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Abstract
Explicit Runge–Kutta methods are the gold standard of time-integration methods for nonstiff
problems in system dynamics since they combine a small numerical effort per time step
with high accuracy, error control, and straightforward implementation. For the analysis of
beam dynamics, we couple them with a local coordinates approach in a Lie group setting
to address large rotations. Stiff shear forces and inextensibility conditions are enforced by
internal constraints in a coarse-grid discretization of a geometrically exact beam model. The
resulting nonstiff constrained systems are handled by a half-explicit approach that relies
on the constraints at velocity level and avoids all kinds of Newton–Raphson iteration. We
construct half-explicit Runge–Kutta Lie group methods of order up to five that are equipped
with an adaptive step-size strategy using embedded Runge–Kutta pairs for error estimation.
The methods are tested successfully for a roll-up maneuver of a flexible beam and for the
classical flying-spaghetti benchmark.

Keywords Lie group time integration · Half-explicit Runge-Kutta methods · Constrained
systems

1 Introduction

Geometric numerical methods preserve the essential properties of the flow of differential
equation models [13]. Such strategies are important for the robust, efficient, and numeri-
cally stable dynamical simulations of highly flexible structures. In space, they are used to
obtain coarse-grid discretizations that reflect the characteristic behavior of geometrically

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Marie Skłodowska-Curie grant agreement No 860124. This publication reflects
only the author’s view and the Research Executive Agency is not responsible for any use that may be
made of the information it contains.

� D. Tumiotto
denise.tumiotto@mathematik.uni-halle.de

M. Arnold
martin.arnold@mathematik.uni-halle.de

1 Institute of Mathematics, Martin-Luther-University Halle-Wittenberg, D-06099 Halle (Saale),
Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s11044-024-10002-8&domain=pdf
mailto:denise.tumiotto@mathematik.uni-halle.de
mailto:martin.arnold@mathematik.uni-halle.de


596 D. Tumiotto, M. Arnold

exact beam models. In the time domain, geometric integration is tailored to nonlinear con-
figuration spaces that are typical of mechanical systems with large rotations.

In the present paper, we address the latter aspect and present a novel Runge–Kutta Lie
group integrator for constrained mechanical systems and its application to beam dynamics.
The method is half-explicit and avoids all kinds of Newton–Raphson iterations that are a
bottleneck for the efficiency of classical implicit integrators in beam analysis. Stiff shear
forces are represented by internal constraints [19, 20] that may be used as well to enforce a
beam’s inextensibility. These internal constraints are combined with a coarse-grid space dis-
cretization and result finally in a constrained system that is for typical application scenarios
nonstiff in its differential part.

The equations of motion of constrained mechanical systems form differential-algebraic
equations (DAEs) with Lagrange multipliers as algebraic variables that couple the con-
straints to the equilibrium equations for forces and moments [12, 13]. Following the ap-
proach of Brasey and Hairer [6], the equations of motion are transformed analytically before
half-explicit time discretization, resulting in the index-2 formulation with constraint equa-
tions at the level of velocity coordinates. In that way, the velocity vector is constrained to the
null space of the constraint Jacobian that is known from null-space approaches like the one
of Betsch [4]. In the context of Lie group time integration, these velocity constraints have
been used before in the RATTLie integrator [16] and in the application of generalized-α
methods to the stabilized index-2 formulation of the equations of motion [2].

The successful application of generalized-α and other Newmark-type Lie group integra-
tors in flexible multibody dynamics [7, 8, 12] relies on the specific Lie group structure of
the configuration space for mechanical systems with large rotations [22, 23]. The Lie group
setting is attractive in this context since it allows us to describe large rotations and the orien-
tation of bodies and flexible structures without any singularities [27]. The spaces one comes
across are the space of Special Orthogonal matrices SO(3) or the space of unit quaternions
S

3, their direct or semidirect product with R
3, and tensor products thereof.

The half-explicit Runge–Kutta Lie group integrator is tested for a geometrically exact
beam model that goes back to Lang and Linn [19, 20]. The space discretization follows the
variational integration approach of Hante [15, 17] with nodal variables (qi, xi) ∈ S

3
� R

3.
The semidirect product of S

3 and R
3 may be considered to be isomorphic to the Special

Euclidean group SE(3), taking into account that S3 is a double covering of the Special
Orthogonal group SO(3), i.e., q,−q ∈ S

3 represent the same rotation matrix R ∈ SO(3).
In the work of Munthe-Kaas [24], see also Iserles et al. [18], classical Runge–Kutta meth-

ods are generalized to Lie group integrators with the help of the exponential map that de-
fines local coordinates on the Lie group by a tangent space parametrization. The possibility
to work locally in the tangent space, which is a linear space with the well-known operations
among its elements, simplifies substantially the numerical solution of a system set in a Lie
group. The use of the exponential map assures that the numerical solution remains in the Lie
group, given that we work with local coordinates.

In a general Lie group setting, the construction and implementation of higher-order
Runge–Kutta Munthe-Kaas methods is challenging since they involve frequent evaluations
of matrix exponentials [21] and the approximation of its derivatives [24]. There are no such
problems in the application to SO(3) since Rodrigues’ formula allows us to evaluate the ex-
ponential map in closed form and a similar expression may be found for its derivative [18].
Park and Chung generalized this approach to the Special Euclidean group SE(3) and pointed
out that any classical explicit Runge–Kutta method may be generalized in that way to a Lie
group integrator on SE(3) with the same order of convergence [26]. Several recent studies
focus on the closed-form expression of the exponential map and its derivatives, as well as
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their efficient evaluation [15, 30, 32]. Additionally, one may be concerned with singularities
occurring at the origin, which are solved by extended investigation of the approximation of
the closed form by a Taylor polynomial [15, Appendix B].

The present paper considers nonstiff integrators that are a quasistandard in nonlinear
system dynamics, such as the default integrator ode45 in MATLAB’s ODE suite [28], ad-
dressing two main challenges: Nonlinear configuration spaces and constraints. We aim to
solve the former by introducing Lie group integrators and the latter by adapting the existing
numerical method of half-explicit Runge–Kutta type [6].

2 Half-explicit Runge–Kutta Lie group integrators

In the present section, we elaborate the definition of the method. In the early 1990s, Brasey
and Hairer introduced the half-explicit Runge–Kutta methods for semiexplicit index-2 DAEs
in Hessenberg form [6]. Some years later, Murua [25] and Arnold [1] proposed a modifica-
tion, which simplifies the order conditions of higher order methods and makes the approach
more efficient. In each time step, the methods start with an explicit stage and evaluate in all
later stages velocity vectors in the null space of the corresponding constraint Jacobians.

2.1 Equations of motion and local coordinates

First, we consider a flexible multibody system in the Lie group G := (S3
� R

3)N+1, with
N denoting the number of beam edges after space discretization [15]. The elements q ∈ G

have 7(N + 1) components: 4 for the orientation and 3 for the position of each frame that is
attached to one of the N + 1 nodes of this discretization. Let e be the identity element of the
Lie group G. We introduce the elements of the tangent space ṽ ∈ TeG, that summarize both
angular and translational velocity. The tangent space TeG at the identity element has been
identified with R

6(N+1) through an isomorphism called the tilde operator •̃ : R6(N+1) → TeG.
By the use of the previous elements, we set the equations of motion for a constrained

flexible multibody system as expressed in [7]:

q̇ = DLq(e) · ṽ (1a)

M(q)v̇ = −g(t, q,v) − B�(q)λ (1b)

0 = �(q), (1c)

where M(q) is the mass and inertia matrix, g(t, q,v) is the vector of external and internal
forces, and B(q) is the gradient of the constraint function at the position level �(q) in the
sense of [7, Eq. (9)]:

D�(q) · (DLq(e) · w̃
)= B(q)w, w ∈R

6(N+1). (2)

Equations (1a)–(1c) are the index-3 formulation of the equations of motion. The right-hand
side DLq(e) · ṽ of the kinematic equation (1a) evaluates at y = e the directional derivative
of the left translation Lq(y) = q ◦ y in the direction of ṽ ∈ TqG:

q̇(t) = lim
ε→0

q(t) ◦ exp
(
εṽ(t)

)− q(t)

ε
. (3)
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We can perform an index reduction by differentiating in time the constraints in Equation
(1c):

0 = d�

dt
(q(t)) = D�(q(t)) · q̇(t) = D�(q(t)) · (DLq(t)(e) · ṽ(t)) = B(q(t))v(t). (4)

The index-2 formulation of the equations of motion is

q̇ = DLq(e) · ṽ (5a)

M(q)v̇ = −g(t, q,v) − B�(q)λ (5b)

0 = B(q)v. (5c)

It is analytically equivalent to (1a)–(1c) and avoids the time-consuming evaluation of curva-
ture terms in the index-1 formulation of the equations of motion [31, 33].

Given the equations of motion, the solution in local coordinates, in the neighborhood of
t = tn, is

q(t) = q(tn) ◦ exp
(
θ̃n(t)

)
, (6)

where θn(t) denotes a local parametrization of the Lie group with θn(tn) = 0. Differentiating
(6) in time, the time derivative of q(t) is given by

q̇(t) = lim
ε→0

q(t + ε) − q(t)

ε
= lim

ε→0

q(tn) ◦ exp
(
θ̃n(t + ε)

)
− q(t)

ε
. (7)

Comparing this equation with (3), they have to coincide for finite ε up to higher-order terms:

q(t) ◦ exp
(
εṽ
)= q(tn) ◦ exp

(
θ̃n(t) + ε

˙̃θn(t)
)

+ o(ε). (8)

Given that

d

dε
exp

(
θ̃n(t) + ε

˙̃θn(t)
)∣∣
∣
ε=0

= exp
(
θ̃n(t)

)
dexp−θ̃n(t)

˙̃θn(t) (9)

with dexp−θ̃n(t) denoting the right trivialized differential of exp , see [18, Definition 2.18],
we obtain

q(tn) ◦ exp
(
θ̃n(t) + ε

˙̃θn(t)
)

= q(tn) ◦ exp
(
θ̃n(t)

)
◦ exp

(
ε dexp−θ̃n(t)

˙̃θn(t)
)

+ o(ε)

and (8) results in

ṽ(t) = dexp−θ̃n(t)
˙̃θn(t). (10)

For practical computations, the equivalent representation in terms of the tangent operator [7,
8] proves to be favorable:

v(t) = T(θn(t))θ̇n(t). (11)

The dexp operator may be evaluated in terms of iterations of the adjoint operator [18, Equa-
tion (2.44)] resulting in a series expansion of the tangent operator T, see [8], that may be
summarized to closed-form expressions for all Lie groups of practical relevance in multi-
body dynamics, see [18, 26] and the more detailed discussion in Sect. 2.3.
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2.2 Half-explicit Runge–Kutta Lie group methods

In classical Runge–Kutta methods, we use parameters aij , bj , ci , (i, j = 1, . . . , s) to build
stage vectors and numerical solution. In particular, we evaluate s stage vectors using aij ,
ci and we compute the numerical solution as a linear combination of the s stage vectors
weighted by the bj parameters. When using the half-explicit Runge–Kutta methods, we
may introduce more stage vectors (s̄ ≥ s), and use the notation bj = as+1,j , (j = 1, . . . , s).
In the Lie group integrator, the stage vectors are

Qni = qn ◦ exp
(
�̃ni

)
, �ni = h

i−1∑

j=1

aij�̇nj , Vni = vn + h

i−1∑

j=1

aij V̇nj , (12)

(i = 1, . . . , s̄ + 1),

with

�̇ni = T−1(�ni)Vni , (i = 1, . . . , s̄), (13a)

M(Qni)V̇ni = −g(tn + cih,Qni,Vni) − B�(Qni)�ni , (i = 1, . . . , s̄). (13b)

The first stage (i = 1) is explicit with

Qn1 = qn, �n1 = 0, Vn1 = vn, �n1 = λn.

For i = 2, . . . , s̄, we enforce the hidden constraints at velocity level (5c) for stage vectors
Qn,i+1, Vn,i+1 resulting in

0 = B(Qn,i+1)Vn,i+1 = B(Qn,i+1)(vn + h

i−1∑

j=1

ai+1,j V̇nj + hai+1,iV̇ni), (13c)

(i = 2, . . . , s̄).

Equations (13b) and (13c) form a system of linear equations in terms of �ni , V̇ni , (i =
2, . . . , s̄), that motivate the notation half-explicit for this class of time-integration meth-
ods [6]:

(
M(Qni) B�(Qni)

hai+1,iB(Qn,i+1) 0

)(
V̇ni

�ni

)
=
⎛

⎜
⎝

−g(tn + cih,Qni,Vni)

−B(Qn,i+1)(vn + h

i−1∑

j=1

ai+1,j V̇nj )

⎞

⎟
⎠

(i = 2, . . . , s̄). (14)

The total number of linear systems to be solved in each time step is s̄ − 1. Note that the half-
explicit approach avoids all iterations and does not rely on some kind of Newton–Raphson
method.

The updated solution at time step t = tn+1 is

qn+1 = Qn,s+1 = qn ◦ exp
(
�̃n,s+1

)
, vn+1 = Vn,s+1, λn+1 =

s̄∑

i=1

di�ni , (15)
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Table 1 Parameters of half-explicit methods up to order p = 5

Order 2,
s = s̄ = 2

0

1 1

1
2

1
2

d = (1/2,1/2)

Order 3,
s = s̄ = 3

0
1
2

1
2

2
3

2
9

4
9

1
4 0 3

4

d = (0,−2,3)

Order 4, s = 4, s̄ = 5

0

1 1

1
2

3
8

1
8

1 − 1
2 − 1

2 2

1 1
6 0 2

3
1
6

1
2 −

√
3

6 a61 0 a63 − 7
√

3
108

√
3

18

1
6 0 2

3
1
6 0

d5 = 1, di = 0, (i = 1, . . . ,4)

a61 = 1
6 −

√
3

108 , a63 = 1
3 − 4

√
3

27

Order 5, s = 6, s̄ = 7

0
1
5

1
5

3
10

3
40

9
40

4
5

44
45 − 56

15
32
9

8
9

19372
6561 − 25360

2187
64448
6561 − 212

729

1 9017
3168 − 355

33
46732
5247

49
176 − 5103

18656

1 35
384 0 500

1113
125
192 − 2187

6784
11
84

19
20 a81

59332529
14479296 a83

2763523204159
3289696051200 a85

46310205821
287848404480 − 3280

75413

35
384 0 500

1113
125
192 − 2187

6784
11
84 0

d7 = 1, di = 0, (i = 1, . . . ,6), i.e. λn+1 = �n7

a81 = − 18611506045861
19738176307200 , a83 = − 2509441598627

893904224850 , a85 = − 41262869588913
116235927142400

where dj are additional parameters for the computation of the Lagrange multipliers. Their
value, as for the other parameters, is set by order conditions and by a contractivity condition
to ensure zero stability. The method has been tested up to order five. We list in Table 1
the Butcher tableaux with parameters aij , (i = 1, . . . , s̄ + 1, j < i) for the implemented
methods [1].

In a local coordinates approach, the order analysis in [1], valid for linear spaces, appears
to be applicable also for nonlinear configuration spaces. In our case, the tests are performed
for the Lie groups SE(3) and SO(3) ×R

3 in Sect. 2.4 and for Lie group (S3
�R

3)N+1 for
the applications to beam dynamics.

2.3 Implementation issues

As stated in the previous subsection, the Lie groups of interest are SO(3), S3, their direct
or semidirect product with R

3, and tensor products thereof. Inspired by Rodrigues’ for-
mula [18]

expSO(3) (�̃) = I3 + sinω

ω
�̃ + 1 − cosω

ω2
�̃

2
, (16)
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we consider the closed-form expression, see, e.g., [5]

exp
S3 (�̃) =

[
cos ( ω

2 )
�
ω

sin ( ω
2 )

]
. (17)

Here and later in the current section, we set ω = ‖�‖2.
Following the approach of Hante [15], we consider the semidirect product S3

�R
3 that

introduces a coupling between the orientation and the position variables, which results in
the appearance of the tangent operator in the exponential map as it is known from SE(3).
Given v = [��,U�]�

exp
S3�R3 (ṽ) =

(
exp

S3 (�̃),T�
S3(�) · U

)
, (18)

where the tangent operator TS3(�) is

TS3(�) = I3 + cosω − 1

ω2
�̃ + ω − sinω

ω3
�̃

2
. (19)

At the same time, we need to specify the tangent operator on S
3
�R

3

TS3�R3(v) =
(

TS3(�) 0
C1(�,U) TS3(�)

)
, (20)

where the function C1(�,U) is

C1(�,U) = cosω − 1

ω2
Ũ + ω − sinω

ω3

(
Ũ�̃ + �̃Ũ

)
+

+ 2 − 2 cosω − ω sinω

ω4

(
��U

)
�̃+

− ω(2 + cosω) − 3 sinω

ω5

(
��U

)
�̃

2
.

In the space of interest for beam analysis G = (
S

3
�R

3
)N+1

, the exponential map and the
tangent operator are diagonal block matrices, where each block is of the form (18) and (20),
respectively.

We would like to remark that due to the form of the expression of the operators, one has to
consider alternatives for the singularities at � ≈ 0. In [15, Appendix B], a deep investigation
is performed to obtain the expression needed to have the numerical method without loss of
accuracy. In Table 2, we present a limited output of this study, focusing on the functions that
are needed in the group S

3
�R

3.

2.4 Case study

As a proof of concept, we refer to the classical benchmark of the heavy top. We use the
model as described in [3], where the orientation of the top is parameterized by rotation
matrices in SO(3).

The heavy top has a fixed point in the origin of the inertial frame and it is free to
rotate about that point. The motion under the influence of gravity is described via the
position of the center of mass in the inertial frame x ∈ R

3 and the orientation of the
body using a rotation matrix R ∈ SO(3), i.e., the variable q in Eq. (5a)–(5c) is q(t) =
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Table 2 Singular functions and their Taylor polynomials [15, Appendix B]

Function ω threshold Taylor polynomial

sinω
ω ω < 10−4 1 − ω2

6
cosω−1

ω2 ω < 10−2 − 1
2 + ω2

24 − ω4

720
ω−sinω

ω3 ω < 10−4 1
6 − ω2

120 + ω4

5040
2−2 cosω−ω sinω

ω4 ω < 10−1 1
12 − ω2

180 + ω4

6720 − ω6

453600
ω(2+cosω)−3 sinω

ω5 ω < 10−1 1
60 − ω2

1260 + ω4

60480 − ω6

4989600

Fig. 1 Heavy top modeled in SO(3) ×R
3. Convergence study for the variable at position level q (left plot)

and for the Lagrange multipliers λ (right plot). (Color figure online)

(R(t),x(t)). The data, omitting physical units, include the center of mass in the body-
attached frame X = (0,1,0)�, the mass m = 15.0, the inertia tensor w.r.t. the center of mass
J = diag(0.234375,0.46875,0.234375), and the constant gravitational acceleration vector
γ = (0,0,−9.81)�. The constraints at position level refer to the rotation about a fixed point,
which can be modeled with the constraint �(q) = R�x − X. As an initial configuration, we
set the rotation R(0) = I3 and the angular velocity �(0) = (0,150,−4.61538)� with initial
position and translational velocity consistent with the holonomic constraints at position level
and corresponding hidden constraints at velocity level. In Fig. 1 and Fig. 2, the proposed
numerical methods are applied to the heavy-top benchmark. In the plots, one may observe
that the expected order of convergence is preserved for the test cases in the Lie group setting.
Moreover, the same order of convergence applies also to the Lagrange multipliers λ, right
plots in Figs. 1 and 2. The experiment solves the system in its index-2 formulation, where
the constraints are at the velocity level. A known limitation is the risk of linear growth of
the residual in the holonomic constraints (drift-off ) and it appears to be group dependent.
One may observe in Fig. 3 that the choice of the Lie group determines the presence of the
drift-off. When using a direct product SO(3) ×R

3, the constraints at position level are not
completely satisfied and the numerical solution diverges systematically from the manifold of
constraints. On the contrary, for the semidirect product SE(3) := SO(3) �R

3 the solution
maintains the constraints both at position and velocity levels. This is in line with a detailed
theoretical analysis for other Lie group integrators [3, Sect. 3.6]. The drift-off effect will be
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Fig. 2 Heavy top modeled in SE(3). Convergence study for the variable at position level q (left plot) and for
the Lagrange multipliers λ (right plot). (Color figure online)

Fig. 3 Drift-off effect of the residual of the constraint at position level: SO(3) × R
3 (left plot) and SE(3)

(right plot)

further investigated in future research. It does not appear in the specific applications to beam
dynamics we are going to show later in the paper. In a direct comparison with the Lie group
DAE integrators that rely on the index-1 formulation of the equations of motion [31, 33], the
reduced risk of drift in the index-2 formulation (5a)–(5c) is a clear benefit of the proposed
method (12)–(14), see also [13, Theorem VII.2.1]. In the literature, the heavy-top bench-
mark is set in the direct or semidirect product of SO(3) and R

3. For the setting presented
in the current paper and for homogeneity with the following tests, we repeated the tests
with unit quaternions, i.e., in the spaces S3 × R

3 and S
3
�R

3. In Figs. 4 to 6, we obtained
qualitatively the same results, with a slightly larger error constant.
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Fig. 4 Heavy top modeled in S
3 ×R

3. Convergence study for the variable at position level q (left plot) and
for the Lagrange multipliers λ (right plot). (Color figure online)

Fig. 5 Heavy top modeled in S
3
�R

3. Convergence study for the variable at position level q (left plot) and
for the Lagrange multipliers λ (right plot). (Color figure online)

3 Error-controlled variable time step-size

In Sect. 2, we introduced a modified half-explicit Runge–Kutta method for Lie group set-
tings. In the current section, we are going to expand the study to variable time step-sizes.
The advantages of using an error-controlled variable time step-size are the reduction of the
computational time, obtaining at the same time a control over the error. In particular, when
solving the equations with fixed time steps, we do not know how well the simulation is per-
forming while it is running. For variable step sizes, we have to estimate the local error to
establish a new time step-size. The theory behind the approach used here can be found in
[14].
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Fig. 6 Drift-off effect of the residual of the constraint at position level: S3 ×R
3 (left plot) and S

3
�R

3 (right
plot)

3.1 Methodology

The main challenge is the estimation of the local error for the position variable. Since we
are working in a Lie group setting, the position variable, indicated before by q(t), cannot
be used in sums and differences as an element of a linear space. The decision we make is
to estimate the local error of the local parametrization θn(t). In this way, we are able to
use the established theory of embedded Runge–Kutta formulas [14]. To implement it, we
need to introduce a new variable, which does not lie in the Lie group, and for which we can
perform operations of sums and difference: y = (θ�,v�). Here, θ and v, as before, are the
local parametrization of the Lie group and the velocities, respectively.

Local error estimate First, we introduce the embedded Runge–Kutta formulas. At the same
time step, we are going to evaluate two numerical solutions obtained with two Runge–Kutta
methods with the same stage vectors Qni , �ni , Vni but different weights bi , such that we
obtain a first numerical approximation y1 of order p and a second numerical approximation
ŷ1 of order p̂. Usually, we have p̂ = p − 1 or p̂ = p + 1. The approximation y1 is used to
continue the integration, while the approximation ŷ1 is used to evaluate the estimate of the
local error. Given user-defined tolerances, the error indicator at time t = tn is

err =
√√√
√ 1

m

m∑

i=1

(
yn,i − ŷn,i

Atoli + max (|yn−1,i |, |yn,i |) · Rtoli

)2

, (21)

where m = 6(N + 1) is the number of components of the solution vectors, Atoli , Rtoli ,
(i = 1, . . . ,m) are vector-valued user-defined tolerances.

In the present paper, we implement the variable time step-size for embedded half-explicit
Runge–Kutta Lie group methods of the fifth order, using the scheme previously reported
with s = 6, s̄ = 7. The coefficients for the embedded method are those that are known from
the seminal work of Dormand and Prince [10]:

â81 = 5179/57600, â82 = 0, â83 = 7571/16695, â84 = 393/640,
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Fig. 7 Cosserat rod

â85 = −92097/339200, â86 = 187/2100, â87 = 1/40.

New time step-size After the local error estimate is evaluated, the value of the error indicator
err is compared with 1. If err ≤ 1, the computed step is accepted and the computation will
continue for the time step tn+2 = tn+1 + hnew. On the contrary, if err > 1, the computed step
is rejected and a new computation for the time step tn → tn+1 will be performed using a new
time step-size, i.e., tn+1 = tn + hnew. As one may observe, in both cases we need to compute
a new value for the time step-size. We are going to evaluate the new time step-size in terms
of the local error estimate, but we are going to use some multiplicative factors to avoid too
large a change in the step size from one step to the next. In particular, given the previous
time step-size h, the new one will be [14]

hnew = h · min
(
f acmax,max

(
f acmin,f ac · (1/err)1/(μ+1)

))
, (22)

where μ = min (p, p̂). We observe that for err > 1, (1/err) < 1 and the time step-size
will surely diminish, while for err ≤ 1 the new time step-size could still be smaller than
the previous one due to the role of the multiplicative factor f ac, which is set to be smaller
than one. Typical values of these factors are f ac = 0.8, f acmin = 0.2, and f acmax = 5.0,
see [14].

4 Applications to geometrically exact beam model

4.1 Roll-up and flying spaghetti

The numerical experiments in the present section are performed for Cosserat beams with
internal constraints. In detail, the geometrically exact model of a rod describes the rod as a
curve, the centerline C(s), parameterized by the curvilinear abscissa s, along which we posi-
tion the cross sections with a specific orientation dictated by the rotation matrix R(s) or the
unit quaternion p(s) [17, 19], which indicates the rotation of a body-fixed reference system
{e1, e2, e3} with respect to the inertial system {E1,E2,E3}. In Fig. 7a, we may observe the
model previously stated and in Fig. 7b the discretization in space is depicted. The discretiza-
tion of the beam is motivated by the staggered grid in [19], but only from a computational
point of view. In our practical applications, both the quaternions, indicating the orientation
of the cross section, and the position coordinates are set on the nodes of the discretization.
The methodology goes back to the work of Hante [15] and has been introduced in [17]. We
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Fig. 8 Cosserat-rod test cases

evaluate in the midpoints of the edges the spatial derivatives of the configuration variables

wi−1/2(t) = 1

�si−1/2
l̃og
(
q−1

i−1(t) ◦ qi(t)
)
, i = 1, . . . ,N, (23)

where N is the total number of discretization edges in which the beam is divided, s ∈ [0,L]
is the curvilinear abscissa, qi = (pi, xi) ∈ S

3
� R

3 and l̃og denotes the inverse of the ex-
ponential map with image in R

6(N+1). Finally, the trapezoidal and midpoint rule are used,
respectively, to discretize the kinetic and the potential energy.

The validation of the numerical method through numerical experiments is performed
with two test cases: the roll-up maneuver and the flying spaghetti. Both tests involve a con-
strained Cosserat rod as presented in [19], see also [17]. They go back to previous work of
Géradin and Cardona [11] and Simo and Vu-Quoc [29], respectively, and are fully described
in [15]. The roll-up maneuver was first introduced as a static benchmark problem [11] and
later its dynamics were studied [9].

The physical parameters involve the use of material parameters such as Young’s modulus
and geometric parameters such as the area of the cross section or inertia values in different
directions. In Table 3, we summarize these parameters, the initial conditions and the bound-
ary conditions for both experiments. We define d and a time-dependent input g(t) as

d =
⎡

⎣
−6
8
0

⎤

⎦ , g(t) =

⎧
⎪⎨

⎪⎩

200t/2.5, t ∈ [0,2.5]
200(5 − t)/2.5, t ∈ [2.5,5]
0, t > 5.

(24)

The roll-up maneuver experiment considers a rod, fixed at one of the ends and subject to
a moment on the other one, see Fig. 8a. The flying spaghetti, already introduced by [29],
on the contrary, does not have any Dirichlet boundary conditions, having both ends free,
but it has both a force and a momentum applied to one of its ends, see Fig. 8b. For both
test cases, the constraints arise from the use of the Kirchhoff model [19]. In particular, the
model avoids shear deformations of the cross sections, which remain perpendicular to the
centerline. The constraint at position level is

[
e�

1
e�

2

]
· �(s, t) = 0, (25)

where � is the material strain vector. Since we require (25), the first two components of �

need to vanish.
For the experiments, we apply the half-explicit Runge–Kutta Lie group methods de-

scribed in the sections above with coefficients that allow the methods to perform up to order
five, see Table 1. In Fig. 9, we observe the expected order of convergence for the method
applied to the roll-up maneuver test case with N = 8 edges and for the flying-spaghetti test
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Table 3 Physical parameters in dimensionless form, see [15]

Roll-up Flying spaghetti

L 10 10

N 8 16

ρ|A| 1 1

ρJ diag(10,10,10) diag(10,10,10)

CK diag(5 × 102,5 × 102,5 × 102) diag(5 × 102,5 × 102,5 × 102)

CK̇ diag(102,102,102) 0

C� diag(104,104,104) diag(104,104,104)

C�̇ diag(102,102,102) 0

p0(s)

[
cos (π/4)

sin (π/4)e3 × e1

] [
cos (π/4)

sin (π/4)e3 × (d/‖d‖2)

]

x0(s) se1

⎡

⎢
⎣

6

0

0

⎤

⎥
⎦+ s

L
d

fixed x0 yes no

fixed p0 yes no

fixed xN no no

fixed pN no no

Mex(t) 2π
CK

1,1
L

⎡

⎢
⎣

0

−1/2

−1

⎤

⎥
⎦g(t)

Fex(t) -

⎡

⎢
⎣

1/10

0

0

⎤

⎥
⎦g(t)

case with N = 16 edges. Here, the reference solutions for the two sets of tests are evalu-
ated with a finer time grid (href = 10−6), but maintaining the space grid fixed. We note that
the convergence properties of the method in the classical setting are maintained in the Lie
group setting. We now consider the solution of the two problems when using an algorithm
for variable time step-size. Here, we first observe the behavior of the local error for fixed
time step-size. In Fig. 10, the local error estimate ‖ŷ − y‖ is plotted vs. time for various
values of a fixed time step-size h. The left plot shows the local error estimate for the roll-
up maneuver test and we note that it decreases while reaching a more stable configuration.
On the other side, the flying-spaghetti plot shows more variations due to the nature of the
movement of the rod in this experiment. What we observe is how the local error estimates
change as a function of the fixed time step-size. In particular, given a fixed time step-size
h, the simulation is then performed two more times, once with time step-size 2h and once
with time step-size h/2. One may note that the local error estimate for the solution with time
step-size h is about 24+1 times larger than the local error for the solution with time step-size
h/2, similarly when computing the quotient between the local error for 2h and h. In fact,
the method we use to estimate the local error is of order four, and we know that

err = O(hp+1), (26)
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Fig. 9 Order of convergence (relative global error in the position variable vs. time step-size) for the roll-up
maneuver test case (left) and the flying spaghetti (right) solved with half-explicit Runge–Kutta Lie group
methods of order p ≤ 5. (Color figure online)

Fig. 10 Estimate of the local error indicator for fixed time step-size. On the x-axis there is the time t , on the
y-axis the variable err in logarithmic scale. (Color figure online)

where p is the order of the method.
We implemented the fifth-order method with variable step size and in Fig. 11 we observe

the results for both the roll-up maneuver and the flying-spaghetti example. In Fig. 11, the
simulations run in the time interval t ∈ [0,5] and we note that after a first time interval in
which the time step-size is comparable in size between the two test experiments, for t > 1 s
the step size increases substantially for the roll-up maneuver and remains bounded for the
flying spaghetti. The difference in the size of the time step could be explained by the nature
of the test case itself: In the flying spaghetti there is no equilibrium state that could be
reached, while for the roll-up maneuver the closed-ring position is an equilibrium point of
the motion. The increase in the time step-size could then be associated with the achieved
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Fig. 11 The blue lines represent the test data for the roll-up test with N = 8 edges, the red lines for the flying
spaghetti with N = 16 edges. The upper plot represents the trend in the variable err that is the estimate of the
local error against the user-defined tolerance Atol = 10−8 and Rtol = 10−6, the lower plot is the new time
step-size after each accepted step. (Color figure online)

Fig. 12 The blue line represents
the solution for the roll-up test
with bending stiffness
CK = 5 · 102, the orange line
represents the solution with
bending stiffness CK = 5 · 104.
(Color figure online)

equilibrium status. Other observations may regard the behavior in the change of time step-
size as a function of the variable err. When err decreases we note a spike in the step-size
sequence, since the error reaches lower values.

Figure 12 shows the difference in step-size history when increasing the bending stiffness
for the roll-up maneuver test setup. As expected, the step size increases towards the end of
the simulation, since the solution approaches a stationary state. The blue line correspond to
a value of the stiffness CK =diag(5 · 102,5 · 102,5 · 102), while the orange line corresponds
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to CK =diag(5 · 104,5 · 104,5 · 104). We observe that a smaller value of the stiffness will
make the numerical integration smoother, in the sense that the local error will have fewer
oscillations and the time step-size will have less variation. We note that when increasing
the stiffness, spikes in the local error will increase, which will require the decreasing of the
time step by quite a large factor. Those differences are not unexpected, on the contrary, we
know that stiffer systems may require smaller time step-sizes for their resolution if explicit
integrators are used.

5 Conclusion

The time integrator we introduced in the present paper shows favorable properties: Having
the structure of a half-explicit integrator, it does not need the use of a Newton–Raphson
method to solve possible nonlinear systems of equations, and being designed to maintain the
solution on the Lie group, it is advantageous for the evaluation of the solution of mechanical
systems subject to large rotations. We observed that the application of the Lie group does
not influence the stability behavior and the classical orders of convergence are preserved in
the corresponding Lie group integrator.

On the other hand, we extended the study to the control of the local error. The implemen-
tation of a variable time step-size is not only helpful to reduce the computing time, but also
to control the local error. The classical fifth-order explicit Runge–Kutta method of Dormand
and Prince [10] has been made available to a constrained system on Lie groups.
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