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Abstract: Current research discusses the putative importance of RNA modification in
tumor diseases. These RNA modifications include predominantly pseudouridinylation,
ortho-methylations on the ribose residues, as well as methylations on the organic bases.
Such chemical modifications directly influence fundamental properties such as transcript
stability, alternative splicing, and translation efficiency, all of which are basic requirements
for (tumor) cell proliferation, cell metabolism, cell migration, apoptosis resistance, etc. In
this comparative study, the two RNA-modifying factors, pseudouridine synthase 7 (PUS7,
RNA pseudouridinylation) and WT1-associated protein (WTAP, m6A RNA methylation),
were identified using data from human renal cell carcinoma (RCC) tumors. PUS7 and WTAP
showed a statistically significant correlation with relevant proliferation and prognosis
markers such as CXCR4, TP53, PTEN, and NRAS, as well as with the two tumor immune
checkpoints HLA-G and LGALS9 and were directly associated with a statistically significant
effect on overall survival. Furthermore, comparative analyses also identified further
putative target mRNAs of importance for tumor biology of PUS7 and WTAP. In particular,
components with direct relevance for mitosis, the cell cycle, and cell division, as well as the
WNT pathway, were identified.

Keywords: RCC; transcriptome; PUS7; WTAP; alternative splicing; RNA modifications

1. Introduction
The heterogeneous and complex group of tumor diseases was initially simply de-

scribed as a growing mass of tissue, as a so-called tumor [1]. Current and ongoing research
has resulted in this term being fundamentally refined. In particular, the defined Hallmarks
of Cancer by Douglas Hanahan and Robert A. Weinberg [2] meanwhile clearly summarize
the complexity of these diseases and thereby reflect the high level of scientific knowledge.
These hallmarks include the autonomous maintenance of proliferation, including replica-
tive immortality, evasion of growth suppressors, resistance to apoptosis, the ability to
autonomously induce angiogenesis, immune evasion, genomic instability, and the accu-
mulation of mutations and epigenetic reprogramming, deregulated cellular metabolism
with effects on the patient’s microbiome, increased migration, and tissue invasion, but also
phenotypic plasticity of tumor cells [2–4]. However, these multiple molecular causes may
act independently from each other, also taking into account a possible relevant temporal
order, or probably these mechanisms induce themselves, building on each other. With the
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progressive accumulation of these molecular dysregulations, cumulative additive effects
also arise, increasing malignancy. Anyhow, they can mostly be broken down to defects and
dysregulations on DNA and RNA levels.

In addition to transcription, translation is also a limiting factor in proliferation. In-
deed, it has already been demonstrated that the translation efficiency (TE) of a cell is directly
linked to proliferation, metabolism, and viability of cells and per se based upon the number
of cellular ribosomes [5,6]. The more ribosomes are located on a coding transcript, the
more efficient the process of translation is. Therefore, there exists a direct proportionality
of TE to the ribosomal density in the cells [7,8]. An increase in ribosomes after malignant
transformation has been observed in various tumor diseases. Furthermore, the size of
nucleoli, which represent the major location of ribosomal assembly, has been an important
prognostic parameter in pathology to distinguish between benign and malignant tumors
as well as being of prognostic value [9]. During these molecular biological processes of
translation, the different RNA species interact in a regulatory manner within a network.

The human transcriptome includes the entirety of all RNA molecules transcribed from
DNA within a human cell. Within an organism, there are corresponding differences in the
transcriptome between cells of various tissues, cell types within a tissue, developmental
states (e.g., age, differentiation), and distinct physiological and pathophysiological states
(including exemplarily malignant transformation) [10]. The three main types of RNA
involved in protein biosynthesis include messenger RNA (mRNA), transfer RNA (tRNA),
and ribosomal RNA (rRNA) [11].

In healthy cells, the fractions of the three RNA species relevant for protein biosynthesis
are approximately as follows: 80–90% rRNA of total RNA, 10–15% tRNA, and 1–5% mRNA.
These percentages refer to the proportion of the total RNA mass. If one were to consider
the number of molecules, tRNA molecules would represent the absolute majority [12].
The process of malignant transformation can lead to a strong shift in this composition
mediated by altered RNA modifications [13]. However, there are also other RNA species
that perform more regulatory functions, for example, those involved in post-transcriptional
modifications or gene regulation as well as in DNA replication. These include the small
nuclear RNAs (snRNAs), microRNAs (miRNAs), YRNAs, and long non-coding RNAs
(lncRNAs) [12].

Interestingly, rRNAs, tRNAs, and mRNAs undergo several chemical modifications for
their stabilization, which also affects their secondary structures with further consequences
for their full functionality per se. At this point, RNA pseudouridinylation and RNA methy-
lation should be mentioned in particular, which represent common RNA modifications of
these RNA species with a corresponding influence on these properties.

To further investigate the significance of the most common chemical RNA modifica-
tions on tumor biology, especially with regard to translation efficiency and thus indirectly
on proliferation as well as on malignancy, the three most frequent subtypes of renal cell
carcinoma (RCC) should be analyzed as a model system. Renal cell carcinomas (RCCs)
are the most common type of cancer arising in the kidney with certain risk factors, includ-
ing, among others, smoking, obesity, high blood pressure, and exposure to cancerogenic
chemicals such as trichloroethylene [14]. About 90% of these renal tumors arise from the
renal tubular epithelial cells, with the respective most common subtypes: clear cell RCC
(ccRCC), papillary RCC (pRCC), and chromophobe RCC (chRCC). These different subtypes
differ distinctly in various parameters, such as proliferation, metastasis, survival rates, and
treatment options [15]. With an incidence of 75% of RCCs, ccRCC is the largest subtype,
which arises from epithelial cells of the proximal tubule of the nephron and is characterized
by particularly high aggressiveness and high proliferation, while pRCC (incidence of 10%,
linked to distal tubular epithelium) and chRCC (incidence of 5%, to the intercalated cells
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of the collecting duct). Although pRCC is also characterized by high aggressiveness, the
proliferation of these tumor cells tends to be lower than that of ccRCCs, whereas chRCCs
have a comparatively lower mortality and proliferation than the other two subtypes [16].

In contrast to the histological subdivisions of these subtypes, the genetic differences
between these three RCC subtypes are more difficult to determine. However, it should be
emphasized that in 95% of ccRCCs, the loss of the short arm of chromosome 3 (3p), where
the VHL gene is located (3p25.3), can be observed, which affects the transcription factor
HIF-1alpha and its thereby induced gene expression. These even include growth factors
such as VEGF and PDGF [17].

Current research is concerned with the relevance of RNA modifications in tumor
diseases. However, corresponding studies are still lacking. In this study, the expression data
of the most important RNA-modifying proteins in RCC TCGA data sets were examined
to elucidate to which extent their gene expression patterns correlate with the known
pathological parameters of proliferation and malignancy of the three RCC tumor entities. In
addition to known marker genes for proliferation and prognosis in RCCs, tumor immune
checkpoint molecules relevant to RCC therapy were also analyzed for putative correlations
to factors involved in major RNA modifications.

2. Materials and Methods
2.1. Data Sets

For the analysis, the TCGA-KIRC, TCGA-KICH, and TCGA-KIRP RNAseq data sets
were used [18–20]. These consist of 1028 cases in total, of which 91 were chromophobe
RCC, 323 papillary RCC, 600 clear cell RCC, and 14 cases of RCC belonging to none of those
tumor types. Furthermore, 18 patients received previous treatment, potentially altering
the expression profile. Thus, those 18 cases and the 14 cases belonging to none of the three
main classifications were excluded from further analysis, leaving 91 chromophobe RCC,
323 papillary RCC, and 582 clear cell RCC for analysis.

Additionally, non-tumorous kidney samples from the CPTAC-3 data set were used for
analyzing correlation coefficients between genes of interest. This set contained 102 samples.

For the validation of correlations, the GSE15641 [21], GSE17818 [22–24], and
GSE17895 [22–24] microarray datasets of kidney tumors were used. These sets were
reduced to all kidney tumors, being either classified as clear cell, papillary, or chromophobe
RCC, corresponding to 49, 102, or 138 RCC.

2.2. Data Analysis

The analysis of differential expression was performed using Matlab R2021a with
the DESeq2 approach (https://github.com/jbmorlot/DESeq2-matlab?tab=readme-ov-file,
accessed on 12 June 2023) [25], as described previously [26,27]. Genes were assumed to
be differentially expressed, if the false discovery rate was smaller than 0.05. Differential
expression was analyzed between all three tumor subgroups individually. Alternatively,
the GENT2 database (http://gent2.appex.kr/gent2/, accessed on 12 June 2023) [28] was
used to assess the relative expression of PUS7 and WTAP between multiple studies of
kidney cancer and healthy kidneys. To assess the correlation between the different genes
of interest (see Table 1), the transcripts per million (TPM) values of genes of interest were
correlated using the Spearman rank correlation coefficient. To estimate the robustness of the
correlation coefficient, bootstrapping was employed, resampling the data set 10,000 times
to obtain empirical 95% confidence intervals. For analysis and visualization of patient
survival, the MatSurv tool was used [29]. The grouping of cases in high and low expressing
patients was based on a median split, and the log-rank (Mantel-Cox) test was used to
compare the survival distributions.

https://github.com/jbmorlot/DESeq2-matlab?tab=readme-ov-file
http://gent2.appex.kr/gent2/
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Table 1. Summary of the analyzed genes and their functions.

Proliferation
Marker

Prognosis
Marker

Tumor Immune
Checkpoints

RNA Pseu-
douridinylation

RNA
Ortho-Methylation

RNA
N-Methylation

MKI67 TP53 CD47 PUS1 FBL PCIF1

PCNA BCL2 CD24 PUSL1 NOP56 METTL3

MCM2 BIRC5 STC1 PUS3 NOP58 METTL14

MCM4 PTEN CD274 TRUB1 SNU13 WTAP

CENPF NRAS HLA-G TRUB2 VIRMA

CXCR4 TSC1 HLA-E DKC1 RBM15

TSC2 LGALS3 PUS7 ZC3H13

CDKN2A FGL1 PUS7L METTL16

LGALS9 RPUSD1 METTL5

HMGB1 RPUSD2 NSUN2

PVR RPUSD3 TRMT10C

RPUSD4 ZCCHC4

PUS10 TRMT6

TRMT61A

TRMT61B

RRP8

DNMT1

TRDMT1

NSUN4

NSUN5

RNMT

CMTR1

WDR4

METTL1

For analysis of correlations of relevant genes identified in the previous steps with the
remaining transcriptome, all samples from each RCC subtype were split according to their
median into a high and low expressing group, and differential expression between high
and low expressing RCC of one group was analyzed via DESeq2, as above. The obtained
gene list was restricted afterwards to those genes that were differentially expressed in all
three subtypes. The results were then plotted as a heatmap, sorted by the expression given
as z-scores of the gene of interest along the x-axis and the respective correlation coefficient
for each differentially expressed gene (y-axis) that showed correlation with the gene of
interest with correlation coefficients ≥0.3 or ≤−0.3. Functional enrichment of differentially
expressed genes was assessed using https://davidbioinformatics.nih.gov/ (accessed on 12
June 2023) [30,31].

3. Results
3.1. Tabular Overview of Analyzed Genes

In this project, known RNA-modifying enzymes involved in RNA pseudouridiny-
lation, RNA ortho-methylation, and RNA N-methylation, as well as selected genes with

https://davidbioinformatics.nih.gov/
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strong relevance for tumor (immuno) biology, were analyzed in RCC tumors. Table 1
summarizes the investigated genes and Supplementary Table S2 lists the full gene names.

3.2. Analysis of RCC-Relevant Proliferation and Prognostic Marker Genes

In molecular diagnostics, the expression of certain marker genes with relevance for
proliferation and prognosis is often used to assess the aggressiveness of tumors and to
estimate suitable treatment options. The following proliferation and prognostic markers
are frequently used in RCC diagnostics: MKI67, PCNA, MCM2, MCM4, CENPF, CXCR4,
and TP53, BCL2, BIRC5, PTEN, NRAS, TSC1, TSC2, and CDKN2A [32–36]. Considering
that the following order exists with regard to the proliferation and malignancy of the 3 RCC
subtypes: ccRCC > pRCC > chRCC, the proliferation and prognosis markers typical for
RCC were analyzed in the respective TCGA data sets (ccRCC n = 582; pRCC n = 323, chRCC
n = 91). The detection of differentially expressed genes was carried out by comparing the
three different RCC subtypes with each other. First, the particularly fast-proliferating and
aggressive ccRCC was compared with the chRCC and subsequently with the pRCC, and
then afterwards the comparison between pRCC and chRCC was performed.

We observed that the proliferation marker CXCR4, in particular, showed a statistically
significant difference in gene expression according to this ranking of the RCC subtypes
(Figure 1A–C). Furthermore, the prognostic markers TP53, PTEN, and NRAS were also
identified as statistically significant differentially expressed according to the ranking of the
RCC subtypes (Figure 1D–F).
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Figure 1. Comparative analysis of DESeq2 normalized gene expression for cell proliferation mark-
ers (A–C) and prognostic markers (D–F) between the three RCC subtypes according to the order
ccRCC > pRCC > chRCC with regard to proliferation and malignancy. Statistically significant differ-
ences in gene expression (FDR) are marked with an asterisk and the exact numerical values on the
side with an arrow. Blue color indicates downregulation and red color upregulation.

3.3. Validation of Selected Immune Checkpoint Axes in the RCC Data Sets

Antibody-based tumor immune checkpoint axis blockades have gained immense
importance for RCC therapies with promising overall response rates. Therefore, the relevant
checkpoint molecules, for which therapeutic mAbs are available, were analyzed in the
RCC settings as well. Frequently, such immune checkpoint molecules contribute to tumor
immune evasion and thus indirectly to proliferation and malignancy within the patient.
It was shown that in particular the gene expression of HLA-G and LGALS9 matched
statistically significantly with the in vivo characterizations of the three RCC subtypes
(Figure 2A–C).
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3.4. Identification of Differentially Expressed Genes Relevant for RNA Pseudouridinylation and
RNA Methylation in the RCC Data Sets

To analyze the hypothesis of the significance of RNA-modifying enzymes for prolifer-
ation and prognosis as putative limiting bottlenecks in tumor diseases, the next step was
to determine the differential gene expression of all known RNA-modifying proteins for
pseudouridinylation and methylation (Figures 3 and 4).
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Figure 3. Comparative analysis of DESeq2 normalized gene expression for factors with relevance for
RNA pseudouridinylation (A–C) in the three RCC subtypes according to the order ccRCC > pRCC
> chRCC with respect to proliferation and malignancy. Statistically significant differences in gene
expression (FDR) were marked with a star, and the exact numerical values were marked with an
arrow on the side. The blue color was used for downregulation and the red color for upregulation.

While in the case of RNA pseudouridinylation, consistently statistically significant
changes could not be detected when comparing the gene expressions of the three RCC
subtypes, two different factors involving RNA methylation were identified as statistically
differentially expressed, namely PUS7 and WTAP (Figure 3).



Curr. Issues Mol. Biol. 2025, 47, 266 8 of 22

 

O 

Figure 4. Comparative analysis of DESeq2 normalized gene expression for factors relevant to RNA
ortho-methylations (A,F,K) and methylations on the organic bases (B–E,G–J,L–O) in the three RCC
subtypes according to the order ccRCC > pRCC > chRCC with regard to proliferation and malignancy.
Statistically significant differences in gene expression (FDR) were marked with a star, and the exact
numerical values were indicated with an arrow on the side. The blue color was used for down-
regulation and the red color for up-regulation.

3.5. Examination of Putative Correlations Between the Two RNA-Modifying Factors PUS7 and
WTAP as Well as the Differentially Expressed Marker Genes Relevant for Tumor (Immune) Biology

The next step was to investigate the extent to which the marker genes previously found
to be statistically significantly differently expressed in the RCC settings correlate with the
RNA-modifying factors PUS7 and WTAP. It was shown that, in all RCC subtypes and in
non-tumorous kidneys (but particularly strong in chRCCs), there is a statistically significant
high to very high positive correlation with the prognostic markers TP53, PTEN, and NRAS
(Table 2, Figure 5). In addition, a statistically significant, weak positive correlation was
observed in the different RCC subtypes and kidney specimen with the proliferation marker
CXCR4 as well as with the two tumor immune checkpoint molecules HLA-G and LGALS9
(Table 2). Of note, the average expression in kidney tumor specimens for PUS7 was
1.4× higher (p < 0.001) than in the non-tumorous kidneys or 1.2× higher for WTAP
(p < 0.001), according to data from the GENT2 database [28]. To verify these results,
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the GSE15641 [21], GSE17818 [22–24], and GSE17895 [22–24] data sets were analyzed re-
garding the correlation of PUS7 and WTAP with the prognostic, proliferative, and immune
checkpoint markers. There, we could verify most correlations, most notably with PTEN,
CXCR4, and HLA-G in at least two of three data sets. For all others but TP53, we could
find comparable correlations in at least one data set (Supplementary Table S1). Only for
TP53 we could not find similar correlations at all. Nonetheless, this agreement verifies the
analysis and most of the results as potentially biologically relevant.
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Figure 5. Exemplary visualization of the correlations of PTEN with PUS7 (A–C) and WTAP (D–F) in
the three RCC subtypes. Expressions are given in transcripts per million reads.

Due to the fact that there is a statistically significant high to very high positive correla-
tion with the three prognostic markers and the RNA-modifying factors PUS7 and WTAP,
a putative influence of these two RNA-modifying factors on the overall survival in the
three RCC subtypes was analyzed using Kaplan–Meier plots. It was shown that for the
largest subgroup of ccRCCs, which is the most aggressive and the most common subtype of
RCCs, there is a statistically significant difference in overall survival. Increased expression
of PUS7 (p = 0.0057) and WTAP (p = 0.0264) is associated with poorer overall survival.
This effect was also visible in the other two subtypes but was not statistically significant
(Figure 6).
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Table 2. Correlation of PUS7 and WTAP with other statistically significant dysregulated tumor-relevant putative target mRNAs in the RCC subtypes.

ccRCC pRCC chRCC ΣRCC Non-Tumorous Kidney

PUS7 WTAP PUS7 WTAP PUS7 WTAP PUS7 WTAP PUS7 WTAP

CXCR4
R = 0.4 R = 0.4 R = 0.1 R = 0.4 R = 0.4 R = 0.5 R = 0.5 R = 0.5 R = 0.31 R = 0.42

[0.32; 0.47] [0.29; 0.44] [0.02; 0.23] [0.28; 0.47] [0.25; 0.60] [0.26; 0.61] [0.48; 0.57] [0.47; 0.57] [0.12; 0.49] [0.23; 0.58]
p < 1.0 × 10−10 p < 1.0 × 10−10 p = 0.0273 p < 1.0 × 10−10 p = 1.4 × 10−5 p = 8.6 × 10−6 p < 1.0 × 10−10 p < 1.0 × 10−10 p = 0.0013 p = 1.2 × 10−5

TP53
R = 0.5 R = 0.5 R = 0.6 R = 0.5 R = 0.7 R = 0.8 R = 0.5 R = 0.5 R = 0.61 R = 0.50

[0.37; 0.52] [0.47; 0.60] [0.51; 0.66] [0.41; 0.58] [0.53; 0.80] [0.67; 0.87] [0.58; 0.61] [0.59; 0.61] [0.45; 0.74] [0.31; 0.66]
p < 1.0 × 10−10 p < 1.0 × 10−10 p < 1.0 × 10−10 p < 1.0 × 10−10 p < 1.0 × 10−10 p < 1.0 × 10−10 p < 1.0 × 10−10 p < 1.0 × 10−10 p < 1.0 × 10−10 p = 1.6 × 10−6

PTEN
R = 0.5 R = 0.6 R = 0.6 R = 0.6 R = 0.8 R = 0.9 R = 0.7 R = 0.7 R = 0.74 R = 0.80

[0.45; 0.58] [0.55; 0.66] [0.50; 0.67] [0.56; 0.71] [0.71; 0.87] [0.83; 0.92] [0.63; 0.71] [0.67; 0.74] [0.64; 0.82] [0.70; 0.87]
p < 1.0 × 10−10 p < 1.0 × 10−10 p < 1.0 × 10−10 p < 1.0 × 10−10 p < 1.0 × 10−10 p < 1.0 × 10−10 p < 1.0 × 10−10 p < 1.0 × 10−10 p < 1.0 × 10−10 p < 1.0 × 10−10

NRAS
R = 0.7 R = 0.7 R = 0.6 R = 0.6 R = 0.8 R = 0.9 R = 0.73 R = 0.7 R = 0.62 R = 0.66

[0.61; 0.71] [0.62; 0.71] [0.50; 0.66] [0.49; 0.65] [0.65; 0.83] [0.87; 0.95] [0.70; 0.76] [0.70; 0.76] [0.46; 0.73] [0.51; 0.78]
p < 1.0 × 10−10 p < 1.0 × 10−10 p < 1.0 × 10−10 p < 1.0 × 10−10 p < 1.0 × 10−10 p < 1.0 × 10−10 p < 1.0 × 10−10 p < 1.0 × 10−10 p < 1.0 × 10−10 p < 1.0 × 10−10

HLA-G
R = 0.2 R = 0.2 R = 0 R = 0.2 R = 0.3 R = 0.3 R = 0.3 R = 0.4 R = 0.38 R = 0.41

[0.09; 0.25] [0.16; 0.32] [−0.14; 0.08] [0.08; 0.30] [0.05; 0.44] [0.14; 0.52] [0.22; 0.34] [0.30; 0.41] [0.19; 0.55] [0.22; 0.58]
p = 3.9 × 10−5 p = 6.2 × 10−9 p = 0.6350 p = 0.0004 p = 0.0168 p = 0.0010 p < 1.0 × 10−10 p < 1.0 × 10−10 p = 8.2 × 10−5 p = 1.6 × 10−5

LGALS9
R = 0.2 R = 0.3 R = 0.1 R = 0.2 R = 0.4 R = 0.4 R = 0.4 R = 0.4 R = 0.49 R = 0.43

[0.14; 0.31] [0.17; 0.33] [−0.04; 0.18] [0.13; 0.34] [0.20; 0.56] [0.26; 0.59] [0.29; 0.41] [0.32; 0.44] [0.32; 0.62] [0.26; 0.58]
p = 5.5 × 10−8 p = 3.1 × 10−10 p = 0.2035 p = 1.1 × 10−5 p = 0.0001 p = 1.9 × 10−5 p < 1.0 × 10−10 p < 1.0 × 10−10 p = 3.0 × 10−7 p = 6.5 × 10−6

Numbers in brackets correspond to the lower and upper values of the 95% confidence interval, respectively.
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ues and analyzed with the log-rank (Mantel-Cox) test using the MatSurv tool [29]. 

3.6. Identification of Additional PUS7 and WTAP Target Genes in RCCs 

To clarify the observed statistically significant effect on survival in ccRCCs compared 
to the other two RCC subtypes, comparative transcriptome analyses were performed for 

Figure 6. Investigation of the effect of PUS7 (A–C) and WTAP (D–F) on overall survival in the
three RCC subtypes. The division into high versus low was done by median split of TPM expression
values and analyzed with the log-rank (Mantel-Cox) test using the MatSurv tool [29].

3.6. Identification of Additional PUS7 and WTAP Target Genes in RCCs

To clarify the observed statistically significant effect on survival in ccRCCs compared
to the other two RCC subtypes, comparative transcriptome analyses were performed
for PUS7 and WTAP with the aim of identifying the dysregulated target genes in the
comparison of PUS7 high versus PUS7 low or WTAP high versus WTAP low tumors.
High and low expressing samples were identified based on a median split, identical to the
survival analysis.

The statistically significantly up- or down-regulated transcripts in the comparison of
PUS7 high versus low expressers and, in analogy, for WTAP were shown as heatmaps for
all three RCC subtypes. Between the three RCC subtypes, different expression levels of
dysregulated transcripts can be seen (Figure 7). Notably, for almost all of the identified
genes the correlation coefficient with PUS7 or WTAP was positive and only five genes in
each group (≈10% for PUS7 and ≈5% for WTAP) were negatively correlated, suggesting
the possibility of a large cluster of co-regulated genes. In all three RCC subtypes, there
were a large number of YRNAs among the statistically significant dysregulated transcripts,
which also correlated statistically significantly with the expression of PUS7 and WTAP. This
is very interesting and important for the analysis per se, because YRNAs play an eminent
role in DNA replication, are components of ribonucleoproteins, and are especially involved
in RNA quality control [37]. The coding mRNAs that correlated statistically significantly
with PUS7 and WTAP and that were statistically significantly dysregulated in all three
RCC subtypes in comparison to PUS7 high/low and WTAP high/low and which showed
correlation coefficients ≥ 0.3 or ≤−0.3 were summarized in Table 3.
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Figure 7. Heatmap visualizations show gene expression patterns of putative target genes that were
statistically significantly altered when comparing PUS7 high versus low (A) and WTAP high versus
low (B) in the three RCC subtypes. Furthermore, these target genes had to fulfill the following
criteria: the correlation coefficients had to be either ≥ 0.3 or ≤−0.3 with PUS7 (A) and WTAP (B) in
all three RCC subtypes.

Table 3. Results of transcriptome analysis of dysregulated genes with statistically significant correla-
tions to PUS7 and WTAP.

PUS7 WTAP

Gene Expression Correlation
Coefficient p-Value Gene Expression Correlation

Coefficient p-Value

ACLY 190.0238 0.7465 4.68 × 10−178 KLF10 687.2348 0.5013 1.73 × 10−64

NUF2 179.1750 −0.3738 2.20 × 10−34 FRZB 119.7849 0.6163 2.97 × 10−105

SST 140.5689 0.6030 1.20 × 10−99 CPA3 104.5162 0.6406 3.96 × 10−116

NPTX2 111.1566 0.5450 3.81 × 10−78 CLEC4E 103.6079 0.5289 7.08 × 10−73

MELK 103.6079 0.4901 2.56 × 10−61 RAPGEF5 75.9460 0.5316 9.49 × 10−74

HAVCR1 78.9817 0.4859 3.91 × 10−60 POSTN 75.4483 0.3515 2.45 × 10−30

REL 78.8732 0.5333 2.88 × 10−74 EPHA3 73.3262 0.4336 6.45 × 10−47

TNFAIP6 77.3074 0.5625 3.41 × 10−84 ARHGAP29 53.2551 0.6308 1.29 × 10−111

IL1RAP 75.8770 0.5011 1.90 × 10−64 IFI44L 47.7831 0.4633 3.90 × 10−54

VCAN 73.3262 0.4964 4.26 × 10−63 ADGRG6 44.4220 0.7105 7.15 × 10−154

EDN1 66.8430 0.6020 3.08 × 10−99 SFRP2 29.5562 0.6880 1.39 × 10−140

SCGN 62.5494 0.4680 2.39 × 10−55 ITGA4 24.6503 0.4976 1.99 × 10−63

CREB5 60.7807 0.7228 1.04 × 10−161 SCARA3 22.4505 0.4419 7.25 × 10−49

PBK 55.8713 0.5313 1.21 × 10−73 CDH13 17.8840 0.6109 6.22 × 10−103

ARHGAP11A 50.1871 0.4210 4.64 × 10−44 IRAK3 14.5509 0.5764 2.98 × 10−89

FRZB 40.2235 0.6295 4.95 × 10−111 RGS5 11.9904 0.6551 3.70 × 10−123

LOXL2 39.4410 0.6048 2.12 × 10−100 ECEL1 10.0061 0.6368 2.32 × 10−114

QRFPR 28.1993 0.5818 2.69 × 10−91 VNN2 9.5169 0.4689 1.36 × 10−55

COL5A1 25.9432 0.5086 1.20 × 10−66 GJA1 9.2066 0.5597 3.32 × 10−83

SLC5A1 24.9524 0.3168 1.20 × 10−24 ITGB6 8.5897 0.5524 1.23 × 10−80

ADGRG6 24.6503 0.5560 6.72 × 10−82 INHA 7.9855 0.6423 5.94 × 10−117

SLC7A2 20.7983 0.4573 1.23 × 10−52 NID2 6.4530 0.5376 1.15 × 10−75
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Table 3. Cont.

PUS7 WTAP

Gene Expression Correlation
Coefficient p-Value Gene Expression Correlation

Coefficient p-Value

RECQL 20.2517 0.6875 2.65 × 10−140 APOLD1 5.9691 0.5043 2.35 × 10−65

RRM2 19.5924 −0.4178 2.35 × 10−43 TGFB2 3.8323 0.6762 4.63 × 10−134

RAPGEF5 17.8840 0.6231 3.42 × 10−108 OLFM4 3.6288 0.5691 1.44 × 10−86

ZC3HAV1L 15.7110 0.4402 1.83 × 10−48 AC003092.1 2.0515 0.4798 1.76 × 10−58

NID2 14.5509 0.5850 1.68 × 10−92 ELK3 1.8317 0.4500 8.06 × 10−51

FAM111B 14.5212 0.5169 4.01 × 10−69

MKI67 14.0369 −0.4819 4.80 × 10−59

SSPN 13.6805 0.7057 6.72 × 10−151

GAS2L3 13.2700 0.6528 5.13 × 10−122

P4HA3 11.7873 0.7959 7.82 × 10−219

LRRK2 11.1293 0.6397 9.65 × 10−116

TPX2 11.0676 0.5789 3.60 × 10−90

TOP2A 10.5442 0.6520 1.33 × 10−121

PREX2 10.0566 0.5676 5.03 × 10−86

KCNK3 8.0663 0.6998 2.28 × 10−147

EPHA3 6.4530 0.5480 3.85 × 10−79

IL18R1 5.7964 0.6681 9.00 × 10−130

FRMD6 5.6745 0.6742 5.56 × 10−133

ENPP3 5.4524 0.6710 2.93 × 10−131

OSMR 5.0688 0.6223 7.87 × 10−108

ANLN 5.0446 0.6949 1.54 × 10−144

FOXM1 4.9233 0.5749 1.13 × 10−88

ARL4C 4.7428 0.5523 1.31 × 10−80

CDON 4.6661 0.6809 1.28 × 10−136

SACS 4.4960 0.6107 7.38 × 10−103

CEP55 4.3923 0.6164 2.75 × 10−105

TNNT1 4.3796 0.3098 1.34 × 10−23

CDCA7 4.2515 0.5939 5.30 × 10−96

PGM2L1 4.0652 −0.3533 1.20 × 10−30

SEMA3D 4.0290 0.5363 2.90 × 10−75

AGMO 4.0251 0.6211 2.55 × 10−107

KIF20B 3.8307 0.7649 4.79 × 10−192

NTM 3.6732 0.5229 5.31 × 10−71

BUB1 3.5337 0.5834 6.58 × 10−92

BUB1B 3.5335 0.3494 5.62 × 10−30

MALL 3.4257 0.6727 3.52 × 10−132

CENPF 3.2824 0.6335 7.55 × 10−113

USP37 2.9702 0.6771 1.44 × 10−134
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Table 3. Cont.

PUS7 WTAP

Gene Expression Correlation
Coefficient p-Value Gene Expression Correlation

Coefficient p-Value

PRR11 2.9327 0.6409 2.59 × 10−116

KIF4A 2.9095 0.6239 1.45 × 10−108

CCNA2 2.8841 0.5970 3.13 × 10−97

CDCA2 2.6303 0.5656 2.82 × 10−85

HMMR 2.5460 0.5881 1.02 × 10−93

BRCA1 2.4850 0.7127 3.06 × 10−155

DLGAP5 2.4775 0.6151 9.80 × 10−105

NEK2 2.2389 0.6021 2.72 × 10−99

XIST 2.0515 0.4606 1.91 × 10−53

FZD1 2.0050 0.6155 6.59 × 10−105

NCAPG 1.9583 0.6394 1.41 × 10−115

EDIL3 1.8830 0.5784 5.38 × 10−90

DTL 1.8648 0.6236 2.12 × 10−108

DKK1 1.8317 0.4001 1.38 × 10−39

CENPK 1.7248 0.6565 7.56 × 10−124

This was followed by annotation clustering using the database
https://davidbioinformatics.nih.gov/ (accessed on 12 June 2023) [30,31]. The cluster
with the highest enrichment score of 5.85 included the following biological functions: mi-
tosis (13 genes), cell cycle (18 genes), and cell division (13 genes). In the context of tumor
biology, it is further worth mentioning that the WNT signaling pathway (6 genes) was also
identified in another cluster.

4. Discussion
The triumph of molecular medicine can be seen in the increasing response rates

in the treatment of many pathologies. In particular, in the treatment of various tumor
diseases, the steadily increasing overall response rates reflect the progress of basic molecular
biology research. Current research is focused on identifying further tumor-biologically
relevant pathways that could serve as possible new therapeutic approaches to combine with
existing therapies to further increase the overall response rates. Especially in the treatment
of RCCs, significant improvements in response rates were seen with the introduction
of therapeutic monoclonal antibodies (mAbs) against tumor immune checkpoint axes,
which can be combined with each other and are often used in combination with pro-
inflammatory cytokines or with receptor tyrosine kinase inhibitors for additive effects.
Targeted therapies, such as those against receptor tyrosine kinases or against mTOR, as
well as various immunotherapies, are now playing an important role in the treatment of
RCCs. These immunotherapies include, in particular, mAbs to inhibit neo-vascularization
but also to block inhibitory immune checkpoint (ICP) axes. These mAbs, in combination
with each other or with the other forms of therapy previously mentioned, as well as with
additive-acting proinflammatory cytokines, show extremely promising overall response
rates (ORR) that far outweigh the effects of regular chemotherapy drugs (e.g., nivolumab
and cabozantinib) with ORR about 81% [38].

https://davidbioinformatics.nih.gov/
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The importance of RNA-modifying factors for translation efficiency and thus for
(tumor) cell metabolism (and indirectly for cell migration and invasiveness) and cell pro-
liferation has already been described in the introduction. In fact, the analysis of these
RNA-modifying factors in the context of tumor biology is the subject of ongoing research.
Such chemical modifications on RNAs are performed by factors that are grouped as either
writers, erasers, or readers, where writers induce the modifications, erasers remove these
modifications, and readers can interpret the effect of the modified RNA [39].

In particular, pseudouridinylation affects RNA conformation and thus influences its
interaction with other RNAs or with RNA-binding proteins. In fact, it is already known that
pseudouridinylation of the various RNA species (especially tRNAs, rRNAs, mRNAs, and
snRNAs) influences important cellular biological processes, such as alternative splicing and
translation [40]. A substitution of uridine with pseudouridine introduces a novel H bond
donor on the non-Watson Crick site of the respective nucleotide within the RNA molecule,
which affects the secondary structure, predominantly catalyzed by enzymes known as
pseudouridine synthases (PUSs), of which 13 PUSs are known in humans, namely: PUS1,
PUSL1, PUS3, TRUB1, TRUB2, DKC1, PUS7, PUS7L, RPUSD1, RPUSD2, RPUSD3, RPUSD4,
and PUS10 [40]. Recently Li et al. (2023) identified the factor PUS1 and demonstrated that
upregulated PUS1 expression resulted in the elevated RCC cancer cell viability, migration,
invasion, and colony formation ability in RCC cell lines [24]. In addition, Ding et al. (2024)
were able to show that pseudouridylation is a significant biomarker in cancer diagnosis
and prognosis in various tumor types, including RCCs. The general overexpression of
PUSs is common in cancer cells and predicts poor prognosis [41].

RNA methylations represent another important group of chemical modifications to
the respective RNA species. A methyl group can be added at the respective base or, more
seldom, even at the ribose residue. More than 72 different RNA methylations are now listed
in the online database MODOMICS [42,43]. Fibrillarin (FBL) performs such less frequent
2′-O-methylations by adding a methyl residue to the ribose backbone using S-adenosyl
methionine (SAM) as a methyl donor, whereas FBL acts in a complex with other factors
including NOP56, NOP58, and 15.5K (SNU13) [44].

The most common RNA methylations localized at the bases include, among others,
N6-methyladenosine (m6A), N1-methyladenosine (m1A), and 5-methylcytosine (m5C),
besides the 7-methylguanosine m7G [42]. For example, PCIF1 catalyzes the methylation
of N6,2′-O-dimethyladenosine (m6Am) in mRNA [45]. RNA methyltransferases (RNMTs)
such as METTL3 and METTL14, together as the METTL3-METTL14 complex and with
other factors, including WTAP, VIRMA, RBM15, and ZC3H13, form the methyltransferase
complex catalyzing the m6A reaction, which occurs in all RNA species [46]. Interestingly, it
is the METTL16 methyltransferase that catalyzes m6A methylation in the U6 snRNAs [47],
while for 18S rRNA it is METTL5 [7]. In the case of m6A methylation in rRNAs, other
RNTMs are known, namely METTL16 (18S rRNA), NSUN2 (28S rRNA), and TRMT10C
(5.8S rRNA) [48,49]. Another recently identified human methyltransferase is ZCCHC4,
which also catalyzes the methylation at the N6-methyladenosine (m6A) in 28S rRNA
specifically on adenosine 1832 (A1832) [50].

The m1A methylation occurs on tRNAs, rRNAs, and mRNAs and involves the follow-
ing specific methyltransferases: TRMT6, TRMT61A, TRMT61B, TRMT10C, and NML [51].
In the case of m5C RNA methylation, the following factors act as writers: NSUN2, DNMT1,
DNMT2, and TRM4 [52]. Furthermore, two other RNMTs, NSUN4 and NSUN5, are known
with relevance for m5C methylation, with NSUN4 mainly methylating tRNAs and mRNAs
and NSUN5 the 28 S rRNA [53,54]. The complex composed of TRMT6 and TRMT61A
methylates tRNAs at cytosine residues, generating m5C modifications [55].
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While the writers of the m7G modification include the following factors: RNMT,
CMTR1, RAM, WDR4, and METTL1. The m7G modification can occur, e.g., as a 5′-cap
on mRNAs but also at internal positions [56]. Given the already large number of RNMTs
and other molecules involved and the presence of other less common RNA methylation
sites that are therefore not mentioned here, it can be assumed that there are plenty of other
relevant RNMTs or molecules involved in these processes with relevance for transcript
stability, translation, and thereby indirectly for proliferation and probably tumor biology.

A review article by Alhammadi et al., 2024 [57], was recently published, which dis-
cusses the importance of a few individual RNA-modifying factors and brings together
actual molecular biological findings of RNA-modifying factors on target genes with high
relevance for RCCs. It reveals that, among other things, the mRNA of the prognostic marker
PTEN is methylated by METTL14 [58]. In fact, RNA modifications are conceivable for
a large number of mRNAs of regulatory target genes—not only tumor suppressors and
oncogenes. However, our study directly assesses the entire set of RNA-modifying factors
of the writers with direct relations to proliferation markers, prognostic markers, and tumor
immune checkpoints in RCC TCGA data sets. For the first time, two RNA-modifying
enzymes, namely PUS7 and WTAP, are identified, as being very likely directly involved in
the known differences regarding proliferation and malignancy of the three most relevant
RCC subtypes—ccRCCs, pRCCs, and chRCCs.

Pseudouridinylation of RNA increases RNA stability and functionality in coding and
non-coding RNA species. PUS7 plays an important role in this process because it directly
catalyzes this pseudouridinylation, and PUS7 has been recently identified as a promising
prognostic marker in tumor diseases themselves [59,60]. The RNA-modifying factor WTAP,
which was also identified, plays a very important role as a component of the complex for
m6A RNA methylation, since these modifications also play an essential function in all
RNA species with regard to RNA stability, splicing, and translation. In fact, the importance
of WTAP in tumor biology has already been demonstrated for various tumor entities,
including breast cancer and acute myeloid leukemia, where increased WTAP expression
was also associated with poorer overall survival [61,62]. The known functions of WTAP in
carcinogenesis across various tumor diseases have recently been reviewed by Fan et al. [63].

Interestingly, a direct involvement of WTAP in the m6A methylation of PTEN could
actually be demonstrated, which strongly strengthens the quality of our data analysis [64].

In addition, in our analysis, we see a similar, very strong positive correlation between
WTAP and NRAS as well as PTEN, in addition to tendencies towards TP53. Such a correla-
tion between TP53 and WTAP in non-small-cell lung cancer has already been described in
the literature [65]. Moreover, other recent studies in other tumor entities also demonstrate
WTAP itself as a useful prognostic marker [66]. This is very interesting due to the fact that
in our analysis these strong positive correlations exist with the prognostic markers that are
very important for RCCs. In particular, the non-classical human leukocyte antigen class Ib
molecule G (HLA-G), which acts as a ligand for the inhibitory receptors ILT2, ILT4, and
KIR2DL4 on all major immune effector cells, can mediate its immunological tolerance both
as a membrane-bound molecule and as a secreted molecule. This mechanism can be used
by the tumor cells as an immune escape mechanism in a variety of tumor entities, including
RCC [67–70]. As a new finding, in analogy to previous publications, the clinical relevance
of HLA-G is once again shown in these RCC data sets, as it correlates statistically signifi-
cantly with the aggressiveness of the different RCC subtypes. However, only a weak but
statistically significant positive correlation with PUS7 and WTAP was found, which could
indicate an RNA modification in the form of m6A methylation or pseudouridinylation or a
mostly independent behavior of RNA modifications. However, there are no publications
on this in the literature yet. It is also worth noting that HLA-G is the only representative
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of the HLA molecules that is strongly characterized by alternative splicing. There are
7 different HLA-G splice variants, so an accurate HLA-G mRNA modification is essential
for this alternative splicing per se [71].

Galectin-9 (LGALS9) also inhibits the anti-tumor effect of T and NK cells, where it
binds to TIM-3 as an inhibitory ligand. In addition, the relevance of this immunosup-
pressive molecule in ccRCCs has already been demonstrated [63], and, in analogy to
HLA-G, there are already mAbs against this tumor immune checkpoint for anti-tumor
therapies [71–73].

Surprisingly, only one of the known proliferation markers relevant for RCC, CXCR4,
showed expression data that match the different proliferations of the RCC subtypes. This
suggests that even better proliferation markers could be found for RCCs or only a combined
usage of those markers reveals the proliferative abilities of RCC. Furthermore, no RNA
modifications such as m6A methylation or pseudouridinylation are known for CXCR4.
At this point, it should be explicitly pointed out that the known proliferation markers at
the protein level may well be suitable for use in everyday clinical practice, even if these
markers could not be identified at the transcript level in this study. This is an important
limitation of this study.

Table 3 summarizes the putative genes that correlate statistically significantly with
PUS7 and WTAP. In fact, there are individual genes among them with very well-known
connections to solid and hematopoietic tumor diseases per se—see the following selected
examples. The gene name MKI67 encodes what is probably the best-known proliferation
marker and is very frequently used in pathological studies in various tumor diseases.
Altered expression of EPHA3 also correlates with tumor diseases [74], which is also true
for the potential oncogene CREB5 [75]. CDH13 expression is physiologically atypical,
and reexpression is observed in various tumor diseases, including even in ccRCC [76].
Additionally, MELK has been characterized as an oncogenic kinase essential for metastasis
and mitotic progression in lung carcinoma [77].

In particular, the altered molecular properties, which form the basis for enabling al-
tered proliferation kinetics of tumor cells, should be of greater interest, as this could conceal
so far putative unused therapeutic options that could target the causes (an establishing
tumor cell) rather than the consequences (an already established tumor cell). An increase
in the speed of the cell cycle in tumor cells inevitably leads to an increase in errors in DNA
replication and resistance to apoptosis. In combination with the ability to evade immune
effector cells, even allowing the persistence of such cancer cells, which, through ongoing
neoangiogenesis, deprive even the last healthy cells of nutrients and, if left untreated, not
only result in the inevitable tissue death but also culminate in the death of the entire patient.

The identification of chemical modifications of individual coding mRNAs and their
aberrations in various pathologies, including tumor diseases, is currently still in its be-
ginnings. Therefore, such initial analyses are indispensable for identifying direct target
mRNAs for further separate analyses. However, these initial in silico studies based on
transcriptome data cannot replace laboratory research. Rather, the aim is to sensitize the
attention of current laboratory research to RNA-modifying enzymes. Overexpression or
knockdown/out studies in human cells should follow to validate the molecular relation-
ships formulated here.

In selected tumor entities, two important new central target structures, PUS7 and
WTAP, were identified that directly control essential points for proliferation, which was
impressively supported by annotation clustering. However, the results of the Kaplan–Meier
curves and the heat maps allow the conclusion that there is subtype-specific relevance
even within RCCs and that the two factors are particularly important for ccRCCs. In this
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context, RNA-modifying enzymes should be highlighted as a completely new approach to
controlling tumor cell proliferation as a therapeutic option.

5. Conclusions
Gene therapies are rapidly becoming part of the clinical treatment spectrum for a

variety of different genetic diseases. For example, antisense oligonucleotides can be used to
induce exon skipping in patients with Duchenne muscular dystrophy [78]. Casgevy® (Ex-
agamglogene autotem-cel), the first CRISPR/Cas9-based gene therapy, has now found its
way into clinical therapies [79]. This technique is based on the knockout of defective genes.
In contrast, gene replacement preparations that can introduce an intact gene into affected
patients have been on the market for some time. These now include 9 different avail-
able preparations: Glybera®, Luxturna®, Zolgensma®, Upstaza®, Roctavian®, Hemgenix®,
Libmeldy®, Zynteglo®, and Skysona® [80]. There are now also 6 different siRNA-based
therapies available: Patisiran®, Givosiran®, Lumasiran®, Inclisiran®, Nedosiran®, and
Vutisiran® [81]. The range of diseases that can be treated with such gene therapies is very
large and heterogeneous. Sooner or later, the first anti-tumoral gene therapies will begin
their triumphant advance.

The introduction already pointed out the large number of dysregulated genes involved
in the various solid and hematopoietic tumor diseases, so that combination therapies will
inevitably be the key to success. This, in turn, requires a comprehensive analysis of the
molecular relationships. This in silico analysis based on statistical evaluations of clinical
TCGA data sets from healthy kidney tissue and the three most common RCC subtypes
led to the identification of two RNA-modifying proteins—PUS7 and WTAP. Nevertheless,
it should be explicitly pointed out that such initial in silico analyses cannot replace any
validations of the obtained results using standard molecular biology methods, for example,
to assess whether the observed correlations are direct or indirect effects. This represents an
important limitation of the obtained findings and performed statements but opens up new
routes for future research.
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