, MRE represents medium-resource-endowed and HRE represents 
high-resource-endowed farms, respectively. 

The household size has an impact on farm production, as in many cases they serve as labour for farming 

activities (Nyuor et al., 2016). On the one hand, this can imply a relatively cheaper source of labour for the 

HRE farms compared with the LRE and MRE farms. On the other hand, a large household size means that 

more people in the household have food requirements. The positive correlation between household size 

and farm size found in this study agrees with the real farms in the study area, as highlighted by Ngeleza et 

al. (2011) 

4.2. Economic analysis of the current situation 

The modelled farm income comprises both on-farm and off-farm income, which includes income from 

selling farm products and off-farm labour among other income sources. Maize is mainly cultivated as a 

food crop in the region, with relatively low gross margins (Table 7) per hectare, especially when household 

labour costs are accounted for. Rice, on the other hand, is the most profitable crop in the region, which is 

highlighted by a relatively high gross margin compared with the other crops (Table 7). Although maize crop 

has the same price (1.7 GHS ha-1) regardless of the fertilizer intensity, maize with high fertilizer intensity 

has about five times more average yield ha-1 compared to maize with low fertilizer intensity. Considering 

also that the difference between the variable cost of production between these fertilizer levels is only 

about five times more in maize with high fertilizer intensity, this makes high fertilizer intensity maize 

preferred to low fertilizer intensity maize for household consumption. Table 7 was calculated based on the 

current production activities of the farms in the study area. 
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Table 7: Average contribution margin per crop per farm (in GHS ha-1) based on current production data. 

Cost-benefit table with survey data Maize-low 
Maize-
medium 

Maize-high Soybean Upland rice Groundnut 

 Tillage 1.5 3.4 5.1 2.1 3.6 4.1 

Labour 
requirements 

(Man-days per 
ha) 

Fertilization 6.0 20.1 20.7 5.1 4.9 0.2 

Sowing 13.4 36.1 43.7 20.9 7.9 35.1 

Weeding 13.7 39.2 56.6 25.0 52.3 39.3 

Harvesting 16.4 50.5 58.9 40.5 55.9 54.6 

Threshing 4.3 5.9 21.2 8.4 5.7 12.3 

Total 55.3 155.2 206.2 102.0 130.4 145.6 

Input cost 
(cedi per ha) 

Tillage 88.3 146.7 254.8 151.5 377.4 267.5 

Fertilizer + service 210.4 1234.6 2165.6 209.6 680.1 34.5 

Seed + service 19.4 15.5 57.2 128.5 111.6 113.1 

Herbicide + service 77.2 121.1 398.5 110.4 185.8 157.8 

Harvesting 13.8 27.3 70.4 28.2 26.8 40.5 

Threshing 15.2 6.5 55.4 27.2 20.8 44.1 

Total 424.3 1551.7 3001.9 655.3 1402.4 657.5 

Total variable cost (cedi per ha) 1530.5 4654.7 7126.5 2696.3 4011.2 3570.4 

Average yield (kg per ha) 660.6 2162.2 3294.7 1600.9 4229.0 3037.3 

Crop price (cedi per kg) 1.7 1.7 1.7 1.8 1.5 1.7 

Total revenue (cedi per ha) 1101.0 3603.6 5491.2 2935.0 6343.5 5062.2 
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Gross contribution (cedi per ha) 676.7 2051.9 2489.3 2279.6 4941.1 4404.7 

Gross margin (cedi per ha) -429.5 -1051.1 -1635.3 238.7 2332.4 1491.9 

Labour cost/kg 0.08 0.07 0.06 0.06 0.03 0.05 

Production cost/kg 2.32 2.15 2.16 1.68 0.95 1.18 

Data for the table were obtained from the survey, and they are used to parameterise the model. 
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4.3. Optimal allocation under various weather conditions 

4.3.1. Crop yield 

Figure 3 shows the distribution of crop yield in the bad and good weather scenarios as simulated by 

SIMPLACE. As expected, the yield from maize with a low fertilizer rate was the lowest among all maize 

fertilizer rate crops, and the yield was not so different under the two weather scenarios because it is 

limited more by nutrient deficiency than by rainfall. Rice is a high-yielding crop in the area as it produces 

about 4000 kg ha-1 on average in good weather. For maize crops, variability in the yields was generally 

higher in the bad years compared with the good years and increased with the amount of fertilizer applied.  

 

Figure 3. Distribution of crop yields for the two weather scenarios (good and bad). Red bars show the 
distribution in “bad” weather ensemble members, and blue bars show the distribution in “good” weather 
ensemble members. The boxplots indicate the 25th to 75th percentile. The black dots represent outliers. 
The figure is obtained based on the yield from the 30 ensemble members. 

4.3.2. Optimal land allocation 

The optimal cropping pattern for each farm type under both weather scenarios is presented in Figure 4. 

These cropping patterns were obtained by annual optimisation of the gross margins with a risk aversion 

coefficient of 0.001, considering yield variability. Annually, simulations from CLEM produce cash and 

livestock balances, which are included in the optimisation model for annual optimisation. For the current 
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cropping simulation, both the LRE and MRE farms cultivated a high share of maize with low fertilizer 

intensity (28% and 33% of their land area, respectively), which is expected due to the high cost of fertilizers 

in the study area (Daadi & Latacz-Lohmann, 2021). The HRE farms, on the other hand, were able to invest 

in fertilizers to cultivate a high share of maize with medium fertilizer intensity because they could afford 

it. However, under the bad weather scenario, all farm types allocated their land to maize with low fertilizer 

intensity only, and the proportion of land allocation to maize declined considerably to 5% and 1% for LRE 

farms and MRE farms, respectively. This occurred because farmers lacked the liquidity to purchase 

fertilizers due to low productivity. Although many studies have highlighted that maize yield can be 

increased through increasing fertilizer application rates (Markovi et al., 2021; Mueller et al., 2012), Leitner 

et al. (2020) noted that water availability is another major limiting factor of maize yield. In addition, the 

total land area cultivated by MRE and HRE farms became much smaller, reducing from 4 ha and 5 ha to 1 

ha and 2 ha, respectively, due to the poor yield under bad weather scenarios. Farmers were better off 

allocating a large share of their land to groundnut and soybeans under the bad weather scenario as this 

can increase liquidity through sales. As the weather scenario changed from bad to good, the land share 

for cash crops increased for all the farm types. In addition, under the good weather scenario, the need to 

diversify the crop choice reduced, and this was evident with the cropping patterns for all the farm types, 

where over 90% of the land area was allocated to rice for LRE farms and more than 80% was allocated to 

rice and groundnut for MRE farms (see Table S2 in Appendix E for the results of the cropping activity under 

changing risk aversion coefficient). 
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Figure 4. Cropping patterns in the different weather scenarios. The panels at the top show the current 
distribution and the panel at the bottom shows the distribution in the good weather scenario. The 
horizontal panel in the middle shows the optimal cropping pattern in the bad weather scenario. The panels 
on the left represent the low-resource-endowed farms, the vertical panel in the middle represents the 
medium-resource-endowed farms, and the panels on the right represent the high-resource-endowed 
farms. 

4.4. Probabilities of outcomes under variable weather 

The probabilities of increase in assets after five simulation years are shown in Figure 5 for the integrated 

model with different values of the risk aversion coefficient. The results show that in good weather 

scenarios and with a low-risk aversion coefficient, the probability that farmers would see their income 

increase over the 5-year simulation period was more than 60%. This is shown in Figure 5A–C, where the 

risk aversion coefficients used were 0, 0.0001, and 0.001, respectively. This means that farmers’ income 

will likely increase, and they will be in a better position to cope with shocks if their management decisions 

are influenced by a model that considers the effects of risks on-farm management decisions. However, the 
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probability of increasing income was higher under the good weather scenarios; in the bad weather 

scenarios, these probabilities did not fall below 50% for all farm types. If the farmers continue with their 

current management practices as shown in the cropping patterns highlighted above, their outputs might 

become much lower under the varying weather conditions since they are not responding to the climatic 

changes; as a result, they have a lower probability of increasing their income in both the bad and good 

weather scenarios. In addition, as the risk aversion coefficient increased (Figure 5E–G), there was a much 

lower probability that the farmers’ income would increase after 5 years. This is expected since at a high 

risk aversion, the farmers’ likelihood of perceiving a greater probability of losses increases (Menapace et 

al., 2013), and they tend to avoid risky investments, leading to lower incomes (Ullah et al., 2015) 

 

Figure 5. Distribution of probability that farmers’ income will increase over 5 years. These probabilities 
were obtained by comparing the average income in the first 3 years of the simulation to the last 2 years of 
the simulation. (A)-Simulation result with risk aversion coefficient 0; (B)-risk aversion coefficient = 0.0001; 
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(C)-risk aversion coefficient = 0.001; (D)-risk aversion coefficient = 0.01; (E)-risk aversion coefficient = 0.1; 
(F)-risk aversion coefficient = 1, (G)-risk aversion coefficient = 4. 
 

For both the integrated model and CLEM, most of the livestock was sold at the beginning of the simulation 

to enable the farm households to meet their consumption needs. In the subsequent years, few livestock 

were sold. This was expected because, during the data collection process and subsequent discussions with 

experts from the study area, it was observed that farmers usually run out of cash after planting and before 

harvest. During these periods, they meet their needs by borrowing. The models therefore sold most of the 

livestock at the beginning of the simulation to cover the households’ minimum expenses. This is reflected 

in Figure 6, where all the farm households have about a 50% probability of a smaller herd size at the end 

of 5 years. 

 

Figure 6. Probability of smaller herd size at the end of five years. Results were obtained by comparing the 
average herd size after accounting for the first initial sales (at the beginning of the simulation) to the 
average herd size at the end of the simulation. (A)— presents the result from the integrated model, while 
(B) — presents the result from CLEM, which is based on the current cropping patterns of the farmers. 
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4.5. Effects of insurance and replanting on yield allocation, incomes, and assets under 

shock 

4.5.1. Maize crop yield with replanting and no-replanting scenarios 

The simulated maize yield with the different fertilizer intensities under replanting and no-replanting 

scenarios is presented in Figure 7. As expected, maize yield increased with increasing nitrogen fertilizer 

rates, with an average yield of 3000kg ha-1 at the highest fertilizer level, approximately three times greater 

than the yield of maize without fertilizer. This is also true for the case of no-replanting, with the average 

yield for maize with high fertilizer intensity generally greater than the maize with low fertilizer intensity. 

Results from classifying the 2020 weather show that 2020 could be classified as a normal year. The relative 

yield (i.e., yield at a given year divided by the average yield across 2011-2020) was slightly above one. This 

result2 agrees with the FAO GIEWS report (FAO, 2023), which showed that cereal production in 2020 was 

at an above-average level. 

 

Figure 7. Distribution of maize grain yield across fertilizer levels and with and without replanting. The red 
boxplots represent crop yield from no-replanting scenarios and the blue represents the yield from 
replanting scenarios. The horizontal line in the middle of the boxplot shows the median and the upper and 
lower lines show the interquartile range. The whiskers span from the edge of the box to the furthest data 
point within 1.5 times the interquartile range below it. 
 

 
2 Note that all the previous simulations were carried out using the climate model outputs (i.e., weather realisations 
under present-day climate conditions), not observed data. 
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4.5.2. The insurance contracts 

The premium and the average indemnities for the insurance contract are presented in Table 8. Seed 

insurance is relatively inexpensive as farmers are required to pay less than 30 GHS ha-1, while full insurance 

costs about 113 GHS ha-1. The indemnity payment for the seed insurance is 161 GHS ha-1 as payments are 

not partial but full regardless of the degree of crop failure. On the other hand, full insurance cover can pay 

indemnities as low as 37 GHS ha-1 in some cases and other cases pay as high as 600 GHS ha-1 depending 

on the degree of damages.  

Table 8: Premium and average indemnity payments for weather-index insurance contracts 

Crop Insurance cover Growth phase Premium  

(GHS ha-1) 

indemnity payments (GHS ha-1) 

    Minimum1 Average2 Maximum3 

Maize 

Seed insurance Germination 28.8 NA 161.7 NA 

Full insurance Germination  

113.4 

9.6 40.4 78.0 

Vegetative  21.7 100.2 454.8 

Flowering  5.9 19.4 76.2 

Pre-harvest 0 0 0 

Total  113.4 37.2 160.0 609.0 

1Minimum non-zero indemnity payments overall weather ensemble and years 
2Average non-zero indemnity payments overall weather ensemble and years 
3Maximum indemnity payments overall weather ensemble and years 

 

4.5.3. Effects of insurance and replanting scenarios on farm income and assets under 

shock 

To observe the effects of insurance options on farmers’ income and how they protect farm assets, 

particularly in times of shocks, one representative 5-year time series was identified. In this time series, low 

maize yields were simulated in years with low growing season rainfall. The effects of insurance options 

and replanting scenarios on farmers’ income and assets are presented in Figures 8 and 9. The annual farm 

income and assets represented in Figures 8 and 9 are the annual gross margins and farm assets (livestock 

and cash at hand) obtained from simulating the optimised cropping pattern with the farm management 

activities in the simulation model (CLEM). In Figure 8, for both MRE and HRE farms, with relatively larger 

farm sizes and more capital, full insurance leads to lower gross margins when weather conditions do not 

cause large yield losses. For these farms, in years with low yields due to drought conditions (year 4), full 
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insurance increases farm income compared to seed and no insurance options. For LRE farms with relatively 

small farm sizes, the effects of insurance are not big enough because they only purchase small-size 

insurance contracts. As expected, in years 1 to 3 where there were no shocks, full insurance options were 

relatively more expensive for all the farm types compared to seed insurance and no insurance options. 

This is because the farmers pay a relatively high premium without getting payouts, which reduces their 

incomes. 

In the case of replanting (Fig. 8), both insurance options are more beneficial for the farmers during shocks 

(i.e., year 4) as farmers’ incomes increase more than without insurance options. During these periods, 

indemnities are paid to cover the losses and farmers are better off by purchasing insurance options. 

However, it is economically more beneficial for the farmers to purchase seed insurance that enables them 

to replant than to purchase full insurance. This is because in the event of crop failures, seed insurance is 

not paid partially but in full regardless of the degree of the failure whereas for full insurance, indemnities 

are paid according to the degree of losses at every stage. While seed insurance might pay higher 

indemnities in times of crop failure, they also have much lower premiums compared to the full insurance 

options. In addition, in some cases of extreme shocks, farmers might be unable to replant even if they 

want to due to insufficient capital. This case might arise due to a lack of insurance, leading to the inability 

of the farmer to either continue farming or meet their household needs. This can be observed with the 

MRE and HRE farms without insurance options recording extremely high losses during the shock years. 
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Figure 8. Time series of gross margins under extreme weather conditions. The panels in the top row 
represent the no-replanting scenarios, while the panels in the bottom row represent the replanting 
scenarios. The left panels are for the low resource-endowed farms (LRE), the middle panels are for the 
medium resource-endowed farms (MRE) and the right panels are for the high resource-endowed farms 
(HRE). The red lines are for no insurance, the green lines are for the seed insurance and the blue lines are 
for the full insurance case. The red labels on the x-axis represent years with shocks, while the black labels 
represent years without shocks. 
 

Figure 9 also shows that in the case of shocks, insurance options preserve farmers’ assets better than no 

insurance options. This is because the farmers are likely to receive compensation from insurance when a 

shock occurs and they can use such compensation to either meet household needs or replant for more 

yield, thereby reducing the need for them to sell their assets. However, full insurance options are 

expensive when there are no shocks (Fig. 9). 
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Figure 9. Time series of total farm assets in response to different insurance and replanting options. The 
panels in the top row represent the no-replanting scenarios, while those in the bottom row represent the 
replanting scenarios. The left panels are for the low resource endowed farms, the middle panels are for the 
medium resource endowed farms and the right panels are for the high resource endowed farms. The green 
lines are for no insurance, the red lines are for the seed insurance and the blue lines are for the full 
insurance case. The red labels on the x-axis represent years with shocks, while the black labels represent 
years without shocks. 
 

4.5.4. Insurance and land allocation after a shock 

To explore the effects of the different insurance options on optimal farmer’s decision making and resulting 

allocation to different cropping activities, as in Section 4.5.3, the same 5-year time series was used. The 

response of the integrated model for cropping allocation patterns in the year following low maize yields 

and the year following high maize yields is shown in Figure 10. Results from Figure 10 show that following 

a normal weather year (for maize productivity), relatively smaller farms (LRE and MRE farms) allocate 

about 25% of their land to maize with low fertilizer intensity in all the insurance options. However, 
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following a bad weather year, with insurance contracts (seed and full insurance options), these farms 

reallocate their land area to cultivate maize with higher fertilizer intensities. This is the case for LRE and 

MRE farms allocating about 40% and 30% of their land area to maize with medium and high fertilizer 

intensity, respectively. For the relatively larger farms i.e., HRE farms, in the year following normal weather 

conditions, they cultivate an equal proportion of maize fertilizer intensities (low, medium, and high) with 

less than 20% of their land area in all the insurance options. However, in a year following the climate shock, 

they increased the proportion of land area allocated to maize to about 30% of their land area, allocating 

more than 25% of that to maize with high fertilizer intensity. The farms simulated here generally increase 

their land area allocated to maize after a bad growing season to meet their household maize requirements. 

As shown with the results from a single weather time series, insurance plays a very vital role in stabilising 

farmers’ income in shock years, it is worth noting that these shock years do not occur regularly.  
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Figure 10. Cropping activities under different insurance options and replanting scenarios. The panel in the 
top row represents the results following a good maize growing season. The panel in the bottom row 
represents the results following a bad maize growing season (after a shock year). The left panels are for 
the low resource-endowed farms (LRE), the middle panels are for the medium resource-endowed farms 
(MRE) and the right panels are for the high resource-endowed farms (HRE). The purple colour in the bar 
plot represents the land allocation to rice crops, the blue colour shows the land allocation to groundnut, 
the green colour shows the land allocation to soybeans, the orange colour shows the land allocation to 
maize crops with high fertilizer rates, the yellow colour shows land allocation to maize crop with medium 
fertilizer rates, and the light-yellow colour shows the land allocation to maize with low fertilizer application. 
 

4.6. Effects of insurance and replanting scenario on income and farm assets 

The effects of insurance options and the replanting scenarios on annual household farm income were 

assessed by exploring the probability of farm income increasing after 5 years for the full 400-climate 
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ensemble weather data as presented in Figure 11. The income in the second year (year 2) of the simulation 

was compared to the income of the last year of the simulation (year 5). The first year of the simulation 

was excluded from the probability calculation to remove the effects of optimisation on farm income. Figure 

11 shows that on average, considering all the possible weather conditions, seed and full insurance options 

do not significantly increase farmers' average income compared to a case of no insurance. This is shown 

in Figure 11, where the farm households have a chance of about 40% of increasing their income after 5 

years in the no-replanting scenario. This is understandable considering that these insurance options only 

pay the farmers in extreme cases, which rarely occurs. This will most likely reduce their income as they 

pay more than they get on average. This is also the case for the replanting scenario, where the farm 

households have about a 50% probability of increasing their farm income after 5 years in all the 3 insurance 

options. 

 

Figure 11. The probability that farm income increases after 5 years for different insurance products and 
replanting scenarios. The probability is obtained by comparing the income in year 2 of the simulation to 
the income in year 5 of the simulation. The panels on the left are the results from the no-replanting 
scenario; The panels on the right are the results from the replanting scenario. The green point range 
represents the LRE farms, the orange represents the MRE farms, and the blue represents the HRE farms. 
The lower and upper lines extending from the points show the minimum and maximum probabilities, 
respectively. The horizontal dash line shows the 50% probability line. LRE farms are Low Resource Endowed 
Farms, MRE farms are Medium Resource Endowed Farms and HRE farms are High Resource Endowed 
Farms 
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As herd size is a form of liquid asset important for dealing with shocks (Breckner, 1958; Siegmund-Schultze 

et al., 2007), the monetary value of the available livestock was combined with the cash at hand to 

determine the effects of WII on farm assets. The probability that farm assets increase after 5 years with 

different insurance products and replanting scenarios is shown in Figure 12. On average, farm assets are 

likely to decrease after 5 years, and the outcomes are similar for the different insurance options and 

replanting scenarios with about a 25% to 30% probability that farm assets will increase in all the scenarios. 

While replanting offers a slightly less negative outlook on the chance of reducing asset loss with an 

insurance product, it is still not likely that farmers avoid asset losses. Assets are still likely to decrease even 

with WII, reflecting the costs for premiums to be paid in all good and bad years, while payouts are only in 

bad years. 

 

Figure 12. The probability of farm assets increases after 5 years with different WII products and replanting 
scenarios. Farm assets are defined by the sum of the cash value of the herd (small and large ruminants) 
and cash at hand. The probability compared the farm asset at year 2 of the simulation to the farm asset 
at the end of the simulation (year 5). The panel on the left shows the no-replanting scenario and the panel 
on the right shows the replanting scenario. The green point range represents the LRE farms, the orange 
represents the MRE farms, and the blue represents the HRE farms. The lower and upper lines extending 
from the points show the minimum and maximum probabilities, respectively. The horizontal dash line 
shows the 25% probability line. LRE farms refer to Low Resource Endowed Farms, MRE farms refer to 
Medium Resource Endowed Farms and HRE farms refer to High Resource Endowed Farms 
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4.7. Effects of basis risk on the effectiveness of WII 

The results in the previous sections have assumed a perfect design of the WII product. In fact, the 

effectiveness of WII depends on the design of the insurance contracts. A faulty insurance contract design 

can overestimate or underestimate the potential losses of the farmers under extreme events. To explore 

the importance of different sources of basis risk, yield, gross margins, and farm assets are compared under 

the different basis scenarios in the following sections. 

4.7.1. Crop yield distribution with basis risk 

Crop yield for maize under different fertilizer application intensities and different scenarios are presented 

in Figure 13. The ecological and biophysical parameters have a large influence on crop yield (Fig. 13), this 

is well-known based on crops’ response to weather, soil water and nutrient availability (Ewert et al., 2015). 

In the figure, delaying the planting date by up to 21 days (PD+21) led to a large reduction in yield across 

the full ensemble of weather conditions, where the crop yield for maize with medium and high fertilizer 

intensity is less than the reference yield (representing the conditions assumed as representative of growing 

conditions) value by over 1000kg ha-1. This is also the case with soil depths 30cm lower than the reference 

soil depths (SD-30), where crop yield was lower than the reference yield by about 2000kg ha-1. In addition, 

it can also be observed that the median yield for SD-30 is relatively lower across all fertilizer intensity 

levels. 
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Figure 13: Crop yield distribution under differing basis risk scenarios. The panels in the top row show simulations with the no-replanting scenarios. 
The panels in the bottom row represent the simulations with replanting scenarios. The panels in the first (left) column show simulations with 
different planting date scenarios. The panels in the middle column show the simulations with the precipitation scenarios and the panels in the third 
column show the simulations with the soil depth scenarios. Each box plot indicates the yield with uncertainty across the ensemble of all weather 
conditions. Reference represents the conditions assumed as representative of growing conditions. PD-14 represents the scenario for planting 14 
days earlier than the reference date. PD+21 represents the scenario for planting 21 days later than the reference date. PD+7 represents the scenario 
for planting 7 days after the reference date. PPT-15 represents a scenario for precipitation 15% lower than the reference precipitation. PPT-30 
represents a scenario for precipitation 30% lower than the reference precipitation. PPT-5 represents a scenario for precipitation 5% lower than the 
reference precipitation. PPT+10 represents the scenario for precipitation 10% higher than the reference precipitation. SD+30 represents the scenario 
for a soil depth 30cm higher than the reference soil depth. SD-30 represents a scenario for a soil depth 30cm lower than the reference soil depth. 
The horizontal lines in the middle of the boxplots show the median and the upper and lower lines show the interquartile range. The whiskers span 
from the edge of the box to the furthest data point within 1.5 times the interquartile range below it. 
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4.7.2. Basis risk and the effect of WII in increasing farm margins and assets in a year 

following an extreme weather event 

In the following, we discuss the effects of various sources of basis risk on farm gross margins and assets 

for the case of replanting after a yield failure for the case of MRE farms. As presented in figures 14 and 15, 

with the case of WII, assumptions that deviate from the representative growing conditions (i.e., reference 

conditions) can lead to overestimating or underestimating farmers’ losses in the event of climate shocks, 

thereby increasing or decreasing their potential indemnity payments. From the results, gross margins and 

farm assets steadily rise until when farmers experience a climate shock (i.e., year). In this year, gross 

margins and farm assets respond based on the insurance options. When there is no insurance to cushion 

the effects of climate shocks, the gross margins and farm assets fall quickly. With insurance options (i.e., 

seed or full insurance), the gross margins and farm assets are stabilized. However, the issue of basis risk 

can be observed from the results as both gross margin and farm assets respond differently under different 

assumptions. Temporal basis risk can reduce the farmers’ compensation during shock if the insurance 

contract is designed with a planting date that is at least 7 days later than the reference date (PD+7) (Fig. 

14). The indemnity paid to the farmers in year 4 under PD+7 is lower than the reference. On the other 

hand, faulty design arising from earlier planting dates can lead to compensation beyond farmers’ real 

losses and overpayments by the insurance company, for PD-14 as compared to the reference planting date. 

Overpayment of indemnities is highest in the event of product basis risk, where the actual soil depth of 

the farmers’ field was increased to 30cm, while underpayment is highest when the soil depth at the 

farmers’ field is 30cm lower than the one used for index calculation (reference soil depth) (Fig. 14). This 

effect is also seen on farmers’ assets (Fig. 15), where overpayments and underpayments of indemnity are 

highest in the case where the soil depth is 30cm lower and 30cm higher than the actual farm depth, 

respectively. In addition, it can be observed that with higher precipitation compared to the reference 

precipitation (PPT+10), gross margins and farm assets decrease under both normal and extreme weather 

conditions (Fig. 14 and 15). 
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Figure 14: Time-series of gross margins with different scenarios where the 4th year is an extreme weather 
year resulting in effects on simulated maize yields assuming replanting if maize did not emerge. The panels 
in the top row are for simulations without insurance. The panels in the middle row show the simulations 
with the seed insurance option while panels in the bottom row show the simulations with the full insurance 
options. The panels in the first (left) column contain the planting date scenarios, the panels in the middle 
column show simulations with the precipitation scenarios and the panels in the third (last) column show 
the simulations with the soil depth scenarios. The black dash line shows the reference for all scenarios, 
which represent the conditions assumed as representative of growing conditions. The green line (PD-14) 
represents the scenario for planting 14 days earlier than the reference date. The dark red line (PD+21) 
represents the scenario for planting 21 days later than the reference date. The dark blue line (PD+7) 
represents the scenario for planting 7 days later than the reference date. The light red line (PPT-15) 
represents the scenario for precipitation 15% lower than the reference precipitation. The light blue line 
(PPT-30) represents the scenario for precipitation 30% lower than the reference precipitation. The purple 
line (PPT-5) represents the scenario for precipitation 5% lower than the reference precipitation. The dark 
orange line (PPT+10) represents the scenario for precipitation 10% higher than the reference precipitation. 
The light purple line (SD+30) represents the scenario for soil depth 30cm higher than the reference soil 
depth. The light orange line (SD-30) represents the scenario for soil depth 30cm lower than the reference 
soil depth  
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Figure 15: Time-series of farm assets with different scenarios where the 4th year is an extreme weather 
year resulting as determined by effects on simulated maize yields assuming replanting if maize did not 
emerge. The panels in the top row are for simulations without insurance. The panels in the middle row 
show the simulations with the seed insurance option while panels in the bottom row show the simulations 
with the full insurance options. The panels in the first (left) column contain the planting date scenarios, the 
panels in the middle column show simulations with the precipitation scenarios and the panels in the third 
(last) column show the simulations with the soil depth scenarios. The black dash line shows the reference 
for all scenarios, which represent the conditions assumed as representative of growing conditions. The 
green line (PD-14) represents the scenario for planting 14 days earlier than the reference date. The dark 
red line (PD+21) represents the scenario for planting 21 days later than the reference date. The dark blue 
line (PD+7) represents the scenario for planting 7 days later than the reference date. The light red line (PPT-
15) represents the scenario for precipitation 15% lower than the reference precipitation. The light blue line 
(PPT-30) represents the scenario for precipitation 30% lower than the reference precipitation. The purple 
line (PPT-5) represents the scenario for precipitation 5% lower than the reference precipitation. The dark 
orange line (PPT+10) represents the scenario for precipitation 10% higher than the reference precipitation. 
The light purple line (SD+30) represents the scenario for a soil depth 30cm higher than the reference soil 
depth. The light orange line (SD-30) represents the scenario for a soil depth 30cm lower than the reference 
soil depth. 
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4.8. How basis risk affects the probability of improved incomes and assets across 

different weather conditions 

To examine the effects of basis risk on long-term farm income, the probability that farm income increases 

after 5 years was explored for the full 400-member ensemble weather data for all cases of basis risk (Fig. 

16). Farmers have a much lower probability of increasing their farm income with a poorly designed 

insurance option that is based on a soil depth that is 30cm lower than actual soil depth of the farmers’ 

field. The probability of increasing farm income after 5 years under SD-30 is about 50%, which is much less 

than the probability of the other sources of basis risk. For the other scenarios, there was no strong effect 

of lower incomes after 5 years, although such tendencies can be seen in PPT-30 and PD-14 (Fig. 16) 

 

Figure 16: Probability of increase in farm income after 5 years under different scenarios. The probability 
was obtained by comparing the income in year 2 of the simulation to the income in year 5 of the simulation. 
The panels in the top row are for simulations without insurance. The panels in the middle row show the 
simulations with the seed insurance option while panels in the bottom row show the simulations with the 
full insurance options. The panels in the first (left) column contain the planting date scenarios, the panels 
in the middle column show simulations with the precipitation scenarios and the panels in the third (last) 
column show the simulations with the soil depth scenarios. The black dash line and the black point range 
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show the reference for all scenarios, which represent the conditions assumed as representative of growing 
conditions. The green point range (PD-14) represents the scenario for planting 14 days earlier than the 
reference date. The dark red point range (PD+21) represents scenario for planting 21 days later than the 
reference date. The dark blue point range (PD+7) represents the scenario for planting 7 days later than the 
reference date. The light red point range (PPT-15) represents than scenario for precipitation 15% lower 
than the reference precipitation. The light blue point range (PPT-30) represents the scenario for 
precipitation 30% lower than the reference precipitation. The purple point range (PPT-5) represents 
scenario for precipitation 5% lower than the reference precipitation. The dark orange point range (PPT+10) 
represents the scenario for precipitation 10% higher than the reference precipitation. The light purple point 
range (SD+30) represents the scenario for soil depth 30cm higher than the reference soil depth. The light 
orange point range (SD-30) represents the scenario for soil depth 30cm lower than the reference soil depth  
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5. Discussion 

5.1. Relevance of the study 

Given increasingly variable and extreme weather conditions and other shocks (markets, pandemics, war), 

supporting the sustainable intensification of farming systems will require the consideration of how 

resource allocation decisions are altered and affected by shocks (Ricome et al., 2017) and what the 

implications are for longer-term sustainable development (Rusinamhodzi et al., 2011). Indeed, it is well 

known that more intensified systems are associated with higher yield variability (Faye et al., 2018; Ray et 

al., 2015) and larger potential losses during bad weather years (Danso et al., 2018; Hansen et al., 2019). 

The correct mix of risk reduction, risk transfer, and enabling prudent investments to cope with agronomic 

risks will differ based on the farm type (Aidoo et al., 2014; Alhassan et al., 2019; Huet et al., 2020; Laube 

et al., 2012), agro-ecological, market, and institutional context (Giller, 2020). It is therefore important to 

develop risk assessment frameworks to understand the appropriate risk management pathways to achieve 

sustainable intensification for these different contexts. The integrated model presented in this thesis offers 

a novel approach to making such assessments by considering how weather conditions affect production 

and, in turn, future management and investments. This was accomplished by combining farm-level 

optimisation and simulation models with a process-based crop modelling framework driven by large 

ensemble weather datasets. Like many other bio-economic farm optimisation approaches, the 

optimisation model presented in this thesis strongly assumes that farmers allocate resources and make 

production decisions to maximise their gross margins as modulated by their risk aversion characteristics. 

By linking our optimisation model with an annual simulation model (CLEM) that accounts for monthly 

resource flows, the annual optimisation approach explicitly accounts for how bad weather affects crop 

yields in the previous season limits cash availability and may alter subsequent cropping system 

management decisions.  

While focused primarily on financial risk management at the farm level, The thesis explored the 

effectiveness of different risk management options in enabling investments in improving crop yields and 

incomes. By comparing the trajectories of the different scenarios, the most cost-effective and rational risk 

management option was identified for farmers under the diverse weather conditions encountered. In 

addition, the thesis provides insights into the effectiveness of different forms of WII in stabilising farmers’ 

income under extreme weather conditions and the effect of basis risk on these insurance options. Notably, 

the work of Yami & Van Asten (2017) highlighted the positive effects of crop insurance on agricultural 
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markets, credit access, and savings schemes. However, in the case of Northern Ghana, the scarcity of 

studies assessing the impacts of insurance on farmers’ income is partly due to the absence of active index 

insurance options for farmers (Di Marcantonio & Kayitakire, 2017) among others. Unlike many other 

studies that focus on the demand and the willingness to pay for insurance products in Ghana (Adzawla et 

al., 2019; Afriyie-Kraft et al., 2020; Ankrah et al., 2021; Kwadz et al., 2013), the work presented here tested 

the impacts of specifically developed weather-index insurance products on farmers’ income, evaluating 

the probabilities of increasing farmers’ income. By examining the effects of purchasing insurance contracts 

and making decisions regarding replanting in the event of crop failure on farmers’ income, the thesis was 

able to assess how these options protect farm assets, especially in extreme weather conditions, 

considering these factors are key motivations for farmers to purchase insurance contracts (Jensen & 

Barrett, 2017).  

5.2. Probabilistic approach to evaluating climate risk and risk management outcomes  

Several studies have simulated the effects of weather and other production risks on different household 

or farm components such as production, land degradation (Bidogeza et al., 2015; Holden & Shiferaw, 

2004), farm production system (Mosnier et al., 2009), and prices and subsidies (Mouysset et al., 2011). 

However, the approach presented in this thesis is unique due to the application of a large ensemble of 

possible weather realisations as inputs for the integrated model. In plain language, this allows exploring 

the response of the system for a very wide range of weather for next year even if we know the climate 

characteristics. Exploring responses over a range of plausible weather conditions enables assessing the 

probability of changes in incomes or assets. This is understood as a good basis for supporting change at 

local levels (Hansen et al., 2022). The large ensemble simulations can help to better understand the 

associated climate risks for crop production (Ewert et al., 2015) as it captures a greater range of possible 

conditions, including more extreme weather events. According to Afshar et al. (2021), this approach helps 

analyse the performance of management options including the adoption of WII as the simulated yield data 

contains a range of potential weather and agronomic conditions. 

5.3. Weather index-based insurance as a risk management option 

Farmers’ long-term income and livelihood are negatively affected by years of extreme weather conditions 

(Gadédjiss-Tossou et al., 2016), leading them to various undesirable behaviours such as selling assets, 

which leaves them worse off (Herrero et al., 2013). As a tool to relieve the burden of agro-climatic risks at 

the farm level (Ricome et al., 2017), WII has received wide attention for their potential as affordable 

measures to buffer the effects of crop failure on farmers’ income (Abugri et al., 2017). Unsurprisingly, 
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results from this study suggest that farmers are better off purchasing WII during extreme weather years. 

With this, the insurance covers most of their losses and the farmers do not have to resort to other means 

like borrowing or selling their assets during extreme weather conditions. Tadesse et al. (2015) highlighted 

the benefits of WII during extreme weather events and advocated for the need to design contracts based 

on larger shocks. Several other studies have also supported this call by stressing the importance of WII 

particularly in extreme weather events (Collier et al., 2009; Greatrex et al., 2015; N. Jensen & Barrett, 

2017; Shirsath et al., 2019). However, this thesis underlines the reality that full WII contracts are expensive 

for farmers when they do not experience shocks, as seen from the single weather time series effects 

presented in Figures 8 and 9. This was also clearly demonstrated by Boucher et al. (2024) in East Africa. 

Considering the full weather distributions of current climates, our results suggest that purchasing full 

coverage WII leaves farmers worse off with insurance options since extreme weather events do not occur 

regularly, while farmers must pay premiums each year. This result is particularly important as it further 

emphasizes one reason for the low subscription of WII in Northern Ghana. A key informant interviewed 

by Ankrah et al. (2021) complained that “insurance is a way of taking people`s money because extreme 

weather events do not occur regularly”. 

Smallholder farmers are reluctant to purchase insurance contracts unless the premiums are subsidised or 

the insurance options are coupled with other benefits (Ricome et al., 2017; Sibiko et al., 2018). One more 

affordable option investigated in this thesis is purchasing certified seeds coupled with a seed emergence 

insurance product. According to Bulte et al. (2020), this has been found to increase farmers’ adoption rates 

and incentivise them to purchase insurance products. Crops are mostly vulnerable to extreme weather 

conditions at the germination phase, which is known to lead to a high incidence of crop losses (Bulte et 

al., 2020; Li & Miranda, 2015). However, a resource-constrained smallholder farmer may be unable to re-

purchase seeds and other inputs for replanting after a crop failure (Li & Miranda, 2015). Our results suggest 

that replanting is more feasible with the purchase of WII covering seed and associated costs (Fisher et al., 

2019; World Bank, 2015), as farmers pay much lower premium rates in good years and can prevent 

catastrophic income losses by avoiding yield failures associated with early drought stress. Results in this 

thesis show that the seed WII enables farmers to replant and stabilise their incomes in the event of crop 

failure during early extreme weather events, which might not be economically possible for them without 

insurance. This outcome is supported by Fisher et al. (2019), who highlighted that replanting after crop 

failure can potentially increase liquidity.  
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Many studies have examined the willingness to pay for WII by different smallholding farming households, 

highlighting that farmers’ reluctance to pay for these products is due to high prices (Binswanger-Mkhize, 

2012; Vasco et al., 2008). ShalekBriski et al. (2021) highlight that WII is less expensive than indemnity-

based insurance as it reduces administrative costs. However, as seen with the contracts presented in this 

thesis, full WII cover is often too expensive for low-income earning farmers as in many cases they pay more 

than they benefit. Farmers might be unwilling to take up insurance contracts because they might not get 

“the benefits” for several years due to a series of good weather years (Boucher et al., 2024). With an 

average cost of 113 GHS ha-1 (Table 8), high prices of insurance contracts are one of the reasons for 

farmers’ low subscriptions in Northern Ghana. A good alternative is the weather index seed insurance 

option presented in this thesis, which can enable farmers to replant in times of extreme weather 

conditions. These insurance contracts are relatively cheaper (about 28 GHS ha-1) as they do not cover the 

full growing phase of the crops, and the payouts are fixed regardless of the degree of crop failure. Such 

insurance products have been reported to be successfully implemented in Tanzania, covering about 30,000 

people in 2018 (Simões, 2021). Considering the costs of the two insurance types, promoting weather index 

seed insurance could be an effective strategy for increasing the subscription rates of insurance in the 

region since price plays a very important role in the demand for index insurance (Clement et al., 2018). 

As often suggested in the literature, one potential pathway for smallholder farmers to improve their 

livelihood is to intensify production to increase their crop yields (Chartres & Noble, 2015). Depending on 

the context, this may imply improving crop nutrient supply (Droppelmann et al., 2016), pest, weed and 

disease control, improved varieties or crops and water management, consequently potentially increasing 

their farm income (Iddrisu et al., 2018) given favourable market conditions. Among the several 

intensification options widely discussed in the literature is the efficient application of mineral fertilizers 

(Yami & Van Asten, 2017), which is applied in low quantity across large parts of SSA (Pretty et al., 2011). 

Insurance may help farmers to increase the application of fertilizers, particularly under extreme weather 

conditions as seen from the results of this study. Without insurance, fertilizers might be too risky for 

resource-constrained farmers, though they add to annual expenses with no direct benefit in years with 

good weather. Several studies have also concluded that crop insurance increases the intensity of fertilizer 

applications among smallholder farmers, for example in Kenya (Bulte et al., 2020) and in Ghana (Sohngen 

& Wiredu, 2017). 
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5.4. Effects of basis risk weather index insurance 

Despite many studies highlighting the potentials of WII, their subscription rates are still low with reasons 

ranging from low awareness and lack of knowledge of the insurance products to unprofitability for the 

insurance companies, and most importantly due to basis risk (Ankrah et al., 2021; Shirsath et al., 2019). 

Basis risk results from insurance contracts not being representative of the conditions experienced by 

farmers (Sibiko et al., 2018). Farmers are interested in insurance contracts with easy and understandable 

underlying calculations that can capture most of their climate-related losses, while insurance providers 

are interested in making profits. These conflicting interests are one of the main reasons why subscription 

rates remain extremely low. An incorrectly designed insurance contract will either lead to overestimation 

or underestimation of farmers’ losses causing them to either not get paid when they record losses or get 

paid when they do not experience losses (Afriyie-Kraft et al., 2020; Ricome et al., 2017). Spatial basis risk 

arises when there are differences in geographical factors such as slope, altitude, latitude, longitude, and 

the distance between farms and weather stations (Afriyie-Kraft et al., 2020; Dalhaus et al., 2018). Using 

daily precipitation as a proxy for this means that we are examining how precipitation patterns vary across 

different geographical locations and how this variation might affect agricultural or climate-related 

outcomes. Temporal basis risk arises when WII does not accurately reflect the growth stage sensitive to 

specific weather, such as droughts (Dalhaus et al., 2018). Planting dates can show the variations in the 

growth stage of the crops and how incorrectly the WII contracts can capture the growth phase. Product 

basis risk refers to the discrepancy between the actual loss experienced by a farmer and the loss estimated 

or modelled by an agricultural insurance product (Muneepeerakul et al., 2017). Soil depth plays a critical 

role in determining a crop's resilience to weather conditions, especially droughts. Deeper soils generally 

have a higher water-holding capacity, which can sustain crops for longer during dry periods, while shallow 

soils, which characterise the soils in the study area (MoFA, 2017; Tetteh et al., 2016) are more susceptible 

to water stress. Using soil depth as a proxy, we acknowledge that two farms receiving the same 

precipitation might experience different levels of crop stress due to differences in soil depth. 

The results here indicate that the effects of basis risk on WII effectiveness are greatest in the years when 

a crop failure is greatest, with errors due to either lower or higher soil depth compared with the actual 

soil depths of the farmers’ sites. However, much of this may simply be an artefact of simulated 

assumptions about incomes and assets in good years, which vary considerably around the assumed 

reference conditions (Fig 14). Before shock occurs, farmers rarely notice any differences in their gross 

margins and farm assets as there are no need for indemnity payments. Basis risk can, therefore, be 
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observed in years with extreme weather conditions (see Fig. 14 and 15), when there is a need for 

indemnity payment from the WII contracts. During these years, the indemnity payments cover farmers’ 

losses, which helps to stabilise their gross margins. However, design errors in the insurance contracts can 

negatively affect farmers' economic conditions, as the selected index may sometimes fail to capture the 

shock. Notably, the results show that with higher precipitation, farm income and assets tend to decrease 

when compared to the normal precipitation in the study area. This is because precipitation is not the main 

limiting factor in the study area. The annual precipitation in the area exceeds 1000mm (with most of it 

occurring during the growing season). Nitrogen is the main limiting factor for maize yield in the study area 

and nitrogen loss through leaching increases with higher precipitation (Falconnier et al., 2020). The high 

impact of nitrogen leaching is, however, related to the shallow soil in the region, where water and nitrogen 

can be leached out very quickly (Kruseman, 2000; MoFA, 2017). 

On the other hand, when looking at income and assets over the 5 years, many of the sources of basis risk 

had little impact on the overall probability of limiting the loss of assets. The notable exception was 

assumptions about soil depths, as farms that have much shallower soils than assumed by the index have 

an especially low probability of limiting losses of assets. This highlights the need to improve access and 

use of higher-resolution soil information data. However, though not significant, there is an effect of WII 

being less effective if farmers are planting earlier than the conditions assumed in the index (e.g., PD-14). 

Efforts have been made to offer ways of reducing the effects of basis risk on WII, thereby making these 

insurances more effective. Boucher et al. (2024) proposed an “audit clause of contract”, where farmers 

can participate in detecting basis risk by reporting issues of inconsistencies. This can build trust in the 

insurance product and encourage farmers to purchase the contracts. In addition, several studies have 

highlighted measures that can help to reduce basis risk, including combining rainfall estimates from 

satellite and vegetation indices (Ntukamazina et al., 2017), utilizing high-resolution analysis tailored to the 

unique microclimates of farms, extensive rain gauge installations to capture triggers, and the 

establishment of community-based data sets with index thresholds (Afriyie-Kraft et al., 2020). In addition, 

efforts should be made to design these insurance contracts as close to farmers’ environmental and 

economic conditions as possible, for instance, offering the insurance in areas where a particular highly 

covariate risk is the main source of loss (Barnett & Mahul, 2007). Finally, promising alternatives to 

supplying farmers with WII are to ensure their credit with lenders or to provide lines of credit which are 

contingent on experiencing a shock (Farrin & Miranda, 2015). 
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5.5. Study limitations 

A key and overarching limitation in this thesis relates to the data quality of the household survey data, 

typical of many survey datasets (Fraval et al., 2019). We had a lot of variation in information ranging from 

yields to fertilizer rates to labour requirements for various cropping activities. A further main limitation is 

the assumption of constant costs. This approach was adopted for simplicity, as the focus was on weather 

uncertainty. Indeed, the weather data used were simulated data capturing a wide range of plausible 

weather, consistent with the current climate, and not actual observed historical data. Therefore, varying 

prices would have needed a complex approach based on current signals between crop prices as correlated 

with the weather. Such an analysis was largely unfeasible due to a lack of data and expertise. Ideally, adding 

yearly variation to input costs or at least conducting an uncertainty analysis would add robustness to the 

results of this study. Additionally, payment for household labour was not accounted for. In this case, the 

household expenditure and consumption were accounted for, but paying the household labour was not. 

The study did not account for the environmental costs associated with grazing of farm animals. This is 

because the farmers in the study area practice an extensive form of production and no reliable data to 

account for such costs is available. However, the study accounted for the associated labour costs for 

grazing. While these are serious limitations to the exact results of the thesis, they should not distract from 

the methodological advances in integrated risk assessment. 

Another limitation of this study is that long-term crop rotation effects on e.g. soil organic carbon (SOC) on 

soil characteristics were not considered. The rotation effects were neglected because the simulations in 

this study were carried out over a relatively short-term period (5 years). In a future study, it would be 

interesting to see the long-term trajectory of SOC under different crop rotations and include such changes 

in the integrated model to optimise cropping systems, considering not only economic but also 

environmental aspects. 

There were also various limitations associated with the crop model simulations regarding agronomic 

practice and impacts of extreme rainfall and excess wetness. Firstly, most local farmers do not apply 

pesticides, and the yield losses due to pests in this region are reported to be above 20% (Abudulai et al., 

2012). While the crop model can simulate growth under different environmental conditions and 

management practices, it could not simulate waterlogging, lodging, pests, and diseases conditions, though 

empirical yield reduction was performed to bring yield levels close to reported levels. Second, wealthy 

farmers tend to use more improved seeds, such as hybrid maize. However, a single crop parameter set for 

each crop was used, meaning that the simulations do not capture the differences between improved and 
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local seeds. Third, phosphorus deficiency is considered to be another major constraint to crop yield in Sub-

Saharan Africa (Verde & Matusso, 2014), but among nutrient stress, only nitrogen stress was simulated 

with the crop model due to a lack of calibration data for considering phosphorus limitation. Despite these 

limitations, the crop model can simulate the main climatic risks in this region: drought from rainfall amount 

and dynamics, heat stress and the interaction of heat and drought, as well as effects of limited radiation 

and average daily temperatures. Advancing crop models in simulating diverse management options will 

help produce more realistic farm simulations, and thus, provide crucial information on designing insurance 

products. Furthermore, other factors apart from weather risk that can be associated with losses due to 

crop failure are not captured in the model and issues regarding the design of the weather index contract 

could lead to basis risk (Hill et al., 2019). 

Furthermore, the insurance product was developed only for maize crops. The choice to develop and assess 

insurance solutions only for maize was based on several considerations. First and foremost, the maize 

response to nitrogen fertilizer in the region is highly variable, particularly with rainfall amount and water 

availability (Danso et al., 2018), making the investment in fertilizer very risky and potentially a case where 

economic returns of fertilizer use could justify the use of insurance. Other reasons included the interest of 

ACRE-Africa in the analysis of income of a maize insurance product as it is a food crop with the potential 

of securing food production in the region and increasing the spending power of the farmers in years with 

extreme weather conditions. This could increase the demand for insurance and then the insurance 

providers can introduce insurance for other crops. Additionally, the complexity of the study was limited to 

one crop. Finally, soybeans are commonly grown in the region under contracts, which precludes the use 

of an insurance product though likely with less favourable terms. 

Finally, the model was simulated with a 5-year time series comprising an ensemble of 400 members for 

present-day climate. Ideally, a longer time series might include more extreme weather events, which could 

show more insurance payoffs. However, using these kinds of datasets would require combining different 

members, which may produce some artefacts where more extreme events can be included in some time 

series compared to others during the procedure of combining the members. Such extreme time series 

may not be physically plausible under current climate conditions. In the future, the HAPPI dataset 

comprising a 10-year time series of 800 members could be used (Mitchell et al., 2017). 
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6. General summary, recommendations, and contributions to 

knowledge 

6.1.  General summary 

This study developed an integrated bio-economic model to simulate the impact of weather on farm 

management. The first focus was to compare the results of the integrated model with simulations from a 

household model (CLEM). The model offers a novel approach to risk assessment frameworks, which can 

help to understand risk management strategies and pathways to achieve sustainable intensification. 

Additionally, the model allows assessing trade-offs between crop management decisions and costs 

considering short-term effects, effects aftershocks and the long-term effects on incomes. By using a large 

ensemble climate forcing dataset, the model can assess the probabilities of outcomes. The conclusion 

from this study is that the integrated model provides more founded information for smallholder farmers 

under different weather conditions as the farm-level resource allocations are informed by environmental 

conditions, resource availability, and farmers’ risk perceptions. Highlighting a current limitation of current 

optimisation approaches that do not consider weather variability, our results show different optimal crop 

allocation patterns depending on the weather case.  

In addition, this study explored the effects of weather-index insurance contracts on farmers’ long-term 

income and farm assets. The focus here was to assess the potential of insurance to stabilise farmers’ 

income and increase farm assets in extreme weather conditions. The novelty of the study is to develop 

specific insurance contracts in collaboration with ACRE Africa, a well-known insurance service provider in 

SSA and evaluate these contracts along with the risk management option of replanting in the case of crop 

failure for effects on farm income and assets. From this study, it can be suggested that farmers are better 

off purchasing seed WII contracts that enable them to replant in extreme weather conditions and the 

event of crop failure as opposed to purchasing relatively expensive full insurance or having no insurance 

under these conditions. This is an interesting result because as widely mentioned in the literature, many 

smallholder farmers in SSA are faced with extreme poverty, with little chance of moving out of poverty 

traps. The results of this thesis suggest there may be potential for farmers to consider seed weather index-

based insurance contracts, which would serve as a means of transferring their risks and increasing their 

ability to cope with climate change and other risks without excessive costs. However, looking at these 

contracts from a long-term perspective, they become expensive for the farmers as extreme weather 

conditions do not occur regularly. Therefore, more research to explore how to bundle insurance options 
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with other interventions such as subsidies on inputs to ease the burden of the high cost of insurance on 

the farmers. In addition, insurance providers should focus first on introducing index insurance contracts 

for food crops (for example as presented in this thesis) as it has a high potential of securing food production 

in the region and increasing the spending power of the farmers in years with extreme weather conditions. 

This could increase the demand for insurance and then the insurance providers can introduce insurance 

for other crops. 

6.2. Recommendations for future research 

This study describes the integrated bio-economic assessment of climate risk and suitable risk management 

options for the case of smallholder farmers in Northern Ghana. Several areas where further research is 

needed were identified: 

• Develop crop models to simulate more conditions leading to crop yield failure, such as 

waterlogging, pests, weed and disease damage. With crop modelling frameworks that can 

simulate diverse conditions, simulated crop yields would be more realistic as they would be closer 

to the farmers’ actual yields and perhaps serve as an improved index for insurance products. 

• Drive bio-economic model simulations with longer time series of a large ensemble climate dataset 

to capture more extreme events. Such simulations would be useful to capture the long-term 

effects of risk management options on farm resources. Effects of insurance for instance can take 

more than 5 years to show on farm income and assets, as well as on natural capital such as soil 

organic matter or biodiversity. 

• Perform experiments that can detect farmers’ preferences for risk management options under 

extreme weather conditions. Such experiments and simulation games can be helpful to 

understand why farmers would take up weather index insurance options as well as adopt other 

risk management strategies. 

• Extend the work on exploring sources of basis risk to prioritise the data monitoring and 

information needed to design better indices.  

• To apply the new integrated model framework together with various actors to support the design 

of insurance products to incentivise sustainability. 

6.3. Contributions to knowledge 

This thesis advanced current integrated modelling approaches for risk assessment contributing optimised 

knowledge on climate risk assessment and climate risk management in smallholder farming contexts. 

Specifically: 
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• The integrated bio-economic modelling framework provides a basis to assess the probability of 

different risk management strategies will provide short-term relief from the effects of shocks while 

supporting longer-term developments towards sustainability 

• Less expensive seed coverage WII allows resource-constrained farmers to maintain incomes in 

years following a yield failure by allowing them to replant without excessive costs in good years 

• Product basis risks such as those arising from incorrectly specifying the soil depth in the insurance 

design have a relatively larger impact compared to other forms of basis risks suggesting that higher 

resolution soil data is a priority to reduce basis risk for the conditions of smallholder farmers in 

Ghana. 
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8. Appendix 

Appendix A1- Updated framework of the integrated model to include WII-replanting scenarios. 

  

Figure A 1. Updated framework of the integrated model to include WII-replanting scenarios. The large 
ensemble climate data is a generated global climate model data used to simulate all scenarios. The 
scenarios are a factorial combination of insurance contracts, including no insurance option with replanting 
and no replanting scenarios. The figure in the middle is the integrated model comprising CLEM, the crop 
model, and a farm optimisation model. The probability of outcomes depicts the results of the model, which 
are assessed in terms of probabilities. 
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Appendix A2- Updated flow charts of the integrated model for insurance-replanting scenarios. 

 

Figure A 2. Updated flow chart of the integrated model 
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Appendix A3- Updated framework of the integrated model to include basis risk scenarios. 

 

Figure A 3. Updated framework of the integrated model to include basis risk scenarios. The large ensemble 
climate data is a generated global climate model data used to simulate all scenarios. The scenarios are a 
combination of insurance contracts, simulated under replanting assumption and yield data obtained from 
changes in daily precipitation, changing planting dates and changes in soil depth. The figure in the middle 
is the integrated model linking CLEM, with the crop model, and an annual farm optimisation model. The 
probability of outcomes depicts the results of the model, which are assessed in terms of probabilities. 

Appendix B- CLEM model assumptions. 

1. All farm types are modelled based on the farmers’ current management practices as observed in the 

data. 

2. All 100% of crop produce is sold, which is the main source of income in the model. 

3. Other sources of fixed income are income from remittance, off-farm income, fixed income from 

livestock sales (i.e. poultry) 

4. Ruminant mortality and fatality are not accounted for in the model. 

5. The livestock are fed with residues for 7 months, which is typically the planting season in the study 

area and grassland for 5 months, which is typically the dry season period in the area. The grassland is 

infinite i.e. the quantities available are enough to feed all the animals for 5 months and there is no 

need to purchase other food sources during this period. 

6. Farmers can obtain loans whenever their income is not enough to perform any activity. The size of 

the loan is limited based on data obtained for each farm type. 

7. If the farmers’ income falls to the negative and they obtain loans to carry out their production 

activities, there is an interest rate that must be paid. 
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8. Farmers sell livestock only if they do not have enough money to cover their household living 

expenses. 

9. Labour activities are carried out by the household members and hired labour is used if the available 

labour is not enough. The costs of hiring labour are accounted for wage rate is obtained from the 

data. 

Appendix C- Farm optimisation model assumptions. 

The main assumptions adopted in parameterising the optimisation model include the following: 

1. The crop yields are sold (100% sales as nutrition is not considered in the model. Only household 

feeding cost is included). 

2. The biomass from crop production (obtained from the crop model), which is based on the land size 

and the crop type is fed to the ruminant livestock, in addition to grassland and additional feed 

supplements that may be bought based on the feed requirements of the animals and availability. The 

available residue quantity comes from the crop model and are updated each year. 

3. These residues are fed to the livestock for 7 months and the animals graze on grasslands for the 

remaining 5 months of the year (during the rainy seasons- May to October). The feeds obtained from 

grassland are assumed to be sufficient for the animals and they have certain associated labour costs. 

4. Each farming operation, including crop production and livestock production requires a certain amount 

of labour (total man days) and their costs (i.e. wage rate per day) were included as total labour cost.  

5. Cash at hand is also included as part of the cash constraint. This was modelled in such a way that all 

income (excluding income from crop revenues as this should come at the end of the year) plus cash at 

hand and obtainable amount of loan must be greater than all expenditure. 

6. If the farmers take loans, they must pay it back at the end of the year with interest. The interest rates 

and the maximum loan the farmers can take were obtained from the data 

7. The total revenue on the farm includes revenue from crop production, off-farm income (fixed), income 

from remittances (fixed), income from poultry sales (this was obtained from the data, and the amount 

was modelled as a form of fixed income) 

8. Livestock are held and not sold because farmers perceive them as a form of wealth preservation. The 

number of animals was, therefore, fixed, accounting for all associated costs to keep them.  

9. The household food requirements were represented by their cost equivalents, taken from the 

household revenue 
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Appendix D- Optimisation model constraints. 

In the following section, the production constraints as parameterised in the farm decision model are 

discussed in detail. 

- Crop production. 

1. The crop production activities in the region comprise maize (with varying degrees of fertilizer 

application intensity), rice, soybeans, upland rice, and groundnut, which are planted on the farmers’ 

plots.  

∑ 𝑋𝑝𝑙𝑜𝑡,𝑐,𝑡𝑦𝑝
𝐶
𝑐=1 ≤ 𝑙𝑎𝑛𝑑_𝑠𝑖𝑧𝑒𝑝𝑙𝑜𝑡,𝑡𝑦𝑝         (A4) 

2. Equation (A4) shows that the sum of the cultivated crops per production plot must be less than or 

equal to the available land area per plot.  

∑ 𝑋𝑝𝑙𝑜𝑡.𝑚𝑧 ∗ 𝑦𝑚𝑧,𝑝𝑙𝑜𝑡,𝑡𝑦𝑝 ≥  𝑡𝑜𝑡𝑎𝑙_𝑐𝑜𝑛𝑡𝑦𝑝
𝑚𝑧
𝑖=1        (𝐴5) 

3. Equation (A5) shows that maize yield must be at least equal or greater than the household 

consumption requirement. 

- Animal production. 

1. The animals are fed with the crop residues produced after harvesting the crops. To ensure that enough 

residues are produced or bought, a constraint was added stating that the total residue produced from 

own crop production and the possible amount that may be purchased is enough to feed the animals 

for 7 months and then the animals can graze on grasslands for the remaining 5 months of the year.  

∑ (((𝑋𝑝𝑙𝑜𝑡,𝑐,𝑡𝑦𝑝 ∗ 𝑓𝑟𝑐,𝑐,𝑡𝑦𝑝) ∗  0.5833) +  𝛴𝑖=1
𝑟𝑐  

𝑝𝑙𝑜𝑡,𝑐,𝑟𝑐
𝑖=1 𝑟𝑠𝑡𝑑𝑟𝑐,𝑡𝑦𝑝))) ≥ ∑ (𝑓𝑜𝑑𝑎𝑎,𝑓𝑜𝑑 ∗ ℎ𝑠𝑎,𝑡𝑦𝑝 ∗ 0.583𝑎

𝑖=1 ) 

            (A6) 

2. Equation (A6) ensured that the total residue produced on the farm in 7 months plus the amount 

bought in kg is greater than or equal to the feed required by the total herd in the same period. 

𝑟𝑠𝑐𝑡𝑦𝑝 =  𝛴𝑖=1
𝑟𝑐 𝑟𝑠𝑡𝑑𝑟𝑐,𝑡𝑦𝑝 ∗ 𝑟𝑒𝑠_𝑐𝑜𝑠𝑡𝑟𝑐        (A7)  

 
3 Obtained by dividing 7 by 12 to represent 7 months of available forage in a year 
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3. Equations (A7) show the cost of residues bought. 

- Labour constraints. 

1. Labour is obtained from the household and hired labour. A labour constraint was introduced into the 

model to ensure that the crop production activity is restricted by the available household labour and 

a possible number of hired labour that the farmers can hire based on the cash available to them. All 

adults in the household can provide 30 man-days of labour per month, while young children mostly in 

their teens can provide 15 man-days of labour per month. Any additional labour required is provided 

by hired labour at the daily wage rate.  

2. Equation (A8) shows that the adults in the households are available for 30 days, while young adults 

are available for 15 days in a month. The combination of these and hired labour sums up the total 

man-days of labour. Equation (A9) shows the cost of hired labour. 

𝛴𝑖=1
𝑚𝑎𝑛𝑑𝑎𝑦𝑠,𝑝𝑙𝑜𝑡,𝑐

(𝑙𝑎𝑏𝑚𝑎𝑛𝑑𝑎𝑦𝑠,𝑝𝑙𝑜𝑡,𝑐,𝑡𝑦𝑝) ∗ (𝑋𝑝𝑙𝑜𝑡,𝑐,𝑡𝑦𝑝)  ≤  𝛴((𝐻𝐻_𝑎𝑑𝑡𝑦𝑝 ∗ 30) + (𝐻𝐻_𝑦𝑡𝑝𝑦 ∗ 15)) +

𝐻𝑙𝑡𝑦𝑝            (A8) 

𝐿𝑎𝑏𝑐𝑜𝑠𝑡𝑡𝑦𝑝 =  𝐻𝑙𝑡𝑦𝑝 ∗  𝑤𝑑𝑎𝑦         (A9) 

- Cash constraints. 

1. Cash constraint was introduced to limit farmers’ production activities based on the available cash and 

the possible amount of loan they can obtain at a particular time. The sum of the cash at hand, income 

from off-farm employment, income from poultry sales and the obtained loan must be equal to the 

total costs on the farm including the labour cost, and miscellaneous costs in equation (A10). Equation 

(A11) ensures that the farmers cannot obtain loans more than the amount they have already declared 

during the data collection process. 

𝑐𝑎𝑠ℎ_𝑎𝑡_ℎ𝑎𝑛𝑑𝑡𝑦𝑝 +  𝑜𝑓𝑓𝑓𝑎𝑟𝑚𝑡𝑦𝑝
+ 𝑙𝑜𝑎𝑛𝑡𝑦𝑝 ≥  𝐿𝑎𝑏𝑐𝑜𝑠𝑡𝑡𝑦𝑝 +  𝑡𝑜𝑡𝑎𝑙_𝑐𝑜𝑛𝑡𝑦𝑝 + 𝑡𝑜𝑡_𝑒𝑥𝑝𝑡𝑦𝑝 +

𝑎𝑙𝑙_ℎ𝑒𝑟𝑑_𝑐𝑜𝑠𝑡𝑡𝑦𝑝 +  𝑟𝑒𝑛𝑡𝑎𝑙𝑡𝑦𝑝 +  𝑟𝑠𝑐𝑡𝑦𝑝 + 𝑡𝑐𝑡𝑦𝑝         (A10)  

𝑙𝑜𝑎𝑛𝑡𝑦𝑝 ≤  𝛴𝑖=1
𝑙 (𝑙𝑡𝑦𝑝)          (A11) 
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- Revenue 

1. The revenue included in the model is mainly from crop production as animals are not sold in the 

model. Other possible sources of revenue considered in the model are income from remittances and 

income from off-farm employment. 

2. Equation (A12) shows that the revenues obtained from each plot should be equal to the yield per 

plot multiplied by the price per kg of the crop 

𝑐𝑝𝑟𝑡𝑦𝑝 =  𝛴𝑖=1
𝑝𝑙𝑜𝑡,𝑐

𝑋𝑝𝑙𝑜𝑡,𝑐,𝑡𝑦𝑝 ∗ 𝑦𝑐,𝑝𝑙𝑜𝑡,𝑡𝑦𝑝 ∗ 𝑝𝑐      (A12) 

 

Table S 1. Description of mathematical symbols used in the optimisation model. 

Symbol Description Units 

plot The total area of cultivated plot ha 

land_size Total available land area ha 

c cultivated crop (the choice includes maize with low, maize with 
medium, maize with high fertilizer intensity, soybeans, rice, and 
groundnut 

 

mz Maize crop  

total_con Total consumption  

𝑓 available forage  

𝑟𝑠𝑏𝑔𝑡 Total residue bought by the farmers kg 

𝑓𝑜𝑑𝑎 feed requirements by the animals in kg kg 

ℎ𝑠 The herd size of the farmer (including sheep, cattle, and goats)  

𝑟𝑠𝑐 Total cost of residue bought GHS 

res_cos𝑡 Price of residue per kg GHS 

𝑚𝑎𝑛𝑑𝑎𝑦𝑠 Total man-days of labour required man-day 

𝐻𝐻_𝑎𝑑 Adults in the household  

𝐻𝐻_𝑦 Young adults in the household  

𝐻𝑙 Total hired labour  

𝑤𝑑𝑎𝑦 Wage rate per day GHS 

cash_at_han𝑑 Cash at hand GHS 
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𝑜𝑓𝑓𝑓𝑎𝑟𝑚 Income from off-farm employment GHS 

𝑙 Loan obtained by the farmers GHS 

𝑙𝑎𝑏𝑐𝑜𝑠𝑡  Total labour cost GHS 

𝑚𝑐𝑐  Total miscellaneous cost  GHS 

𝑎ℎ𝑑𝑐  Total herd production cost GHS 

𝑐𝑝𝑟  Revenue from crop production GHS 

𝑦  Yield per plot GHS 

𝑝  Price of crop per kg GHS/kg 
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Appendix E- Results from cropping activity scenarios. 

Table S 2. Scenario analysis of cropping activity under changing risk aversion coefficient 

Weather Farm 
type 

Risk 
aversion 
coefficient 

Land proportion allocated to crops 
Land area 

   
Maize low Maize 

medium 
Maize high soybean Upland rice Groundnut  

Bad 
weather 

LRE 

0 4.6% 0.0% 0.0% 0.0% 85.4% 9.8% 0.9ha 

0.0001 4.7% 0.0% 0.0% 0.0% 85.4% 9.8% 0.9ha 

0.001 4.7% 0.0% 0.0% 0.0% 75.8% 19.6% 0.9ha 

0.01 4.6% 0.0% 0.0% 5.33% 39.3% 50.8% 0.92ha 

0.1 17.4% 5.8% 1.7% 38.8% 21.3% 15% 0.92ha 

1 18.2% 1.3% 0.7% 9.1% 63.5% 7.1% 0.55ha 

MRE 

0 0.0% 0.0% 0.0% 0.0% 26.9% 73.1% 0.89ha 

0.0001 0.0% 0.0% 0.0% 0.0% 73.1% 26.9% 0.89ha 

0.001 0.0% 0.0% 0.0% 0.0% 80.1% 19.9% 0.91ha 

0.01 1.1% 0.0% 0.0% 24% 10.3% 64.6% 1ha 

0.1 21.6% 0.0% 0.0% 39.9% 4.1% 39.9% 0.73ha 

1 5% 0.0% 0.0% 8.3% 0.9% 85.9% 0.27ha 

HRE 

0 0.0% 0.0% 0.0% 0.0% 58.2% 41.8% 1.65ha 

0.0001 0.0% 0.0% 0.0% 0.0% 58.2% 41.8% 1.65ha 

0.001 0.0% 0.0% 0.0% 0.0% 40.6% 59.4% 1.92ha 
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0.01 9.1% 0.0% 0.0% 55% 10.2% 25.7% 2.28ha 

0.1 11.3% 6.6% 3.0% 60.7% 3.6% 14.8% 1.09ha 

1 5% 2.9% 1.3% 31.1% 2% 57.5% 0.08ha 

Good 
weather 

LRE 

0 0.0% 0.0% 0.0% 0.0% 100.0% 0.0% 0.92ha 

0.0001 0.0% 0.0% 0.0% 0.0% 100.0% 0.0% 0.92ha 

0.001 0.0% 0.0% 0.0% 0.0% 100.0% 0.0% 0.92ha 

0.01 0.0% 0.0% 0.0% 0.0% 100% 0.0% 0.92ha 

0.1 0.0% 19.9% 11.5% 24.5% 24.1% 20.1% 0.92ha 

1 23.8% 17.7% 13.2% 30.1% 6.7% 8.5% 0.61ha 

MRE 

0 0.0% 0.0% 0.0% 0.0% 100.0% 0.0% 3.36ha 

0.0001 0.0% 0.0% 0.0% 0.0% 100.0% 0.0% 3.36ha 

0.001 0.0% 0.0% 0.0% 0.0% 100.0% 0.0% 3.36ha 

0.01 0.0% 0.0% 0.0% 10.9% 52% 3.1% 3.11ha 

0.1 19.0% 16.6% 9.7% 30.7% 12.4% 11.6% 2ha 

1 23.2% 17.6% 13.1% 30.7%  6.8% 8.6% 0.58ha 

HRE 

0 0.0% 0.0% 0.0% 0.0% 100.0% 0.0% 5.13ha 

0.0001 0.0% 0.0% 0.0% 0.0% 100.0% 0.0% 5.13ha 

0.001 0.0% 0.0% 0.0% 0.0% 100.0% 0.0% 5.13ha 

0.01 9.8% 1.1% 0.0% 21.7% 38.3% 29.2% 4.38ha 

0.1 19.0% 16.8% 10.9% 32.6% 10.3% 10.4% 2.63ha 

1 19.1% 17.1% 12.7% 35% 7.4% 8.8% 0.47ha 
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Appendix F- Survey questionnaire. 

1 Farm area- 

a. area of the farm (estimated by the farmer)- 

b. no. of fields- 

Table S 3. Crop cultivation details – field/plot level for all crops (main, intercrop, relay crop) 

 Plots 
(no) 

Total Area of 
the field 
(acre/ha) 

Current Season 
 

Previous 
season  Current season  Previous season Current Season  

% of produce 
kept for HH 
consumption 
(or in kg) 

Land 
preparation  
1 - ridge 
2 - contour 
3 - 
downslope 
0 - zero  
Mechanizati
on  
a) Tractor 
b) Bullocks 
c) Manual 

Land type 
1- Upland 
2- Lowland 

Planting type 
1- Sole 
2- Intercrop crop name 

  
crop name 

Area 
proportion 
if intercrop 
(%) 

Sowing 
date 

Harvesting 
date 

Production 
(Kg or bags) 

Market price 
(GHS/Kg) 

 
Production 
 (kg or 
bags) 

Market 
price 
(cedes /kg) 

Use of residue 
1- Burn 2- 
Incorp/Mulch,  
3- Fuel  
4- Grazing  
5- Feeding  
6- Selling  
7- other 

41 5 

  6+7 8+9 
 

10  11  12  13  14  15  16 17   
            
            

1.2. Crop Inputs (information needed for all fields/plots) 

 
4 [Plot] Plot number {plot_numbr}- All questions to be asked in a plot sequence order. 
5 [Plot] Declared area (ha) {declararea} and Plot delimitation (m2) {plt_delim} 
6 [Agricultural season] Previous season | If yes, crop type {yes_culcrp} 
7 [Agricultural season] Previous season | If yes, crop class {crop_class} 
8 [Agricultural season] Upcoming or current season | If yes, crop type {cult_crop} 
9 [Agricultural season] Upcoming or current season | If yes, crop class {crop_class2} 
10 [Sowing] Sowing date {sowin_date} 
11 [Harvest] Start date {start_date} and End data {end_date} 
12 [Agricultural season] Previous season | Grain production (in kg or bags) {output}  
13 [Post-Harvest] Marketing | Grain sales price (GHS/kg) {sale_price} – NB will be different from market price as this is the farmer declared price, equivalent to the farm gate price. 
14 [Agricultural season] Previous season | Residue production (in kg/bags) {output3} 
15 [Post-Harvest] Marketing | Residue sales price (GHS/bag) {sale_price2} – NB will be different from market price as this is the farmer declared price, equivalent to the farm gate price. 
16 [Agricultural season] Previous season | Fate of residue {fate_residue} 
17 [Agricultural season] Upcoming or current season | Intended use of residue {fate_residue2} 
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Table S 4. Fertilizer and Manure (application, quantity, and price) for each field and crop from last year 

 
18Fields/ 

plot 

Crop Name 

Seed 
A-Own/local seed 
B- Improved/high yielding 
seed 
C- Hybrid 

Herbicide 
spray 

(Chemical 
cost only)- no 

labour cost 

pesticide 
spray 

(Chemical 
cost only)- no 

labour cost 

 Manure-Organic 

 
  

NPK fertilizers 

Other 
fertilizer 

type  
 
 

Price () 

Fertilizer 
application 
method 
C-Micro dozing 
B- Broadcasting 
C- Through 
irrigation 
D- Injection into 
soil 

19Urea  

cost @50 
kg bag:  

 
 

( ) 
  

CF-1  
(N: __, P: 
__, K: __)  
cost @50 
kg bag:  
 

( ) 
  

CF-2 (N: 

__, P: __, 

K: __) cost 

@50 kg 

bag: 

( )  

CF-3 (N: 

__, P: __, 

K: __)  

cost @50 
kg bag:  
 

( )  

Variety/ 
cultivar 

Quantity 
(Kg) Price 

(/Kg) 
No of 
times  

Cost (/ 
spray) 

No of 
times  

Cost (/ 
spray) 

Quantity 
(carts) 

20Buy manure 
21Price if 

bought (cart) 

22Application 

frequency 
Quantity 
(Kg) 

Quantity 
(Kg) 

Quantity 
(Kg) 

Quantity 
(Kg) 

(Kg) 

 

1 

23         Yes No         

         Yes No         

2 
         Yes No         

         Yes No         

3 
         Yes No         

         Yes No         

4 

         Yes No         

         Yes No         

         Yes No         

 
18 Ensure that questions are asked in continuation of field level data obtained on section 1 above 
19 Obtain the cost price per 50kg of fertilizer. 
20 Ask if manures are bought or self-produced. 
21 Cart of manure- standard manure weight per cart 
22 Fertilizer application frequency- Daily, Weekly or Monthly 
23 If sole cropping, answer only one part of each field (plot). If Intercropping, answer both part 



Questionnaire 

xlix 

 

Table S 5. Use of machinery and Bullock power for each field 

24Plot/ 

field 

Machinery and bullock hiring cost  

Ploughing Hiring of Sprayer 

Tractor  Animal traction 

Threshing cost No of spray  
Cost of hiring for each 

spray  
No. of 
ploughing 

C - Owned 
B - Rent 
C - Communal 

25Cost (per 

use) 
No.  

C - Owned 
B - Rent 
C - Communal 

Cost (per use) 

1          

2          

3          

4          

5          

 
24 It is expected that land preparation activities are carried out by plot not by crop (i.e. intercropping) 
25 All associated costs, including labour cost. 
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Table S 6. Labour use in cropping 

 

26Field/plot Crop Name 

27Labour requirement (Days) 

Land preparation Planting/Sowing 
Fertilizer 

application 
Manure application 

Weeding/ 
spraying 

Pesticide 
application 

Harvesting 
Post-Harvest/ 

Threshing 

HH 
labour 

Hired 
labour 

HH 
labour 

Hired 
labour 

HH 
labour 

Hired 
labour 

HH 
labour 

Hired 
labour 

HH 
labour 

Hired 
labour 

HH 
labour 

Hired 
labour 

HH 
labour 

Hired 
labour 

HH 
labour 

Hired 
labour 

1 
                 
                 

2 
                 
                 

3 
                 
                 

4 
                 
                 

5 
                 
                 

 
26 Ensure that questions are asked in continuation of field level data obtained on section 1 above 
27 All labour requirements excluding land preparation labour requirements (e.g. ploughing, animal traction etc.) 
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2 - LABOUR DETAILS 
 

Table S 7. Off-farm labour for all household members 

 
Male (all in HH) Female (all in HH) 

Period of 
the year 

Days of 
engagement 

Wage rate 
(GHS/day) 

Period of the 
year 

Days of 
engagement 

Wage rate 
(GHS/day) 

Off-farm work 1(Mention): 
 

 

    

 

    

Off-farm work 2(Mention): 
 

 

    

 

    

Off-farm work 3(Mention): 

 

 

  

 

  

Off-farm work 4(Mention): 

 

 

  

 

  

Off-farm work 5(Mention): 

 

 

  

 

  

 

Table S 8. Peak labour shortage 

 Very scarce Scarce Normal Surplus Very surplus 

Ploughing 1 2 3 4 5 

Sowing 1 2 3 4 5 

Weeding 1 2 3 4 5 

Spraying 1 2 3 4 5 

Harvesting 1 2 3 4 5 

Threshing 1 2 3 4 5 
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Table S 9. Hired labour daily wage rate  

Period/seasons Wage rate (GHS/day) 

June to September (Rainy) 

  

  

October to January (Dry/Harmattan) 

  

  

February to May (Sunny) 
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3 - LIVESTOCK  

Table S 10. Details on livestock number and other information  

Name of 
the 

livestock  

Breed  
A- Local 
B- Improved 

   

  Numbers Average 
age 

(Years/Mo
nths) 

Average 
weight 

(Kg) 

Cost 
(GHS/ani

mal) 

Sales 
price 

(GHS/ani
mal) 

Sell milk 
(Yes/No) Total Nos. 

 Milking 
(Y/N) 

If Yes, 
No 

(kg/day) 

Cattle                

Sheep               

Goat               

Poultry                

Other 
animals  

  
 

          
 

 

  



Questionnaire 

liv 

 

3.3. Details of fodder fed to livestock for last year  

How will you ask for these quantities? Possible? Alternatives? 

 

Table S 11. Grass(hay) 

 
 If yes…. 

Fodder 

Do you feed this type 
of fodder (yes or 
no)? 

For which 
months? Source (residues 

from own fields or 
bought)  

Quantity  
(Harvested/Bou
ght) 
-If bought 
price/kg  

Quantity fed 
to livestock 
(kg/day) 

Maize Stover       

Rice Straw          

Millets Stover          

Sorghum 
Stover 

         

Cowpea 
leaves 

  

  
 

 
Groundnut 
leaves 

  

  
 

 
Others 
(specify) 

  
    

 

3.4. Do you graze your animals? (Yes/No)? If yes, answer section 3.3 

Table S 12. Animal grazing 

Livestock 
Period of grazing (i.e., rainy, 

dry or harmattan) 

Time per day for 

herds 

No. of labour 

required 

Grazing distance 

(km) 

Grazing cost (per 

total/day) 

Sheep      

Cow      

Goat      

Others      

 



Questionnaire 

lv 

 

3.5. Supplements fed to animals (if any)  

 

Table S 13. Inter-calving period and veterinary cost 

Livestock Inter-calving period 
(months) 

Veterinary Costs 
(cedes/Year)   

Goats      

Sheep     

Cows      

 Other   

 

Table S 14. Labour use/herd for livestock 

Period/seasons 

HH labour Hired Labour 

No. of days in a 
month Hours/day No. of days in a month Hours/day 

June to September         

October to January         

February to May         
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4 – BUDGET DATA per farm for the previous year 

Table S 15. Previous year’s budget 

Particulars GHS 

General farm maintenance (like fencing, repairing and others)   

Electricity for farm or fuel costs   

Cash on hand at end of year   

Household’s Living cost/month including children's fees etc.    

Any remittances (money from family working outside the village)  

Income from livestock (if any)  

Government cash transfers (if any)  

Other income  

 

5 – Knowledge and Interest in SI options 

Table S 16. Have you heard about any of these practices? 

 Never heard Heard from 
other farmers 

Heard from 
extension 

agents 

Heard but 
practice 

occasionally 

Heard and 
practised 
regularly 

Fertilizer application and 
intensity 

1 2 3 4 5 

Use of improved short-
duration varieties 

1 2 3 4 5 

Incorporation of residue 
after harvest 

1 2 3 4 5 

Intensive livestock 
production 

1 2 3 4 5 

Integration of small 
livestock 

1 2 3 4 5 
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Table S 17. How much interest do you have in any of these practices? 

 Not 
interested 

Slightly 
interested 

Neutral Interested Very 
interested 

Fertilizer application and 
intensity 

1 2 3 4 5 

Use of short-duration 
varieties 

1 2 3 4 5 

Incorporation of residue 
after harvest 

1 2 3 4 5 

Intensive livestock 
production 

1 2 3 4 5 

Integration of small 
livestock 

1 2 3 4 5 
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