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StoichLife: A Global Dataset 
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The elemental content of life is a key trait shaping ecology and evolution, yet organismal 
stoichiometry has largely been studied on a case-by-case basis. This limitation has hindered 
our ability to identify broad patterns and mechanisms across taxa and ecosystems. 
To address this, we present StoichLife, a global dataset of 28,049 records from 5,876 
species spanning terrestrial, freshwater, and marine realms. Compiled from published and 
unpublished sources, StoichLife documents elemental content and stoichiometric ratios (%C, 
%N, %P, C:N, C:P, and N:P) for individual plants and animals. The dataset is standardized 
and, where available, includes information on taxonomy, habitat, body mass (for animals), 
geography, and environmental conditions such as temperature, solar radiation, and 
nutrient availability. By providing an unprecedented breadth of organismal stoichiometry, 
StoichLife enables the exploration of global patterns, ecological and evolutionary drivers, 
and context-dependent variations. This resource advances our understanding of the chemical 
makeup of life and its responses to environmental change, supporting progress in ecological 
stoichiometry and related fields.

Background & Summary
Owing to their shared evolutionary history, all living organisms possess a common biochemistry of 28 natu-
rally occurring chemical elements1,2. These elements play essential roles in core biological processes, including 
the storage of genetic information, metabolic regulation, mechanical support, and protective mechanisms3–5. 
Despite this universal elemental composition, the relative proportions of these elements —referred to as stoichi-
ometry—vary both within and among species3,6. Such stoichiometric variation underlies key functional traits 
related to resource uptake, assimilation, storage, and release7–9, reflecting the evolution of diverse life-history 
strategies shaped by organismal morphology and function. Furthermore, stoichiometric variation may reflect 
ecological adaptations to the environmental conditions in which different organisms have evolved3,4,10,11.

The framework of ecological stoichiometry3 has driven extensive research into how organisms acquire, store, 
and transfer nutrients essential for growth and reproduction across diverse environments. Despite significant 
advancements, progress has been hindered by the limited availability and synthesis of elemental content data 
for plants and animals across broad spatial and taxonomic scales, as well as insufficient integration between eco-
logical and evolutionary mechanisms (but see6,12). Therefore, a comprehensive understanding of spatiotemporal 
patterns and underlying mechanisms governing stoichiometric diversity is crucial. Beyond explaining observed 
patterns in organismal elemental content, such insights would enhance our ability to predict how organisms will 
respond to ongoing and future environmental changes, particularly under intensifying global change drivers.

To address this critical gap, we introduce StoichLife — the first global dataset for biogeographical and mac-
roevolutionary patterns in organismal stoichiometry, developed within the sBIOMAPS working group at iDiv 
in Germany13. StoichLife provides openly accessible data without restrictions, though we kindly ask users to 
acknowledge this paper when using the database. The database aims to advance research in ecological stoichi-
ometry, functional biogeography, macroecology, and macroevolution. Additionally, StoichLife remains open to 
integrating new data and future updates.

#A full list of authors and their affiliations appears at the end of the paper. 
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Methods
Data compilation.  We developed the StoichLife template structure, which contains data pertaining to ele-
mental content and their ratios (%C, %N, %P, C:N, C:P, and N:P) alongside body size measurements, and infor-
mation regarding sampling locality, country, and taxonomic affiliation (i.e., phylum, class, order, family, species or 
morphospecies). This template was distributed among prospective data contributors actively engaged in sampling 
and analyzing plant and animal elemental content across diverse regions worldwide (between 2014 and 2022). As 
part of this effort, we engaged 24 researchers who contributed 50 datasets on animals (both invertebrates and ver-
tebrates), including 15 previously published datasets14–28, one dataset from two sources29,30, and 34 unpublished 
datasets (details of collection outlined in Supplementary Text 1; refs. 31–55). Additionally, we incorporated data 
from six large databases used in prior studies, comprising one zooplankton dataset56, 20 aquatic animal data-
sets57, five datasets for both animals and plants10, three datasets for coral reef macroalgae (Pangaea database58), 
80 datasets for green leaves59, and 35 datasets for plants60. Datasets were included based on the following criteria: 
(i) elemental analyses were conducted on individual organisms under natural conditions, excluding those sub-
jected to experimental manipulations such as nutrient enrichment; (ii) for animals, analyses were performed on 
whole-body (bulk) tissue, while for plants, stoichiometry was primarily assessed through leaf or shoot elemental 
composition; and (iii) georeferenced coordinates of sampling sites were available to facilitate spatial analyses.

Data search.  To complement data contributors, we conducted a systematic literature review to identify eco-
logical stoichiometry studies published before 2021. Using Clarivate Analytics’ Web of Science Core database, we 
employed a set of search terms: “nutrient content” OR “nutrient composition” OR “elemental content” OR “ele-
mental composition” OR “chemical composition” OR “nitrogen content” OR “nitrogen composition” OR “phos-
phorus content” OR “phosphorus composition” OR “percent nitrogen” OR “percent phosphorus” OR “N:P” OR 
“nitrogen-to-phosphorus” OR “ecological stoichiometry”.

This rigorous search yielded a total of 2,620 papers, which were further filtered to exclude: (i) microbial 
data, which typically represent analyses of entire microbial communities rather than individual cells; (ii) stud-
ies involving laboratory or field experiments; and (iii) literature reviews and opinion papers. Following this 

Fig. 1  Workflow and structure of the StoichLife dataset. The database includes 227 plant and animal elemental 
content datasets across terrestrial, freshwater, and marine realms. StoichLife comprises 38 variables, including 
environmental descriptors related to temperature, solar radiation, and environmental N and P availability. These 
were compiled from the literature using bioinformatic approaches to allow for reproducibility, consistency, and 
efficiency. Each data type was checked and validated using the R programming language (see Methods - Data 
processing section).
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refinement, 110 eligible papers remained. After thoroughly examining these papers, we narrowed the selection 
down to 33 papers that met our criteria8,41,61–91. In cases where archived datasets lacked essential details (e.g., 
species-mean resolution), we contacted authors to request raw data. Additionally, we cross-referenced all identi-
fied datasets within Andrieux et al.92, the most comprehensive synthesis study on animal stoichiometry to date. 
However, no additional datasets meeting our criteria were found through this process.

StoichLife consolidates 227 datasets, comprising an unprecedented 28,049 individual records from both pub-
lished and unpublished sources13. At the time of data compilation (2022/09/19): 14% of datasets (n = 31) and 
26% of records (n = 7,361) were unpublished. StoichLife contains data on plant and animal elemental content 
(%C, %N, and %P; Fig. 1) from terrestrial, freshwater, and marine realms. Spanning a broad geographical extent 
from 68°S (Antarctica) to 81°N (Arctic) and from 160°W (Hawaii, USA) to 177°E (New Zealand), StoichLife 
encompasses a diverse array of taxonomic groups, including plants and animals, across realms (Fig. 1). Despite 
its inherent limitations, the StoichLife dataset is the most comprehensive compilation of animal and plant data 
from terrestrial, freshwater, and marine realms across the globe to date (Figs. 1 and 2).

Data Processing
Dataset checking, cleaning, and formatting.  Three distinct data types were processed: quantitative, 
taxonomic, and spatial. These data underwent rigorous validation and quality assurance procedures using the R 
software93. The quantitative data include elements such as individual %C and element ratios (e.g., C:N) and indi-
vidual body mass measurements (dry mass). Elemental content values were verified to represent the percentage 
of each element in dry body mass, while elemental ratios were checked to ensure they accurately reflected both 
mass and molar ratios.

The taxonomic data encompass classifications ranging from species and morphospecies to higher taxonomic 
ranks, including families, orders, classes, phylum, and kingdoms. Data validation involved both automated and 
manual inspection to correct spelling errors, complete missing taxonomic information where feasible, address 
ambiguously identified morphospecies (e.g., “Geophilidae,” “Psychodidae sp.1”), and ensure the accuracy of 
currently accepted names. In cases where two distinct morphospecies with identical names appeared in differ-
ent datasets (e.g., “Psychodidae sp.1”), we assigned unique identifiers to distinguish them (e.g., “Psychodidae 
sp.1_A” and “Psychodidae sp.1_B” in the two datasets). Taxonomic affiliations were validated using the Global 
Biodiversity Information Facility (GBIF), Integrated Taxonomic Information System (ITIS), and Catalogue of 
Life (COL) databases via the taxadb-package (version 0.1.594) in R. Additionally, plant taxonomy was verified 
using the Plants of the World online website (https://powo.science.kew.org/; Fig. 1).

To standardize taxonomic names across datasets, we applied a set of harmonization criteria. First, when 
missing taxonomic information was identified and multiple synonyms were available, we retained the accepted 
name based on established taxonomic databases (GBIF, ITIS, and COL). Second, taxonomic synonyms found 

Fig. 2  Distribution of sampling locations in the StoichLife dataset. The histogram describes the number of 
records within bin sizes of 4° × 6° (latitude and longitude, respectively).
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between original publications and taxonomic databases were standardized to their accepted names. Third, in 
cases where taxonomic information in original sources aligned with taxonomic information from GBIF, ITIS, 
or COL, we prioritized GBIF as the primary reference unless substantial discrepancies were found. Finally, 
when inconsistencies remained unresolved after validation (e.g., differing taxonomic information between the 
original publication and taxonomic sources), we deferred to the taxonomic information provided by the original 

Fig. 3  Number of observations within taxonomic classes. Classes are sorted by decreasing number of 
observations. Numbers beside bars indicate the number of species or morphospecies within each class. Number 
of observations is given in the thousands. Classes with <10 observations are not shown (n = 13). Species or 
morphospecies for which the class was not identified are not shown (n = 600).
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publications or data contributors. The StoichLife dataset preserves both the initial taxonomic classifications pro-
vided by contributors and the revised taxonomy to maintain transparency and facilitate future updates.

The spatial data include latitude and longitude coordinates of sampling locations. These coordinates under-
went extensive validation through visual inspection, where they were plotted onto a global map to identify and 
correct any spatial errors. Common discrepancies, such as marine data mistakenly recorded as inland or vice 
versa, were rectified using geographical details provided in the original publications (Fig. 1). These steps ensured 

Fig. 4  Distribution of elemental content for the 16 phyla included in the database. Figures on top of each 
boxplot indicate the number of observations. Species or morphospecies for which the phylum was not identified 
are not shown (n = 7).
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that spatial data were accurate and georeferenced correctly, enhancing their utility for ecological and biogeo-
graphical analyses.

StoichLife comprises 38 variables (columns) and 28,049 individual records (rows; Supplementary Table 1). 
Each record corresponds to at least one measurement of one elemental content or ratio taken at the level (i.e., 
%C, %N, %P, C:N, C:P, and N:P) of an individual organism. Records in the StoichLife dataset are distributed 

Fig. 5  Distribution of elemental ratios for the 16 phyla included in the database. Figures on top of each boxplot 
indicate the number of observations. Species or morphospecies for which the phylum was not identified are not 
shown (n = 7). For the sake of visual clarity, values above 100, 3000, and 400 were removed for C:N (n = 8), C:P 
(n = 17), and N:P (n = 5), respectively.
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across 1,120 locations, each associated with both latitude and longitude coordinates (n = 23,290 records; Fig. 2; 
Supplementary Table 1).

In addition, 3,616 records contain only latitudinal information, while 1,143 records lack spatial information 
entirely. The dataset spans terrestrial (n = 16,832), freshwater (n = 8,935), and marine (n = 2,282) realms. Most 
records originate from the northern hemisphere (n = 19,268) compared to the southern hemisphere (n = 7,638; 
Fig. 2). Geographically, the dataset exhibits extensive coverage in Europe, the Americas, East Asia, and Eastern 
Australia, with notable gaps observed in Africa (excluding South Africa), the Middle East, Central and Southeast 
Asia, Western Australia, and Russia (Fig. 2). In the marine realm, Oceania (Western Pacific) and the Eastern 
Indian Ocean are underrepresented.

The revised taxonomy within StoichLife comprises 5,876 species (65.4%) and morphospecies (34.6%), span-
ning 837 families, 208 orders, 50 classes, 16 phyla, and 2 kingdoms. Animalia is the most extensively documented 
kingdom (n = 19,664 entries), followed by Plantae (n = 8,385 entries; Fig. 3; Supplementary Table 1). The per-
centage of taxa identified at the species level is higher in plants (92.4% of all plant taxa) than in animals (27.7% of 
all animal taxa). Two major classes, Insecta (Animalia) and Magnoliopsida (Plantae), account for approximately 
44% of all entries in StoichLife, with 7,205 individual records for Insecta and 5,130 for Magnoliopsida (Fig. 3). 
Among these, Magnoliopsida has the highest number of species or morphospecies, (n = 2,420), followed by 
Insecta (n = 1,366) (Fig. 3).

However, 30 out of 51 classes contain 50 or fewer individual records. The dataset includes 10,322 individual 
animal records (1,570 species or morphospecies) and 6,510 individual plant records (3,048 species or mor-
phospecies) from the terrestrial realm. In freshwater habitats, there are 7,882 individual animal records (751 
species or morphospecies) and 1,053 individual plant records (206 species or morphospecies). Meanwhile, 
marine data contain 1,460 individual animal records (133 species or morphospecies) and 822 individual plant 
records (172 species or morphospecies; primarily algae). Given that certain species inhabit several environments 
due to their life cycles, habitat classifications were preserved as indicated in the original sources. For example, 
terrestrial insects with aquatic larval stages were classified according to their primary feeding environment, 
distinguishing between aquatic larvae and terrestrial adults.

The number of individual records varies by element and stoichiometric ratio, with %N (n = 25,652) being 
the most common, followed by %C (n = 18,558), C:N (n = 18,373), %P (n = 14,457), N:P (n = 12,244), and 
C:P (n = 7,092). Only 7,091 individual records (25.3% of all entries) contain values for all three elements (i.e., 
%C, %N, and %P), with the majority belonging to animals (n = 5,635; 20.1% of all records) rather than plants 
(n = 1,456; 5.2% of all records). Overall, StoichLife provides a wide range of elemental values and their ratios 
(Figs. 4 and 5; Supplementary Table 1): %C [0.6–78.1], %N [0.06–19.5], %P [0.004–8.9], C:N molar [2.07–223.3], 
C:P molar [7.4–9154.7], and N:P molar [0.2–789.4].

These values exhibit substantial variations across taxonomic and trophic groups (i.e., phyla; Figs. 4 and 5) and 
realms (i.e., freshwater, marine, and terrestrial; Fig. 6).

Fig. 6  Distribution of elemental content across realms and trophic groups. For the sake of visual clarity, values 
above 100, 3000, and 400 were removed for C:N (n = 8), C:P (n = 17), and N:P (n = 5), respectively.
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Body mass data, measured as whole-organismal dry mass in g, were recorded for 9,942 individual animals. 
The two most represented taxa were Arthropoda (n = 6,552) and Chordata (n = 2,868; Fig. 7), with smaller 
contributions from Mollusca (n = 149), Annelida (n = 132), Nematoda (n = 62), Platyhelminthes (n = 58), 
Chaetognatha (n = 48), Cnidaria (n = 35), Acanthocephala (n = 27), and Ctenophora (n = 11). Terrestrial 
animals accounted for 3,885 individual records, while 5,347 originated from freshwater and 710 from marine 
realms. Body dry mass values ranged from <0.001 g (copepod nauplii) to over 800 g (Salmo salar Linnaeus, 
1758; Supplementary Table 1), demonstrating substantial variation across taxa (Fig. 7).

To facilitate investigations into environmental drivers of organism elemental content, StoichLife integrates 
information on environmental factors such as air temperature, solar radiation, as well as environmental nitrogen 
and phosphorus availability. Mean annual air temperature at 10 m above ground or sea surface (T10M; °C; 0.5° × 
0.5° resolution) and solar radiation data (ALLSKY_SFC_SW_DWN: All Sky Insolation Incident on a Horizontal 
Surface; W/m2; 1° × 1° resolution) from each sampling site were extracted from the National Aeronautics and 
Space Administration Prediction of Worldwide Energy Resources project (NASA POWER; https://power.larc.
nasa.gov). Both temperature and solar data have temporal coverage from 1981 to 2022/09.

Global nitrogen (N) availability at each sampling site, represented by inorganic N deposition (kg N/km2/ 
year1; resolution of 2° × 2.5°); was retrieved from a published database95 covering the period from 1984 to 2016). 
Soil phosphorus (P) data (P labile; g P/m2; resolution 0.5° × 0.5° resolution) were extracted from the Oak Ridge 
National Laboratory Distributed Active Archive Center for Biogeochemical Dynamics (ORNL DAAC; https://
daac.ornl.gov). While these soil P data lack specific temporal coverage, they are nominally representative of 
pre-industrial conditions ca. 1850. Additionally, marine total P data (sea surface P measurement; micromoles P/
kg; resolution 1° × 1° resolution were sourced from the National Center for Atmospheric Research World Ocean 
Atlas (NCAR WOA; https://climatedataguide.ucar.edu; WOA13), covering the period from 1955 to 2012. To 
ensure consistency across datasets, we computed the average values for each of these four environmental factors 

Fig. 7  Distribution of dry body mass across animal phyla. Masses are displayed as body dry masses (g) plotted 
on a log10 axis. The boxplots within the violin plot show the median, upper, and lower quartile per phylum.
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across the respective temporal windows. This approach was chosen for several reasons: (1) our primary objec-
tive was to examine spatial rather than temporal variations in organismal elemental content; (2) samples were 
collected at different times by various researchers, and specific sampling dates were often unavailable; and (3) 
the environmental data were measured or modeled over different temporal timeframes, making direct temporal 
alignment impractical.

Data Record
The dataset is provided as an Excel file at Dryad13, which includes key information such as elemental con-
tent in % of dry mass, spatial coordinates, the biological level of organization (e.g., organ- or individual-level 
measurement, mean per species or population), taxonomic information (e.g., from species or morphospecies 
to kingdom), realm identity, the ontogenetic stage when possible (e.g., larvae, juvenile, adult, seed, sprout). 
Additionally, the dataset incorporates any other relevant information provided by contributors. A metadata 
file ‘StoichLife_metadata.xlsx’ accompanies the dataset, detailing column headings, measurement units, and 
descriptions of numerical variables. This file also includes a comprehensive list of data sources used in compiling 
the database, ensuring full transparency and reproducibility.

Technical Validation
Each dataset underwent thorough inspection using R (version 4.0.0 2020–04–2493) to ensure data integrity 
and consistency. We generated histograms and estimated value ranges for each element and elemental ratio to 
detect extreme values, potential outliers, or measurement errors. In most cases, extreme values were retained 
unless they were deemed implausible based on clear indications of measurement errors. Only four values were 
excluded due to implausibility: one C value exceeding 80%, one N value below 0.01%, and two P values exceed-
ing 20%. Importantly, original datasets with missing information were not excluded from the StoichLife dataset. 
Some datasets contain missing data for specific variables, such as sampling location, specifically longitude, body 
mass, and trophic group (Supplementary Table 1). These gaps are retained to preserve data availability and allow 
future users to apply imputation or additional validation as needed.

Code availability
All analyses and figures were produced using R. The R code is hosted in Zenodo96, and the StoichLife database is 
in Dryad13.
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