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Abstract

Problems from the science and engineering area come with challenging charac-
teristics: They are often high-dimensional, highly non-linear, and have not yet
been solved by humans due to their enormous complexity. While “black-box”
machine learning methods such as deep neural networks can achieve high ac-
curacies on such problems, the underlying relations remain opaque. However,
it is essential for experts in science and engineering to analyze and understand
the learned models. Symbolic regression (SR) is the construction of mathe-
matical expressions from data to identify the relation between input and target
variables. While traditional regression methods assume an underlying model
structure, SR learns both the model structure and its associated parameters.
Genetic programming (GP), a method from the family of evolutionary algo-
rithms, is a widely used method for SR, because of its “white box” nature and
its capability to optimize multiple objectives simultaneously. Often, domain
knowledge is available that can contribute to discovering novel symbolic mod-
els. The goal of this thesis is to develop symbolic regression algorithms that can
tackle complex science and engineering problems by making use of the valuable
knowledge provided by domain experts.
In the related literature, various approaches to integrating domain knowledge
into algorithms have been proposed and applied to real-world applications. This
thesis aims to close a gap in this field by outlining and classifying these methods.
Moreover, various techniques have been proposed to improve components of the
GP algorithm that are relevant in practice, some of which are further improved
upon in this thesis.
This thesis proposes two benchmark problems from robotics and fluid mechan-
ics, and establishes a comparative baseline to evaluate the efficacy of the newly
developed methods. To reduce the number of features of the high-dimensional
problems, an inductive bias fitting the nature of the problem is proposed. Given
the high complexity of the approached problems and the non-deterministic na-
ture of the GP algorithm, methods to improve the repetition stability of a
GP algorithm are additionally investigated. Furthermore, this thesis proposes
methods to fulfil important expert requirements, such as methods to handle
physical unit constraints. In this context, multi-objective optimization plays
a pivotal role, allowing for the exploration of a diverse set of solutions while
effectively optimizing multiple criteria. Empirical evaluations and case studies
considering various problems with both known and unknown equations from
the engineering and science area validate the proposed approaches. The results
demonstrate how domain knowledge can improve the accuracy of symbolic mod-
els, while tackling increased problem complexities and developing meaningful
equations for domain experts.
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Zusammenfassung

Probleme aus den Bereichen der Wissenschaft und des Ingenieurswesens weisen
anspruchsvolle Eigenschaften auf: Sie sind oft hochdimensional, in hohem Maße
nichtlinear und wurden aufgrund ihrer enormen Komplexität bisher von Men-
schen nicht gelöst. Während „Black-Box“-Methoden des maschinellen Lernens
wie tiefe neuronale Netze bei solchen Problemen hohe Genauigkeiten erreichen
können, bleiben die zugrunde liegenden Beziehungen undurchsichtig. Für Ex-
perten in Wissenschaft und Technik ist es jedoch unerlässlich, die gelernten
Modelle zu analysieren und zu verstehen. Symbolische Regression (SR) ist
die Konstruktion mathematischer Ausdrücke auf Grundlage von Daten, um
die Beziehung zwischen Eingabe- und Zielvariablen zu ermitteln. Während
traditionelle Regressionsmethoden von einer zugrunde liegenden Modellstruk-
tur ausgehen, lernt SR sowohl die Modellstruktur als auch die zugehörigen
Parameter. Genetische Programmierung (GP), eine Methode aus der Fami-
lie der Evolutionären Algorithmen, ist aufgrund ihrer „White-Box“-Natur und
der Fähigkeit, mehrere Zielfunktionen gleichzeitig zu optimieren, eine viel ver-
wendete Technik für SR. Oft ist Domänenwissen vorhanden, das zur Entdeck-
ung neuer symbolischer Modelle beitragen kann. Das Ziel dieser Arbeit ist
es, symbolische Regressionsalgorithmen zu entwickeln, die komplexe technische
und physikalische Probleme lösen können, indem sie das wertvolle Wissen von
Domänenexperten nutzen.
In der einschlägigen Literatur wurden verschiedene Ansätze zur Integration
von Domänenwissen in Algorithmen vorgeschlagen und auf reale Probleme
angewendet. Diese Arbeit soll eine Lücke in diesem Bereich schließen, in-
dem sie diese Methoden skizziert und klassifiziert. Darüber hinaus sind ver-
schiedene Techniken zur Verbesserung praxisrelevanter Komponenten des GP-
Algorithmus vorgeschlagen worden, von denen einige in dieser Arbeit weiter
verbessert werden.
In dieser Arbeit werden zwei Benchmark-Probleme aus der Robotik und der
Strömungsmechanik eingeführt und eine vergleichende Baseline erarbeitet, um
die Wirksamkeit der neu entwickelten Methoden zu bewerten. Um die Anzahl
der Variablen von hochdimensionalen Problemen zu reduzieren, wird ein in-
duktiver Bias vorgeschlagen, der zu der Natur des Problems passt. Angesichts
der hohen Komplexität der behandelten Probleme und der nicht determinis-
tischen Natur des GP-Algorithmus werden darüber hinaus Möglichkeiten zur
Verbesserung der Wiederholungsstabilität eines GP-Algorithmus untersucht.
Zudem werden in dieser Arbeit Methoden vorgeschlagen, um wichtige An-
forderungen von Experten zu erfüllen, wie z.B. Methoden zum Umgang mit
Nebenbedingungen durch physikalische Einheiten. Dabei spielt die multikri-
terielle Optimierung eine zentrale Rolle, die es ermöglicht, eine Vielzahl von
Lösungen zu untersuchen und gleichzeitig mehrere Zielfunktionen effektiv zu
optimieren. Empirische Auswertungen und Fallstudien zu verschiedenen Prob-
lemen mit bekannten und unbekannten Gleichungen aus dem ingenieurtechnis-
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chen und wissenschaftlichen Bereich validieren die vorgeschlagenen Ansätze.
Die Ergebnisse zeigen, wie Domänenwissen die Genauigkeit symbolischer Mod-
elle verbessern kann, während gleichzeitig eine höhere Problemkomplexität be-
wältigt und sinnvolle Gleichungen für Domänenexperten entwickelt werden.
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1 Introduction

1.1 Motivation

As the availability of datasets and computing power has increased over the last
decades, so has the need to understand and describe the underlying relation-
ships contained in such datasets. A central task in data analysis is regression:
finding a model that predicts a response variable from input variables. This
task is one of the most important in machine learning (ML) and has applica-
tions in a wide range of scientific disciplines, engineering, economics, finance,
industry, and healthcare — in fact, in all disciplines that seek to describe re-
ality using mathematical models. Many methods have been introduced in the
past for regression tasks, such as simple linear regression, multiple linear re-
gression, decision trees, Gaussian process regression, symbolic regression, as
well as artificial neural networks and deep learning. Some methods assume a
certain functional form a priori, which may be unsuitable for the problem at
hand, or have limited interpretability.
Science and engineering disciplines have a long history of empirical discov-
ery of equations with immense impact on today’s research. Important funda-
mental laws such as Kepler’s discovery of planetary orbits around the sun or
the Newtonian law of gravitation were developed empirically through iterative
measurements and trial and error on potential functions that describe the ob-
served behavior. Problems from the science and engineering area come with
challenging characteristics: they are often high-dimensional, have highly non-
linear underlying behavior, and sometimes only noisy measurements or data
are available. Many problems have not been solved yet by humans due to their
enormous complexity. However, domain knowledge about the underlying prob-
lem as well as the fundamentals of the discipline are often available, which can
be beneficial when solving more complicated problems.
When approaching such complex problems with regression algorithms, it is es-
sential for domain experts to analyze and understand the learned models, and
to avoid unexpected behaviors. To this end, combining ML techniques with do-
main knowledge is a promising approach. For “black-box” methods such as deep
learning, various techniques have been proposed to enforce desired behaviors in
the models [126]. While they can achieve high accuracies for such problems, the
underlying relationships remain opaque. Since it is impossible to test the entire
possible input space of variables to such a system, some level of uncertainty
in the behavior will always remain. Symbolic regression (SR), on the other
hand, is a method for modeling complex relationships between variables by
discovering the underlying mathematical expressions. SR algorithms are par-
ticularly useful when the functional relationship between variables is unknown
or cannot be easily modelled using traditional regression methods. Free-form
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Figure 1.1: The big picture of
this thesis. The contributions of

this thesis are located in the blue
intersected area.

equations are generated from data, which allow domain experts to analyze the
behavior of the underlying systems. The advantages of symbolic models over
traditional and “black box” regression models are obvious, but the path to de-
veloping a symbolic model can be cumbersome in practice. While the accuracy
of such models is obviously an important measure of quality, other character-
istics are also of practical importance. These include whether the expression
follows physical laws, whether it resembles the expected physical behavior, and
whether it contains components that have been used in expressions for similar
problems. In other words, symbolic models must not only be accurate, but also
satisfy certain constraints and be appropriate for the problem at hand. Several
criteria need to be met to achieve a useful result.
Genetic programming (GP) from the family of evolutionary algorithms (EAs)
is an established method for SR. Guiding the search with a heuristic method is
advantageous given the potentially huge search space of variable-length equa-
tions. GP allows for multi-objective optimization (MOO) to optimize multiple
criteria simultaneously while searching for equations. Rather than presenting a
single solution, this method allows evolving a set of optimal and near-optimal
solutions for domain experts to choose from.
The focus of this thesis is to bring together the three components introduced in
the previous paragraphs: the inclusion of domain knowledge in GP algorithms
to solve complex problems from science and engineering, which have a strong
requirement for symbolic models. Fig. 1.1 shows the intersection of research
areas in which the contributions of this thesis are located. Out-of-the-box GP
algorithms often do not provide satisfactory results in terms of accuracy or
interpretability, which can lead to reduced acceptance of such models.
To overcome this issue, this thesis introduces and classifies different levels of
domain knowledge, intending to improve the quality and usefulness of the re-
sulting models. For many scientific and engineering applications, such equa-
tions are only trustworthy and useful if they reflect certain physical properties.
In the further course of this thesis, algorithmic methods to supply domain
knowledge at different levels to the GP algorithm are presented. Being unre-
solved issues in practical applications, the focus is on inductive bias to break
down high-dimensional problems into smaller problems instances, as well as
constraint handling techniques for problem-dependent constraints. For trust-
worthy models, a high success rate over several repeated runs is furthermore
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desirable. The methods are showcased with unsolved problems from robotics
and fluid mechanics, but also consider other benchmark problems from thermo-
dynamics and datasets from known physics equations that have been discovered
empirically in the past.

1.2 Research Questions and Goals

The main goal of this thesis is to develop a class of learning algorithms based
on data from experiments on highly complex problems with unknown ground
truth, with the specific goal of integrating domain knowledge. The main pur-
pose of the integration of domain knowledge is to produce physically meaningful
equations. To achieve this goal, we apply algorithms to two problems from the
area of fluid mechanics and robotics. Both exhibit high-dimensional properties,
are currently not fully understood and resolved by humans, and provide reliable
data from simulations or experiments. These can be modelled as graphs, and
domain knowledge is available from experts in the fields. The availability and
quality of data are not a major concern of this thesis, as high-fidelity datasets
are available for both problems.
While these problems differ in their specific application area, they share cer-
tain characteristics. To significantly contribute to this field, it is important to
develop algorithms that are flexible enough for diverse applications, yet adapt-
able to problem-specific properties. Thus, a central goal of this thesis is to
develop methods to advance algorithms for SR problems in several aspects,
which generalize well across different problem domains, but also offer adapt-
ability to specific characteristics of certain problems. In this dissertation, we
aim to illustrate the algorithmic advancements on both problems. To this end,
this thesis addresses the following five research goals:

G 1: Develop algorithms that enhance the applicability and expressiveness of
GP for symbolic regression for graph-representable problems involving
physical measurements

G 2: Design benchmark problems from fluid mechanics and robotics with un-
known ground truth and varying complexities

G 3: Establish a comparative baseline on the defined benchmarks by applying
state-of-the-art GP algorithms to set a performance standard for advance-
ments presented later in this thesis

G 4: Assess methods to improve the repetition stability of a GP algorithm

G 5: Evaluate the effectiveness of the proposed enhancements and compare
them to the baseline

These research goals also outline the broad structure of this thesis. They re-
sulted in seven research questions, which emerged from the challenges faced
when applying state-of-the-art GP methods to identify meaningful and use-
ful equations with unknown ground truth but with available domain knowl-
edge. The first question concerns recent developments in the area of physics-
informed machine learning. Additionally , we will examine GP, focusing on
challenges when applied to real-world problems, as well as the integration of
domain knowledge for science and engineering problems.

RQ 1: Which techniques exist to develop symbolic models for problems from
science and engineering?

RQ 1.1: What are the current developments in the area of physics-informed
machine learning?
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RQ 1.2: What are the current challenges in GP for application to symbolic
regression problems, and how are they addressed?

RQ 1.3: How is domain knowledge integrated into state-of-the-art GP tech-
niques, and how can these techniques be classified?

This thesis studies the effectiveness of the proposed methods using two prob-
lems from real-world applications, one of which concerns the inverse kinematics
of robotic manipulators. While reliable methods exist for standard manipula-
tors, non-standard manipulators require more flexible approaches due to their
unique configurations and constraints, which often render traditional analyt-
ical solutions impractical or inaccurate. We address the following research
questions, aiming to identify symbolic models for the inverse kinematics of
arbitrary manipulators, with a focus on suitable objective functions and the
integration of domain knowledge:

RQ 2: How can symbolic models for the inverse kinematics of arbitrary robotic
manipulators be developed?

RQ 2.1: What are suitable objective functions to achieve physically mean-
ingful equations?

RQ 2.2: How do different types of domain knowledge integrated into the
algorithm influence its performance?

RQ 2.3: What are the limitations of this approach?

Another problem used as a case study in this thesis is from the area of fluid
mechanics, specifically the simulation of particle-laden flows, i.e., particles sus-
pended in a fluid flow. Predicting the velocity field and forces acting on a
particle in a flow involving more than one spherical particle remains an unre-
solved challenge in the literature. In the following research question, we assess
the performance of a GP algorithm with integrated building blocks as a type of
domain knowledge, and compare it against other methods from the literature.

RQ 3: How can symbolic models describing particle-laden flows be developed?

RQ 3.1: How can a GP algorithm benefit from building blocks provided by
domain experts?

RQ 3.2: How do the evolved symbolic models perform against state-of-the-
art baseline methods?

RQ 3.3: What are the limitations of this approach?

In practical applications, trustworthy algorithms are an important factor for the
acceptance of the developed solutions. For GP to be considered a trustworthy
tool, it is desirable for the algorithm to consistently deliver high-quality re-
sults across repeated runs. However, as evolutionary algorithms are inherently
stochastic, achieving deterministic outputs is unrealistic. Their search process
resembles a guided random walk through a vast search space, where results
can vary significantly between executions. Despite this inherent randomness,
it is possible to enhance the success rate of a GP algorithm, i.e., the likelihood
that it consistently recovers meaningful correlations or solutions across multi-
ple runs. Island models present a promising approach to this end. We address
the interplay between island models and multi-objective optimization in the
following research question:

RQ 4: Can the success rate of a GP algorithm be improved with island models?

RQ 4.1: How does the interplay between island models and multi-objective
optimization influence the final results?
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High-dimensional problems with large numbers of features present significant
challenges for GP, primarily due to the exponential growth of the search space
with an increasing number of features. While some studies define “large” as
more than 50 features [e.g., 296], even smaller sets with around 15 or more
features can significantly increase the difficulty for the algorithm to identify
meaningful correlations. Both case studies addressed in this thesis deal with
such problems, rendering them a challenging task for GP. However, both of
these problems can be represented as graph structures, which enables address-
ing them with graph neural networks (GNNs). Recent advances in GNNs as an
inductive bias for GP provide a promising method to tackle this issue by split-
ting the problems into smaller subproblems with smaller search spaces each [e.g.
60, 162]. Based on this, our research aims to explore the potential of GNNs as
an inductive bias within GP for high-dimensional, graph-representable prob-
lems, focusing on the following questions:

RQ 5: What is the potential of graph neural networks as an inductive bias for
GP to discover unknown symbolic models for high-dimensional problems
that can be modeled as graphs?

RQ 5.1: Can particle-laden flows be approximated with graph neural net-
works?

RQ 5.2: How do the resulting equations perform in terms of error and inter-
pretability?

RQ 5.3: Can the inverse kinematics problem be learned with graph neural
networks?

In science and engineering, problems are typically characterized by measure-
ments with well-defined units, such as length in meters or time in seconds. To
develop reliable symbolic models for these domains, GP must not only pro-
duce accurate results but also maintain unit consistency within its solutions.
Accurate equations for these problems typically require both the learning and
fitting of new constants and accordance with physical laws. Dimensional anal-
ysis enforces unit consistency in GP, helping to filter out nonphysical solutions
and ensuring interpretability by aligning each term with real-world measures.
New constants, however, have undetermined units, which complicates the di-
mensional analysis. The inclusion of free constants in dimensional analysis is
addressed in the following research questions, together with methods to handle
unit constraints within the algorithm.

RQ 6: How can unit-aware equations be developed that include free constants?

RQ 6.1: How can undetermined units of free constants be considered during
dimensional analysis?

RQ 6.2: What are suitable methods to handle unit constraints?

One major topic of this thesis is to develop algorithms that can be tailored to
specific problems and are also applicable to a wide range of application areas
with similar characteristics. Using the two case studies from fluid mechanics
and robotics, the last research question aims to assess the generalizability and
adaptability of our algorithms. A comparison with the baseline methods estab-
lished in RQ2 and RQ3, as well as identifying the limitations of these methods,
are the focus here.

RQ 7: Are the developed algorithms flexible to be applicable to a wide range of
problems and capable of being tailored to domain-specific characteristics
simultaneously?

RQ 7.1: How do the algorithmic advances presented in this thesis perform in
predicting particle-laden flows and inverse kinematics, compared to
the baseline methods?
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RQ 7.2: What are the limitations of these methods?

The broader implications of this thesis are to close existing practical application
gaps, and to improve GP for SR by addressing issues that are shortcomings in
the current frameworks and literature, but of high relevance in practice. The
ultimate goal is to develop models that are genuinely useful for domain experts
in situations where there is no established ground truth.

1.3 Structure of this Thesis

In the following, the structure of this thesis will be described. It is divided
into three parts, with the first part covering the background of this thesis,
including the motivation and research goals already discussed in this chapter,
as well as the fundamentals of ML and SR, with a special emphasis on GP, in
Chapter 2. Subsequently, Chapter 3 addresses RQ1 and covers research relevant
to the context of this thesis, specifically the application of ML algorithms to
problems from science and engineering, recent advances in the area, as well as
methods to integrate domain knowledge in GP algorithms.
In the second part, the two problems studied in this thesis from robotics
and fluid mechanics are introduced, and algorithmic baselines are established.
Chapter 4 addresses RQ2 and introduces the inverse kinematics problem for
arbitrary robotic manipulators. This chapter places great emphasis on the se-
lection of objective functions and the integration of domain knowledge, which
are of crucial importance in the context of developing useful symbolic models.
Chapter 5 discusses RQ3 and outlines the problem related to the simulation of
particle-laden flows. We examine how the use of expert-defined building blocks
influences the final result and compare against two widely accepted baseline
methods from fluid mechanics and machine learning.
In the third part of this thesis, the proposed algorithmic advances are presented,
targeting several aspects to improve GP algorithms for practical applications.
Chapter 6 addresses RQ4 and studies the interplay between island model GP
and multi-objective optimization, aiming at improving success rates of the algo-
rithm across several repeated runs. In Chapter 7, we discuss RQ5 and explore
the potential of GNNs as an inductive bias for GP, assessing their applicability
to problems with shared characteristics from different application areas. New
methods for unit-aware GP with free constants are introduced in Chapter 8,
addressing RQ6 and completing the machine learning pipeline proposed in this
thesis. We will apply the unit-aware GP approach to develop symbolic models
for both benchmark problems. Although partially touched on in the previous
chapters, Chapter 8 also addresses RQ7 and discusses the effectiveness of the
proposed machine learning pipeline for the problems arising from robotics and
fluid mechanics compared to the baseline methods introduced earlier.
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2 Scientific Fundamentals

This chapter introduces the basic scientific concepts that are essential for theChapter Structure
topics covered in this thesis. After an overview of machine learning meth-
ods and tasks, traditional regression methods are discussed. Furthermore, this
chapter covers artificial neural networks, with graph neural networks as a cat-
egory that is essential for the approaches presented in the course of this thesis.
The basics of evolutionary algorithms are then introduced, with a focus on
multi-objective optimization. Finally, the main concepts of genetic program-
ming are introduced, which is the underlying method for the symbolic regression
algorithms presented in this thesis.

2.1 Machine Learning

2.1.1 Machine Learning Methods and Tasks

Machine learning (ML) is an important part of the area of artificial intelli-
gence [237]. As the amount of data available has increased drastically over the
last decades, so has the requirement to process this data and generate knowl-
edge from it [6]. Following the widely used terminology of Mitchell, ML can be
defined as follows:
“A computer program is said to learn from experience E with respect to someMachine Learning Definition
class of tasks T and performance measure P , if its performance at tasks in T ,
as measured by P , improves with experience E.” [180]
A well-designed learning problem thus requires three components: a specific
task T , a performance measure P , and a type of training experience E. Conse-
quently, ML can be categorized into different types of learning, which are each
suitable for specific learning tasks. Classified by the type of learning feedback,
the most common ML types are supervised learning, unsupervised learning,
and reinforcement learning.
In supervised ML, the task T is to learn a mapping function f from inputsSupervised Machine Learning
x 2 X to outputs y 2 Y. The input is usually referred to as a feature, covariate
or predictor [190]. It typically constitutes a real-valued vector of dimensionality
or number of features D, so that X = RD The output, also called label or target,
is known. The experience E is defined as pairs of inputs and the respective
outputs, where the number of pairs N is called the sample size of a dataset.
Classification and regression are both supervised learning tasks. Classification
maps the input space to an output space consisting of unordered and mutually
exclusive labels, so that Y = {1, 2, . . . , C}. The task is to predict a discrete
class label. Regression is the task of predicting a continuous, real-valued target
quantity Y = R. The type of the output feature determines which performance
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measures P are suitable for the problem. The overall goal is to develop a general
model from a limited amount of data, which can be used to make predictions
in the future [181].
Unlike supervised learning, unsupervised learning methods are used when theUnsupervised Machine

Learning output is not known in advance. The goal or learning task T is to “make sense
of the data”, i.e., identify underlying patterns, hidden structures or rules. The
experience E typically refers to the raw input data without any labels or target
variables [190]. Such techniques are useful for exploratory data analysis of large
datasets. Density estimation or clustering and association rules are common
tasks approached with unsupervised learning. Furthermore, dimension reduc-
tion techniques are applied to high-dimensional input spaces to reduce the
dimensionality of the problem and capture the most essential characteristics of
the data. Evaluating the result of unsupervised learning using a performance
measure P is a complex task, as no ground truth is known [41].
Learning through interactions with the environment is the core idea behindReinforcement Learning
reinforceement learning (RL) [265]. An agent is tasked with learning how to
respond to an environmental state, or input x, by taking an action, which is
encoded through the policy a = ⇡(x) [190]. The learning experience E includes
the actions that the agent takes in the environment, the feedback it receives
for this action, and the policy update based on the feedback. The feedback can
be a reward or a penalty, depending on the positive or negative impact of the
action performed [6].
RL is suitable for a broad range of applications, such as game playing, navi-
gation and controlling tasks, as well as chatbots for conversations. However,
as Murphy points out, “it can be harder to make RL work” [190, Chapter 1.4],
with the main problem being that feedback is only given at specific time steps
or once a goal is reached. This makes it difficult for the algorithm to identify
which of the previous actions was the one that led to success. Overall, the
trial-and-error search and delayed rewards are the most distinguishing charac-
teristics of RL [265].
There exist multiple variations of these three ML types, including active learn-
ing, semi-supervised learning and transductive inference. The interested reader
may refer to [181, 190] for additional information.

2.1.2 Classical Regression Methods

Regression analysis is a fundamental supervised learning technique in ML. ItRegression Definition
involves modeling the relationship between one or more independent variables
and a dependent variable. The goal is to understand and predict the behavior
of the dependent variable [120].
Given one or multiple independent variables x, the goal is to predict the re-
sponse variable y as a function of x and the learned coefficients w, so that

y = f(x,w) + ✏. (2.1)

The error term ✏ in Eq. 2.1 denotes the variations in the data that cannot
be predicted by the model. It indicates the existence of hidden variables that
cannot be observed [6]. Regression techniques can be classified into linear and
non-linear methods.
In addition to the data, the components required for the design of a regression
algorithm, or an ML algorithm in general, include a model family, a cost func-
tion and an optimization algorithm [98, Chapter 5]. Often, the model family
and learning task already imply the use of specific cost functions and appropri-
ate optimization algorithms for the problem at hand. Further considerations
on the design of ML algorithm are presented in Sec. 2.1.4. In the following,
some classical regression methods are introduced. They can be broadly classi-
fied into parametric and non-parametric models. Parametric models generally
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contain a fixed and finite number of parameters, regardless of the dataset size.
Non-parametric models make fewer assumptions about the underlying distri-
butions and can adapt the number of parameters depending on the problem
and dataset size.

Linear Parametric Regression

The main characteristic of linear regression as used in this thesis is the assump-
tion of a linear relationship with respect to the parameters w.
Simple linear regression involves a linear combination of input variablesSimple Linear Regression

y(x,w) = wTx = w0 + w1x1 + · · · + wDxD (2.2)

with the parameter vector w = (w0, w1, . . . , wD), including the intercept w0,
and the feature vector x = (1, x1, . . . , xD) [22]. The simple linear regression
model is both linear regarding the parameters and the input variables. As a
strict linear relationship between input and output variables poses limitations
on the learned function, various adaptations of the simple linear model can be
made.
Polynomial regression functions are still linear with regard to the parameters,Polynomial Regression
but allow for nonlinear transformation of the input variables. The relationship
is modeled as a P th degree polynomial function of an independent variable
x [120].

y(x,w) = w0 + w1x + w2x
2 + w3x

3 + · · · + wPx
P (2.3)

With increasing degree P , the number of parameters increases accordingly.
In the general case, arbitrary nonlinear functions �, also referred to as basis
functions, can be applied to multiple input features x, resulting in

y(x,w) = wT�(x) =
M�1X

j=0

wj�j(x) (2.4)

where � = (1,�1, . . . ,�M�1) and w = (w0, . . . , wM�1) in the general case, with
the total number of parameters denoted by M [22]. In the context of polynomial
regression, the basis functions correspond to �(x) = (1, x, x2, . . . , xP ).
The goal of a regression algorithm is to tune the parameter values in a wayOrdinary Least Squares
that the distance between the function and the data samples is minimized [120].
The most widely used cost function to fit the parameters in a parametric linear
regression model is ordinary least squares (OLS). OLS minimizes the sum of
squared residuals (RSS), where the so-called residual "i is the squared difference
between the response variable yi and the prediction ŷi made by the linear model
on the input variables xi on the sample i within the dataset [190].

RSS =
NX

i=1

"2i =
NX

i=1

(yi � ŷi)
2 =

NX

i=1

�
yi �wTxi)

�2 (2.5)

The feature vector x in Eq. 2.5 can either represent the original features as
well as features that are transformed by a basis function �. Solving an OLS is
usually performed by setting the gradient of the RSS to zero and solving the
system of equations. Typically, OLS for linear models can be solved analytically
as it involves minimizing a convex, quadratic objective function with a closed-
form solution [22]. The OLS problem can be formulated in matrix notation and
solved with the help of linear algebra and the so-called normal equation. More
details on the used calculus and matrix transformation can be found in [190,
Chapter 11.2.2] and [120, Chapter 3].

11



Nonlinear Parametric Regression

To overcome the limited representation capacity of linear models, nonlinearAdvanced Regression
Techniques models can be used. These are nonlinear with respect to the parameters, i.e.,

go beyond linear combinations of terms [229]. Popular examples include the
exponential growth and decay model in Eq. 2.6, or the harmonic oscillator in
Eq. 2.7.

y(x,w) = w0 exp (w1x) (2.6)
y(✓,w) = w0 sin (w1✓ + w2) (2.7)

Further examples of parametric nonlinear models that are commonly used in
practice include the Michaelis-Menten kinetics, the logistic growth model, and
the van der Waals equation. In many scientific areas, ranging from physics
and engineering to economics and psychology, domain experts design custom
nonlinear functions to tailor a model to the characteristics of a dataset. This
allows to integrate domain knowledge, and model complex behaviors beyond
the classical nonlinear parametric models [227].
Once the shape of a model and the position of its coefficients are determined, theNonlinear Parameter Fitting
values of the coefficients are tuned using nonlinear regression algorithms. Next
to the previously introduced RSS, two common cost functions for regression
are the mean-squared error (MSE) and the mean absolute error (MAE).

MSE =
1

N

NX

1

(yi � ŷi)
2 (2.8)

MAE =
1

N

NX

1

|yi � ŷi| (2.9)

In the general case of arbitrary nonlinear functions, no analytical solution is
guaranteed for the parameter estimation. To overcome this issue, iterative nu-
merical optimization algorithms are often employed to identify model param-
eters that minimize the cost function. Prominent algorithms are gradient de-
scent (GD), the Newton-Rhapson method as well as the Levenberg-Marquardt
algorithm, which is specifically tailored to solve nonlinear least squares prob-
lems. Due to the nonlinear relations, two major challenges in fitting parameters
in a nonlinear model are the choice of the starting values of the parameter, as
well as convergence to a global rather than a local optimum. These are often
approached by sophisticated parameter initialization procedures and repeated
execution of the algorithm from different starting conditions. Other methods
for parameter estimation include maximum likelihood estimation (MLE) and
Bayesian inference, which also often involve numerical techniques, as well as
heuristic optimization algorithms like particle swarm optimization (PSO) and
genetic algorithms (GA). More detailed information on iterative algorithms for
nonlinear least squares can be found in [23, 193, 227].
Frequently used extensions of the least squares method to address the disad-Regularization Techniques
vantages of having many terms and coefficients in the regression model are
ridge regression and lasso regression. Ridge regression tunes the coefficients �
so that the RSS (or any other cost function) with an added penalty term is
minimized, which reads as follows:

min

0

@RSS + �
pX

j=1

�2
j

1

A (2.10)
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The penalty term becomes less severe the closer �i gets to zero. The parameter
� > 0 is called the shrinkage parameter and is determined beforehand [120].
It regularizes the impact of the penalty in relation to the RSS. Depending on
the choice of �, different estimates for the coefficients � are produced. Overall,
this shrinkage method is used to obtain smaller, but non-zero coefficient values,
which is expected to reduce the model variance, especially as the number of
predictors approaches the number of data samples.
Lasso regression uses a similar penalty term as ridge regression.

min

0

@RSS + �
pX

j=1

|�i|

1

A (2.11)

The absolute value of the coefficients in the penalty term forces some coefficients
to be equal to zero. In this way, the overall model size can be reduced by
eliminating all terms which are multiplied by zero. This results in more spare
models compared to the ones generated with ridge regression [120].
A multilayer perceptron (MLP) is a special case of parametric nonlinear modelMultilayer Perceptron

Regression and has become a powerful and predominant regression method for complex
nonlinear problems. MLPs are inspired by the biology of the human brain.
The smallest unit of an MLP is a single perceptron, which is connected to
other perceptrons by links. Each perceptron aggregates its inputs and applies
a usually nonlinear activation function to it. The hierarchical structure with
multiple layers (depth) of a certain number of perceptrons (width) each and
the links between them results in a complex artificial neural network (ANN)
architecture.
Parametric regression models as introduced at the beginning of this subsection
can be considered “white-box” models, i.e., they are based on mathematical
equations that are transparent regarding the nonlinear transformation applied
to the input variables. ANNs, on the other hand, are often classified as “black-
box” models, as they involve complex architectures and transformations that
are more difficult to interpret. However, these characteristics enable ANNs
to perform particularly good at capturing complex patterns and nonlinearities
within data. Sec. 2.2 provides more detailed insights into the principles of
ANNs.

Non-parametric Regression

Other than the previously introduced parametric models, non-parametric mod-
els are more flexible in their functional form, and the number of parameters
can grow with the size of the dataset. Examples for non-parametric nonlinear
models include Kernel methods [251] such as support vector regression [277],
as well as Gaussian process regression [217].
Support vector machines (SVM) were originally proposed for classification prob-Support Vector Regression
lems, with the idea of separating two classes by maximizing the margin between
a hyperplane and the closest data point. The extension to support vector regres-
sion (SVR) was proposed in [277], intending to minimize the prediction error
between the data samples and the computed hyperplane within a predefined
margin. An SVR model takes on the form

Y = �0 +
X

n:↵n>0

↵nK(xn,x) (2.12)

where K(xn,x) is the so-called Kernel function [190]. A Kernel function maps
data points into a higher dimensional space, intending to capture complex
patterns between the input and response variables. Kernel functions can apply
linear as well as nonlinear transformation, as a collection of popular regression
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Kernels in [277, 251, 184] shows. In this thesis, we are mainly concerned with
the design of algorithms to develop nonlinear parametric models. However, as
also the influence of domain knowledge is an important topic in this thesis, the
example of SVR for kernel-based methods demonstrates that expert knowledge
is essential across various applications.
This section introduced the fundamental and most relevant regression methods
for the further course of this thesis. However, the area of regression methods is
huge, with each method featuring special characteristics and application areas.
For a more profound understanding of the presented as well as further methods,
the interested reader may refer to [120, 181, 190].

2.1.3 Symbolic Regression

The choice of a model type in classical regression has an enormous impact onThe Core Idea
its performance. For decades, and still nowadays, many equations in science,
engineering, physics, economics and various other disciplines are developed by
hand from observations about systems. This process typically involves several
iterations of adapting an initial guess model to better fit the data. Famous
fundamental physics principles such as Kepler’s discovery of planetary orbits
around the sun or the Newtonian law of gravitation were developed empirically
through iterative measurements and trial and error on potential functions that
describe the observed behavior. Symbolic regression (SR), on the other hand,
makes learning a proper model structure part of the learning task. Other than
classical regression methods, no functional form is assumed beforehand, which
makes the algorithms very flexible in terms of application areas. At the same
time, the search is slowed down by the need to fit not only the parameters
as in classical regression, but also to vary over the model structure, which
theoretically spans an infinite number of possible model structures.
The first programs for automated symbolic regression were developed in 1977History and Development
with the introduction of a tool named BACON [159]. The use of genetic algo-
rithms and specifically genetic programming for symbolic regression was first
proposed by Koza in 1992 [140]. Evolutionary methods are probably the most
intensively studied algorithms for symbolic regression, and therefore also the
main focus of this thesis. Sec. 2.4 gives an overview of the fundamentals of
genetic programming algorithms for symbolic regression. More recent develop-
ments in this area are covered in Sec. 3.2.4 and 3.3.
A classification of mathematical model types relevant to science and engineer-Symbolic Model Types
ing can be found in [227, Chapter 2]. This thesis contributes to the development
of algorithms that identify symbolic models that are on the spectrum between
empirical and phenomenological models. While empirical equations are purely
data-driven and used to make predictions in the future, phenomenological mod-
els usually incorporate theoretical insights in the modeling process and aim to
provide a more profound understanding of the underlying patterns [227]. When
domain knowledge and data is available, the developed models lie between these
two extremes.

2.1.4 Design Decisions for Regression

This thesis is concerned with regression problems and models. Therefore, this
section discusses high-level design decisions that must be considered to ap-
proach a regression problem.
A regression model maps a set of input features to a real-valued output spaceChoice of Model
y 2 R. Choosing an appropriate underlying model to solve a regression problem
is a non-trivial task, as the big variety of available models, some of which were
introduced previously, indicates. Given a hypothesis class H, a hypothesis, or
function h 2 H is chosen by a learning algorithm using the training set [6].
The hypothesis class H determines the underlying model [181], for example a
linear model or a polynomial model of a specific degree. The decision about a
hypothesis class is made at the design step of the ML system. Each hypothesis
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Figure 2.1: Polynomials of
different degrees fitted through

data points. The lower right
subplot depicts the MSE values

of training and test datasets over
increasing polynomial degrees.

Code to generate the plots
inspired by the codebase [191]

related to [190].

(a) (b)

(c) (d)

can be approximated by various learning algorithms which tune the hypothesis
parameters. Every learning algorithm comprises hyperparameters which are
determined beforehand.
According to the “no free lunch” theorem, there is no single best model that
performs best across all problem domains [294]. Many models assume a certain
functional form beforehand, such as linear regression, which will always produce
a linear output. This so-called inductive bias is a prior assumption about
the model type that is expected to work well on a specific problem. If this
assumption proves incorrect, the performance may suffer. Even within the same
model family, different configurations may perform better or worse, depending
on the choice of learning algorithm and hyperparameters [181]. Fig. 2.1(a)-(c)
shows how polynomials of different degrees are fitted through a set of data
points. It becomes apparent that the degree of the polynomial determines how
well the curve fits the data and how much the curve adapts to the variations
in the data points.
Next to trial and error, a fitting model type can be identified by making use
of the available domain knowledge [6, 190]. This is also reflected in the phrase
“all models are wrong, but some models are useful”, which is attributed to the
statistician George Box [27]. Models are always “wrong” as they are only an
abstraction of reality. However, if the model type, or inductive bias, is chosen
properly, the resulting model can be useful in practice.
The performance measure P reports how well a model predicts the target fea-Performance Assessment
tures. Rather than maximizing the accuracy, regression algorithms usually
minimize the prediction error [120]. The most commonly used error measure
for regression tasks is the mean-squared error from Eq. 2.8. It averages the
squared residual between the target value yi and the predicted value f(xi) over
the number of data samples N .
The rooted mean squared error (RMSE) is an alternative measure, which offers
the advantage that the error has the same unit as the target variable.
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RMSE =

vuut 1

N

NX

1

(yi � ŷi)2 (2.13)

The coefficient of determination (R2) describes how well a model predicts the
response variable compared to a simple prediction equal to the mean value of
the response variable.

R2 = 1�
RSS

TSS
= 1�

PN
n=1 (ŷn � yn)2

PN
n=1 (ȳn � yn)2

(2.14)

with ȳn = 1
N

PN
n=1 yn referring to the mean of the response variable and TSS

is the total sum of squares. A perfect fit has a value of R2 = 1, as the RSS will
be equal to 0.
The process of learning a model from data is typically split into training andData Handling, Generalization,

and Overfitting testing phases. To this end, the data is typically split into three distinct sets:
train, validation and test. The train and validation sets are considered during
the training phase, where the learning algorithm adapts the model to fit the
observations from the training dataset. Simultaneously, the performance on the
validation set is computed, with the primary purpose of preventing overfitting
and ensuring generalization. Generalization is an important characteristic of
a good model, since the goal is not to fit the training data perfectly, but to
use the learned model for future predictions on input data distinct from the
training data [237]. When the performance on the training and validation sets
diverge, i.e., the training performance improves, but the validation performance
deteriorates, this is usually a sign of overfitting to the training data [190]. While
the training data is learned well, the performance on unseen samples is poor. In
an extreme case, one could use a ten-degree polynomial to fit a curve through
a dataset with N = 10 samples. While the training error would be equal
to zero, the test error will most likely be high. Instead of understanding an
underlying trend in the data, the model learns the data samples themselves.
This is an undesired behavior because generalization suffers. As Fig. 2.1d
indicates, the training error decreases with increasing polynomial degree. At
the same time, the validation error increases, which indicates overfitting and
bad generalization. For this specific example, a quadratic polynomial model
would be the best choice. Once training and validation are finished, the test
dataset, also referred to as the holdout set, is used as a benchmark to evaluate
the predictive capabilities of the model on unseen data.
Fig. 2.2 displays Anscombe’s quartet, which is an often referred to set of fourThe Power of Visualization
datasets which produce the same linear fit on different data distributions [190].
All datasets share the same statistics, i.e., mean values with respect to the
x and y variables. While the linear regression model on the first dataset fits
the data samples very well, the second dataset indicates how a straight line is
not a good fit for the underlying nonlinear distribution. Datasets three and
four demonstrate how a single data sample can influence the overall regression
model, with the fourth dataset showing how a so-called outlier with a large
distance to the other samples produces an unexpected result when the data is
visualized.
This example demonstrates that, in many cases, pure statistical analysis is
insufficient for producing a satisfactory fit of a regression model. It also illus-
trates the value of data visualization in providing insights into the underlying
distributions.
In addition to good accuracy and generalization, the interpretability of a modelModel Interpretability vs.

Prediction Accuracy is an important factor in practice [120]. In scientific research, regression meth-
ods are commonly used for model inference, i.e., the goal is to understand the
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Figure 2.2: Anscombe’s quartet
shows how different data

distributions create the same
linear fit. Code to generate the

plots inspired by the
codebase [191] related to [190].

(a) (b)

(c) (d)

underlying relationships and causal mechanisms within the data. To this end,
inferential models often prioritize simplicity and interpretability, rather than
solely focusing on predictive accuracy. Intuitively, humans perceive simpler
models as more interpretable [237]. However, more complex models tend to be
more accurate, as the previous example with high-degree polynomials demon-
strated. While the definition of simplicity is not straightforward, it can be
argued that a tenth degree polynomial model is more complex than a simple
linear model. Thus, if two models explain the data equally well and model m1

is less complex than model m2, the simpler model m1 is preferred. This princi-
ple is also known as Occam’s razor [190] (or Ockham’s razor [237]). Simplicity
is not only in the interest of interpretability, but also to avoid overfitting.

2.2 Artificial Neural Networks

ANNs have become a fundamental component of modern ML, due to their
flexibility in terms of architectures and tasks that can be approached. Multi-
layer feedforward networks are regarded as universal approximators [117], as
they can approximate any (highly nonlinear) underlying relation between vari-
ables with a certain precision, if the model architecture fits the complexity
of the problem. Different architectures have emerged over time, such as con-
volutional neural networks (CNNs), which are particularly powerful at image
classification [160], recurrent neural networks (RNNs) for processing sequen-
tial data [112], as well as graph neural networks (GNNs) [244], which operate
on graph-like structured data. These, and even more advanced architectures,
share the same fundamental principles, which will be introduced subsequently.

2.2.1 Multilayer Perceptrons

As mentioned earlier, linear regression models have the disadvantage that theyThe Core Idea
cannot fit any (non-linear) relationship between two or more variables. A
potential way to overcome this issue is to apply a non-linear mapping �(X) to
the input X rather than learning the model on X. This technique is applied
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in the previously introduced SVR using the kernel K, as well as nonlinear
transformations of input variables as in Eq. 2.4. However, the choice of K, or
� in the general case, has a high influence on the performance. The idea of
ANNs is to overcome this issue by learning � from a broad function family, so
that

y = f(X; ✓,!) (2.15)

where ✓ are the parameters to learn � = f(X, ✓), and the parameters ! map
from � to the output y [98]. Although ✓ and ! have different roles theoretically,
in practice, they are both learned together and play analogous roles to weights
and biases in the network. For the sake of simplicity, we will conflate the
parameters ✓ and ! as weights w and biases b, independent of the position
within the network.
An MLP, as originally proposed by Rosenblatt [233], comprises an input layer,Network Structure
one or multiple hidden layers as well as an output layer, which are stacked
upon each other. A feedforward neural network (FFNN) is a directed acyclic
graph of nodes (or neurons) and edges between them. FFNNs predict the
target variable by propagating inputs through the hidden layers to the outputs
in a single forward pass, without any feedback loops from the outputs back to
the inputs. In a fully connected neural network (FCNN), each neuron in the
previous layer has an edge to all neurons in the next layer [1].
The number of layers ` 2 {1..L} determines the depth of a network. Each
layer ` consists of K` neurons, which is referred to as the width of a layer.
The input to a neuron is a weighted sum of the outputs of the connected
neurons from the previous layer. A bias term b`k can optionally be added to
the weighted sum, which shifts the input sum by a constant value. Each neuron
comprises an activation function ', which applies a nonlinear transformation
to the input [95]. Thus, the output of a neuron h located at a position k in a
layer ` can be written as

h`k = '`

0

@b`k +

K`�1X

j=1

w`kjh`�1,j

1

A (2.16)

where w`kj refers to the weight at the edge between the output of a neuron j
in layer ` � 1 and a neuron k in layer ` [190]. Fig. 2.3 illustrates how inputs
are aggregated and passed through a general MLP architecture.
The mapping function � of an MLP thus can be decomposed into a stack of
multiple simpler functions, so that

�(X; ✓) = fL(fL�1(. . . f1(X) . . . )) (2.17)

where f`(X) = f(X; ✓`) is the function at layer `.
Introducing nonlinearities is a key feature of MLPs [1]. Different types ofTypes of Activation Functions
activation functions ' are used in practice, depending on the problem at hand.
Common activation functions include the sigmoid function �(x) 2 (0, 1)1, which
scales values between zero and one. The hyperbolic tangent tanh(x) generated
values tanh(x) 2 (�1, 1). The rectified linear unit (ReLU) is a linear function
for x > 0, and equal to zero for x  0, so that ReLU(x) 2 [0,1) [98].

1. Round brackets indicate an open interval, where endpoints are not included in the in-

terval, and square brackets a closed interval with included endpoints.
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Figure 2.3: An MLP with full
connections between all layers.
For the sake of clarity, only the

connections from the input layer
to the last neuron in the first

hidden layer, as well as the
connections from the last hidden

layer to the last output neuron
are illustrated with their

respective weights w`kj and
biases b`k. The subscripts refer

to the neuron k within the
layer `, as well as the position j

of the connecting neuron from
layer `� 1. Blue neurons in the

hidden layers apply an activation
function '.

�(x) =
1

1 + e�x
, (2.18)

tanh(x) =
ex � e�x

ex + e�x
(2.19)

ReLU(x) = max(0, x) (2.20)

The output of an MLP is computed in a single forward pass from the inputTraining with Backpropagation
layer, through the hidden layers, to the output layer. A cost function J(✓)
considers the error between the predictions ŷ and the target values y, as well as
optional regularization of the parameters ✓. During training, the parameters ✓,
constituting the weights w and biases b, of the MLP are adapted to fit the data
points, i.e., minimize the cost function J(✓). The backpropagation algorithm
was proposed in 1986 by [235] for efficient parameter adaptation. It involves
the calculation of the gradient of the cost function r✓J(✓) with respect to the
parameters ✓. The chain rule of calculus is recursively applied to propagate the
gradient back through the network layers. Typically, gradient descent is used
to learn from the gradient and update the parameter values [98]. A mini-batch
version of GD is commonly applied, where predictions are made on a subset
of the dataset, which has a batch size B. This is considered a good trade-
off between the fast computations of stochastic gradient descent (SGD), which
uses single data points, and batch training considering the entire dataset for
one parameter update step. The overall algorithm thus constitutes a forward
pass to make predictions and compute a cost function, a backward pass in
reverse through all layers to measure the contributions of each parameter to
the cost function, and using this information for parameter tweaking [95]. A
more detailed formulation of the MLP training algorithm is provided in [98,
Chapter 6].
The architecture and design of an MLP determines how well the mappingRegression MLP Design

Decisions �(X, ✓) can be learned to fit the data. Deeper networks with more hidden
layers are capable of extracting more complex features from the data. Wider
networks can be effective for problems where relationships in the data are less
hierarchical and more parallel, allowing the network to capture various aspects
of the data simultaneously. For regression tasks, the output neurons typically
do not apply an activation function to avoid restricting the output value range.
The MSE is usually used as the cost function, with optional regularization
terms as introduced in Sec. 2.1.4. Further design decisions include the learning
rate ⌘, which determines the which determines the step size for each iteration
during the optimization process and the batch size B of mini-batch training. A
non-exhaustive list of common issues in training MLPs includes vanishing and
exploding gradients, overfitting and underfitting, as well as working with noisy
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and imbalanced data. They can be addressed with further tuning techniques
such as sophisticated weight initialization, batch normalization, additional reg-
ularization methods, adaptive learning rate methods, dropout, early stopping,
or data augmentation. These are explained in more detail in [22, 98, 95].

2.2.2 Graph Neural Networks

Graphs are an omnipresent data structure and can be used to describe various
systems and relations between entities. GNNs are specifically tailored to handle
data represented in graph structures, where nodes represent entities and edges
represent relationships between them. GNNs have gained significant attention
recently for their effectiveness in tasks involving relational data, such as social
network analysis, recommendation systems, and molecular property prediction.
A graph G(V,E) consists of a non-empty finite set of vertices V (G), also re-Graph Theory
ferred to as nodes, and edges E(G) connecting the vertices. An edge {v, v0

}

is represented as a pair of elements of V (G). For undirected graphs, the pair
of vertices is unordered. To the contrary, directed graphs contain an ordered
pair of vertices to define an edge from a vertex v to a vertex v0 [293]. While
simple graphs only allow one edge between two distinct vertices, multi-graphs
can include self-loops, as well as multiple edges between the same pair of ver-
tices. Weighted graphs have a weight or cost assigned to each edge, denoted
by w(e). The degree of a vertex deg(v) counts the number of edges connected
to that vertex. For directed graphs, the number of ingoing edges is defined
as deg�(v), and the outgoing edges as deg+(v). A common representation of
the edges of a graph is the adjacency matrix. For a graph with n nodes, the
adjacency matrix is a square matrix of size n⇥ n. An entry of 1 at a position
i, j in the matrix indicates an edge between the vertices i and j, 0 indicates no
edge. As this representation can grow huge with many vertices in a graph, the
edge list is a more concise representation of the same. It is a list of vertex pairs
that are connected by an edge, which is especially useful to represent sparse
graphs with few edges [155].
Different types of models from the GNN family have been explored in theGraph Structures for Neural

Networks past [e.g. 19, 99, 244]. The message passing neural networks (MPNNs) frame-
work as introduced by Gilmer et al. in 2017 consolidates some previous GNN
architectures [96]. Battaglia et al. further generalize and extend this framework
for applicability to a broader range of domains [18]. We use their definition of
MPNNs in this thesis.
The general GNN block as proposed in [18] is based on directed multi-graphs
with attributes at different levels. The previously introduced definition of a
graph is extended to a 3-tuple G = (u, V, E). It constitutes the following ele-
ments:

• u represents global or universal properties. Using the example of a mass-
spring system, where each mass object is modeled as a node, and the
connecting springs as edges, a universal property can be the gravitational
field in which the system is placed.

• V = {vi}i=1:Nv is the set of nodes, which describe entities. The total
number of nodes in the graph is Nv. vi are the node features, which
describe properties such as mass, position, or velocity of the mass objects
in the mass-spring system.

• E = {(ek, rk, sk)}k=1:Ne is the set of edges, describing relations between
entities. Ne represents the number of edges in the graph. ek contains
the edge features, such as the spring constant of the connecting springs
in the mass-spring system. An edge connects the receiver node with the
index rk to the sender node sk.

The generalized GNN block is flexible in terms of its structure and function
configurations so that it can be adapted to different purposes. In this thesis,
we are mainly concerned with MPNNs.
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Figure 2.4: One update step of
an MPNN on a graph with three

nodes and mutual neighboring
connections. Figure inspired by a

similar illustration in [60].

The main idea behind message passing is to iteratively update the represen-Message Passing Neural
Networks tation of each node by aggregating information transferred through messages

from its neighboring nodes. This approach allows each node to incorporate
local structural information and features from its surrounding nodes, enabling
the network to learn complex dependencies and patterns within the graph. It
does that by performing consecutive steps of message computation, aggrega-
tion, and node update.

mi,j = �e(vi,vj , ei,j) message computation (2.21)
mj = ⇢e!v({mi,j}i2N (j)) message aggregation (2.22)
v0
j = �v(vj ,mj) node update (2.23)
v̄0 = ⇢v!u ({v0

i}i=1:Nv ) node aggregation (2.24)
u0 = �u (v̄0) universal property update (2.25)

The feature vectors vi and vj of nodes i and j, as well as the feature vector
ei,j of the edge between nodes i and j are the input to the edge model �e.
It computes a message vector mi,j sent from node i to node j in Eq. 2.21.
The incoming messages of a node j, sent from nodes in its neighborhood N (j),
are aggregated in Eq. 2.22 using the aggregation function ⇢e!v. In MPNNs,
typically elementwise summation is applied, so that ⇢e!v =

P
i2N (j) mi,j . The

aggregated message vector mj , as well as the current node state vj , are the
input to the node model �v to compute the updated node v0

j (Eq. 2.23). The
aggregated global node feature vector v̄0 is obtained by aggregating the updated
feature vectors of all nodes in the graph (Eq. 2.24). These are used to compute
the updated global property u0 using the global model �u (Eq. 2.25). They
represent features or attributes that describe the entire graph.
For many systems, including the ones addressed in this thesis, computations on
the edge and node level suffice, i.e., the update step is complete once Eq. 2.23
is executed. Fig. 2.4 illustrates the principles of MPNNs using the example of
a graph with three nodes and mutual pairwise interactions. Both �e and �n

use shared parameters for all message computations and node updates.
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2.3 Evolutionary Algorithms

The field of evolutionary computation (EC) unites nature-inspired algorithms,
with the two main categories of evolutionary algorithms (EAs) and swarm in-
telligence (SI). SI algorithms are inspired by the self-organized, decentralized
collective behavior which is often encountered in swarm-like structures in na-
ture, such as birds flocks, ant colonies or fish schools. Popular algorithms, for
instance particle swarm optimization [129] and ant colony optimization [72],
have emerged from this field. EAs make use of the Darwinian principle of sur-
vival of the fittest, and mimic evolution to find solutions to optimization and
search problems [147]. Multiple subcategories of EAs with different solution
representations each have evolved, namely evolutionary programming [89], evo-
lution strategies [20], genetic algorithms [113], and genetic programming [140].
The main topic of interest in this thesis is genetic programming, which stems
from the family of EAs. We will introduce the general principles of evolutionary
algorithms and the related field of multi-objective optimization, before deriving
the principles of genetic programming.

2.3.1 General Principles

Evolutionary algorithms are optimization techniques that belong to the familyMetaheuristics
of metaheuristic methods. Metaheuristics are applied when there is no effec-
tive solution to a complex problem. These methods typically do not find exact
solutions due to the high demand of computational time and power induced by
the complexity of the problem. Instead, they approximate “good enough” so-
lutions that can be obtained within acceptable computational time and power.
Although numerous techniques exist, all metaheuristics share a common un-
derlying principle: the incorporation of random elements, coupled with the
implementation of certain guidance measures that direct the solution space,
based on the quality of the available solutions. In this way, they balance ex-
ploration, i.e., diversity in the solution space, and exploitation, which leverages
known solutions to improve them further [147, Chapter 11.1].
The core idea of EAs is that an initially randomly generated population of µAlgorithmic Procedure
solutions improves its quality by imitating evolutionary behavior over several
iterations. First, an initially random population of individuals is sampled from
the search space. Their quality is evaluated using a problem-dependent fit-
ness function. New solutions are created by selecting the best solutions per
generation, the so-called mating selection, and applying genetic operators in a
recombination procedure to obtain � children. Individuals with higher fitness
are preferred, following the assumption these have valuable characteristics that
are well adapted to the environment and worth passing on to the next gen-
eration. In the (µ, �) reproduction scheme, only children survive to the next
generation, whereas the (µ + �) reproduction scheme considers both children
and their parents from the previous generation. This step is called the survival
selection. The selected individuals build the new population for the next iter-
ation, or generation in biological terms. The process is repeated starting from
the mating selection step until a stopping criterion is reached.
All EA methods share a number of common high-level components, whichComponents of an EA
may vary in their implementation depending on the specific method in ques-
tion [147]. Being a population-based method, the goal is to evolve a population
of solution candidates, for which a problem-dependent and appropriate encod-
ing is required. Encodings can take on arbitrary shapes, for instance real-valued
vectors, or mathematical trees as for genetic programming (GP). Using the bio-
inspired terminology, a solution candidate is also referred to as an individual,
and the encoding as the genotype. The phenotype is derived from the genotype
and is the actual solution to the problem, i.e., how the genotype is interpreted
in the problem domain. An initialization procedure is required to generate
the initial set of solutions in the population, which are randomly generated
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sequences in the simplest case. However, due to constraints on solution prop-
erties such as the length or order of values, more sophisticated initialization
procedures may be necessary for certain problems. Problem-dependent one or
multiple fitness functions emulate the influence of the biological environment
and provide information about how well an individual is adapted to this en-
vironment, i.e., to assess how “fit” it is. Often, a fitness function is identical
to the optimization function of interest. For some problems, it might be ben-
eficial to consider additional criteria, such as the extent to which constraints
are fulfilled. A typically fitness-based selection method is applied to identify
individuals at two stages: first, to select parents for the subsequent mating
process, and second, to identify individuals who survive to the next generation.
The genetic operators are employed to modify selected solutions and thereby
build new solutions. Mutation operators introduce slight random perturbations
into an existing solution, while crossover exchanges randomly selected parts of
each parent with each other. While the algorithm could theoretically continue
forever to evolve new individuals, in practice, a final solution to the problem
is required, which implies the need for a termination criterion for the search.
Potential criteria involve a predefined number of algorithm iterations, so-called
generations, stagnation of fitness improvement for a certain amount of time, or
when a user-defined fitness value is reached. The final component of an EA are
problem and algorithm dependent parameter values, such as population size or
crossover and mutation probabilities.
Other than classical optimization methods which seek an exact analytical so-Use Cases and Limitations
lution or are gradient-based (see Sec. 2.1.2), EAs usually optimize gradient-
free and without imposing restrictions such as requiring the function to be
unimodal. In this way, EAs can handle issues like non-differential functions
and multimodality, where other optimization methods reach their limits. The
population-based approach allows searching multiple regions of the search space
simultaneously, which reduces the influence of the initial parameter values and
helps to avoid convergence to local optima [66]. While EAs incorporate multi-
ple components to overcome issues of classical optimization methods, they, of
course, have certain limitations themselves. First, EAs have no guarantee to
find the best solution, but are mainly designed to find practically useful solu-
tions within a reasonable amount of time. Furthermore, due to their stochastic
nature involving randomness, the convergence is not guaranteed and results
differ when the algorithm is repeated multiple times. In addition, EAs are
sensitive to the choice of the parameter values and the encoding, both of which
are highly problem-specific, making it difficult to provide general guidelines.
When these limitations are addressed through careful parameter tuning, for
instance by incorporating domain knowledge, EAs are a powerful and adaptive
optimization method.

2.3.2 Multi-Objective Optimization

Due to the simultaneous exploration of several areas within the search space,
EAs are well suited to optimizing not only one, but multiple criteria at the
same time. Rather than finding one optimal solution for each criterion, the
goal is to find a set of solutions that satisfy the criteria to different extents.
While simple methods like weighted sum combine the different criteria into one
measure, the focus of this thesis lies on multi-objective optimization (MOO),
where the criteria (also referred to as objectives or fitness functions) are kept
separate. Looking at optimal solutions in this way furthermore requires a
redefinition of optimality, as well as search algorithms that can handle multiple
objectives [66, 97].
A general optimization problem consists of a pair (⌦, f), where ⌦ constitutesOptimization Problems
the search space of all potential solutions to the problem, and f is an evaluation
function f : ⌦ ! R that maps a candidate solution ! 2 ⌦ to a fitness value
f(!) [147, Chapter 11.3.1]. Building upon this notation, the formal definition of
a multi-objective optimization problem (MOOP) with m conflicting objectives
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is denoted by

min /max f(x) = (f1(x), f2(x), ..., fm(x))T

s.t. x 2 ⌦
(2.26)

where x represents a solution in the search space ⌦ and fi(x) the fitness value in
the ith objective, with i = 1, 2, . . . ,m [66]. Typically, a problem is formulated
to either maximize or minimize all objectives. In this thesis, all objectives are
minimized, and maximization objectives are transformed into minimization
objectives by employing the negative value of the function.
As soon as multiple objectives are employed, no strict ordering within a set ofDominance and

Pareto-Optimality solutions according to a single objective is given. The concept of Pareto dom-
inance plays a crucial role, identifying solutions that represent the best trade-
offs among the multiple objectives. In the context of optimization, Pareto-
optimality applies to a solution where an objective value cannot be improved
without simultaneously deteriorating at least one other. A solution x1 Pareto
dominates another x2 (denoted by x1 � x2) if and only if the following two
criteria are fulfilled [66]:

1. x1 is no worse than x2 in all objectives, i.e., fi(x1)  fi(x2) for all
i = 1, 2, . . .m.

2. The solution x1 is strictly better than x2 in at least one objective, i.e.,
fi(x1) < fi(x2) for at least one i = 1 . . .m.

This results in the mathematical definition of Pareto dominance as

x1 � x2 () (8i 2 {1, . . . ,m}, fi(x1)  fi(x2))

^ (9j 2 {1, . . . ,m}, fj(x1) < fj(x2))
(2.27)

The Pareto-optimal set P ⇤ is the set of all non-dominated solutions in the
search space ⌦:

P ⇤ = {x 2 ⌦ | @x0
2 ⌦ such that x0

� x} (2.28)

And the corresponding Pareto front PF ⇤ is the image of the Pareto-optimal
set in the objective space:

PF ⇤ = {f(x) | x 2 P ⇤
} (2.29)

Fig. 2.5 illustrates an example of a Pareto-optimal front and Pareto-dominance.
Several multi-objective evolutionary algorithms (MOEA) have been developedNon-Dominated Sorting

Algorithm over time to address multiple objectives in evolutionary optimization. The
goal is to identify various Pareto-optimal solutions which cover the Pareto-
optimal (PO) front. Technically speaking, an MOEA maps the n-dimensional
search space ⌦ to the m-dimensional objective space M. Next to the strength
Pareto evolutionary algorithm (SPEA) [300], the non-dominated sorting al-
gorithm (NSGA) [261] was one of the earliest algorithms proposed to solve
this problem. The improved version NSGA-II was presented in 2002, which
to date can be considered one of the most influential and widely used algo-
rithms for multi-objective optimization [65]. NSGA-II divides the population
into multiple non-dominated fronts by iteratively finding the front of the cur-
rent population, storing it in a separate set, removing the individuals of this
front from the population and increasing the front index by one. This process
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Figure 2.5: Pareto front of a
two-objective problem with both

objectives to be minimized,
where solution C

Pareto-dominates the solutions
A and B.

is called non-dominated sorting and is repeated until all individuals belong to
a front set. All individuals of a set have the same fitness value equal to the
front rank, where low fitness is generally better. The new population is then
filled up with individuals from the front sets until adding the next front would
exceed the population size µ. Here, crowding distance (CD) comes into play,
which is applied to select a uniformly spread-out set of solutions among the cur-
rent non-dominated front. Solutions with higher CD values are located in less
crowded areas and are preferred over the ones in crowded areas to maintain
diversity in the objective space. NSGA-II is a universal algorithm that also
finds application in multi-objective genetic programming, which is the main
concern of this thesis. The original algorithm as well as the pseudocode for
non-dominated sorting and crowding distance have been introduced in [65].

2.4 Genetic Programming

The following section is largely based on the author’s publication [221].
GP is an EA technique first introduced by Koza in 1992 to evolve computer pro-
grams of variable size and shape [140]. Many solutions for ML problems can be
naturally represented as a hierarchical composition of primitive functions and
terminals, such as computer programs, algorithms, and symbolic expressions.
GP employs evolutionary principles to identify and construct such hierarchi-
cal structures automatically, by providing examples of the desired behavior or
output and tasking the algorithm with the explicit generation of the program.
It is a common technique used to address SR problems, which involve the au-
tomated development of free-form mathematical equations. The limitations of
classical regression algorithms are circumvented by making the discovery of the
appropriate functional form part of the learning task. While GP for regression
tasks is the main focus of this thesis, it is important to note that there exist
numerous other applications where GP is a suitable approach, such as classifi-
cation, scheduling, and control [292]. In the following, an overview about GP
and its specific characteristics for symbolic regression will be given.

2.4.1 Canonical GP Algorithm

Borrowing the concepts of Darwinian evolution, the canonical GP algorithm
operates on a population of expression trees, which are iteratively refined by se-
lecting fitting individuals and applying genetic operators. Algorithm 1 outlines
the basic steps to learn a hierarchical structure from the training data X using
the (µ + �) reproduction scheme with combined parent and child populations.
Crucial hyperparameters of a GP algorithm are the population size µ, the num-
ber of children �, as well as the crossover and mutation probabilities pc and pm
respectively, which determine whether a child is generated through crossover
or mutation on the parents. The remainder of this section will provide a more
detailed examination of the fundamental elements of the GP algorithm.
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Algorithm 1: Canonical Genetic Programming Algorithm
input : Training Data X, Population Size µ, Number of Children �,

Crossover Probability pc, Mutation Probability pm
output: Solution Population P

1 P  initializePopulation(µ) // create random initial population

2 evaluate(P, X) // compute fitness values

3 while not termination criterion do
4 Pchild  ; // create empty child population

5 for i = 1 . . .� do
6 genOp selectGenOp(pc, pm) // select genetic operator

7 parent selectParents(P ) // select parent(s)

8 child genOp(parent) // apply genetic operator

9 Pchild  Pchild [ child // add individual to child population

10 end
11 evaluate(Pchild, X) // evaluate child population

12 P  environmentalSelection(P [ Pchild) // survival selection

13 end
14 return P

2.4.2 Representation

Formally, GP requires a tuple of sets (F , T ), where the function set F containsFunction and Terminal Sets
all function symbols and operators and the terminal set T entails all input vari-
ables and constants, so-called terminals. Together, the function and terminal
set build a so-called primitive set. Selecting an appropriate set of primitives
that is sufficient to express a solution to the given problem is a non-trivial
task and highly problem dependent. Typical functions in the function set can
include arithmetic, mathematical, boolean as well as conditional operations,
with a non-exhaustive list includes

F = {+, �, ·, /, cos(�), sin(�), tan(�), exp(�), log(�),

^, _, IfThenElse, . . . }
(2.30)

where � is a placeholder for function input. The arity of a function deter-
mines the number of input variables, i.e., two for binary and one for unary
functions [140, 147]. The function set can be expanded to include arbitrary
functions and an unlimited number of input arguments, which renders GP a
flexible approach that can be adapted to a diverse range of problem domains.
As the definition of the function set is highly problem-dependent, it should
satisfy the two properties of sufficiency and closure. Closure is the property
ensuring that all functions and terminals in a GP tree can accept any argu-
ments they might receive, and sufficiency is a property that aims to identify
suitable solutions by ensuring that the two sets possess enough expressivity.
Sufficiency generally cannot be guaranteed, but prior knowledge about poten-
tial solutions to related problems can support the selection of an appropriate
function and terminal set that is likely to contain components capable of con-
structing effective solutions [210]. Using the function and terminal sets, the
search space of a GP algorithm is the set of all possible functions that can be
constructed from these primitives. Due to the enormous number of functions
with increasing number of primitives, the search space is usually restricted by
the definition of a maximum tree depth or number of nodes [75].
The syntax tree is the most commonly used representation and became preva-Tree Representation
lent since it is easily interpretable and can be parsed into an executable program
or equation. For the computational implementation, i.e., genotype of a syntax
tree, a complex tree data structure or a simple list data structure can be used.
The latter is less computationally expensive to process, while the former can
be more easily visually interpreted by a user. Syntax trees overcome the fixed-
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Figure 2.6: Syntax tree
representation of a symbolic

expression.

·

+

x 2.0

÷

sin

z

·

5.0 w

Symbolic Expression:
(x + 2.0) · sin(z) ÷ (5.0 · w)

length encodings of EAs and allow for various functional forms. This thesis
employs the syntax tree as the primary representation for GP solutions, as it
is the most prevalent representation in the literature and software frameworks.
Further representations include linear GP techniques, such as grammatical evo-Other Representations
lution [194, 238], gene expression programming [84], linear genetic program-
ming [28], as well as Cartesian genetic programming [178, 179]. A comparison
of these can be found in [197]. Prominent extensions of the tree-based repre-
sentation are strongly-typed GP [183], which enforces data-type constraints, as
well as grammar-guided GP [175, 290], which overcomes the closure require-
ment by using grammars to specify valid syntax and structure for solutions.
This ensures that all generated programs are syntactically correct and relevant
to the problem domain, which is especially relevant in the phases of initializa-
tion and application of genetic operators.

2.4.3 Initialization

Initialization plays a crucial role in the evolutionary process, as the genetic ma-Importance of Initialization
terial introduced in the initial population forms the foundation of the search
for optimal solutions. The initial population is essential for diversity and explo-
ration capabilities within the search space. While mutation introduces random
changes and can insert new genetic material, crossover operations can only
manipulate and combine existing genetic material, thus heavily relying on the
initial genetic material. Typically, the initial population is created randomly,
but guided by predefined criteria such as an upper limit for tree depth or num-
ber of nodes.
The goal of a well-designed initialization method is to ensure diversity of solu-Initialization Methods
tions in terms of structure, utilized operators, and combinations of operators
and variables. Several strategies exist for initializing the population. The full
method always generates fully balanced trees with a fixed depth. The insertion
of terminal nodes is only allowed at the last level of the predefined tree depth.
The grow method, to the contrary, starts by producing trees with a minimum
depth, and beyond that selects the next nodes from both the function and ter-
minal sets. In this way, solutions of varying functional structures and terminal
nodes at different levels are created [140]. Ramped half-and-half is another
popular approach, where half of the initial individuals are generated using the
full method with a predefined maximum depth, and the other half using the
grow method. Various adaptations of these methods exist in the literature, for
instance additional control over the likelihood with which functions and ter-
minals appear in the equations [167], and seeding the initial population with
functional terms that are expected to appear in a solution [158]. This can be
especially useful when domain knowledge about potential solutions is available.

2.4.4 Fitness-Based Selection

Selecting fitting individuals is a driving force behind evolution, following the
principle of survival of the fittest. The individuals are evaluated on problem-
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dependent fitness functions and selected according to their fitness values.
For regression tasks, the main optimization objective is to minimize the er-Fitness Evaluation
ror between the target variable and the prediction made by the expression
generated by the algorithm. Common fitness functions for regression tasks are
closely related to the cost functions in ML, which have already been introduced
in Sec. 2.1.2. The most prominent fitness functions used in GP for SR include
RMSE (Eq. 2.13), mean absolute error (MAE) (Eq. 2.9) and mean squared
error (MSE) (Eq. 2.8), as well as various adaptations of the same containing
regularization terms. A frequently used second optimization criterion for SR
tasks approached with GP is the minimization of the solution complexity, ac-
cording to the Occam’s razor introduced in Sec. 2.1.4. The solution complexity
is usually determined by counting the number of nodes in the tree. Individuals
with higher fitness values are more likely to be selected in either of the following
selection steps of the algorithm.
When solely the error is minimized as a single objective, the established single-Single-Objective Selection
objective selection methods from the family of evolutionary algorithms are
employed, as the selection operation relies exclusively on the fitness values
independent of the encoding or representation of a solution. Selection mech-
anisms such as tournament selection, roulette wheel selection, or rank-based
selection are typically employed to choose the fittest individuals [147]. Further
selection methods exist which are specifically tailored to GP. A comprehensive
overview of GP selection mechanisms and their influence on the optimization
process is given in [295].
The selection step requires to be adapted when multiple objectives are opti-Multi-Objective Selection
mized simultaneously, as a strict linear ordering between solutions is no longer
possible. GP algorithms often balance accuracy and complexity, and thus need
to consider both or even more objectives in the selection process. Tournament
selection with the Pareto dominance criterion as quality measure for GP was
introduced by [78] in 2007. Furthermore, the previously introduced concept of
Pareto dominance combined with NSGA-II can be employed to compare so-
lutions and sort them into different fronts. Individuals in lower fronts (with
better trade-offs) are preferred, and diversity is maintained using measures like
crowding distance [65]. Other methods include the SPEA-based selection as
well as a Pareto-converging GP [297].

2.4.5 Genetic Operators

In addition to the selection step, one of the primary drivers of evolution is the
application of genetic operators to generate new individuals from the selected
parents. Genetic operators allow for a guided exploration of the search space
towards better individuals, as they follow two main principles: First, strong
individuals can benefit from recombination with other good solutions through
crossover. Second, the likelihood of encountering further good solutions within
the neighborhood of a strong individual is high, usually referred to as mutation.
In order to perform these modifications on trees, various adaptations to the
general EA reproduction are required.
For (one-point) crossover, two parents are required to produce a child withCrossover
their combined features, as visualized in Fig. 2.7a. To this end, a random
crossover point in each parent individual is selected. The subtree of the first
parent originating from this cut-off point is then replaced with the subtree of
the second individual. The solution emerged from this step is copied into the
child population, while the parents remain untouched in the parent population.
This enables individuals to participate multiple times in a reproduction oper-
ation with different partners [210]. Depending on the distribution of terminals
and functions, the probability of selecting terminals as crossover points can be
incomparably higher, which leads to the exchange of only a small amount of
genetic material. To counter this, Koza suggested introducing an additional
probability parameter that allows for steering the cut-off point selection [140].
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Figure 2.7: Examples of
crossover and mutation

operation, where crossover
points are marked as red arrows

and mutation points as red
nodes.
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Mutation is performed on only one parent individual to stay in the neighbor-Mutation
hood of this individual. An example of a mutation operation is depicted in
Fig. 2.7b. The two prevalent operations are subtree mutation and point mu-
tation. As the name already implies, subtree mutation performs changes on a
subtree of an individual. To this end, a cut-off point is randomly selected, and
the attached subtree replaced by another randomly created subtree of user-
defined depth [210]. This procedure can also be implemented as a one-point
crossover between the selected individual as first parent and another randomly
generated genetic program [8]. Commonly, subtree mutations are restricted
to only replacing small subtrees with subtrees of a similar depth. Otherwise,
the root node of a tree could be selected as the cut-off point, resulting in an
entirely new random individual that is added to the population [147]. Point
mutation, on the other hand, focuses on adding genetic diversity by modify-
ing single nodes within an individual. These are randomly selected and in the
further course replaced with a random primitive of the same arity. Depending
on the implementation, point mutation is executed on either one or multiple
nodes of a solution [210].

2.5 Summary of this Chapter

In this chapter, the scientific foundations on which the topics of this thesis
are based were introduced. An overview of ML concepts and tasks was given,
with a focus on supervised ML and regression, which is the main concern of
this thesis. Classical regression methods and their approaches were presented.
Choosing an appropriate regression model is a non-trivial task, and often prior
problem knowledge is required to match the data well. Symbolic regression
goes beyond the parameter fitting of classical regression methods and produces
free-form equations from data. The basic idea of SR was introduced and general
design decisions for regression algorithms were discussed. The basic concepts
of ANNs and GNNs were presented, with a focus on the properties of MPNNs.
Moreover, the general principles of optimization using evolutionary algorithms,
and in particular MOO, were presented. GP is a method for SR stemming from
the family of EAs, which is the main focus of this thesis. The canonical GP
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algorithm and its tree representation for symbolic models were introduced,
upon which the algorithms presented in this thesis were built.
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3 Related Research and

State of the Art

This chapter presents and discusses the related research that has been proposed
in the literature and that is relevant to this thesis. The main focus is on physics-
informed machine learning (PIML) and genetic programming (GP) for symbolic
regression (SR).
SR is a supervised machine learning approach aimed at identifying mathemat-Genetic Programming for

Symbolic Regression ical expressions that best fit a given dataset. Sec. 2.1.3 introduced the general
idea of SR as well as some historical context. Compared to traditional re-
gression methods, SR involves a larger search space, which slows down the
search process. SR was recently classified as an NP-hard problem, i.e., there
is no known algorithm that can solve all instances of the problem efficiently in
polynomial time, due to the complexity of identifying optimal solutions [282].
Heuristic methods, particularly GP, have been extensively used to guide the
search process. Recently, SR has attracted increased research interest, leading
to the exploration of both evolutionary computation (EC) methods such as GP,
as well as non-EC-based methods.
The integration of physical laws in machine learning algorithms has gainedChapter Structure
importance in the last few years, which is also relevant for this thesis as it
addresses problems from the science and engineering disciplines. This ensures
that models are not just learning patterns from data but are also guided by
well-established physical theories and constraints. Sec. 3.1 covers the area of
PIML, with a focus on physics-informed neural networks (PINNs) and physics-
inspired SR methods outside the EC area. GP-related issues that are of partic-
ular interest for this thesis will be discussed in Sec. 3.2, together with methods
developed in the past years to resolve these issues. Sec. 3.3 addresses the inclu-
sion of domain knowledge in GP algorithms, which works hand in hand with
the integration of physics into the machine learning (ML) process. In general,
many individual approaches or examples of integrating problem-specific knowl-
edge into GP algorithms have been presented in the literature. The literature
analysis in this section gives a comprehensive overview of the related work
landscape and classifies approaches according to how the algorithm is biased or
constrained by domain knowledge. Finally, Sec. 3.4 summarizes this chapter.

3.1 Physics-Informed Machine Learning

Lately, there has been a notable increase in interest regarding the integration ofIncreased Interest in Domain
Knowledge for Machine

Learning
domain knowledge into data-driven modeling [13]. Previous machine learning
research concentrated on developing algorithms that were largely independent

31



of domain knowledge. However, in the context of scientific and engineering
applications, a model that is independent of domain knowledge may not nec-
essarily reflect the expected behavior or adhere to the necessary physical rules,
creating the need for domain knowledge constraints. This research direction
is commonly referred to as “physics-inspired machine learning” or “physics-
informed machine learning” in academic circles [13]. In this way, certain limi-
tations inherent to data-driven modeling techniques can be circumvented, such
as poor generalization on small or noisy datasets, lack of interpretability as
well as scalability issues. As a result, there has been a significant increase in
the number of publications dedicated to this research area, which also had a
notable impact on the areas of neural networks and symbolic regression.

3.1.1 Neural Networks for Physics

Several artificial neural network (ANN) architectures have been developed in
the last few years [161], some of which were specifically tailored to meet physics
constraints. Covering the entire field of neural networks for physics tasks is
nearly impossible and far beyond the scope of this thesis. In the following, a
few approaches will be discussed which are interesting for the remaining course
of this thesis. A detailed review of ANN approaches for physics can be found
in [126].
Raissi et al. [214] pioneered the use of PINNs. An extensive overview of the cur-Physics-Informed Neural

Networks as Learning Bias rent state of the art of PINNs and their application areas was given by Cuomo
et al. in [61]. The high-level idea of PINNs is the integration of physical do-
main knowledge as soft constraints on the loss function used by the machine
learning algorithm. Specifically, it incorporates partial differential equations
(PDEs) of known physics in the loss function through automatic differentia-
tion to emphasize solutions that satisfy physics constraints. The loss function
thus constitutes two weighted parts, a residual from the original data and a
residual on the PDEs. This method performed well in learning the flow wake
past a cylinder in [215], with the Navier-Stokes Equations as additional PDEs.
As pointed out in [143], the regular PINN approach showed ill-conditioned be-
havior for increasing problem complexities and a harder to optimize loss land-
scape. Thus, PINNs is a field of ongoing research, with various improvements
having been proposed in terms of architecture and specific problem domains,
such as meta-learning to accelerate the training of PINNs [21], and �-PINNs
for complex geometries [241]. Integrating physics into a model through a soft
constraint learning bias as defined in [126] was effective for a wide range of
applications. A comprehensive overview of recent methods to integrate physics
knowledge into neural networks, which goes beyond PINNs, was given in [288].
Various network architectures have been designed to embed and strictly sat-Other Network Architectures
isfy the prior assumptions about physics in the model. Ling et al. [166] pro-
posed a multiplicative layer next to the output layer of an ANN to embed
Galilean invariance for a fluid mechanics problem. Hamiltonian neural net-
works (HNN) [100] and Lagrangian neural networks (LNNs) [59] were used to
learn dynamical systems and integrate conservation laws in the model. Graph
neural networks (GNNs) [19, 30] provided a well motivated inductive bias for
problems that can be modeled as interacting entities. Kondor et al. [139] in-
troduced covariant compositional networks (CCN) which modified the GNN
architecture by extending the framework to incorporate symmetry and group
theory. This allowed the network to handle more complex and structured data
with inherent symmetries, as they often appear in physics. In [242], an encode-
decoder architecture operating on graphs was proposed to simulate complex
physical phenomena such as water flow, sand friction and viscous material. Li
et al. [165] proposed two types of edge- and node-focused GNNs to accelerate
Lagrangian fluid simulations. Cranmer et al. [60] used GNNs as an inductive
bias for SR to learn the dynamics of spring-mass systems and dark matter
halos for cosmology. The GNN architecture can be designed in a way that
decomposes the problem into smaller subproblems of pairwise interactions be-
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tween entities. These subproblems are easier to solve for SR algorithms and are
a promising technique for high-dimensional problems, where conventional SR
methods often fail. Further details on high-dimensional SR will be discussed
in Sec. 3.2.5.

3.1.2 Non EC-Based Symbolic Regression Methods for Physics

ANNs typically operate as black boxes, offering little insight into the under-
lying physical laws they model. This lack of interpretability is a significant
drawback for model inference in science and engineering, where understanding
the governing principles is as crucial as making accurate predictions. Thus,
the interest in SR methods for physics has grown, with approaches specifically
designed to handle and reveal the underlying principles of particular physical
systems. Subsequently, the most significant approaches outside the evolution-
ary computation domain will be presented.
A prominent technique for the identification of symbolic models for dynamicalSINDy
systems using prior knowledge is sparse identification of nonlinear dynamics
(SINDy) [32]. It uses a set of selected basis functions that frequently appear
in the governing equations of dynamical systems, such as trigonometric and
polynomial functions. Sparse regression is applied to this set of functions to
identify the terms actively contributing to the target variable and to generate
parsimonious models. In this way, the property of many dynamical systems
to consist of only a few relevant terms is exploited. Various publications have
demonstrated the success of the method, even for long-standing problems in
science [32, 64, 125]. However, its applicability is limited to identifying models
that consist exclusively of the provided functional terms, which is a design
decision influenced by domain knowledge. Moreover, the performance on high-
dimensional problems can suffer due to the large number of candidate functions
in the library, making the sparse regression step challenging. Overall, SINDy
is best suited for relatively low-dimensional dynamical systems, which can be
described by a sparse set of functions and for which prior knowledge about the
function library is available.
Another physics-inspired method for symbolic regression is AI Feynman [272].AI Feynman
It aims at identifying functions of practical interest, which often share certain
characteristics such as symmetries, separability, as well as consistency in terms
of physical units. The algorithm recursively detects simplifying properties and
divides the problem into smaller subproblems. In a first step, a dimensional
analysis component takes the units of the variables into account and matches
combinations of these variables with a given target unit. AI Feynman showed
that unit information can be valuable to the algorithm, since many benchmark
equations were identified correctly solely through dimensional analysis. How-
ever, this approach requires all units to be known in advance, including those of
physical constants, which are often unavailable when searching for new empir-
ical equations with unknown constants. Nevertheless, the dimensional analysis
component can be considered a counter-movement to contemporary machine
learning methods, which often standardizes features into dimensionless quan-
tities. The Feynman dataset, containing 100 equations extracted from the
Feynman’s Lectures on Physics textbook, served as a benchmark for AI Feyn-
man. The algorithm discovered all equations correctly, and achieved a 90%
success rate on 20 more difficult equations.
An enhanced algorithm AI Feynman 2.0 was presented in [271], with an im-
proved symmetry detection component using gradient information of a neural
network fit, Pareto-optimality to evolve the most accurate model for each com-
plexity level and better robustness to noise.
Petersen et al. [207] introduced deep symbolic regression (DSR) to formulateNeural Network-Based SR
SR as a reinforcement learning task employing an recurrent neural network
(RNN)-based architecture to construct symbolic trees. Mathematical expres-
sions are treated as sequences of tokens, which are generated using probability
distributions over the next token given the previous token. A risk-seeking pol-
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icy gradient was utilized to train the RNN. This method showed competitive
performance for simple physics problems [207] and the development of control
policies [157]. Building upon this seminal work, Tenachi et al. [267] proposed
DSR for physics, which is guided by unit constraints. Dimensional analysis
was integrated as in situ constraints, which means that probability distribu-
tions for the next token are adjusted to filter for unit-conformal operations and
features. This method also allowed the accommodation of other constraints,
such as limiting the generated tree to a certain depth or length. A unified DSR
framework was presented in [156], which leverages multiple previous concepts
studied in the literature, such as recursive problem simplification as included
in AI Feynman [272], population seeding [189] as well as linear models similar
to SINDy [32].
The area of ANN-based SR is currently emerging rapidly, with many new ap-
proaches frequently presented that are of relevance for science and engineer-
ing problems. These include, but are not limited to, dynamic adjustment of
the network architecture [164], learning ordinary [62] and partial differential
equations [31], transformer-based architectures [124] as well as deep generative
SR [114].
A deterministic approach for developing symbolic models of practical relevanceOther Approaches
is fast function extraction (FFX) as presented in [172]. FFX uses pathwise
regularized learning, which prunes a large set of candidate basis functions to
form compact models. Reinbold et al. [220] applied sparse regression on high-
dimensional experimental data. Their hybrid approach allowed the inclusion
of problem-specific known physical constraints. The machine learning tool
QLattice was inspired by Richard Feynman’s path integral formulation [29]. A
symbolic model is represented as a graph which is sampled from a probabil-
ity distribution. This initially uniform distribution is adapted in an iterative
process, which for faster convergence requires indication of preferences by the
user. Cornelio et al. [55] proposed AI Descartes, which combines logical rea-
soning with symbolic regression to obtain symbolic models which are consistent
with background theory. Domain knowledge, or background theory, is provided
as general logical axioms which must be satisfied by the discovered symbolic
models. Symbolic regression is performed through mixed-integer nonlinear pro-
gramming.

3.2 Recent Advances in EC-Based Symbolic Regression

Physics-inspired SR approaches are sometimes limited to specific system types
or predefined forms of equations, which can restrict their ability to discover
new or unexpected physical laws and reduce their flexibility when applied to
diverse or complex physical systems. GP can be considered a flexible approach
for SR which allows for extensive customization, enabling it to evolve a wide
variety of equation forms and adapt to different problem domains. This section
presents recent developments in the GP domain relevant for the identification
of symbolic models for science and engineering problems as outlined in the
literature. The issues in GP identified by O’Neill [195] serve as a starting
point for exploring the relevant aspects that require improvements. This list
of issues was released shortly after the seminal paper by Schmidt and Lipson,
which established the foundation for automated symbolic model discovery from
experimental data in scientific research [246].

3.2.1 Generalization, Bloat and Overfitting

A property of a good symbolic model is high generalization capabilities, i.e.,The Issue
not overfitting the training data [195]. The issue of overfitting is closely related
to bloat, which describes the uncontrolled growth of an equation while leading
to only small improvements in terms of error. It is also possible for overfitting
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to occur in the absence of bloat, as related studies on bloat and overfitting
suggested [68, 37]. Models that generalize well are of particular importance
for scientific domains such as engineering or physics, as high-quality, compre-
hensive datasets may be limited, making generalization essential for robust
insights.
Various methods have been proposed in the literature to counteract overfit-Countermeasures Against

Bloat and Overfitting ting and bloat towards models with better generalization capabilities. Smits et
al. [258] proposed ParetoGP, which turns GP into a multi-objective problem
by optimizing both an error measure and a complexity measure at the same
time. Non-dominated solutions are added to an archive, which allows the user
to select a good trade-off solution upon algorithm completion. In addition to
the Pareto-dominance approach, the authors introduced an upper limit of equa-
tion growth to avoid exploration of unreasonably large solutions. The proposed
algorithm sped up the evolutionary search and provided an effective counter-
measure against bloat. In [87], Fitzgerald et al. suggested using bootstrapping
to prevent overfitting. They sampled various bootstrap sets from the original
training data with replacement and measured the standard deviation of the
errors on the resampled bootstrap sets. This gave an indicator of the model
sensitivity to small variations in the training data. While the performance on
the test set was comparable to the one of standard GP without bootstrapping,
the method prevented uncontrolled program growth. Mousavi et al. [188] aimed
towards more generalizing models by controlling their first-order derivative. In
their study, the rooted mean squared error (RMSE) between the numerically
calculated true derivative and the derivative of the model was considered as
a proxy for model complexity and was optimized using a multi-objective al-
gorithm. The underlying assumption was that simpler derivatives implied less
intricate behavior, while complex models often have erratic derivatives, which
can imply overfitting. Experiments confirmed this assumption and the efficacy
of the method. In [48], Chen et al. proposed angle-driven geometric seman-
tic operators for geometric semantic genetic programming (GSGP), which fre-
quently faced problems with overfitting and bloat. Their approach generated
smaller models and improved the generalization performance.
Measuring bloat is highly related to defining appropriate measures for the com-Measures for Model

Complexity plexity of a symbolic model. Typical complexity measures are the number
of nodes or the depth of a GP tree. Vanneschi et al. [276] proposed a sim-
plified calculation of the function curvature as an estimate for the function
complexity. Furthermore, they interpreted bloat as the relationship between
the average length growth and the average fitness improvement up to a cer-
tain generation compared to the respective values at generation zero, where no
bloat occurs. Generalization was measured using a validation set next to the
training data. In [258], the sum of the number of nodes of a tree structure
and all its subtrees was used as a complexity measure. This setup further-
more preferred balanced trees with lower maximum depth over more complex
tree structures. Vladislavleva et al. [283] used the same complexity measure
as [258], and furthermore proposed the order of nonlinearity as an additional
measure to discourage highly nonlinear and volatile responses to tiny changes
in the input. The order of nonlinearity was defined as the minimum degree of a
Chebyshev approximation polynomial of a function. While the approach pro-
duced compact models that generalized well, a major downside of this method
was the expensive approximation of the Chebyshev polynomial. Kommenda et
al. [136] proposed a recursive complexity computation procedure that incorpo-
rates the semantic information of operations. Functions such as a square or
trigonometric function increased the complexity value more than addition or
subtraction operations, which are generally considered simpler [88]. Chen et al.
researched on sophisticated complexity measures to enhance generalization of
GP for SR, such as the Vapnik–Chervonenkis dimension [52] and Rademacher
complexity [49]. While the former had the drawback of high computational
cost to compute the Vapnik–Chervonenkis dimension, Rademacher complexity
was beneficial for model generalization capabilities and interpretability.
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Three doctoral theses from renowned researches in the area of GP focused on
the issues of bloat, generalization and overfitting in the past. Kronberger in
his thesis [145] addressed different methods to reduce the model complexity.
Kommenda [134] introduced the recursive complexity and performed several
case studies on noise-free and noisy datasets, as well as adaptations of the
non-dominated sorting algorithm (NSGA)-II algorithm to control complexity.
Chen in her thesis [44] focused on generalization of GP for SR and improved
generalization of models obtained with GSGP.
As it became apparent from the literature reviewed in this section, there exist
various ways to measure complexity, and different algorithms to improve gener-
alization and avoid bloat and overfitting. There is no one best way to measure
complexity, but rather this is a personal choice depending on the specific appli-
cation. The approach of simultaneous multi-objective optimization of an error
and a complexity measure is a widely accepted method to tackle these issues
in GP.

3.2.2 Constants in Genetic Programming

The identification of numerical constants, i.e., their position and value withinThe Issue
a symbolic model, is a challenging task, due to the infinite space of possible
real values. At the same time, constants are of high importance in regression
models, as they help to fine-tune models to fit data accurately and also play a
role in the model interpretation. For a long time, ephemeral random constants
(ERCs) were the standard approach for introducing new constants to symbolic
models in GP. The value of an ERC is randomly generated during the initial-
ization of a tree and remains constant within that tree unless changed by a
mutation operator [210]. As it is unlikely that the initially random value of
an ERC minimizes the overall error, various approaches have been proposed to
modify them [239]. Topchy et al. [269] introduced a constant tuning algorithm
based on gradient descent in 2001, leading to improvements in terms of final
fitness and reduced time to reach this final fitness. However, as also Kommenda
pointed out [134], this method did not make its way into standard GP imple-
mentations until a few years ago, which might have been due to the increased
number of hyperparameters that needed to be defined for the gradient-based
constant tuning algorithm.
Overall, two major streams for constant learning in the literature can be iden-
tified: avoiding the fitting of constants inside a GP tree, and fitting constants
in a tree using a gradient-based algorithm. Several publications used differ-
ent wordings for constant learning, such as parameter identification, parameter
fitting or coefficient estimation, which can be employed interchangeably.
Various methods are available in the literature where no internal constants inAvoiding Constant Learning

Inside GP the GP tree were learned. Keijzer [127] improved GP with linear scaling, where
model outputs were adjusted using a linear transformation. The idea is that
GP can focus on learning the right shape of the equation, which is wrapped into
a linear scaling algorithm that learns the slope and intercept to scale the output
values to the target variable. In comparison to the gradient-descent based con-
stant optimization proposed in [269], the linear scaling approach achieved lower
error rates. However, this method limits the searched models to linear ones,
and cannot learn arbitrary nonlinear correlations. Multigene GP [253] can be
considered an extension to linear scaling, which involves linear combinations
of non-linear transformations of the input variables. Rather than wrapping a
single individual in a linear function, multigene GP evolves individuals that
consist of multiple terms that are each scaled with a constant. Multiple re-
gression GP [10] inserts constants at different positions within an individual
and optimizes them using the least angle regression algorithm [77]. Instead of
letting the GP algorithm find the optimal constant placement, specific rules are
used to position constants within the tree. For the RMSE computation, the
model coefficients need to be fitted for every individual before error calculation.
Recently, Chen et al. [45] proposed a method which replaces the frequently used
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RMSE as an objective with a correlation measure between model output and
target variable. Using a correlation measure, no coefficients were fitted during
training, and only a final linear scaling step was applied once the search was
finished.
When coefficient fitting is applied during evolutions, GP algorithms must focus
significant computational resources on this process, rather than searching for
suitable model structures. Chen et al. [45] proposed to relieve GP from the
task of positioning and fitting constants during evolution, and employed a
correlation-based fitness function. This saved computation time and avoided
the sometimes cumbersome optimization of ERCs. However, their linear scaling
approach limited models to linear combinations of terms and could not learn
arbitrary nonlinear correlations, which is often required in empirical equation
discovery.
Next to the previously introduced methods, various publications on combiningCombining GP and

Gradient-Based Constant
Optimization

GP with an additional gradient-based optimizer for constants exist in the liter-
ature. This allows for more flexible positioning of constants within a tree, and
avoids restrictions on the shape of the final solution.
Gradient-based algorithms are most widely used to optimize constants on the
fly during the equation search of GP. While already introduced in 2001 [269],
gradient-based methods took some time to make their way into standard GP
frameworks. Chen et al. [47] investigated the performance of a hybrid GP al-
gorithm with gradient-based constant optimization using different algorithm
configurations. They varied over the number of gradient descent steps, num-
ber of individuals which received constant fitting, and time points within the
evolution at which constant fitting was applied. While the overall performance
improved, they pointed out that optimized constants could lead to overfitting
on a test set.
Building upon these approaches, the work of Kommenda et al. [138] was consid-
ered path-breaking towards the inclusion of gradient-based constant optimiza-
tion in GP libraries. They proposed a local search mechanism named constant
optimization with nonlinear least squares (CO-NLS) [135, 138], which com-
bines linear scaling and gradient-based optimization. CO-NLS constitutes two
steps: first, the gradient is computed with automatic differentiation; second,
the Levenberg-Marquardt algorithm is applied, which is specifically tailored
to models that are nonlinear with respect to their parameters (see Sec. 2.1.2).
Constants can appear at any leaf position within the tree, and the model output
is additionally scaled by inserting slope and intercept coefficients. The benefi-
cial effect of constant optimization was demonstrated on the same benchmark
problems that had previously been used to compare linear scaling and gradient-
based constant optimization in [127]. CO-NLS achieved error values of zero or
close to zero on these problems, and the efficacy of the approach was demon-
strated in further studies [134, 137].
Despite the large benefit in terms of model error, this approach had two major
drawbacks: first, the computational overhead attributed to gradient compu-
tation and optimization; and second, the dependency on the starting values,
which determined whether the algorithm converged to a local or a global op-
timum. The latter could be solved by repeating the constant fitting process
multiple times with different starting values, which in turn increased the compu-
tational effort. Overall, the advantages seemed to outweigh these issues, so that
multiple software implementations of GP have since made a gradient-based con-
stant optimizer the standard, such as Operon [34] and TiSR [170], which both
employed the Levenberg-Marquardt algorithm. Cranmer et al. [57] in the PySR
framework used the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm as
a non-linear constant optimizer. Research on constant optimization in GP rep-
resents a significant area of interest within the academic community, as recent
studies on feature standardization and coefficient optimization [70, 230], linear
scaling [192, 45] and applications to real-world problems [259] demonstrated. A
recently proposed multiview GP approach [236] enables the learning of struc-
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turally equal expression with different coefficient values. This can be useful for
various problems that stem from the same problem family, but have different
experimental hyperparameters.

3.2.3 Distributed Genetic Programming

An appealing characteristic of GP, or generally evolutionary algorithm (EA),The Issue
is the possibility of parallelization across multiple processors or computing
nodes [e.g., 266]. A prominent method to this end is the so-called island model
genetic programming (IMGP) [7], which divides the population of individuals
into multiple subpopulations, which are evolved in parallel on different “islands”.
In this way, the workload is divided, and the computation sped up, which allows
for scalability in terms of larger datasets or more intricate problems. IMGP
requires the definition of multiple additional parameters, including the number
of islands on which the population is distributed, the migration topology that
specifies migration pathways, and the migration rate that balances information
transfer between islands to increase diversity while allowing enough time for
optimization. Additionally, the number of individuals migrating at each phase
needs to be specified. Next to the obvious advantage of improved speed, IMGP
also facilitates the exploration of different areas of the search space and in-
creases diversity within the subpopulations through migration. This approach
helps to prevent the algorithm from premature convergence, and can result in
increased search efficiency and probability of success in finding a good, or, in
case of known benchmark equations, the correct solution. O’Neill et al. pointed
out that the identification of an appropriate setting of these hyperparameters
is an open question in GP research that deserves attention [195]. Two differ-
ent research directions contributing to the improvement of IMGP were identi-
fied: First, relatively general IMGP approaches focusing on the identification
of appropriate migration topologies and optimizing their parameters. Second,
improving upon the basic IMGP by defining an island and migration scheme
that is based on certain characteristics of an individual, such as fitness, age, or
frequency of subtrees.
Generally, the migration topologies are not GP-specific but can be borrowedGeneral IMGP Approaches
from the broader EC area. Different migration topologies have been proposed
and assessed in the literature [82, 212, 83]. The most prominent ones were
the ring, the grid, the mesh and the random topology. While ring, grid, and
mesh topology define a specific migration pathways between the islands, the
random approach migrates individuals from a randomly chosen island to an-
other. Fernandez et al. studied the influence of population size and number
of populations [81], as well as migration topologies and migration rates [82].
Comparing the influence of the parametrization on three test problems, the
authors observed negligible differences between different migration topologies,
with the relatively simple and least predetermined random topology performing
at least as good as the others. Larger effects were apparent for the frequency
and quantity of migrated individuals, where the authors recommended migrat-
ing few individuals more frequently instead of exchanging larger amounts of
individuals with larger intervals.
While the previously introduced papers focused more on the population dy-
namics, Fillon et al. first addressed the issue of maximizing the success rate
with IMGP [86]. Their divide and conquer (D&C) strategy used different func-
tion sets for each island, and outperformed the single population algorithm,
even when the latter had a larger population size. However, the distribution of
function sets across different islands required highly context-specific knowledge,
introducing an additional design decision that had to be made in advance.
Different approaches aimed to enhance the general IMGP setup through newSophisticated Migration

Strategies migration strategies exist in the literature. Hu et al. [118] proposed a hierarchi-
cal fair competition (HFC) model for parallelized evolution. HFC was inspired
by a stratified competition as often encountered in society or biology, where
individuals only compete with others that have similar skills. Rather than
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a random initial assignment of individuals to an island, the population was
divided into hierarchically structured subpopulations with increasing fitness
values. Individuals with lower fitness values started off in the lower subpop-
ulations, and were admitted to a higher subpopulation once they passed the
(higher) admission threshold of that layer. To maintain diversity and prevent
the algorithm from premature convergence, new randomly generated individ-
uals were frequently introduced in the lowest subpopulation. Using fitness to
segregate individuals can, however, cause unexpected difficulties. When indi-
viduals converge to a local optimum at the top of a fitness layer, they can block
new individuals in different regions of interest from advancing, as pointed out
in [115]. A modified version of HFC with adaptive fitness thresholds [119] was
proposed to overcome this issue, but did now show significant improvements to
the original.
Hornby proposed the age-layered population structure (ALPS) to mitigate pre-
mature convergence in evolutionary algorithms [115]. Rather than relying on
the fitness values as a segregating factor between layers or subpopulations, the
age of an individual determined the subpopulation to which it was assigned.
Age here referred to the number of generations in which the genetic material
of an individual had evolved. Thus, the offspring received the age values of its
oldest parents plus one. In this way, a structure similar to school grades where
students start in lower grades and proceed to higher grades as they age was
created. To maintain diversity, new genetic material in the form of randomly
generated solutions was introduced in the lowest layer, similar to the HFC ap-
proach. ALPS significantly outperformed HFC in the original implementation
on different test problems. An extension to ALPS, the so-called steady-state
ALPS for real-valued problems, showed superior performance on multi-modal
problems compared to differential evolution and evolution strategies [116].
Ono et al. [199] proposed a migration scheme based on frequent subtrees which
appear in a subpopulation. Making use of the building block hypothesis, they
assumed that subtrees that appeared frequently among the individuals of an
island also contained valuable genetic material for the later generations. An
activation measure was introduced that considered not only the fitness of an
island, but also how many types of frequent subtrees had been generated. To
detect and compare subtrees reliably, a labeled ordered tree representation was
used. Individuals from islands with high activation levels were migrated to
islands with low activation levels to promote the spread of beneficial building
blocks, improving overall convergence and performance. The SR benchmark
equation in that paper was approached in a single-objective manner using the
approximation error as the objective. In this setting, the proposed method
outperformed a standard IMGP implementation on three benchmark prob-
lems, and furthermore introduced more new subtrees in the population, while
the standard IMGP introduced no new subtrees after some generations. An
extension of this approach [198] using an additional local search mechanism
furthermore outperformed ALPS and standard IMGP on six benchmark prob-
lems. However, on the SR problems, the differences between these three meth-
ods were smaller than on other problems, and all three performed significantly
better than a GP algorithm without island models. Furthermore, the quality
estimate was mainly based on the final fitness values, and no information on
the shape or complexity of the solutions was given.
Overall, both research on the general and on the enhanced migration IMGPOne Setting Fits All?
methods indicated that it is very difficult to identify an overarching parame-
ter setting that performed well on different kinds of problems [198]. Recently,
Burlacu et al. [35] compared a canonical GP algorithm, ALPS, and other meth-
ods for population diversification in GP using five benchmark problems for
symbolic regression. The authors observed different behaviors between the
tested algorithms, and also between different problems solved by the same al-
gorithm. They concluded that possibly there might be no optimal algorithm
parametrization for equation search, as the behavior also depends on the spe-
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cific problem characteristics. Furthermore, the enhanced IMGP approaches,
which incorporated sophisticated migration strategies, required the specifica-
tion of additional parameters, involved higher implementation effort, and, in
cases where frequent subtrees were controlled, relied on a specific tree represen-
tation for efficient subtree counting. The complexity and parameter sensitivity
of these enhanced migration methods made them challenging to apply univer-
sally in practice, as they required customization to the unique characteristics
of each problem, limiting their use as a standard approach.
It appears that the relatively simple IMGP approach with an empirically se-
lected set of parameters is the preferable option to the canonical GP without
island model. Recently, IMGP with a modification of the random migration
topology was implemented in a state-of-the-art GP framework, PySR [57]. This
framework uses an archive of the best solutions among all combined subpopu-
lations. Random individuals from a subpopulation are exchanged by randomly
selected solutions from the archive. A similar approach is used in the TiSR

framework [170].
Open questions in this area remain. The IMGP methods introduced in this
section mainly used single-objective optimization on symbolic regression prob-
lems [86, 198]. As typically multiple objectives are considered in contemporary
GP, further research is necessary to evaluate how IMGP and multi-objective
optimization influence each other with respect to the success rate.

3.2.4 Further Algorithm Components to Improve GP

Another issue highlights the complexity of a GP system and the arising diffi-The Issue
culty in understanding and predicting how various components of a GP algo-
rithm interact. Various methods to handle each stage of a GP algorithm have
been presented in the literature, providing different strategies for population
initialization, selection and replacement, as well as genotype-phenotype map-
pings. However, it is nearly impossible to predict the behavior of such as system
of algorithm components and choose optimal configurations accordingly [195].
In the last decade, further variations of algorithmic components have been
presented in the literature to enhance GP for SR tasks. In the following, an
overview of interesting approaches from the literature is given.
Various publications focused on methods to enhance the performance and ro-Model Improvement and

Regularization Techniques bustness of symbolic models developed by GP. Keijzer [127] proposed the use
of interval arithmetic and linear scaling to optimize model precision and adjust
for better performance. Interval arithmetic is a method used to estimate the
upper and lower bounds of an arithmetic operation based on the input values of
the variables. In this particular case, it was used to circumvent a combination
of functions and input variables that resulted in undefined values. Experiments
on a diverse set of benchmark functions indicated the superior performance of
linear scaling compared to gradient-descent GP and unscaled GP. Although
introduced in 2003, this method remains a valuable tool for GP improvement
to this day. Interval arithmetic is a popular method to introduce shape con-
straints in GP [e.g., 104, 106], and linear scaling is a well-established method
to improve GP and relieve it from constant fitting [192, 45].
Kinzett et al. [133] investigated how two online simplification strategies, namely
algebraic and numerical simplification, affect the search for GP models. Exper-
iments on classification tasks indicated that methods are effective in generating
new diverse building blocks during evolution while retaining many existing ones,
although they may also eliminate some. Compared to the canonical GP, these
simplification methods produced smaller programs, require shorter evolutionary
training times, and achieve similar effectiveness. Online simplification was also
implemented in popular GP frameworks that have recently been published [57,
170].
Schmidt and Lipson [248] offered an alternative perspective on noise in data
for SR problems. The conventional assumption was that noise tends to average
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out and is nearly symmetric, which led to the belief that MSE or maximum
likelihood estimators were suitable loss functions for the algorithm. In contrast,
they introduced a stochastic element as a novel variable added to the terminal
set, designed to model noise in experimental data throughout the GP tree.
Unlike other variables, this terminal value is randomized at each evaluation,
even if it appears multiple times within the same equation.
In a later publication, Schmidt and Lipson [245] present age-fitness Pareto opti-
mization (AFP), which is inspired by the previously introduced ALPS [115]. In-
stead of dividing the population into separate layers based on age, the age of an
individual was included as an additional objective tackled with multi-objective
optimization. In this way, young individuals remained in the population as
they were non-dominated on the age objective. Results strongly suggested that
the multi-objective approach performed better on various benchmark problems
compared to ALPS and the canonical GP algorithm.
Virgolin et al. [281] proposed a new approach to evolve interpretable and ac-
curate equations with GP in a multi-objective manner. Typically, an error
measure is optimized alongside a complexity measure, and less complex equa-
tions are assumed to be more interpretable according to Occam’s razor. In
their algorithm, the complexity measure was replaced by a formula of inter-
pretability, which was learned from the results of a survey on interpretability
among scientists who frequently worked with mathematical expressions. This
formula considered the overall length of an equation, but gave more weight to
the number of non-arithmetic operations and the number of consecutive non-
arithmetic operations, as they deteriorated interpretability. Compared to the
typical bi-objective error and complexity optimization, their methods reached
more concise and interpretable expressions with similar or higher accuracy.
Owen et al. [201] introduced an extended bias-variance decomposition that
separated the model error into bias, external variance (due to limited sampling),
and internal variance (from algorithmic randomness). Applying this method to
GP revealed how parameters such as the tree depth, the number of generations,
the function set complexity, and data standardization affected the predictive
performance. This approach enabled more insights into the influence of each
GP component on the model accuracy and helped to select suitable algorithm
components.
The same researchers investigated feature standardization for GP [70, 202],
where a Z-score standardization of both inputs and responses ensured that evo-
lution operated within a data space with zero mean and unit variance. Analysis
of several benchmark datasets suggested an algorithm performance comparable
to advanced symbolic regression methods, while generating simple yet effective
symbolic models. Furthermore, feature standardization enhanced coefficient
optimization through gradient descent for accurate model production.
Next to the methods to improve model performance and robustness, various hy-Hybrid and Advanced

Algorithmic Techniques brid and cutting-edge approaches that combine multiple methods or introduce
new algorithms to advance genetic programming have been developed lately.
La Cava et al. [151, 154] presented an ✏-lexicase selection approach as an ex-
tension of the original lexicase selection approach [260], which had previously
performed poorly on continuous SR problems. Lexicase selection follows the
idea of rewarding individuals with outstanding training performance, by eval-
uating candidates based on a sequence of test cases, selecting those that per-
form well on any given case. ✏-lexicase selection is an improved method for
continuous problems which introduces a tolerance threshold, allowing for more
flexible candidate selection by accepting solutions within a small error margin.
This method preserved diversity within the population and outperformed other
diversity-maintaining methods from the literature.
The feature engineering automation tool (FEAT) proposed by La Cava et
al. [153] represented features using syntax trees that resembled neural network
architectures. Optimization of these structures was achieved through the use of
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a multi-objective evolutionary algorithm, which optimized an error, the recur-
sive complexity as proposed by Kommenda et al. [134] and an “entanglement”
objective. Disentanglement refers to a representation’s ability to separate fac-
tors of variation in the underlying process. Minimizing entanglement involved
reducing connectivity within the network to improve interpretability. FEAT
demonstrated superior performance across a set of one hundred problems, yield-
ing representations that were by several orders of magnitude smaller than those
produced by the runner-up method.
Sun et al. presented a novel memetic evolutionary algorithm using a frac-
tional representation for SR [264]. A memetic algorithm is an optimization
technique that combines evolutionary algorithms with local search methods to
refine existing solutions. The proposed approach used analytic continued frac-
tion representations to derive rational function models. The algorithm included
a population of computational agents that improved solutions and searched for
models with fewer variables, constrained by a tree-based population structure
to enhance consistency and performance.
De Franca et al. [93] introduced an interaction transformation evolutionary al-
gorithm (ITEA) for SR as an extension of the original algorithm [4, 92]. ITEA
is a mutation-based algorithm that employs an interaction-transformation rep-
resentation. This representation linearly combines small nonlinear terms with
respect to the original variable, thereby restricting the search space to simple
expressions. The interaction strength is defined by the exponent of a vari-
able and indicates the degree of interaction between multiple variables within
the model, which is adapted during the search for symbolic models. In this
way, concise models with competitive or superior accuracy compared to other
state-of-the-art regression methods were evolved.
Further developments in this area include a Zoetrope GP approach for regres-
sion [25], which introduced a dynamic representation in genetic programming
that uses repeated fusion operations between partial expressions. The newly
evolved features are combined linearly to create an individual, and new indi-
viduals are formed using representation-specific variation operators inspired by
geometric semantic crossover [187]. The gene-pool optimal mixing evolutionary
algorithm (GOMEA) [280] was designed to evolve small, interpretable expres-
sions for symbolic regression tasks. In each generation, a model-learning phase
is included, where a statistical model of interdependencies within parts of the
genotype is developed. This model was used to propagate genotype patterns
and preserve their joint influence. Mundhenk et al. [189] introduced neural-
guided population seeding, which is a hybrid approach combining RNNs with
population-based GP. An RNN is trained on intermediate models of the GP
population, and the GP search is restarted multiple times with increasingly im-
proved starting populations sampled from the RNN. Taylor GP [108] employed
Taylor polynomials to extract features such as polynomial order, variable sep-
arability, and monotonicity to decompose the problem.
Another notable research direction to improve GP for SR is GSGP [187, 273,Geometric Semantic Genetic

Programming 275]. In GSGP, the typical crossover and mutation operations are replaced by
special ones that act directly on the semantics of a program. For regression
tasks, semantics refers to the vector of output values, which can be represented
as a point in the n-dimensional semantic space when the number of output
values is equal to n. An interesting characteristic of using geometric semantic
operators for crossover and mutation is that they produce an unimodal error
surface for any supervised learning problem where fitness is calculated using an
error measure between outputs and targets. This error surface on the training
data has a global optimum, which renders this approach especially promis-
ing for complex optimization problems containing big amounts of data [38].
Pawlak et al. [205, 206] introduced a set of geometric operators designed for
population initialization, mate selection, mutation, and crossover for symbolic
regression. The operators were theoretically justified and experimentally com-
pared to traditional methods for SR and function synthesis, demonstrating
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superior performance in best-of-run fitness, test-set fitness, and program size.
Recent improvements on GSGP include the combination with linear scaling by
Nadizar et al. [192], which improved the performance compared to the standard
GSGP on five synthetic and six real-life benchmark datasets. However, their
observation raised the concern of overfitting for some cases when GP or GSGP
was combined with linear scaling. Furthermore, Vanneschi addressed the fre-
quently appearing issue of bloat in GSGP and introduced SLIM_GSGP [274].
A novel deflate mutation operator created smaller offspring from a parent indi-
vidual, which was effective in creating more concise yet equally good solutions
compared to traditional GP and GSGP methods.
After presenting and analyzing approaches from the literature that aimed to
enhance existing GP components or proposed new ones, it became apparent
that selecting the most suitable algorithm components remains an open issue
in GP. While various iterative improvements of specific algorithms could be
observed over time, a single optimal design could not be identified. Competi-
tions to compare SR algorithms on benchmark suits revealed which algorithms
may perform better than other on problems with specific characteristics. A
number of comprehensive review papers on contemporary SR methods, as well
as the analysis of tournaments to compare their performances on a diverse set
of benchmark problems, include [91, 152, 169, 200, 213].

3.2.5 High-Dimensional Genetic Programming for Symbolic Regression

O’Neill et al. raised the issue of scalability in GP in their position paper inThe Issue
2010 [195], which was discussed in two separate but connected ways. Here,
we refer to scalability being defined as “the ability to provide algorithmic so-
lutions to problems that are of substantial size/dimensionality” [195]. The
authors highlighted the importance of modularity in GP to tackle these is-
sues. Modularity refers to the ability to break down a complex problem into
simpler, reusable subcomponents. Early works on introducing modularity in
GP included the evolution of automatically defined functionss (ADFs), which
allowed the creation of modular code, where certain parts of a solution was
reused across different parts of the main program [122, 141].
High-dimensional datasets are common in the science and engineering fields,
often leading to an explosion of the search space due to the numerous features
and variables, which complicates the search process. Issues such as overfitting
and the evolution of overly complex models appear frequently, making this topic
closely related and often addressed alongside the issue of generalization [49,
296]. Different definition of “high-dimensionality” exist in the literature, for
instance datasets with more than 50 variables [296] or datasets with more
variables than samples [110].
While high-dimensional datasets are often encountered in GP, methods to
tackle these problems have mainly focused on high-dimensional classification
problems. High-dimensional SR tasks have primarily gained importance in the
last few years [50, 110]. Mapping the idea of ADFs to symbolic regression, a
potential solution could be the construction of features from the original (high-
dimensional) variable space which can be reused in an expression. Next to
feature construction or extraction, other methods in the literature to tackle
high-dimensional problems involve feature selection and a physics-inspired in-
ductive bias for modularity. In the following, an overview of the relevant con-
tributions in the literature will be given.
In many high-dimensional datasets, variables are often correlated or have aFeature Selection
minimal effect on the target variables. Consequently, identifying and selecting
a subset of significant variables becomes crucial. Feature selection aims to re-
duce the dimensionality of the dataset by including only the most impactful
variables. GP inherently includes a feature selection mechanism, which reaches
its limit when the number of variables surpasses a certain threshold. Chen et
al. [46] presented one of the earliest works on GP for high-dimensional sym-
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bolic regression, which embedded a feature selection phase in the overall GP
algorithm. In a first stage of their proposed algorithm, important features were
selected from the fittest individuals, which were used as the input features in the
second stage where GP was applied on the reduced set of variables. A different
approach by Chen et al. [50] investigated feature selection with permutation
importance. A subset of features was selected in a GP-based preprocessing
step, which served as an input to the training of the final regressor using GP.
Dick et al. [69] employed a similar variable importance measure that involved
permuting variables in an expression. They assumed that the shuffled variables
causing the highest change in the fitness function on a holdout dataset were
the most important.
Zhong et al. [298] compared multiple methods to reduce the numbers of fea-
tures of high-dimensional SR datasets before applying GP. Experiments on five
datasets, with the number of variables ranging between 53 and 280, suggested
that the principal component analysis, which projects the data into a lower
dimensional space without retaining the original features, performed the worst
among the tested methods. Their proposed feature selection method based on
the maximal information coefficient performed best when both correlation and
redundancy were considered. Arslan et al. [11] proposed a method based on
artificial bee colony programming.
In [231], a method performing feature selection using a cooperative approach
employing an EA and GP was proposed. In the EA, features were represented
as binary strings, where a value of 1 indicated that the feature was selected.
The quality of an individual in the EA was determined by the best fitness from
an entire run of GP. While this approach was extremely time-consuming due
to the interplay between EA and GP, it demonstrated comparable or better
performance on various classification tasks.
Recently, Al-Helali et al.[110] presented the remGP method, which evaluated
feature importance by assessing the impact of their removal. Unlike previous
methods that shuffled features to measure their importance, as done in [50, 69],
remGP systematically removed features from an evolved expression to observe
their effect on the final result. This approach did not rely on precomputed
statistical properties to remove irrelevant features on a data level, but allowed
for feature selection to be performed directly on the evolved expressions.
Zeng et al. [296] introduced a gradient-based approach to optimize the structure
of a GP tree, which used a novel differentiable symbolic tree representation.
The typically discrete function and terminal sets of GP were relaxed into a
continuous representation, which allowed for adaptations of the tree structure
through gradient descent. In this continuous space, a GP tree was defined solely
by a node matrix and an adjacency matrix with learnable weights. While stick-
ing to the general idea of evolving a population of trees, trees were converted
into the continuous representation and the training process boils down to op-
timizing the two matrices. Optimization phases took turns with diversification
phases, where operations similar to mutation and crossover were performed on
the trees. This method achieved notable results on SR benchmark datasets
with up to 7400 variables, and outperformed canonical GP [90] and also more
advanced GP approaches such as the previously described Rademacher com-
plexity for improved generalization [49] and bi-objective GP for interpretabil-
ity [281]. Interestingly, all GP-based approaches achieved better results than
the hybrid neural-guided population seeding [189] and deep symbolic regres-
sion [207] (further details in Sec. 3.1.2).
The previous methods made high-dimensional problems more manageable forFeature Construction and

Extraction GP by removing correlated or redundant features from the dataset, thereby
transforming the problem into a lower-dimensional one with fewer variables.
However, in some cases, even a well-designed model may require most or all
of the variables [173]. This is a scenario which is especially likely in scientific
problems and pertains to a long-standing challenge in data-driven ML [208].
In such cases, feature selection may not be suitable, as it could remove impor-
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tant information when each variable contributes to different dimensions of the
prediction. Feature construction or extraction aims at identifying meaningful
features from the original variables, rather than removing seemingly irrelevant
information. To this end, various methods for introducing modularity to fa-
cilitate the decomposition of the problem into more manageable units for GP
have been presented in the literature.
One line of research involves the dynamic extraction of these features during
the evolutionary process. In [173], an approach based on latent variables and
nonlinear sensitivity analysis was presented to identify mathematical expres-
sion from high-dimensional datasets. The approach was tailored to cases where
almost all variables were required to capture the variation in the data with re-
spect to non-linear sensitivity analysis between input and target variables. The
method made use of the concept of latent variable symbolic regression (LVSR),
where each latent variable t is a linear combination of the input variables,
resulting in a one-dimensional variable. Different methods to adjust the pa-
rameters in the linear mapping were assessed, such as random forest and linear
regression using lasso and ridge regularization. GP learned a nonlinear func-
tion of the latent variable g(t)) to fit the training data. More latent variables
and nonlinear functions of these were added iteratively to the model until a
maximum rank or a desired accuracy was reached. Comparing the LVSR per-
formance with classical regression methods and a GP algorithm with feature
pruning on a dataset with 240 variables demonstrated the effectiveness of this
approach.
One of the few papers explicitly targeting feature construction for high-dimen-
sional SR tasks is [51], where Chen et al. proposed a method based on frequently
appearing building blocks. In a first step, individuals with higher fitness gains
compared to their parents were analyzed in terms of depth and activeness of
a building block. While depth referred to the number of levels in a building
block, activeness counted the frequency of a building block within the analyzed
individuals. Building blocks within a predefined depth range and activeness
level were transformed into new features. In the second step, these features
were introduced into the set of terminal within the GP algorithm. Furthermore,
some individuals with high error values were removed from the population,
which was seeded with new individuals that used the precomputed building
blocks. Compared to standard GP, the proposed method evolved more compact
models with better generalization capabilities, as experiments on SR datasets
with 122 to 7399 features demonstrated.
Further examples for feature construction for high-dimensional classification
problems were presented in [240, 270]. An interesting approach is cooperative
coevolutionary genetic programming (CCGP), which demonstrated competitive
performance on a high-dimensional classification task [232]. However, as recent
research by Zille et al. indicated, CCGP did not necessarily produce better
results than canonical GP for regression tasks [299].
Another noteworthy line of research exploits specific problem characteristics to
divide high-dimensional problems into smaller chunks and make them thereby
tractable for GP. In this way, the search space and computational complexity
can be reduced, and the performance and efficiency of GP can be enhanced
by focusing the search on relevant components of the problem. This typically
requires some knowledge about the problem or the domain, which is often
available for applications in science, engineering, or physics.
Lou et al. [168] utilized the separability inherent in many problems in science
and engineering and proposed a D&C approach to tackle such problems. The
target function was divided into a number of subfunctions by the novel bi-
correlation test. These sub-functions were then each approximated separately
with a GP algorithm. Experiments indicated an accelerated convergence speed
of GP, since only smaller components and not the interactions of all variables
had to be learned. However, although this approach was developed to tackle
high-dimensional problems, the two benchmark datasets contained only two
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and five variables. While this approach was previously limited to models with
additive and multiplicative separability, Chen et al. [43] overcame this issue by
introducing a bi-level D&C approach with an additional factoring component.
Their block building programming (BBP) approach divides the separability de-
tection into a first block and a second factor detection step. The algorithm
outperformed a canonical GP algorithm in terms of convergence speed and
accuracy for a problem related to the flow pass of a circular cylinder. An-
other extension of this method that allowed for the inclusion of the same vari-
able in multiple function blocks demonstrated competitive performance on a
problem [42]. However, the number of variables considered in the benchmark
problem was again only small.
Cranmer et al. [60] presented an interesting hybrid method that employs GNNsModularity Through

Physics-Inspired Inductive Bias with a separable internal structure as an inductive bias for GP and decomposes
the problem into smaller sub-problems. The terms GNN and message passing
neural network (MPNN) as introduced in Sec. 2.2.2 were used interchangeably
here. Their approach leverages the ability of deep learning to operate on high-
dimensional data, and symbolic regression to generate interpretable models.
They proposed a framework for problems that can be modeled as interacting
entities, as they appear frequently in problems studied in science and engineer-
ing. Since MPNNs can represent this underlying structure, an MPNNs was first
trained on the available data, which induced a strong bias on the underlying in-
teractions between entities. Compact internal representations were encouraged
during training to reduce the dimensionality of the hidden vectors, making the
symbolic regression more tractable. The internal parts of the MPNN, namely
an edge and a node model which used shared parameters for each edge or node
update, were then replaced by symbolic models. All incoming edge messages
were summed into a function f(x), and served as input to the node model
g(x), so that the final model was a nested function g(f(x)). In this way, the
complexity of the problem for the GP (or any other SR) algorithm was re-
duced, and the number of variables the algorithm operated on was significantly
reduced compared to the original dataset. The effectiveness of this approach
was demonstrated by the successful rediscovery of Newtonian and Hamilto-
nian dynamics, as well as the improvement upon an existing expression for a
problem in cosmology. This method furthermore rediscovered the gravity equa-
tion for international trade in [279], the collective behavior of swarms [211], as
well as the orbital mechanics of our solar system according to Newton’s law
of gravitation [162]. While this approach demonstrated impressive capabilities
to rediscover systems with known ground truth, further research is required to
assess its performance on problems for which no underlying equation has been
identified yet.

3.2.6 Genetic Programming Software Implementations

The preceding sections illustrated the versatility of GP research and the recentThe Issue
advances. For each issue addressed, various research directions and contri-
butions to the literature have emerged. However, this multiplicity of tech-
niques and associated parameters and the challenge to determine a single best
approach make it difficult to configure a GP algorithm for a given problem.
O’Neill et al. [195] have already raised the issue of usability in 2010, and pro-
posed to enhance it with the development of an easier to use and more intuitive
software implementation, similar to a “one button” GP. Meanwhile, multiple
easy to use and customizable GP frameworks with different characteristics have
evolved. The most important ones will be briefly described here.
DEAP [90] implements the canonical GP algorithm in Python. It supports a wideDEAP

range of evolutionary algorithms and provides various customization options
and components, which can be assembled into an algorithm using a toolbox.
It is therefore often used to implement and prototype new algorithms, or as
a baseline method when novel algorithms are compared to a GP baseline, for
example for high-dimensional GP [296] and feature selection [110]. It uses
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ERCs and its associated mutation operators rather than a separate nonlinear
regression algorithm for parameter fitting.
GPTIPS [253] is a MATLAB-based platform for multigene GP, where a model isGPTIPS

a linear combination of subtrees and coefficients fitted using a nonlinear least
squares solver.
Operon [34] is a framework written in C++ intended to achieve an efficient im-Operon

plementation in terms of runtime and memory, and offer a pre-configured algo-
rithm where a user only need to add the corresponding dataset. It incorporates
non-linear least squares constant optimization using the Levenberg-Marquardt
algorithm.
Genetic Engine is a hybrid between strongly-typed and grammar-guided ge-Genetic Engine

netic programming and uses a context-free grammar to guide the evolution of
symbolic regression models. ensuring syntactic correctness and incorporating
domain-specific constraints [80]. It allows for single- and multi-objective opti-
mization, to provide domain knowledge about the shape of the solution using
type annotations and the definition of problem-specific fitness functions.
The Bingo framework [216] evolves general acyclic graphs with a linear rep-Bingo

resentation. The modular code structure allows for simple abstraction and
exchangeable of existing or implementation of user-defined components. It fur-
thermore employs a constant tuning algorithm, algebraic simplification, and
coevolution of fitness predictors. The fitness function in Bingo is customizable
and supports the computation of partial derivatives, which is useful to consider
physics-related constraints in the fitness evaluation.
A tree-based framework developed for practical application of SR in the sci-PySR

ences is PySR [57]. It constitutes a multi-population evolutionary algorithm,
which executes an evolve-simplify-optimize loop. It aims at balancing accuracy
and simplicity of a symbolic model, and uses a tournament selection-based re-
production method, where accuracy and simplicity are condensed into a single
performance measure. A simplification phase helps to remove redundant oper-
ations in an individual. The BFGS algorithm is adopted for constant tuning,
which is performed every couple of generations. Customizability is a key char-
acteristic which allows for user-defined operators, custom fitness functions and
further ways to influence the search such as weighting data samples or restrict-
ing the complexity and nesting of some operators. The algorithm maintains
and returns an archive of Pareto-optimal solutions in terms of accuracy and
complexity. PySR was used in various recent publications addressing symbolic
regression in scientific applications [e.g., 101, 177, 256].
Thermodynamics-informed symbolic regression (TiSR) is a GP-based frame-TiSR

work written in Julia, whose structure is inspired by PySR [57]. Its applica-
bility is not limited to thermodynamics, but any kind of problems from the
science and engineering domain. It enables multi-objective optimization of dif-
ferent pre-defined or user-specified objectives and is based on the NSGA-II
algorithm. The Levenberg-Marquardt algorithm with a lasso regularization
method is implemented for constant fitting. TiSR allows for fast algorithmic
prototyping through simple code structures, while including all state-of-the-art
components of a GP-based SR framework. To accommodate problem-specific
constraints, further customization options such as weights on data samples to
express measurement uncertainties or partially fixed functional structures are
provided. The algorithm returns an set of Pareto-optimal solutions in terms of
user-defined objective functions.
In addition to the previous ones, code for some methods to improve GP asFurther Software

Implementations and Code introduced in Sec. 3.2.4 is publicly available. These include, for example, GP-
GOMEA [280], the GPOL library [14] that implements GSGP [275], ITEA [93]
as well as FEAT [153].
Overall, the number of available software implementations has grown rapidly,Discussion on Frameworks
and a single best state-of-the-art framework could not be identified. To com-
pare the performance of different SR frameworks, researchers can submit their

47



implementation to competitions such as the one held at the Genetic and Evo-
lutionary Computation Conference [91, 152]. For the matter of this thesis,
the results on a real-world track with unknown ground truth equations were
of interest. Since the datasets had not been known to the competitors in ad-
vance, there was no possibility to include domain knowledge in the algorithm
to guide the search more efficiently towards desirable and interpretable mod-
els. Moreover, the selection of a final model from the Pareto front (for those
frameworks that return a Pareto front) was not conducted by a domain ex-
pert, but rather by an empirically designed scoring function. Thus, the results
of the competition provided limited insights into the framework performance
for cases where domain knowledge would have been available and included in
the algorithm. In addition to a good performance, the algorithms proposed
in this thesis require a framework with extensive customization capabilities to
incorporate domain knowledge. Due to this and the rapidly evolving field of
GP frameworks, the algorithms proposed in this thesis were implemented in
different libraries, namely DEAP [90], PySR [57] and TiSR [170].

3.3 Domain Knowledge in Genetic Programming for Symbolic Regression

As pointed out in Sec. 3.1, physics-informed ML is an emerging area aiming
to integrate domain knowledge into the ML process, aligning the resulting
models with established physical principles. SR methods are ideal to approach
engineering and science problems, as they generate human-readable expressions
that inherently provide insights into the model itself. GP is considered the most
widely studied method for SR with high customization capabilities, making it a
promising candidate for integrating domain knowledge in the context of science
and engineering.
For the broader area of ML, there have been a few publications on ontologies
that were used to classify different categories of domain knowledge for machine
learning observed in the literature [126, 131]. To the best of the author’s knowl-
edge, there exists no systematic literature review specifically focused on the in-
tegration of domain knowledge in GP. To date, the search for “physics-informed
genetic programming” returned only one very few publications mentioning it in
their title or abstract [54, 94]. However, there are, in fact, numerous publica-
tions that applied GP to both synthetic and real-world datasets and integrated
domain knowledge, sometimes without explicitly stating it. The goal of this
section is to give an overview of publications in the GP area that integrated
domain knowledge in their algorithms and to classify them.
To this end, we adhered to the ontology proposed for physics-informed ML byDomain Knowledge

Classification Karniadakis et al. [126], which aligned well with the patterns observed during
the literature review for GP. Rather than attempting to categorize types of
knowledge, which is a challenging endeavor even within the realm of philosoph-
ical sciences, they concentrated on identifying the types of bias incorporated
into the ML process that had been derived from domain knowledge. Three bias
types have been identified, namely observational, inductive, and learning bias:
Observational bias is introduced through the data on which an ML model is
trained [126]. Examples include the addition of significant data points to guide
the algorithm to a desired functional behavior, as well as other methods for
data augmentation and feature pre-computation.
Inductive bias refers to prior assumptions that can be incorporated by partic-
ular interventions to an ML model [126]. In the case of SR, this includes all
measures that restrict the search space, such as the definition of a grammar or
a (partially) pre-defined functional form.
Learning bias involves all measures that influence the training process of an
ML model to explicitly favor convergence towards solutions that adhere to a
desired behavior [126]. Examples include case-specific loss functions, addressing
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soft constraints through multi-objective optimization and human interventions
during training.
Next to these three bias types, a way of exploiting domain knowledge inherent
to multi-objective GP is the selection of an appropriate equation from the
Pareto front, typically trading off between accuracy and complexity. This step
is crucial for practical applications, where usually only one final equation is
required. This selection bias is closely related to the field of decision-making,
a vast area of research that falls beyond the scope of this thesis.
In the following, we aim to give an overview of GP approaches that have pre-
viously employed domain knowledge to introduce bias into their algorithms.
Tab. 3.2 summarizes these publications, most of which involve some applica-
tion from the science or engineering domain. The column “Algorithm” refers to
the name of the proposed algorithm in the respective reference, if applicable, or
describes the algorithm in own words otherwise. The column “Bias” summarizes
how the bias was integrated into the algorithm, which is then classified in the
column “Bias Type”. Finally, the column “Application/Dataset” specifies the
problem on which the proposed algorithms are tested. It becomes apparent that
numerous works have proposed ways to integrate domain knowledge into their
GP algorithms. The specific application areas are widely spread, though several
times the Feynman equations [272] were used as a physics-related benchmark
dataset recognized by the research community. A few methods for integrating
domain knowledge in GP stand out, as higher attention was given to them in
the literature. These will be discussed in the following.

3.3.1 Shape-Constrained Symbolic Regression

Various studies considered how prior knowledge in the form of shape constraintsWhy Shape Constraints?
can be integrated into the GP algorithm. Shape constraints are useful when
datasets cannot cover all important system properties, for example when they
contain only few samples, noisy samples, or observation gaps regarding one
or multiple variables. When there is domain knowledge available about the
expected functional behavior, this can improve the extrapolation capabilities.
Potential shape constraints include the monotonicity of a function with respect
to a variable, symmetry, convexity, the range of the output values, as well as
the slope of a function. These constraints can be addressed using optimistic or
pessimistic approximation methods. Optimistic approaches cannot guarantee
that a constraint is satisfied, while pessimistic approaches might mark models
as infeasible that actually satisfy the constraint.
Kronberger et al. [144] integrated monotonicity constraints in GP by usingFeasibility-Based

Shape-Constrained GP interval arithmetic (IA) to detect constraint violations and mark individuals as
feasible or infeasible. IA was implemented in two solvers: first, an extension of
the tree-based canonical GP algorithm that assigns a high penalty to the fitness
of infeasible individuals; and second, the ITEA [93] algorithm with separate
feasible and infeasible populations. Both algorithms developed models which
adhered to the constraints, but demonstrated lower accuracy on the training
and test sets compared to other regression algorithms. The authors assumed
the cause in the overestimation of model bounds through IA, which might have
rejected feasible solutions or have led to premature convergence.
Another approach more frequently studied in the literature is multi-objectiveMulti-Objective

Shape-Constrained GP shape-constrained GP, where each constraint is addressed as a separate objec-
tive, or all constraints are combined into one objective with the constraint vio-
lation to be minimized. Bladek and Krawiec [24] integrated shape constraints
through counterexample-driven GP, which is an optimistic approach employ-
ing a satisfiability solver modulo theories (SMT) solver to detect constraint
violations and extend the training data with counter examples. The error on
the counter-examples set was optimized as a separate objective. Haider et
al. computed constraint violations with IA and minimized the violations with
NSGA-II [104], multi-objective evolutionary algorithms (MOEA)/D [104] and
NSGA-III [107]. In [106], Haider et al. compared an optimistic approach, which
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Ref. Algorithm Bias Bias Type Application/Dataset

[12] Hybrid Symbolic
Regression

Fix top structure of the model tree Inductive
Metal Bending ProcessPrecomputed, dimensionless features Observational

[24] Shape contraints using an
optimistic approach

Counter-example driven SR with SAT
solver

Learning
Gravity, Resistance2, Resistance3

Counter-example driven SR with com-
puting constraint violations on a con-
straint dataset and minimizing con-
straint violations with NSGA-II

Learning

[26] Implicit Symbolic Regres-
sion

Problem-dependent fitness measure
including time derivatives

Learning Plasticity models

[53]
Dimensionally aware GP Dimensional consistency is enforced

using grammars
Inductive

Higgs dataset, DVCS dataset,
⌧µ3 - dataset

Transition Matrix Expert-defined transition matrix with
probabilities to choose the next oper-
ator given the current operator, also
forbids certain combinations

Inductive

[57] Dimensionally aware GP
including constants with
unknown units

High penalty value for individuals
non-compliant with units

Learning No appplication given

[60] GNN as inductive bias for
GP

GNNs with internally separable struc-
ture to approximate interactions be-
tween entities

Inductive Newtonian Dynamics, Hamilto-
nian Dynamics, Cosmology

[73] Dimensionally aware GP Constrained Initialization Procedure
and Local Dimensionally aware Search

Inductive Feynman

[94] Physics-informed genetic
programming-based sym-
bolic regression (P-GPSR)

Integration of requirements towards a
symbolic model, which were derived
from a thermodynamic-based analysis,
through objective functions

Learning Gurson yield function from
thermodynamics

[104] Multi-objective shape con-
straints

Multi-objective approach with NSGA-
II and MOEA/D as algorithms and
Interval Arithmetic to compute con-
straint violation

Learning Feynman

[105] Presentation and application of their previously introduced shape-constraint algo-
rithms in [104, 107, 106] to real-world datasets

Twin-Screw Extruder Modeling,
Data Validation for Industrial
Friction Performance Measure-
ments, Magnetization Curves

[106]
Shape constraints with
pessimistic approach

Interval Arithmetic to evaluate shape
constraints

Learning
Feynman

Shape constraints with op-
timistic approach

Domain-specific inclusion of signifi-
cant data points

Observational

[107] Shape constraints with
NSGA-III

Multi-objective approach (NSGA-II
and NSGA-III) to minimize constraint
violations which are detected using In-
terval Arithmetic

Learning Feynman

[109] Replacement Mutation
and Adaptive Replace-
ment Mutation

A-priori knowledge about subpro-
grams: Knowledge archive of subpro-
grams which is used during mutation

Learning Program Synthesis Benchmark
Suite (PSB1) and Compos-
ite Problems constructed from
PSB1

[111]
Grammatical Evolution
for Program Synthesis
with varying grammars

Automatic mapping between problem
description and built-in functions and
increasing the likelihood of these func-
tions

Inductive

Program Synthesis Benchmark Suite

Problem-dependent fitness functions
that measure how many of expected
program elements are included

Learning

Extracting significant constants, oper-
ators and not-to-use elements by hu-
man from problem description and up-
dating grammar

Inductive

[127] Linear Scaling Linear Scaling to scale the output of a
program to the target output, if shape
is well, but scale is wrong

Inductive Collection of SR problems from
other papers that present im-
provement methods for GP

[128]

Dimensionally-aware GP
computes the number of
unit violations in an
individual

GP with brood selection, only the best
individual w.r.t. the cheaper dimen-
sional analysis survives

Learning

Bernoulli equation for energy
conservation

Multi-objective GP Learning

Multi-objective GP with brood selec-
tion

Learning

[130]

Scientist in the loop
approach providing
different integration
points where the human
can insert problem
knowledge

Division into distinct feature groups
using user input and AutoML

Observational

5 Short equations with different
characteristics (large number of
features, complex function
shape, unknown ground truth,
noise)

Loss function selection Learning
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Ref. Algorithm Bias Bias Type Application/Dataset

Allocation of feature weights (to single
features and not to data points)

Observational

Steering of sampling strategy for new
solutions through directing it towards
using specific features more often or
exploring equations of a specific com-
plexity

Learning

Equation structure constraint Inductive

[142] Knowledge-guided Ge-
netic Improvement by
combining Tree-based GP
and Grammar-guided GP

Operator graph contains concepts in
a language and knowledge associated
with it

Inductive No experiments, only proposed
this approach

[144]
Single-objective Interval
Arithmetic for SC

GP with Interval-arithmetic to ana-
lyze SC, high penalty for constraint vi-
olations

Learning
Feynman

Feasible-Infeasible
Two Population
with Interaction-
Transformation

Feasible population minimizes error
function, infeasible population mini-
mized constraint violation

Learning

[146] Inclusion of categorical
features

Grouping of material properties into
factor variables

Observational Friction systems with varying
materials

[148] Shape constraints for sym-
metry w.r.t. arguments
or w.r.t. domain, out-
put range, function mono-
tonicity, function slope us-
ing an optimistic approach

Counter-example driven SR with com-
puting constraint violations on a con-
straint dataset and minimizing con-
straint violations with NSGA-II

Learning Turtlebot, Drone, Magnetic Ma-
nipulator

[149] Shape constraints for sym-
metry w.r.t. arguments
or w.r.t. domain, out-
put range, function mono-
tonicity, function slope us-
ing an optimistic approach

Counter-example driven SR with com-
puting constraint violations on a con-
straint dataset and minimizing con-
straint violations with NSGA-II

Learning Resistance2, Magnetic Manipu-
lator, Pressure

[162] GNN as inductive bias for GP

Relative Mean Weighted Error as
problem-dependent loss function

Learning

Orbital MechanicsTransformation to spherical coordi-
nates, data augmentation through ro-
tation

Observational

GNNs with internally separable struc-
ture to approximate interactions be-
tween entities

Inductive

[163] Dimensionally Aware
Multi-Objective GP (DA-
MOGP)

Multi-objective GP, dimensional anal-
ysis uses prime numbers to express a
unit, unit-adjusted evolutionary oper-
ators

Learning Real-world crowd datasets

[174] MOJITO to include hi-
erarchical domain-specific
building blocks

Set of expert-specified, trusted, hier-
archically organized analog building
blocks, organized as a parameterized
context-free grammar

Inductive Analog circuit topology synthe-
sis

[176]
Constrained
Dimensionally-aware GP
(C-DAGP)

Computation of a dimension gap,
which is weighted with an adaptive
penalty coefficient and added to the
error measure

Learning
Dynamic Job Shop Scheduling
Task

Culling with crossover size of two and
selection of the offspring with lowest
dimension gap

Learning

[196] Physics-regularized fitness
function for analytical
solutions to differential
equations

Fitness function is augmented with a
measure of how well an equation sat-
isfies the prescribed differential equa-
tions

Learning Euler-Bernoulli Differential
Equation, Poisson’s Equation

[209] SC and Extended Con-
straints (EC)

Define soft constraints computed on
conversions of an expression using ad-
ditional features, such as f(x)/h. Vio-
lation added to error objective

Learning Magnetization Curves

[211] GNN as inductive bias for
micro-macro evolution GP

GNNs with internally separable struc-
ture to approximate interactions be-
tween entities

Inductive Collective behavior: Hexagonal
Shape Formation, Square Shape
Formation, Coordinated Motion

[218] Dimensionalization
through formal grammars

Parts of the function are fixed in the
grammar definition

Inductive
Force-time relation of
mechanical indentation tests

Dimensional constraints implemented
in the grammar

Inductive

[219] Dimensionalization
through formal gram-
mars

CFG-compliant initialization proce-
dure to overcome diversification and
bloat issues in initialization using CFG

Inductive Kelvin-Voigt, four-element
model
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Ref. Algorithm Bias Bias Type Application/Dataset

[234] Hybrid Symbolic
Regression

User-defined special operators: spatial
differential operators

Inductive
Ocean subgrid parametrization
for eddy and jet configurations

Human in the loop to re-
move/add/edit equations

Learning

[236] Multiview Symbolic Re-
gression

Fitting different coefficient values
within structurally equal expressions
to multiple datasets from the same
problem family, but with different ex-
periment set-ups

Learning Chemistry, Finance, Astro-
physics

[247]

Seeding methods to
incorporate expert
knowledge of partial
solutions

Approximate Equation Seed inserts
exact solution, with one subtree being
replaced by a constant

Inductive
100 randomly generated target
equations of varying
complexitiesShuffled Equation Seeding uses ap-

proximate equation and exchanges two
random subtrees

Inductive

Building Block Mutation where each
subtree of the approximate equation is
a building block

Learning

[249] EvoStencils Definition of a problem-specific gram-
mar with problem-specific functions

Inductive Construction of efficient multi-
grid solver

[250]

Dimensionalization
through formal gram-
mars

Dimensional constraints implemented
in the grammar

Inductive Materials behavioral law

Examples for domain
knowledge on different
levels

Problem-dependent representation
based on Voronoi diagrams

Inductive

Seismic Underground ProspectionProblem-dependent geometrical
crossover operator for Voronoi repre-
sentation of a solution

Learning

Problem-dependent Fitness function
that uses a proxy measure

Learning

[252] Joint hand-designed and
GP-generated equation

Combination of Phenomenological
model (fixed equation part) and
an empirical correction term found
through GP

Inductive Resistance Spot Welding

[278]
Comparison of influence
of different domain
knowledge insertions

Pre-computed features Observational

Five different datasets
describing plastic deformation
of copper

User-defined weighting of important
samples in the dataset

Observational

Insertion of new data points into gaps Observational

Forcing candidate solutions to be
above zero by wrapping it into an ex-
ponential function

Inductive

[291] Biasing GP through CFG Context-free grammar to limit the
search space to desired solutions

Inductive

[299]
Dimensionally aware GP Multi-objective GP to minimize the

number of unit violations next to an
error objective

Learning Three benchmark equations
from the Stokes flow past a
single spherical particle with
and without pre-computed
featuresAssessment of feature pre-

computation derived by
domain knowledge

Apply trigonometric functions to angle
features, and square, cube and unary
division to all other features

Observational

Table 3.2: An overview and
classification of the different
types of domain bias in GP

algorithms found in the
literature.

added domain-specific significant data points to the dataset, with a pessimistic
approach using IA to estimate the bounds of a model and its partial derivatives.
While the optimistic approach indicated better extrapolation capabilities, the
pessimistic performed better on noisy datasets. Kubalik et al. employed the
counter-example driven constraint computation and optimized it with NSGA-II
and multiple regression GP [149]. They extended this approach with a feature
mixing technique in another publication [148].
Shape-constrained GP algorithms found applications in various areas, as further
studies by Winkler et al. [105] and Piringer et al. [209] demonstrated. Multi-
objective approaches generally allow for the development of infeasible models,
and still yield partially feasible models when some constraints are extremely
challenging to learn. This makes them less restrictive compared to methods
that enforce the constraints. However, further research on how the inclusion
of constraints in GP affects the search space and population diversity would
be interesting [144]. Methods to include shape constraints in ML models were
also studied outside the SR realm, for example in [103, 286].
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3.3.2 Unit-Aware Genetic Programming

The following subsection is largely based on the author’s publication [224].
Another area of significant research is the development of symbolic modelsWhy Dimensional Analysis?
that align with physical units. An established approach in engineering sciences
is the Buckingham ⇧ theorem [33], which transforms variables and constants
into dimensionless quantities through multiplicative operations. While mak-
ing variables dimensionless preserves physical consistency, it also eliminates
the associated units. As studied in more detail by Tenachi et al. [267], unit
information can guide the SR algorithm in finding an appropriate functional
form. Thus, removing unit information could also cause the loss of valuable
constraints on possible functional forms.
In addition, domain experts in science and engineering frequently require so-
lutions to adhere to physical laws and avoid unit-violating operations, such as
the addition of a quantity in meters and a quantity in seconds. The acceptance
of results of SR algorithms can suffer, when solutions do not stick to expected
physical laws, with unit-conformal operations being one of the critical require-
ments. The literature on unit-aware SR uses the terms “unit” and “dimension”
inconsistently. In the following, these terms will be used interchangeably. It
should be noted that “dimension” only refers to the dimensionality of the data
when explicitly mentioned, such as in phrases like “high-dimensional” or “six-
dimensional”.
The consideration of physical units in the search for symbolic models was stud-Early Research
ied early in the GP area. Keijzer and Babovic suggested different methods to
handle unit violations in GP [128]. The dimensions of a feature were expressed
as a vector of real-valued exponents corresponding to the units of length, time
and mass. A velocity feature in meters per second was thus expressed as
[1,�1, 0]. A goodness of dimension criterion computed the distance from the
desired dimensions by summing over the number of required transformations
within the expression to achieve the desired dimension. They furthermore intro-
duced a repair function that corrected unit violations by simple multiplication
with a constant. This constant had a value of 1.0 and transformed the units
of the variables into units valid for the specific operation. Their experiments
aimed at recovering the Bernoulli equation for energy conservation. The results
suggested that a multi-objective approach minimizing the goodness of dimen-
sion criterion yielded the best results. Furthermore, unit information gained
importance as the noise level of the data increases. Keijzer and Babovic [128]
also emphasized the importance of constants within the dimensional analysis.
The algorithms with dimensional analysis only found the ground truth solutions
regularly when the used constants along with their units were given as input
features. However, it needs to be noted that their algorithm in 1999 did not
include parameter fitting, such as current state-of-the-art algorithms. Instead,
new randomly generated constants were assigned a dimensionless unit vector of
[0, 0, 0], which may have prohibited the algorithm from finding unit-conformal
equations with suitable parameters. Overall, this paper laid the foundations
for future research in this area.
Some methods from the literature enforce dimensional consistency by definingUnit-Aware GP Without

Unknown Constants a building grammar, for example for unit-aware feature construction in experi-
mental physics [53] or predicting material’s response to a mechanical test [218,
219, 250]. Similarly, strongly-typed GP ensures dimensional consistency by
defining units instead of types, such as studied in [74]. Compared to other
constraint handling methods presented in the next paragraph, grammar-based
and strongly typed GP require a higher implementation effort. Ideally, this
inductive bias restricts the search space in a way that feasible solutions can be
explored more efficiently, which in turn leads to faster algorithm convergence.
However, as Mei et al. [176] pointed out, the resulting search space can consti-
tute multiple disconnected feasible regions, which can be challenging to reach.
This may result in convergence towards local optima.
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Other approaches allowed the algorithm to evolve equations which contain unit
violations, and put a learning bias in place to reduce them. Overall, three pre-
dominant ways for unit-related constraint handling in GP can be identified in
the literature. First, a multi-objective variant that minimizes the number of
unit violations as an additional objective [163, 299]. Li et al. [163] encoded
each of the seven SI unit as a different prime number, on which dimensional
analysis propagated through the operations of the tree. Repeated mutation of
unit-violating subtrees led to overall fewer infeasible solutions. Those individ-
uals that nevertheless produced a dimension error were assigned a dimensional
inconsistency measure, which was optimized in a multi-objective way. Zille
et al. [299] encoded units as a vector of exponents and computed the dimen-
sion error as the sum of all unit-violating operations within an individual. The
Manhattan distance between the output and target unit vector was furthermore
added to the dimension error.
Second, a repair mechanism that manipulates the operations to match the input
and target units, for example, by multiplication with a constant to balance
units [128].
Third, the addition of a penalty term to the primary error objective to account
for unit violations. The most drastic case studied in the literature was the
“death penalty”, which assigned a large penalty value to ensure that an indi-
vidual did not survive to the next generation [17, 176]. The brood selection
strategy of [128] shared similarities with the death penalty approach: Multiple
offspring were generated from one individual, and the one with the smallest
unit violation was added to the population. This strategy was already applied
in the reproduction stage and not in the subsequent survival selection stage of
an algorithm.
The development of new empirical equations from real-world datasets createsUnit-Aware GP with Unknown

Constants additional difficulty due to newly generated constants: the amount, value, and
position within the equation as well as the units of the constants are not known
beforehand. Every constant can take on arbitrary units, which makes previous
dimensional analysis in unit-aware GP approaches impossible to use. However,
both, unknown constants and symbolic models that adhere to physical unit con-
straints, are an important requirement of domain experts from various scien-
tific fields. To overcome this issue, the PySR backend SymbolicRegression.jl

recently released a functionality to consider unknown constants in the dimen-
sional analysis [57]. An equation is evaluated, and the units are propagated
through the equation accordingly. Constants act as so-called “wildcards” and
can take on arbitrary units. In case of unit violations, a penalty value is em-
ployed. This penalty does not account for the number of unit violations, i.e.,
solutions with few violations are treated equally to solutions with many vi-
olations. A weighted sum of the primary objective and the penalty term is
built to penalize unit violating individuals. Building a weighted sum of these
two measures is also challenging, as the scales are different, and an additional
weight parameter needs to be specified. Depending on the penalty value, which
is large in the standard settings of PySR, this can have the effect of a death
penalty.
However, combining parameter estimation with the death penalty for constraint
handling has the negative effect that a solution, that does not survive to the
next generation because of the death penalty, still uses computational resources
for the expensive parameter estimation. This is, to the best of the author’s
knowledge, the only approach to conducting dimensional analysis on equations
with unknown constants in the GP area. Using the unit propagation scheme
as proposed in SymbolicRegression.jl, it can be interesting to assess the
performance of other constraint handling methods.

3.3.3 Further Approaches to Integrate Domain Knowledge

Another way of inducing domain knowledge into the GP algorithm is to makeAssumptions About Function
Structure assumptions about the expected functional structure and enforce it in the ex-
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pression. Asadzadeh et al. [12] fixed the top structure of the GP tree so that
evolution takes place on the lower levels. Linear scaling as presented in [127]
also posed a strong inductive bias of constant placement on the functional form,
with certain drawbacks as earlier discussed in Sec. 3.2.2. Schwab et al. [252]
based their final expression on a phenomenological model from the literature
and developed only the correction term with GP. Versino et al. [278] wrapped
the develop expression into an exponential function to guarantee positive out-
put values. Seeding the population with the expected functional form or pre-
defined subtrees is a less restrictive way to provide an initial guess about the
expression, as studied in [247]. This gave the algorithm the chance to converge
to a better model without any of the defined subtrees, in case such a model
exists.
A very specific functional form applicable to various problems is enforced whenGNN as Inductive Bias
GNNs as inductive bias are used. Cranmer et al. [60] proposed this method for
high-dimensional physical systems with interacting entities, as previously dis-
cussed in Sec. 3.2.5. The underlying functional form was restricted to the sum-
mation of pairwise interactions, leading to a nested overall function y = g(f(x)).
This method was applied to Hamiltonian and Newtonian dynamics with known
ground truth, as well as real-world datasets from cosmology. A similar approach
was applied to model collective behavior in swarms in [211], where the inter-
actions between swarm members were first approximated by a GNN. Lemos et
al. [162] used this method to rediscover the orbital mechanics of the solar sys-
tem. They included further domain-specific learning bias, such as the relative
mean weighted error as a loss function, to account for large dynamic ranges in
the dataset. Observational bias was integrated by transforming the coordinate
system to spherical coordinates centered around the sun, and augmenting the
existing data by rotation of the planet arrangements around the center.
A way to encourage the algorithm to use expected combinations of opera-Pre-Computed Features and

Problem-Specific Functions tions and features is to add pre-computed features to the terminal set, as well
as defining problem-specific functions. The exact operations usually depend
on the specific problem and thus vary across the publications that employ it.
Schmitt et al. [249] defined a problem-specific set of functions and the respec-
tive grammar to evolve efficient geometric multi-grid solvers. The approach
generated models that were competitive or more efficient than previous meth-
ods from the literature. Zille et al. [299] added precomputed features to the
terminal set to reduce the overall number of operations required in the final ex-
pression predicting the Stokes flow around a spherical particle. Trigonometric
functions were applied to features that represent angles, and square root, square
and cube operations were applied to all other features. A similar approach was
used in [278] to model the plastic deformation of copper. Dimensionless fea-
tures were pre-computed and added to the terminal set in [12] to describe a
metal bending process. He et al. [109] proposed a replacement mutation opera-
tor and provided a knowledge archive of subprograms which were inserted into
the GP trees during mutation. In [111], an additional objective was employed
to maximize the frequency of expected problem-specific subprograms within an
expression. A set of expert-specified, trusted, hierarchically organized build-
ing blocks were proposed in [174], which were implemented as a parameterized
context-free grammar. The method was used to evolve analog circuit topolo-
gies. Ross et al. [234] implemented a special spatial differential operator which
was required to predict eddy and jet configurations in oceans.
Engaging the domain expert during the expression search and offering humanHuman Interventions
interventions allows for a more flexible guidance of the search process and inte-
gration of domain preferences. In [130], the applicability of existing SR methods
for physical systems was discussed. The SciMED framework was proposed, a
scientist-in-the-loop approach, to include prior knowledge in the search for use-
ful equations. Human input was required to divide the features into distinct
groups and remove redundant features, to select an appropriate loss function,
and to assign higher weights to features that are expected to play an impor-
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tant role in the final equation. Moreover, the domain expert could steer the
sampling strategy for new solutions during evolution and direct the algorithm
towards exploiting models of a specific complexity. Their method outperformed
AI Feynman as well as GP-GOMEA [280] in some cases. In [234], the domain
expert could remove existing or add new equations at specific points during
evolution, and was also allowed to edit existing equations. In this way, expert
preferences were not only conveyed before and after algorithm execution, but
also during the search itself.
Generally, GP-based SR approaches provide the opportunity to include priorOther Constraints and

Guidance Measures knowledge on various levels. An attenuated variant of a more restrictive gram-
mar is to define building constraints. Popular frameworks such as PySR allow
for the definition of building rules, for example defining a maximum length
of the input argument to a function, or for preventing the nesting of oper-
ators [57]. However, these constraints are mainly applied during the initial
generation of solutions and may be violated through mutation and crossover.
Cherrier et al. [53] presented an expert-defined transition matrix with proba-
bilities to choose the next operator given the current operator. This matrix
also prevented certain combinations of operators.
Multiple measures to evolve problem-specific equations adhering to the expec-
tations of domain experts were presented in [250], with the goal to model seis-
mic underground prospection. In addition to enforcing dimensional constraints
through formal grammars, the algorithm also included a problem-dependent
representation based on Voronoi cells, respective crossover operators, and fit-
ness functions.
Versino et al. [278] also studied several ways to systematically integrate domain
knowledge about material properties and functional forms into the GP algo-
rithm. Observational bias was introduced by the pre-computation of features,
weighting the influence of important data samples during evaluation, as well
as adding artificial data points to the dataset, which the domain expert was
confident represent the expected functional form. To guarantee output val-
ues above zero, they imposed an inductive bias on the model by wrapping the
expression into an exponential function. Furthermore, they provided approx-
imate equations developed by domain experts to seed the initial population
of models. They concluded that the measures to integrate domain knowledge
helped the algorithm to identify equations that were in some cases on par with
other models in the literature. They furthermore stressed the limits of GP
methods without integrated domain knowledge, such as highly unpredictable
model behavior deviating from physical principles, overfitting to training data,
and reproducibility problems due to the stochastic nature of GP.

3.4 Summary of this Chapter

In this chapter, the related works in terms of PIML and SR, with a focus
on recent developments in the GP realm, have been presented and discussed.
Physics-informed neural networks and symbolic regression methods outside the
EC area have been introduced in Sec. 3.1, which are often tailored to model
specific physical systems.
Several aspects relevant for the development of meaningful symbolic models
for science and engineering applications employing GP have been covered in
Sec. 3.2. These are, generalization, constant fitting, distributed algorithms,
high-dimensional GP, software implementation, as well as other algorithm com-
ponents to improve performance. For each aspect, recent improvements that
render GP a suitable approach for science and engineering problems have been
highlighted, as well as limitations and gaps in the literature.
The integration of domain knowledge plays a crucial role in the development of
useful models for science and engineering problems. In Sec. 3.3, an overview and
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classification of methods in the literature to bias GP algorithms through domain
knowledge have been presented. These algorithms are used in a wide range of
applications within the science and engineering domain. Shape-constrained GP
and unit-aware GP have been identified as notable trends in the literature, with
various publications and different approaches proposed.
Overall, despite the advances improving GP for science and engineering prob-
lems, several limitations have been identified, which build the motivation for
this thesis. Some of these limitations will be addressed in the remainder of this
thesis:

• Island models are a method to improve the model accuracy and success
rate of GP algorithms, which are both important requirements for domain
experts. In recent literature, mainly single-objective regression problems
have been studied for GP [198, 199]. However, further research is required
to assess the application of island model GP to multi-objective problems
and its effect on the success rate of the algorithm.

• Graph neural networks are a well-motivated inductive bias to tackle high-
dimensional SR problems that can be modeled as interacting entities
and make them tractable for GP. Studies mainly demonstrate how this
method is capable of recovering existing relations [60, 162, 211], and has
only been used in a few publications to identify models for problems with
unknown ground truth and compared to handcrafted equations from ear-
lier research [e.g., 60, 279]. Assessing its considerable potential for prob-
lems from the science and engineering domain to develop new symbolic
models, as well as enhancing the existing approach with other types of
domain knowledge, deserves further attention.

• Enforcing unit constraints and dimensional analysis in GP is a crucial
requirement for domain experts, particularly when developing new data-
driven models. While existing research [163, 176, 272] typically assumes
that constants and their units are known beforehand, this assumption
does not hold true in cases where new constants with unknown units
are learned. Further investigation is needed to address how GP can be
adapted to enforce unit consistency even when these unknown constants
are introduced.

• Scalable problems are essential for testing the robustness and adaptabil-
ity of symbolic regression methods across varying levels of complexity.
The related studies presented in Sec. 3.3 apply their methods to vari-
ous problems. However, systematic and scalable methods for applying
domain knowledge to complex, real-world problems have yet to be fully
explored. The application of algorithms to problems that are inherently
scalable and varying in complexity is required, to evaluate how differ-
ent methods of incorporating domain knowledge can be applied across
problems of varying difficulty and disciplines.
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4 Inverse Kinematics of

Robotic Manipulators

This chapter introduces a real-world problem from the field of robotics to serveIntroduction
as a benchmark for evaluating existing methods in GP when applied to complex,
domain-specific problems with unknown ground truth. By demonstrating the
application of state-of-the-art techniques before introducing the advancements
presented in this thesis, this chapter provides a comparative baseline for the
contributions discussed later in this thesis.
This chapter is largely based on the author’s publications [221, 226]. The author
thanks Dr.-Ing. Christoph Steup and Pravin Pandey for providing datasets,
domain knowledge and expert insights about robotic manipulators and inverse
kinematics, and for critically reviewing draft versions of this chapter.

4.1 Inverse Kinematics Problem

Robotic manipulators are at the center of process automation. Most appli-Robotic Manipulators
cations today, like automatic welding or pick-and-place tasks, require these
manipulators to operate with high flexibility in movement [289]. At the same
time, in special use cases with many manipulators in a small arena, like in
swarm robotics, we need them to operate in very confined spaces. As a result,
a plethora of robotic manipulators has been constructed by many companies,
which do not follow the standard six degrees of freedom (DOF) configurations.
One example is the 5 DOF KUKA youBot manipulator that serves as a use
case for this chapter. By having one joint less than a standard six DOF ma-
nipulator [150], this robot takes up less space and is still quite flexible. While
these robots fulfil the flexibility and compactness criteria, atypical joint con-
figurations complicate the kinematic analysis because the standard methods
cannot be applied anymore. Consequently, understanding the kinematics, i.e.,
the relation between the DOF and the resulting movement of the rigid body of
an arbitrary robotic manipulator, is crucial [226].
The general structure of a robotic manipulator, similar to the one depicted inManipulator Structures and

Joint Types Fig. 4.1, is an open kinematic chain. It consists of multiple, typically rotational
joints, which are connected by links. Non-rotational joints, such as prismatic
joints, are left out of consideration in this thesis. The joint rotation parameters
✓ = [✓1, . . . , ✓!] are the variables of interest, with the number of joints, or DOF,
denoted by !. In general, a robotic manipulator operates in a six-dimensional
environment X = [p,o]T = [x, y, z,�,⇥, ]T . In this representation of the
pose X, the vector p = [x, y, z]T corresponds to the position of the end-effector
in Cartesian space, and o = [�,⇥, ]T represents the end-effector orientation
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Figure 4.1: KUKA youBot as
available in the swarmLab for
robotics at Otto-von-Guericke

University, Magdeburg.

using three Euler angles [121].
The goal of the forward kinematics (FK), denoted by g, is to determine the poseForward Kinematics
of the end-effector given the robot joint angles, i.e., X = g(✓). The calculation
is fairly straightforward since there is exactly one pose for each combination of
joint values, which may be feasible or not. In other words, there is a possibility
that the FK results in self-collisions of the manipulator or collisions with the
ground. A common standard to describe the kinematic model of a robot is the
Denavit-Hartenberg (D-H) convention, which requires only the four following
parameters per joint [121]:

1. Link length ai: The distance between two consecutive joint axes along
the shortest distance between the two axes. It represents the length of
the link along the x-axis of the current joint frame.

2. Link twist ↵i: The angle between the z-axes of two consecutive joint
frames, measured around the x-axis. It defines the orientation of the two
links relative to each other.

3. The joint distance or link offset di: The distance along the z-axis between
two consecutive joint axes. It represents the displacement along the z-axis
of the previous frame to the common normal.

4. The joint angle ✓i: This is the angle around the z-axis between the pre-
vious link and the current link, which represents the rotation required to
align the x-axis of the previous joint with the x-axis of the current joint.

For any given rotational link, three of these quantities are constant, while only
✓i is variable and defines the actual movement [121].
The inverse kinematics (IK) problem aims to find the robot angles required toInverse Kinematics
achieve a specified target pose, i.e., ✓ = g�1(X). In contrast to the FK, there
are multiple solutions to the inverse kinematics (IK) problem. This makes the
problem considerably more complex than the forward kinematics. In general,
finding a closed form solution is of great interest, i.e., finding an explicit re-
lationship between a joint variable ✓i and the elements of the six-dimensional
pose vector X. Since multiple valid joint configurations can be found for a
given pose, closed-form solutions allow for real-time movements and can fur-
thermore provide decision rules to prefer a particular configuration over an-
other [121]. Moreover, an explicit relationship enables the mathematical analy-
sis of safety-relevant real-life scenarios. Various closed-form solution approaches
have emerged for different applications within the last decades [9]. Classical
analytical approaches provide IK solutions in real-time. However, they are of-
ten not applicable to robots with non-standard axis configurations, since such
robots do not always have unique solutions to the IK problem. Modern compu-
tational approaches like ANNs can overcome this issue, but lack transparency
and explainability. Balancing these conflicting requirements, finding an accu-
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Figure 4.2: Illustration of the
inverse kinematic problem and

the role of the GP algorithm
within the problem setup [221].
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rate, real-time capable and explainable IK model for a non-standard configured
robot is a complex task [226].
In this chapter, we aim to develop symbolic models for the inverse kinematicsChapter Goals
of a non-standard robotic manipulator. We used GP to evolve human-readable
equations that could be executed in real-time, while providing explainability
and allowing the adaptation to non-standard robotic configurations. To achieve
this, we incorporated GP alongside the FK equations in the evaluation function,
as illustrated in Fig. 4.2.
In the following, an overview of the related work in the literature, with a focusChapter Overview
on data-driven methods employing GP and ANNs, will be provided. We then
introduce the novel cooperative coevolutionary genetic programming for inverse
kinematics (IK-CCGP) approach, which tackles the need of an IK model for
multiple outputs, i.e., one value per joint of the kinematic chain. Domain
knowledge is integrated at various levels across the entire pipeline of the algo-
rithm. The proposed GP algorithm was examined on a KUKA youBot with
5 DOF, which is available and frequently used for various tasks in the robotics
laboratory swarmLab at Otto-von-Guericke University, Magdeburg. We per-
formed several experiments on various settings of the problem, and compared
the results with the reported results of ANN-based approaches in [5, 262]. Our
experiments suggest that this approach achieves competitive results in certain
areas of the workspace. However, ANN-based approaches consistently provide
more accurate solutions with smaller failure rates. Although the evolved mod-
els allow for interpretation, several drawbacks of the proposed method could
be observed, which motivated further contributions in this thesis.

4.2 Related Research

Approaching the IK problem with GP is mainly driven by two early publicationsGenetic Programming
Approaches by Chapelle et al. [39, 40]. In both publications, the problem was modeled in

a single-objective way with a length-penalizing RMSE of the joint angle as
a fitness function. All joint equations were learned sequentially starting from
joint one, feeding the result to the next joint and so forth. The proposed setting
reached an accuracy of 10�2 radians for the first joint ✓1 and 10�1 radians for
the last joint ✓6. The maximum error on the tested instances was 0.3 radians,
which is a deviation too large for the application in real-world scenarios.
In addition to the mentioned works, the principles of evolution were mostly
applied to find off-line, i.e., not real-time capable, IK solutions for given robotic
manipulators. Parker et al. [204] proposed an EA model that approximates the
joint values for a given end-pose. This approach incorporated the FK equations
and used the positioning error between the desired and the learned poses as
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the objective to be minimized. Kalra et al. [123] used EAs to find multiple
solutions for the IK problem.
Another application of GP in the robotic field is the calibration of manipula-
tors. Dolinsky et al. [71] used GP to approximate an error function between
the desired and the actual position of the end-effector caused by mechanical
inaccuracies of the real-world robot compared to its simulation. They proposed
a coevolutionary algorithm, as multiple joint corrections need to be calculated
at the same time, which all mutually affect each other.
ANNs have been applied to the IK problem for simple manipulators [76] and sixArtificial Neural Network

Approaches DOF standard manipulators [63]. These approaches solely give the target pose
as an input to predict the corresponding joint angle values. They mainly focus
on tuning the parameters of the model, such as the number of hidden neurons
or the learning rate. Almusawi et al. [5] proposed to include the current joint
configurations of a six DOF robot in the input parameters, which improved
accuracy, especially for continuous trajectories such as drawing a circle with a
pen.
A different error measure was suggested by Srisuk et al. [262]: Instead of com-
paring the learned and desired joint angles of the 4 DOF manipulator, the
authors implemented the FK equations to compute the end-effector pose from
the learned angles. The error function was thus a distance measure between
the learned pose and the desired pose. By incorporating the FK equations, this
approach allows learning the underlying kinematic behavior without limiting
good results to pre-defined joint angles. This helps to overcome the singularity
problem of a robot, where multiple joint configurations lead to the same end
pose.
In a comparative study, El-Sherbiny et al. [257] evaluated different modern
IK approaches, namely ANNs, adaptive neuro fuzzy inference systems (AN-
FIS) [67] and genetic algorithms, to solve the IK problem for a non-standard
5 DOF manipulator. The ANN and ANFIS approaches predict unseen data
instances with a position MSE of 0.0016m, which can be roughly translated to
4cm mean absolute position error. Wagaa et al. [285] recently compared differ-
ent ANN architectures to solve the IK problem, namely a feed-forward NN, a
convolutional neural network, long–short-term memory, gated recurrent unit,
and bidirectional long–short-term memory ANN. The latter outperformed all
other methods for six-DOF manipulators. However, all the tested networks
had massive sizes with millions of trainable parameters and were trained on
a comparatively small dataset size. This combination of settings elevates the
risk of overfitting, and the test set contains, in the worst case, only 50 sam-
ples, which cannot represent the workspace reasonably well. A comprehensive
overview of the plethora of ANN-based IK approaches can be found in [9, 285].
Recently, the identification of manipulator-like dynamical systems has beenGraph Neural Network

Approaches approached with graph neural networks (GNNs). While this area is still in its
early stages, a few remarkable publications on this topic are available. In a 2018
study, Sanchez-Gonzales et al. [243] proposed an object- and relation-centric
representation of six complex 3D physical systems to perform prediction, infer-
ence, and control tasks. Links are regarded as “bodies” and encoded as nodes of
a graph, and joints as edges or connections between bodies. Their GNN-based
approach achieved competitive performance in trajectory planning of a robotic
arm, but did not solve the problem of accumulated errors over longer trajecto-
ries. Furthermore, the approach performed well on systems with shared struc-
tural characteristics, such as a swimmer or manipulator, but could not fully
unfold its potential on the “cheetah” structure with few opportunities for shar-
ing. Interestingly, Kim et al. [132] proposed an opposite encoding than [243],
with joints translating to nodes in the graph and links as edges connecting
the joints. They used an encoder-decoder architecture with two embedding
spaces for structure and pose. To learn the IK model, the structure embed-
ding and end-effector positions were the input to the pose embedding, from
which the joint angles required to reach a certain position were reconstructed.
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Furthermore, different message-passing and connectivity schemes within the
graph were compared. The proposed model performed similarly to a baseline
multi-layer perceptron on the IK task.

4.3 Proposed Methods

In the following, we first present our approach to modeling the IK problem using
several objective functions. Afterward, we introduce the proposed universal,
problem-independent algorithm IK-CCGP.

4.3.1 Objective Functions

To reach a certain pose in Cartesian space, two different error functions can
be utilized during the training of GP, which both lead to the same final pose
when learned perfectly: the joint angle error f1(✓), and the pose error f1(X),
where ✓ represents the angle and X the pose. In addition, we considered other
objective functions such as correlation coefficient and dimension penalty, as
first introduced by Zille in [299].

Error Objective (f1): f1(✓) describes the difference between the givenAngle Error vs. Pose Error
and the produced joint value in radians, and is to be minimized for each of the
joints in the kinematic chain. This objective function is designed to enforce
GP to learn the exact angle values given in the training data to reach a certain
pose. Hence, a genetic program is to be identified that transforms the input
pose into the desired joint angle value by optimizing for f1(✓):

f1(✓, ✓̂) =

r
1



P
i=1 (✓̂i � ✓i)2 (4.1)

where  refers to the number of data points involved. An alternative to f1(✓)
is f1(X). Due to the kinematic setup of a robotic manipulator, multiple joint
configurations can lead to the same end pose, i.e., more than one valid solu-
tions exist for the given problem. While the f1(✓) error function limits GP to
precisely learn the target joint values to reach the desired position, the f1(X)
error function allows for more flexibility in the learning process. Instead of
comparing each learned joint value to its given target value, their resulting
pose is computed using the FK equations and compared to the desired pose.
We considered the position and orientation of a pose as separate objectives
since they also come in different units. Hence, the optimization problem can
be formulated using two objectives:
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⇥
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where p is a vector of the position parameters x, y, z, and o a vector of
the orientation parameters �, ⇥,  . f1(X) refers to the combined pose error
function, considering the position and orientation error as separate objectives.
The position error f1(p) and orientation error f1(o) use the Euclidean distance
between the desired and the learned output [226].

Correlation Coefficient (f2): As an additional objective to enhance theCorrelation Is All You Need
learning process, a transformed version of the Spearman correlation coefficient
was used as introduced in [299]. It describes the correlation between the pro-
duced and the desired output of a symbolic model. The main idea behind
employing correlation next to the error is to evolve programs that are not yet
numerically meaningful but already produce results that correlate with the de-
sired output. Ideally, only small changes in these programs are necessary to
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produce numerically accurate outputs. Moreover, a high negative correlation
can contribute positively to the learning process, as only one mathematical
operation is necessary to invert the results. Therefore, we used the absolute
value of the correlation coefficient: f2 = 1 � |⇢|. When using the angle error
f1(✓) as the first objective, ⇢ represents the correlation between the produced
and the desired angle values. For the pose error f1(X), three parameters for
positioning and three for orientation needed to be considered. To this end, one
correlation coefficient was calculated for each position and orientation. The
final ⇢ was equal to the mean of the two absolute values of the position and
orientation correlation coefficients [226].

Dimension Penalty (f3): Dealing with different physical units such asUnit-Aware Genetic
Programming [rad] and [m] in a symbolic model is a challenging task, particularly given that

trigonometric functions convert [rad] to dimensionless quantities. The third ob-
jective, f3, is formulated to guide the algorithm to evolve programs which ad-
here to violate physical laws and match the target unit (i.e., [rad] for each joint
angle of the manipulator). Different implementations of a dimension penalty
in GP can be found in the literature [e.g., 128, 163, 175, 287] as described
in Sec. 3.3.2. In the proposed approach, we compute the objectives f1 and f2

solely based on their numerical values without any unit feasibility check. For f3,
we traversed the GP tree using post-order traversal and checked each operation
within an individual for unit matching. Penalties were aggregated throughout
the individual, whereby each infeasible operation increased the penalty value
by 1. Given that an operation was performed on incompatible units, the unit
of the first input argument was handed over to the next operation, i.e., when
an angle in [rad] and a length in [m] were added, this operation was penalized
with a value of 1, and the unit [rad] was handed over to the next operation.
Similarly, when an individual produces a unit that does not match the target
unit, a value of 1 was added to the penalty variable. The objective function
for the dimension penalty can be formulated as f3 = dimPenop + dimPenout,
where dimPenop represents the aggregated dimension penalties produced by
non-physical operations within the individual and dimPenout is either 0 or 1,
depending on whether the output unit is equal to the target unit [226].

4.3.2 Cooperative Coevolutionary GP for Inverse Kinematics

Cooperative coevolution is a concept in evolutionary algorithms that simulta-The Concept of Cooperative
Coevolution neously evolves multiple so-called subpopulations to solve a problem. There are

several variants of cooperation between the subpopulations. In some studies,
equations evolved in different subpopulations are combined into one equation
before evaluation [232]. In our approach, we kept the solutions separate, but
evaluated them in a combined fitness measure as a collective evaluation. In this
way, we accounted for the fact that all joints mutually influence each other and
need to collaborate as a kinematic chain to achieve a desired pose. Here, one
subpopulation per joint is evolved, while the other subpopulations are repre-
sented each by one representative individual. For the collective evaluation, we
employed the FK equations to minimize the error between the desired pose and
the learned pose in Cartesian space, which attained promising results in [262,
71]. This was the main idea behind the proposed IK-CCGP.
Figure 4.3 depicts one iteration of the IK-CCGP approach, as described inCooperative Coevolution

Within the Kinematic Chain lines 6–15 in the complete Algorithm 3. The coevolutionary learning process is
defined by multiple phases: While one subpopulation is evolved, the remaining
subpopulations stand idle and are not changed. Global representatives for each
subpopulation that is currently not under training, guarantee the collective
evaluation using the FK equations. Next to the coevolutionary setting, we
employed two important concepts in our algorithms that contributed to the
learning process.
In the first concept, we introduced a two phase training strategy. In the firstTwo-Phase Training Procedure
training phase, Function GP (Algorithm 3, line 11) called a standard GP algo-
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Figure 4.3: One iteration of the
IK-CCGP approach [226].
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rithm for k generations with crossover and mutation probabilities pc = pm [299].
In the case of crossover, either one-point crossover or leaf-based one-point
crossover was chosen at random. Mutation selected randomly between uniform
mutation, node replacement, insertion mutation and shrink mutation. The sec-
ond phase was a mutation-only phase for k generations to refine the current
individuals in terms of slight changes in the primitives. This furthermore had
the effect of preventing uncontrolled growth of the equations. Thus, Function
MutOnlyGP (Algorithm 3, line 12) only selected from mutation operations, i.e.,
node replacement with a probability of 2/3 and shrink mutation with 1/3. In
both Functions GP and MutOnlyGP, the archive Aj is updated according to the
Pareto-dominance criterion [226].
For the second concept, we employed domain knowledge and provided infor-Removal of Effects of Previous

Joints from Input Data mation about the angles of the previous joints to the currently trained joint to
steer the learning process towards a closed form solution. This idea arose from
the fact that there exist multiple joint configurations for the same pose. Thus,
even when all other joint values would be learned using the objective function
f1(✓), deviations in only one joint value could lead to an extremely inaccurate
final pose. Inverse input transformation reverts the influence of all joints that
are located before the currently learned joint in the kinematic chain. To revert
the influence of a joint i, denoted by ✓i, from the target pose iX!, consecutive
rotations, denoted by Rot, and Translations, denoted by Trans, were executed.
This resulted in the following transformation, using the four D-H parameters
introduced previously [226].

i+1X! = t(✓, i) iX! = (Rot↵i
)�1(Transai

)�1(Transdi
)�1(Rot✓i)

�1 iX! (4.3)

i+1X! is the transformed target pose in the coordinate frame of joint i + 1,
which is used in the training of joint i+1. The offset parameters were constant
for a given joint. Algorithm 2 describes this consecutive transformation for
all joints of the kinematic chain: the training data was parsed through the
representative of ✓1 and transformed the training data by the resulting angle
values using Eq. 4.3. The transformed pose was used as input data for the
individual of ✓2, and the process repeated iteratively until ✓! is reached.
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Algorithm 2: IK-CCGP Evaluation Procedure for One Individual [226]
input : Individual indj , Training Data X, Set of Representatives r, Joint

Index j
output: Objective values

1 inds [r1, . . . , rj�1, indj , rj+1, . . . , r!]
2 1X!  X
3 for i 1 to ! do
4 ✓i  parse iX! through indsi
5 i+1X!  t(✓i, i) iX! // as outlined in Eq. 4.3

6 end
7 X̂ g(✓) // use FK equations

8 f  [f1, f2, f3]T

9 return f

Algorithm 3: IK-CCGP Algorithm [226]
input : Training data X, number of subpopulations !, subpopulation size N ,

number of generations k, number of iterations l

output : Set of archives Aj , j = 1, . . . ,!
1 for j  1 to ! do
2 Pj  randomly initialize subpopulation with size N

3 rj  select global representative from Pj

4 Aj  initialize empty archive
5 end
6 for l iterations do
7 for j  1 to ! do
8 for i 1 to N do
9 evaluate (Pj,i, X, r, j) // evaluation in Algorithm 2

10 end
11 Pj , Aj  GP(k, X, Pj , Aj) // evaluation in Algorithm 2

12 Pj , Aj  MutOnlyGP(k, X, Pj , Aj) // evaluation in Algorithm 2

13 rj  update global representative using Aj

14 end
15 end
16 return

S!
j=1 Aj

These two concepts are included in Algorithm 3. The algorithm requires a setThe Overall Algorithm
of training data X, the number of joints or subpopulations !, and the sub-
population size N . Additional input parameters are the number of generations
per training phase k and the number of training iterations l. Initially, one rep-
resentative is randomly selected from each of the initial subpopulations (lines
1-4). In the main loop (lines 6-15), the subpopulations are evolved using the
above two-phase training strategy. The evaluation procedure for an individual
in GP and MutOnlyGP calls Algorithm 2. In Algorithm 2, first (line 1) a list
of representatives and the individual to be evaluated is created in the order
of the joints in the kinematic chain. For example, when joint ✓2 is currently
trained and the kinematic chain consists of ! = 4 joints, the list contains the el-
ements [r1, ind2, r3, r4], denoted by inds. This list is used to perform the inverse
transformation of the training data in lines 3-6, as introduced previously. The
resulting joint angles ✓ are fed into the FK equations to compute the resulting
pose X̂ (Algorithm 2, line 7). This pose can then be compared to the true
pose X using the objective function f1(X, X̂). Depending on the application,
additional objectives can be computed. After k generations of the two-phase
training, one representative from the subpopulation is selected, which is used
to determine the joint value for this subpopulation during the evolution of the
remaining subpopulations. After l iterations of the main loop, the algorithm
terminates and returns a Pareto-dominance-based archive of cooperating solu-
tions. Each solution is a non-dominated individual of a subpopulation, together
with the representatives of the other subpopulations that were used during the
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evaluation and calculation of the objective values. In general, the proposed
approach can be applied to either the entire kinematic chain of a robot, or a
kinematic unit within the kinematic chain that consists of multiple consecutive
joints [226].

4.4 Experiment Setup

To evaluate the proposed approach, we applied the proposed algorithm to de-Specifications of the KUKA
youBot velop an inverse kinematics model ✓ = g�1(X) of the KUKA youBot with

5 DOF. The function g has the domain [�0.4 m; 0.4 m]3 ⇥ [�⇡ rad;⇡ rad]3,
which corresponds to the reachable area of the KUKA youBot. The co-domain
is given by the possible range of the joints angles. This manipulator comes
with a special setup: The first joint plays an important role as it determines
the plane, in which the target position is located. This plane can be defined by
two configurations of the base joint, which are ±⇡ apart from each other. When
the robot bends over itself, the first joint is directed towards the opposite side
of the target position. Hence, an angle error of f1(✓) = ±⇡ rad can be produced
when an equation learns an angle that also defines the plane but is shifted by
⇡. We considered two different variants of input angles of ✓1 for the training
of joints > 1: First, the true ✓1 angle including bend-overs (this requires a
bend-over handling strategy); second, the projected angle resulting from the
projection of the target pose onto the x-y-plane, which excludes bend-overs.
The projected angle can be calculated with the simple equation

✓1 =
169

180
⇡ � arctan2(y, (x� 0.024)) (4.4)

where ↵1 = 169
180⇡ and d1 = 0.024 are known offset parameters of the first joint.

The major goals of the experiments were to find out which combination of ob-
jective functions performed best, and how the proposed IK-CCGP performed
on a kinematic unit of two joints compared to a kinematic chain of three consec-
utive joints. Furthermore, we intended to measure to what extent the outcome
is affected by transforming the input data for joints 2 and 3 by the projected
angle of ✓1 compared to transforming by the ground truth angle of ✓1.

4.4.1 Inverse Kinematics Benchmark

To generate the training data for the IK problem, we implemented an FKData Generation
algorithm according to the D-H convention for the youBot. For each of the
five joints, 20 discrete positions were selected, evenly distributed within the
movement range of each joint. For all 205 combinations of joint values, the
end-effector pose in Cartesian space is computed using the FK equations. Each
training sample incorporates the pose parameters x, y, z, �, ⇥,  and cor-
responding joint angles ✓1, ✓2, ✓3, ✓4, ✓5 as features. A robot simulation
environment performed a feasibility check on each data instance, i.e., whether
the configuration led to a feasible pose or caused self-collision of the arm or
collision with the ground. All infeasible samples were removed from the train-
ing data set, leaving 949,593 feasible data samples within the robot workspace
that could be employed for training the IK-CCGP algorithm. We extracted a
representative training dataset with 10,000 samples evenly distributed over the
entire workspace. For the final evaluation of the found solutions, we employed
20,000 data samples randomly drawn from the workspace.
As described in the previous section, we transformed the input data for jointsData Transformation
> 1 according to Eq. 4.3 to remove the influence of previous joints. Fig. 4.4
shows an exemplary distribution of the training data, where Fig. 4.4a displays
input data for training of ✓1, and Fig. 4.4b the transformed input data for ✓2.
It has a planar shape since the influence of the first joint is removed. In this
way, the target position depended solely on two instead of three variables.
In order to reduce the computational cost, the algorithms were trained onBatch Training
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Figure 4.4: Data samples in the
workspace of the manipulator.
Colors represent magnitude of

angle values of ✓2 [226].

(a) Input data to compute ✓1. No trans-
formation.

(b) Input data to train ✓2. Influence of ✓1
is removed by inverse transformation.

batches of data with a batch size of 200. The data samples per batch were
assigned in advance to ensure a fair comparison between the algorithmic vari-
ants.

4.4.2 Algorithm Variants

We ran experiments in two stages: in preliminary experiments, we identifiedPreliminary Experiments
the best combination of objective functions for the IK problem by performing
the training of ✓2 on the angle error f1(✓) and the additional objectives f2

and f3. We selected ✓2 as a use case since a simple equation was not known
beforehand, besides for the first joint, where we either required a bend-over
handling technique for the ground truth angles or used the simple formula for
projected angles. The best combination of objective functions was employed
in the IK-CCGP experiments, where we challenged our proposed IK-CCGP
approach.
To compare the performance of our approach on different numbers of jointsIK-CCGP Experiments
involved in the coevolution, we tested two scenarios: First, we trained the first
three joints of the kinematic chain of the KUKA youBot, which included the
base joint ✓2 and ✓1 and the first kinematic unit consisting of ✓2 and ✓3. Second,
to understand the influence of the different ✓1 input variants ground truth and
projected, we took the angle of the first joint as given and evaluated how the
proposed approach reacts to the two different input types. To get an impression
about the quality of our proposed approaches, we only considered the kinematic
unit consisting of ✓2 and ✓3 in this scenario. Since the orientation of a pose
is mostly determined by the last two joints, we optimized and evaluated the
outcome of the experiments only on the position error f1(p) and excluded the
orientation error from consideration. This made a total of three experiment
instances for IK-CCGP experiments: IK-CCGP-3 that applied our approach on
the first three consecutive joints of the kinematic chain, IK-CCGP-2G and IK-
CCGP-2P using ground truth (G) and projected (P) ✓1 input data respectively
applied to the kinematic unit of ✓2 and ✓3.
All experiments used the same function set F = {+, �, ·, /, cos(�), sin(�),Choice of Hyperparameters
tan(�), arccos(�), arcsin(�), arctan2(�, �), ��, �2,

p
�, � mod 2⇡}, where

� represented the input of unary operators. The terminal set T varied for
each experiment and consisted of the six parameters that define the (ground
truth or projected) target pose and additionally a set of constants C contain-
ing the offset parameters di and ↵i of the joints that are currently trained:
T = {x, y, z,�,⇥, } + C. For each algorithmic variant, 31 independent runs
were performed. The parameters were set as follows: In the single-objective
optimization, we used tournament selection with a tournament size of 3. We
used NSGA-II algorithm for multi-objective optimization [65]. The population
size was µ = � = 1500 for all experiments. We used crossover and mutation
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Table 4.1: Overview of domain
knowledge integrated as bias

into the GP algorithms proposed
in this chapter.

Bias Type Bias

Observational Transformation of data and reversion of influence of previ-
ous joints before evaluation (see Fig.4.4 and Eq. 4.3)

Observational Consideration of the role of the first joint with two vari-
ants in experiments IK-CCGP-2G and IK-CCGP-2P (see
Sec. 4.4.2)

Inductive Cooperative coevolution to represent the collaboration of
joints within the kinematic chain to reach a target pose
(see Algorithm 3)

Learning Dimension penalty for equations with unit violations (see
Sec. 4.3.1)

Learning Problem-specific pose error objective including FK equa-
tions (see Sec. 4.3.1)

Table 4.2: Pairwise statistical
comparison of the best

individuals using different
objective functions for ✓2

(+ / � / ⇠: row significantly
better/ worse / no difference

compared to column) [221]

f1 f1f2 f1f3 f1f2f3

f1 � + ⇠

f1f2 + + +

f1f3 � � �

f1f2f3 ⇠ � +

probabilities of 0.5, except for the mutation-only phase, with a mutation prob-
ability of 1.0. The leaf-biased crossover selected a leaf with a probability of
0.8. The maximum depth of a solution tree was set to 20 with a maximum
of 30 nodes. The preliminary experiments executed ten algorithmic iterations,
one of which consists of ten generations of crossover and mutation followed
by ten generations of mutation-only, amounting to 200 generations in total.
As the IK-CCGP experiments intended to solve a more complex problem, and
coevolution requires more time for mutual adjustment between the subpopu-
lations, l = 20 iterations of the IK-CCGP algorithm were performed, where
each subpopulation was trained for k = 10 generations in each phase of the
two-phase training. This resulted in a total of 800 generations for IK-CCGP-
2G and IK-CCGP-2P and 1200 for the three joint experiment IK-CCGP-3. All
algorithms were implemented using the DEAP-framework version 1.3.1 [90] and
the pint package version 0.16.1.Tab. 4.1 summarizes how the available domain
knowledge was integrated as bias into the algorithm.

4.5 Results and Analysis of Preliminary Experiments

In the preliminary experiments, we tested the performance of the combina-Selection from Final
Population and Statistical Test tions of objectives f = [f1(✓)], f = [f1(✓), f2]T , f = [f1(✓), f3]T and f =

[f1(✓), f2, f3]T . We always included the error function f1(✓), since it is the
main objective we wanted to minimize. The individual with the lowest RMSE
according to f1(✓) on the evaluation dataset was selected as the best solution for
each of the 31 runs. Thus, for each experiment variant, 31 RMSE values were
employed to determine the quality of the learned solutions. We conducted the
pairwise Wilcoxon–Mann–Whitney rank sum test with a level of significance
↵ = 0.05 to compare the performance of different combinations of objective
functions [226].
The results of the statistical test in Tab. 4.2 indicated that the multi-objectiveThe error and correlation

objectives performed the best. variant f = [f1(✓),f2]T was superior to the single-objective variant f = [f1(✓)].
This implies that the correlation as an additional objective enhances the qual-
ity of the results. The combination f = [f1(✓), f3]T yielded the worst results
in terms of RMSE. The three-objective variant, which also incorporated corre-
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lation, could partially compensate for the drawbacks of the dimension penalty
objective. Nonetheless, it was outperformed by the two-objective variant using
f = [f1(✓),f2]T [226].

4.6 Results and Analysis of IK-CCGP Experiments

Based on the preliminary experiments, all IK-CCGP experiments were con-
ducted using the combination of objectives f = [f1(p), f2]T .

4.6.1 Convergence Behavior

Fig. 4.5a displays the convergence behavior of the position error for the IK-
CCGP experiments. This data was deduced from the training process, which
started 400 generations later for IK-CCGP-2G and IK-CCGP-2P, as they did
not include the training for ✓1. The minimum error for each of the 31 experi-
ment runs is averaged at different times during the training for each experiment
type.
From this plot, one may infer that experiment variant IK-CCGP-3 performedIK-CCGP-3 showed unsteady

convergence behavior. the worst. Especially the zigzag pattern of the gray curve indicates that the
learning process did not follow a continuous improvement, but rather oscillated
around a slowly declining curve. This behavior can be explained by the fact
that ✓1 was an additional variable in IK-CCGP-3. Since the first joint defines
the plane in which the final position lies within the workspace, errors in this
joint can lead to large deviations in the final position [226].
It can be observed that it is of great advantage when the angle value of the firstIK-CCGP-2P and IK-CCGP-2G

had both similar convergence
behavior, resulting in a position

error of a few centimeters.

joint is already known, as was the case in IK-CCGP-2G and IK-CCGP-2P. In
this way, the algorithm only operates towards finding the correct position on
the predefined plane, which shrinks the search space tremendously. IK-CCGP-
2G and IK-CCGP-2P followed more the expected fitness development, with
poor results at the beginning, which rapidly improved in the first quarter of the
evolution process and converged towards the end. In general, both experiments
produced position errors in the magnitude of a few centimeters [226].

4.6.2 Distribution of Errors

For further analyses, we selected the solution with the smallest position RMSEThe best solution by
IK-CCGP-2P performed the

best, with a median RMSE of
0.0213m.

among the 31 experiment runs for each of the experiment variants. Fig. 4.5b
displays the distribution of position errors on the evaluation dataset for these
best solutions. It became apparent that the best solution of IK-CCGP-3 per-
formed the worst of all other solutions, with a median error of 0.0671m. The
other variants ranged between 2cm and 3cm of median error. No considerable
difference between using the ground truth or projected ✓1 angles as input data
could be observed. The overall best solution, with an RMSE of 0.0343m, a
maximum absolute error of 0.1712m, and a median error of 0.0213m, was ob-
tained by experiment variant IK-CCGP-2P. In general, the two joint variants
yielded solutions with zero errors in certain areas of the workspace. However,
the presence of fliers in the box plot, indicated by errors above the third quartile
plus 1.5 times the interquartile range, suggests that the model had difficulty
predicting some data points [226].
We analyzed this distribution and the percentage of large error values of moreLarge errors in the prediction

of IK-CCGP-2P were mostly
located at the center top of

the workspace.

than 0.1m. Again, IK-CCGP-3 with 28.3% had the largest percentage of error.
The approach with the smallest percentage of large errors was IK-CCGP-2P
with 0.8%, compared to IK-CCGP-2G with 2.1%. Fig. 4.6 gives additional clues
about the distribution of large errors within the workspace. For all data samples
which caused large position errors, the original positions are plotted to identify
problematic regions. The IK-CCGP-2P algorithm mainly had problems finding
joint values for positions at the top of the reachable area and very few outliers
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Figure 4.5: Results of the
IK-CCGP experiments [226].

(a) Convergence behavior of the three experiment variants.
The variants learning only two joints start later, as they
skip ✓1.

(b) Error distribution on the evaluation dataset with 20,000
samples using the best solution of each experiment variant.

in the remaining workspace. Additionally, IK-CCGP-2G produced large errors
at the bottom of the workspace and the edge of the reachable area.
The algorithm found more consistent solutions throughout the workspace whenMultimodality inherent to the

IK problem might have been
the reason for less consistent

solutions obtained with
IK-CCGP-2G.

the projected ✓1 angles were given as inputs, i.e., IK-CCGP-2P, compared to
the ground truth angles in IK-CCGP-2G. An explanation for this observation
is that IK-CCGP-2G was trained on the ground truth data of ✓1. In this way,
the algorithm might have received input values of ✓1 that were ±⇡ apart but
arrived at positions that were very close to each other, once with a bend over
and once without. The multimodality inherent to the IK problem and reflected
in the input data of IK-CCGP-2G is likely to lead to jumps in the convergence
process or inconsistencies in the predictions. Conversely, IK-CCGP-2P received
very consistent input angles of ✓1, i.e., positions that were very close to each
other also originated from the same ✓1 angle. The multimodality was thereby
partially removed from the training data. The use of continuous input en-
abled the algorithm to learn a consistent model for most positions within the
workspace. Two possible explanations for the cluster of large errors above the
center of the x-y-plane with z-values between 0.33m and 0.47m arose from this
assumption: First, these positions could only be reached by a bend over due to
the kinematic configuration of the robot, and second, the algorithm had issues
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Figure 4.6: Distribution of large
position errors > 0.1 m

evaluated on 20,000 data
samples [226].

(a) IK-CCGP-2G.
(b) IK-CCGP-2P, z values of cluster in the
center range from 0.33m to 0.47m.
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Table 4.3: Best individuals of
each variant of the IK-CCGP

experiments, evaluated on a test
dataset with samples from the

entire workspace. The last
column displays the percentage

of samples with a prediction
error above 0.1 m [221]

learning joint angles that completely extended the arm to the top.

4.6.3 Resulting Equations

It is crucial to have control and to be aware of the potential reactions of the

Frequent nesting of
trigonometric functions was

observed in the resulting
equations.

manipulator in all conceivable scenarios, especially in safety-relevant situations,
where other machines or humans may collaborate with the robot. The main
motivation to employ GP methods for solving the IK problem is the result-
ing output of human-readable equations, which increase interpretability and
mathematical control. To gain more profound insights into the evolved models,
Tab. 4.3 displays the best combination of equations evolved with GP using the
three tested algorithms. The transformed variables are marked with an asterisk
symbol. First, it becomes apparent that the trigonometric functions provided
in the function set played an important role in the prediction of joint angles. Al-
most all equations used nested trigonometric functions, such as evolved by IK-
CCGP-2G employing the term tan

⇣
tan

⇣�
arcsin

�p
x⇤

��2
+ x⇤

⌘⌘
. However,

the nesting of trigonometric functions and the use of higher-order combina-
tions, such as double tangent and arcsin terms, can result in expressions that
are both complex and numerically unstable. Such combinations of operators
are relatively uncommon in engineering sciences, which makes it challenging to
interpret them from a physical or engineering perspective, as they do not align
with established physical principles.
From a dimensional analysis standpoint, it is evident that almost all equationsMost equations used only the

relevant features, but exhibited
dimensional inconsistencies.

contained some degree of inconsistency in their dimensional representation.
For example, the equation for ✓3 developed by IK-CCGP-2P included the term
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( ⇤ + d2). Interestingly, the equations developed by IK-CCGP-2G and IK-
CCGP-2P for ✓2 used only the position coordinates x⇤ and z⇤, and omitted y⇤,
which was a constant value after the pose transformation, as shown in Fig. 4.4b.
Moreover, the subsequent joint ✓3 only used the transformed x⇤ as a dependent
position variable, as well as two Euler angles for orientation. Thus, the models
only used the relevant and informative features after the pose transformation.
The same behavior cannot be observed for the equations developed by IK-The equation for ✓1 learned by

IK-CCGP-3 was structurally
similar to Eq. 4.4, with a few

differences.

CCGP-3, which was additionally tasked with learning a model for ✓1. Struc-
turally, the model for ✓1 shared similarities with the equation for the projected
joint angle in Eq. 4.4. Once again, the multimodal nature of the IK problem
might have increased the difficulty for the algorithm to converge on a single,
stable solution across all input scenarios. Errors in ✓1 led to an accumulation
of errors for ✓2 and ✓3, resulting in the highest percentage of large errors among
the tested algorithms.

4.7 Discussion and Limitations

Our main reason for preferring GP over ANNs is the explainability of the pro-Comparison of Error Rate with
ANNs duced solutions. However, the most important criterion to assess and compare

IK models is the error rate. Most IK models developed with ANNs are evalu-
ated using continuous trajectory tracking: once the start position of the trajec-
tory is found, the subsequent positions are close to the current position [262,
257]. Our evaluation method used 20,000 independent positions instead of
a continuous trajectory, which makes it difficult to compare our accuracy to
ANNs. Multiple publications report position errors of ANNs in the range of mil-
limeters [285], below 1 percent in the x, y, and z position components [5], and
up to a few centimeters in some cases [257]. The best solution developed by IK-
CCGP has a median error of 2.13cm on the position of the third joint, without
considering the orientation component. However, the comparably large me-
dian error of 0.0671m and RMSE of 0.0856m when three consecutive joints are
trained, makes the developed equations too inaccurate to be used in real-world
applications. Yet, it became apparent that approximate symbolic models with
a reasonable level of complexity existed, which were capable of capturing the
variability in the output to a certain extent. Since the existing GP approaches
for the IK problem use an angle error in [rad], a fair comparison between our
approach using position errors in [m] and the existing GP approaches is not
possible [39, 40].
The proposed IK-CCGP approach had several limitations that need to be con-Limitations of the Proposed

Approach sidered. Firstly, while the addition of a dimension penalty was intended to en-
sure dimensional consistency, it led to a deterioration in the RMSE when evolv-
ing equations for ✓2, for which no ground truth is known. However, without
the dimension penalty, the resulting equations were not conformal with physical
units, which is a fundamental requirement from both science and engineering
perspectives. Furthermore, the approach relied solely on constants provided
in the terminal set, without applying any additional constant fitting. Another
challenge encountered was related to the co-evolutionary strategy. The algo-
rithm struggled to effectively determine the contributions of each joint within
the kinematic chain to achieve the desired final pose, which became clear when
a kinematic unit of three joints was trained. This indicates the need for better
mechanisms to guide the search process in such complex environments. As
described in Sec. 4.2, alternative methods have been proposed that approxi-
mate manipulator behavior using GNNs. These methods furthermore provide
a strong inductive bias for GP, suggesting that there may be more suitable
approaches for this problem domain compared to co-evolution.
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4.8 Summary

In this chapter, the IK-CCGP approach to solve the inverse kinematics problem
using genetic programming was proposed. The main goal was to overcome the
explainability gap of ANNs. A cooperative coevolutionary setting using a two-
phase training strategy was introduced. To include information about the joint
angles of previous joints, we employed inverse transformation of training data.
We furthermore introduced different objective functions, one of which employed
the FK equations to compute the pose from the learned joint angles. Overall,
domain knowledge about robot manipulators and their behavior was integrated
as observational, inductive, and learning biases. The proposed approach was
evaluated by tasking it with the development of an IK model for the 5 DOF
KUKA youBot manipulator. In preliminary experiments, we identified the
combination of objectives error and correlation, f = [f1, f2]T , as fitting for our
purpose. In the IK-CCGP experiments, we tested the IK-CCGP approach in
three scenarios. The experiments for learning three consecutive joints of the
kinematic chain performed worst. Experiments that learned a kinematic unit of
two joints generated promising results in the magnitude of a few centimeters of
position error. However, there were still some limitations regarding dimensional
consistency, the use of constants, and the representation of the kinematic chain
through co-evolution. This work motivated improvements at various levels,
which will be further elaborated on later in this thesis.
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5 Simulation of

Particle-Laden Flows

This chapter introduces another real-world problem from the field of fluid me-Introduction
chanics to serve as a benchmark for evaluating existing methods in GP when
applied to complex domain-specific problems. We use domain knowledge to
enhance out-of-the-box GP algorithms to tackle a problem with unknown an-
alytical solution. The insights gained from the presented approach provide a
foundation for the advancements introduced later in this thesis.
This chapter is largely based on the author’s publication [222]. The author
thanks Prof. Dr.-Ing. Berend van Wachem and Hani Elmestikawy for provid-
ing datasets, domain knowledge, and expert insights about fluid mechanics and
particle-laden flows, and for critically reviewing draft versions of this chapter.

5.1 Methods to Simulate Particle-Laden Flows

Particle-laden flows are complex fluid systems in which solid particles are sus-Particle-laden flows are
omnipresent in our daily lives. pended and transported by the surrounding fluid. They can be encountered in

many natural and engineering processes, such as the flow of blood cells in blood
plasma, flow of sediments in rivers, or the fluidization of biomass particles in
industrial furnaces. In other words, they are omnipresent in our daily lives.
Yet, accurately simulating and predicting the behavior of such flows remains a
challenging task because of the multiscale character of the interactions within
the fluid, between the particles and the fluid, as well as between the particles
themselves.
This thesis examines particle-laden flows with perfectly spherical particles inStokes Flow and Governing

Equations the Stokes regime, where viscous forces dominate over inertial forces. The
Stokes regime is characterized by a low Reynolds number Re! 0. The Stokes
equations [263] can be considered a simplification of the general Navier-Stokes
equations at low Reynolds numbers. They describe the motion of a viscous
incompressible fluid, with the assumption that inertial and time-dependent
effects can be neglected. The equations are given as

r · u = 0 (5.1)
�rp + µr2u = �F (5.2)

where u is the velocity field of the fluid, r2 is the Laplace operator, p is the
pressure field, µ is the fluid viscosity, and F is the force per unit volume.
r · u = 0 is the incompressibility condition, which ensures mass conservation.
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For a single rigid sphere with radius a in Stokes flow, subject to a far field flowStokes Flow Past a Single
Spherical Particle with the velocity u1 and ||u1|| = u1, the Reynolds number satisfies

Re =
2a⇢u1

µ
⌧ 1. (5.3)

For a single rigid spherical particle, the Stokes equations [263] can be expressed
as:

�rp + µr2u = 0 (5.4)

with boundary conditions:

u = 0 at r = a, (5.5)
u! u1 and p! 0 as r !1. (5.6)

As indicated by the boundary condition in Eq. 5.5, the fluid velocity at the
surface of the particle is equal to 0, as the particle is stationary. Eq. 5.6
shows that the velocity disturbance introduced by the particle, along with
the pressure field, decreases over distance from that particle. Thus, the fluid
velocity approaches the far field velocity as the distance from the particle r
goes to infinity [102].
In the Stokes regime, an analytical solution for the flow past a single spherical
particle can be obtained. The stream function for the Stokes flow around a
spherical particle in spherical coordinates with the origin at the center of the
sphere is given by:

 (r, ✓) = u1 sin2 ✓

✓
r2

2
+

a3

4r
�

3ar

4

◆
, (5.7)

resulting in the following equations that describe the velocity field [263]:
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The resulting fluid forces F on a single sphere in Stokes flow can then be derived
as

F = 6⇡µau1. (5.10)

This equation shows that the forces are linearly proportional to the particle
velocity u1 and the viscosity µ. Accurately predicting the forces acting on
particles is essential for reliable simulations of particles suspended in a fluid.
In Stokes flow, the behavior of a single spherical particle in a viscous fluid isStokes Flow Past Multiple

Spherical Particles well understood and can be described analytically. However, most practical
scenarios involve numerous particles, where these principles are not applica-
ble anymore. In such cases, a closed-form solution of the Stokes equations is
generally not available, as the presence of multiple particles introduces new
complexities, such as particle interactions and disturbances in the flow field
introduced by surrounding particles. These factors lead to non-linearities and
require more sophisticated approaches, such as numerical simulations or ap-
proximate models, to capture the full dynamics of many-particle systems in
viscous flows.
The Stokes flow involving multiple particles is, next to the Reynolds number,
also characterized by the volume fraction �, which quantifies the fraction of the
volume that is occupied by particles. In Stokes flow, the Reynolds number is
typically very small (Re ⌧ 1), and the volume fraction becomes more critical
in determining the overall flow behavior.
Multiple approaches to simulate the behavior of particle-laden flows and theSimulation of Stokes Flow Past

Multiple Spherical Particles
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Figure 5.1: Streamlines of the
Stokes flow around two spheres

with radius a, separated by a
distance d [222].
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respective velocity fields are available in the literature. Particle-resolved di-
rect numerical simulations (PR-DNSs) fully resolve the hydrodynamic forces
acting on individual particles and avoid the use of empirical closure models,
delivering results with high fidelity. However, due to its computational costs,
this approach becomes infeasible for complex particle arrangements as well as
higher Reynolds numbers or densely packed systems with higher volume frac-
tions [15]. The method of Regularized Stokeslets [56] is an alternative approach
prevalent in simulations of particle-laden flows at low Reynolds numbers. In-
stead of solving the Stokes equations around each particle directly, the method
uses force markers to apply force at discrete points smoothed by a regulariza-
tion kernel, which represent the influence of the particles on the surrounding
fluid. Each marker generates a velocity field, and the velocity at any point
in the fluid is the sum of the velocity fields generated by all the force mark-
ers. Since the Stokes equations are linear, the total flow field generated by
multiple force markers is approximated by superposing the contributions of in-
dividual Stokeslets. This method is only suitable for the Stokes regime, where
the physics of the flow can be described by the linear Stokes equations.
The volume filtered Euler Lagrange (VFEL) approach [36] is a method to sim-
ulate the behavior of systems with many particles, as they frequently appear in
practice, balancing accuracy and computational cost. It is based on the Euler-
Lagrange framework, where the Eulerian part describes the fluid phase, and the
Lagrangian part tracks the particles. VFEL captures the general behavior of
the fluid-particle system at the meso-scale in the magnitude of multiple parti-
cle diameters, but does not resolve individual particle-fluid interactions at fine
scales. As volume filtering results in unresolved sub-grid scales, closure models
are necessary to estimate the forces and interactions that cannot be directly
simulated at the meso-scale. Closure is required on the hydrodynamic force F
with its components drag FD and lift FL, the torque T, the sub-filter stress Ru

and the viscous closure E . The drag force plays a critical role in governing the
dynamics of the flow. While relatively accurate empirical models for the mean
drag hFDi are available in the literature [e.g. 228, 268], the deviations from this
mean force can be significant. Predicting these deviations given the locations
of the surrounding particles is a complex task, which is an area ongoing of
research.
In this chapter, we assess the capabilities of GP when applied to an unresolvedChapter Goals
problem related to the Stokes flow of multiple particles. We aim to develop a
symbolic model to predict the velocity field around two inline spherical par-
ticles, as depicted in Fig. 5.1. An accurate prediction of the velocity field is
required to compute the forces acting on a particle in the presence of another
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particle, which play a crucial role in the simulation of such flows. Two particles
can be considered the simplest case of involving multiple particles, for which
no analytical solution is available. We consider this two-particle configuration
a test case to evaluate the capabilities and limitations of the proposed GP ap-
proach. This serves as a crucial first step toward scaling the method to systems
with multiple interacting particles, which is the ultimate objective.
First, an overview of state-of-the-art methods from the literature will be given.Chapter Overview
We then introduce our algorithm designed to tackle the Stokes flow past two
spherical particles. Out-of-the-box GP approaches are not sufficient to solve
such complex problems. Expert knowledge is required to tailor the algorithm
to this specific use-case. To this end, we proposed a novel building block ap-
proach, which included the analytical solution for the flow past a single spher-
ical particle as a building block in the function set. Further domain knowl-
edge was integrated on various levels along the pipeline of the algorithm. We
employed ground truth data that were generated using the method of Regu-
larized Stokeslets. We performed several experiments with varying distance
between the two particles, and compared the results with the reported re-
sults of a multilayer perceptron (MLP) and a coarse approximation based on
the superimposition method (SIP). The results demonstrated that our building
block approach enables the development of concise solutions. We also observed
that MLP-based methods outperformed the equations generated by GP. The
evolved models allowed for interpretation, but also revealed limitations, high-
lighting the need for more robust approaches capable of capturing the complex
interactions among particles, especially in scenarios involving more than two
particles. These findings provided a strong motivation for the contributions
presented in the subsequent chapters.

5.2 Related Research

The following section is largely based on the author’s publication [223].
A recent publication by Zille et al. [299] addressed problems at the intersectionGenetic Programming

Approaches of GP and fluid mechanics, which are closely related to the topics covered in
this thesis. They examined the capabilities of GP algorithms to predict ana-
lytical solutions for the Stokes flow around a single spherical particle, which
were similar to or derived from Eqs. 5.8 and 5.9. Multiple algorithm variants
were assessed, including multiphase GP, unit-aware GP, cooperative coevolu-
tion which assembles a solution from multiple evolved subtrees, as well as the
inclusion of pre-computed features. The results on six benchmark datasets
with known ground truth demonstrated that GP was capable of identifying
the correct equations, when a suitable set of optimization objectives was used.
The highest accuracy was achieved through the simultaneous optimization of
both error and correlation objectives. Introducing additional objectives, such as
penalties for unit violations and complexity, did not yield further improvements
in terms of accuracy. The importance of incorporating domain knowledge was
also evident, as algorithms utilizing expert-designed, precomputed features out-
performed the baseline algorithm on more complex datasets. However, a key
limitation of the approach was its volatile success rate, with varying results
across multiple repetitions of the same algorithm.
A related study by Ross et al. [234] aimed to learn closure models from high-
fidelity data on ocean turbulences, which was then employed in low fidelity
simulations that required closure. They employed a hybrid GP approach with
expert input at predefined stages of the equation development, and were able to
identify important building blocks as the main drivers for accurate predictions.
In the area of fluid mechanics, more realistic arrangements with a larger numberData-Driven Methods to

Predict Deviations from the
Mean Drag

of particles are typically studied. The identification of an accurate model for
the hydrodynamic forces in such arrangements is a non-trivial task, as shown
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by the rich recent literature on the matter [2, 3, 254, 255]. We are mainly in-
terested in the data-driven approaches, which use highly resolved data to find
an accurate model for the deviations from the mean drag hFDi. A promising
approach in this area is the pairwise interaction extended point-particle (PIEP)
method, which assumes pairwise interactions between particles to predict the
variation in the drag force [3, 255]. In a flow locally governed by Re and �, the
force acting on a particle i can be approximated by aggregating the fluctuations
introduced by particles in its neighborhood Ni. These pairwise interactions de-
pend on the relative positions of the neighboring particles, rj , where j 2 Ni.
In this context, recent literature suggested that the prediction accuracy in-
creased only up to a number of neighboring particles considered between 20
and 30 [3, 255]. Although this assumption introduced some error by account-
ing only for first-order interactions between particles, their predictive abilities
closed the gap in terms of accuracy to those of PR-DNS while maintaining low
computational costs. Further notable publications in this area include [185]
and [186], which employed multiple linear regression on expansions of spherical
harmonics. Seyed-Ahmadi et al. [254] extracted distributions of particle loca-
tions within a predefined neighborhood from PR-DNS data. These were used
to find correlations between the force exerted on a particle and the locations
of its neighboring particles.
Balachandar et al. [16] were the first to implement an ANN to predict the vari-ANN-Based Methods to

Predict Deviations from the
Mean Drag

ations in the drag. The input features comprised the relative positions of the
15 closest particles within the neighborhood of the particle of interest, as well
as Re and �. A single hidden layer with 25 neurons and the hyperbolic tangent
as activation function was used. When applied to test data of PR-DNS real-
izations that had not been included in the training, the ANN exhibited severe
overfitting behavior, which the authors believed was due to insufficient training
data. Building upon these results, a recent publication by Seyed-Ahmadi et
al. [255] indicated that PINNs could overcome the problem of overfitting. A
main characteristic of this approach was the parameter sharing between neural
network blocks. Following the pairwise interaction assumption, the influence of
each neighbor of a particle was calculated by a small ANN, which was shared
by all neighbors. The total force on a particle was the linear superposition
of the influences of its neighboring particles. In addition to neighboring lo-
cations, the predictive features included the local average velocity, which can
be approximated empirically from the location of the particles. The PINN
approach imposed an underlying form on the model, which was deduced from
prior knowledge about pairwise interactions. While this was an important step
to align the model with underlying physics, the transformations inside the ANN
blocks remained opaque.
Overall, the publication by Zille et al. [299] can be considered valuable pre-
liminary work with respect to the fluid mechanics problems addressed in this
thesis. We furthermore observed a gap in the literature between fluid mechan-
ics and GP, with the former studying larger particle arrangements but lacking
interpretable models, and the latter offering interpretable models, but lacking
studies on the algorithm’s performance when applied to complex tasks with
unknown ground truth. While Zille et al. [299] applied their algorithm to prob-
lems with known ground truth, the focus of this thesis is to develop equations
for cases where the ground truth is not known. With the contributions in
this chapter, we furthermore aim at making a first step towards interpretable
models for more complex arrangements beyond a single particle.

5.3 Proposed Methods

In the following, we first present our algorithm to learn the Stokes flow past two
spherical particles. Subsequently, we describe the employed objective functions.
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Algorithm 4: Proposed genetic programming algorithm [222]
input : Training Data X, Terminals T , Functions F , phase generations k,

crossover probability pc, mutation probability pm

output : Set of non-dominated solutions A

1 A  Empty Pareto-dominance based archive
2 pop Random initial population of solutions
3 evaluate(pop)
4 A  updateArchive(pop)
5 repeat
6 for k generations do
7 parents  select(pop)
8 o↵spring  reproduce(parents, pc, pm)
9 evaluate(o↵spring)

10 pop  updatePopulation([(pop, o↵spring))
11 A  updateArchive(o↵spring)
12 end
13 for k generations do
14 parents  select(pop)
15 o↵spring  reproduce(parents, pc = 0, pm = 1)
16 evaluate(o↵spring)
17 pop  updatePopulation([(pop, o↵spring))
18 A  updateArchive(o↵spring)
19 end
20 until stopping criterion is not reached
21 return A

Table 5.1: Problem-dependent
sets of terminals and functions

for the proposed algorithm [222]. Terminals Relevant features from training data and set of constants
{1.0, 2.0, 0.5, 0.25}

Functions +, �, ⇥, / (protected), u0(x, y), v0(x, y), ud(x, y), vd(x, y)

5.3.1 Overall Algorithm

Based on the recent research for predicting the Stokes flow around a singleMulti-Phase Genetic
Programming Algorithm sphere [299], our proposed GP algorithm is outlined in Algorithm 4. Pre-

liminary tests have strongly suggested that a multi-phase GP advanced the
evolutionary process in the best case, and did not deteriorate the results in the
worst case. Therefore, we enhanced the standard GP procedure by a two phase
evolution with k generations of crossover and mutation to generate offspring,
followed by k generations of mutation only, similar to the algorithm presented
in Sec. 4.3. In this way, we aimed at balancing exploration and exploitation
of solutions through genetic operators. This could help to refine solutions that
have a suitable structure but require small adjustments on the terminal or
function level. We used the (µ + �) reproduction scheme, which allowed both
parents and children to survive to the next generation [222].
Tab. 5.1 displays the terminals and functions provided to the GP algorithm.Problem-Dependent Terminal

and Function Sets As terminals, we selected the relevant features from the training data as well
as a few constants. The available functions were basic arithmetic operators,
including a protected division to avoid division by zero. In this case, an infinity
value was returned. Preliminary experiments indicated that a standard GP
setting with only arithmetic operators performed poorly on the given problem,
creating the need to incorporate domain knowledge in our approach. As such,
we included the solutions for the flow past a single particle as a GP building
block, namely the velocities in u- and v-direction: u0 and v0 for the disturbance
around the left particle, and ud and vd for the right particle, with a distance
d between them. Given a particle i, the function arguments of ui and vi are
the position x and y at which the flow is to be predicted. Algorithm 5 outlines
this procedure that involves transformation to spherical coordinates and back
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Algorithm 5: Computation of flow disturbances ui, vi past a single spher-
ical particle at center position xc,i, yc,i [222]
input : x and y coordinates
output: ui and vi, i 2 {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20}

1 function flowDisturbance(x, y):
2 xrel, yrel  compute relative position from particle center xc,i, yc,i
3 r, ✓  convert xrel, yrel to polar coordinates
4 ur, u✓  compute Eqs. 5.8 and 5.9
5 u, v  convert ur, u✓ to global Cartesian coordinates
6 return u� u1, v
7 end

to Cartesian coordinates. The computation of the relative position to the
center of the particle i is required for the subsequent calculations in spherical
coordinates. The functions return the disturbance around a single spherical
particle using the Eqs. 5.8 and 5.9. The disturbance describes the variation in
the undisturbed flow velocity due to the addition of a particle. It is computed
in u direction by u � u1, whereas the disturbance in v is not modified, since
||v1|| = 0 [222].

5.3.2 Objective Functions

We incorporated the findings of [299] as well as the results presented in Sec. 4.4,Rooted Mean Squared Error
and considered multiple objectives in our approach. Our first objective f1

was the RMSE to minimize the error between the predicted and the observed
velocity at specific points in space. It is the primary attribute that determines
the quality of a solution [222].
Furthermore, we employed a rank-based correlation coefficient using the Spear-Correlation Coefficient
man correlation as a second objective f2. The intention was to keep individuals
in the evolutionary process that were not yet numerically accurate, but pro-
duced a high correlation with the target data. Thus, promising individuals had
the chance to be refined towards more accurate solutions. To minimize the
objective, we defined it as f2 = 1 � |⇢|, where ⇢ is the Spearman correlation
coefficient ranging from -1 to 1. The absolute value was taken to also keep
inversely proportional solutions in the population [222].
To account for the compliance with physical laws, which is an essential require-Dimension Penalty
ment in equation discovery for science and engineering, we employed a third ob-
jective f3 that penalizes individuals that execute non-physical operations. For
each unit-violating operation, a penalty of 1.0 was added to a counter, which
was then aggregated throughout an individual. Additionally, to guarantee that
the final unit of an individual corresponds to our target unit meters/second

= m
1

· s
�1, we added the Manhattan distance between the exponents of the

SI-base units of which the final unit was composed. For example, the distance
of m2

·s
3 to the target unit m1

·s
�1 is 5. The constants in the terminal set were

considered as dimensionless quantities [222].

5.4 Experiment Setup

In this section, the two particles problem from the area of fluid mechanics is
defined, as well as the baseline methods to which the proposed GP algorithm
is compared. Furthermore, we will describe the algorithm settings and criteria
to assess the quality of the solutions developed by GP.

5.4.1 Two Particles Benchmark

The goal of this chapter is to make a first step towards closing the litera-General Benchmark Setup
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ture gap between GP and fluid mechanics, and assess the performance of the
GP algorithm on the Stokes flow past two spherical particles, for which no
ground truth equations were known. To identify the potentials and limitations
of GP on the two-particle problem, we introduced a new benchmark dataset
with varying distances between the particles (see Fig. 5.1). As the particles
move closer together, their mutual influence increases, and vice versa. Build-
ing on this concept, the larger the distance between the two particles, the more
accurately the surrounding flow can be approximated by superimposing the
analytical solution for a single particle. We anticipated GP to perform well
on a large distance d >= 10 and wanted to identify limitations of the ap-
proach by a stepwise reduction of the distance. To this end, training data for
d = [20, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1] was generated. Since the flow velocity is de-
scribed by two components, u and v, separate benchmarks were created. The
combinations of eleven distances and two velocity components made a total of
22 benchmarks. Each dataset contained the following features [222]:

• u, v [m s�1]: target velocities in u or v direction

• x, y [m]: positions in for which the flow is to be predicted

• xc1, yc1, xc2, yc2 [m]: center coordinates of the two spheres

• d [m]: distance between the two spheres

• a [m]: radius of the spheres

• u1 [m s�1]: undisturbed flow velocity

The datasets were generated using the regularized Stokeslets as introduced inData Generation with
Regularized Stokeslets Sec. 5.2, for which the full implementation details can be found in the author’s

publication [222]. We distributed N = 5000 Stokeslets over the surface of a
sphere following the generalized spiral set approach. The parameters were set
to a particle radius of a = 0.25 and the undisturbed velocity ||u1|| = 1.0. The
origin of the coordinate frame was located at the center of the left sphere. The
right sphere had the center coordinates (d, 0) so that the particles were aligned
along the direction of the free stream, as depicted in Fig. 5.1. To cover all
relevant flow disturbances, the training data comprised [xc,0 � 4a, xc,d + 4a] in
x-direction and [yc,0 � 4a, yc,0 + 4a] in y-direction. We employed a resolution
of 200 data points in x- and 50 data points in y-direction, which made a total
of 10,000 instances subtracting the data points that lay inside the spheres, for
which no flow could be predicted [222].

5.4.2 Baseline Methods

To compare the accuracy of our GP algorithm to methods from the literature,Fluid Mechanics Baseline:
Superimposition Method we also assessed the performance of two baseline methods on the introduced

datasets. First, we employed the superimposition method (SIP), which can be
considered a coarse estimator from the area of fluid mechanics. It approximates
the velocity field at any point by summing the individual disturbances caused
by each particle in the domain at that point. Similarly to our approach, it uses
the analytical solution of the flow around a particle to calculate the disturbances
caused by M particles [222]:

u(x, y) = u1 +
MX

i=1

udisturbance,i(x, y) (5.11)

v(x, y) =
MX

i=1

vdisturbance,i(x, y) (5.12)

Since the disturbances in u and v direction were also contained in the function
set of our proposed GP, we could directly compare the two methods. Due to
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Table 5.2: GP algorithm
parameters [222]. Parameters Settings

µ 2,000
� 2,000
Number of Evaluations 600,000
Generations per Phase k 20
Selection Mechanism NSGA-II selection
Initialization Method Half Full, Half Grow
Crossover Probability pc 0.7
Mutation Probability pm 0.3
Crossover One-point, Leaf-biased (pleaf = 0.9) (chosen at

random)
Mutation Uniform, Insert, Shrink, Node Replacement

(chosen at random)
Mutation (pm = 1.0) Shrink (1/3), Node Replacement (2/3)
Max. Tree Length 30
Max. Init Depth 4
Min. Init Depth 1
Max. Mutation Depth 2
Min. Mutation Depth 0
Objectives f1, f2, f3

Train-Test Ratio 0.7 train, 0.3 test
Runs 31

the deterministic nature of the superimposition method, we executed it only
once.
Additionally, we incorporated an MLP as the baseline method from the MLML Baseline: Multilayer

Perceptron field. To this end, we used the Scikit-Learn implementation of the MLP
regressor. We employed two fully connected hidden layers with 20 neurons each
and trained the network for 200 epochs. The input features were the relative
positions of the centers of the two particles to the location of interest within the
velocity field, namely x1,rel, y1,rel, x2,rel and y2,rel, as well as the particle radius
a, and distance d between the particles. Preliminary experiments indicated that
also small network configurations were capable of approximating the velocity
fields around two spherical particles accurately. Consequently, only one MLP
was trained on all datasets combined, and the distance between the particles
was included as an additional input feature.

5.4.3 Algorithm Settings

Various algorithm parameters had to be defined for GP to yield satisfactory
results (see Tab. 5.2). We employed a similar parameter setting as in the pre-
liminary work for the Stokes flow around one particle [299]. To limit individual
lengths and avoid bloating, a length limit (i.e., the number of nodes in the GP
tree) of 30 was applied. The datasets were split with a ratio of 70% training
data and 30% test data. For each benchmark instance, 31 repetitions of the GP
algorithm were performed [222]. The GP algorithms were implemented using
the DEAP-framework version 1.3.1 [90] and the pint package version 0.16.1.

5.4.4 Quality Assessment

During the evolutionary process, the algorithm optimized three objectives,Selection Criteria for Final
Solutions namely the RMSE f1, correlation f2 and dimension penalty f3. Additionally,

we recorded the coefficient of determination (R2) as well as the mean absolute
error (MAE) during the training process. Since the algorithm optimized for
multiple objectives, a single optimal solution could not be identified anymore.
Thus, we used the following procedure to determine the final solution of a run:
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Table 5.3: Overview of domain
knowledge integrated as bias

into the GP algorithms proposed
in this chapter.

Bias Type Bias

Inductive Problem-specific set of building blocks included in the function
set (see Sec. 5.3.1)

Learning Conversion between spherical and Cartesian coordinate sys-
tems to simplify the problem for the algorithm (see Algo-
rithm 5)

Learning Dimension penalty to punish equations with unit violations (see
Sec. 5.3.2)

To guarantee the explainability of the solutions, we only considered solutions
that complied with physical laws in our final evaluation, i.e., that had a dimen-
sion penalty f3 = 0. From those solutions, the one with the lowest f1 was the
designated output of the run [222].
To verify if the proposed and the baseline methods achieved results that wereStatistical Comparison
significantly different, a Friedman’s test was performed. If the equality hypoth-
esis was rejected, the Holm-Bonferroni test for adapted p-values was conducted
for pairwise comparison of the methods. A significance level ↵ = 0.05 was em-
ployed. Tab. 5.3 summarizes the types of domain knowledge included as bias
in the proposed algorithms and experiment settings.

5.5 Results and Analysis

5.5.1 Convergence Behavior

The convergence behavior of GP for selected distances in u direction is displayed
in Fig. 5.2. The behavior in v direction is similar to the ones shown here. Each
line represents the mean RMSE over the best solutions for 31 runs at different
times, where “best” refers to the solution with the lowest RMSE and a dimension
penalty of f3 = 0. The performance on the training set is depicted with a solid
line and on the test set with a dashed line.
The three plots indicate that no overfitting to the training data occurred, asNo overfitting could be

observed for GP and the two
baseline methods.

training and test error decreased simultaneously and no increase in the test
error in later stages of the training could be identified. On the contrary, the
gap between training and test error is almost negligible. The convergence speed
for d = 10 is notably higher than for d = 1 and d = 5, implying that accurate
solutions were easily found. The curve for d = 10 exhibits a convergence
behavior that is nearly optimal, with a steep decline in the first quarter of
the training time and a flat curve in the remainder. The learning curves for
d = 1 and d = 5 do not show a perfect convergence, and it could be anticipated
that further reduction RMSE could be further reduced with more evaluations.
Furthermore, two spikes can be identified in the error curve for d = 5. This
can primarily be explained with the outliers of one out of 31 runs run, which
had a considerably larger error value compared to the others [222].
Throughout all of the 31 runs, it can be observed that the RMSE values wereThe RMSE distributions

exhibited high variability over
multiple runs.

distributed over a relatively wide range, even at the end of the training phase.
We can interpret this in two ways: First, the results might be improved further
if the training duration is increased; and second, it is possible that the algorithm
frequently revisited the same local optima and struggled to leave them towards
better solutions. Since some runs identified solutions with low RMSE values,
we know that these solutions existed tended to be difficult to obtain when
the algorithm was executed multiple times. A closer look at the population
dynamics and the specific equations in the population at different generations
is required to better understand this observation.
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Figure 5.2: Convergence
behavior of GP on training and

test data for selected distances d

in u direction on a logarithmic
y-axis. The lines display the

mean RMSE, and boxplots the
distribution over 31 runs.
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5.5.2 Effects of Different Distances Between the Particles

One goal of this chapter is to assess the limitations of the proposed GP algo-Unit compliant equations were
found by GP. rithm and compare the performance in terms of decreasing distances between

the two particles. We hypothesize that the algorithm will demonstrate better
performance at larger distances between particles, where the mutual interac-
tions are weaker. For all runs of each benchmark instance, at least one individ-
ual with a dimension penalty of f3 = 0 could be obtained. Thus, unit compliant
solutions could be identified in general for the given problem. The performance
of the proposed algorithm, along with the baseline methods, on the test dataset
is summarized in Tabs. 5.4 and 5.5, reporting both R2 and RMSE metrics. To
maintain clarity and conciseness, we have omitted the MAE results, as RMSE
provides a more rigorous measure of solution quality, which penalizes larger
errors more. The values of objectives f2 and f3 are also omitted in the table,
as they are primarily used as supporting objectives to enhance the training
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Table 5.4: Results of
experiments for the u

component of the flow [222].

R2 RMSE
d Method Best Mean ± Std SC Best Mean ± Std SC

1 GP 0.98898 0.93829 ± 0.09497 0.01550 0.04124 ± 0.02642
SIP 0.64865 0.64865 ± 0.00000 � 0.18567 0.18567 ± 0.00000 �

2 GP 0.99762 0.89169 ± 0.16221 0.00483 0.03873 ± 0.03515
SIP 0.81471 0.81471 ± 0.00000 � 0.09112 0.09112 ± 0.00000 �

3 GP 0.99099 0.76842 ± 0.26984 0.00264 0.05576 ± 0.04611
SIP 0.90174 0.90174 ± 0.00000 + 0.05440 0.05440 ± 0.00000 =

4 GP 0.99343 0.64824 ± 0.35060 0.00114 0.06542 ± 0.05365
SIP 0.94880 0.94880 ± 0.00000 + 0.03637 0.03637 ± 0.00000 +

5 GP 0.99586 0.72624 ± 0.38381 0.00097 0.05048 ± 0.05600
SIP 0.97220 0.97220 ± 0.00000 + 0.02606 0.02606 ± 0.00000 +

6 GP 0.99886 0.92884 ± 0.16668 0.00072 0.01683 ± 0.03354
SIP 0.98411 0.98411 ± 0.00000 = 0.01964 0.01964 ± 0.00000 =

7 GP 0.99918 0.97034 ± 0.11585 0.00061 0.01045 ± 0.02073
SIP 0.99036 0.99036 ± 0.00000 = 0.01531 0.01531 ± 0.00000 =

8 GP 0.99938 0.94054 ± 0.19538 0.00059 0.01269 ± 0.03218
SIP 0.99381 0.99381 ± 0.00000 = 0.01225 0.01225 ± 0.00000 =

9 GP 0.99749 0.99165 ± 0.00682 0.00059 0.00371 ± 0.00441
SIP 0.99586 0.99586 ± 0.00000 + 0.00998 0.00998 ± 0.00000 �

10 GP 0.99878 0.99253 ± 0.00686 0.00061 0.00340 ± 0.00415
SIP 0.99714 0.99714 ± 0.00000 + 0.00828 0.00828 ± 0.00000 �

20 GP 0.99927 0.99865 ± 0.00026 0.00029 0.00085 ± 0.00051
SIP 0.99982 0.99982 ± 0.00000 + 0.00188 0.00188 ± 0.00000 �

all MLP 0.99811 0.99545 ± 0.00202 + 0.00010 0.00022 ± 0.00010 +

Table 5.5: Results of
experiments for the v component

of the flow [222].

R2 RMSE
d Method Best Mean ± Std SC Best Mean ± Std SC

1 GP 0.99358 0.92330 ± 0.06684 0.00483 0.01703 ± 0.00921
SIP 0.92054 0.92054 ± 0.00000 = 0.02633 0.02633 ± 0.00000 �

2 GP 0.99604 0.99324 ± 0.01196 0.00201 0.00297 ± 0.00272
SIP 0.97546 0.97546 ± 0.00000 � 0.01161 0.01161 ± 0.00000 �

3 GP 0.99704 0.99370 ± 0.00451 0.00101 0.00311 ± 0.00263
SIP 0.98821 0.98821 ± 0.00000 � 0.00743 0.00743 ± 0.00000 �

4 GP 0.99735 0.99525 ± 0.00208 0.00072 0.00257 ± 0.00183
SIP 0.99317 0.99317 ± 0.00000 � 0.00531 0.00531 ± 0.00000 �

5 GP 0.99752 0.99668 ± 0.00109 0.00058 0.00160 ± 0.00132
SIP 0.99559 0.99559 ± 0.00000 � 0.00401 0.00401 ± 0.00000 �

6 GP 0.99843 0.99705 ± 0.00065 0.00049 0.00155 ± 0.00090
SIP 0.99695 0.99695 ± 0.00000 = 0.00316 0.00316 ± 0.00000 �

7 GP 0.99760 0.99711 ± 0.00033 0.00051 0.00133 ± 0.00081
SIP 0.99777 0.99777 ± 0.00000 + 0.00256 0.00256 ± 0.00000 �

8 GP 0.99777 0.99736 ± 0.00022 0.00046 0.00128 ± 0.00060
SIP 0.99831 0.99831 ± 0.00000 + 0.00212 0.00212 ± 0.00000 �

9 GP 0.99829 0.99744 ± 0.00024 0.00045 0.00113 ± 0.00056
SIP 0.99869 0.99869 ± 0.00000 + 0.00179 0.00179 ± 0.00000 �

10 GP 0.99822 0.99747 ± 0.00016 0.00036 0.00110 ± 0.00043
SIP 0.99894 0.99894 ± 0.00000 + 0.00154 0.00154 ± 0.00000 �

20 GP 0.99922 0.99921 ± 0.00001 0.00044 0.00054 ± 0.00005
SIP 0.99974 0.99974 ± 0.00000 + 0.00057 0.00057 ± 0.00000 �

all MLP 0.99440 0.98840 ± 0.00434 + 0.00002 0.00004 ± 0.00001 +

process and facilitate the interpretation of the solutions. For each measure,
the value of the best solution, the mean over the 31 runs, and the standard
deviation to determine the stability of an algorithm are shown. The baseline
methods were subjected to a statistical comparison (SC) with GP as described
in Sec. 5.4.4. The symbols (=), (-), and (+) are used to indicate whether there
were no significant differences with GP, whether the results were significantly
worse or whether they were significantly better, respectively.
The columns Best in Tabs. 5.4 and 5.5 indicate that GP found at least oneMLP always outperformed GP

and SIP. solution for all benchmark instances that was better than the fluid mechan-
ics baseline SIP. This observation is especially interesting for fluid dynamics
experts, for whom a single optimal solution over multiple runs is already ben-
eficial [222]. Furthermore, it became apparent that the simple MLP always
performed by orders of magnitude better than both the SIP and the overall
best solution obtained by GP over all benchmark datasets.
Fig. 5.3 visually supports the results from these tables and displays the RMSEGP achieved stable results in u

direction for distances d � 6. distributions over the 31 runs for GP and MLP as well as the deterministic
result of SIP. As expected, the magnitude of the error decreased with increasing
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Figure 5.3: RMSE distribution
for GP, MLP and SIP in u and v

direction over 31 independent
runs on a logarithmic y-axis.
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distances between the two particles. In the u direction from d = 20 to d = 6,
GP produced solutions that were better than, or at least as good as, those
obtained by SIP. For d < 6, the error spread increased, and stable results
could not be guaranteed, which is also reflected in the statistical comparison of
RMSE values. Similarly, the mean values of R2 for GP were greater than 0.9 for
d >= 6, with a decrease for d = [5, 4, 3]. Interestingly, GP found comparatively
good solutions for small distances d = 1 and d = 2 compared to SIP. This can
be explained by the fact that SIP is a deterministic approach and the same
equation was used on all benchmark sets. GP, on the other hand, was trained
separately on each benchmark set and could therefore adapt to the changing
flow pattern for different distances between the particles [222].
In the direction v, the GP algorithm outperformed SIP for all distances in termsGP outperformed SIP in v

direction. of RMSE. Although the statistical comparison of R2 indicated statistically
better results in favor of SIP for some benchmark instances, the real values of
R2 of 0.99 do not reflect large differences between the two methods. The better
performance in the v direction can be explained by the fact that the solution
required fewer operations than in the u direction, i.e., u1 was omitted. Again,
the MLP surpassed GP in all benchmark problems.

5.5.3 Explainability of Solutions

A main concern of these experiments was the explainability of the solutionsSelection and Simplification
Procedure produced by the proposed GP algorithm. Objective f3 guaranteed the confor-

mity with physical laws. Tabs. 5.6 and 5.7 list the best GP solutions over 31
runs for the u and v components of the flow for different distances. We used
the Python sympy package to simplify the equations.
All equations utilized the solutions for the disturbance around a single particle,Building blocks were used in

final equations. i.e., the expert knowledge given to the algorithm. All individuals followed a
similar scheme of adding one or multiple terms to the undisturbed flow velocity
u1. Essentially, the disturbances around the two particles were aggregated.

89



Table 5.6: Best solutions in u

direction [222]. d Solution

1 u1 + 2.0 u0

⇣
4.0au1

u0 (x,y)+u1 (x,y) , 0.25y
⌘

2 u1 + u0 (x, y)� u0

⇣
y,

2.5au1
0.5 u0 (x,y)+0.5 u2 (x,y)

⌘
+ u2 (x, y)

3 u1 + 0.9 u0 (x, y) + 0.9 u3 (x, y)

4 u1 + 0.923 u0 (x, y) + 0.923 u4 (x, y)

5 u1 + u1(u0 (x,y)+u5 (x,y))
u1�u5 (�2.75a,y)

6 u1 + (u1+u6 (�6.0a,y))(u0 (x,y)+u6 (x,y))
u1

7 u1 + 0.958 u0 (x, y) + 0.958 u7 (x, y)

8 u1 + u0 (x,y)+u8 (x,y)

1.0� 0.75 u8 (a,0.25y)
u1

9 u1 + 0.970 u0 (x, y) + 0.970 u9 (x, y)

10 u1 + u10 (x, y) +
(u1+0.75 u10 (x,y)) u0 (x,y)

u1

20 u1 + u0 (x, y) + u20 (x, y) +
u0 (2.25x,2.0y) u20 (x,y)

u1

Table 5.7: Best solutions in v

direction. d Solution

1 �0.25 v0 (x, y) + v0 (0.125a+ x, 1.0y) + v1 (x, y)� 0.25 v1 (0.25a+ x, y)

2 0.842 v0 (y, x) + 0.842 v2 (x, y)

3 u1(v0 (x,y)+v3 (x,y))
u1�v0 (a,1.75a)+v3 (2x,0)

4 u1(v0 (x,y)+v4 (x,y))
u1�v0 (2.5a,3.0a)

5 v0 (x, y)� 0.0625 v0 (y, x) + 0.9375 v5 (x, y)

6 0.947 v0 (x, y) + 0.947 v6 (x, y)

7 �0.045 v0 (x, 1.0y) + v0 (y, x) + 0.954 v7 (x, y)

8 0.961 v0 (x, y) + 0.961 v8 (x, y)

9 0.968 v0 (x, y) + 0.968 v9 (x, y)

10 0.969 v0 (y, x) + 0.969 v10 (x, y)

20 v0 (x,y)+v20 (x,y)

1.0+
3.0 v20 (y,�a+x)

u1

This pattern is very similar to the superimposition method, which adds the
disturbances of all particles involved. However, GP found slight modifications
to the superimposition method to generate better results, such as multiplying
the solution around a single particle ud for d = 9 with a factor of 0.97, d = 7
(factor 0.958), d = 4 (factor 0.923), and d = 3 (factor 0.9). Interestingly,
instead of using such a fixed factor, other solutions included a term that depends
on x and y, which produced infinitesimal values, such as u0 (2.25x,2.0y) u20 (x,y)

u1
in the solution for d = 20. Overall, the solutions followed a pattern similar
to the superimposition method with slight modifications. The terms involved
were physically meaningful and explainable, while the solutions are concise
throughout all benchmark instances [222].

5.6 Discussion and Limitations

The overall results indicate that the tested building block approach for GP wasLimitations of GP Compared
to Baseline Methods outperformed by a small MLP with two hidden layers and 20 neurons each,

both in the u and v directions of the flow and for all distances between the
two particles. The GP algorithm identified at least one solution that achieves
lower RMSE values compared to SIP, while delivering concise, unit confor-
mal equations. Compared to the baseline methods, the models evolved with
GP exhibited a higher variability in terms of RMSE over multiple realizations.
The generated equations were structured similarly to a linear regression model,
where the algorithm fits coefficients to the provided building blocks. However,
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unlike conventional regression, the constants used in the equations were as-
sembled from the predefined set of constants in the terminal set, which limits
their range of potential values. In the future, one could consider a regression
algorithm on top of GP to allow for better fitting of constants.
The limitations of our algorithm were primarily determined by the velocityLimitations with Increasing

Problem Complexity component with the weaker prediction accuracy, as accurate flow prediction
requires both components to be reliably estimated. Overall, the results in the
u direction suggest that the proposed GP algorithm provides stable outcomes
with low failure rates for datasets where the distance between particles is d � 6.
While these results are a first step towards identifying the velocity field in
Stokes flow involving more than one particle, we could identify a few issues that
limited the applicability of this method to more complex arrangements. One
key challenge was that the accuracy of the evolved equations decreased as the
distance between particles decreased. In other words, the higher their mutual
influence, the worse the algorithm performed at predicting the disturbance in
the velocity field introduced by the particles and their interactions. It can
be assumed that an increased number of particles would further increase the
difficulty of the problem. Therefore, the current approach may not be suitable
for accurately predicting velocity fields involving more than two particles.
Ultimately, the prediction of a velocity field is an intermediate step to comput-From Prediction of Velocity

Fields to Direct Force
Prediction

ing the hydrodynamic forces acting on a particle, which are relevant for accurate
simulations. Velocity fields are complex to predict, resembling a continuous dis-
tribution of velocities throughout the flow domain, meaning that the prediction
involves estimating values across multiple spatial points in a potentially large
region. Thus, shifting the focus to predicting the forces directly might offer a
more manageable approach, estimating an aggregate value that encapsulates
the overall effect of the flow on each particle. Given the outstanding prediction
accuracy of MLPs demonstrated in this chapter, and the potential to model
particle-laden flows as a graph of interacting entities, it seems promising to
combine the learning power of MLPs with the expressiveness of GP and to
apply GNNs to solve the problem.

5.7 Summary

This chapter presented a first study on the prediction of the Stokes flow around
two inline spherical particles using GP for symbolic regression. We imple-
mented a multi-objective approach originally designed for the flow around one
particle. Preliminary trials showed that GP has difficulties finding a regression
function with standard GP parameter settings. To enrich the algorithm with
expert knowledge, the solution for the flow around one particle was given to
the function set. To identify the strengths and limitations of the GP algorithm,
we proposed a new benchmark for the u and v velocity components of the flow,
with decreasing distances between the particles. Our multi-objective approach
allowed for solutions aligned with physical laws, which contributes positively
to the explainability of the final solution set. All the solutions were concise
and physically meaningful. The algorithm successfully included the analytical
solution for one particle in the prediction for the flow around two particles.
GP found at least one solution that outperformed the SIP baseline method,
and achieved significantly better results for distances d >= 6. An MLP out-
performed the GP algorithm throughout all benchmark instances. Many of
the GP solutions multiplied the solution for one particle with a constant and
aggregated them. Currently, these constants are built from combinations of
values in the terminal set. We observed limitations of the algorithm in terms
of increasing problem complexities, in terms of repetition stability and the con-
stants used. The remainder of this thesis will address these issues, which largely
overlap with the limitations identified in the previous Chapter 4.7.
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Part III

Algorithmic Advances
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6 Multi-Objective Island

Model Genetic

Programming

As demonstrated in the preceding two chapters, the RMSE values of the GPIntroduction and Chapter
Goals algorithms exhibited considerable variability when they were executed multiple

times. This behavior was observed in both the inverse kinematics and fluid me-
chanics benchmarks. As pointed out in Sec. 3.2.3, distributed models or island
models (IMs) is a widely used method for overcoming these issues and achiev-
ing higher success rates. At the same time, we identified a gap in the literature
regarding the interplay between multi-objective GP, as it is predominantly im-
plemented in practical applications like ours, and the parameter settings and
performance of IMGP. While the literature typically studies single-objective
problems, this chapter assesses the impact of combinations of different objec-
tive functions and IM configurations on enhancing the success probability of
an algorithm. Our goal is to deduce optimal algorithmic configurations, which
can be utilized in the future to discover unknown equations.
This chapter is largely based on the author’s publication [225].

6.1 Proposed Methods

In the following, we introduce algorithmic components that were examined in
our experiments. We assessed their performance on known benchmark equa-
tions to identify algorithm configurations with high success rates.

6.1.1 Island Model Configurations

As pointed out in Sec. 3.2.3, IM algorithms have numerous hyperparametersSpecification of Migration
Topologies which potentially affect their performance. An extensive study in a grid-search-

fashion over multiple values for all hyperparameters exceeds the scope of this
thesis. Therefore, we adopted some hyperparameters that performed well in
related research, and implemented them in a multi-objective algorithm. Mo-
tivated by [57], we investigated the performance of archive-based migration
compared to non-archive based migration. To this end, we considered two
migration topologies:

• Archive-based migration (A): The best k individuals of all subpopulations
build an archive of overall best solutions. For each subpopulation of
size m, we replace k individuals at random with k individuals from the
archive. Fig. 6.1a displays the archive-based migration topology.

95



Figure 6.1: Overview of assessed
migration topologies [225]. (a) Archive-based migration topology

(b) Random-based migration topology

• Random migration (R): In the random migration topology, the subpop-
ulation from which individuals migrate to another is chosen at random.
The k worst individuals of the respective island are replaced with the
k best individual of the randomly selected island. Due to the random
nature of the migration, multiple subpopulations can receive individuals
from the same island, as depicted in Fig. 6.1b.

Each migration can increase the diversity of solutions within a subpopulation.Specification of Migration
Rates Usually, a fixed migration rate is used in an IM algorithm, so that migrations

are uniformly distributed over the algorithm runtime. In preliminary trials, we
observed that some algorithms performed better when migrations were only
performed in the first two thirds of the algorithm runtime. The final third
of the experiment, which occurred without migration, may have enabled the
algorithm to reach a state of convergence without the introduction of further
disturbances from migration. Therefore, in addition to the migration topology,
we also investigated the distribution of migrations over the evolution [225].
Algorithm 6 outlines the proposed IM algorithm. The migration scheduleThe Overall Algorithm
msched contains the generation indices in which migrations are performed. The
migration function in line 12 either calls the archive-based or random migra-
tion topology. The algorithm returns a Hall of Fame (HOF), which contains
the set of all non-dominated solutions that have been obtained throughout the
runtime of the algorithm.

6.1.2 Objective Functions

Inspired by the approach of Zille et al. [299], we adopted a multi-objectiveError Objective
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Algorithm 6: Proposed island model algorithm [225].
input : training data X, number of subpopulations m, subpopulation size p,

number of generations n, migration schedule msched
output : hall of fame H

1 pops  set of m random initial subpopulations, each of size p

2 evaluate(pops)
3 H  updateHOF(pops)
4 for gen = 1. . . n do
5 for i = 1. . .m do
6 parents  select(pops[i])
7 o↵spring  reproduce(parents)
8 evaluate(o↵spring , X)
9 pops[i]  updatePopulation([(pops[i], o↵spring))

10 end
11 if gen 2 msched then
12 pops  migrate(pops)
13 end
14 H  updateHOF(pops)
15 end
16 return H

perspective in our methodology. Our primary objective, denoted by f1, mini-
mizes the error between the prediction and the target variable. To quantify this
error, we employed the RMSE, a widely used fitness measure for GP, which
emphasizes larger errors with greater penalties.
We want to point out that the error objective used in [299] was, contrary to
ours, the maximum absolute error (MaxAE). Zille et al.’s preliminary exper-
iments demonstrated that MaxAE yielded superior performance on the given
benchmark equations compared to RMSE. However, the MaxAE should be
used with caution when unknown equations are discovered from data. Experi-
mental data often contains noise and outliers, and MaxAE tends to put higher
emphasis on minimizing the error on the outliers, rather than finding an equa-
tion that performs generally well across the entire dataset. Since we aimed at
deducing a robust algorithm configuration to discover unknown equations in
the future, we employed the RMSE in our experiments [225].
We adopted the correlation objective as well as the dimension penalty as pre-Correlation Objective
sented in Chapters 4.3.1 and 5.3.2, thus, these are only briefly introduced here.
We incorporated the rank-based Spearman correlation as our second objective
f2 in the evolutionary process. The purpose was to enable individuals with a
strong correlation with the target variable to survive to the next generation,
even when they performed poorly on the error objective f1. This approach
enables promising individuals to undergo refinement, and guides the search
towards more accurate solutions. The formulation f2 = 1 � |⇢| was used as
a minimization objective, where ⇢ represents the Spearman correlation coeffi-
cient, with a potential output range from -1 to 1 [225].
The third objective was a dimension penalty, which penalizes individuals withDimension Penalty Objective
non-physical operations. When a unit-violating operation occurred, the penalty
value nviol was increased by 1.0 for all operations within an individual. More-
over, this objective had the purpose of aligning the output unit of a solu-
tion with the target unit, which was in our case meters/second = m

1
· s

�1.
The Manhattan distance between the exponents of the SI-units of the pre-
dicted and target units was added to the penalty value, resulting in f3 =
nviol + ||ûSI � uSI ||1. Both, f2 and f3, were supporting objectives, i.e., we
assessed whether the inclusion of these objectives improved the performance
with regard to f1 [225].
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Table 6.1: Benchmark
equations [225]. Equation Training Features Target Variable # Samples

6.1 ur, u✓, ✓ ux 366
6.2 u1, a, r, ✓ ur 366

6.2 Experiment Setup

6.2.1 Benchmark Datasets

We conducted experiments to assess the effects of various combinations of ob-Datasets for the Stokes Flow
Around a Sphere jective functions and IM configurations on the success rate of a GP algorithm.

To this end, we employed the following fluid mechanics benchmark functions
describing velocity fields corresponding to the Stokes flow around a single spher-
ical particle:

ux = ur · cos (✓)� u✓ · sin (✓) (6.1)

ur(r, ✓) = u1 cos ✓

✓
1 +

a3

2r3
�

3a2

r

◆
(6.2)

We selected these equations because they have previously shown high variations
in the results between multiple runs [299]. Tab. 6.1 summarizes the character-
istics of the benchmark datasets. Each dataset was split with a ratio of 80%
for training and 20% for testing [225].

6.2.2 Algorithm Variants

Furthermore, we assessed the impact of different IM configurations. As men-Specification of IM Parameters
tioned earlier, we could not capture the entire parameter space of IM algorithms
in this chapter. We compared the performance of a single-population algorithm,
denoted by S, to IM algorithms with m 2 [5, 10] subpopulations. Similar con-
figurations were used in related works [83, 198]. The migrations were executed
according to the random (R) and archive-based (A) migration topologies as
defined in Sec. 6.1.1. The number of migrations was set to ten, which were
distributed over the algorithm runtime according to two schemes. In the first
variant, they were distributed uniformly, denoted by D0. In the second variant,
they only happened in the first two thirds of the algorithm runtime, denoted
by D1. To facilitate comparison between the single-population and IM algo-
rithms, the population size of 2000 individuals was evenly distributed among
the respective number of islands. A subpopulation thus constituted 2000

m indi-
viduals [225]. The proportion of migrating individuals was set to 0.035, which
was also used in a related study [57].
We compared the performance of one single-objective and three multi-objectiveSpecification of General

Algorithm Parameters functions as specified in Sec. 6.1.2 with each other: f1, f1f2, f1f3, f1f2f3. All
experiments employed the function set F = {+,�, ·, �2, �3, 1

� , sin(�), cos(�),
p
�}

and the terminal set T = C [ {training features}, where C = {4, 3, 2, 1, 1
2 ,

1
4}.

The experiments were performed for 800 generations. In summary, we tested
four objective functions with one single-population and eight IM configurations,
which made a total of 36 algorithm variants. To compare the effects of the as-
sessed algorithmic variants, we used the same random seed in each of the 31
algorithm executions across all algorithm configurations. Tab. 6.2 summarizes
additional settings of the GP algorithms used in our experiments, which were
implemented in the Python library DEAP [90].
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Table 6.2: GP algorithm
parameters [225]. Parameter Settings

Population Size 2000
Number of Islands 1, 5, 10
Objective Functions f1, f1f2, f1f3, f1f2f3

Migration Topologies Random (R), Archive-based (A)
Proportion of Migrating Individuals 0.035
Number of Generations 800
Reproduction Scheme µ + �
Selection Mechanism NSGA-II selection
Initialization Method Half Full, Half Grow
Crossover Probability pc 0.5
Mutation Probability pm 0.5
Crossover One-point, Leaf-biased (pleaf = 0.9)

(chosen at random)
Mutation Uniform, Insert, Shrink, Node Re-

placement (chosen at random)
Max. Tree Length 30

6.3 Results and Analysis

In the following, we provide a comprehensive analysis of the experimental re-Selection Procedure
sults. Tab. 6.3 gives an overview of the number of successfully solved runs out
of 31 runs. To this end, we first determined the best solution per run as the
individual in the HOF with the lowest RMSE on the test dataset. A run was
counted as solved when the best individual of a run had an error objective
f1 < 1e� 05 on the test dataset.

6.3.1 Influence of Objective Functions

For Eq. 6.1, the single-objective single-population algorithm solved five runsObjective f1f2f3 was most
successful in solving Eq. 6.1,
across all IM configurations.

successfully. The single-objective IM algorithm solved slightly more runs suc-
cessfully, when the individuals were distributed over ten islands. A similar
behavior could be observed for the objectives f1f2. Conversely, the objectives
f1f3 achieved a higher success rate when only five islands are employed. The
objective with the highest success rate was f1f2f3, where no clear difference
between five or ten islands could be observed. The overall most successful
configuration solved 25 runs.
Eq. 6.2 was more complex and involved a larger number of computations. ThisObjective f1f2f3 had the

highest success rates on
Eq. 6.2, with no clearly best
performing IM configuration.

was also reflected in the success rate of the single-objective single-population al-
gorithm, which did not solve a single run successfully. Objective f1f2 achieved
slightly higher success rates, and f1f2f3 solved seven runs with the single-
population algorithm and 13 with an IM algorithm. f1f2f3 tended to perform
slightly better, when the population was distributed over ten islands. Objective
f1f3 did not improve the success rate compared to the single-objective algo-
rithm. Generally, at least one IM configuration solved more runs successfully
compared to the single-population approach of the same objectives. However,
no clear best performing IM configuration could be identified [225].

6.3.2 Relationship Between IMGP and Objective Functions

To validate our observations, we conducted statistical tests on the error dis-Statistical Comparison of
Objective Functions and IMGP

Configurations
tributions of the algorithm variants. For each row, i.e., algorithm variant, the
best performing objective in terms of RMSE was the baseline method and was
marked in bold (see Tab. 6.4). For each column, i.e., objective, and bench-
mark instance, the single-population algorithm as a baseline was compared to
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Table 6.3: Counts of successful
runs for the two benchmark

instances and combinations of
objectives and IM configurations.

A run is successful, when the
error f1 of the best performing

individual of the final population
is below 1e� 05 on the test

dataset [225].

Eq. # Isl. Top. msched f1 f1f2 f1f3 f1f2f3

6.1

1 S - 5 11 11 15

5

A D0 4 17 12 22
A D1 4 14 12 19
R D0 4 16 12 25
R D1 4 14 13 20

10

A D0 7 21 5 21
A D1 6 21 5 21
R D0 6 21 7 23
R D1 6 20 7 23

6.2

1 S - 0 1 0 7

5

A D0 0 1 0 11
A D1 0 1 0 8
R D0 0 3 0 10
R D1 0 1 1 7

10

A D0 0 2 0 13
A D1 0 1 0 13
R D0 0 2 0 10
R D1 0 2 0 10

Eq. # Isl. Top. msched f1 f1f2 f1f3 f1f2f3

6.1

1 S - 6.191e-03 ± 5.682e-03 2.777e-03 ± 2.510e-03 2.559e-03 ± 3.113e-03 1.152e-03± 1.593e-03

5

A D0 5.921e-03 ± 4.178e-03 1.378e-03 ± 1.890e-03 ⇤ 3.781e-03 ± 3.894e-03 2.822e-04 ± 5.693e-04
A D1 5.042e-03 ± 3.483e-03 1.838e-03 ± 2.214e-03 3.457e-03 ± 3.401e-03 6.255e-04 ± 1.761e-03
R D0 5.723e-03 ± 4.495e-03 1.488e-03 ± 1.921e-03 ⇤ 3.732e-03 ± 4.215e-03 3.059e-04 ± 8.645e-04 ⇤
R D1 5.443e-03 ± 3.924e-03 1.373e-03 ± 1.763e-03 ⇤ 3.274e-03 ± 3.435e-03 4.157e-04 ± 7.387e-04

10

A D0 3.900e-03 ± 4.058e-03 7.297e-04 ± 1.282e-03 ⇤ 4.990e-03 ± 3.273e-03 3.487e-04 ± 8.653e-04
A D1 4.188e-03 ± 3.931e-03 7.466e-04 ± 1.596e-03 ⇤ 5.378e-03 ± 3.500e-03 3.317e-04 ± 8.716e-04
R D0 5.233e-03 ± 4.577e-03 6.842e-04 ± 1.233e-03 ⇤ 3.902e-03 ± 3.332e-03 4.110e-04 ± 1.114e-03
R D1 5.159e-03 ± 4.447e-03 7.869e-04 ± 1.396e-03 ⇤ 4.568e-03 ± 3.615e-03 4.647e-04 ± 1.126e-03

6.2

1 S - 3.830e-03 ± 2.390e-03 8.796e-04 ± 8.122e-04 4.201e-03 ± 2.637e-03 7.766e-04 ± 8.280e-04

5

A D0 3.366e-03 ± 1.469e-03 6.993e-04 ± 6.384e-04 3.535e-03 ± 1.816e-03 2.970e-04 ± 3.448e-04 ⇤
A D1 3.006e-03 ± 1.725e-03 7.466e-04 ± 6.226e-04 3.270e-03 ± 2.160e-03 2.494e-04 ± 2.655e-04 ⇤
R D0 3.544e-03 ± 1.847e-03 9.281e-04 ± 7.806e-04 2.735e-03 ± 1.658e-03 ⇤ 3.510e-04 ± 5.497e-04 ⇤
R D1 3.415e-03 ± 1.671e-03 1.170e-03 ± 9.011e-04 2.785e-03 ± 1.527e-03 ⇤ 4.153e-04 ± 4.655e-04

10

A D0 3.468e-03 ± 2.015e-03 6.298e-04 ± 5.999e-04 3.417e-03 ± 1.608e-03 2.658e-04 ± 6.519e-04 ⇤
A D1 3.288e-03 ± 1.980e-03 7.637e-04 ± 7.666e-04 3.343e-03 ± 1.706e-03 2.691e-04 ± 3.139e-04 ⇤
R D0 3.146e-03 ± 1.514e-03 6.788e-04 ± 5.419e-04 3.224e-03 ± 1.592e-03 3.540e-04 ± 3.907e-04 ⇤
R D1 3.113e-03 ± 1.671e-03 7.892e-04 ± 7.575e-04 3.165e-03 ± 1.536e-03 2.796e-04 ± 3.234e-04 ⇤

Table 6.4: RMSE values (mean
± standard deviation) over 31

runs. Numbers in bold indicate
the best result for each row, i.e.,
which objective performed best

for the specific IM configuration.
The asterisk symbol indicates

that an IM configuration
outperforms the respective

single-population variant of the
same objectives and benchmark

instance with statistical
significance [225].

all IM variants. The asterisk symbol indicates that an IM configuration per-
formed significantly better than the respective single-population algorithm on
this benchmark instance. We used the one-sided Mann-Whitney-U statistical
test for each algorithm to test whether its performance was significantly worse
than the baseline method. The level of significance was ↵ = 0.05. The results
are displayed in Tab. 6.4.
On Eq. 6.1, the best performing objectives for the single-population algorithm
were f1f3 and f1f2f3. The IM variants performed best when f1f2 or f1f2f3

were used, which outperformed the other two objectives but were not signifi-
cantly different from each other. Interestingly, most IM variants outperformed
the single-population algorithm when f1f2 was used. However, only one IM
algorithm resulted in a better performance when the dimension penalty was
added as an objective, i.e., when f1f2f3 was employed. Taking a look at the
results of Eq. 6.2, the objective f1f2f3 outperformed the other objectives for
all IM settings, except for the single-population algorithm. Furthermore, al-
most all IM configurations outperformed the single-population algorithm when
f1f2f3 was used as an objective. For the other three objective variants, most IM
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Figure 6.2: Distribution of best
RMSE values over 31 runs for

the single-population GP and all
IMGP configurations.

(a) Archive-based IMGP on Eq. 6.1 using
objectives f1f2f3.
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(b) Archive-based IMGP on Eq. 6.2 using
objectives f1f2f3.
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algorithms did not show a significantly better result than the single-population
algorithm. [225]
It was noteworthy that the variant using three objectives and IM significantlyThe three objectives variant

f1f2f3 with IMGP performed
significantly better than

single-population on Eq. 6.2,
but not on Eq. 6.1.

outperformed the single-population algorithm for almost all configurations on
Eq. 6.2, but not on the simpler Eq. 6.1. To gain further insights into the
underlying RMSE distributions of the three objective experiments, Fig. 6.2
presents the respective boxplots for both benchmark equations. Fig. 6.2a
clearly shows that the median values of all experiment variants, including the
single-population one, had a median value of zero. Furthermore, we could ob-
serve a certain number of outliers in the IM variants, which altogether supports
the null hypothesis of no statistically significant differences in pairwise com-
parison between the single-population and IMGP variants. In Fig. 6.2b, larger
differences in the median values are apparent, which is also reflected in the
results of the statistical analysis in Tab. 6.4 [225].
In addition to the results in Tab. 6.4, we performed a Kruskal-Wallis test onNo significant differences were

observed between the IM
variants.

the IM variants for each objective and benchmark instance. No significant
differences between the IM variants could be identified for all objectives and
benchmark instances. While Tab. 6.3 indicates a tendency that ten islands
perform better than five for some algorithm variants, this assumption could
not be supported in the statistical tests. The effects of the migration topology
and the distribution of migrations over the algorithm runtime were negligible.
Overall, we could observe for the less complex Eq. 6.1, that the IM algorithmMigration increased the

success rate, almost
independent of the IM variants.

only showed significantly better results when the objective f1f2 was utilized.
The more complex Eq. 6.2 benefited from both, the use of a multi-objective
algorithm f1f2f3 and the distribution of the population on multiple islands.
In cases where the results improved through the implementation of an IM
algorithm, this improvement occurred regardless of the specific choice of IM
hyperparameters. We can conclude that within the considered hyperparameter
space, migration had a positive impact on the success rate, almost independent
of the exact IM configuration. We would like to point out that this statement
is only valid within the scope of our experiments, using a limited number of
hyperparameters that have been proved useful in previous studies. We did not
test extreme cases here, such as migrating individuals in every generation or
exchanging a larger number of individuals, which might have behaved differ-
ently.
In addition to the success rate and statistical comparison of the final results,Migration reduced the

variability in the final result
when an algorithm is repeated

multiple times.

we were also interested in the variability, or spread, with regard to the final
results when the same algorithm was repeated multiple times. Fig. 6.3 displays
boxplots with the RMSE distributions of selected single-population GP and
IMGP variants over 31 runs. We were mainly interested in the interquartile
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Figure 6.3: Distribution of best
RMSE values over 31 runs for

selected IMGP configurations on
Eq. 6.2.

(a) Single-population GP 6.2-S.
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(b) Random topology IMGP 6.2-R-10-D0.
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(c) Archive-based IMGP 6.2-A-10-D0.
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(d) Archive-based IMGP 6.2-A-10-D1.
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ranges of the boxplots, as indicated by the upper and lower bounds of the black
boxes around the median RMSE displayed in red. Compared to the single-
population GP in Fig. 6.3a, the IMGP variants consistently exhibited lower
spread in their final results. We could also observe an effect of the objective
functions on the spread in the final results: when the median RMSE is larger,
the spread is also larger, as for objectives f1 and f1f3.
The extent the proposed methods could help to discover new equations fromConsiderations on Choice of

Algorithm Parameters data in the future is of great interest. We assume that new equations are likely
to involve a high number of operations and therefore closer to the difficulty
of Eq. 6.2. Preferring RMSE over MaxAE as the first objective could help to
discover good equations even on noisy data. Based on the results of this chap-
ter, we strongly recommend using correlation as a supporting objective f2.
The satisfaction of physical laws is required for most engineering applications,
which is why we suggest including f3. We should point out that our benchmark
equations did not contain unknown coefficients, which will likely be the case
when discovering new equations. Since coefficient units are not known before-
hand, an adapted dimension penalty is required, which takes this into account.
Altogether, we recommend using the objectives f1f2f3 as well as an IM config-
uration for such GP algorithms, especially since the IM comes at no additional
computational cost compared to the single-population algorithm [225].

6.4 Summary

This chapter aimed at enhancing the success rate of GP algorithms for symbolic
regression. We presented a comparison of different objective functions and
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configurations of island model algorithms. The objectives comprised an error
function, a correlation coefficient, and a dimension penalty. We tested the
performance of these objectives on a varying number of islands, two migration
topologies and two distributions of the migrations over the algorithm runtime.
The 36 algorithm variants were tasked with solving two benchmark equations
from the fluid mechanics area, which previously showed high variations between
the results of multiple runs. The results of our experiments showed a strong
influence of the objective function on the success rate of the algorithm. For
some objectives, the results improved further when an island model approach
was used, compared to a single-population algorithm. These objectives were
also the best performing objectives overall. No significant differences were
found between the IM configurations themselves, suggesting that results for
some targets improve as long as migration is performed.
Our results provide a promising starting point for future research directions.
Our proposed algorithms can be applied to a more diverse set of benchmark
equations to further verify our recommendation for discovery of new equations.
In addition, approaches to account for unknown units of the coefficients during
dimensional analysis form an important extension of this chapter.
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7 Graph Neural Networks

as Inductive Bias for

Genetic Programming

As outlined in Chapters 4 and 5, the complexity of the problems limited the ap-Introduction and Chapter
Goals plicability of GP and the quality of the final solutions. This chapter focuses on

the use of message passing neural networks (MPNNs) as an intermediate step
towards symbolic models, as they provide a well-motivated inductive bias for
both problems from robotics and fluid mechanics. They share similar character-
istics, which allow modeling the problems as graphs of entities with interactions
between them. Our goal for this chapter is to demonstrate this modeling pro-
cess including further domain knowledge, and assess how well both problems
can be learned with MPNNs. For the fluid mechanics problem, we will further-
more take a look at the underlying equations that replace the network block in
the MPNN.

7.1 Modeling of Particle-Laden Flows

The following section is largely based on the author’s publication [223].
In Chapter 5, we discovered that the applicability of GP to predict veloc-From Velocity Fields to Force

Prediction in Complex Flows ity fields for more than two particles faces limitations, as these fields resem-
ble a continuous velocity distribution across the flow domain. Consequently,
a more promising approach may be to shift the focus to directly predicting
the hydrodynamic forces F acting on individual particles. Accurately esti-
mating these forces remains a challenging, open problem in the literature, as
discussed in Sec. 5.1. Various approaches have been presented to approximate
the value of F, including empirical models [228, 268], the PIEP model [2, 16]
and PINNs [255]. While empirical approaches can only predict the mean force,
other methods show promise in predicting variations from the average. How-
ever, these methods often lack explainability and predict the force F with some
error. Building upon the works of the authors presented in Chapter 5, Seyed-
Ahmadi et al. [255] and Cranmer et al. [60, 162], the objective here is to develop
interpretable symbolic models for F, which can capture the complex interac-
tions for a large number of particles. Interpretable models for this problem are
desirable as they allow for deeper understanding and analysis of the underlying
interactions, which have remained opaque in previous approaches.
As depicted in Fig. 7.1, the proposed learning pipeline comprises two phases: InThe Overall Learning Pipeline
the first phase, an MPNN is trained on high-resolution input data. The induc-
tive bias of the MPNN determines the internal structure, i.e., which particles
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! ! y =
P

(C1 · sin(✓) + C2) · 1
r

Highly resolved data Graph Neural Network Symbolic Model

Figure 7.1: Symbolic models are
generated from simulation data
using an MPNN as a surrogate
model. Physical particles in the
simulation translate to nodes in

the MPNN [223].

interact with others and how the influences of multiple neighboring particles
are aggregated. This surrogate model facilitates the development of symbolic
models, since the underlying shape of the equation is partially determined be-
forehand. Subsequently, the GP algorithm fits symbolic models to the output
of the internal structures of the MPNN, rather than the actual target variable.
The prediction of the target variable is achieved by aggregating the outputs of
the symbolic models over all neighboring particles, using the same aggregation
scheme as previously employed in the MPNN [223].

7.1.1 Translating Interacting Particles to Graph Structures

Many systems in science and engineering applications can be represented byParticles translate to nodes,
interactions to edges in the

MPNN.
graphs, such as spring systems [60], the solar system [162], or particles in a
particle-laden flow. This supported the use of MPNNs to model interactions
between objects or particles, as for our case study. MPNNs are a subtype of
graph neural networks (GNNs) (see Sec. 2.2.2). They contain network models
for each internal structure of a graph. In our model, a particle translates to
a node in the MPNN, which is described by the node model �n. A system
of q particles is represented by a graph with q nodes ni, where i = 1 . . . q.
Interactions between particles are represented by edges between nodes and
described by the edge model �e. A node ni has incoming and/or outgoing
edges from/to the nodes in its neighborhood Ni. The message function mi,j

captures pairwise interactions between two nodes ni and nj , where nj 2 Ni.
The neighborhood can be defined by a number of closest nodes to ni or all
nodes within a certain distance from ni. The pairwise interaction is influenced
by the current state of the interacting particles, so that the input to the edge
model comprises the features of the two interacting particles. The node model
updates the state of a particle as a function of the current state of a particle ni,
as well as the aggregated incoming edge messages. Both �e and �n use shared
parameters for all pairwise interactions and node updates, and are updated
according to Eqs. 2.21�2.23 [223].
An MPNN facilitates different ways of predicting a target variable, i.e., differentUnderlying Model Structures

Suitable for Flow Prediction underlying structures. Since the optimal structure of the model to predict a
target variable y is unknown, our framework proposed two variants aligned
with the structure of the problem at hand:

1. y = g(x) =
P

j2Ni
mi,j : Only the edge model �e is captured. The target

variable is the sum of the edge messages received by a node.

2. y = f(g(x)) = f(
P

j2Ni
mi,j): Both the edge model �e and node model

�n are captured. The target variable is a function of the aggregated edge
messages. Thus, the aggregated edge messages are an input to the node
model, which predicts the target variable.

Fig. 7.2 depicts these two variants using the example of a particle-laden flow.
The internal structure of an MPNN is separable, which meant that we could
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Figure 7.2: MPNN to predict F
imposed on the red particle in a

particle-laden flow, given four
particles in its neighborhood Ni.

u1 is the undisturbed flow
velocity [223].

(a) Underlying structure y = g(x).

(b) Underlying structure y = f(g(x)).

fit separate symbolic models to the outputs of the edge and node models. This
greatly facilitated the equation fitting in the next step.

7.1.2 Replacing Network Blocks with Symbolic Models

We employed a GP algorithm to develop symbolic models from the outputAdvancements in Symbolic
Regression for Scientific

Equations
values of the node and edge models of the MPNN. With growing interest in
symbolic regression for engineering and scientific applications, the basic GP
algorithm has been enhanced with techniques from the area of machine learning.
An important property is the possibility to include and fit constants in the
equations, usually achieved by a regression algorithm on top of the evolution of
equations. Other techniques are batch-wise training to process big datasets in
a reasonable amount of time, and the use of sophisticated error functions [223].

Genetic Programming Algorithm

The proposed GP algorithm made use of the training features, which couldProblem-Specific Design
Choices include raw data as well as pre-processed or transformed data to induce prior

knowledge about the problem. In addition, the algorithm employs constants,
which were fitted through a regression algorithm. Since no ground truth equa-
tion was available, selecting an appropriate function set was a complex task
that significantly influenced the results. Preliminary experiments and a coarse
function tuning had shown that the set of functions and operators {+, ⇤, sin(�),
cos(�), tan(�), e(�), log(�)} yielded satisfactory results. The fitness function to
be minimized was the commonly used mean squared error (MSE).
Depending on the underlying structures imposed by the MPNN, the GP algo-Adaptations to Different

Underlying Structures rithms slightly differed [223]:

1. y = g(x) =
P

j2Ni
mi,j : The symbolic model �e0 replaced the message
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model �e, and was thus fitted to the output of the message function,
which was recorded during MPNN training. Constants in the resulting
equations were then refitted to the original target variable to avoid the ac-
cumulated approximation error. To this end, we employed the Levenberg-
Marquardt algorithm and used the constants found by the GP algorithm
as starting values.

2. y = f(g(x)) = f(
P

j2Ni
mi,j): The first symbolic model �e0 replaced

the message model �e and followed the same procedure as in (1). The
second symbolic model �n0

replaced the node model �n and predicted
the target variable, given the influence of the neighboring particles. Thus,
the node model received the aggregated pairwise interactions

P
j2Ni

m0
i,j ,

computed by the symbolic model �e0 , as an additional input feature. To
refit the constants, the inner function �e0 was plugged into the outer
function �n0

.

Techniques for Physically Meaningful Equations

Physical laws often follow relatively simple equations. Thus, our GP algorithmReconciling Model Simplicity,
Unit-Awareness and Constant

Fitting
aimed at finding equations of low complexity. At the same time, these equa-
tions should be in line with physical laws in terms of units. While unit-aware
GP approaches like grammar-based GP or a dimension penalty as an addi-
tional objective are often effective to avoid unit violations, they are complex to
implement and sometimes restrict the search space in an undesirable way. Cur-
rently, there is no GP framework publicly available that allows both constant
fitting and unit awareness. Since the fitting of constants has a high influence
on the numerical accuracy of the equations, we decided to use the PySR frame-
work [58] that offers constant fitting. Moreover, recent research indicated that
also relatively simple techniques can yield satisfactory results [60]. To this end,
our algorithm employed a complexity measure, complexity-constrained function
inputs, as well as certain building rules for the parse trees [223].

Complexity measure: To compute the complexity of an equation, eachHigher Complexity Values for
Constants and Non-Linear

Operations
operation, function, feature, and constant were assigned a complexity value.
The total equation complexity is the sum of the complexity values of the used
primitives. The complexity values were determined by a coarse hyperparameter
tuning, with complexity values up to 4 for nonlinear operations. Dividing the
set of primitives into two groups, i.e., less and more complex with associated
complexity values of 1 and 2, gave the most satisfactory results in terms of
accuracy and interpretability.
Binary operators like addition, subtraction, and multiplication, as well as the
training features were assigned a complexity value of 1. Constants play an
important role in numerous physical laws, such as the gravity constant, to
name one example. When the number of constants in an equation is unknown,
using too many of them in the same expression can lead to overfitting the
training data. Thus, we assigned a higher complexity value of 2 to constants.
Unary functions such as sin(�), cos(�), tan(�), e(�) and log(�) apply a non-linear
transformation to the input. Consequently, they are associated with a higher
complexity value of 2 compared to the basic operators. The unary operation 1

�
was associated with a complexity of 1 [223].

Complexity-constrained function inputs: Another technique to keepControlling Model Parsimony
by Limiting Nested Functions the expressions simple yet effective is to restrict the input of certain opera-

tions to a maximum allowed complexity. Our algorithm restricted the input
complexity of trigonometric, logarithmic, and exponential functions to 8. This
meant, an expression like y = sin(2.0 · x � 3.0) with an input complexity of 7
were allowed. However, y = sin(2.0 ·x+log(x)+3.0) with an input complexity
of 11 exceeded the limit [223].
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Figure 7.3: Random array of
stationary spherical particles at

� = 0.064 [223].

Figure 7.4: Spherical coordinate
system with radius r, polar angle
✓, and azimuthal angle ' [223].
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Building rules: Preliminary experiments indicated that GP algorithmsControl Nesting of a Single
Operation sometimes tended to include multiple nested functions in expressions, for in-

stance sin(cos(sin(�))). This behavior is to be avoided, as it can lead to the
model overfitting the training data and usually has little meaning in terms of
explainability. Consequently, we limited the nesting of trigonometric functions
to a maximum of 1, so that sin(sin(�)) was allowed, but further nesting with
any trigonometric function was prohibited [223].

7.1.3 Data Generation

We considered the flow past a stationary array of monodisperse spherical par-Simulating Stokes Flow with
the Method of Regularized

Stokeslets
ticles in the Stokes regime (Re! 0), at which the viscous forces dominate. In
this regime, the flow is governed by the Stokes equations in Eqs. 5.1 and 5.2.
There is no closed-form solution for such equations in complex configurations
that include more than a single spherical particle. However, a solution can
be built from the superposition of fundamental solutions due to the linearity
of the governing equations. The method of Regularized Stokeslets [56] was
applied to construct the solution of the flow around the array of particles. A
single regularized Stokeslet solves the flow driven by locally distributed force
(F = g�✏(|x�x0|)) in free space, where �✏ is an isotropic regularization kernel
with compact support over the length ✏. Each particle is represented by a group
of locally distributed forces to achieve the no-slip at the particle surface [223].
A random array of 30 spherical particles was generated in a unit cube exceptSimulation Parameters
for one particle which is placed at the center of the cube. Each particle was
represented by 300 force markers. The free stream flowed in x-direction with
uniform velocity u1 = 1m/s and the fluid viscosity is µ = 1 kg/(m s). The
force F has three components and was computed on the particle located at the
center of the cube. We generated a training dataset consisting of 500 randomly
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Table 7.1: Overview of domain
knowledge integrated as bias into
the MPNN and GP algorithms to

approximate the variation from
the mean drag in Stokes flow.

Bias Type Bias

Observational Conversion of input data from Cartesian to spherical coor-
dinate system

Observational Augmentation of training data for implicit representation
of symmetries in the dataset

Inductive MPNN as inductive bias to approximate the underlying
pairwise interactions between particles and subdivide the
problem

Learning Limiting the amount of nestings per operation
Learning Higher complexity values for constants and non-linear op-

erations
Learning Setting an upper limit for the complexity of inputs to

trigonometric, logarithmic, and exponential functions

initialized particle arrangements, and a separate test dataset of 500 samples ob-
tained using different random seeds in the simulation. We provided benchmark
data for each of the following volume fractions � = [0.064, 0.125, 0.216, 0.343].
An exemplary array of particles with streamlines of the flow is depicted in
Fig. 7.3. Each training sample encompassed the following features [223]:

• Relative positions ri of the 29 neighboring particles

• Average fluid velocity ūf within the unit cube

• Streamwise force component FD exerted by the fluid on center particle

7.1.4 Data Preprocessing

The raw data generated by the Stokes flow solver from Sec. 7.1.3 underwentConversion from Cartesian to
Spherical Coordinate System further transformations before serving as input to the MPNN. Initially, the raw

particle locations were represented in a three-dimensional Cartesian coordinate
system as (x, y, z). Preliminary experiments had indicated that the GP al-
gorithms perform better when locations are available in spherical coordinates.
Results of a related research paper modeling the orbital mechanics of planets in
the solar system employed a similar transformation of relative locations [162].
The MPNN performance remained similar for both configurations. Thus, we
converted the particle locations to spherical coordinates r, ✓ and ' (see Fig. 7.4
for the exact definition). We assumed that it would behave this way because the
relative particle distance r played an important role in the underlying symbolic
model. Furthermore, the trigonometric functions employed in the function set
of the GP algorithm were more meaningful with an angle like ✓ and ' as input.
This saved the algorithm an intermediate step in computing a dimensionless
quantity from the features in Cartesian coordinates.
To increase the number of available data samples, we augmented the data byData Augmentation Procedure
rotations around the axis of the free stream. For each particle arrangement,
seven consecutive rotations by ⇡

4 each were performed, so that a total of eight
configurations were attained per arrangement. This provided the added benefit
of representing symmetries around the free flow direction in our data. We
split the data with a 3:1 ration into training and validation sets [223]. After
augmentation and splitting, a total of 3,000 samples per volume fraction was
available for training.

7.1.5 Experiment Design

To examine the general applicability of our approach, we predicted the stream-Focus on Prediction of the
Deviations from the Mean

Drag Force
wise force component, i.e., the drag force. Once this concept had been proven,
it could be applied to the other force components, lift and torque, as well.
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Since the mean force hFDi could already be approximated from existing corre-
lations [268], we could predict the deviation from the mean force. In general,
this can have the same order of magnitude as hFDi itself.
We investigated the viability of the presented approach using benchmark dataInput Features to the Edge and

Node Models from the Stokes flow (i.e., Re = 0), with four different particle-volume fractions
�. For each dataset, separate models were trained for the underlying structures
y = g(x) and y = f(g(x)). The features of the neighboring particles, i.e., the
input features to the edge model, were the relative position from the center
particle in spherical coordinates r, ✓, '. The training features of the particle
of interest comprised the local average velocity in x, y and z direction, ūf

x, ūf
y

and ūf
z [223].

The edge and node models of the MPNN comprised two fully connected hiddenNetwork Parameters of the
Edge and Node Models layers with 30 neurons each. We used the hyperbolic tangent as nonlinearity.

For both y = g(x) and y = f(g(x)) as underlying structures, the output of the
edge model was recorded during the training of the MPNN to be used as target
features of the GP algorithm. The learning rate with an initial value of 0.002
was adjusted during the training process. The Adam optimizer optimized the
model parameters. We trained the model for 5000 epochs to minimize the MSE
as loss function. The MPNN was implemented using PyTorch Geometric [85].
We ran the GP algorithm for 200 iterations, with a population size of 100Algorithm Parameters of GP
individuals. The multi-objective algorithm minimizes the MSE as well as the
complexity value of an equation. The best individual from the final Pareto
front was identified using a combined measure of accuracy and complexity, as
implemented in [57]. The algorithm employed the problem-specific parameters
as described in Sec. 7.1.2, and used the standard configuration of PySR with
regard to genetic operators and operator probabilities [223].
In the first trials, we observed that the nested symbolic models y = f(g(x))Considerations on Complexity

of Constants were more complex than y = g(x), with a tendency to mainly use constants in
the outer equations. This can be explained by the two consecutive GP runs
for f and g. To keep the comparison fair, we wanted to allow the algorithm
for y = g(x) to use more constants, by reducing the constant complexity to 1.
Since the structure of an accurate equation was unknown, and fewer constants
could be beneficial for generalization, we still ran experiments for y = g(x)
and a constant complexity of 2. Considering the four benchmark datasets,
this made a total of twelve experiment instances. The training data and code
for the fluid mechanics problem described in this chapter are publicly avail-
able at https://github.com/juliareuter/flowinGN. To summarize the proposed
algorithms and problem-specific settings, Tab. 7.1 gives an overview of the
different types of domain knowledge that were integrated along the learning
pipeline [223].

7.1.6 Results and Analysis

Since the algorithm comprised two steps, we applied the following procedure:MPNN Performance and
Model Selection as Input for

GP
The MPNN was trained ten times for each experiment variant. We observed
similar accuracies for all runs, which were comparable to those of state-of-the-
art-approaches [16, 255]. We randomly selected one of the ten models as our
basis model. In the next step, we employed the GP algorithm to replace this
basis model with symbolic models. For statistical comparison, we performed
31 independent realizations of the GP algorithm per experiment instance. The
experiments were analyzed in terms of the overall algorithm performance, the
explainability of the resulting equations, as well as tests on unseen data from
different realizations of the simulation.

Overall Algorithm Performance

Fig. 7.5 displays the MSE distributions over 31 realizations for each experimentStatistical Test on
Distributions of MSE Values variant. We used the Holm-Bonferroni test to compare the results for each �.

The best variants are displayed in bold. For � = 0.064, no statistically signif-
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Figure 7.5: MSE for different
experiment instances over 31

realizations. The variable c

indicates the constant complexity
for y = g(x). Bold experiments

performed best [223].
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(d) Re = 0,� = 0.343

y
=

g(
x)

,
c

=
1

y
=

g(
x)

,
c

=
2

y
=

f(
g(

x)
)

0.00

0.25

0.50

0.75

1.00

1.25

⇥10�3

icant difference between the three variants was identified. For � = 0.125 and
� = 0.343, the nested function performed better than the two other variants.
The variant y = g(x) with a constant complexity of 1 and the nested function
performed best for � = 0.216.
We can observe that all experiment variants for all � achieved MSE values ofy = f(g(x)) produced a lower

spread in MSE compared to
y = g(x).

similar magnitude. In general, the nested function y = f(g(x)) had a lower
spread compared to y = g(x) over 31 runs, i.e., was more reliable to achieve
good results. While the medians differed, the best models found by each algo-
rithm had almost the same error value. For most �, no significant difference
between the constant complexities c = 2 and c = 1 for y = g(x) was observ-
able [223].

Explainability of Equations

For a more profound analysis of the resulting equations, we selected the bestThe resulting equations mainly
used the features r and ✓. and/or most frequently found symbolic model for each experiment variant. The

constants of these equations were refitted to the original dataset, since they had
been trained on the outputs of the MPNN edge model rather than the target
variable. Tab. 7.2 shows the refitted equations together with their MSE values
on the test dataset. For comparison, the MSE of the MPNN on the same dataset
is displayed [223]. The equations were concise across all experiment instances.
It became obvious that the algorithm settings successfully prevented function
nesting as well as complex input arguments for trigonometric, logarithmic, and
exponential functions. Almost all equations were physically meaningful without
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� Experiment Equation GP MSE GN MSE

y = g(x), c = 2
X⇣

0.01146r + 0.01146 sin (✓) � 0.0142
⌘

1
r

0.000209 0.000120

0.064 y = g(x), c = 1
X⇣

(0.03448r + 0.03448 sin (✓) � 0.04238) (� log (r))
⌘

0.000188 0.000120

y = f(g(x)) 0.0992
X⇣

(r (sin (✓) � 0.1312) � 0.1983) (� log (r))
⌘

+ ūf

x
� 0.3177 0.000157 0.000106

y = g(x), c = 2
X⇣

0.01397 sin (r) + 0.01397 sin (✓) � 0.01724
⌘

1
r

0.000284 0.000173

0.125 y = g(x), c = 1
X⇣

0.00839 + (0.01578 sin (✓) � 0.01644) 1
r

⌘
0.000260 0.000173

y = f(g(x)) 0.0597
X⇣�

sin (✓) � 0.45368 � 0.12479
r

�
e�r

⌘
� 0.0616 0.000209 0.000146

y = g(x), c = 2
X

ūf

x

�
sin (✓) � 0.57328 � 0.10557

r

�
0.000316 0.000206

0.216 y = g(x), c = 1
X⇣

0.00944 + (0.01932 sin (✓) � 0.01982) 1
r

⌘
0.000247 0.000206

y = f(g(x)) 0.1166
X⇣�

0.17448 sin (✓) � 0.08318 � 0.01419
r

�
1
r

⌘
� 0.1602 0.000248 0.000167

y = g(x), c = 2
X⇣

(0.08249 sin (✓) � 0.07348) (� log (r)) + 0.00539
⌘

0.000239 0.000191

0.343 y = g(x), c = 1
X⇣

(0.08749 sin (✓) � 0.07348) (� log (r)) + 0.00423
⌘

0.000239 0.000191

y = f(g(x)) 0.3904
X⇣⇣

0.10982esin (✓) � 0.26635
⌘

(� log (r)) + 0.0165
⌘

� 0.0421 0.000219 0.000197

Table 7.2: Symbolic models with
refitted constants [223].

the use of a dimension penalty or grammar-based approach, only through in-
cluding prior problem knowledge as constraints. Solely sin(r) and exp(sin(✓))
were unusual terms. However, this method generally cannot guarantee that
physics-conformal equations are evolved. While the input comprised the six
features r, ✓, ', ūf

x, ūf
y , and ūf

z , mainly r and ✓ were used, twice as well ūf
x

came into play [223].
Taking a look at the MSE values, the GP equations performed slightly worseMPNNs generally exhibited

slightly lower MSE values
compared to the equations

obtained with GP.

than the MPNN . The errors of the symbolic models were in the same or-
der of magnitude of 10�4 as the MPNN, but were sometimes about 1.5 times
higher. The underlying structure y = f(g(x)) performed better for all bench-
mark datasets. The best equations with y = g(x) as the underlying structure
demonstrated better performance for c = 1 compared to c = 2 across all bench-
mark instances [223].
For the underlying structure y = g(x), we examined two complexity valuesy = f(g(x)) used constants

more frequently than y = g(x). for constants, of c = 2 and c = 1. The constant complexity c = 1 resulted
in one additional constant for � = 0.125 and � = 0.216. The other instances
employed the same number of constants for both complexity values. Comparing
the number of constants of the two underlying structures, y = f(g(x)) always
contained one or two more constants than y = g(x) [223].
Similar patterns across equations of all experiment instances could be identified.All equations shared similar

building blocks, comprising the
features r and ✓.

Each equation contained a building block that accounted for the distance of
a neighboring particle: The terms 1

r , � log(r) and exp(r) scale the influence
of a neighboring particle on the particle of interest, i.e., they decreased with
increasing radius r. Furthermore, each equation contained a larger building
block, which included sin (✓) and constants or other small terms. We can
assume that this building block determined the influence of a particle, which
was then scaled with the distance to the center particle. Fig. 7.6 displays the
function values of some of the identified building blocks [223].

Testing of Symbolic Models

Due to the complex underlying relations, overfitting to training data is a com-No overfitting of equations
could be detected on the test

sets with data from a different
flow realization.

mon issue in machine learning for fluid mechanics [16]. Thus, we tested the
equations found by the GP algorithm on a dataset with the same values for
Re and �, but from a different simulation realization. Fig. 7.7 exemplarily
depicts the normalized predictions of the deviation from the mean force hFDi

for � = 0.216. Fig. 7.7b illustrates the predictions for 500 instances from the
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Figure 7.6: Insights into
frequently used building blocks
in the symbolic models [223].

(a) Distribution of functions values over ✓
as in an equation for � = 0.064.

(b) Distribution of functions values over ✓
as in an equation for � = 0.125.

(c) Decaying building blocks over r often
appear in the equations.

same realizations as used in the training data, and Fig. 7.7a from a different
realization. The plot, as well as the MSE values of 0.000247 (training) and
0.000225 (test) for y = g(x) and 0.000248 (training) and 0.000226 (test) for
y = f(g(x)), indicate that the equations identified actual underlying patterns
and did not overfit the training data. The other benchmarks revealed a similar
behavior [223].
The overall results confirmed the applicability of the proposed approach to
approximate the deviations from the mean drag force in a particle-laden flow
in the Stokes regime. In the following section, we will assess the potential
to learn the inverse kinematics problem of robotic manipulators, which is an
application from a different engineering field but shares certain characteristics
with the fluid mechanics problem presented here.

7.2 Modeling the Inverse Kinematics Problem

In Chapter 4, we applied GP to learn the inverse kinematics of a 5 DOF ma-From Cooperative Coevolution
to MPNNs for Representation

of the Kinematic Chain
nipulator, which is considered a non-standard manipulator due to the absence
of one joint. We developed separate equations for each joint, predicting the
necessary joint angle to reach a target pose. The complex interactions among
joints in the kinematic chain were addressed using a cooperative coevolutionary
approach, which achieved a position RMSE of 0.0343m in the best case. How-
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Figure 7.7: Normalized
predictions of the deviation from

the mean force hFfluidi, i.e.,
� =

Ffluid�hFfluidi
hFfluidi

. Particles
are sorted in ascending order by

their target value [223].

(a) Training set.
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ever, this coevolutionary method is susceptible to local optima, which opens
space for alternative methods to approximate the interdependencies within the
kinematic chain. Related research suggests that GNNs are a viable method to
address the IK problem for robotic manipulators [132, 243]. Building on the re-
sults from the previous section, which demonstrated the potential of MPNNs to
approximate underlying interactions and decompose the problem into smaller
subproblems tractable for GP, we aimed to evaluate this approach for the IK
problem as well. The scope of this section is to assess the applicability of
MPNNs to the IK problem of arbitrary robotics manipulators.
The following section is partly based on the author’s contribution to the publi-
cation [203].

7.2.1 Translating Manipulators to Graph Structures

We modeled the kinematic chain with links and joints of a robotic manipulatorJoints translate to nodes, links
translate to edges in the

MPNN.
as a graph g = (V,E), consisting of a set of nodes V and edges E. Here,
V = {vi}i=1:Nv denotes the nodes, which in our method corresponded to the
joints of the robotic manipulator. The total number of nodes in the graph is
denoted by Nv. The node features, vi, describe characteristics such as joint
angle values, joint types, or angular offsets. In our setting, each joint or node
contained information about the target pose of the end effector. The edges,
E = {(ek, rk, sk)}k=1:Ne , represented the connections between these joints.
Ne indicated the total number of edges in the graph. The edge feature vector,
ek, included information such as link length or translational offset. MPNNs
allow each node to incorporate local structural information and features from

115



Figure 7.8: Graph projected on a
manipulator with 5 DOF. Nodes
vi and vj are connected by an
edge ei,j . Solid lines indicate

neighborly connections between
nodes. Dashed lines indicate the

additional edges for full
connectivity, using node v2 as an

example to avoid visual clutter.
More edges are added for all

other nodes in the same
way [203].
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its surrounding nodes, enabling the network to learn complex dependencies and
patterns within the graph. We employed a general MPNN block with an edge
model �e and a node model �n, which were updated and aggregated according
to Eqs. 2.21�2.23 [203].
For many systems, including the one addressed in this section, computations on
the edge and node levels suffice, i.e., the update step is complete once Eq. 2.23
is executed. Both �e and �n use shared parameters to compute messages and
update nodes. In other words, it assumes that the first and second joints
interact in the same way as the fourth and fifth.
The initial application of this approach to arbitrary robotic manipulators pro-Different Connectivity Types

Within the Graph posed multiple variants to experiment with its characteristics and assess its
effectiveness [203]. First, the impact of different underlying connection types
between the joints was evaluated. A neighborly connection between joints is
inherent to robotic manipulators, where each joint in the kinematic chain is
only connected to the previous and subsequent joints through links. This vari-
ant relies on local connectivity to learn an IK model, with limited information
about the area outside the immediately neighboring joints. Second, a full con-
nection variant was assessed, where each joint receives messages from all other
joints. Fig. 7.8 shows how the manipulator structure is translated to a graph
with neighboring and full connectivity.
Results reported in [203] indicate that a reference-guided approach deliversReference-Guided IK
better results than a direct estimation of joint angles. It is inspired by robot
path planning, where the path from one pose to another is divided into mul-
tiple intermediate poses, each close to the previous one. Thus, the learning
task shifts, from directly estimating the joint angles towards computing the
difference to the previous joint angles to reach the next pose. Mathematically
speaking, the predicted vector of angles ✓ = g�1(X,✓ref) depends on the target
pose X as well as a reference angle ✓ref. It is important to note that we assumed
that close intermediate positions also have close joint angles, although this is
not necessarily always the case. Since the difference between the neighborly
and fully connected graphs were negligible when the reference-guided approach
was employed, the focus in this thesis is on a neighboring connection between
nodes with reference values for ✓i, which relies on fewer internal interactions
between the nodes. The reference angle ✓i,ref is computed from the true an-
gle ✓i with an added distance randomly sampled from a uniform distribution
�✓ ⇠ U(�10�, 10�).

7.2.2 Data Generation

To train the MPNN for the IK problem, we generated data using a customComputing a Pose Using the
FK and the D-H Convention Python-based framework. This framework produces collision-free configura-
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Table 7.3: Configuration for 3
DOF manipulators [203]. Joint ✓ [�] ✓off [�] a [cm] d [cm] ↵ [�]

1 0-360 0 0 40-60 90
2 0-360 90 24-36 0 0
3 0-360 0 15-20 0 0

Table 7.4: Configuration for 5
DOF manipulators [203]. Joint ✓ [�] ✓off [�] a [cm] d [cm] ↵ [�]

1 0-360 0 0 40-60 90
2 0-360 90 24-36 0 0
3 0-360 0 15-20 0 0
4 0-360 -90 9-13 0 -90
5 0-360 0 0 5-8 0

tions for manipulators with user-defined link lengths U and increasing dataset
sizes for 3, 5, and 6 DOF manipulators. The end-effector pose was calculated
using the FK equations and the D-H convention. For new instances, a vector
✓new was created, with DOF random values drawn from a uniform distribution
within the movement range of each joint [203].
To ensure even coverage of the workspace, we implemented a mechanism thatWorkspace Coverage
guarantees that new samples are distinct from existing ones in the dataset. A
new angle configuration ✓new was accepted only if Eq. 7.1 was fulfilled, i.e.,
differed from all existing configurations in the dataset by at least 1� in at least
one joint angle:

min
✓2Dataset

k✓ � ✓newk1 > 1� (7.1)

Otherwise, the configuration was rejected. Additionally, configurations that
resulted in self-collisions or ground collisions were excluded. This process was
repeated until the dataset reached the user-specified size.
The first link U1 took on values between 40 � 60cm, and the subsequent linkConfigurations of Link Lengths
lengths were randomly sampled from the following interval

Ui+1 = [0.75Ui ± 0.15Ui] (7.2)

Thereby, we ensured that the link length Ui+1 was smaller than Ui, as well as a
minimum link length of 5 cm. Tabs. 7.3 and 7.4 show the ranges for all the D-H
parameters for 3 and 5 DOF manipulators, respectively. The ↵ value was fixed
for all the joints, and the ✓ value was randomly generated using a uniform distri-
bution between [0,360). The offset values ✓off were chosen so that the manipula-
tors took on a specific neutral position when all joint values were equal to 0. The
final dataset contained the set of features {ai, di,↵i, ✓i, ✓i,off, Ai, x, y, z,�,⇥, }.
Ai represented the D-H matrix for each joint, and i denoted the joint index. ✓i
was available both in degrees and radians [203].
We employed the ten different link length configurations for each DOF usingDataset Types and Sizes
the framework proposed in [203]. The datasets contained 0.5, 1.0, and 2.0
million data points for 3, 5, and 6 DOF manipulators for each configuration,
summing up to 5, 10 and 20 million data points, respectively. Additionally,
we created holdout test datasets with 10,000 samples for every DOF using link
length combinations unused for training, that were within the reachable area
of the training datasets, i.e., no extrapolation was required by the MPNN.

7.2.3 Experiment Design

We designed our experiments to assess the performance of the proposed MPNNManipulator Types Assessed in
the Experiments approach on manipulators with 3 and 5 DOF. We selected 3 DOF as a proof of

concept, since this was a comparably simple configuration with known analyt-
ical solutions. The 5 DOF manipulator is an unusual configuration, for which
we set a comparative baseline in Chapter 4. In the current chapter, we applied
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Table 7.5: Parameter Settings
for GNNs similar to [203],

adapted to our experiments.
Parameter Settings

Nonlinearity Rectified Linear Unit (ReLU)
No. hidden layers l 2 (3 DOF), 4 (5 DOF)
No. neurons per layer n 35
Max. learning rate 0.002
Batch size 5000
Optimizer AdamW
Loss function Mean Squared Error (MSE)
Training duration 1000 epochs
Early Stopping 10 epochs
Train/validation ratio 0.8 / 0.2, random split
Size of message vector 6
Size of node vector 1 (target variable ✓i)
No. run 31
Node features x, y, z, �, ⇥,  , ✓i,off, ✓i,ref, ↵i, li

Table 7.6: Overview of domain
knowledge integrated as bias

into the MPNN algorithm for the
IK problem.

Bias Type Bias

Observational Reference-guided approach with a reference angle ✓ref in the
training data

Inductive MPNN as inductive bias to approximate pairwise interac-
tions between joints and subdivide the problem

the proposed algorithm to a wider problem of the same manipulator type, i.e.,
same DOF and joint types, but varying link lengths. Furthermore, based on
the results of [203], we employed a reference-guided approach, which included
a reference angle near the target joint angle as inspired by path planning ap-
plications.
The training data was split in an 80%-20% ratio for training and validation forParameter Settings
early stopping detection, which stops the training once the loss on the early
stopping set increases over a few defined epochs. We kept the network param-
eters proposed in [203] and trained the MPNN for 3 DOF with two hidden
layers with 22 neurons in each layer. The network for 5 DOF contained 35
neurons per hidden layer and a deeper network with 4 layers to enable the
learning of more complex features for the more complex problem. The batch
size for training was set to 5000. The weights in the MPNN were initialized
randomly. To be able to analyze the sensitivity of the network against initial-
ization, we repeated the training 31 times. Tab. 7.5 summarizes the algorithm
configurations for our experiments, and Tab. 7.6 gives an overview of the types
of domain knowledge integrated in the proposed algorithm.

7.2.4 Results and Analysis

A crucial part of the analysis was to compute the error between the targetCentral Angle Computation
and predicted angles, both in terms of the joint angles ✓i and in terms of
the resulting orientation. Since the angles ranged between 0� and 360� and
lay on a circle, computing the distance using a simple subtraction of values
could have led to large errors for small deviations due to the circular nature
of angles. For example, although the two angles of 359� and 1� were only
2� apart on the circle, a straightforward subtraction would have yield 358�.
To tackle this issue, we employed the so-called central angles method, which
always returns the absolute value of the minimum distance between two angles.
Fig. 7.9 illustrates this method.
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Figure 7.9: The central angle
represents the smallest angle

difference, such as here when the
target angle is 30� and the

predicted angle is 320�. The
prediction error is thus not 290�,
but 70�, as spanned by the blue

area.
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Figure 7.10: Distributions of
position and orientation errors in
the MPNN prediction for 3 and

5 DOF manipulators on the
validation and test datasets.
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(b) Orientation error.
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Prediction Accuracy

From the 31 training runs performed, we observed similar values in the finalModel Selection
MSE on the prediction of the joint angles, with mean R2 values over all joints
of 0.99 and higher. We selected the model with the lowest overall prediction
MSE of the joint angles based on the validation dataset, incorporating 20%
of the actual dataset. While the models were trained on predicting the joint
angles correctly given a certain target pose, we analyzed the error in the fi-
nal pose using the FK equations and the predicted ✓ values. We moreover
assessed the models on the test datasets, which included 10,000 samples of a
manipulator with combinations of link lengths not used during training but
following a similar pattern, where link lengths decreased from the robot base
to the end effector. The total sum of all link lengths remained within the reach-
able area present in the training data, which ensured that no extrapolation was
required. Fig. 7.10 illustrates the position error as the Euclidean distance in
three dimensions between the target and predicted poses. It also shows the
orientation error, calculated as the Euclidean norm of the central angles for
each of the three orientation components.
The model for 3 DOF achieved a mean position error of 0.00873 ± 0.00599m,The position errors were within

the expected range of about
1cm for 3 DOF and 4cm for 5

DOF.

and a mean orientation error of 0.08223 ± 0.46688rad on the validation set.
Similar values were reported on the test set, with a mean position error of
0.00923±0.00573m, and mean orientation error of 0.07485±0.44113rad. Thus,
the mean deviation in the position was slightly below one centimeter. For 5
DOF, we observed a mean position error of 0.03990 ± 0.02069m, and a mean
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orientation error of 0.18746±0.21211rad on the validation set. The error on the
test set was slightly higher, with a mean position error of 0.04465 ± 0.02658m,
and a mean orientation error of 0.20563±0.22139rad. These observations were
supported by Fig. 7.10, where the model for the 5 DOF manipulators exhibited
larger median values and a greater spread in the distributions of both position
and orientation errors compared to the 3 DOF. Comparing the performances
between the validation and test sets, we could, however, conclude that the
model for 3 DOF generalized to other manipulator structures with previously
unseen combinations of link lengths. For 5 DOF, the generally larger deviations
from the target pose, as well as the increase of 0.475cm in the position error
between validation and test sets, could have impacted the applicability of this
approach. The tolerability of these deviations is dependent on the specific
application scenario and the evaluation of domain experts. One can hypothesize
that the higher problem complexity of the 5 DOF manipulators compared to
3 DOF was the cause for higher errors. This, however, does not explain the
larger errors in terms of orientation compared to the initial results presented
in [203]. Due to the black-box nature of the MPNN, further investigation
is required to assess the underlying causes of these differences and identify
potential adaptations to the model that could mitigate them. To gain further
insights into the underlying internal functioning of the models, we assessed the
importance of the input features for the edge and node models in the following
way.

Analysis of Feature Importance

A major goal of learning the IK problem with an MPNN as an inductive bias forWhy should we analyze the
feature importance for this

problem?
GP is to break the problem into smaller subproblems and reduce the numbers
of features considered in each equation. While GP has a limited “built-in”
feature selection mechanism, i.e., irrelevant features are simply not present in
the resulting equations, the inclusion of too many features can still hamper the
results. Given the present node and edge models, we derived a total of nine
equations for a 3 DOF manipulator and eleven for a 5 DOF manipulator: one
for each of the six message elements, and one for each joint. Each message
equation received 14 distinct features as input, and each node equation made
use of 16 features, of which six were the message elements. Compared to the
original feature space, which consisted of 18 features for 3 DOF and 26 features
for 5 DOF, i.e., six pose features and four additional features per joint, this
represented a reduction in the number of input variables. In the following,
we aim at analyzing the importance of the different features within the node
and edge models. The primary goal of this analysis was to understand how
features are utilized within the learned models and to identify which ones play
the most significant roles in prediction. Given the still relatively large feature
space compared to the fluid mechanics problem, and the absence of ground
truth equations, we studied the importance values to get a first impression
of which features should also be of high relevance within the equations that
will substitute these networks. While feature elimination was not the primary
objective, we assumed that features with consistently negligible importance, as
indicated by importance values below a certain threshold, may contribute little
to the model performance. In such cases, removing these features from the
feature space could simplify the subsequent symbolic regression step without
significantly compromising accuracy. A few studies on feature selection for
high-dimensional problems in GP were introduced in Sec. 3.2.5, some of which
were concerned with feature permutation to compute a feature importance
score [50, 69]. This method is not only applicable for GP, but model-agnostic
and thus also effective for the GNNs presented here.
We implemented a feature permutation approach similar to the one presentedFeature Importance Approach
in [182]. Within a batch of samples, the features were shuffled one after the
other, and the model output using the permuted batch of data was computed.
Since we also computed feature importance values for each message element,
no ground truth output was available to which the permuted output could be
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compared. Thus, we computed a distance between the model output using the
original features and the output with a single permuted feature for all features.
In other words, we measured how sensitive the model output is to changes in
the features. For the message elements, the distance between the undisturbed
outputs Y and disturbed outputs Ỹ was computed as the mean absolute value
of the difference between them within a batch of size b:

�y =
1

b

X

i=1...b

⇣
|Yi � Ỹi|

⌘
(7.3)

We employed the mean absolute error to enable an undistorted analysis of
the deviations between the outputs. When features did not contribute to the
model output and their permutation causes a tiny change in output �y <
10�2, we removed them. The output of each node predicted the joint angle ✓.
As introduced earlier, the distance in angular space was computed using the
central angles instead of the subtraction in Eq. 7.3. We moreover identified and
permuted groups of features to assess the influence of multiple features at the
same time and account for potential correlations between features. The groups
were selected based on combinations of features with the lowest importance
values for each node. This made a total of seven groups for the node level for
3 DOF, represented by the variable k, and five groups for the node level for 5
DOF, represented by p:

• k1 = {x, y, z,⇥,↵i, ✓i,ref,m1,m3,m4}

• k2 = {x, y, z,⇥, ✓i,ref,m1,m3,m4}

• k3 = {x, y, z,⇥, ✓i,ref,m1}

• k4 = {x, y, z,⇥, ✓i,ref, }

• k5 = {x, y, ✓i,ref,m3}

• k6 = {↵i, ✓i,ref}

• k7 = {x, ✓i,ref}

• p1 = {x, y}

• p2 = {x, y, z}

• p3 = {x, y, z,�,⇥}

• p4 = {x, y, z,�,⇥, l}

• p5 = {x, y, z,�,⇥, l,m1}

The feature importance values for the 3 DOF manipulators on the messageFeature Importance on the
Message Level for 3 DOF level are displayed in Fig. 7.11. The plots provide insights into the otherwise

hidden network blocks of the MPNN. Since messages are sent from a sender to
a receiver node in the MPNN, we disaggregated the values for node features,
where the sender was annotated with an s and the receiver with an r subscript.
Initially, we could observe a similar importance distribution across all elements,
with varying peak values in the most important features. The most important
values were typically the three orientation parameters �, ⇥ and  , together
with the offset angle of the receiving joint ✓i,off,r, as well as the link length of the
sending joint li,s. The output was affected the least when y, ↵i,r, li,r and ✓i,off,s
were permuted independently of each other. Within the position parameters,
x and z showed higher importance than y throughout all message elements.
This seemed reasonable given the structure of the 3 DOF manipulator, where
the x and y coordinates were coupled, and x implicitly carried the information
about y. Within the features of the receiving joint, the offset angle and reference
angle were most important across all message elements. Permutation of the link
length of the sending joint, moreover, had the highest influence on the model
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Figure 7.11: Feature importance
measurements for message

elements of 3 DOF manipulators.

(a) Message element 1.
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(b) Message element 2.

x y z � � �
�

i,
r

� i
, o

�
,r

� i
, re

f,r l i,
r

�
i,
s

� i
, o

�
,s

� i
, re

f,s l i,
s

0

2

4

6

8

�
y

(c) Message element 3.
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(d) Message element 4.
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(e) Message element 5.
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(f) Message element 6.
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output among the sending joint features. Overall, all the message elements
showed a similar distribution of feature importance values, i.e., they reacted
similarly when a feature is permuted. While these plots give a rough idea
of feature importance, it is important to note that the permutation approach
depends on the distribution of the original features. In our dataset, certain
features, such as the link length and offset angles, did not follow a continuous
distribution, but were instead restricted to a discrete set of specific values.
For example, the offset angles only took on values of 0� or 90�. As a result,
shuffling these features during the permutation process would have inevitably
led to significant changes in their values, which in return could have led to large
deviations in the output, which, in turn, could have resulted in large deviations
in the output if the feature had indeed been important. Therefore, while the
link length and offset angles appeared to be important, their importance should
be interpreted with caution, as the exact extent remained unclear.
The feature importance values for the 5 DOF manipulators on the messageFeature Importance on the

Message Level for 5 DOF level are displayed in Fig. 7.12. Similar to the previous analysis, we can ob-
serve that the features �,  , ✓i,off,r and li,s were of high relevance across all six
message elements. Some message elements also showed a certain dependence
on the receiver link length li,r. For both manipulator types, the results suggest
that the message elements may have captured redundant information, and the
model structure could have potentially been simplified without significant loss
of performance. This, however, remains the subject of future research. More-
over, all features showed a significant contribution above 10�2 to the model
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Figure 7.12: Feature importance
measurements for message

elements of 5 DOF manipulators.

(a) Message element 1.
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(b) Message element 2.
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(c) Message element 3.
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(d) Message element 4.
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(e) Message element 5.
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(f) Message element 6.
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output for both manipulators, so that no feature had to be removed for the
subsequent SR.
The feature importance on the node level showed higher variations in the dis-Feature Importance on the

Node Level for 3 DOF tributions for the three joints, as displayed in Fig. 7.13. The predictions of
the first joint ✓1 showed the highest sensitivity in their outputs when � and
 were permuted. Relatively low importance was attributed to the position
features x, y, and z, as well as ⇥, and the reference joint angle ✓i, ref. More-
over, moderate importance was attributed to the offset angle in the first joint,
✓i,off. The message elements m1, m3, and m4 had a lower importance than m2,
m5 and m6. However, their contribution to the overall output was compara-
bly small. The groups k1 to k4 resembled various combinations of the least
important features contributing to ✓1. When the five least important features
k4 = {x, y, z,⇥, ✓i,ref, } were permuted as a group, the variation in the model
output was notably low, and increased when more features were added, as in
k1 - k3. The high importance values for � and  aligned with the unique struc-
ture of the 3 DOF manipulator: The orientation component � was determined
solely in the first joint, as it defined a fixed plane in which the subsequent joints
operated. The high importance of  can be attributed to its role in determin-
ing whether a position was reached from an overhead configuration. Thus, it
defined whether the base joint was oriented towards the target position or the
opposite direction. The second and third joints showed a more uniform distri-
bution of importance values over the features. While they were more sensitive
to grouped permutations, both showed low importance values when x and the
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Figure 7.13: Feature importance
measurements for each
node/joint in a 3 DOF

manipulator.

(a) ✓1 feature importance.
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(b) ✓2 feature importance.
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(c) ✓3 feature importance.
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reference joint angle ✓i,ref were permuted together in group k7. Overall, it is
interesting that the reference joint angles had only little importance on the
node level, but a moderate importance on the message level. This suggests
that the message elements already included transformations and combinations
of these reference angles. Notably, m2 and m5 were of greater importance for
predicting ✓2 and ✓3 compared to ✓1. However, this analysis did not provide
a definitive answer regarding the extent to which the model explicitly utilizes
the reference angles to predict the target joint angles.
Looking at the feature importance on the node level for manipulators with 5Feature Importance on the

Node Level for 5 DOF DOF in Fig. 7.14, one can notice an increased importance of the reference joint
angle ✓i,ref for all joints. Permutation of the three position components x, y,
and z, as well as grouped in group p2, had a negligible effect on the model
output, except for ✓2, where z was attributed a higher importance. The higher
importance of z in ✓2 can be explained by the fact that ✓2 and ✓3 together built
the elbow of the manipulator and required collaboration to achieve a certain
angle. We assumed that ✓3 received information about ✓2 through message
passing, and thus the two joints cooperated to reach the target z coordinate.
The three orientation components �, ⇥ and  were mainly important in the
joints ✓1 and ✓5. Within the kinematic chain of the 5 DOF manipulator, these
two joints played an important role in determining the final orientation, with
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✓1 fixing the plane in which all subsequent joints operated, and ✓5 allowing
for rotation around the yaw axis of the end effector. Overall, the permutation
effects of the group of features p1 were below the threshold 10�2 for ✓1 and ✓2,
and of group p2 for the other three joints. Thus, we assumed that the removal
of these features would not have a significant impact on the final model output,
while simultaneously reducing the search space.
From the analysis in this section, it became apparent that the two MPNN-Comparison of 3 DOF and 5

DOF Models based models for 3 DOF and 5 DOF differed in the way particular features
were used. While the 3 DOF model almost ignored the reference joint angle on
the node level, and played a subordinate role on the message level, the model
for 5 DOF almost exclusively relied on this reference angle. This observation
is in accordance with the results that have been previously published in [203],
where the direct estimation of joint angles without a reference angle achieved
high accuracy for 3 DOF, but failed to learn a comprehensive model for 5 DOF.
Thus, the 3 DOF model is not necessarily reliant on a reference angle, whereas
the 5 DOF model requires it to be present in the training features. Given
these results, we can infer that the two models operate in very different ways:
the 3 DOF model appears to have learned underlying interactions that closely
resemble the kinematics of the physical model, while the 5 DOF model seems
to rely primarily on the reference angle and learns a compensation function to
achieve the target joint angle. One characteristic that both models share is
that the feature importance varies for different joints, even though the output
is computed by the same shared node network block. This can be explained
with the use of ReLU as an activation function, which can turn off neurons in
some cases where they are irrelevant.
In this analysis, we set a threshold for an importance of 10�2, below which weConsideration on Feature

Removal assumed that features could be safely omitted without significantly compromis-
ing the model accuracy. This value was selected by the domain experts, and
depends greatly on the magnitude of the message values as well as the specific
characteristics of the problem. The feature importance values presented in this
section indicate that there might be further potential in removing certain fea-
tures from the set of prediction variables. Methods for feature selection are an
ongoing topic of research, and determining the most reliable approach to re-
move features without significantly compromising model performance is highly
dependent on the specific problem and model. To make informed decisions re-
garding the removal of additional features in the future, we propose employing
methods such as Shapley values, which quantify the marginal contribution of
individual features in a computationally more expensive way.

7.3 Discussion and Limitations

For particle-laden flows, the results demonstrate that the MPNN achieved com-Fluid Mechanics Benchmark
petitive accuracy when predicting deviations from the mean drag force for vary-
ing volume fractions within the Stokes regime, compared to state-of-the-art
methods. The equations derived from the edge model outputs were concise, in-
terpretable, and physically meaningful, although they exhibited slightly larger
error values than the direct MPNN predictions. Frequent building blocks that
appeared in all equations were identified, and made sense from a physics per-
spective. They did not overfit the training data and offer a viable alternative
to ANN-based models, which typically lack interpretability. However, a few
equations showed inconsistencies in the dimensional analysis, which will be ad-
dressed in the next chapter of this thesis. While our experiments confirmed
the applicability of MPNNs as inductive bias for GP regarding the problem of
particle-laden flows, the presented models are currently limited to predicting
the target variable for a specific volume fraction �. A universal equation that
accounts for and is valid across varying volume fractions would be desirable
for practical applications, and could potentially contribute to a more profound
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understanding of particle-laden flows. Nevertheless, the building blocks identi-
fied in Sec. 7.1.6 build a strong foundation for the extension of this approach
to higher Reynolds numbers, as these factors could improve equation recovery
even for regimes with more turbulent interactions.
For the IK problem, our focus was on two aspects: evaluating the performanceRobotics Benchmark
of the MPNN on manipulators with 3 and 5 DOF, and gaining insights into
the internal functioning of the network blocks. The position errors were sat-
isfactory and comparable to the ones reported in [203], with mean errors of
1cm for the 3 DOF manipulators and 4cm for the 5 DOF manipulators. The
deviations from the target orientation were slightly higher than in the initial
report [203]. In the case of the 3 DOF manipulator, the model utilized all avail-
able features to varying degrees. Conversely, the 5 DOF model relied heavily
on the reference angles, suggesting that the network predominantly learned a
compensation function to approximate the difference between the reference and
the target angles. This compensation function thus learned the deviation from
the reference angle, which in our case was uniformly distributed within ±10�

from the target angle. However, in scenarios involving robot path planning,
where joint configurations may differ by more than 10� between consecutive
poses, this method might reach its limits. Interestingly, the 3 DOF model as-
signed comparably low importance to the reference angles, which indicates that
the models differed in the underlying approximation of the manipulator kine-
matics. Both robotic manipulators possessed an inherent limitation: at least
one degree of freedom that could not be fulfilled, so that a theoretically infinite
number of poses in the workspace could not be reached. This introduced addi-
tional complexity to the subsequent symbolic regression task, as the resulting
equations had to account for the inherent constraints in the pose space, which
are typically highly nonlinear and complex, and therefore difficult to approxi-
mate and verify. In our algorithms, these constraints were implicitly included
in the dataset as observational bias.

7.4 Summary

In this chapter, we studied MPNNs an as inductive bias for GP, which is a
method to tackle high-dimensional problems with interacting entities that can
be modeled as graphs. We assessed the potential of this method using the two
previously introduced problems: predicting the fluid force acting on particles
in particle-laden flows based on simulation data, and approximating the in-
verse kinematics of non-standard manipulators. In this framework, the MPNN
served as a surrogate model, capturing the underlying interactions within the
system. Symbolic models were then derived from the MPNN output using a
GP algorithm. This introduced a well-motivated bias for certain problems to
the underlying model, based on pairwise interactions between entities.
For the problem of particle-laden flows, we included additional domain knowl-
edge in the GP algorithm by employing a complexity measure and imposing
constraints on the equation generation process. Furthermore, we preprocessed
the data to make them manageable for the GP algorithm. Since the shape of
the final model was unknown, we examined two underlying structures: y = g(x)
and y = f(g(x)). Compared to state-of-the-art approaches, the presented
MPNN achieved similar accuracies [16, 255]. The symbolic models consistently
performed slightly worse than the MPNN, although errors of both approaches
were of the same order of magnitude. A test on unseen data indicated that our
models did not overfit. The underlying structure, y = f(g(x)), performed best
on the provided benchmarks. We moreover identified building blocks which fre-
quently appeared in all equations. The equations also revealed which features
were most influential on the target variable. Altogether, our approach offers
a promising, human-interpretable alternative to the hidden transformation in
ANN blocks. Building upon the results presented in Chapter 5, we scaled up
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from two to thirty particles.
To approximate the inverse kinematics of non-standard manipulators, we trained
MPNNs for 3 and 5 DOF manipulators to predict the joint angles given a spe-
cific target pose. We employed a reference-guided approach, which included a
reference angle ✓ref close to the target angle ✓, which demonstrated accurate
results in [203]. The resulting position errors were within the expected range
of about 1cm for 3 DOF and 4cm for 5 DOF. The MPNN showed higher mean
deviations from the target orientation, with 0.082rad for 3 DOF and 0.187rad
for 5 DOF. Generally, the 3 DOF manipulator seemed to be easier to learn
compared to the 5 DOF manipulator with two more joints in the kinematic
chain. Differences in the underlying models became apparent when the feature
importance on the message and node levels were analyzed using an approach
based on feature permutation. While the 3 DOF model employed all features
and message elements to a certain extent, the predictions of the node model
for 5 DOF relied heavily on the reference joint angle for all joints. This opened
space for the removal of features with low importance for the 5 DOF manipu-
lator in the symbolic regression step.
The results presented in this chapter overall confirm the applicability of MPNNs
to the problems addressed in this thesis, though further verification is required
for the 5-DOF manipulator. In the following chapter, we will focus on the
symbolic regression part of the learning pipeline and develop unit-conformal
equations for both problems.
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Figure 7.14: Feature importance
measurements for each
node/joint in a 5 DOF

manipulator. The variable p

refers to groups of features.

(a) ✓1 feature importance.
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(b) ✓2 feature importance.
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(c) ✓3 feature importance.
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(d) ✓4 feature importance.
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(e) ✓5 feature importance.
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8 Unit-Aware Genetic

Programming for

Symbolic Regression

In this chapter, we introduce novel methods for unit-aware GP to addressIntroduction and Chapter
Goals limitations in existing studies and frameworks. As discussed in Sec. 3.3.2,

there is extensive literature on unit-aware SR available where units of con-
stants are known a priori or generally treated as dimensionless. However, a
largely overlooked issue is incorporating new constants, which are learned dur-
ing evolution, into dimensional analysis. The unknown units of these constants
make it challenging to apply traditional dimensional analysis and constraint-
handling techniques. While most equations presented in Sec. 7.1.6 did not
exhibit unit violations, the method applied relied on expert-defined constraints
for the building rules and controlling function nesting. This may not always be
available in advance or could restrict the search space in an undesirable way,
which further motivated the investigation of algorithmic techniques for unit-
aware GP. A recently published algorithm by Cranmer et al. [57], considered
unknown constants as “wildcards” in the dimensional analysis, and formed the
foundation of the methods presented in this chapter. Our goal for this chapter
is to assess different constraint handling methods for unit-aware GP with new
constants and units.

8.1 Unit-Aware Genetic Programming with Unknown Constants

The following section is largely based on the author’s publication [224].
One of the earliest contributions to unit-aware GP was made by Keijzer etOur contribution was inspired

by early and recent
developments in unit-aware GP.

al. [128], in which they evaluated various constraint-handling methods to ad-
dress violations of physical laws in symbolic models. Unlike their approach,
however, our method did not assume that new constants are dimensionless,
which significantly impacted the dimensional analysis. We built upon this
work and assessed different methods to handle unit violations using a dimen-
sional analysis function that accounted for unknown constants. We used the
unit propagation scheme by Cranmer et al. [57] as a starting point for our
dimensional analysis procedure. In their approach, a large penalty value was
assigned to the primary objective of the algorithm, similar to a death penalty.
However, it still used computational resources for the expensive parameter es-
timation [224].
Our proposed constraint handling approaches exploited the cheaper dimen-Dimensional analysis is cheaper

than parameter fitting. sional analysis to handle unit violations before fitting. We considered the
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Table 8.1: Set of common
operation used in GP with their

expected input units and the
resulting output unit. A joker

unit is represented as [},},}]
(similar to [224], with arc

functions added).

Operation Units of operands Output unit of operation

+, �
[a, b, c], [a, b, c] [a, b, c]

[a, b, c], [},},}] [a, b, c]
[},},}], [},},}] [},},}]

·

[a, b, c], [d, e, f ] [a + d, b + e, c + f ]
[a, b, c], [},},}] [},},}]

[},},}], [},},}] [},},}]

÷

[a, b, c], [d, e, f ] [a� d, b� e, c� f ]
[a, b, c], [},},}] [},},}]

[},},}], [},},}] [},},}]

e�, log(�)
[0, 0, 0] [0, 0, 0]

[},},}] [0, 0, 0]

sin(�), cos(�), tan(�)
[0, 0, 0] [0, 0, 0]

[},},}] [0, 0, 0]

arcsin(�), arccos(�)
[0, 0, 0] [0, 0, 0]

[},},}] [0, 0, 0]

arctan 2(�
� )

[a, b, c], [a, b, c] [0, 0, 0]
[a, b, c], [},},}] [0, 0, 0]

p
�

[a, b, c] [a2 ,
b
2 ,

c
2 ]

[},},}] [},},}]

�
k (k 2 N)

[a, b, c] [a · k, b · k, c · k]
[},},}] [},},}]

�
� (binary power)

[0, 0, 0], [0, 0, 0] [0, 0, 0]
[},},}], [0, 0, 0] [0, 0, 0]

[},},}], [},},}] [0, 0, 0]

number of unit violations in the dimensional analysis, rather than returning
a boolean value that indicates whether a violation occurs. We proposed and
compared different constraint handling methods to eliminate unit violations in
the evolutionary process. We furthermore assessed a multi-objective approach,
minimizing the magnitude of unit violations rather than completely removing
them [224].
We studied the effect of these techniques using datasets of equations that hadWe studied different constraint

handling methods using
datasets with known and

unknown ground truth and
varying noise levels.

been discovered empirically in the past by influential scientists like Newton
and Kepler. We also applied different noise levels to the benchmark datasets to
examine how sensitive our approaches are to noisy data. We know from related
studies that the importance of prior knowledge increased as the noise in the data
increases [104, 128]. We aimed to study whether this effect is also observable
when constants with unknown units are used [224]. We furthermore tested the
proposed methods on datasets without ground truth from thermodynamics, as
well as an extensive study on the final step of the proposed learning pipeline
for particle-laden flows and inverse kinematics.

8.1.1 Dimensional Analysis with Unknown Constants

In GP, different types of constants are used in practice. When only knownConstants in GP
constants are used, they can be included in the training data and treated like
regular features (e.g., the Feynman datasets [272]). When unknown constants
are used, contemporary GP-based SR methods use parameter estimation on
top of the evolutionary process. The number and position of constants within
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an equation is determined during the generation of a tree. The values of the
constants are then fitted to the target variable using a parameter estimation
algorithm, such as the BFGS algorithm (as in PySR [57]) or the Levenberg-
Marquardt method (as in TiSR [170]). This fitting process is a computationally
expensive task. In the following, we take a closer look at the unit propagation
scheme, including such new constants.
The units of a variable can be expressed as a vector of exponents of SI unitsUnit Vector Representation in

Dimensional Analysis with the order [m, kg, s, A, K, mol, cd]. A quantity in Newton [N] = [kg·m
s2 ] can

thus be expressed as [1, 1,�2, 0, 0, 0, 0]. In the subsequently studied scenarios,
constants had generally unknown units, which made traditional approaches to
detecting unit violations infeasible. To overcome this issue, we applied the unit
propagation scheme, similarly as implemented in SymbolicRegression.jl,
and introduced a joker unit [},},}], which represents unknown units [57].
Dimensionless inputs are expressed as [0, 0, 0]. Table 8.1 displays how operands
with known and unknown units are handled for a set of functions that are com-
monly used in SR algorithms. This set of functions is non-exhaustive and can
be extended to custom functions as well. For the sake of readability, we display
only three elements of the unit vector. The rules, however, apply to all seven
elements.
The use of joker units leads to some special cases which have to be addressed:Handling Joker Units in

Dimensional Analysis addition and subtraction require equal units of both operands. If one operand
is a joker, the unit of the other operand is returned. If both operands are jokers,
a joker is returned. For multiplication and division, one or two joker operands
produce a joker output. Functions requiring dimensionless inputs assume that
a joker operand is dimensionless, and return a dimensionless quantity accord-
ingly. Operations with fixed exponents (

p
� and power operations �2, �3, . . . )

produce a joker output if the function input is a joker. The binary power op-
erator requires both operands to be dimensionless and returns a dimensionless
quantity. If one or two operands have joker units, they are assumed to be
dimensionless to return a dimensionless quantity.
The recursive Algorithm 7 for dimensional analysis traverses the tree in theTree Traversal Algorithm for

Dimensional Analysis most straightforward way, like the evaluation itself, starting at the root node.
The joker unit is only introduced into the tree by constants. As Table 8.1
indicates, these jokers are propagated through the tree by most of the functions.
Unit violations occur when operands with non-matching or non-joker units are
added or subtracted, as well as for functions which require dimensionless inputs.
When a violation occurs, the violation counter is increased by one (see lines
15, 28, 33), and the true output unit of the operation is returned. In the case
of addition and subtraction, one of the operand units is chosen randomly. For
example, the term log([1, 2, 0]) violates the rules defined in Table 8.1. In this
case, the true output unit [0, 0, 0] of the operation is returned. Fig. 8.1 displays
two exemplary GP trees with and without unit violations according to the
proposed dimensional analysis and tree traversal algorithm.
Once the traversal is completed, the algorithm returns the output unit d of theMismatches Between Output

and Target Units equation as well as the number of unit violations v. The Manhattan distance
between d and the target unit d0 is added to v to also account for mismatches
with the target unit. A joker output is assumed to be equal to the target unit.

8.1.2 Techniques to Handle Unit Violations in Symbolic Models

As derived from the literature review in Sec. 3.3.2, we introduced three tech-
niques to deal with unit violations in GP trees.

Evolutive Culling

The dimensional analysis is computationally cheaper compared to the fitting ofRemoval of Unit-Violating
Individuals Before Constant

Fitting.
constants followed by the numerical evaluation. Our evolutive culling approach
made use of this fact by performing the dimensional analysis directly after an
offspring was created. Individuals with unit violations were excluded from the
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Algorithm 7: Recursive Dimensional Analysis (with slight adaptations
from [224])
input : Root node n of the tree, units of variables
output : Tuple (output dimension d, number of unit violations v)

1 function recDimAnalysis(n):
2 if n is a constant then
3 return([},},}], 0)
4 end
5 if n is a variable then
6 return([a, b, c], 0)
7 end
8 if n is a unary operation then
9 d, v  recDimAnalysis(n.child)

10 if units match case from Table 8.1 then
11 d unit after execution of operation
12 else
13 d true output unit of operation
14 v  v + 1

15 end
16 return (d, v)
17 end
18 if n is a binary operation then
19 dright, vright  recDimAnalysis(n.right)
20 dleft, vleft  recDimAnalysis(n.left)
21 if units match case from Table 8.1 then
22 d unit after execution of operation
23 v  vright + vleft

24 else if n 2 {+,�} then
25 v  vright + vleft + 1
26 d choice(dleft, dright)

27 else
28 v  vright + vleft + 1
29 d true output unit of operation
30 end
31 return (d, v)
32 end
33 end

population. Compared to the death penalty approach, this method saved time
by avoiding fitting and evaluating an invalid model that will not survive the next
generation because of the high penalty given to the primary objective. Thus,
the space of valid individuals can be explored more thoroughly. As a potential
disadvantage, individuals with high accuracy but small unit violations could
not evolve into individuals without unit violations. This might lead to overall
worse performance regarding the primary objective [224].

Repair Mechanism

For many fundamental laws of physics, constants alongside their units had toUnit Violations as a Hint for
Constant Insertion be discovered empirically to fit experimental observations. These multiplicative

constants often have unconventional units, which balance output units of an
equation to match the target unit. Vice versa, a unit violation can be considered
a hint where such a balancing constant should be inserted. We proposed the
following repair mechanism: whenever a unit violation occurs, a multiplicative
constant is inserted into the tree at that position to match the expected unit
of the function [224].
Algorithm 7 was modified so that a multiplicative constant was inserted when-Repair by Insertion of Joker

Units Through Constants ever a unit violation was detected, rather than increasing the violation counter.
For example, an addition of [m] and [s] could be balanced by multiplying one
of the operands with a constant. This turned the term into a joker so that the
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Figure 8.1: Example of a GP
tree with four variables v1, v2,

v3, v4 and units associated with
each variable and operation in
angle brackets. Jokes units are
displayed as [?], dimensionless

units as [0]. The value after the
comma is the aggregated

dimension error at each node.

(a) GP tree with unit violations according to the unit propagation scheme, aggre-
gated throughout the tree.

exp [0], 3

/ [K⁻³], 2

cos [0], 2

- [s²], 1

pow2 [s²], 0

v2 [1.0 s], 0

abs [K], 0

v1 [1.0 K], 0

abs [K³], 0

pow3 [K³], 0

- [K], 0

0.117 [?], 0 v1 [1.0 K], 0

(b) GP tree without unit violations according to the unit propagation scheme. Po-
tential unit mismatches can be balanced by joker units in this example.

exp [0], 0

+ [0], 0

abs [0], 0

sin [0], 0

* [?], 0

0.871 [?], 0 v1 [1.0 K], 0

/ [?], 0

pow2 [?], 0

/ [?], 0

0.495 [?], 0 v1 [1.0 K], 0

pow3 [?], 0

^ [?], 0

v1 [1.0 K], 0 0.206 [?], 0

function returned the unit of the other operand according to Tab. 8.1. The
operand that was repaired was chosen randomly, which influenced the number
of inserted constants as it was propagated further through the tree. When func-
tions that expected dimensionless input received an incorrect unit, the input
term was multiplied by a constant to render it dimensionless. Since the repair
function was applied immediately after the offspring generation, only valid in-
dividuals were considered. The repaired trees then went into the fitting and
evaluation process [224]. As a potential downside, the repair mechanism could
have led to the insertion of many or unnecessary constants, which might have
negatively affected the primary objective and slowed down the fitting process.

Multi-Objective Approach

The two methods discussed previously focused on exploring the space of valid,Leaving the Space of Valid
Models Towards

Multi-Objective Constraint
Handling

physics-adherent equations. The multi-objective approach presented here al-
lows for unit-violating individuals within the population, and it considers the
number of unit violation as an additional objective.
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Multi-objective optimization makes use of the concept of Pareto-dominance,Minimizing the Number of
Unit Violations as an
Additional Objective

as introduced in Sec. 2.3.2. Contemporary GP algorithms minimize multiple
objectives at the same time, usually an error and a complexity objective. De-
pending on the application, it can be beneficial to include a correlation measure
as a supporting objective. This helps individuals with poor accuracy but high
correlation with the target variable to advance to the next generation, where
they can continue evolving to better individuals. Formulating model constraints
as additional optimization objectives is a common approach in GP [104, 128,
299]. We employed the NSGA-II algorithm to optimize multiple objectives si-
multaneously [65]. The resulting Pareto-optimal (PO) front contained multiple
equations of the same level of complexity — with and without unit violations.
Equations without unit violations are generally preferred over equations with
unit violations if they have the same accuracy and complexity. This approach
encouraged the algorithm to evolve towards physically meaningful equations.
However, there was no guarantee that a model without unit violations were
found for each level of complexity.
All algorithms were implemented in TiSR, a GP-based framework for thermody-Software Implementation
namics-informed symbolic regression [170] written in Julia. Its applicability is
not limited to thermodynamics, but any kind of problems from the science
and engineering domain. TiSR allows for fast algorithmic prototyping through
simple code structures, while including all state-of-the-art components of a
GP-based SR framework.

8.2 Datasets and Experiment Configurations

8.2.1 Datasets

The proposed algorithms were evaluated on known empirical equations from theempiricalBench Datasets
empiricalBench benchmark presented in [57]. This physics benchmark does
not include constants in the datasets so that the algorithms have to recover
them alongside the form of the target equation. Table 8.2 gives an overview of
selected datasets for which dimensional analysis can be performed. In addition,
we used datasets from physics applications without ground truth [224].
We also studied the sensitivity of the proposed algorithms to noise. WhenAddition of Varying Noise

Values to Output Variable recovering the exact equation on noisy data, the choice of the noise level is
an important parameter. It has to be guaranteed that the noisy data is still
described best by the target equation, and not a different one of the same com-
plexity. We assumed that beyond 10% noise, it is difficult to recover the exact
equation. The noise levels of 5% and 10% were inspired by publications which
also study the capabilities of an algorithm to recover a specific equation [e.g. 91,
152]. For the Rydberg equation, noise levels beyond 3% were too noisy for the
exact equation to be recovered, as experiments with 10% noise indicated [57].
We thus applied 1% and 3% noise [224].
We moreover employed a real-world dataset based on measurements from theThermodynamics Dataset
area of thermodynamics to study the effect of the unit-aware algorithm on
problems with unknown ground truth. It used the temperature T and density ⇢
of a gas mix to predict the pressure P [284].
For the fluid mechanics problem, we employed a dataset from the application ofFluid Mechanics Dataset
particle-laden flows as introduced in [79], which includes varying volume frac-
tions �. The dataset was generated using a similar method to that described in
Sec. 7.1.3, but with more realistic particle arrangements. Specifically, the array
of particles in the free stream is no longer located in an otherwise empty space.
Rather, it has a theoretically infinite number of neighbors. Details on the exact
data generation can be found in [79]. The features in the dataset, however, re-
mained the same as in Sec. 7.1.3. The drag force FD on a particle is computed
from the positions of its neighboring particles in spherical coordinates r, ✓,'.

134



Table 8.2: Benchmark equations
employed for our experiments

with their input and target
features and the respective units

(similar to [224], with robotics
dataset added).

Name Equation Input Features &
Units

Target Unit

Hubble’s Law v = H0D Distance D [m] Velocity v
[m s�1]

Kepler’s Third
Law

P = (�)
p

a3 Distance a [m] Period P [d]

Newton’s
F = Gm1m2

r2
Mass m1,m2 [kg],

Force F [N]
Gravitation Distance r [m]

Ideal Gas Law P = nRT
V

Number density n
[mol], Pressure P [Pa]
Temperature T
[K],
Volume V [m3]

Rydberg For-
mula

� = 1
RH( 1

n
2
1

� 1
n
2
2
)

Principal Quan-
tum Number
n1, n2 [·]

Wavelength �
[m]

Fluid Mechanics unknown
Distance r [m],

Force F [N]
Angle ✓,' [·]

Thermodynamics unknown
Temperature T
[K], Pressure P [Pa]

Density ⇢ [kg m�3]

Table 8.3: Algorithm
configurations for

experiments [224].
Parameter Settings

Population size 500
Max. complexity of equations 30
Complexity of variables and functions 1
Complexity of constants 2
Function set empiricalBench +,�, ·,÷, e�, log(�),

p
�, �2, �3

Function set Fluid Mechanics +,�, ·,÷, e�, log(�), sin(�), cos(�), ��

Function set Thermodynamics +,�, ·,÷, e�, log(�), ��

8.2.2 Experiment Configurations

Table 8.3 gives an overview of the algorithm settings and use-case depen-
dent function sets. The input features and units from Table 8.2 were the
training data of the algorithms, so that necessary constants had to be identi-
fied by the algorithms. For other parameters, the standard settings of TiSR

were used [170]. We set time limits of thirty minutes for experiments on
empiricalBench datasets and sixty minutes for experiments without ground
truth. This approach was preferred over fixed generation counts due to algo-
rithmic modifications that affect the generation runtime. However, we aimed to
evolve unit-adherent equations without compromising runtime efficiency. We
compared the proposed algorithm to a baseline algorithm without dimensional
analysis. All algorithms optimized multiple objectives at the same time: the
MSE, the function complexity and the Spearman correlation as a supporting
objective as defined in [299]. In addition, we assessed an algorithm variant that
minimized the number of unit violations as a fourth objective. Each algorithm
was repeated 31 times [224].
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Table 8.4: Number of
correct/almost correct/wrong

rediscoveries of target equations
for different datasets and noise

levels out of 31 runs [224].

Dataset Noise Baseline Evolutive
Culling

Repair
Mechanism

Multi-
objective

Hubble
0% 31/0/0 31/0/0 30/1/0 31/0/0
5% 31/0/0 31/0/0 28/3/0 31/0/0
10% 31/0/0 31/0/0 26/5/0 31/0/0

Kepler
0% 31/0/0 31/0/0 31/0/0 31/0/0
5% 31/0/0 31/0/0 25/6/0 31/0/0
10% 31/0/0 30/1/0 26/5/0 31/0/0

Newton
0% 31/0/0 31/0/0 31/0/0 31/0/0
5% 31/0/0 31/0/0 31/0/0 31/0/0
10% 31/0/0 31/0/0 31/0/0 31/0/0

Ideal Gas
0% 31/0/0 31/0/0 31/0/0 31/0/0
5% 30/1/0 31/0/0 16/17/0 31/0/0
10% 31/0/0 31/0/0 8/23/0 31/0/0

Rydberg
0% 31/0/0 31/0/0 31/0/0 29/0/2
1% 31/0/0 31/0/0 31/0/0 31/0/0
3% 27/3/1 29/1/1 24/4/3 29/1/1

8.2.3 Evaluation Procedure

The assessment whether an algorithm identified a specific target equation cor-Ensuring Equivalence Between
Target and Predicted

Equations
rectly comes with two major issues: first, the selection of a solution from the
PO front. Finding the best trade-off between accuracy and complexity auto-
matically is a complex task. And second, the equivalence check of two equations
using libraries like Python sympy or Julia SymbolicUtils. As related studies
reported [152], small differences in the simplification as well as the value of
fitted constants might lead to misclassification. To overcome these issues and
base our analysis on trustworthy results, we eye-checked each PO front for the
target equation, which makes a total of more than 1800 checked PO fronts.
Some parts of the analysis could be accelerated by automatically scanning a
PO front for solutions which have already been classified as correct by a human.
An equation counted as solved when the shape of the equation was correct, the
exact values of the fitted constants were irrelevant. Since the constant fitting
process is a multimodal problem and an optimum cannot be guaranteed, we
preferred this method to evaluate the actual quality of the GP algorithm. We
defined two stages of success: finding the exact solution, and finding a solu-
tion close to the exact one, which was measured by eyeball. For the datasets
without ground truth, we analyzed the PO fronts [224]. As they are of ma-
jor interest in this thesis, the equations developed for the fluid mechanics and
robotics datasets will be further examined in Sec. 8.4 and Sec. 8.5 respectively.

8.3 Results and Analysis

8.3.1 Datasets with Known Ground Truth

Table 8.4 gives an overview of the performance of the proposed algorithms onAll algorithms had a high rate
of correct equation discovery. known benchmark datasets of equations, which have been derived empirically

in the past. It becomes apparent that all algorithms recovered the correct
equations for all datasets and all noise levels with a high success rate. Only the
proposed repair mechanism had lower rates of identifying the exact equation
as the noise level increases. It still found solutions close to the target equation
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Figure 8.2: Measurements on
the Pareto-optimal front for

datasets with unknown solutions
from thermodynamics and fluid
mechanics over 31 independent

runs [224].

in the final PO front, which often contained additional constants. Overall, we
concluded from these results that evolutive culling as well as the multi-objective
approach performed at least as good as the baseline method. However, it should
be noted that there was almost no space for improvement, as the baseline
algorithm found the correct solution in almost all cases [224].

8.3.2 Datasets with Unknown Ground Truth

In this section, we focus on the TD and FM datasets to analyze and compareThermodynamics and fluid
mechanics results are analyzed

in this section.
the performance of the algorithms on problems without ground truth. To
compare the algorithms, we analyzed the resulting PO fronts for interesting
characteristics: the numbers of solutions, the percentage of solutions with unit
violations, and the mean number of constants in the equation. Furthermore,
we looked at the number of generations performed within the time limit. For
pairwise statistical comparison to the baseline method, the non-parametric
Mann-Whitney U test at a confidence level ↵ = 0.95 was performed [224].
The upper left plot in Fig. 8.2 indicates that the PO fronts of the multi-objectiveThe multi-objective approach

had more solutions in the PO
front.

approach contained more solutions compared to the other approaches, which
is supported by statistical tests. This can be explained by the additional unit
violation objective, which allows the algorithm to include solutions with mul-
tiple levels of unit violations per complexity value. On the TD problem, the
size of the PO front exceeded 60 solutions in some cases, which increased the
challenge for decision makers to select a single solution as the final result of the
algorithm [224].
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Figure 8.3: Solutions of 31
combined PO fronts per

algorithm on the TD dataset.
The magnitude of unit violations

is color-coded from white (0
violations) to black (22

violations), with 22 being the
maximum number of unit

violations on the TD
dataset [224].

The upper right subplot of Fig. 8.2 shows the percentage of solutions with unit
violations within the PO front. When using the multi-objective algorithm, if
a complexity level had multiple solutions with varying numbers of unit viola-
tions, the lowest one was selected. If this was zero, no unit violations were
considered for that complexity level. First, we observed that it can indeed
be problematic to exclude dimensional analysis from the algorithm when the
requirement for unit-adherent equations exists. This was reflected by median
values of more than 80% of solutions with unit violations on the TD dataset
and more than 40% on the FM datasets when the baseline algorithm without
dimensional analysis was applied. The multi-objective approach not only foundAll unit-aware algorithms

produced significantly fewer
solutions with unit violations.

more solutions but also more solutions without unit violations. The difference
was particularly drastic for the TD dataset, but could also be observed for the
FM datasets. Evolutive culling and the repair mechanism ensured unit com-
pliance of the equations, resulting in a final front with 0% of solutions with
dimensional error. On this criterion, all proposed methods outperformed the
baseline algorithm with statistical significance [224].
The number of constants within an equation is an important quality crite-Unit-aware equations tended to

use more constants. However,
this difference is not always

statistically significant.

rion for domain experts, who prefer models with fewer constants. On the TD
dataset, evolutive culling, and repair mechanism contained equations with sig-
nificantly more constants in the PO front than the baseline algorithm. This
could not be confirmed statistically for the FM datasets, but a similar ten-
dency can be observed in the bottom left subplot of Fig. 8.2. Evolutive culling
does not insert new constants into the tree like the repair mechanism does, but
still shows higher usage of constants. This can be explained by the joker unit,
which is introduced only by constants and propagated through the tree by most
functions, encouraging the use of constants in equations. The multi-objective
approach does not show significant differences to the baseline in the numbers
of constants on all datasets.
By looking at the number of generations completed within the time limit, weThe constraint handling

methods had an impact on the
algorithm runtime.

aimed to assess the runtime differences between the algorithms. The number
of generations was normalized by the minimum number of generations a single
run achieved within each dataset to account for different dataset sizes. It can
be seen that evolutive culling tends to run more generations and the repair
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mechanism runs fewer generations compared to the baseline algorithm. These
observations were supported by the results of the statistical test. The run-
time loss of the repair mechanism can be explained by the higher number of
constants that needed to be fitted, which increased the duration of one genera-
tion. Although solutions with many constants may not appear in the final PO
front due to their fitness, they remained part of the population throughout the
evolutionary process. Evolutive culling excludes solutions with unit violations
from the population, which led to smaller population sizes in the current im-
plementation of the algorithm. This explains the higher number of generations
performed by the algorithm. The multi-objective approach performed signif-
icantly more generations on the TD dataset compared to the baseline, which
was not continued for the FM datasets. A more profound understanding of
this behavior will require a closer look at the population dynamics during the
evolution [224].
Fig. 8.3 displays the 31 combined PO fronts for each algorithm on the TDDifference between algorithms

in the PO front mainly
appeared at lower complexity

values. They vanished for
higher complexities.

dataset. We sought to examine the effects of the algorithms with dimensional
analysis on the primary error objective MSE. Unsurprisingly, the baseline algo-
rithm contained more solutions with unit violations in the PO front. Looking
at the multi-objective approach, one can see that the unit-adherent solutions
with complexities between five and eight had considerably higher MSE values
than the ones with unit violations. The multi-objective approach filled gaps
in the PO front with unit-violating solutions at lower complexities, which were
not present in the PO fronts of evolutive culling and repair mechanism. These
differences, however, almost vanished for higher complexities from nine to 15.
For complexities above 16, all algorithms identified solutions with MSE values
close to 0. The algorithms with dimensional analysis thereby had fewer unit
violations than the baseline. While Fig. 8.3 only shows the TD dataset, similar
observations were made for the FM datasets [224].
From the observations, we concluded that it was definitely beneficial to include
unit information in the GP algorithm when the requirement for unit-adhering
equations exists. The proposed algorithms revealed that accuracy was rarely
compromised on the datasets used. From a practical perspective, we preferred
the multi-objective approach as it offers decision makers multiple levels of unit
violations per complexity. However, to better understand the strengths and
weaknesses of each algorithm, further investigation on the population dynamics
using more complex benchmark equations will be necessary [224].

8.4 Unit-Aware Equations for Particle-Laden Flows

To wrap up the advancements presented in this thesis, we applied the entire
pipeline of algorithms, i.e., island models, MPNN as inductive bias for unit-
aware GP, and inclusion of additional domain knowledge, to develop equations
for the Stokes flow through arrangements of spherical particles. The goal was
to identify symbolic models that approximated the MPNN with reasonable
accuracy, but were significantly less complex. Additionally, these models had
to adhere to physical laws.

8.4.1 Experiment Design

We performed experiments on the Stokes flow data published in [79], withStokes Flow Datasets
volume fractions � = {0.05, 0.1, 0.2, 0.3, 0.4}. Training of the MPNN was per-
formed on 1332 particle arrangements per volume fraction, and seven incre-
mental rotations of each arrangement by ⇡

4 , resulting in 10656 arrangements.
The dataset was split into training and validation sets with a ratio of 3:1, using
a random split. The MPNN output of the validation data was used as training
data for GP. This dataset contained 30 times the number of rows as the ar-
rangements covered within the dataset, which equaled 79,920 rows. This was
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because it learnt the messages sent between each of the 30 neighbors and the
particle of interest, as approximated by the MPNN. These 79,920 samples were
again randomly split into training and validation sets with a ratio of 3:1 for the
GP training. The results reported in the following were assessed on a test set
from different realizations of the simulation, which had not been seen during
the training of both the MPNN and GP. The test data were also augmented
by seven incremental rotations of each arrangement by ⇡

4 , leading to a total
number of arrangements of 15,096 for � = 0.05, 7,104 for � = 0.1, 8,880 for
� = 0.2, 1,776 for � = 0.3, and 2,664 for � = 0.4.
In our experiments, we employed the MPNN method presented in Sec. 7.1.1,MPNN Settings
using the underlying structure y = g(x). This method had demonstrated sim-
ilar accuracy to the nested function, while only utilizing the edge model. The
MPNN settings introduced in Sec. 7.1.5 remain valid also for the experiments
of this section. We performed six runs of MPNN training for each volume frac-
tion, and selected the network with the lowest MSE on the test set as the basis
for the subsequent SR.
To account for different problem complexities and to guarantee comparability,GP Settings
the GP algorithm was run for a fixed number of 150 generations rather than
setting a time limit. We employed a population size of 500, and restricted the
maximum model complexity to 35. The so-called Hall of Fame keeps track of
an archive of Pareto-optimal solutions using the MSE, the dimension penalty,
and the equation complexity as objectives. During evolution, the algorithm
additionally considered the Spearman correlation as an objective, which had
proven meaningful in the past in retaining promising solutions in the popula-
tion. Based on the results of Chapter 6, we employed a multi-objective island
model approach in the GP algorithm. To this end, the standard settings of
TiSR were used, with four islands and five individuals migrating every fifty
generations to randomly selected islands. The features and functions along
with their complexity values and other algorithm settings are summarized in
Tab. 8.5.
In the preceding sections, we illustrated how domain knowledge can be in-Summary of Domain

Knowledge Integrated into the
Algorithms

corporated as a form of bias into the proposed machine learning pipeline at
multiple levels. For the fluid mechanics problem, observational bias was intro-
duced by converting the input data to spherical coordinate systems, thus saving
the algorithm intermediate computation steps to compute relative locations of
particles. Moreover, data augmentation by rotation of particle arrangements
increased the number of available data samples, as well as the implicit repre-
sentation of symmetries inherent to the problem. Inductive biases as defined
earlier in this thesis were applied to shrink the search space of potential mod-
els by means that align with the nature of the problem. For the Stokes flow
problem, the target variable was computed as a sum of pairwise interactions
between particles, which were approximated by an MPNN as an inductive bias
for GP. The GP algorithm itself employed a learning bias to encourage certain
characteristics of the final model. First, some operations such as trigonometric
functions were prohibited from nesting, to avoid overfitting the training data
and promote human-interpretable equations. Second, constants and non-linear
operations were assigned a higher complexity value of two to keep the algo-
rithm from excessively using them with diminishing returns in terms of accu-
racy. Third, the unit-aware algorithms assessed in the first parts of this chapter
were employed, with a dimensional analysis that accounts for new constants
with undetermined units. Among the constraint handling methods evaluated
previously, we selected the multi-objective approach with a dimension penalty
as an additional objective. This had previously demonstrated the capacity to
offer more solutions at lower complexity levels, despite the presence of unit
violations. In addition to the biases summarized in Tab. 8.5, we would like to
point out that selecting an appropriate set of features and functions is another
essential way of integrating domain knowledge, which is, however, not listed
here as it is already inherent to the GP algorithm.
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Table 8.5: Algorithm
configurations. Parameter Settings

Population size 500
Max. complexity of equations 35
No. generations 150
Optimization objectives MSE, Spearman correlation, dimension

penalty, complexity
Hall of Fame objectives MSE, dimension penalty, complexity
Training features r [m], ✓ [0], ' [0]
Target feature Force F [N]
Function set +,�, ·,÷, e�, log(�), sin(�), cos(�), ��

Complexity values
Features 1
Constants 2
+,�, ·,÷ 1
�
(�), sin(�), cos(�), e�, log(�) 2

Implementation TiSR [170]

Table 8.6: Overview of domain
knowledge integrated as bias
into the algorithms to learn
unit-aware equations for the

variation from the mean drag in
Stokes flow.

Bias Type Bias

Observational Conversion of input data from Cartesian to spherical coor-
dinate system

Observational Augmentation of training data for implicit representation
of symmetries in the dataset

Inductive MPNN as inductive bias to approximate the underlying
pairwise interactions between particles and subdivide the
problem

Learning Prohibiting nestings of trigonometric, logarithmic and ex-
ponential functions

Learning Higher complexity values for constants and non-linear op-
erations

Learning Dimensional analysis including new constants as optimiza-
tion objective to promote unit-aware equations

8.4.2 Results and Analysis

In the following, we provide an analysis of the resulting equations regardingSelection Procedure
their building blocks used, as well as the accuracy and number of constants per
equation. While it can be meaningful for decision makers to look at the entire
PO front, we focused on the unit-aware equations without dimension violations.
For each of the 31 runs, we selected the three least complex equations per
run within the top 95% in terms of R2 on the test set, summing up to 93
equations per volume fraction. These were manually scanned for repeating
building blocks, and a few representative equations are reported in Tab. 8.7,
covering different building blocks identified, as well as multiple complexity and
R2 levels.
All equations in Tab. 8.7 showed a dependency on ✓ and r, and did not includeThe identified building blocks

aligned with the results of
previous research and with the

expected behavior of the
functions.

the azimuthal angle �. The polar angle ✓ only occurred as an argument of
sine and cosine functions. Repeating building blocks in this regard were sin(✓),
sin�(✓) and cos(2✓) or cos(� · ✓), where the coefficient was close to 2 for the
latter. These building blocks were in accordance with the ones identified in
our related studies [79, 223]. Only sin�(✓) was new in these experiments and
deserves further attention in the future. Almost all equations incorporated
the radius r multiple times and in various ways, which was also observed in
the equations presented in Sec. 7.1.6. Common shared building blocks were 1

r ,
exp�r·�, and 1

r� with varying exponents in the denominator. This aligned with
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� Equation Compl. GP R2 MPNN R2

�1.7335+sin2.0134(✓)r

5.0816+r3
21 0.799

0.05 0.12016(�3.4178+r�r cos(2✓))

r2
17 0.767 0.802

0.13866 (6.098 � r)

✓
�0.80455 + e

�1.3913+sin(✓)
r

◆
24 0.796

0.016433 + (�0.19197 + 0.052522r)
�
1.2703

r
+ cos (2✓)

�
22 0.767

0.1
�
�0.986 + r

�
�0.16147 + sin2.2623 (✓)

��
e�1.2618r 22 0.761 0.763

(�0.79563 + r (�0.40474 + sin (✓))) e�1.1265r 18 0.748
0.57466(�0.28057�0.64812r+r sin(✓))

⇣
�1.9911�r

2+3.4073r+sin(✓)
⌘

r3
30 0.764

0.2
�
�0.22677 + 0.7755

r

� ⇣�0.37034
r

� log (1.6099 � sin (✓))
⌘

21 0.725 0.774

0.081558 + �0.2043
r

+ (0.28823 � 0.10502r) sin (�64.414 + 2✓) 25 0.757
0.060991r+0.084136r3�0.2317r2+

⇣
1.3462�2.2383r+0.68761r2

⌘
cos(2✓)

r3
29 0.692

0.3 �0.6663+sin2.0254(✓)

2.2286+0.086684r6.7198
22 0.660 0.691

�0.78737+sin(✓)

1.6711+0.067261r6.7192
18 0.653

⇣
0.58018+0.51954r2�1.3825r

⌘
(�0.34309+0.58373r+r cos(�2.037✓))

r3
27 0.685

0.4 (0.067115 � 0.097299 (�3.5636 + r) cos (�2.0365✓)) (�2.1899 + r) 22 0.674 0.701
⇣
�0.28042�0.43622r3+0.99567r2

⌘
(0.34516�0.58526r�r cos(�2.037✓))

r4
29 0.688

Table 8.7: Symbolic models and
the GP and MPNN performance

on the test dataset. All
equations are aggregated over 30

neighboring particles, with the
sum symbol omitted here for

clarity.

the known behavior of these functions that decay with increasing r, as reported
in [79, 223].
Tab. 8.7 moreover reports the performance of different equations in terms of R2,
together with the respective MPNN performance. The values were computed
on a test dataset generated from simulation runs that had not been seen during
training. Overall, the accuracy of the MPNN was very similar or slightly betterThe resulting equations and

the MPNN had similar R2

values.
compared to the symbolic models. Both model types showed a decreasing
accuracy with increasing volume fraction, ranging from approximately 0.8 for
� = 0.05 to 0.68 for � = 0.4. At the same time, the symbolic models were by
orders of magnitude less complex than the GNN and offered insights into the
underlying relations. Fig. 8.4 displays the correlation plot between the target
and predicted values for the most accurate symbolic models, i.e., the first for
� = 0.05 and third for � = 0.4. The R2 values for training and testing were
very similar, indicating no overfitting to the training data.
The benefit of the equations presented here was their dimensional consistency,Considerations on Number of

Constants i.e., potential unit violations were effectively balanced by constants. This can
be achieved with the intelligent placement of constants, or with the use of more
constants. Our algorithm did not explicitly minimize the number of constants,
but constants were given a higher complexity value of two, and the complexity
was minimized. We observed an increasing number of constants in the equations
with increasing volume fraction. Fig. 8.5 displays a boxplot for the number of
constants within the 93 selected best solutions per volume fraction. We can
indeed see that the equations for � = 0.05 and � = 0.1 exhibited a median of
four constants, which increased to six constants for the other volume fractions.
This can be explained by the increased problem complexity for higher volume
fractions, which was also reflected in the R2 values in Tab. 8.7. The selection
method used in this section, i.e., the top 95% of the equations within a Pareto
front, might have also been a reason. Good equations are thus more complex
for higher volume fractions, which nevertheless did not show signs of overfitting
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Figure 8.4: Plot of the target
values against the predicted
values for different volume

fractions on training and test
datasets.

(a) � = 0.05, with R
2 of 0.826 on the train and 0.799 on

the test set.

(b) � = 0.4, with R
2 of 0.675 on the train and 0.688 on

the test set.

to the training data. However, further investigation will be necessary to better
understand the underlying factors contributing to this increased complexity
and its implications for the generalizability of the equations.

8.4.3 Comparison to Baseline

A major goal of this thesis is to demonstrate the inclusion of domain knowledgeComparison to Chapter 5
in GP algorithms and their application to problems with scalable complexity
and unknown ground truth. Unlike the Stokes flow past two spherical parti-
cles discussed in Chapter 5, the current study expands to systems involving
numerous particles in various configurations. Moreover, the focus was shifted
from predicting the full velocity field around particles to directly predicting the
deviations from the mean drag given the relative locations of the surrounding
neighbors. In this context, only a limited number of neighboring particles were
considered. In the experiments presented in this section, this was set to 30
to balance between computational feasibility and physical accuracy. The per-
formance of the equations evolved by GP in Tab. 8.7 was comparable to that
of the ANN-based methods in terms of R2. This demonstrates a significant
improvement compared to the results in Tab. 5.4 and Fig. 5.3, where the MLP
outperformed the evolved equations by multiple orders of magnitude. Con-
sidering the increased problem complexity involving more particles, the use of
MPNNs as an inductive bias for GP proved to be well-suited for predicting the
deviations from the mean drag in the Stokes flow.
Compared to Chapter 7, the experiments performed in this section employedComparison to Chapter 7
more realistic and complex datasets with particle arrangements not only in free
stream but also in the presence of a theoretically infinite number of particles.
The derived expressions in Tab. 8.7 exhibited a large overlap with the expres-
sions and building blocks identified in Sec. 7.1.6 and remained dimensionally
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Figure 8.5: Number of constants
in the three least complex

equations within the top 95% R
2

range per run.

consistent. This consistency further validated the proposed method, as the
introduction of dimensional constraints did not reduce the predictive accuracy
of the expressions, and simultaneously satisfied unit constraints.
In [79], the authors presented a unified expression to predict the deviationImpact Within the Research

Area of the Problem Domain from the mean drag in Stokes flow. It was manually constructed from building
blocks that had previously been evolved by GP, using an MPNN as inductive
bias as in the proposed ML pipeline of this thesis. When compared to this
universal equation with different coefficients fitted for each volume fraction, the
equations in Tab. 8.7 were slightly less concise and less accurate. Moreover, the
unified expression only used four coefficients, whereas the expressions evolved
here tended to use more coefficients with increasing volume fraction. This
can be partially attributed to the unified equation accounting for twice as
many neighboring particles, which inherently offers an advantage in precision.
However, further investigation is required to understand how the number of
neighbors considered affects the equations evolved by GP. Within the broader
area of related work, this approach was the first to offer symbolic models for the
prediction of the deviations from the mean drag in Stokes flow, with accuracy
values comparable to those of state-of-the-art approaches. Overall, the ability
to adapt the algorithm and incorporate bias on multiple levels demonstrated
its flexibility and potential for broader applicability.

8.5 Unit-Aware Equations for the Inverse Kinematics Problem

Similar to the previous section, we aimed to replace the network blocks in the
MPNN to approximate the IK problem with symbolic models. Due to the
nested underlying function y = f(g(x)) employed for this problem, multiple
equations were learned to replace each element in the message vector and to
approximate the joint angles ✓i using these messages as additional input fea-
tures.

8.5.1 Experiment Design

The MPNN was trained on 4.5 million samples for 3 DOF and 9 million samplesInverse Kinematics Datasets
for 5 DOF, with the data split randomly into training and validation sets in a
4:1 ratio. The model predictions on the validation dataset, comprising 900,000
samples for 3 DOF and 1.8 million samples for 5 DOF, were used as inputs
for the GP. Two types of equations were learned with GP: first, the message
equations, each predicting one of the six elements in the message vector within
the MPNN, and second, the node equations, predicting the joint values to
reach a certain pose. The dataset size increased for the message equations,
with 4 messages sent per node for 3 DOF, resulting in 3.6 million rows, and 8
messages for 5 DOF, leading to 14.2 million rows. However, GP frameworks
for symbolic regression are typically not optimized to handle such large-scale
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Table 8.8: Algorithm
configurations for the final IK

experiments.
Parameter Settings

No. generations 200
Max. complexity of equations 40
Training features for mi x [m], y [m], z [m], � [0], ⇥ [0],  [0],

↵s [0], ✓s,off [0], ✓s,ref [0], ls [m], ↵r [0],
✓r,off [0], ✓r,ref [0], lr [m]

Training features for ✓i x [m], y [m], z [m], � [0], ⇥ [0],  [0],
↵i [0], ✓i,off [0], ✓i,ref [0], li [m], m1 [0],
m2 [0], m3 [0], m4 [0], m5 [0], m6 [0],

Function set +,�, ·,÷, e�, log(�), sin(�), cos(�), ��

Complexity values
Features 1
Constants 2
+,�, ·,÷ 1
�
(�), sin(�), cos(�), e�, log(�) 2

arctan 2(�, �), arccos(�) 2

datasets efficiently. To ensure that the experiments could be completed within
a reasonable timeframe of up to three days per run, we limited the dataset
to 10,000 samples per link length configuration, resulting in a total of 90,000
samples. For the message vectors, the reduced dataset thus corresponded to
360,000 rows for 3 DOF and 720,000 rows for 5 DOF. These were split in
a 4:1 ratio into a train and a validation set. The node features employed the
aggregated incoming messages per node as additional features, so that the node
equations were trained on 90,000 samples each. These were again randomly
split into train and validation sets, with a 4:1 ratio. Additionally, a test set
of 10,000 samples was employed with a previously unseen combinations of link
lengths within the reachable area available during training.
In the following experiments, we employed the method presented in Sec. 7.2.1,MPNN Settings
with an underlying nested function y = f(g(x)). The same algorithm settings
as proposed in Sec. 7.2.3 were applied. We selected the same models that were
previously assessed as the best models in Sec. 7.2.4.
We kept the GP settings similar to the ones used in the fluid mechanics experi-GP Settings
ments (see Tab. 8.5). A change was made in terms of the performed number of
generations, which were set to 200 to account for the high problem complexity,
but otherwise stuck to the settings employed in the preliminary experiments in
Sec. 4.4. The maximum allowed complexity of an equation was set at 40. More-
over, the sets of features and functions were modified to match the IK problem.
It should be noted that the set of features for 5 DOF was modified according
to the insights in terms of feature importance presented in Fig. 7.14. For ✓1
and ✓2, the features x and y were removed; for ✓3, ✓4, and ✓5, the features x, y,
and z were removed. The set of potential functions was selected in collabora-
tion with the domain experts to ensure a minimal yet comprehensive selection.
This approach aims to prevent an unnecessary increase in the search space
while still encompassing all potentially significant functions. Consequently, the
arcsin(�) function was excluded as it can be derived from arccos(�), and tan(�)
was omitted since it can be computed using sin(�) and cos(�).
Throughout the previous sections, different types of domain knowledge wereSummary of Domain

Knowledge Integrated into the
Algorithms

incorporated as a form of bias into the proposed machine learning pipeline
for the IK problem. Tab. 8.9 summarizes the biases employed for the final
IK experiments. The reference-guided approach as proposed by the domain
experts introduced observational bias by employing a reference angle close to
the target joint angle in the training features. This approach was inspired by
robot path planning, where the path between two poses is divided into multi-
ple intermediate poses, which are close to each other. It was assumed that the
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Table 8.9: Overview of domain
knowledge integrated as bias into
the MPNN and GP algorithms to

approximate the variation from
the mean drag in Stokes flow.

Bias Type Bias

Observational Reference-guided approach with a reference angle ✓ref in the
training data

Inductive MPNN as inductive bias to approximate the pairwise inter-
actions between joints and subdivide the problem

Learning Prohibiting nestings of trigonometric, logarithmic and ex-
ponential functions

Learning Higher complexity values for constants and non-linear op-
erations

Learning Dimensional analysis including new constants as optimiza-
tion objective to promote unit-aware equations

Learning Modified computation of distances between angles using
central angles in the fitness function

msg Equation Compl. R2

1 �2.5122 + 0.53
✓
s,off
 + 0.53� + 1.06✓s,off + 1.06✓r,ref 17 0.808

2 � 2.16 + 1.39 (↵r + ✓r,ref) � 0.161↵r↵s � 0.322↵r✓r,off � 0.161↵s✓r,ref + 0.17236 ✓r,ref�
� 0.322✓r,off✓r,ref � 0.019964↵s ✓r,ref � 0.039928 ✓r,off✓r,ref

23 0.828

3 1.41
 + 3.62

✓
s,off
 � 0.885

↵r✓
r,ref
 �

✓
s,off✓

r,ref
 + 4.77↵r � 2✓s,off � ↵r✓r,ref 27 0.754

4 �0.17456✓2
r,ref � 1.18✓s,off + 1.7979lr✓r,ref � 0.34911lr ✓r,ref 18 0.611

5 �0.275↵s � ✓r,ref + 1.023✓s,off + 2✓r,off � 0.55✓s,off✓r,ref + 0.3432✓s,off� 20 0.846

6 �0.2683 � 2.58
✓
s,off
 +

✓
s,off✓

r,ref
 + 1.104✓r,ref � 1.672✓s,off � 2✓r,off + 0.648✓s,off✓r,ref 20 0.874

Table 8.10: Symbolic models
that replace the six elements in

the message vector of the
MPNN for 3 DOF manipulators.

distance in joint angles between consecutive intermediate poses was also small.
Consequently, the reference angle represented the manipulator configuration at
the preceding pose along the path. Inductive bias was introduced by approxi-
mating pairwise interactions between neighboring joints within the kinematic
chain using an MPNN. The aggregated messages were employed as additional
features in the prediction of the target joint angle. The learning bias in terms
of function nesting, custom complexity values and unit-awareness implemented
in the GP algorithms remained the same as for the fluid mechanics problem.
Moreover, we introduced learning bias in the distance computation between the
target and predicted joint angles in the fitness function, which was modified to
incorporate central angles. The goal was to compute small distances between
angles that were close to each other on the unit circle, avoiding large deviations
when calculated with a simple subtraction due to different rotation directions.

8.5.2 Results and Analysis

For the equations replacing the six elements in the message vector, we selectedSelection Procedure for
Message Equations the three least complex equations within the top 10 percent in terms of R2

in the Hall of Fame for each of the 31 runs. These 93 equations were then
manually reviewed in collaboration with the domain expert for meaningful
or repeating building blocks. Moreover, we looked at the Pareto fronts to
identify potential knee points and select a representative equation that balanced
accuracy and complexity. The corresponding Pareto fronts are displayed in
Fig. 8.6 for the 3 DOF manipulator, and in Fig. 8.7 for the 5 DOF manipulator.
The selected equations are shown in Tabs. 8.10 and 8.11 respectively, together
with their complexity and R2 values. To gain more in-depth insights into the
building blocks within the equations, they are displayed in a simplified and
expanded way using the julia package SymbolicUtils.jl and its expression
manipulation functions. This may have led to inconsistencies between the
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msg Equation Compl. R2

1 0.46 + ↵s � 0.712⇥� 1.024⇥✓s,off + cos (↵r + ↵s) 20 0.669

2 0.343 � 0.16298↵r � 0.32597✓s,off � 0.59ls + 0.12585↵r arctan ( , ✓s,off) +

+ 0.2517✓s,off arctan ( , ✓s,off) + 0.45558ls arctan ( , ✓s,off)

24 0.500

3 �0.73839 + 0.302 � 0.18573✓s,off � 0.302✓s,off arctan (0.01728 ✓s,off, 0.000667 � ↵r) 25 0.520

4 ↵r � 3.63ls + 0.754 arctan (3.07 � 2✓s,off, 0.0153 � 2 ) 20 0.670

5 �0.89357 + 0.2008↵2
r

+ 0.30292⇥+ 0.40161✓s,off + 0.55582⇥✓s,off 21 0.642

6 0.834✓s,off � 2.3769↵r + 3.5178lr + 1.4095✓r,off � 0.834✓r,off arctan (✓r,off, ) 24 0.566

Table 8.11: Symbolic models
that replace the six elements in

the message vector of the
MPNN for 5 DOF manipulators. length of the displayed equation and the complexity value indicated in the

tables, which refers to the complexity of the originally evolved equation. A
larger selection of these equations can be found in Appendix A.
It can be observed that the message equations for 3 DOF achieved higher ac-The message equations

exhibited structural differences
between runs, but shared a few

building blocks.

curacy values compared to the 5 DOF equations. This may be attributed to
the two additional hidden layers in the network blocks for 5 DOF, enabling
the network to compute more complex outputs. Since the target variables of
the message elements were approximated by the MPNN, the ideal solution and
the specific computations within the message equations are unknown. There-
fore, interpreting these equations is a challenging task, further amplified by
structural differences in the equations observed across multiple runs. Despite
these differences, a few building blocks appeared multiple times. For 3 DOF,
the term �

 could be found in several equations, sometimes multiple times per
equation. In the numerator of this term, often variables with only a few dis-
tinct values in the input space were located, such as ✓off or ↵. We interpreted
this behavior as an attempt by the algorithm to differentiate between cases for
the manipulator or between joints, such as distinguishing whether the elbow
was positioned up or down to reach a specific pose. Moreover, the reference
angle of the receiving joint ✓r,ref appeared in all equations. Information from
the sending joint was mainly incorporated in the form of the angles ✓s,off and
↵s, which again took on a limited set of values and were often equal to zero.
For the 5 DOF message equations, we first observed the absence of reference
angles, and an increased occurrence of the link length of the sending joints ls,
as well as ✓s,off and  . The missing reference angles could be explained by the
fact that this was the main feature used in the node model according to the
feature importance analysis in Figs. 7.12 and 7.14. Consequently, the other
features became more significant within the message models.
The output of the selected message equations was computed and served as
additional training features for the node equations. As a result, any errors
in computing the message elements may have carried over and affected the
accuracy of the node equations.
We followed a similar selection procedure as for the message equations, whichA perfect equation for ✓1 in 3

DOF was discovered by the
algorithm.

was, however, drastically simplified since most node equations exclusively relied
on the reference angle. Tabs. 8.12 and 8.13 display two representative equations
per joint, together with their respective R2 and MSE values. First, these
values raised an important concern about the suitability of R2 for selecting
equations, as the small changes in R2 (e.g., 0.002 between ✓1 and ✓2) could
have corresponded to a substantial increases in MSE. Aside from this, we could
see that the algorithm found a perfect fit for the first joint in 3 DOF. Due to
the manipulator configuration, the first joint could be directly inferred from
the � angle of the target orientation. The other orientation feature  took on
the value ⇡

2 or �⇡
2 , and accounted for bend overs of the manipulator to reach

the final pose. The constant 1.57 corresponded to the value of ⇡
2 . It is to be
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Figure 8.6: Pareto-optimal fronts
for the six message elements
combined over 31 runs for 3

DOF. The blue solutions above
the dashed line are the top 10

percent of solutions in terms of
R

2.
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(f) Message element 6.
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noted that the term arccos( ) only produced meaningful results here because
its input values were clipped to zero or one in case they exceeded this range,
with arccos(0) = pi

2 and arccos(1) = 0.
For ✓2 and ✓3 of 3 DOF and all the joints of 5 DOF, the term 0.997✓ref ap-The other node equations

mainly relied on the reference
angle, and failed to learn the

underlying physics.

proximated the target variable best, with an MSE of about 0.01. The equation
(✓ref · ✓ref)0.499 also appeared frequently in the final Hall of Fame, which was,
however, more complex. The message elements that were intended to encode
relationships between joints were not used in the majority of the equations,
with the exception of ✓2 of the 3 DOF manipulator, which incorporated msg6

frequently. However, the increased complexity of this equation did not result
in a significant improvement in MSE. Considering the feature importance anal-
ysis in Fig. 7.14, a high reliance of the node equations on the reference angles
was expected for 5 DOF. Contrary to expectations, the MPNN for 3 DOF re-
vealed only a marginal importance of the reference angle in the node model
in Fig. 7.13. However, this observation could not be confirmed for the 3 DOF
equations for ✓2 and ✓3, which employed the reference angle as the most im-
portant feature. This indicates that the underlying physics for 3 DOF were
approximated well by the MPNN, whereas the GP algorithm was unable to
learn these relationships effectively. We attributed this to the inclusion of the
reference angle as an additional feature, which already approximated the tar-
get angle with a certain accuracy and thus introduced a strong local optimum
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Figure 8.7: Pareto-optimal fronts
for the six message elements
combined over 31 runs for 5

DOF. The blue solutions above
the dashed line are the top 10

percent of solutions in terms of
R

2.
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(f) Message element 6.
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within the dataset. Escaping this local optimum might have been difficult for
the algorithm and potentially hindered the learning of the underlying physics.
The learning power of the MPNN was probably sufficient to find a solution
outside this local optimum, whereas the GP algorithm could not achieve the
same. A potential reason for this could have been the usage of ReLU as an acti-
vation function in the MPNN, which enables the network to deactivate certain
computations when the input is below zero. This ability to selectively activate
or deactivate certain pathways was not available in GP, but it can help to
distinguish between cases and resolve ambiguities. Consequently, GP had to
find other ways to encode such distinctions within the evolved equations, which
were, however, not present in the learned node equations. Overall, the learned
node equations were not useful in practice. Nevertheless, our experiments high-
lighted that including domain knowledge can, in the worst case, misguide the
algorithm when the boundaries are set too narrowly.

8.5.3 Comparison to Baseline

Compared to Chapter 4, the problem modeling underwent some modifications;Comparison to Chapter 4
however, we performed a comparative analysis to assess the effects of these
changes. In the baseline approach, relationships within the kinematic chain
were modeled using cooperative coevolution, combined with a mechanism to
reverse the influence of preceding joints within the training data for subsequent
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Table 8.12: Symbolic models
that predict the target angles of

each joint to reach a specific
pose for 3 DOF manipulators.

node Equation R2 MSE Compl.

1 1.57� ( � �) 0.999 1.622e-14 6
1 �� arccos ( ) 0.999 1.622e-14 5
2 14.0 arctan (�30.8,msg6) 0.997 0.0110 8
2 0.997✓ref 0.997 0.0111 4
3 (✓ref · ✓ref)0.499 0.996 0.0111 7
3 0.997✓ref 0.997 0.0112 4

Table 8.13: Symbolic models
that predict the target angles of

each joint to reach a specific
pose for 5 DOF manipulators.

node Equation R2 MSE Compl.

1 (✓ref · ✓ref)0.499 0.997 0.0111 7
1 0.997✓ref 0.997 0.0112 4
2 (✓ref · ✓ref)0.499 0.997 0.0111 7
2 0.997✓ref 0.997 0.0112 4
3 0.998(�0.00163 + ✓ref) 0.997 0.0111 7
3 0.997✓ref 0.997 0.0112 4
4 0.0631

arctan(0.0632,✓ref)
0.997 0.0111 8

4 0.997✓ref 0.997 0.0112 4
5 (✓ref · ✓ref)0.499 0.997 0.0111 7
5 0.997✓ref 0.997 0.0111 4

joints. Here, we employed an MPNN to approximate pairwise relationships be-
tween joints, and aimed to divide the problem into smaller portions manageable
for GP. Results of preliminary experiments in [203] indicated an improved per-
formance when a reference angle was given as an additional training feature,
as inspired by robot path planning. The primary motivation for this change in
problem representation was to mitigate the multimodal nature of the problem,
which had also led to problems in the IK-CCGP-3 experiments in Chapter 4.
In essence, the reference angle provides guidance to the algorithm, indicating
whether the manipulator elbow should point up or down to achieve a given pose.
While this approach is both straightforward and intuitive, it introduces strong
local optima in the search space, which hinders the development of equations
representing the underlying physics properly. The cooperative coevolutionary
approach also encountered the challenge of local optima, but at a different level.
Instead of being introduced at the dataset level, these optima arose during the
simultaneous training of three joints. Errors in one joint propagated through
the kinematic chain, amplifying their effects on subsequent joints. From these
observations, it can be concluded that more effective strategies are required to
address the multimodality inherent in the IK problem when tackled with GP.
In addition, we compare the performance of the equations evolved with GPComparison to Chapter 7
to the MPNN in Sec. 7.2.4. To this end, we selected the equation 0.997✓ref
to approximate all the joints of 3 and 5 DOF manipulators, since it was the
least complex equation with a reasonable MSE. For the 3 DOF manipulator,
the first joint was predicted by � � arccos ( ). The predicted joint angles
were fed to the FK equations to compute the resulting pose. Fig. 8.8 displays
the distributions of position and orientation errors on the same validation and
test sets as employed in Sec. 7.2.4. The equations exhibited similar perfor-
mance on both the validation and test sets, which was expected, as they all
depended on the reference angle, which followed the same distribution across
both datasets. Comparing these results to Fig. 7.10, it became apparent that
the position error for 3 DOF was more than three times higher, with a mean
error of 0.03553 ± 0.02185m. A similar trend was observed for the orientation
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Figure 8.8: Distributions of
position and orientation errors of

the equations evolved with GP
for 3 and 5 DOF manipulators on
the validation and test datasets.

(a) Position error.
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(b) Orientation error.

3
DOF

va
l

3
DOF

te
st

5
DOF

va
l

5
DOF

te
st

0.0

0.2

0.4

0.6

E
uc

lid
ea

n
D

is
ta

nc
e

[r
ad

]

error of 0.29225 ± 0.85113rad. For the 5 DOF manipulators, an increase in
error was also observed, although it was less severe, as the error in the MPNN
prediction was already higher compared to the 3 DOF predictions.
At this stage, and considering the inconsistent results obtained using MPNNsContributions to the Research

Area of the Problem Domain as inductive bias for GP on the IK problem, the developed equations are not
useful for practical applications. However, we showed how an intuitive ap-
proach to including a reference angle to overcome the multimodality of the
problem can misguide the algorithm. Despite the challenges, we consider these
partially failed attempts to offer valuable insights for future research in this
area. Overall, this approach is still a work in progress, and we aim to evaluate
its performance with improved mechanisms to address the multimodality of the
problem. To this end, more detailed domain knowledge is required.

8.6 Discussion and Limitations of the Proposed Methods

Throughout this thesis, we have proposed and studied several algorithms using
two problems from robotics and fluid mechanics. While these problems differed
in their specific application area, they share characteristics frequently encoun-
tered in science and engineering, and have not yet been fully understood by
humans. To wrap up the algorithmic advances presented in this chapter, we
review the results of the unit-aware GP approach, and critically discuss the
advantages and potential limitations of the overall algorithmic pipeline.
The unit-aware GP approach considers constants with unknown units as jokersConsiderations on the

Proposed Dimensional Analysis
for Unit-Aware GP

in the dimensional analysis. In our experiments, we did not observe disadvan-
tages in terms of accuracy when unit-aware GP was employed, and we believe
that within the multi-modal search space of equations, this algorithm guides
the search towards those solutions that are also physically meaningful and in-
terpretable. Nevertheless, since the constants were adjusted a posteriori to
balance unit violations, it was possible for them to adopt unconventional or
non-physical combinations of units. This could have resulted in the devel-
opment of equations that were mathematically valid but physically question-
able, undermining the interpretability and applicability of the resulting models.
Therefore, to enhance both the interpretability and the physical consistency of
the resulting equations, it may be advantageous to define a problem-specific
set of plausible balance units for these constants in advance.
For the problem of particle-laden flows, using MPNNs as an inductive bias forThe proposed ML pipeline is

suitable for the problem of
particle-laden flows.

unit-aware GP has proven to be a viable method. We successfully developed
equations that adhered to physical laws while achieving accuracy comparable
to the predictions of the MPNN. Moreover, this method shows potential for
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extension to more complex problems, such as those involving higher Reynolds
numbers, to better understand its limitations. While ANNs have previously
demonstrated the ability to approximate higher Reynolds numbers well [255],
there is currently no research available on symbolic models capable of achieving
the same.
The limitations of the ML pipeline under consideration became more obviousWe attribute the issues of the

ML pipeline on the IK problem
more to the problem

representation with a local
optimum introduced by the
reference angle, than to the

approach itself.

when applied to the IK problem. Combining MPNNs and GP introduces a
multi-stage learning pipeline. In the first stage, the joint angles predicted by
the MPNN resulted in a practically acceptable position and orientation error
for 3 DOF. However, the errors for 5 DOF were larger, and its practical applica-
bility would depend on the specific use case and should be assessed by domain
experts. In the second stage, the symbolic models fitted to the recorded mes-
sages within the MPNN already showed deviations from the true messages.
The node models predicting the joint values did not make use of the additional
message features as expected, and almost fully relied on the reference angle.
Two major issues with the presented ML pipeline became obvious in these con-
ducted experiments. First, the error in the MPNN predictions can propagate
further to the GP algorithm, potentially amplifying the resulting prediction
error. Likewise, the approximation of message elements with a symbolic model
may introduce errors in the additional training features for the node models.
Second, MPNNs are not inherently designed to handle multimodal problems ef-
fectively. When used as inductive bias, they may fail to provide useful guidance
for GP in such scenarios.
Our experiments demonstrated how incorporating domain knowledge into theConsiderations on Influence of

Domain Knowledge for the IK
Problem

problem representation can influence the success of an algorithm. Despite their
impracticality, the equations evolved with GP revealed the impact of the local
optimum introduced by the reference angle, and motivated us to reconsider
its usefulness in general, also for the MPNN. For this specific case, we claim
that additional knowledge about both kinematics and algorithms is required
to carefully anticipate how knowledge can guide the algorithm towards mean-
ingful results, and avoid certain pitfalls. Possible approaches to tackle the
multimodality inherent to the IK problem include an implicit case differenti-
ation through filtered datasets, limiting the potential joint ranges to enforce
specific configuration, or giving reference angles only to those joints with highly
multimodal behavior, such as the elbow in the 5 DOF arm.
Based on the findings from the final experiments on problems from fluid me-Are the developed algorithms

flexible to be applicable to a
wide range of problems and
capable of being tailored to

domain-specific characteristics
simultaneously?

chanics and robotics, we conclude that the proposed algorithmic pipeline is, in
principle, applicable to problems from different domains. If the bias matches
the nature of the problem, which is best estimated by domain experts, the
MPNN is generally adaptable to various problems. Furthermore, the unit-
aware GP method can be tailored to diverse problems that involve quantities
with units, which was demonstrated also beyond the realm of fluid mechan-
ics and robotics. Nonetheless, it is important to note that certain restrictions
exist that must be considered. Difficulties with multimodal problems became
apparent in our experiments and must be addressed accordingly. This issue
is not inherent to the proposed pipeline itself, but rather pertains to a com-
mon challenge faced by many learning algorithms, including MPNNs and GP.
Within the two-step pipeline, errors introduced in the first stage can amplify
in the second stage, which requires expert knowledge to estimate which error
range is acceptable for the specific problem. Moreover, when additional do-
main knowledge is integrated into the algorithm, it must be designed carefully
to avoid introducing additional complexities that could hinder the efficacy of
the algorithm.

8.7 Summary

In this chapter, we applied a method for unit-aware GP that included constants
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with undetermined units. Constants introduce “joker” units, which are prop-
agated through the tree according to a propagation scheme. The dimensional
analysis returns the magnitude of unit violations of an equation. Three con-
straint handling methods were assessed to minimize unit-violating individuals
during evolution: evolutive culling, a repair mechanism, and a multi-objective
approach. Experiments conducted on datasets of known equations showed that
both evolutive culling and the multi-objective approach perform as well as a
baseline method without dimensional analysis. The repair mechanism often
introduced more constants than necessary, which was an undesired behavior.
In-depth analysis of the PO fronts for benchmark datasets without ground
truth revealed that a large share of solutions in the PO front of the baseline
algorithm exhibited unit violations. All proposed unit-aware algorithms were
able to identify solutions with similarly low error but without unit violations.
However, evolutive culling and the repair mechanism tended to use more con-
stants compared to the baseline algorithm.
Additionally, we applied the pipeline of proposed algorithmic advances to the
two problems considered in this thesis. The resulting equations predicting the
fluctuations around the mean drag exerted on a particle in particle-laden flows
demonstrated accuracy values comparable to those of MPNNs, while remaining
interpretable and consistent with known physical laws. For the IK problem in
robotics, the integration of MPNNs as an inductive bias for GP produced mixed
results. While the MPNN captured the complexity of the problem well for 3
DOF, the subsequent GP algorithm produced equations that mainly rely on
the reference angle, which introduced strong local optima, and failed to learn
the underlying physics. For 5 DOF, both the MPNN and GP had difficulties
escaping the local optimum around the reference angle. Overall, these findings
underline the importance of carefully designing problem representations and
incorporating domain knowledge to avoid misleading the algorithm. Despite
these limitations, the proposed ML pipeline for symbolic regression showed
flexibility and adaptability, particularly in the fluid mechanics problem, and
provides a strong foundation for further research.
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9 Conclusion and Future

Work

The following chapter concludes this thesis. We also provide an overview of
topics for future research in the area of genetic programming for symbolic
regression in applications from science and engineering.

9.1 Conclusion

In this thesis, we have proposed techniques to develop symbolic models for
science and engineering applications using genetic programming and domain
knowledge. We focused on graph-representable problems involving physical
measurements, which are frequent characteristics of problems in these do-
mains. Two benchmark problems without ground truth solutions from fluid
mechanics and robotics were proposed. We then applied state-of-the-art GP
approaches that preceded the advancements presented in this thesis to both
problems to establish comparative baselines. We assessed the interplay be-
tween multi-objective GP and island models to improve the repetition stability
of GP algorithms, which is an important requirement in practice. In addition,
we explored the potential of graph neural networks as an inductive bias for GP
and used different methods to gain insights into the underlying computations.
We also proposed multiple constraint handling techniques for unit-aware GP
using an enhanced dimensional analysis method, and have analyzed their differ-
ences on various quality criteria. Finally, we evaluated the proposed algorithms
on both problems, assessing their applicability across different application do-
mains while verifying their ability to be tailored to the specific characteristics
of each problem. In the following, we highlight the contributions of this thesis
by revisiting the research questions asked in Chapter 1.

RQ 1: Which techniques exist to develop symbolic models for problems from
science and engineering?

RQ 1.1: What are the current developments in the area of physics-informed
machine learning?

RQ 1.2: What are the current challenges in GP for application to symbolic
regression problems, and how are they addressed?

RQ 1.3: How is domain knowledge integrated into state-of-the-art GP tech-
niques, and how can these techniques be classified?

In Chapter 3, we examined the related work covering several techniques for sym-
bolic regression in science and engineering applications. We pointed out that
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in contemporary literature, an increased interest in the integration of domain
knowledge into data-driven modeling can be observed, which can be consid-
ered a counter-development to earlier approaches that focused on developing
algorithms independent of specific problems or human input. This resulted in
the development of numerous recent methods in the area of physics-informed
machine learning, both ANN-based and SR-based, often tailored to specific
problem domains. We reviewed the literature on key components of the GP
algorithm that are critical for developing meaningful symbolic models in prac-
tical applications, including constant fitting, distributed algorithms, and GP
for high-dimensional problems. Despite considerable advancements over the
last decades, we identified limitations and gaps in the literature. For example,
most studies on island models for GP focus on single-objective optimization,
largely overlooking the potential effects of multi-objective optimization. A few
studies employ GNNs as an inductive bias for GP to tackle high-dimensional
problems, which seems meaningful for problems from science and engineering
that can often be naturally represented as graphs. In addition, we presented an
overview and classification of numerous methods from the literature that incor-
porate domain knowledge into GP algorithms by introducing problem-specific
biases in Tab. 3.2. Dimensionally aware and shape-constrained GP were iden-
tified as the two predominant trends in the literature, each offering a range of
interesting and diverse approaches.

RQ 2: How can symbolic models for the inverse kinematics of arbitrary robotic
manipulators be developed?

RQ 2.1: What are suitable objective functions to achieve physically mean-
ingful equations?

RQ 2.2: How do different types of domain knowledge integrated into the
algorithm influence its performance?

RQ 2.3: What are the limitations of this approach?

In Chapter 4, we introduced the inverse kinematics problem from the area of
robotics as a benchmark problem for the algorithms presented in this thesis.
To establish a comparative baseline, we applied state-of-the-art GP approaches
combined with observational, inductive, and learning biases to develop symbolic
models for a single 5 DOF manipulator. We assessed three objective functions,
namely an error, a correlation, and a dimension penalty objective fitting for the
problem to develop physically meaningful equations. The combination of error
and correlation outperformed all other combinations of objectives, indicating
that the inclusion of a dimension penalty can lead to reduced performance in
terms of RMSE. As a type of inductive bias, we proposed a novel IK-CCGP
algorithm to account for the multimodality inherent to IK, and represent inter-
actions within the kinematic chain algorithmically through cooperative coevo-
lution. The consecutive learning of two consecutive joints produced a position
RMSE in the magnitude of 3.4cm � 4.1cm, whereas extending the process to
three joints approximately doubled the error magnitude. We concluded from
these experiments, that the IK-CCGP algorithm struggled to effectively de-
termine the contributions of each joint within the kinematic chain, leading to
local optima that were difficult to escape. Another limitation became apparent
in the dimensional inconsistency of most equations, as well as the lack of fit-
ting new constants within the equations. Methods to tackle these issues were
presented in the further course of this thesis.

RQ 3: How can symbolic models describing particle-laden flows be developed?

RQ 3.1: How can a GP algorithm benefit from building blocks provided by
domain experts?

RQ 3.2: How do the evolved symbolic models perform against state-of-the-
art baseline methods?
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RQ 3.3: What are the limitations of this approach?

In Chapter 5, we presented the problem of particle-laden flows in the Stokes
regime from the fluid mechanics domain as another benchmark for our algo-
rithms. We introduced expert knowledge by providing building blocks from the
solution of the flow around a single particle in the function set of the GP al-
gorithm. We assessed the performance of state-of-the-art algorithms combined
with other types of domain knowledge on the prediction of the Stokes flow past
two inline spherical particles with varying distances. The GP algorithm identi-
fied solutions that outperformed the superimposition method for all distances.
This, however, was surpassed by a simple ANN with multiple orders of magni-
tude in terms of RMSE. A statistical analysis of the results led us to conclude
that the primary limitation of the proposed approach is the increasing error
observed as the distance between the two particles decreased. This impedes the
applicability of this method for more complex particle arrangements, typically
involving numerous particles. Consequently, these results suggested a shift
in problem modeling focus towards predicting hydrodynamic forces directly,
rather than continuous velocity fields. These results helped to gain insights
into potential pitfalls when learning the Stokes flow velocity field, and were
used as a comparative baseline and motivation for the subsequent advances
presented.

RQ 4: Can the success rate of a GP algorithm be improved with island models?

RQ 4.1: How does the interplay between island models and multi-objective
optimization influence the final results?

In initial GP results on the fluid mechanics problem, we observed a large spread
in the performance when the algorithm was repeated multiple times. To tackle
this issue, we investigated several configurations of multi-objective island mod-
els to enhance the success rate of GP algorithms in Chapter 6. The interplay
between the objectives and IM configurations has not as yet been studied in
detail. In our work, we explored various aspects of this algorithm, including
different combinations of objectives, migration topologies between islands, the
number of islands, and the distribution of migrations over the algorithm run-
time. Since these factors span a large space of potential hyperparameters, we
focused on a limited set of configurations that had been previously employed
in related studies. In our experiments on two problems from fluid mechanics,
we observed a predominant influence of the objective functions on the success
rate of the algorithm. For the overall best-performing objectives, the results
improved even further when an island model instead of a single population ap-
proach was used. In these cases, this happened independently of the exact IM
configuration. We concluded from this study that the choice of objective func-
tions has a larger impact on the final result than the exact IM configuration.
Based on these results, we decided to employ the combination of error, corre-
lation, and dimension penalty objectives, together with an IM configuration,
which, moreover, involved no additional computational cost. Since the exper-
iments were conducted on a limited set of parameters, we do not claim that
these configurations always yield the best results. The study of other parame-
ter settings, such as varying mutation and crossover rates or different terminal
sets per island, deserve further attention in the future. Promising extensions
to this study, moreover, include the application to more complex benchmark
problems from different problem domains. While we focused on the success
rate of the final results, it would be interesting to gain further insights into the
interplay between IM and objectives by comparing the convergence behavior
between single population and IM algorithms.

RQ 5: What is the potential of graph neural networks as an inductive bias for
GP to discover unknown symbolic models for high-dimensional problems
that can be modeled as graphs?
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RQ 5.1: Can particle-laden flows be approximated with graph neural net-
works?

RQ 5.2: How do the resulting equations perform in terms of error and inter-
pretability?

RQ 5.3: Can the inverse kinematics problem be learned with graph neural
networks?

Both benchmark problems analyzed in this thesis provided motivation for using
MPNNs as an inductive bias for GP. First, approximating pairwise interactions
between particles with MPNNs naturally fits the prediction of hydrodynamic
forces on a particle in the Stokes flow through an arrangement of multiple par-
ticles. It reduced the dimensionality of the problem and overcame the short-
comings of the baseline algorithm, which showed limited applicability to more
complex particle arrangements beyond two particles. Scaling up to 30 particles,
we assessed two underlying functional forms. The MPNN achieved accuracy
values similar to those of state-of-the-art approaches, which confirms the gen-
eral applicability of this method. We developed symbolic models to replace the
network blocks, of which the nested function exhibited a higher usage of con-
stants while maintaining similar functional forms compared to the simple sum.
This increased model complexity did not result in a significant decrease in error,
which is why we concluded from these experiments that a simple sum over the
pairwise interactions was most appropriate for this problem. The equations
consistently performed slightly worse than the MPNN, which was, however,
compensated by their simplicity and repeatedly occurring building blocks that
helped to gain insights into the underlying computations. This method ad-
vanced the state-of-the-art approaches by introducing simple symbolic models
for Stokes flow, a milestone not previously accomplished.
The baseline algorithm for the IK problem using cooperative coevolution to
approximate interactions between manipulator joints faced local optima, re-
ducing the accuracy and trustworthiness of the final solutions. MPNNs with
their ability to pass messages between entities were considered a well-suited
inductive bias for enabling information exchange between joints within the
kinematic chain and enhancing collaboration to reach a final pose. Using a
reference angle-guided approach, MPNNs were tasked with learning the IK of
3 and 5 DOF manipulators. The mean position error of approximately 1cm
for the 3 DOF manipulator was reasonable for this type, although 4cm for the
5 DOF manipulator may still be acceptable depending on the specific task.
The simpler 3 DOF manipulator was easier to approximate, as implied by the
analysis of feature importance values. We concluded from this analysis that the
MPNN for the 3 DOF manipulator successfully learned the underlying physics,
while the 5 DOF manipulator mainly relied on the reference angle and, thus,
requires further investigation. A more detailed discussion on the performance
of MPNNs on both problems was provided in Sec. 7.3.

RQ 6: How can unit-aware equations be developed that include free constants?

RQ 6.1: How can undetermined units of free constants be considered during
dimensional analysis?

RQ 6.2: What are suitable methods to handle unit constraints?

A major gap in the recent literature, which also became apparent in the base-
line experiments in this thesis on both problems, is the ability to learn new
constants in symbolic models and develop unit-aware equations at the same
time. New constants come with unknown units, which cannot be propagated
through the GP tree using traditional dimensional analysis. In Chapter 8,
we employed an adapted dimensional analysis that propagated the units of
constants as jokers through the tree and returned a magnitude of dimension
violations within the tree. We proposed three constraint handling techniques to
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consider unit constraints during evolution, namely evolutive culling, a repair
mechanism, and a multi-objective approach, and assessed them on datasets
with known and unknown ground truth. Among these techniques, evolutive
culling and the multi-objective approach were able to identify the ground truth
models correctly, even in the presence of increased noise in the data. From the
analysis of PO fronts on datasets without ground truth, we concluded that the
multi-objective approach produces more densely covered PO fronts with both
unit-conformal and unit-violating solutions at lower complexities. Conversely,
the other methods possessed gaps in the PO fronts where no unit-conformal
solutions were identified. This led us to conclude that the multi-objective
approach was most suited for the problems studied, offering unit-violating al-
ternatives to the decision makers. Methods to further confirm these findings
include the computations of crowding distance values of the final PO front.
Although discussed in detail in Sec. 8.6, we would like to conclude the results
on the final research question below.

RQ 7: Are the developed algorithms flexible to be applicable to a wide range of
problems and capable of being tailored to domain-specific characteristics
simultaneously?

RQ 7.1: How do the algorithmic advances presented in this thesis perform in
predicting particle-laden flows and inverse kinematics, compared to
the baseline methods?

RQ 7.2: What are the limitations of these methods?

In Sec. 8.4 and 8.5, we applied the complete pipeline of algorithmic advances
presented in this thesis — island models, MPNN as an inductive bias for GP,
and a unit-aware GP algorithm with a dimension penalty as an additional ob-
jective — combined with additional expert-defined biases to both problems
from fluid mechanics and robotics. For fluid mechanics problems, the proposed
ML pipeline yielded improved results, almost closing the gap between ANN-
based and GP predictions compared to the baseline method. We were able
to provide meaningful building blocks and insights into the underlying com-
putations to the domain experts. By contrast, we obtained mixed results for
the inverse kinematics problem. The MPNN performed well for the 3 DOF
manipulator, while for the 5-DOF manipulator, the network primarily relied
on the reference angle. The equations replacing the network blocks largely re-
lied on the reference angle provided in the dataset. We concluded from these
results that the learning power of GP was limited in overcoming the local op-
timum introduced by the reference angle, which was introduced to the dataset
as an observational bias. The MPNN faced similar problems for the 5 DOF
manipulators but demonstrated enough learning capacity to infer the IK for
the 3 DOF manipulator without heavily relying on the reference angles. The
limitations we observed in our experiments were most obvious in the IK exper-
iments, where the multimodality inherent to the problem, together with the
reference angle introduced to tackle this issue, led to suboptimal results. This
behavior, however, cannot be considered a failure of the proposed ML pipeline
itself, but indicates a requirement for better techniques to handle multimodal
problems. Neither MPNNs nor GP in its canonical form are designed to han-
dle multimodality, which opens space for integrating more suitable biases from
domain experts to enhance the results. Despite these challenges, we conclude
that these experiments demonstrate the adaptability and generalizability of
the proposed approach, provided that the chosen biases are well-suited to the
problem at hand. The results moreover emphasize the importance of carefully
designing biases to ensure they truly benefit the algorithm, which requires both
a profound understanding of the problem and insight into the properties of the
applied algorithms.
Throughout this thesis, we established comparative baselines for two problems
which have an unknown ground truth and have not been studied in terms of
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symbolic regression before, which can also be used in future research. We
demonstrated a step-wise integration of domain knowledge to overcome short-
comings of the baseline and tackle increasing problem complexities. We are
the first to have applied this pipeline to both problems, and consequently have
advanced the state-of-the-art to fluid mechanics with our symbolic models. De-
spite the mixed results on the robotics problem, the pipeline has the potential
to achieve higher accuracy with an improved handling of multimodality, which
is the task of domain experts. A potential weak spot of this thesis is that
the used GP software implementations together with their standard settings
changed over time, which complicated the comparability between the baseline
and advanced approaches. This is because the availability of GP frameworks
that allow for the implementation of custom algorithm components, and fulfill
important practical requirements at the same time, such as constant fitting
or island model support, is limited. Moreover, the modeling of the problem
changed over time due to different types of biases inserted to handle increas-
ing problem complexities. As a result, the comparison of the fluid mechanics
problems was mainly possible in a qualitative manner, such as how much bet-
ter/worse did the equations perform compared to an ANN-based approach.
Another aspect that was only covered partially was the selection procedure of
equations that impact the evaluation of algorithms. In most cases, and when
time was available, the selection of solutions was conducted by domain experts.
In other cases, selection was performed with an automated approach from the
final PO front using different quality criteria, such as the top x% method in
Secs. 8.4 and 8.5. While we tried to make the selection process transparent for
all experiments, for example, in Figs. 8.6 and 8.7, more sophisticated methods
to reduce the number of solutions presented to decision makers are required.
To this end, the following two approaches could provide a promising starting
point: a cone-domination approach to identify knee points in the PO front, and
an equality check to filter out solutions that differ in genotype but are identical
in phenotype, such as z + 1 and 1 + z, to give a simplified example.
To conclude, we demonstrated through various experiments how domain knowl-Final Considerations on the

Inclusion of Domain
Knowledge for Practical

Applications

edge can enhance the equations evolved with GP, while also showing, in one
instance, how it can lead to undesirable outcomes. This raises broader philo-
sophical questions about how much domain knowledge should be integrated
into our algorithms. While we cannot discuss this issue in its entirety, we know
that too much bias can hinder the exploration of new models, while too little
can result in unsatisfactory solutions. Finding the right balance, i.e., simpli-
fying the problem enough to make it manageable, but not so much that the
simplified version becomes a local optimum, remains challenging, and often re-
quires trial and error. Nonetheless, we have shown in many cases how biases can
reduce the problem complexity for the algorithm and improve results. Many
of these biases were at the observational level, suggesting that the availability
of the right data in the right form — such as ensuring all features are in SI
units, or transforming positions into spherical coordinates — can already pro-
vide notable simplifications for the algorithm, without changing the algorithm
itself. Overall, we conclude that suitable domain knowledge and close collabo-
ration with domain experts is an essential step towards identifying meaningful
symbolic models.

9.2 Future Work

Every journey eventually reaches its end, and so does this thesis. While we have
made progress in addressing key aspects of genetic programming for symbolic
regression in science and engineering, we do not claim to have answered all
relevant questions. Many interesting ideas for future research arise from the
results of this thesis, and we would like to specifically highlight the following
five:
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• Concerning the two benchmark problems proposed in this thesis, vari-
ous extensions to the conducted experiments are possible. Regarding the
problem of particle-laden flows, we developed models to predict the de-
viations from the mean drag on a particle in the Stokes regime, which
is surrounded by numerous other particles. First, we can apply the pro-
posed ML pipeline to the other components acting on a particle, namely
lift and torque. Second, the promising results for the Stokes flow open
space for further exploration of the capabilities of the algorithm when ap-
plied to higher Reynolds numbers, which is typically considered a more
complex problem since flow patterns become asymmetric. As discussed
in detail in several places, the measures to overcome the multimodality of
the IK problem did not lead to satisfactory results. Therefore, applying
the same algorithms with an improved method to handle multimodality
seems promising. One possible approach would be to filter the dataset
to include only a single elbow configuration, which could be useful for
applications where only one configuration is allowed, such as when the
elbow must always remain down when operating under a table.

• Beyond the application areas of this thesis, our approaches demonstrate
strong potential for application to other real-world problems in science
and engineering, particularly those where domain knowledge is available
and which can be naturally expressed as graphs. These include the mod-
eling of swarm behaviors and interactions, so as to navigate swarms of
drones through complex environments; traffic and transformation net-
works, for which symbolic models can give important insights on relevant
dependencies for traffic management; and particle physics, where sym-
bolic models can discover underlying particle interactions. The proposed
unit-aware GP algorithm including unknown constants can, of course,
also be applied without the preceding step of MPNNs as an inductive
bias. The recursive tree traversal algorithm for the adapted dimensional
analysis is relatively simple, and contemporary GP frameworks already
have multi-objective optimization implemented. Thus, we propose that
our multi-objective unit-aware GP algorithm should be available for state-
of-the-art frameworks in the future, to offer the possibility for physically
meaningful and interpretable symbolic models.

• Although the code for most state-of-the-art GP frameworks is publicly
available, we frequently encountered the challenge of their limited capac-
ity to integrate domain knowledge throughout the course of this thesis.
Some frameworks were tuned for performance in a way that complicates
the integration of new code due to many dependencies. Others lacked
the possibility to fit new constants, which is an indispensable require-
ment in contemporary symbolic regression, or did not support critical
features, such as control of function nesting or custom complexity values
for functions. Of course, it is not a trivial task to develop and maintain
frameworks that are flexible enough to integrate new code ideas, while at
the same time capable of being optimized for a reasonable computational
efficiency. We found the TiSR framework [170] to balance these conflict-
ing requirements well, but in the future it would be desirable to have
more freedom to integrate domain knowledge into existing algorithms.

Based on the experience gained in this thesis, certain framework prop-
erties can contribute to the integration of domain knowledge. Domain
knowledge on the observational level is mainly related to pre-processing
steps of data and not necessarily the task of the SR algorithm. Yet, soft-
ware support for the conversion of features to SI units and for transforma-
tion from Cartesian to spherical coordinates would be desirable built-in
features of future frameworks, as they are applicable to a wide range of
problems. Domain knowledge on the inductive and learning levels has a
higher influence on the algorithm itself, requiring a modular code struc-
ture where subcomponents can be easily replaced by others. On the
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inductive level, custom function sets beyond arithmetic operations are a
key feature. Custom evaluation functions and a selection of constraint
handling methods for expert-defined constraints are probably the most
important features to enable the integration of domain knowledge on the
learning level.

• The final PO front can contain a large number of solutions, some of
which are almost identical or only slightly different. A frequently en-
countered challenge throughout this thesis was the selection of symbolic
models from the final PO front, which can be time-consuming for domain
experts. Making trade-offs between accuracy and complexity, which we
introduced as selection bias in Sec. 3.3, can be linked to the research area
of decision-making. While identifying knee points of the PO front is one
potential idea, more advanced methods might be required to handle the
full complexity of the selection process and consider other requirements
such as interpretability, robustness, and domain-specific constraints that
were not optimized by the algorithm. Future research should consider
decision-making methods and be targeted towards reducing the number
of solutions presented to the decision maker to one or only a few. To this
end, studies based on human feedback to develop heuristics for expert
preferences to select from fronts could be a good starting point.

• A characteristic shared by many problems from science and engineering,
including the two use cases studied in this thesis, is the availability of
categorical data. Consequently, multiple parameter configurations of the
otherwise identical system, such as varying volume fractions in particle
laden flows, or different link lengths of robotic manipulators, are possible.
While preliminary experiments beyond the scope of this thesis indicated
that MPNN-based approaches yielded good results when trained on data
with multiple categories simultaneously, the GP algorithms faced diffi-
culties in incorporating the categorical variables and identifying accurate
equations. For such cases, it is desirable to identify symbolic models that
share the same structure but have different parameter values for each
category. The multiview SR approach proposed in [236] can be consid-
ered a promising starting point to this end. Future research in this area
includes the possibility for categorical and non-categorical constants, of
which the latter would take on the same value for all categories. Given
how frequently categorical data is available in experiments from science
and engineering, applying categorical GP together with our unit-aware
approach to such datasets opens a vast space of new application areas.
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A Additional Equations

This appendix provides additional equations from the final experiments on the
IK problem presented in Chapter 8.
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⇣
�0.015564✓r,ref + 0.01864✓r,off � 0.031129✓s,off + �0.007782✓r,ref�0.015564�

 , 1.09 + ↵r

⌘
0.591

4 26 0.676 + �0.284✓s,off
lr

� 0.0942✓2r,ref + �0.985�0.613�
 0.631

5 22 ↵r � 1.05✓r,ref + 2✓r,off + �0.24523✓s,off✓r,ref
 � 0.0786✓2r,ref✓s,off 0.856

5 18 ↵r � ✓r,ref + 2✓r,off � 0.0886↵r✓s,off + 0.1772✓s,off�� 0.0886✓2r,ref✓s,off 0.854
5 17 ↵r � ✓r,ref + 2✓r,off � 0.42714✓s,off✓r,ref + 0.0756✓s,off✓r,ref� 0.841
6 22 �0.2496 + 1.12✓r,ref � 1.6409✓s,off � 2.24✓r,off + �2.4768✓s,off�1.92✓r,off✓s,off+0.96✓s,off✓r,ref

 + 0.636✓s,off✓r,ref � 1.272✓r,off✓s,off 0.876
6 18 �3.35 + ✓r,ref + �0.7928✓s,off+0.41✓s,off✓r,ref

 + 0.82✓s,off✓r,ref 0.845
6 21 �0.242 + 1.12✓r,ref � 1.6484✓s,off � 2.24✓r,off + �2.6✓s,off�2✓r,off✓s,off+✓s,off✓r,ref

 + 0.634✓s,off✓r,ref � 1.268✓r,off✓s,off 0.876

Table A.1: Additional equations for the six message elements of the 3 DOF manipulators. Extension to Tab. 8.10.
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msg Compl. Equation R2

1 28 0.464 + ↵s + 2⇥ (�0.584 + 1.0787lr � 0.586✓s,off) + sin (1.58� ↵r � ↵s) 0.676
1 18 0.882 + ↵s � 0.278 (2⇥+ 2✓s,off (�0.7 + ↵r + 2⇥)) 0.645
1 21 0.874 + ↵s � 0.357 (2⇥+ 1.488✓s,off (�0.715 + ↵r + 2⇥)) 0.649
2 23 �0.0787 (�5.4 + ls (14 + 2✓s,off (5.63 + 2�))) arctan (0.163, 2 ) 0.502
2 27 0.087719(↵r+2✓s,off)

�3.3+arctan
⇣

�0.0254
�3.2�0.1274�+2✓

r,off+2✓
s,off

,2 
⌘ 0.522

2 24 �0.446✓s,off � cos (�↵s + arctan ((0.478 � ↵r) (�0.175 + 2✓s,off) ,�0.187)) 0.478
3 27 0.151

�
�4.89 + 2 � 2✓s,off

�
0.615 + arctan

�
0.02716 ✓s,off, 0.00105� ↵2

r

���
0.520

3 28 �0.929� 0.323 (�↵r + sin (2 ) + arctan (0.095238✓s,off, 2 (�3.15� 2✓s,off))) 0.472
3 25 arctan

�
�4.32� e2 (�0.235+↵r�16.026↵s+16.22✓s,off), 13.8

�
0.432

4 21 ↵r � 3.17ls + arctan (5.99� 4✓s,off, 3.25� 2 ( + ✓s,off)) 0.674
4 22 ↵r + 0.792 arctan (6.17� 4✓s,off, 0.0389� 2 )� 3.7ls 0.683
4 26 (4.67 + 2✓s,off) (0.059� 0.0191↵r arctan (0.0945, 2 )) (↵r � ↵s � 4✓s,off) 0.654
5 21 �0.18083 (�2✓s,off + 2⇥ (�0.836� 1.536✓s,off))� cos (0.778↵r) 0.640
5 19 �0.156 (�2✓s,off + 2⇥ (�0.971� 2✓s,off))� cos (arctan (↵r, 0.521)) 0.633
5 18 �0.15576 (�2✓s,off + 2⇥ (�0.971� 2✓s,off))� cos (�0.796↵r) 0.633
6 28 0.551 + 2✓s,off (0.723� 0.586↵r) + sin

�
1.55� 0.408 � ↵r + e2✓s,off

�
0.604

6 24 0.81 + 1.7794 sin (2.74� 0.26 � ↵r + 2✓s,off (�0.561 + ↵r)) 0.560
6 21 �0.445 (�1.31 + ↵r � 0.52 ✓r,off) (1.32 + ↵r + 2✓s,off) 0.554

Table A.2: Additional equations for the six message elements of the 5 DOF manipulators. Extension to Tab. 8.11.
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