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A B S T R A C T

Green infrastructure (GI), with its multifarious benefits, can effectively address urban hazards and enhance urban 
resilience and sustainability. While traditional GI planning studies incorporate its multifunctionality, they are 
often limited to identifying prioritized locations for GI intervention without exploring how to respond to the local 
specific demands. In this study, using a highly urbanized city, Zhengzhou as a case, we first spatially identified 
urban hazards in three aspects, including urban flood susceptibility, urban heat environment, and air pollution, 
utilizing machine learning, remote sensing retrieval. Subsequently, we employed the i-Tree Eco model to 
quantify the effectiveness of potential tree species in unitary functional units in addressing these urban hazards. 
An adaptive ranking approach was then proposed to match the effectiveness of tree species with local demands 
for addressing urban hazards. Our results indicate that the inner city area, as well as the northwest should be 
prioritized for GI interventions. Urban hazards exhibit significant spatial heterogeneity and different tree species 
also have specific advantages, highlighting the importance of adaptive decision-making. The study area is 
divided into three zones, and we suggest targeting urban hazards with the most effective GI intervention and 
maximizing carbon sequestration potential in areas without pronounced urban hazards. The developed frame
work can serve as guidance for scientific decision-making in urban greening projects.

1. Introduction

There is a global trend of consistent urban population growth. As of 
2018, approximately 55 % of the population resided in urban areas, and 
this proportion is expected to rise to 68 % by 2050. This phenomenon is 
more widespread in China along with the economic boom over the past 
decades. Chinese cities have expanded drastically (Liu et al., 2016), and 
it is reported that 17 Chinese agglomerations have experienced an 
average triple increase in urban size during 1978–2010 (Schneider and 
Mertes, 2014). Expanding urban boundary inevitably have encroached 
on other vegetation covers, leading to a series of urban ecological 
problems, including urban heat island, haze and flooding risk, etc. (Yang 
et al., 2019). Green infrastructure (GI) has been widely recognized as an 

efficient solution for addressing urban hazards and improving urban 
resilience (Korkou et al., 2023). GI purveys multifarious benefits also 
called multifunctionality, including but not limited to microclimate 
regulation, stormwater management and air quality improvement (Cook 
et al., 2024). In this context, scholars have consistently promoted GI as a 
means to achieve the United Nations Sustainable Development Goals 
amid growing urbanization and climate change (Lombardía and 
Gómez-Villarino, 2023; Lu et al., 2024).

This initiative has been substantially endorsed in China, where the 
development model has shifted to ecological civilization that advocates 
harmony between humans and nature (Dong et al., 2023a; Zhao et al., 
2023b; Zhou et al., 2021). As a result, local governments in most Chinese 
cities have proposed and implemented numerous greening projects, such 
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as forest cities, garden cities, and sponge cities (Liao et al., 2021; Yin 
et al., 2021). Li et al. (2021) studied 107 Chinese cities and found that 
65 % of long-term built-up areas showed a greener trend from 2010 to 
2019. A similar pattern was confirmed by Zhang et al. (2023) who 
identified that the central areas of most Chinese cities have tended to 
become greener due to investments in GI. It is evident that these GI 
developments have achieved some success, making cities greener and 
mitigating urban problems such as the urban heat island and air 
pollution.

Given the crucial role of GI, the question of how it should be planned 
to maximize its multifarious benefits has garnered significant attention 
from scholars, urban planners, and policymakers (Dong et al., 2023b; 
Korkou et al., 2023). Although its multifunctionality has been widely 
recognized, many existing GI planning studies still seem not to fully 
embrace this feature. For example, multi-objective optimization 
coupling hydrological models is most frequently applied to optimize its 
stormwater management performance, and this approach is primarily 
limited to the community scale rather than the city scale (Leng et al., 
2024). Given these shortcomings, Meerow and Newell (2017) first 
developed a GIS-based green infrastructure spatial planning model, 
namely GISP in order to capture the multifunctionality. This model 
becomes a paradigm for subsequent GI planning studies involving 
multi-benefits analysis (Chang et al., 2021; Rainey et al., 2022). These 
GIS-based approaches identify the prioritized locations for GI inter
vention by the spatial differences of regional ecological conditions: the 
principle of spatial equity. Specifically, since GI can regulate the sur
rounding microclimate, if a certain area is suffering from a more severe 
urban heat, the area should be prioritized for GI intervention over other 
locations without urban heat issues. The overall priority can be obtained 
by integrating multiple single GI priority layers (Dong et al., 2023b). 
However, despite being scalable to the city scale, such frameworks 
resemble land suitability assessments more than integrative GI planning, 
as they do not directly relate to GI elements. Additionally, these studies 
are generally limited to priority identification and do not explore further 
actions for addressing urban hazards (Chen et al., 2022; Goodspeed 
et al., 2021).

Trees are essential providers of ecosystem services within GI, and 
different species-specific trees may have various effectiveness in 
improving surrounding ecological conditions (Ristorini et al., 2023). For 
example, Manzini et al. (2023) evaluated the performance of 211 trees, 
and suggested that Pseudotsuga menziesii is the best for purifying air 
quality but is not effective in carbon sequestration, while Eucalyptus 
viminalis demonstrates the opposite effectiveness. Oshio et al. (2021)
demonstrated that the quantity of leaves is the predominant factor 
impacting microclimate regulation capacity of trees, and Zelkova serrata 
can provide more cooling services than Cinnamomum camphora.

In practice, the Chinese government launched a notice on scientific 
GI planning in 2021, which particularly highlights the scientific selec
tion of tree species to accommodate regional conditions so as to maxi
mize the benefits of GI. However, methods for the scientific GI planning, 
especially linking the effectiveness of tree species with the locally spe
cific demands, are still insufficient. As mentioned above, the perfor
mance of stormwater management is given disproportionate attention; 
although a few studies involve the multi-benefits, they are only limited 
to identifying the prioritized locations (Chen et al., 2022; Meerow, 
2020). Considering the different effectiveness of tree species and various 
priority for GI intervention, the scientific GI planning should consider 
the adaptability between the two in order to ensure that the right GI can 
be targeted in the right places.

Consequently, based on these research gaps, this study aims to pro
pose a novel framework for GI planning, which links the effectiveness of 
species-specific trees with the local demands by adaptive ranking 
approach. This study has three advantages over traditional GI planning: 
(1) conducted on a large scale, covering the whole urbanized area of a 
city; (2) integrating multi-urban hazards and corresponding benefits of 
GI (3) not limited to priority identification, further recommending the 

most matching tree species for each location.
To achieve the above goals, we first quantified the urban hazards, 

including flood susceptibility, urban heat environment and air pollution 
utilizing machine learning and remote sensing retrieval. Then, the cor
responding effectiveness of species-specific trees was simulated using 
the i-Tree Eco model. We developed a novel adaptive ranking approach 
to match the effectiveness of tree species with the locally specific de
mands for targeted GI intervention. A case study was designed in a 
populous Chinese city, Zhengzhou, to demonstrate how the adaptive 
ranking approach recommends the tree species for each location.

2. Materials and methods

2.1. Study area

Zhengzhou is a megacity located in central China (Fig. 1), as well as 
the demarcation point between the middle and lower reaches of the 
Yellow River basin. The city experiences a warm temperate continental 
monsoon climate, with an average annual precipitation of 632.8 mm. 
Zhengzhou has four distinct seasons; in summer, the highest air tem
perature can exceed 40◦C, while in winter, the lowest air temperature 
typically falls below 0◦C. As one of the nine national central cities, 
Zhengzhou experienced a drastic expansion, and the trend is continuing. 
Official statistics indicate that the urbanized area in the main city surged 
from 133.2 km2 to 709.69 km2 over the past two decades (2000–2020); 
the population also spiraled from 6.6 million to 12.6 million. Never
theless, rapid development and urban sprawl arise a range of urban 
problems, such as haze, urban heat island and urban flooding (Wang 
et al., 2019; Yang et al., 2024). Especially in the context of climate 
change, Zhengzhou has also experienced extreme weather in recent 
years, including extreme rainfall and extreme heat waves (Guo et al., 
2023; Li et al., 2022). These combined issues pose significant challenges 
to the city’s resilience and sustainability.

The locations and boundary of the study area are shown in Fig. 1. The 
basic assessment unit is 0.25 km2 grids. This study mainly focuses on the 
continuous urbanized areas of the main city and its immediate sur
rounding, totally covering 1719 km2, comprising 6876 grids. In Chinese 
cities, the ring roads often correlate with urbanization intensity. Moving 
from the inner ring road outward, the intensity generally decreases. The 
area within or immediately surrounding the inner ring road is typically 
considered the inner city, while the other parts beyond that are regarded 
as the outskirts.

2.2. Methodology

Traditional GI planning studies usually identify the priority locations 
for GI intervention based on the spatial differences of urban hazards, 
namely spatial equity. For example, since GI can regulate air quality and 
microclimate, areas that suffer from worse air quality and urban heat 
should be prioritized for GI. To reflect the multifunctionality of GI, the 
overall priority score is typically obtained by overlaying multiple single- 
priority maps. These traditional GI planning studies are more akin to 
land suitability assessments as they indirectly infer GI planning locations 
rather than directly relate to GI elements. This study further quantifies 
the effectiveness of species-specific trees using the i-Tree Eco model and 
ranks the adaptability of tree species for each specific location. Based on 
this step, we can further determine which tree species is the most rec
ommended for GI intervention to match the local specific demands.

The methodological framework of this study is shown in Fig. 2, 
which comprises four components. In the first step, we quantified flood 
susceptibility, urban heat environment and air pollution using machine 
learning and remote sensing retrieval on 0.25 km² grids. These urban 
hazards were converted to corresponding GI demands in terms of spatial 
equity. Then, the overall priority map was determined by overlaying 
each single demand map. Traditional GI planning studies usually stop at 
this point.
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The second component involves quantifying the effectiveness of 
species-specific trees by the i-Tree Eco model. The effectiveness of tree 
species was then converted to unitary functional units for a uniform 
comparison. In the final step, we used an adaptive ranking approach to 
match the effectiveness of tree species with the local specific demands, 
ensuring that the right urban trees can be targeted in the right places to 
effectively address urban hazards. Each component described in Fig. 2
will be expounded in the following sections. All applied data and their 
sources can be found in Appendix. S1.

2.3. Quantification of urban hazards

2.3.1. Urban flood susceptibility
Stormwater management is one of the most emphasized benefits of 

GI. Traditional GI planning studies usually utilize runoff or impervious 
ratio to locate prioritized areas (Tran et al., 2020). However, urban areas 
with more runoff may not necessarily experience waterlogging due to 
the presence of drainage systems and topographical factors (Cook and 
Merwade, 2009; Getirana et al., 2023). In practice, runoff-related in
dicators differ from land surface temperature (LST) or air pollutant 
concentration, which directly indicate the need for urban heat mitiga
tion and air quality improvement; the latter two represent actual urban 
hazards, whereas runoff is only an intermediate variable or contributing 
factor to urban waterlogging (Pugliese Viloria et al., 2024). Therefore, 
this study uses flood susceptibility to assess the need for stormwater 

management.
Machine learning has been applied to evaluate urban flooding 

problems, offering powerful tools to analyze flood susceptibility in 
complex urban environments. Among these models, support vector 
machine (SVM) was applied given its strong classification ability, 
robustness against noise and nonlinear modeling capability (Asaly et al., 
2023).

During heavy rainfall, the local transportation department notifies 
residents of urban waterlogging locations, advising them to avoid these 
areas if possible. We crawled the website to collect the official 
announcement regarding locations of all hazardous areas—totally 
124—in July 2024 that is the rainy season in Zhengzhou. The locations 
were given as simply text descriptions in Chinese without coordinates, 
so we used Python to connect to the Amap API to convert the de
scriptions into precise latitude and longitude coordinates. These 
waterlogging areas are shown in Fig. 1.

To improve the performance of SVM, a balanced dataset was applied. 
We used Python’s random sample function to randomly select 124 
unique un-flooded samples, and then assigned the waterlogging areas as 
positive classification (value 1) and the un-flooded areas as negative 
classification (value 0). We selected seven features, including TWI 
(topographic wetness index), DEM, slope, aspect, land use, road density 
and NDVI to train the model as Eq. (1). Before model fitting, the variance 
inflation factors (VIFs) of the seven features were calculated using 
Statsmodels to check for multicollinearity. The result indicated that all 

Fig. 1. Location and boundary of the study area.
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seven variables can be retained (VIF<10). 

Y = SVM(TWI,DEM, slope, aspect, landuse, roaddensity,NDVI) (1) 

where Y is the classification result, which is a binary value (1 for 
waterlogging, 0 for non-flooded).

Hyperparameter tuning and 5-fold cross-validation were used to 
optimize model performance. We set up a hyperparameter grid, with 
four potential values for C, six potential values for gamma, and three 
kernel types. Using GridSearchCV, we explored various parameter 
combinations and performed 360 fittings. It was finally determined that 
with C= 1, gamma= 0.01 and kernel= RBF, the area under the receiver 
operating characteristic curve of the model’s training set and validation 
set were 0.93 and 0.89, respectively, which demonstrated acceptable 
classification accuracy.

GI provides local regulating service for stormwater management, 
and according to the spatial equity, the higher the flood susceptibility in 
a specific location, the greater the demand for GI intervention. The value 
was positively normalized to the 0–1 scale for uniform comparison. The 
data source applied for quantifying urban flood susceptibility can be 
found in Appendix. S1.

2.3.2. Uban heat environment
Since GI can effectively regulate the surrounding microclimate and 

address urban heat hazards, previous GI planning studies often used LST 
to determine the priority location for urban heat mitigation (Korkou 
et al., 2023; Wang et al., 2021). Martilli et al. (2020) also suggested that 
using LST in heat mitigation studies, as it is the most direct metric. This 
study applies LST to represent urban heat environment, and assesses the 
urgency for GI intervention based on its spatial difference. The United 
States Geological Survey (USGS) launched the Landsat Collection 2 
Level 2 dataset in 2020, which is atmospherically corrected. This 

product is advantageous in LST retrieval compared to traditional 
methods, such as the single-channel algorithm and radiative transfer 
equation, which requires numerous auxiliary atmospheric parameters 
(Sekertekin and Bonafoni, 2020).

In order to capture the urban heat condition for the whole year, we 
retrieved all Landsat 8 imageries in 2022 using Google Earth Engine. We 
only assessed the cloud contamination within the study area in order to 
retain as many images as possible. A cloud-masking function was 
defined to identify and mask out high-confidence clouds and cloud 
shadows using specific bits in the quality-assessment band. We then 
counted the number of cloud pixels and the total pixels within the study 
area using the Reduce Region method, and retained images with a ratio 
of cloud pixels to total pixels below 5 %. Next, the LST was retrieved 
from each image using a multiplicative scale factor and offset in 
accordance with USGS guide (USGS, 2024). To reflect the most haz
ardous urban heat for the entire year, we composited the maximum 
value of the LST time series. The higher the LST in a specific location, the 
greater the need for GI to regulate the microclimate. The LST value also 
was normalized to allow uniform comparison with other demand layers.

2.3.3. Air pollution
The capacity of GI to absorb ambient air pollutants is well- 

established (Ristorini et al., 2023). Due to the significant health im
pacts of fine particulate matter (PM2.5), it is often prioritized for moni
toring and mitigation (Maji et al., 2023). In this study, we used PM2.5 
concentration as an indicator to assess local demands for air quality 
improvement, following the approach commonly adopted in previous GI 
planning studies (Chang et al., 2021; Meerow, 2019).

Due to the sparse distribution of air monitoring stations, it is difficult 
to map PM2.5 concentration using the monitoring data at a fine resolu
tion. The ACAG-PM2.5 product is a remote sensing-derived dataset 
released by Shen et al. (2024). It estimates PM2.5 by combining 

Fig. 2. Methodological framework.
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satellite-based aerosol optical depth (AOD) with the GEOS-Chem 
chemical transport model, then adjusts the results with ground-based 
measurements. This product was utilized in our study as it offers a 
detailed spatial distribution of PM2.5 concentrations, enabling the 
identification of areas suffering from worse air quality. The resolution of 
the dataset, however, is 0.01◦, which does not match with the basic 
assessment unit. We further downscaled it using random forest regres
sion, following Yang et al. (2020).

We used five features, including DEM, land use, MODIS-AOD 
MCD19A2 550 nm and coordinates (x and y) to fit the non-linear 
model. All features were first resampled to the resolution of 0.01◦ to 
match the simulated PM2.5 dataset. Before fitting the model, VIFs for the 
five input variables were calculated with Statsmodels to assess multi
collinearity. Results showed that all five variables could be retained, as 
each had a VIF below 10. Then, a complex non-linear regression model 
with the five features and the ACAG-PM2.5 concentration as the response 
variable was established as described in Eq. (2)

PM2.5 = RF(DEM,AOD, landuse, lat, lon) (2) 

where PM2.5 is the ACAG-PM2.5 concentration; lat and lon are the co
ordinate of each grid.

Hyperparameter tuning and 5-fold cross-validation were also applied 
to improve the model accuracy. We set up a hyperparameter grid using 
GridSearchCV, with five potential values for the number of trees, six 
potential values for the maximum depth of each tree, eight potential 
values for the minimum number of samples required to split and to be at 
a leaf node, and two options for bootstrap. A total of 4800 fittings were 
performed, and the coefficient of determination (R2) of the model’s 
training set and validation set were 0.88 and 0.86 under optimal pa
rameters of 200, 20, 2, 1, and True, which demonstrated desirable 
predicative accuracy.

After the nonlinear model fitting, we then resampled these features 
to a resolution of 500 m to match the basic assessment unit. The 
resampled features were then input into the model to downscale PM2.5 
concentrations to a finer resolution. Areas with higher PM2.5 concen
trations were assigned greater priority for air quality improvement. The 
PM2.5 values were also normalized for consistent comparison with other 
demand layers.

2.3.4. Priority ranking
Existing GI planning studies typically determine the overall priority 

for GI intervention by combining each demand layer using different 
weighting methods, such as equal weighting, dynamic weighting, and 
stakeholder preference weighting (Chen et al., 2022; Tran et al., 2020). 
These weighting methods have been thoroughly studied and each offers 
distinct advantages. Since this study introduces an adaptive ranking 
approach for targeted GI intervention, we focus on the degree of 
matching between the effectiveness of tree species and the local de
mands. Therefore, we integrated each demand layer using the 
commonly applied equal weighting method. The overall priority for GI 
intervention is then determined by Eq. (3). 

Pi =
∑3

j=1
wij (3) 

where Pi is the overall priority for GI intervention on the ith location; wij 
is the jth demand on the ith location.

2.4. Quantification of benefits of GI

2.4.1. Tree list for GI intervention
The local government formulated the Forest Zhengzhou Ecological 

Development Plan (2020–2035) and issued a recommendation for plant 
species, which limits the range of species for subsequent greening pro
jects. This recommendation list includes thirty different species, but 

almost a half are flowers and shrubs such as Prunus triloba, Rosa chi
nensis, and Buxus megistophylla. However, owing to structural attributes, 
such as large crowns and extensive root systems, and biological traits 
like long life cycles and substantial biomass, trees are generally more 
effective than smaller vegetation at capturing air pollutants, regulating 
microclimates, and storing carbon (Zhao et al., 2023a). Therefore, this 
study mainly focuses on these tree species from the list as the potential 
GI intervention measure to respond to the local demands.

2.4.2. i-tree ECO model simulation
The latest version (6) of the i-Tree Eco model can assess and differ

entiate the environmental benefits of different species of trees and 
shrubs. Since the first release of the i-Tree Tools in 2006 (i-Tree, 2024), 
the model has been extensively used in studies evaluating the effec
tiveness of species-specific GI (Yao et al., 2022). Its accuracy and reli
ability have been demonstrated. Using local meteorological and 
pollution data, we applied this model to simulate the effectiveness of 
specific tree species in avoiding runoff, saving building energy, 
removing air pollution, and sequestering carbon. Notably, since the 
benefits of GI in regulating the microclimate are less easily quantifiable 
compared to runoff control and air purification, building energy savings 
could be a proxy to indicate the effectiveness of GI in mitigating the 
urban heat island effect (Morakinyo et al., 2018). Therefore, the first 
three benefits could address the local issues, which corresponds to the 
urban hazards quantified in the previous section, while carbon seques
tration provides a significant global benefit in mitigating climate 
change. Nevertheless, trees may provide more ecological benefits due to 
a larger footprint rather than just their specific properties (Salmond 
et al., 2016). In highly urbanized areas, the space for greening projects is 
usually limited. To accommodate this actual planning situation, we 
utilized an equal-area-based functional unit (as shown in Table 1) to 
distinguish the effectiveness of tree species (Nyelele et al., 2022). The 
higher the functional unit effectiveness of a tree, the greater the 
ecological improvement that can be achieved for the same amount of 
green coverage.

2.4.3. Parameters setting
The model requires various tree properties, including tree species, 

height, diameter at breast height (DBH), canopy width, and cover 
(Riondato et al., 2020). Of these, tree species and DBH are mandatory 
because these two parameters directly influence the ecological and 
growth characteristics. Other trait parameters can be estimated by the 
model using allometric equations or empirical formulas within the 
i-Tree database. This is a planning-oriented study, with the primary 
objective of differentiating the effectiveness of species-specific trees 
under standardized conditions, rather than evaluating specific existing 
trees. As such, we only input the DBH and species, and other parameters 
were estimated by the database to assume standard morphological 
characteristics and consistent health condition. Except for flowers and 
shrubs, there are sixteen tree species on the list, which were directly 
input into the model. According to the Urban Greening Standards 
released by the government (MOHURD, 2023), the DBH of 
newly-planted tree should be lower than 15 cm. In accordance with this 
mandatory requirement for greening projects in Chinese cities, we set 
the DBH of the sixteen tree species at 15 cm. We then simulated the 
effectiveness of species-specific trees. The effectiveness was converted 
the value to the functional and normalized with respect to the maximum 

Table 1 
Functional unit of benefits.

Benefits of green infrastructure

​ Avoided 
runoff

Building 
energy saving

Air pollution 
removal

Carbon 
sequestration

Functional 
unit

dm³ /m² 
tree cover

kWh/m2 tree 
cover

mg/m2 tree 
cover

g/m2 tree cover
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value to a 0–1 interval for uniform comparison and integration across 
different effectiveness categories.

2.5. Targeted GI intervention with adaptive weighting

We developed an adaptive ranking approach to align the effective
ness of species-specific trees with local demands throughout the study 
area. At each location, the weight assigned to a specific effectiveness of 
trees corresponds to the local demand for GI intervention at that site. In 
addition to benefits that respond to local demands, we also consider the 
carbon sequestration. However, this large-scale effect primarily con
tributes to climate change mitigation; it may not vary significantly 
within a city, and usually cannot be detected by residents (Tran et al., 
2020). This suggests that targeted GI intervention for carbon seques
tration may not be necessary at a fine resolution. Therefore, its weight 
was set as the average of the weights assigned to three locally derived 
benefits to ensure equal consideration. The targeted GI intervention 
using adaptive ranking of tree species is presented in Eq. (4). 

Sij =
∑l

n=1
win × bjn +

∑k

i=1

∑l

n=1
win

k × l
× cj (4) 

where Sij is the adaptability of the jth tree species on the ith location; bjn 
is the nth effectiveness of the jth species-specific tree; win is the 
weighting for the nth effectiveness of tree species on the ith location, 
which equals to the nth demand on the ith location; cj is the carbon 
sequestration capacity of the jth species-specific tree. All values used for 
the adaptive ranking were normalized to eliminate dimensional 
differences.

2.6. K-means clustering

Determining the cluster patterns of local demands for GI intervention 
is essential for developing a zone planning strategy, commonly applied 
in GI studies and projects (Jia et al., 2022). K-means clustering was used 
for the spatial analysis of these local demands given its advantages of 
reliable clustering effectiveness and fast convergence speed. There are 
three elements for the clustering, including demand for stormwater 
management, urban heat mitigation and air quality improvement. The 

clustering result can be obtained when the sum of squared distances is 
minimized, as expressed in Eq. (5): 

SSD =
∑k

i=1

∑

qj∈si

⃦
⃦
⃦qj − ui

⃦
⃦
⃦

2
(5) 

where SSD is the sum of squared distances; k is the clustering number; qj 
is the grid cells that are classified into ith clustering; ui is the center point 
of ith clustering.

3. Results

3.1. Identification of urban hazards

The urban hazards in the three aspects and the overall priority that 
overlays each demand layer are illustrated in Fig. 3(a-e). The Jenks 
natural break point method was employed to classify these maps into 
five categories considering that this method can maximize differences 
between groups and minimize within-group variance, thereby 
enhancing visualization (Cao et al., 2023).

3.1.1. Urban flood susceptibility
In Fig. 3(a), flood susceptibility shows notable spatial heterogeneity 

across the city. The highest flood susceptibility levels (above 0.72) are 
predominantly concentrated within the inner ring road, with some high- 
susceptibility locations extending into the eastern and northwestern 
areas. Overall, the inner city displays a high susceptibility to urban 
flooding, with most areas exhibiting susceptibility levels above 0.55, 
indicating a substantial need for stormwater management measures. In 
contrast, the western side of the city generally has lower susceptibility 
levels than the eastern side. While the western sub-center shows higher 
susceptibility, many areas in the western part of the city exhibit the 
lowest flood susceptibility level (below 0.22), suggesting a relatively 
reduced flood risk. This uneven spatial pattern highlights the impor
tance of targeted GI intervention in high susceptibility areas to mitigate 
flood hazards effectively.

3.1.2. Urban heat environment
The urban heat environment is illustrated in Fig. 3(b), highlighting a 

Fig. 3. Spatial pattern of urban hazards and overall priority; (a-c) specific urban hazards; (d) overall priority for GI intervention.
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notable spatial unevenness. Unlike urban flood susceptibility, the inner 
city’s urban heat environment is more mitigated compared to the pe
riphery. Only a few areas within the inner ring road exhibit the highest 
urban heat levels. However, the eastern sub-center experiences the most 
severe urban heat, with many locations in this region showing LST 
exceeding 51.5◦C, suggesting the greater demand for urban heat miti
gation. Additionally, certain spots in the northwest and southeast also 
experience elevated urban heat levels. Overall, three distinct urban heat 
island clusters are distributed beyond the inner city. The map’s black 
areas represent water bodies, and the LST in these zones is relatively 
lower, suggesting that blue infrastructure plays a significant role in 
mitigating urban heat in nearby areas.

3.1.3. Air pollution
Fig. 3(c) reveals the uneven spatial pattern of air pollution. Gener

ally, the air quality within the inner ring road and northwestern end is 
worse than other regions, and there are most locations with the higher 
PM2.5 concentration of 49.6 µg/m3, indicating the greater demand for 
air quality improvement. Several areas around the fringe also exhibit 
severe air pollution, especially in the western and eastern tips. These 
areas are industrial zones, where a large number of manufacturing en
terprises are gathered, potentially contributing to additional air pollu
tion. In comparison, the optimal air quality is observed in the southeast 
where almost all areas show the lowest PM2.5 concentration. Notably, 
the air pollution in Zhengzhou is very severe, and even in the most 
favorable area, the PM2.5 concentration of 46.2 µg/m3 is higher than the 
Chinese Standard (below 35 µg/m3), highlighting the urgency to alle
viate the urban hazard.

3.1.4. Overall priority for GI intervention
The overall priority for GI intervention that overlays all single de

mand layers (including demand for stormwater management, urban 
heat mitigation and air quality improvement) with equal weighting is 
shown in Fig. 3(d). Overall, locations in the urban core area and 
northwest should be prioritized for GI intervention where the overall 
priority level is two or three higher than other areas. A few of the 
remaining highest priority zones are also scattered across the western 
and eastern sides. Notably, quarters in the southwest exhibit moderate 
urban hazards, with almost all areas having the lowest priority for GI 
intervention. Areas around water bodies and urban parks, such as 
Longhu Park, are assigned lower priority for GI intervention compared 
to their surroundings. This underscores the significant role of blue-green 
infrastructure in improving the ecological conditions of adjacent areas.

3.2. Effectiveness of specific tree species

Table 2 shows the tree list and the effectiveness of specific tree 
species in terms of unitary functional units, under Zhengzhou’s meteo
rological and pollution conditions. Magnolia grandiflora is the most 
efficacious species in PM2.5 removal and runoff abatement, capable of 
purifying 646.7 mg of PM2.5 and reducing 12.19 dm³ of runoff per 
functional unit. Cedrus deodara excels in carbon sequestration, storing 
1032.8 g of carbon per functional unit. For energy saving, linked to 
microclimate regulation, Pinus tabuliformis is the most advantageous, 
saving 1186.7 Wh of energy per functional unit. In contrast, Cornus 
walteri is the weakest tree species in three aspects, with 257.2 mg of 
PM2.5 removal, 8.16 dm³ of runoff control, and 415.7 Wh of energy 
saving per functional unit, respectively. Ginkgo biloba is the least effec
tive species in carbon sequestration, capturing only 108.2 g of carbon 
per functional unit due to its slow growth rate.

Among the sixteen species, some are outperformed by others across 
multiple benefits. For example, although Platanus occidentalis is desir
able for stormwater management and microclimate regulation, its 
effectiveness is dominated by Fraxinus chinensis in all four aspects. As a 
comparatively unfavorable species, Cornus walteri is simultaneously 
dominated by Cedrus deodara, Fraxinus chinensis, Styphnolobium japoni
cum and Ulmus pumila. This suggests that in locations where space for GI 
intervention is limited, tree species with lower benefits per functional 
unit should be avoided when possible. However, aside from these 
dominated species, others have specific advantages; for instance, while 
Cedrus deodara is superior in carbon sequestration, it is comparatively 
less effective in stormwater management; Acer truncatum is efficient in 
runoff control and microclimate regulation but incapable in carbon 
sequestration. In general, Magnolia grandiflora offers significant benefits 
per functional unit, excelling in PM2.5 removal and runoff control while 
also performing well in energy saving.

Overall, the effectiveness of species-specific GI varies widely, 
underscoring the importance of adaptive decision-making based on 
locally-specific needs for GI intervention—essentially, planning the 
right trees in the right places.

3.3. Adaptability map

Fig. 4(a) illustrates the most recommended tree species for GI 
intervention across all assessment units in the area. Fig. 4(b) represents 
the relative proportion of tree species. Fig. 4(c-e) show cases of adaptive 
ranking in three different locations with varying demand preferences. It 
should be noted that the legend applies to all figures, with grey 

Table 2 
Effectiveness of specific tree species.

Species Benefits

PM2.5 removal (mg/ 
m2⋅yr− 1)

Carbon sequestration (g/ 
m2⋅yr− 1)

Avoided runoff (dm3/m2⋅yr- 
1)

Energy saving (Wh/ 
m2⋅yr− 1)

Advantageous 
species

Cedrus deodara 410.4 1032.8 9.57 712.0
Fraxinus chinensis 505.1 498.6 11.41 924.1
Styphnolobium 
japonicum

301.2 556.7 8.77 796.6

Pinus tabuliformis 452.2 284.0 10.13 1186.7
Magnolia grandiflora 646.7 378.7 12.19 777.3
Acer truncatum 532.9 393.0 11.74 952.1
Koelreuteria bipinnata 508.8 416.3 11.42 724.8
Ulmus pumila 407.9 526.1 10.22 423.8

Dominated species Platanus occidentalis 430.9 257.7 10.50 857.7
Pinus bungeana 450.5 141.2 10.09 905.6
Ligustrum lucidum 558.1 329.5 11.29 725.3
Eriobotrya japonica 360.5 587.2 9.06 444.5
Ginkgo biloba 391.8 108.2 9.99 902.7
Cornus walteri 257.2 487.1 8.16 415.7
Bischofia polycarpa 346.7 851.1 8.87 467.4
Catalpa bungei 398.5 400.8 10.09 422.5
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representing the dominated tree species in adaptive ranking.
Cedrus deodara and Magnolia grandiflora are more recommended than 

other species, matching with 37.7 % and 27.2 % of locations, respec
tively. These two species form the keystone tree species. The difference 

is Magnolia grandiflora is more adaptive within intra-urban areas while 
Cedrus deodara is more recommended in the periphery. The proportion 
of Acer truncatum, Fraxinus chinensis, and Pinus tabuliformis accounts for 
18.2 %, 15.4 %, and 1.5 %, respectively. These three species are more 

Fig. 4. Adaptive ranking map.

Fig. 5. Zoning for GI intervention.
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adaptive to different locations. For example, Acer truncatum is more 
recommended in the transitional zone between the inner city and the 
periphery, while Fraxinus chinensis is more suitable for planting imme
diately surrounding the areas where Acer truncatum is recommended. 
Pinus tabuliformis, although the most effective in regulating the micro
climate, is the least recommended species, with only 1.5 % of locations 
experiencing severe urban heat suggested for GI intervention using this 
species—making its recommendation almost negligible. In addition, 
although Ulmus pumila, Koelreuteria bipinnata and Styphnolobium japo
nicum are not dominated by other tree species, no locations are recom
mended for GI intervention using the three tree species.

Fig. 4(c-e) shows three cases of adaptive ranking to match different 
local demand preferences. The location in the far west (Fig. 4(c)) faces a 
higher urban heat hazard, with an urgent need for heat mitigation. In 
comparison, flood susceptibility and air pollution are less significant in 
this area, making Pinus tabuliformis the most adaptive tree species for 
local needs. Cedrus deodara ranks highest among the sixteen tree species 
in the southwest location (Fig. 4(d)), which has favorable conditions 
across the three urban hazards, resulting in comparatively lower inter
vention demands. Cedrus deodara is therefore optimal, as it provides the 
most carbon sequestration benefits irrespective of local condition 
change. The area within the inner ring road (Fig. 4(e)) experiences 
simultaneous air quality and waterlogging issues, making Magnolia 
grandiflora the most suitable species to respond to the local demand, as it 
happens to be the most effective in stormwater management and air 
quality improvement.

3.4. Zoning for GI intervention

Fig. 5(a-c) illustrates the spatial patterns of the clustering results 
obtained through k-means clustering, while Fig. 5(d-f) depicts the pro
portions of the three intervention zones, their corresponding priorities, 
and the ratios of the most suitable tree species. Based on the charac
teristics of the recommended tree species and demand scores, the clus
tering results were categorized into the key GI intervention zone (zone 
I), urban heat priority zone (zone II), and air quality priority zone (zone 
III).

3.4.1. Zone I — key GI Intervention zone
Zone I comprises 38 % of the area, primarily concentrated within the 

inner city, the north, and the east, with some scattered grids in industrial 
areas at the western tip. Characterized by high urbanization and poor 
ecological conditions, this zone faces the most severe urban hazards, 
including flood susceptibility, urban heat, and air pollution, necessi
tating effective GI intervention. Magnolia grandiflora and Acer truncatum 
perform advantageously in addressing local needs, aligning well with 
regional conditions. Nearly 91 % of the areas in this zone are recom
mended for intervention with these two species. Given the highest 
average priority score of 1.77, this area is identified as the key GI 
intervention zone, where urban hazards are most severe, and interven
tion should prioritize local demands.

3.4.2. Zone II — urban heat priority zone
Zone II covers 28.9 % of the total area, mainly aggregated in the west 

and the southeast. The urban heat environment in this zone is nearly as 
severe as in the key GI intervention zone, highlighting the urgency for 
urban heat mitigation. However, the demands for stormwater manage
ment and air quality improvement are comparatively moderate. The 
most suitable species are Cedrus deodara and Fraxinus chinensis, covering 
65 % and 30 % of the zone, respectively. These species are particularly 
effective in microclimate regulation and carbon sequestration, aligning 
well with regional needs. With the lowest average overall priority score 
of 1.12 but a relatively higher demand for urban heat mitigation, this 
zone is designated as the urban heat priority zone, focusing on 
improving thermal conditions. However, in areas without prominent 
urban hazards, it should be considered to maximize urban carbon 

sequestration capacity.

3.4.3. Zone III — air quality priority zone
Zone III encompasses 33.1 % of the total area, primarily located 

around the southwest and the northeast, with a few sections inside the 
inner city. The predominant urban hazard in this zone is air pollution, 
which is nearly as severe as in the key GI intervention area, while the 
demands for stormwater management and urban heat mitigation are of 
lower priority. Cedrus deodara and Magnolia grandiflora are the most 
suitable tree species, covering more than 90 % of the zone. The 
ecological conditions here are relatively favorable, with a lower average 
priority score of 1.18, positioning it as a suitable space for maximizing 
carbon sequestration capacity, similar to Zone II. However, specific 
attention should be given to air pollution control, thus designating this 
zone as the air quality priority zone.

4. Discussion

4.1. Comparison with previous studies

Given the significant potential of GI in enhancing urban resilience 
and sustainability, GI planning research has become a focal point in 
recent years (Corgo et al., 2024; Van Oijstaeijen et al., 2020). However, 
traditional studies have notable limitations. Firstly, they are often 
single-benefit oriented, focusing on a specific aspect such as stormwater 
management or urban heat island mitigation (Aydin et al., 2024; 
Camacho-Caballero et al., 2024; Dong et al., 2023c). Since this narrow 
focus neglects the multifunctionality that is a key characteristic of GI, 
the final planning implications may hinder the achievement of other 
benefits (Alves et al., 2024). Additionally, many planning cases are 
typically conducted at the community level using locally-specific data, 
making them difficult to replicate in other regions and scale up to the 
whole-city level.

Meerow and Newell (2017) proposed a GISP model for GI planning, 
and the multifaced benefits of GI are emphasized. However, these 
models are limited to the identification of prioritized locations. Specif
ically, due to the benefit of microclimate regulation, areas with more 
severe thermal condition are given higher priority for GI intervention 
(Chen et al., 2022; Dong et al., 2023b). Such studies do not involve GI 
elements but rather infer the prioritized locations indirectly based on the 
spatial difference of local conditions corresponding to GI benefits. This 
underlying logic makes them not a complete GI planning and more akin 
to land suitability assessments. Although a few studies have attempted 
to match GI with regional demands, the effectiveness of GI is simply 
inferred from literature reviews, which amplifies uncertainty (Jia et al., 
2022). Furthermore, GI in such studies refers to specific engineering 
infrastructures, whereas the ecological benefits of GI are actually pro
vided by particular plant within the engineering infrastructures. For 
instance, a rain garden that is usually considered as GI could have 
varying ecological performance depending on the plant species it con
tains (Bruner et al., 2023). Thus, it is misleading to link GI directly to 
ecological benefits when simply considering it as a specific engineering 
facility.

In light of previous limitations, this study proposes an adaptive 
ranking approach linking the effectiveness of tree species to local de
mands for targeted GI intervention. We first identified the multifaceted 
demands for GI intervention based on the principle of spatial equity, and 
then overlaid all demand layers to determine the overall priority. 
Traditional GI planning studies often stop at this point. Additionally, 
traditional GI planning studies often use runoff as a criterion for 
assessing local demand for stormwater management (Meerow and 
Newell, 2017; Tran et al., 2020). However, due to the influence of urban 
drainage systems and terrain, runoff is not equivalent to presentation of 
waterlogging. Comparatively, this study uses flood susceptibility as an 
alternative to rainfall runoff to better reflect urban hazards.

Based on the identification of local demands, we further used the i- 
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Tree Eco model to quantify the effectiveness of specific tree species 
under local meteorological and pollution conditions using unitary 
functional units, namely per square meter of tree cover. Given that space 
for GI development in highly urbanized areas is usually limited, intro
ducing this unified functional unit provides a novel solution to accu
rately capture the real effectiveness of GI within the given green 
coverage goal (Nyelele et al., 2022). Building on the second component, 
this study applies the adaptive ranking approach to match the effec
tiveness of tree species with the local demands in each assessment unit. 
Through this linkage, this study not only identifies prioritized inter
vention locations, as seen in traditional GI planning studies, but also 
determines which tree species should receive preferential treatment in 
each location to better address local specific urban hazards. Further
more, we conducted this study in a populous Chinese city, covering more 
than 1700 km². Despite the large area, the resolution was refined at 
0.25 km² grids. Thus, this study represents an improvement in both 
research scale and resolution (Meerow, 2019; Sarabi et al., 2022).

In addition, this study primarily applies open-source data, such as 
remote sensing data and the PM2.5 dataset. The i-Tree ECO model also 
supports most cities globally, which enhances the replicability. 
Although the flood points are specifically recorded by the Zhengzhou 
municipal department, for cities without flood records, remote sensing 
data, such as polarization data from Sentinel-1 satellite’s synthetic 
aperture radar imagery, can serve as an alternative to extract flood- 
prone areas (Zhu et al., 2024).

4.2. Planning implications

In accordance with the adaptive ranking of tree species in each 
assessment unit as well as the k-means clustering results, we propose 
two GI intervention strategies.

4.2.1. Planning strategies I: targeting urban hazards with the most effective 
GI

In practice, urban greening projects often focus more on increasing 
green space coverage and less on optimizing other critical elements (Li 
et al., 2023). However, the effectiveness of different tree species varies 
greatly. For example, Magnolia grandiflora provides more than twice the 
PM2.5 removal capacity compared to Cornus walteri, but its microclimate 
regulation function is less effective than that of Fraxinus chinensis. If 
these differences are disregarded, the actual ecological improvements 
may vary significantly, even under the same green coverage. We suggest 
that scientific urban greening projects should not merely pursue an in
crease in green coverage but rather focus on efficiency. Targeting local 
specific demands with the most adaptive tree species can simultaneously 
increase the green coverage, enhance urban ecological conditions and 
efficiently address the inequitable distribution of urban hazards. Addi
tionally, it is important to optimize other elements such as spatial dis
tribution, landscape patterns during GI intervention to further improve 
the connectivity and cooling effects (Ortega et al., 2023; Xu et al., 2024). 
Therefore, we propose the first strategy for GI intervention: targeting 
urban hazards with the most effective GI. The adaptive ranking of tree 
species to match locally specific demands provides a practical pathway 
for this consideration. The spaces for urban greening projects are usually 
limited, especially within highly urbanized areas. Targeting urban 
hazards with the most effective GI can enhance urban ecological quality 
as much as possible within the same green coverage goal.

4.2.2. Planning strategies II: maximizing carbon sequestration potential in 
areas without pronounced urban hazards

GI removes CO₂ from the atmosphere through photosynthesis, stor
ing it in vegetation and soil, which is crucial for climate change miti
gation (Kavehei et al., 2018). Adopting tree species that excel in this 
regard can promote carbon neutrality at the city level (Rodriguez 
Mendez et al., 2024). While GI intervention is often used to address 
urban hazards, some areas do not suffer from significant urban hazards, 

providing potential spaces for maximizing the carbon sequestration 
capacity. Despite some disadvantages in other aspects, the fast growth 
rate of Cedrus deodara allows it to sequester more carbon, making it the 
most recommended species in Zone II and III where the urban problems 
are not prominent. Therefore, we propose the second GI intervention 
strategy: maximizing carbon sequestration potential in areas without 
pronounced urban hazards. The carbon sequestration of different tree 
species varies greatly. The proposed methodological framework can 
identify potential spaces and preferentially rank advantageous tree 
species in carbon sequestration. This approach supports the develop
ment of a rational GI planning strategy to maximize the contribution to 
carbon neutrality at the city level, extending the significance of GI 
planning beyond responding to urban hazards.

4.3. Limitations and future directions

In this study, as in numerous previous GI planning studies, the pri
ority for GI intervention is simply determined by the spatial difference of 
urban hazards without considering policy and practical factors. These GI 
planning studies, however, only provide theoretically optimal scenarios 
without accounting for practical challenges, such as budget constraints, 
existing urban landscape characteristics and residents’ willingness to 
pay (den Heijer and Coppens, 2023; Lu et al., 2022). Aligning practical 
implementation with the theoretically optimal schemes is a worthwhile 
direction that requires further exploration. Besides their ecological 
effectiveness, other characteristics of tree species, such as safety, aes
thetics, and maintenance, should also be considered. We suggest fully 
accounting for these disadvantageous or restrictive factors of tree spe
cies by introducing penalty functions or constraints in future studies.

Furthermore, this study has limitations in quantifying local demands 
and effectiveness of tree species. For instance, although Landsat-derived 
LST is widely used and provides efficient coverage of large areas, it 
correlates poorly with ground-level heat exposure experienced by resi
dents and is limited by fixed acquisition date (Yi et al., 2025). Follow-up 
studies could adopt more advanced demand indicators with a finer 
spatial and temporal resolution (e.g., Mean Radiant Temperature that 
better reflects actual pedestrian thermal experiences by incorporating 
fine-scale urban elements like building geometry, street trees, and 
ground surfaces that influence human comfort (Li et al., 2023). The 
i-Tree Eco model remains fundamentally empirical with inherent un
certainties; e.g., Lin et al. (2021) reported it generates approximately 
11.1 % uncertainty when quantifying carbon sequestration. While the 
model has been adapted to support various regions globally, its foun
dation in North American tree growth equations and allometric data 
may produce additional uncertainty when applied to different 
geographic contexts. We recommend that upcoming studies employ 
more precise methodologies or validate the local accuracy of the i-Tree 
Eco model before implementation. In addition, GI planning strategies 
are determined by the conditions at a specific period. Nevertheless, the 
urban greening implementations are typically long-term projects, with 
planning periods for specific projects potentially extending over 5 years 
(Johnson and Handel, 2016; Liao et al., 2021). We propose that future 
exploration could continuously monitor and evaluate the planning 
outcomes to adapt strategies according to actual variations in ecological 
conditions.

5. Conclusions

In the context of climate change and urbanization, GI is an effective 
practice for enhancing cities’ resilience and sustainability. Prior studies, 
while recognizing its multifunctionality, often focus primarily on 
determining prioritized locations. To address this limitation, we quan
tified the effectiveness of various tree species for GI intervention and 
developed an adaptive ranking approach to match their effectiveness 
with the locally-specific demands. A case study was conducted in the 
Chinese city of Zhengzhou, and the main conclusions are as follows: 
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(1) Locations in the urban core area, as well as the northwest, should 
be prioritized for GI intervention, with the southwest being given 
lower priority.

(2) Urban hazards exhibit significant spatial heterogeneity, and 
different tree species also have specific advantages, highlighting 
the importance of adaptive decision-making based on locally 
specific needs for GI intervention—essentially, planning the right 
GI in the right places.

(3) The study area is divided into three zones: the key GI intervention 
zone, the urban heat priority zone, and the air quality priority 
zone. Acer truncatum, Magnolia grandiflora, Cedrus deodara and 
Fraxinus chinensis are recommended for the three zones to 
respond to their specific urban hazards.

Based on the above findings, we propose two GI planning strategies: 
(1) targeting urban hazards with the most effective GI intervention and 
(2) maximizing carbon sequestration potential in areas without pro
nounced urban hazards. This framework offers a practical approach for 
the targeted placement of the right GI in the right locations, which could 
serve as guidance for decision-makers and urban planners in formulating 
effective urban greening programs.
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